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Abstrakt

Tato diplomová práce se zabývá implementaćı nové komponenty pro kresleńı topologie

pr̊umyslové śıtě. Kresleńı topologie se skládá ze dvou část́ı. Prvńı část́ı je nalezeńı

vhodných pozic pro uzly a druhou část́ı je nalezeńı cest pro hrany mezi uzly. Komponenta

byla doplněna o vlastnosti porovnáváńı topologie. Pro tento účel byly navrženy dva

algoritmy. Výstupem prvńıho algoritmu je topologie, která obsahuje uzly a hrany ze

dvou porovnávaných topologíı. Př́ıpadné odlǐsnosti jsou zvýrazněny při jej́ım vykresleńı.

Druhý algorithmus porovnává topologii pr̊umyslové śıtě s topologíı nakonfigurovanou

v prostřed́ı SIMATIC STEP 7. Účelem tohoto algoritmu je nalezeńı zař́ızeńı v śıti

odpov́ıdaj́ıćıho nakonfigurovanému. Komponenta byla implementována v jazyce C♯ v

prostřed́ı Visual Studio 2010 a integrována do diagnostického nástroje PRONETA.
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Abstract

This thesis is concerned about the implementation of a new component for the drawing

of industrial network topology. The drawing of topology consists of two parts. The first

part is the calculation of the positions of vertices and the second part determines the

edge routes between these vertices. The component was supplemented with functionality

for the topology comparison. Two algorithms were implemented for this purpose. The

output of the first algorithm is a merged topology which consists of the vertices and the

edges from two compared topologies. Possible differences are marked in the visualization.

The second algorithm compares the topology of industrial network and the topology

which were configured in SIMATIC STEP 7. The purpose of this algorithm is to find a

device in the network corresponding to the configured device. The component has been

implemented in C♯ in Visual Studio 2010 and integrated to the PRONETA diagnostic

tool.
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Chapter 1

Introduction

1.1 Motivation

Industrial networks used to control production machinery require high availability to

keep possible productivity losses to a minimum. The challenges to overcome are how the

needed device information can be acquired and how it can be processed and passed on,

in order for the detected error to be quickly fixed. This thesis is focussed on the second

challenge to provide information about the current state of network in a visual form.

Service personnel using the diagnostic tool, developed within this thesis, will be able to

quickly and efficiently identify and fix detected errors.

PROFINET is one of the most widespread industrial network protocols based on

Ethernet. It is the open industrial Ethernet standard of PROFIBUS & PROFINET

International (PI). Advantages of Ethernet are combined with industrial experience of

PROFIBUS. Siemens AG is one of the leading companies in the production of technologies

based on this protocol. It provides diagnostic tools based on SIMATIC WinCC to display

information about devices in PROFINET networks which were configured in SIMATIC

STEP 7 project as stated in [24].

To analyze whole network topology it is necessary to retrieve information about all

devices, even if they are not present in the current project or they are not properly

configured. PROFINET Network Analyzer (PRONETA) meets this requirement. It is

being developed by ANF DATA spol. s r.o. which is a subsidiary company of Siemens

1



CHAPTER 1. INTRODUCTION 2

AG Austria. As the name suggests PRONETA is a diagnostic tool used for industrial

networks based on PROFINET. It is capable of retrieving information about all devices in

the network, even if they don’t have an assigned name or IP1 address. A brief introduction

to PRONETA and its functionalities will be presented in the next chapter.

This thesis is concerned about the implementation of a new component for drawing

of industrial network topology. PRONETA already contains a component for topology

visualization, but it uses obsolete rendering technologies and will be replaced with this

new component. The developed component is supposed to be used not only for drawing

of topology but it shall also provide useful functionality for comparison of topologies.

1.2 Problem Statement

The study of network topology uses graph theory. Topology is then represented by

a graph. This graph is a collection of vertices and edges which connect pairs of vertices.

In the following text each vertex represents a device and each edge represents a connection

in the network. Device ports are connection ports to each vertex. This port number is

assigned to this port. The visualization of this change of the terminology is shown in

Figure 1.1.

1 2 1 2

edge

vertex

connection port
and its number

Figure 1.1: Graph terminology

The implementation of the visualization component introduces three main problems.

First of all, algorithms for the topology drawing need to be created. It consists of the

implementation of a layout algorithm and edge routing algorithm. The layout algorithm

determines positions of vertices. Final layout has to achieve maximum possible readability

and place vertices in a way to avoid unnecessary edge crossings. Edge routing algorithm

determines edge routes between vertices. Edge route is visual representation of edge.

According to the requirements the edges have to be routed orthogonally, and have to

1Internet protocol



CHAPTER 1. INTRODUCTION 3

prevent overlapping of the vertices. Moreover, the edge routes have to be recalculated

during the manipulation with vertices.

Secondly, algorithms for topology comparison need to be created. The first algorithm

has to compare two topologies to create one merged topology. The merged topology

will be used for visualization of recognized differences. It consists of all unique vertices

and edges existing in both compared topologies. Therefore the only complication is to

find matching vertices and edges. This topology comparison will detect changes between

a previous state and the current state of the same network. The second algorithm has

to compare the analyzed network topology and the topology configured in the SIMATIC

STEP 7 project. This comparison is much more difficult because of the high probability

of missing information about physical devices in the analyzed network. This problem will

be described in the next chapter. Nevertheless, this algorithm will be used for finding

proper matching vertices for device name assignment.

Finally, the graphical user interface (GUI) has to be implemented. This task is no

less important then all previous. Maximum attention has to be focused on the clarity of

the final GUI. It has to be obvious for the user how to use all available functions without

having to read a long list of instructions. The final appearance of vertices and edges in

visualization was defined by ANF DATA spol. s r.o.

1.3 Contribution

The primary object of this thesis is to implement a component for topology drawing and

integrate it into PRONETA. This component will be supplemented with functionality for

topology comparison. It will be implemented in C♯ with the use of WPF for rendering.

A unique name has to be assigned to each device in PROFINET networks. The

controller is then able to automatically assign IP addresses from the SIMATIC STEP 7

project to each device. Because of this requirement, the task of this thesis was extended

with an implementation of a user interface for device name assignment. Functionality for

transmitting the configuration to physical devices is already present in PRONETA.

This thesis is divided into the following chapters:

• CHAPTER 1: Presents the current state of network diagnostics in modern industrial

solutions.

• CHAPTER 2: Provides a basic description of PRONETA and its functionality.
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• CHAPTER 3: Describes available algorithms and compares available frameworks

for graph visualization and it also presents a framework which was used in the

developed component.

• CHAPTER 4: Describes core algorithms for topology visualization.

• CHAPTER 5: Presents two different algorithms for topology comparison. The first

creates a merged topology for visual comparison of differences between two topologies.

The second finds proper device matches between network topology and configured

topology for name assignment.

• CHAPTER 6: Basic description of structure of the created component.

• CHAPTER 7: Describes graphical user interface and use of a name assignment.

• CHAPTER 8: This chapter summarizes all important algorithms and functionality

of the developed component. It also contains several suggestions for improvements

which can be implemented in the future.



Chapter 2

PRONETA

As we mentioned before, PROFINET Network Analyzer (PRONETA) is a diagnostic

tool used for industrial networks based on PROFINET. The idea of this diagnostic tool is

that any engineer can analyze any PROFINET network with a common computer using

a standard Ethernet network card, Ethernet cable and PRONETA. In this chapter we

present functionality related to the implementation of a new component for topology

visualization.

2.1 Functionality Overview

PRONETA communication functionality is based on the WinPCAP library. This library

allows PRONETA to capture and transmit network packets. This is used by Network

Scanner which performs cyclic scanning to monitor the network and keeps information

about its current state updated. It is used for acquiring device information using the

following communication protocols:

• DCP - Discovery Control Protocol - A communications protocol that allows to find

every PROFINET device on a network. It retrieves information for identification

of devices such as the name of station, device type, ip address etc.

• SNMP - Simple Network Management Protocol - Through SNMP the LLDP-

MIB1 can be accessed which is the interface between the LLDP agent and the

network management station. LLDP-MIB keeps information about devices directly

1Link Layer Discovery Protocol-Management Information Base

5



CHAPTER 2. PRONETA 6

connected to the ports of the analyzed device. It provides port id, name of station

and MAC2 address of these devices. We also retrieve information about the network

load.

• DCE/RPC - Distributed Computing Environment/Remote Procedure Call - This

communication protocol is used to acquire I&M3 records. It provides information

about the firmware and hardware versions and vendor. It can also retrieve additional

information about hardware configuration of an analyzed device.

Once the Network Scanner receives information about all the devices in the network,

Device List will open automatically. Device List shows all the detected devices in the

table and detailed information about each of them.

PRONETA is also capable of parsing exported SIMATIC STEP 7 project in XML

format into the internal instance of topology. This topology will be used for name

assignment in the new component.

PRONETA already contains a component for topology drawing but it is built on

obsolete rendering technology (GDI+) and will be replaced.

2.2 Information Problems

The LLDP agent transmits and receives LLDP packets, which are also called protocol

data units(PDUs). It can operates in transmit only mode, receive only mode or both

transmit and receive mode. Each device in the network has its own LLDP agent. If the

LLDP agent is in receive only mode, the device does not send LLDP-MIB. This results

in the fact that topology can be virtually divided into several disconnected subgraphs

because it is not possible to find all the connections between the devices. Some devices

can be even completely disconnected, even if they are detected with DCP.

In the PROFINET networks it is possible to use generic Ethernet switches. These

switches often do not support LLDP. This results in fact that LLDP packets will be

forwarded on all ports. This in turn causes the devices to think that each one of them is

connected directly to all the other devices connected to the switch. These devices will have

more than one connection to one port in visualization. To avoid this problem, a generic

2Media Access Control address
3Identification and maintenance data



CHAPTER 2. PRONETA 7

Ethernet switch between the devices in the network is reconstructed using information

from devices which are directly connected to this switch. This feature was implemented

in PRONETA especially for the purposes of the topology drawing.

The information about the communication protocols were taken from [19]. PRONETA

main window is shown in Figure 2.1.

Figure 2.1: PRONETA



Chapter 3

Algorithms and Frameworks

The available algorithms and frameworks for graph visualization are described in this

chapter.

3.1 Algorithms

In this section we introduce several available layout algorithms which should be considered

for the drawing of the network topology. The information about these algorithms were

taken from [1].

3.1.1 Hierarchical Drawings

This algorithm is often called Sugiyama after one of its inventors. It arranges a graph by

placing vertices in different layers in such a way that most visual edges flow in the same

direction and the number of their intersections is minimized. It is often chosen for graphs

with the flow of information in one direction. This is not exactly the case of network

topology. Nevertheless, graphs arranged by this hierarchical layout show the hierarchy

very clearly and because of that, this algorithm should be considered. This hierarchical

approach consists of four main steps:

• Cycle Removal - Temporarily reverses the direction of the edges to make the

directed graph acyclic. This preprocessing step is needed if the input graph contains

cycles.

8



CHAPTER 3. ALGORITHMS AND FRAMEWORKS 9

• Layer Assignment - Assigns vertices to horizontal layers and determines their y-

coordinate.

• Crossing Reduction - Receives properly layered graph as the input and produces

newly layered graph with order specified for each vertex in each layer. It orders

the vertices within each layer in such a way that the number of edge crossings is

reduced.

• Horizontal Coordinate Assignment - Determines an x-coordinate for each vertex.

3.1.2 Rooted Tree

A rooted tree is a connected acyclic graph. It consists of a tree and a distinguished vertex

which is the root. It is often used for graphs with no cycles. Vertices are not allowed to

have more then one parent. The problem is that the network topology can contain rings

and the graph of such topology has at least one cycle. We can use this algorithm in a

way that the cycles are disconnected during the calculation. In our case we can consider

network topology as a ordered tree which consists of a rooted tree and, for each vertex,

an ordering of its children. These children are ordered according to the connection port

number of their edges to the parent. The effect of this ordering in topology drawing will

be shown later.

The described method for the construction of drawings uses the terms depth and

height. The depth of a vertex of a tree is the number of edges of the path of the tree

between the vertex and the root. The height of the tree is the maximum depth of a vertex

of the tree.

The following method was considered for the construction of drawings of network

topology in a form of a tree. Layering method determines horizontal layer of each vertex

in a way that the vertex v of depth i has a y-coordinate y(v) = −i. The layered drawing

is strictly downward. Avoiding crossings in a layered drawing is reached by ensuring

that two vertices on the same layer have the same left-to-right relative order as their

parents. Once the vertical layers are determined, the algorithm has to compute only

x-coordinates. The requirement is that the parent will be placed within the horizontal

span of its children and possibly in a central position. This method is possible to use for

trees with more than two children for each vertex and can build trees from the left to the

right instead of original vertical orientation.
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3.2 Frameworks

In this section we introduce several frameworks which were considered as a basis for

the developed component. All the mentioned frameworks were developed for graph

visualization. Each figure in this chapter was made without any additional changes to the

frameworks. They were used in their original state. The figures shows graph visualization

setup which was the closest to fulfilling the requirements.

3.2.1 Requirements

The framework used for graph visualization must fulfill the following requirements:

• It has to be allowed to use the framework for commercial purposes because PRONETA

is a commercial product.

• It should be written in C♯ and it should directly support WPF.

• It should include orthogonal routing algorithm or provide a source code for its

additional implementation.

• It should be possible to directly manipulate each vertex from GUI, one at a time.

• Edge routes should be recalculated during vertex manipulation.

3.2.2 Considered Frameworks

3.2.2.1 MSAGL - Microsoft Automatic Graph Layout

MSAGL is a .NET tool for graph visualization which was developed by Lev Nachmanson

at Microsoft Research. It produces layered or hierarchical layouts because it is based on

the Sugiyama layout algorithm. Orthogonal routing algorithm is not implemented yet.

Direct manipulation of vertex position is possible and edge routes are recalculated during

this process. This framework is written in C♯ but it doesn’t directly support WPF.

Instead of WPF, it is based on GDI+. An example of graph visualization is presented

in Figure 3.1. For additional information see [2].
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Figure 3.1: Graph visualization using MSAGL

It is also a commercial product which can be purchased at a Microsoft Store for $280

and according to its license, it can be used for commercial purposes. It is distributed in

a combined binary and source code state. The price of this product wasn’t a problem

because this framework was already available in ANF DATA spol. s r.o.. The former

version of MSAGL is Graph Layout Execution Engine (GLEE). It is free, but it cannot

be used for commercial purposes.

3.2.2.2 yFiles

These diagramming components are developed by yWorks. At first it was available

only for Java. Nowadays, it is also available for .Net and WPF and for web technologies

such as FLEX, AJAX and Microsoft Silverlight. It provides a very powerful solution for

graph layout and orthogonal routing visualization. According to their references, direct

manipulation of vertex position is not implemented. An example of graph visualization

is shown in Figure 3.2.

The framework is distributed in a binary state for commercial purposes. A license

for a single developer costs $7.200. The distribution in a binary state and its high price

automatically removed this choice from a list of usable frameworks. From its demo

projects, we were not able to decide whether it is the best solution or not. For additional

information see [23].
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Figure 3.2: Graph visualization using yFiles

3.2.2.3 Graphviz

Graphviz was developed by AT&T1 Labs Research for drawing graphs specified in

DOT2 language scripts. It is an open source graph visualization software. It takes

descriptions of graphs in a simple text language and makes graphs in formats such as

images or SVG for web pages. It also supports vector formats such as PDF or Postscript.

This framework visualizes only static graphs. The support of direct manipulation of

vertex position is not available. It has to be implemented in the host application. Using

graphs in a form of simple text language isn’t a preferable solution, because every graph

vertex must contain an object which represents a device. Passing an object through simple

text language is not possible. It is written in C and C++, which is also not optimal. An

example of graph visualization is presented in Figure 3.3. It is distributed under Eclipse

Public License in a binary and a source code state. Its license allows changes to the source

code and the application using this framework can be used for commercial purposes. For

additional information see [4].

1American Telephone and Telegraph Company in [4]
2DOT is a plain text graph description language in [3].
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Figure 3.3: Graph visualization using Graphviz

3.2.2.4 Quickgraph

Quickgraph is a .NET library which provides generic directed or undirected graph

data structures. It comes with searching algorithms such as depth first search, breath first

search or A* search. It can be used as basis for the application for graph visualization. It

already officially supports the mentioned frameworks (MSAGL, its former version GLEE,

and Graphviz) to render the graphs.

This library is mentioned, because it is used also as a basis for Graph♯. It does not

fulfill the requirements enough, to be considered as a standalone basis for automatic

graph visualization. For additional information see [5].

3.2.2.5 Graph♯

Graph♯ is a graph layout framework based on Quickgraph. It uses its data structures

and provides additional functionality. It is written in C♯ and directly supports WPF. The

availability of user interaction with vertices is provided by the WPF Extensions library.

The routing of edges is recalculated during direct manipulation with vertices. Orthogonal

routing algorithm is not present, but it can be implemented within the structure of the

framework. An example of graph visualization is shown in Figure 3.4.

This framework is distributed under Microsoft Public License (Ms-PL) in a binary

and a source code form. Its license allows changes to the source code and the application

using this framework can be used for commercial purposes. For additional information

see [6].

3.2.3 Chosen Framework

We have explored all the mentioned frameworks except yFiles because of its high

price. Only Graph♯ fulfills all the requirements which are necessary.
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Figure 3.4: Graph visualization using Graph♯ and Sugiyama layout algorithm

This framework contains the following libraries:

• Base of framework (GraphSharp.dll) - It contains algorithms for layout calculation,

routing edges, overlap removal and highlighting vertices and edges. It also implements

modified graph data structures based on the Quickgraph library.

• Graph visualization (GraphSharp.Controls.dll) - The most important class in this

library is GraphLayout. It contains methods for initialization of all available

algorithms. Other important classes are V ertexControl and EdgeControl which

represent vertices and edges in graph visualization. All mentioned classes can be

used directly in WPF.

The internal functionality of this framework will be presented in chapter 6.



Chapter 4

Topology Drawing

The core algorithms used for topology drawing are described in this chapter. We implement

these algorithms within the Graph♯ structure. The core algorithms are layout algorithm

and routing algorithm. The edge routing algorithm is usually a part of the layout

algorithm. In the Graph♯ structure, these two algorithms are separated.

4.1 Layout Algorithm

The layout algorithm determines the positions of vertices in visualization. Vertices have

to be organized in a way to provide the best possible readability of the final layout. After

some exploration of available algorithms, we consider to use of the Sugiyama and the

Rooted Tree layout algorithm. These two types of layout algorithms are included in the

Graph♯. Unfortunately, the readability of the layout calculated with these algorithms

wasn’t very satisfying because of the requirement of the horizontal orientation of the

network visualization and the positions of the connection ports at the bottom of the

vertices. Instead of changing the available algorithms, we decided to develop a new

layout algorithm and integrate it into the Graph♯ algorithm structure. The developed

layout algorithm is a combination of both approaches. It is built from a root vertex as

in the tree layout algorithm and vertices are placed in horizontal layers in a specific way

to avoid edge crossings as in the Sugiyama layout algorithm. This approach is based on

the user experience with PROFINET networks visualization.

In chapter 2 we mentioned that topology can be divided into several subgraphs and

some vertices can be actually completely disconnected from others. These subgraphs and

15
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disconnected vertices have to be very well arranged to form a compact layout. It means

that it should cover the smallest possible area and keep high readability.

4.1.1 Solution

Vertices and edges in Graph♯ are generic objects. Both of them have to be implemented

in a host application. Because of this, an internal graph with new object of vertices and

edges has to be created to provide additional functionality used inside the algorithm.

The solution for a layout algorithm consists of three main tasks. The first task is the

selection of a root vertex. The second task is the tree layout algorithm which calculates

the positions of vertices with at least one edge in each subtree. The third task is the

placement of disconnected vertices. The whole layout is calculated using only one pass

through the graph. The developed algorithm is fast enough to implement optimization

process described in 4.1.2.

4.1.1.1 Graph Initialization

One of the inputs of the layout algorithm is a graph which represents the topology.

This graph contains vertices connected with edges which have an assigned direction.

An object, which contains the original vertex, its current size and position in visualization,

is created for each original vertex. Two objects are created for each original edge. One

with the same source and target vertex and the second with a reversed source and target

vertex. Each edge has two assigned connection ports, one for the source vertex and one

for the target vertex. Each connection port has assigned a number. Then, each edge is

added into the list of edges of its source vertex. This list of edges is ordered according to

the number of connection port connected to source vertex in ascending order. Ordering

of this list decreases the number of edge crossings, because the edges are explored from

the last. It means that the target vertex of the last edge is placed first. Effect of proper

edge ordering is shown in Figure 4.1.
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Figure 4.1: Removed unnecessary edge crossings

4.1.1.2 Root Vertex

The tree layout algorithm starts building a subtree from the root vertex. The proper

selection of this root vertex is very important. It can minimize the number of edge

crossings and can also reduce the size of the whole layout. The selection of the root

vertex is based on an observation that the best choice is the vertex with the maximum

degree. It means that the root vertex is connected to other vertices with maximum

number of edges. In PROFINET networks it is often the most occupied switch.

One of the vertices in network topology visualization represents a computer which

is scanning the network using PRONETA. This vertex is one of the most interesting

vertices because it is probably connected to a well-known position in topology. It can

be the preferred starting point for network analysis. To meet this requirement, the root

vertex can be also selected by the user directly in GUI. The selected vertex is then the

first root vertex in the layout algorithm, even if it has only one edge.

At the beginning of the algorithm the list of potential root vertices is compiled. Each

vertex in this list has at least one edge. These potential root vertices are ordered according

to the degree in descending order. Root vertex is always the first vertex in this ordered list.

Only root vertex selected by the user in visualization has a higher priority. Pseudocode

of method FindNextRoot is presented in Algorithm 1.
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Algorithm 1 Finds new root vertex

1: function FindNextRoot

2: if root selected by user exists and is not placed then

3: root = root vertex selected by user

4: remove root from potentialRoots

5: return root was found

6: end if

7: if potentialRoots is not empty then

8: root = first vertex from potentialRoots

9: remove root from potentialRoots

10: return root was found

11: end if

12: return root wasn’t found

13: end function

4.1.1.3 Tree Layout

The the first version of this algorithm was using the method similar to the Layering

method for constructing a drawing of rooted tree described in 3.1.2. This was based on

determining the horizontal and vertical layer for each vertex and the tree was build from

the left to the right. It results in a layout where the vertices are placed in a grid. The

exploration of edges and vertices was the same as in the final version of a tree layout

algorithm and it will be described later in this chapter. In Figure 4.2 we can see that the

appearance of the layout using this first approach, was not very satisfying. Horizontal

gaps between vertices were dependent on the greatest vertex width in the previous vertical

layer.

The final approach is based on the observation that it is necessary to consider only

the positions of the parent vertex and the last-placed vertex if we want to properly draw

network topology. These two vertices determine the position of the current vertex. The

current vertex is the vertex which position has to be calculated. The parent vertex was

already placed and it is directly connected to the current vertex. The last-placed vertex

was placed before the current vertex. The horizontal layer is also calculated because it is

used for the placement of disconnected vertices.
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Figure 4.2: Vertices placed in a grid

If the root vertex is found, its position is calculated. It is marked as the last-placed

vertex and edges are added into the list of explored edges. The list of explored edges is

used as LIFO structure because the edge which was stored last is selected as first. Then,

the last edge is selected and removed from this list. Its source vertex is marked as a

parent vertex and target vertex as a current vertex. The horizontal coordinate X and

the vertical coordinate Y of the current vertex position are calculated by using method,

CalculatePosition, which is presented in Algorithm 2.

If the last-placed vertex is a parent vertex, the horizontal layer of the current vertex

is the same as the horizontal layer of the parent vertex. Otherwise, the horizontal layer

of the current vertex is always equal to the horizontal layer of the last-placed vertex

incremented by one. An example of the current vertex, parent vertex and the last-placed

vertex is presented in Figure 4.3.

The current vertex is then removed from the list of potential root vertices. All edges

from current vertex except the edge to the parent vertex and edges to the already placed

vertices are added into the list of explored edges. Edges to the already placed vertices

are not added because they are closing the ring in topology. This exploration of edges

is repeated until the list of explored edges is empty. If the list of potential root vertices

is not empty, new root vertex is found and the exploration of edges starts again. This

process is repeated until the list of potential root vertices is empty. All vertices with

at least one edge are then placed. The ordered sequence of the placement of vertices is

presented in Figure 4.4. Pseudocode of the tree layout algorithm is the Algorithm 3.
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Figure 4.3: Determining the vertex position

Algorithm 2 Calculates the position of the vertex with at least one edge

1: function CalculatePosition(parent, lastP laced)

2: if parent is assigned then

3: X =GetHorizontalPosition(parent)

4: if parent is lastP laced then

5: Y =vertical position of parent

6: else

7: Y =GetVerticalPosition(lastP laced)

8: end if

9: else

10: set horizontal position X to 0

11: if lastP laced is assigned then

12: Y =GetVerticalPosition(lastP laced)

13: end if

14: end if

15: end function
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Algorithm 2 contains the following methods:

• GetHorizontalPosition calculates the horizontal position of the current vertex as

a sum of the horizontal position of the parentV ertex, the width of the parentV ertex

and the horizontal distance. The horizontal distance is the distance between vertices

defined as in the parameters of a layout algorithm as shown in Figure 4.4.

• GetVerticalPosition calculates the vertical position of the current vertex as a sum

of the vertical position of the lastP lacedV ertex, the height of the lastP lacedV ertex

and the vertical distance. The vertical distance is the distance between vertices

defined as in the parameters of a layout algorithm as shown in Figure 4.4.

scalance_0scalance_0scalance_0scalance_0

SCALANCE X-200

1 2 3 4

scalance_1scalance_1scalance_1scalance_1

SCALANCE X-200

1 2 3 4

et200_4et200_4et200_4et200_4

IM151-3

1 2

et200_5et200_5et200_5et200_5

IM151-3

1 2

et200_6et200_6et200_6et200_6

IM151-3

1 2

et200_7et200_7et200_7et200_7

IM151-3

1 2

et200_8et200_8et200_8et200_8

IM151-3

1 2

et200_9et200_9et200_9et200_9

IM151-3

1 2

et200_10et200_10et200_10et200_10

IM151-3

1 2

H1

H2

H3

H4

S1 S2 S3

S4

S5 S6 S7

S8

S1-14 - stepsH1-4 - horizontal layers

Figure 4.4: Tree layout with ordered steps
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Algorithm 3 Calculates the position of the vertices with at least one edge

1: function CalculateTreeLayout

2: while FindNextRoot( )do

3: PlaceVertex(null,rootV ertex)

4: AddEdges(null,rootV ertex)

5: while exploredEdgesList is not empty do

6: currentEdge = the last edge from exploredEdgesList

7: remove currentEdge from exploredEdgesList

8: parent = source vertex of currentEdge

9: current = target vertex of currentEdge

10: if currentV ertex is not placed then

11: PlaceVertex(parent,current)

12: AddEdges(parent,current)

13: end if

14: end while

15: end while

16: end function

Algorithm 3 contains the following methods:

• FindNextRoot is described in detail in 4.1.1.2.

• PlaceVertex(parent, current) calculates the position of the current vertex in the

visualization. It also marks the vertex which has its right border at maximal

horizontal position (right border vertex). This method also determines the width

and the height of the whole layout.

• AddEdges(parent, current) iterates through the list of edges of the current vertex

and into the exploredEdgesList adds edges, which target vertex is not equal to the

parentV ertex and isn’t placed yet.

4.1.1.4 Final Placement

This part of layout algorithm determines the positions of the vertices without edges.

These disconnected vertices are placed in one or more columns next to the right border

of the layout. The position of the disconnected vertex is determined by the right border

vertex and the last-placed vertex. The right border vertex was found in the tree layout
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algorithm and its right border in visualization has a maximal horizontal position. The

maximal horizontal layer is equal to the horizontal layer of the last-placed vertex in the

tree layout. The horizontal coordinate X and the vertical coordinate Y of the current

vertex position are calculated by using method, CalculateDisconnectedPosition, which

is presented in Algorithm 4.

At first, a list of vertices without edges is compiled and the current horizontal layer

is set to zero. In each step the disconnected vertices are placed under each other.

The current horizontal layer is incremented by one in each step until it reaches the

maximal horizontal layer. The current horizontal layer is again set to zero and new right

border vertex is used.

If all the vertices in topology are without edges, the maximal horizontal layer is

calculated in a way that the number of vertices in the horizontal direction is equal to the

number of vertices in the vertical direction. In Figure 4.6 we can see an example of this

case.

Algorithm 4 Calculates position of vertex without edges

1: function CalculateDisconnectedPosition(rightBorder, lastP laced)

2: if lastP laced is assigned then

3: x =horizontal position of lastP laced

4: y =GetVerticalPosition(lastP laced)

5: else

6: x =GetHorizontalPosition(rightBorder)

7: set vertical position y to 0

8: if rightBorder is vertex in subtree then

9: increment x by horizontal distance

10: end if

11: end if

12: end function

Algorithm 4 contains the following methods:

• GetHorizontalPosition andGetVerticalPosition were already described in 4.1.1.3.
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Figure 4.5: Determining the positions of disconnected vertices

Algorithm 5 Calculates positions of vertices without edges

1: function CalculateDisconnectedVerticesPositions

2: if any subtree doesn’t exist then

3: maxHorizontalLayer = is square root of number of vertices rounded up

4: end if

5: for each vertex in disconnectedV erticesList do

6: PlaceVertex(oldRightBorderV ertex, currentV ertex)

7: increment currentHorizontalLayer by 1

8: if currentHorizontalLayer is equal to maxHorizontalLayer then

9: set currentHorizontalLayer to 0

10: set oldRightBorderV ertex to newRightBorderV ertex

11: set newLastPlacedVertex to null

12: end if

13: end for

14: end function
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Figure 4.6: Visualization of the topology without edges

4.1.2 Optimization

In 4.1.1.2, it was stated that selection of proper root vertex can reduce the size of the

whole layout. The optimization process is based on the recalculation of the layout for

each potential root vertex in the current subtree. The potential root vertex has the same

degree as the first root vertex in the current subtree. The root vertex is optimal if the

size of the current subgraphs is the smallest possible. In Figure 4.7 and Figure 4.8 we

can see that the optimized layout covers a smaller area then not optimized. Pseudocode

of a modified tree layout algorithm with optimization is Algorithm 6.
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Algorithm 6 Calculates optimal positions of vertices with at least one edge

1: function CalculateTreeLayout

2: while FindNextRoot( )do

3: AddBranchRoot(rootV ertex)

4: while FindOptimalRoot( )do

5: PlaceVertex(null, rootV ertex)

6: AddEdges(rootV ertex)

7: while exploredEdgesList is not empty do

8: currentEdge = the last edge from exploredEdgesList

9: remove currentEdge from exploredEdgesList

10: parentV ertex = source vertex of currentEdge

11: currentV ertex = target vertex of currentEdge

12: if currentV ertex is not placed then

13: PlaceVertex(parentV ertex, currentV ertex)

14: AddEdges(parentV ertex, currentV ertex)

15: AddBranchRoot(currentV ertex)

16: end if

17: end while

18: OptimizeBranch( )

19: end while

20: end while

21: end function

Algorithm 6 contains the following methods:

• FindOptimalRoot returns the next available root vertex for the current subgraph.

If the tree layout was already calculated for each potential root vertex of the current

subgraph, it returns the optimal root vertex. The root vertex selected by the user

is returned as optimal and optimization of the current subgraph is aborted.

• AddBranchRoot(currentV ertex) finds potential root vertices. If the current

vertex has the same number of edges as the current root vertex, it is marked as

another potential root vertex of the current subgraph.

• OptimizeBranch calculates the size of the current subgraph and decides whether

the current root vertex is the optimal choice or not. The root vertex is optimal if
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the size of the current subgraph is the smallest possible. It also resets the layout of

the current subgraph for recalculation with another root vertex.
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Figure 4.7: Optimized tree layout
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Figure 4.8: Not optimized tree layout
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4.2 Routing Algorithm

Routing algorithm determines the edge routes between the vertices. This problem is

often solved by using ad − hoc heuristics that lead to aesthetically unpleasing routes.

Edges can be routed through vertices and some of them can even share their paths. We

will introduce our own implementation of orthogonal edge routing algorithm based on [9]

which removes the mentioned problems.

The ring is a standard type of network topology. PROFINET supports the ring

topology for its high availability. If a cable or device fails, then the topology will be

automatically changed to the line topology and the network remains active as stated in

[24]. To provide information about this feature, this algorithm also contains a detection

of the rings in the topology .

4.2.1 Solution

First of all, an internal graph of topology has to be created as in 4.1.1.1. Second of all,

the rings in topology are detected. Finally, orthogonal routing algorithm is computed.

Orthogonal routing algorithm consists of three steps. At first, an orthogonal visibility

graph is created. Then, optimal edge routes are found using A* algorithm which searches

through the orthogonal visibility graph. Optimality is reached by minimization of edge

route length and the number of bends. Finally, the post-processing removes shared parts

and determines actual positions of edge routes in visualization.

4.2.1.1 Ring Detection

PRONETA can detect newly connected devices and connections in a network. These

devices and connections can be immediately added as vertices and edges into the topology

visualization without additional layout recalculation. Because of that ring detection

algorithm is integrated into the edge routing algorithm instead of the layout algorithm.

Any edge added into the topology causes recalculation of edge routes and one or more

rings are detected.

This part of the algorithm detects rings. It is actually a modified version of the

tree layout algorithm described in 4.1.1.3. Of course, the positions of vertices are not

calculated. The main difference is the method AddEdges itself. The ring is detected

when the target vertex of the edge is already explored and it is not the parent vertex.

Pseudocode of modified method AddEdges is presented in Algorithm 7. Rings which
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were found in topology are visualized with different colour. In Figure 4.9 we can see an

example of a detected ring.

Algorithm 7 Explores edges and marks edges in the ring

1: function AddEdges(parentV ertex, currentV ertex)

2: for each edge from currentV ertex do

3: if target vertex of edge is not parentV ertex then

4: if target vertex of edge is not explored then

5: add edge into edgeList

6: edgeToV ertex of target vertex of edge is edge

7: target vertex of edge is now explored

8: else

9: currentEdge = edge

10: while currentEdge is not empty and is not in the ring do

11: mark currentEdge as edge in the ring

12: if source of currentEdge is target of edge then

13: break while cycle

14: end if

15: currentEdge = edgeToV ertex of source vertex of currentEdge;

16: end while

17: end if

18: end if

19: end for

20: end function
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Figure 4.9: Ring detected in the topology
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4.2.1.2 Orthogonal Visibility Graph

The orthogonal visibility graph is determined by horizontal and vertical lines of visibility

from the corners of bounding box of each vertex and their connection ports. This

orthogonal edge routing algorithm is based on an observation that it is necessary to

consider only routes in the orthogonal visibility graph. This visibility graph consists of

nodes. Each node is orthogonally connected to its nearest neigbours in a way that there

is no intervening vertex between them. The node represents a point through which an

edge can be routed.

First of all, the important nodes need to be created. Important nodes are nodes at

positions of corners of bounding box of each vertex and nodes at positions of connection

ports. An example of created important nodes is presented in Figure 4.10. We can see

that vertices are not in the middle of their bounding boxes. It is caused by fact that

distances between vertices are constant but the width of the vertices can differ. The

nodes are created at positions defined by a grid. This approach is used to minimize

quantity of nodes. It is obvious that pathfinding is faster when visibility graph contains

less nodes to search in.
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Figure 4.10: Important nodes in a visibility graph

Second of all, important horizontal segments are generated. The modified line sweep

algorithm described in [10,11] is used for this task. This algorithm uses a vertical

sweep through the current nodes in the visibility graph, keeping a horizontal scan line

list of open nodes. The vertical scan starts all top-left and top-right nodes and stops

all bottom-left and bottom-right nodes of bounding boxes of the vertices. This step

ensures that the horizontal segments will not overlap the vertices. Left and right nearest

neighbours are found or created for each node. Each node then has references to its
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nearest left and right neighbours. These nodes can be corner nodes of surrounding

vertices, nodes created on border of bounding boxes of surrounding vertices or nodes

created on border position of the whole layout. References to neighbours represents

horizontal segments in the visibility graph. An example of created horizontal segments is

presented in Figure 4.11. Pseudocode of V erticalScanmethod is presented in Algorithm 8

where Y represents vertical coordinate and X represents horizontal coordinate of a node.

Data structure nodesY Tree contains all nodes available after creation of important nodes

ordered according to vertical and horizontal position. The scan is performed from the

top to the bottom and from the left to the right.
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Figure 4.11: Horizontal segments and nodes after vertical scan

Finally, vertical segments are generated. This uses a horizontal sweep through the

current nodes in the visibility graph, keeping a vertical scan line list of open nodes and

list of open horizontal segments. The horizontal scan starts all top-left and bottom-right

nodes and stops all top-right and bottom-right nodes of bounding boxes of the vertices.

This step ensures that the horizontal segments will not overlap the vertices. This task is

connected with a calculation of positions of intersections between horizontal and vertical

segments. New nodes are created at positions of these intersections. References to all

available neighbours are assigned to each node during this process. An example of a

visibility graph is presented in Figure 4.12. Pseudocode of HorizontalScan method is

presented in Algorithm 9. Data structure nodesXTree contains all nodes available after

creation of important nodes and horizontal segments ordered according to horizontal and

vertical position. The scan is performed from the left to the right and from the top to

the bottom.
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Figure 4.12: Final visibility graph

Algorithm 8 Vertical scan which creates the horizontal segments

1: function VerticalScan

2: for each Y in nodesY Tree do

3: newNodes = all nodes with vertical position equal to Y in nodesY Tree

4: for each node in newNodes do

5: if node starts vertical scan then

6: add node into openNodes

7: end if

8: end for

9: for each node in newNodes do

10: maxLeftX = get closest smaller X from openNodes

11: minRightX = get closest larger X from openNodes

12: nodeLeft = AddNode(maxLeftX, Y )

13: nodeRight = AddNode(minRightX, Y )

14: set references to horizontal(nodeLeft and nodeRight) neighbours of node

15: end for

16: for each node in newNodes do

17: if node stops vertical scan then

18: remove node from openNodes

19: end if

20: end for

21: end for

22: end function
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Algorithm 6 contains the following methods:

• AddNode(X,Y) finds or creates node at position defined in parameters.

Algorithm 9 Horizontal scan which creates the vertical segments and their intersections

1: function HorizontalScan

2: for each X of nodesXTree do

3: newNodes = all nodes with horizontal position equal to X in nodesXTree

4: for each node in newNodes do

5: if node starts horizontal scan then

6: add node into openNodes

7: end if

8: if node starts horizontal segment then

9: add node into openSegmentNodes

10: end if

11: end for

12: for each node in newNodes do

13: maxTopY = closest smaller Y from openNodes

14: minBottomY = closest larger Y from openNodes

15: CreateNodeConnections(X,maxTopY ,minBottomY )

16: end for

17: for each node in newNodes do

18: if node stops vertical scan then

19: remove node from openNodes

20: end if

21: if node stops horizontal segment then

22: remove node into openSegmentNodes

23: end if

24: end for

25: end for

26: end function

Algorithm 9 contains the following methods:

• CreateNodeConnections(X,maxTopY ,minBottomY ) finds or creates node at

position of intersections of segments and is presented in Algorithm 10.
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Algorithm 10 Creates the node connections and the intersections of the segments

1: function CreateNodeConnections(currentX,maxTopY ,minBottomY )

2: set openSegmNodes enumeration start to maxTopY and end to minBottomY

3: for each segmentNode of openSegmNodes do

4: if it is the first iteration then

5: nodeTop = GetCurrentNode(currentX, maxTopY , openSegmNodes)

6: end if

7: lastTopY=Y position of segmentNode

8: nodeBottom = GetCurrentNode(currentX, lastTopY , openSegmNodes)

9: set vertical neighbours of segmentNode to nodeTop and nodeBottom

10: nodeTop =nodeBottom

11: end for

12: end function

Algorithm 10 contains the following methods:

• GetCurrentNode(currentX,maxTopY,minBottomY ) finds or creates node at

position of an intersection of the segments.

4.2.1.3 Pathfinding

Pathfinding is performed by A* algorithm. It iteratively builds partial paths that start

from the source node until the target node is reached. Partial paths are nodes in a

visibility graph with an assigned parent node (except the source node) which are stored

in a open list. The parent node is a predecessor of the partial path. First of all, the

source node and the target node are found. These nodes were created at positions of

connector ports of source and target vertices and they were assigned to the corresponding

edges. Then, the source node is added into the open list. At each step the partial path

with the lowest cost is taken from the open list, added to a closed list and expanded.

The neighbours of expanded node are placed in the open list. The neighbour node is only

added if it was not already removed from the open list. If a neighbour node is already in

the open list, and its new cost is lower, its parent node and cost are replaced. The process

stops when the target node is in the closed list. The path is then reconstructed from the

target node to the source node. The cost associated with each partial path is the length

of path so far plus the lower bound estimation of length of path to the target node. The

lower bound estimation is the Euclidean distance of the partial path and the target node.
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If the position of the neighbour node is not in a horizontal or a vertical line with its two

predecessors, the bend of edge is detected. A defined penalty is then added to the cost

of neighbour node.

Algorithm 11 Finds paths for each edge through visibility graph

1: function PathFinding

2: for each edge in graph do

3: clear openList

4: sourceNode = node at position of connection port to source vertex of edge

5: targetNode = node at position of connection port to target vertex of edge

6: add sourceNode into the openList

7: while openList is not empty and targetNode is not in the closedList do

8: currentNode is a node with the lowest cost from openList

9: remove currentNode from openList

10: add currentNode into closedList

11: if targetNode is not in the closedList then

12: ExpandNode(currentNode)

13: end if

14: if targetNode is in the closedList then

15: CreateEdgeSegments(edge,endNode)

16: end if

17: end while

18: path of edge is reconstructed path

19: end for

20: end function

Algorithm 11 contains the following methods:

• ExpandNode explores all the neighbours of the current node. If the neighbour is

not in the closedList, it is added into the openList. If a neighbour is already in

the openList and its new cost is lower, its parent node and cost are replaced.

• CreateEdgeSegments reconstructs path from the target node to the source node.

It also creates edge segments which represents horizontal and vertical segments of

current path. These segments are used for post-processing which determines actual

edge routes in visualization.
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4.2.1.4 Post-Processing

This algorithm determines actual positions of edge routes in visualization. Each edge is

divided into segments during reconstruction of path in 4.2.1.3. Each segment represents

a horizontal or a vertical part of edge. Segments are ordered according to two criteria.

The first criterium is a segment type. The segment type is determined by the input and

output direction of the edge route to this segment. This ordering of the segments prefers

left and bottom border of the bounding box of the vertex. It can be done in reversed

direction. All segment types and their order are presented in Figure 4.13. The order of

segment types determines priority of a segment in post-processing. The lower number

means higher priority. The second criterium is the number of nodes in each segment.

The segment with the lowest number of nodes and the highest priority of a segment type

is placed first.

7.

9.

8.
10.

1.

2.

3. 4.

5.

6.

segment

Figure 4.13: Order of the edge segment types

Each segment contains a list of segments which share at least one node. Before

the final positions of edge points are determined, a segment level has to be calculated.

Segment level represents the final order of shared edge segments. The list of segments is

ordered according to this segment level in every step. The purpose of this procedure is

to fill all available segment levels. Pseudocode for creation of the final route points is in

Algorithm 12. The final path of each edge route is determined in a way that each segment

adds to this path only one point. Segment level shifts final point in vertical or horizontal

direction. The direction depends on orientation of a segment. The following changes

of coordinates are necessary to keep the edge routes orthogonal. If previous segment

orientation is horizontal and current segment orientation is vertical, Y coordinate is
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replaced with previous segment final point Y coordinate. If previous segment orientation

is vertical and current segment orientation is horizontal, X coordinate is replaced with

previous segment point X coordinate. Pseudocode of method CalculateEdgeRoutingPoints

for creation of the final route points is in Algorithm 13.

Algorithm 12 Determines level of the edge segment

1: function OrderEdgeSegments

2: for each ordered currentSegment do

3: set level of currentSegment to 0

4: if type of currentSegment is not directly connected to connection port then

5: currentSegments = shared segments ordered according to segment level

6: for each segment in currentSegments do

7: if level of currentSegment is equal to level of segment then

8: increment level of currentSegment by 1

9: end if

10: end for

11: end if

12: end for

13: end function
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Figure 4.14: The edge routes without and with post-processing
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Algorithm 13 Calculates the final position of the edge routing points

1: function CalculateEdgeRoutingPoints

2: for each edge in graph do

3: add position of target node into path

4: for each currentSegment of edge do

5: originalX=horizontal position of the first node in currentSegment

6: originalY=vertical position of the first node in currentSegment

7: segmentLevel=level of currentSegment

8: if segment is horizontal then

9: Y=originalX+segmentLevel*gap

10: else

11: X=originalY+segmentLevel*gap

12: end if

13: if originalX is equal to previousOriginalX then

14: Y=previousY

15: end if

16: if originalY is equal to previousOriginalY then

17: X=previousX

18: end if

19: add position with X and Y coordinates to path

20: previousOriginalX=originalX

21: previousOriginalY=originalY

22: previousX=X

23: previousY=Y

24: end for

25: add position of source node into path

26: add path to dictionary of edge routing points with edge as a key

27: end for

28: end function
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4.2.2 Optimization

In this section several optimization technics are introduced which optimize the appearance

of the edges and the performance of the algorithm.

4.2.2.1 Appearance Optimization

In Figure 4.15 we can see that basic post-processing fails if the shared paths are routed

around the left or the top border of the vertex. In this case, the edges can overlap

the vertices. To avoid this problem it was necessary to improve the post-processing

algorithm. In 4.2.1.2 the position of corner nodes of bounding box of each vertex is

determined relative to this vertex as a top-left, top-right, bottom-left and bottom-right.

If the segment contains at least one of these corner nodes, it is marked according to its

orientation as left, right, top or bottom border segment. If the current segment is left or

top border, its level is decremented in Algorithm 12. The final position of the current

segment is then further from the left or the top border of the vertex.

In Figure 4.15 it is also obvious that some edges are routed differently than others,

even if they have similar target position. A* algorithm described in 4.2.1.3 always finds

the optimal path for the edge between the vertices. This path can differ if the pathfinding

starts from the source or from the target vertex. To eliminate this behaviour, edges have

to be ordered to unify edge paths. Edge routes are routed in the same order as they are

added into the list of edges in 4.2.1.1.

4.2.2.2 Performance Optimization

Orthogonal visibility graph algorithm is described in 4.2.1.2. We have to find neighbours

of each node. To complete this task it is advantageous to use data structure, which can

find the previous and the next node in vertical or horizontal direction in the shortest

time possible. We implemented data structure called AA Tree for this purpose. AA trees

are named after Arne Andersson, their inventor. This data structure keeps all members

ordered according to a defined parameter. In our case, this parameter is a vertical or

horizontal position of node in the visibility graph. AA tree is a balanced binary tree

and its feature is that each node can be find in only a few steps. We also used this

data structure in other algorithms, where the objects have to be ordered, to improve

performance. In Figure 4.16 and Figure 4.17 we can see visualizations of methods Skew

and Split, which are used for the rebalancing of the AA tree. Skew is a right rotation

when an insertion or deletion of an AA tree node creates a left horizontal link on the same
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Figure 4.16: AA tree skew method from [17]
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Figure 4.17: AA tree split method from [17]

level. Split is a conditional left rotation when an insertion or deletion of AA tree node

creates two horizontal right links on the same level. The simple description is presented

in [14,17].
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Figure 4.15: Appearance optimization

The most time consuming action in pathfinding algorithm described in 4.2.1.3 is to

find the node in the open list with the lowest cost which has to be expanded next. It

is not necessary to keep all nodes ordered. The data structure which can be used as a

proper open list is a binary heap. The binary heap is a heap data structure created using
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a binary tree. All levels of the tree except possibly the last one are fully filled. The

heap nodes of the last level of the tree are filled from left to right. Each heap node cost

is smaller than or equal to each of its children. The first heap node is always with the

lowest cost. In our case, heap node cost is equal to the cost of a node in a visibility graph

in 4.2.1.3. This approach significantly improved the performance of pathfinding because

the next node for expansion is always the first and searching through all nodes in an open

list is not necessary.

Large topologies consist of hundreds of vertices and edges. Also in this case, user

interaction with vertices must be comfortable without any delays. The recalculation of

all edge routes appeared to be too slow. To solve this problem only the edges in the

subgraph of the manipulated vertex are routed, instead of routing all the edges in the

topology. The subgraph consists of the manipulated vertex, directly connected vertices

and edges between them. The remaining edges are not available for post-processing.

When vertex manipulation stops, all edge routes are recalculated again to remove shared

segments. This solution provides smooth vertex manipulation even for large topologies.

The internal graph is initialized as in the 4.1.1.1. However, in this case only the vertices

inside the rectangular area, defined by vertices in the subgraph, are added. In Figure 4.18

we can see a subgraph with routed edges and vertices used for the creation of a visibility

graph.
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Figure 4.18: Subgraph optimization



Chapter 5

Topology Comparison

In this chapter, the methods for comparison of topologies are described. The first

algorithm for topology comparison compares the current state of a network (snapshot)

and the previous state of the same network. It creates a merged topology which contains

vertices and edges from both. The merged topology is then displayed.

The second algorithm compares the configured topology loaded from the SIMATIC

STEP 7 project and the current state of the network topology. The purpose of this

algorithm is to find the best matching vertex in the network topology for each vertex in

the configured topology, if it is possible.

The information about the devices in the PROFINET networks can be used for

topology comparison. We can use semantic similarity components such as the device

name or the MAC address to compare the previous and current state of the same network.

The second possibility is to find similar subgraphs in the surroundings of the compared

vertices.

5.1 Comparison Algorithm for Visualization of

Changes

This comparison algorithm is partially based on [18]. The comparison of two topologies

is meaningful only if they are sufficiently similar. This decision is up to the user. If the

requirement of similarity is met, then the matching vertices can be found easily because

each physical device has a unique MAC address.
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5.1.1 Matching Vertices

Vertices are compared according to the unique name which consists of the device name and

the MAC address. If the project is without any changes, the device names and the MAC

addresses in the network should remain the same as in the snapshot. If the device name

is not available, only the MAC address is used for the comparison. The physical device

in the network might have been replaced because of its malfunction and the comparison

of MAC addresses reveals this change. A device without an assigned name has to be

marked because it is not in a satisfactory state. Each device in the PROFINET networks

must have a unique device name.

5.1.2 Merged Topology

A merged topology is created by combining the two input topologies. First of all, the

unique vertices from both topologies have to be added to the merged topology. This can

be done in several steps. At first we have to create a data structure which contains lists

of the vertices of the same device type for both topologies. The vertex names are then

compared only between vertices with the same device type. Then, all vertices from the

snapshot topology are added to the merged topology. All matching vertices are marked

as existing in both topologies, and all non-matching vertices from the network topology

are added to the merged topology. Finally, all vertices from the network topology,

with unexplored device types, are added to the merged topology. Pseudocode of the

method CreateV ertices, which perform the tasks already mentioned, is presented in

Algorithm 14.
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Algorithm 14 Creates new vertices of the merged topology.

1: function CreateVertices(networkTypes,snapshotTypes)

2: for each snapshotTypeList in snapshotTypes do

3: for each snapshotV ertex in snapshotTypes do

4: AddVertexToDict(snapshotV ertex,snapshot only)

5: end for

6: if device type of snapshotTypeList exists in networkTypes then

7: CompareVertexNames(snapshotTypeList,networkTypeList)

8: end if

9: end for

10: for each networkTypeList in networkTypes do

11: if device type of networkTypeList does not exist in snapshotTypes then

12: for each networkV ertex in networkTypeList do

13: AddVertexToDict(snapshotV ertex,network only)

14: end for

15: end if

16: end for

17: add created vertices to the merged topology

18: end function

Algorithm 14 contains the following methods:

• AddVertexToDict(currentV ertex, state) creates a new vertex encapsulation of a

device for visualization. If the vertex with the same device name and MAC address

is already in the vertex dictionary, only its state is changed.

• CompareVertexNames(snapshotTypeList,networkTypeList) compares the names

of vertices and marks the matching vertices.

If all vertices are present in the merged topology, algorithm starts the comparison of

the edges. At first all the edges from the snapshot topology are added to the merged

topology. A suitable key is created for each edge. This key consists of a source vertex

name, source port number, target vertex name and a target port number. It also creates

a second key with a reversed source and target. These two keys are used for the unique

identification of each edge. The first type of key is also created for each edge from the

network topology. If the edge with this key was not already used, edge from the network
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topology is added to the merged topology. Pseudocode of the method AddEdges is

presented in Algorithm 15.

Algorithm 15 Adds edges to the merged topology

1: function CreateEdges(edges)

2: for each edge in edges do

3: sourceV ertex = sourceVertex of edge

4: targetV ertex = targetVertex of edge

5: sourceName = GetEdgeName(sourceV ertex)

6: targetName = GetEdgeName(targetV ertex)

7: if sourceV ertex with sourceName exists in the merged topology then

8: if targetV ertex with targetName exists in the merged topology then

9: sourcePortIndex = source port number

10: targetPortIndex = target port number

11: if sourcePortIndex exists in sourceV ertex then

12: if targetPortIndex exists in targetV ertex then

13: create identification key

14: create identification reversedkey

15: if key was not already used then

16: add new edge to the merged topology

17: mark key and reversedkey as used

18: else

19: mark edge as existing in both

20: end if

21: end if

22: end if

23: end if

24: end if

25: end for

26: end function

Algorithm 15 contains the following methods:

• GetEdgeName(currentV ertex) creates the source or the target vertex name as

the combination of a device name and a MAC address.
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5.2 Comparison Algorithm for Name Assignment

If we want to assign the device name of the device configured in SIMATIC STEP 7

project, we have to find corresponding devices in the network. For each configured device

usually exists more then one potential candidates. The purpose of the created comparison

algorithm is to find, preferably, the right one or at least prioritize the most similar one.

The physical network should be similar enough to the configured one.

As we mentioned in 2, the graph of the network topology can be divided into several

disconnected subgraphs. Because of that, the network topology cannot be compared with

the configured topology as the one monolithic structure. Moreover, a unique identification

using MAC addresses is not possible because they are not present in the configured

topology. We had to find some local evaluations of the available matching vertices.

5.2.1 Largest Similar Subgraphs

The first possibility, how to get the proper match, is to search through both topologies

and find the largest possible similar subgraphs of the compared vertices. The subgraph

is explored from the analyzed vertex until the first difference between the network and

the configured topology is found. In the best case this subgraph is the graph of the whole

topology. This exploration is similar to the exploration of the edges in the tree layout

presented in 4.1.1.3. The vertex in the network topology with the largest subgraph,

similar to the subgraph of the configured vertex, is chosen as the best match. For each

matching edge, the priority of the matching vertex in the network topology is incremented

by one. The search starts simultaneously from the selected configured vertex in the

configured topology and from the matching vertex in the network topology. The edges

are compared according to the key which consists of the target vertex device type, the

source connection port number and the target connection port number. Pseudocode is

presented in Algorithm 16.
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Algorithm 16 Compares edges until the first difference is found

1: function CompareEdges(selectedV ertex, matchV ertex)

2: AddEdges(configEdges, null, selectedV ertex)

3: AddEdges(networkEdges, null, matchV ertex)

4: checkedKey is random number

5: configuredEdge = first from the configEdges

6: networkEdge = first from the networkEdges

7: while configEdges and networkEdges is not empty do

8: configuredEdge = take first and remove it from configEdges

9: networkEdge= take first and remove it networkEdges

10: configuredKey=GetComparisonKey(configuredEdge)

11: networkKey =GetComparisonKey(networkEdge)

12: if configuredKey is equal to networkKey then

13: increment matchV ertex priority by one

14: AddEdges(configEdges,configuredEdge source, configEdges target)

15: AddEdges(networkEdges,networkEdge source, networkEdge target)

16: elsestop while cycle

17: end if

18: end while

19: end function

Algorithm 16 contains the following methods:

• AddEdges adds edges of the target vertex, which are not connected to the source

vertex, to the corresponding list.

5.2.2 Nearest Different

The second approach is based on an observation that the number of vertices to the nearest

vertex with the different device type is equal only for a few vertices in the topology. In

combination with the previous estimation, the finding of the matching vertex is then even

more precise. The line topology is the connection of multiple devices in succession to each

other. It is useful even for large topologies with hundreds of vertices. It can eliminate

most of the incorrect matches.

This algorithm is based on the modified tree layout algorithm described in 4.1.1.3.

It differs in implementation of the method AddEdges. If the current vertex device type
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and its child vertex device type are different, the number of vertices to the vertex with

the different device type has to be updated. It is done for all predecessors of the child

vertex with the same device type as the current vertex. The child vertex is the target

vertex of an explored edge. Pseudocode of the modified method AddEdges is presented in

Algorithm 17. In Figure 5.1 we can see an example of the evaluation using this approach.

Algorithm 17 Calculates number of vertices to the nearest different

1: function AddEdges(parentV ertex, currentV ertex)

2: currentType = type of thecurrentV ertex

3: for each edge of the currentV ertex do

4: if target vertex of the edge is not parentV ertex then

5: if target vertex of edge is not explored then

6: add edge to the edgeList

7: target vertex of the edge is now explored

8: end if

9: childType = type of the target vertex of the edge

10: if currentType is not equal to childType then

11: CalculateNearestDifferent(edge)

12: end if

13: end if

14: end for

15: end function

Algorithm 17 contains the following methods:

• CalculateNearestDifferent(edge) determines the minimal number of vertices to

the nearest vertex with a different device type. This is done for each vertex up to

the nearest vertex with a different device type.
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Figure 5.1: An example of the nearest different evaluation

5.2.3 Match priority

The final evaluation of the matching vertices is performed when the user selects the

configured vertex in the configured topology and at least one matching vertex exists in

the network topology. The matching vertices are vertices with the same device type as the

selected configured vertex. The matching vertex priority is determined by the following

local criteria:

• Compare edges connected to the vertices according to the source and target vertex

connection port numbers and target vertex device type until the first difference is

found.

• Compare vertices according to the number of ports. One device type can have

several modifications which differs in the number of ports.

• Compare vertices according to the number of vertices to the nearest vertex with

different device type.

Pseudocode of the method DeterminePrioritiesOfMatches is Algorithm 18.
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Algorithm 18 Determines priority of the matching devices

1: functionDeterminePrioritiesOfMatches(selectedV ertex,possibleMatchesList)

2: for each matchV ertex in possibleMatchesList do

3: if selected vertex is not disconnected then

4: CompareEdges(selectedVertex, matchVertex)

5: end if

6: if number of ports of selectedV ertex and matchV ertex are equal then

7: increment matchV ertex priority by 1

8: end if

9: if nearestDifferent of selectedV ertex and matchV ertex are equal then

10: increment matchV ertex priority by 1

11: end if

12: end for

13: return ordered possibleMatchesList according to matchV ertex priority

14: end function

Algorithm 18 contains the following methods:

• CompareEdges is described in 5.2.1.
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Component Structure

Structure of the developed component and used technologies are described in this chapter.

6.1 C♯ and WPF

The component is written in C♯ and uses WPF for rendering. C♯ is an object-oriented

language that enables developers to build applications that run on .NET framework. This

language is described in [20]. Windows Presentation Foundation (WPF) is a presentation

system for building Windows applications with the improved visual experience. The core

of WPF is a vector based rendering engine that uses hardware acceleration to render

graphics. This leads to smoother accelerated visuals. WPF extends this core with

development features for creation of GUI that includes Extensible Application Markup

Language (XAML), controls, data binding etc.. The data binding is the most important

concept of WPF. It serves as data exchange between a control (the binding target) and

a data object (the binding source). The presentation layer is then separated from the

business layer which is presented in [21]. This is the essential idea of the Model View

ViewModel (MVVM) pattern. The view model is responsible for exposing the data

objects from the model in such a way that those objects are easily managed and consumed

by the View as stated in [22].
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6.2 Topology Control

The developed component is called TopologyControlLibrary. The main dependencies

between TopologyControlLibrary and other used libraries are shown in Figure 6.1. All

libraries will be described later in this chapter.

GraphSharp.Control

GraphSharp

Proneta.Domain

Proneta.Utilities WPFExtensions Quickgraph

System.Windows.Controls.DataVisualization.Toolkit System.Windows.Controls.Layout.Toolkit

WPFToolkit

TopologyControlLibrary

Figure 6.1: Diagram of dependencies between projects and used libraries

The control which is implemented for the visualization of topology is TopologyControl.

It is a UserControl type which can be used in both WPF or Windows Forms.

6.2.1 Structure of Topology Control Library

The TopologyControl is the main view. The view model for this view is the class

MainWindowV iewModel. It contains most of the functionality and most of the data

structures of the component. It holds all available graphs of the loaded topologies and

exposes them to the main view.

The other important parts of the topology visualization are the following:

Converters As stated in [21], the value convertors convert values to reach the data

binding compatibility between two incompatible data types. The most important

converter in the component is the EdgeRouteToPathConverter. It converts the

information about the edge route to its visual representation.
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DeviceEncapsulations These classes encapsulate the devices and its ports from the

topology and adds additional functionality:

• DeviceData - The class encapsulates an object which implements IDevice

interface from the Proneta.Domain.

• PortData - The class encapsulates an object which implements IPort interface

from the Proneta.Domain.

Helpers These classes provide additional functionality for theMainWindowV iewModel:

• TopologyComparison - Holds both algorithms designed for the comparison of

topologies.

• TopologyPrinting - Contains methods for saving the topology visualization

as an image.

Resources The resources are organized in a way that it is necessary to include only

Resources.xaml to any XAML file in the project to gain the access to all available

images, templates, styles, etc.. The advantage of this approach is that adding new

resources to the existing structures is straightforward. It is also possible to use only

one of the following groups of resources:

• DetailedDevices - Contains XAML data templates for displaying the device

details. These templates will be used in the future.

• Devices - Holds an internal database of device images.

• Icons - Includes icons written in XAML used for indicating the device states.

• Styles - Contains all necessary definitions of colored brushes used in the

visualization and styles for the main menu and device details.

• ToolBars - Holds images used in the main menu and the context menu.

Templates The templates contain styles and data templates which are related to the

specific object in the topology visualization such as a vertex or an edge. The

following templates are available:

• ConnectionTemplate - Defines the drawing of each edge with styles and data

templates.

• DeviceTemplate - Specifies visual representation of each vertex with styles

and data templates.
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• DeviceImageTemplate - Holds the style for changing the device images.

• LegendTemplate - Defines the legend for all available views.

• PortTemplate - Determines the representation of ports and their interfaces.

6.3 Graph♯

As we mentioned in chapter 3, the basis of the component for topology drawing is Graph♯.

The Graph♯ architecture is presented in Figure 6.2.

GraphLayout

LayoutAlgorithm RoutingAlgorithm OverlapAlgorithm

Layout Edge
Routing

Overlap
Removal

Factories

Algorithms

Quickgraph

GraphChanged

Context

Figure 6.2: The Graph♯ architecture

The data structures which represents the graphs are based onQuickgraph library. The

changes of the active graph, such as adding or removing the edges or the vertices, are

handled by the GraphLayout class in GraphSharp.Controls library. The GraphSharp

library holds all available algorithms for the calculation of layout, edge routing and overlap

removal.

6.3.1 GraphSharp

The layout algorithm introduced in 4.1 is integrated in the Layout algorithms and its main

class is PronetaLayoutAlgorithm. The routing algorithm introduced in 4.2 is integrated

in the EdgeRouting algorithms and its main class is PronetaEdgeRoutingAlgorithm.

The graph layout is recalculated whenever a new graph of the topology is loaded or if

it is triggered by the user. When the recalculation of the graph layout is needed, the new
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instance of the selected algorithm is created by the StandardLayoutAlgorithmFactory

class. The input consists of the current graph, its vertex positions and sizes.

The edge routing is recalculated whenever the new graph of the topology is loaded

or if it is triggered by manipulation with vertices. Whenever the recalculation of a

graph layout is needed, StandardEdgeRoutingAlgorithmFactory class creates the new

instance of the selected algorithm. The input also consists of the current graph, its vertex

positions and sizes.

6.3.2 GraphSharp.Controls

The main class in this library is GraphLayout. It contains the methods for changing the

current state of the visualization of the topology. The recalculation of edges is started

by the the method RouteEdges. The computed route points are assigned to the edges in

method ChangeEdgesState. The recalculation of the layout is started by method Layout.

The computed route points are assigned to the edges using the method ChangeState.

This library also contains V ertexControl which is the representation of the device in

the visualization and EdgeControl which is the representation of the connection in the

visualization.

6.4 WPF Extensions

WPF Extensions provides a wide range of extensions for the WPF framework such

as controls, attached behaviours, helper classes, etc. that are available at [8]. It is

distributed under Microsoft Public License (Ms-PL) in the source code state which allows

for additional changes to the source code and commercial uses. One of the available

controls is ZoomControl class. It is used as an encapsulation of the GraphLayout from

Graph♯. It provides pan and zoom functionality.

The manipulation with objects is implemented in the DragBehaviour class. It

contains functions for the selection of the object and its dragging of this object. This

behaviour can be attached to any object in the visualization.
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6.5 WPF Toolkit

It is a collection of WPF features and components which complements a set of WPF

controls distributed with .NET Framework available at [7]. The following WPF Toolkit

libraries are used in the component:

• System.Windows.Controls.DataV isualization.Toolkit - It provides Chart Controls

such as Line, Bar, Area, Pie and Column Series. These chart controls will be used

for visualization of the network load between devices in the network.

• System.Windows.Controls.Layout.Toorepresentingdeviceinvisualizationlkit - It

holds the Accordion control. It is an animated sliding menu which is used as the

main menu in the component.

6.6 Proneta.Domain and PronetaUtilities

Proneta.Domain library is the set of classes and interfaces which represents a topology

and its parts in the PRONETA. It is used for smooth integration of the new components

to the PRONETA. PronetaUtilities library contains useful data structures used in the

Proneta.Domain.
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Graphical User Interface

A graphical user interface (GUI) consists of two main windows. The main purpose of

the first window is to show the network topology overview. It is called Topology View.

The second window is the Configuration View which is used for assigning names to the

physical devices in the network.

7.1 Overview

Each window consists of one or more instances of ZoomControl. The zooming functions

are described in table 7.3. We can also zoom by scrolling the mouse.

In Figure 7.5 we can see the vertex which represents the device in the topology

visualization. We can identify the device according to the device name and type. Additional

information about the devices such as the MAC address or the IP address are included in

the tooltip. The device images are currently loaded only from the internal database stored

in the component’s resources. The database consists of the images of the wide range of the

devices produced by Siemens AG. In the future, it will be also possible to load the device

images from the GSDML1 files and support other vendors of the PROFINET devices. We

can also see that the device ports are encapsulated into the device interfaces. One device

can have several interfaces which will be then separated with a defined distance. There

are also the three state icons in the top-left corner. The first icon represents flashing LED2

on the physical device which is used for device indication. The two remaining icons are

1GSDML file is a description of device characteristics at [24].
2LED - light-emitting diode.
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visible only in the Configuration View. The second icon is visible when the device name

was assigned and the third icon is visible when there exists at least one matching vertex

in network topology.

Image Name Function

Show or Hide

Menu
It shows or hides the main menu.

Zoom Box User can define the area which should be zoomed.

All All
It calculates the zoom according to the dimensions of

the topology layout to fill the available area.

+ Zoom In Zooms in to defined higher zoom level.

- Zoom Out Zooms out to defined lower zoom level.

59 %59 %59 %59 % Current Zoom It shows the current zoom in percent form.

Table 7.1: Available zooming functions.
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IM151-3
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type
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?
indicated

match available
name assigned

Figure 7.1: Vertex representing a device in visualization.
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7.1.1 Topology View

The Topology View shows an overview of the network topology. It provides useful

functions for the network diagnostics such as visualization of the network load or the

comparison with the saved state of the network (snapshot). In Figure 7.2 we can see an

example of the visualization of the network topology in the component.
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Figure 7.2: Topology View

All the available functions are presented in table 7.2. Now we will describe some

details about some of these functions:

• Network Load shows communication traffic of connections between the devices.

The maximal network load in one direction determines the colour of the edge which

is green for the low network load (up to 33%), yellow for the medium network load

(between 33% and 66%) and red for the high network load (above 66%).

• The network topology visualization can run in the online or offline mode. In the

offline mode, the visualization have to be refreshed to display the recent changes in

the network. In the online mode, recent changes in the network are immediately

processed and added to the current state of visualization.

• The current state of topology visualization can be saved as an image in bitmapped

image formats *.bmp or *.png and in the vector format *.xps. XPS is a XML Paper
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Specification. This format provides document appearance similar to PDF.

• The Legend is customized for each available view. The colour set used for visualization

of the vertices and the edges is the same for all views but the colours have a different

meaning.

Image Name Function

Show Configuration

View
It change view to Configuration View.

Refresh
It refreshes online topology and recreates

visualization.

Save Topology
It saves a snapshot of the network in the XML

format.

Save Topology

as Image
It saves visualization of topology as image.

Show Online

Topology
It switches between the online and offline mode.

Show Topology

Comparison

It creates and shows the merged topology of the

network topology and the snapshot topology.

Show Network Load
It shows a network load among the physical

devices in the network topology.

Show Legend
The Legend shows information about

visualization depending on the current view.

Table 7.2: Available functions in Topology View.
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7.1.2 Visualization of Topology Comparison

The creation of the merged topology is described in 5.1. In Figure 7.3 we can see all the

possible situations which can occur in the topology comparison. Gray vertices and edges

was found only in the snapshot topology. Orange vertices and edges was found only in

the network topology. Green vertices and edges was found in both. Red vertex does not

have an assigned name.

The edges, which were found in both the network and the snapshot topology and

differ only in the connection port numbers, are visualized as they would exist only in

the network topology. If the user selects this edge, the edge from the snapshot topology

appears in the visualization. This behaviour makes the visualization clearer.

name not assigned

different ports only in network only in snapshot
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Figure 7.3: Visualization of the merged topology
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7.2 Configuration View

As mentioned before, PRONETA can parse the exported SIMATIC STEP 7 project

file. The devices and the connections in this project are transformed to the configured

topology with the projected device names. This topology is visualized as the template

for the network. The Configuration View easily allows the assigning of the configured

device names to the physical devices in the network.

7.2.1 Overview

In Figure 7.4 we can see that the window is divided into three parts. The top half

of the window shows the configured topology overview. It can also show the network

overview. The bottom-left quarter of the window shows a subgraph of the selected vertex

in the configured topology. The bottom-right quarter of the window shows a subgraph

of matching vertex found in the network topology.
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Figure 7.4: Configuration View
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Image Name Function

Topology View It changes the view to Topology View.

Refresh It recalculates the layout of the configured topology.

Set Configuration
It sets the device names from the vertices with an

assigned name to the physical devices in the network.

Reset

Configuration
It resets assigned names to the original state.

Show Network

Topology

It shows the network topology in the Configuration

View.

Table 7.3: Available functions in Configuration View.

7.2.2 Configuration Selection

The user selects the configured vertex from the configured topology visualized in the top of

the window. The subgraph of this vertex is then visualized in the bottom-left corner of the

window. This subgraph consists of the selected vertex and the directly connected edges

and vertices and it is highlighted in the configured topology. The available matches of the

selected vertex are ordered according to the priority calculated in 5.2. The subgraph of

the vertex with the highest priority is selected from the network topology and visualized

in the bottom-right corner of the window. An example of the configured vertex selection

is presented in Figure 7.5. We can see that the proper match was found and marked with

the orange bounding box. If the vertex with the highest priority is not the right one, the

user can find a proper match manually using a menu of all available matches which is

accessible from the bottom-right quarter of the window.



CHAPTER 7. GRAPHICAL USER INTERFACE 64

?

scalance_0scalance_0scalance_0scalance_0

SCALANCE X-200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

?

scalance_1scalance_1scalance_1scalance_1

SCALANCE X-200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 162

2

?

et200_6et200_6et200_6et200_6

IM151-3

1 2

?

et200_2et200_2et200_2et200_2

IM151-3

1 2

?

et200_4et200_4et200_4et200_4

IM151-3

1 2

?

et200_3et200_3et200_3et200_3

IM151-3

1 2
All

+

-

56 %56 %56 %56 %

Configured

?

et200_4et200_4et200_4et200_4

IM151-3

1 2

?

et200_3et200_3et200_3et200_3

IM151-3

1 2

?

et200_2et200_2et200_2et200_2

IM151-3

1 2

All

+

-

72 %72 %72 %72 %

Found in network

?

et200_4et200_4et200_4et200_4

IM151-3

1 2

?

et200_3et200_3et200_3et200_3

IM151-3

1 2

?

et200_2et200_2et200_2et200_2

IM151-3

1 2

1 2 3 4 5 6

All

+

-

100 %100 %100 %100 %

selected vertex matching vertex available matches

Figure 7.5: Selected configured vertex

7.2.3 Device Name Assignment

When the configured vertex is selected and the proper match in the network topology

is found, the user can easily assign a device name by dragging the configured vertex

and dropping it on the network vertex in visualization. The user has to click and hold

down the left mouse button on the configured vertex in the bottom-left corner of the

window. When the slightly transparent vertex has appeared next to the mouse cursor

the selected configured vertex is dragged. A device name is assigned when the configured

vertex is dropped on the position of the network vertex by releasing the mouse button.

An example of the name assignment is presented in Figure 7.5. We can see that vertices

in the subgraph in the bottom-left corner of the window are placed at the same positions

as there are in the configured topology overview in the top half of the window. Moreover,

each vertex with the assigned name in the bottom-right corner of the window is moved to

the same position as the corresponding configured vertex. This feature provides a visual
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comparison of the vertices in the configured topology and the vertices with the assigned

name in the network topology.

Each vertex with the assigned name can be reset to their original state individually

using the function Reset Configuration accessible from the context menu. To reset

all vertices to their original state, one has to use the function Reset Configuration

accessible from the main menu. Function SetConfiguration accessible from main menu

set the assigned device names to the physical devices in the network.
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Figure 7.6: Name assignment

7.2.4 Reconstructed switch

As mentioned in chapter 2 the generic Ethernet switch can be reconstructed from for

visualization to avoid redundant edges between vertices. In Figure 7.5 we can see the

result of this reconstruction. The generic Ethernet switch is shown with a red colour

because it can represent one or more generic Ethernet switches connected to each other.

We can also see a blue vertex which represents PRONETA PC.
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Figure 7.7: Reconstructed generic Ethernet switch in the topology.



Chapter 8

Conclusion

The main purpose of this thesis was to implement a component for topology visualization.

After choosing the appropriate framework, it has been implemented in C♯ using WPF for

rendering. Several frameworks for graph visualization were considered as a basis for the

developed component. After consideration of all advantages and disadvantages of these

frameworks, the Graph♯ was chosen as the most appropriate. The core of the topology

drawing consists of the algorithms for computing vertex layout and edge routes. The

layout algorithm is based on determining root vertex, computing modified rooted tree

layout and calculating the positions of the disconnected vertices. The approach is fast

enough to recalculate the layout several times for each subgraph in the topology and

find the optimal root vertex. The optimality is reached by minimization of the size of

the layout for each subgraph in topology. The routing algorithm computes the optimal

orthogonal edge routings. Optimality is reached by the minimization of the connection

length and the number of bends. The approach is based on first computing an orthogonal

visibility graph, then an optimal route using an A* search algorithm, followed by post-

processing which removes shared edge segments and determines the final position of

the edge routes in the visualization. After applying some optimization techniques, this

algorithm is fast enough to recalculate the optimal connection routings even during the

direct manipulation of vertex position in the visualization. This feature gives instant

feedback to the user.

The functionality of the topology visualization component has been extended by two

algorithms for topology comparison. The first algorithm creates one merged topology

from two similar topologies. The merged topology is then displayed with highlighted

differences. This feature is useful for the detection of changes between the current state

and the previous state of the same network. The second algorithm determines the priority

67
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of available matches for name assignment. The name assignment is another implemented

extension of the component functionality. It is based on drag-and-drop intuitive interface.

The device names can be easily assigned from the configured topology to the physical

devices in the network.

The developed component was integrated into PRONETA. It was already used for

diagnostics of industrial networks. The component is fully functional to provide useful

information about analyzed networks. We successfully tested this component to analyze

the network with over the six hundred connected devices.

In the future, it is possible to extend this work in the following ways:

• Develop methods allowing incremental changes to the orthogonal visibility graph

used in the routing algorithm. The current implementation generates new orthogonal

visibility graph whenever the edge routes have to be recalculated. This causes

unnecessary overhead if vertex was not added to or removed from the topology.

• Implement better support for the placement of two similar vertices connected with

its edges to the same connection ports. This situation occurs in topology comparison.

The current layout algorithm is not able to place these two similar vertices under

each other to make it clear that they are at the same position in the topology.

• Find additional criteria to make comparisons of the network topology and the

configured topology even more accurate to provide more accurate matches.

• Improve layout algorithm for visualization of rings in the topology. The vertices

should form an actual ring. It will be more obvious that the ring exists. This

feature will be optional.

• Add images from GSDML files to the image database in the component to provide

support for a wide range of devices in the visualization.
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Appendix A

Content of the Attached CD

To this work is attached CD which contains this work and the whole code of the created

component in C♯.
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