
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Spanning Tree Coverage Algorithm on Large
Spaces for Multi-UAV Systems

Jan Chleboun

Supervisor: Tiago Pereira do Nascimento
Field of study: Cybernetics and Robotics
May 2022

ii

Acknowledgements

I would like to thank my supervisor,
Prof. Tiago Pereira do Nascimento, Ph.D.,
for regular consultations and all the great
advice. I would also like to express my
gratitude for help with hardware experi-
ments to Ing. Daniel Heřt, Ing. Jiří Ho-
ryna, M.Sc. Parakh Manoj Gupta, and
M.Sc. Akash Chaudhary. My thanks also
go to the whole Multi-Robot Systems
Group for making the thesis possible and
for providing me the hardware necessary
to realize the real world experiments. I
am also very grateful for the unlimited
support and advice from my friends (espe-
cially Daniel Kubišta and Jiří Jirák) and
my family.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 16. May 2022

iii

Abstract

In this work, the Improved Artificially
Weighted Spanning Tree Coverage (IAW-
STC) and the Cycle Growing With Event
Partitioning (CGWEP) algorithms are
proposed. These novel approaches are
suitable for the exploration of environ-
ments with cluttered regions, where unex-
pected obstacles can appear. In order to
solve these problems, a smoothing algo-
rithm together with an online replanner
to avoid unexpected detected obstacles is
proposed. Experiments are carried out in
simulation and on real drones. The algo-
rithms are then compared and conclusions
are deduced.

Keywords: exploration, spanning tree,
UAV, trajectory planning, trajectory
smoothing

Supervisor: Tiago Pereira do
Nascimento

Abstrakt

V této práci jsou navrženy algo-
ritmy Improved Artificially Weighted
Spanning Tree Coverage (IAWSTC) a
Cycle Growing With Event Partitio-
ning (CGWEP). Tyto nové přístupy jsou
vhodné pro prohledávání prostorů se zná-
mými překážkami, kde se mohou objevit
také nečekané překážky. Pro vyřešení to-
hoto problému je také navržen algoritmus
pro vyhlazování trajektorií a algoritmus
přeplánování při detekci neočekávaných
překážek. Byly provedeny simulační expe-
rimenty spolu s experimenty na opravdo-
vých dronech. Algoritmy jsou porovnány
a zhodnoceny.

Klíčová slova: průzkum, dron,
plánování trajektorií, vyhlazování
trajektorií

Překlad názvu: Algoritmus pro
průzkum velkých prostorů pomocí
skupiny kooperujících dronů

iv

Contents

1 Introduction 1

1.1 Objective . 2

1.2 Contributions 3

2 Related Works 5

3 Problem Formulation 7

3.1 Definitions . 7

3.2 Environment Representation . . . 10

4 Exploration 13

4.1 Environment Partitioning 13

4.1.1 Proposed Approach 14

4.2 Trajectory Generation 17

4.2.1 Spanning Tree Coverage
Algorithm . 18

4.2.2 Cycle Growing Algorithm . . . 20

4.3 Resulting Path Planning
Algorithms . 22

4.4 Time Complexity 24

5 Trajectory Smoothing 27

5.1 Trajectory Smoothing Using Least
Squares Solution 28

5.1.1 The Mathematical Principle . 28

5.1.2 Performance 32

6 Online Obstacle Detection And
Avoidance 35

6.1 Dynamic Obstacles 36

6.2 Static Obstacles not Known
Beforehand . 36

6.3 Replanning 36

7 Implementation 39

7.1 Used Programming Languages and
Environments 39

7.2 Numerical Values of Constants and
Parameters . 40

8 Quantitative Tests 41

8.1 Environment Partitioning
Improvement 41

8.2 Path Planning Algorithm
Comparison . 42

8.3 Trajectory Smoothing Evaluation 43

v

9 Simulation Experiments 45

9.1 Environment 45

9.2 Results . 46

9.2.1 Exploration Experiment 46

9.2.2 Replanning 47

10 Hardware Experiments 49

10.1 Hardware description 49

10.2 Results . 50

11 Conclusions 53

11.1 Final Conclusion 53

11.2 Future Work Proposition 54

A Acronyms 55

B Bibliography 57

C Project Specification 61

vi

Figures

1.1 Unmanned Aerial Vehicles (UAVs)
used by the MRS group 1 1

4.1 The original and improved
environment partitioning - in (a) and
(b) both versions perform almost
identically on the same world,
however, in (d) the improved version
produces subregions with no overlaps
as opposed to the original version (c)
on the same world. 17

4.2 The merging 19

4.3 World which cannot be
preprocessed with 2l-grid
approximation, because it would
result in a world full of obstacles . . 20

4.4 The results of the Spanning Tree
Coverage algorithm 22

4.5 The phases of the Cycle Growing
algorithm . 25

4.6 The outcomes of Improved
Artificially Weighted Spanning Tree
Coverage (IAWSTC) and Cycle
Growing With Environment
Partitioning (CGWEP) algorithms
for three drones. 26

5.1 The meaning of the p parameter -
with higher values of p, more points
are inserted into the trajectory, which
leads to smoother turns. 29

5.2 Distance dmid,i for various turns 30

5.3 The relation of distance dmid,i and
angle between vi, vi+1 31

5.4 The meaning of the µ parameter -
smoothed trajectories differ less from
the original trajectory for higher
values of µ . 33

5.5 The result of trajectory smoothing 34

6.1 Static and dynamic obstacles . . . 35

8.1 The dependency of redundancy
ratio and equality ratio on number of
drones and world size 42

8.2 The dependency of length increase
ratio and turn intensity on the p and
µ parameters 44

9.1 The simulation environment 45

9.2 Improved Artificially Weighted
Spanning Tree Coverage (IAWSTC)
algorithm in simulation 46

9.3 Cycle Growing With Environment
Partitioning (CGWEP) Algorithm in
simulation . 47

9.4 Replanning experiment2before
unexpected obstacle detection 48

9.5 Replanning experiment after
unexpected obstacle detection 48

vii

10.1 One of the Unmanned Aerial
Vehicles (UAVs) used in the
experiment . 49

10.2 The aerial view of the
environment 50

10.3 Improved Artificially Weighted
Spanning Tree Coverage (IAWSTC)
algorithm on real Unmanned Aerial
Vehicles (UAVs)3 51

10.4 Cycle Growing With Environment
Partitioning (CGWEP) Algorithm on
real Unmanned Aerial Vehicles
(UAVs)4 . 51

Tables

3.1 Left hand rule action priority table 9

7.1 Values of used constants and
parameters . 40

8.1 The quantitative tests of the
environment partitioning algorithm 42

8.2 The quantitative tests of the path
planning algorithms 43

8.3 The quantitative tests of the
trajectory smoothing algorithm . . . 44

viii

Chapter 1

Introduction

In recent years Unmanned Aerial Vehicles (UAVs) also known as drones are
gaining popularity due to their ability to perform various complex tasks. Such
tasks can be, for example, transport of small objects [10], historical building
documentation [24], surveillance [9], asset inspection [7], and so on. A typical
UAV is a small lightweight helicopter with four rotors, such as the one in
Figure 1.1. The biggest strength of an UAV is its agility, size, and price,
whereas the biggest weakness is short battery life (approximately 20 minutes).
In most applications, groups consisting of multiple UAVs are used, which is
possible due to the affordability of such robots.

Figure 1.1: UAVs used by the MRS group 1

For every application where the UAVs move, a path planning algorithm
is needed that generates the individual trajectories. Such an algorithm is

1Source: http://mrs.felk.cvut.cz/projects/gacr-swarm-ii

1

http://mrs.felk.cvut.cz/projects/gacr-swarm-ii

1. Introduction
the main focus of this work. This work focuses on a decentralised version
of the algorithm, which ensures equal distribution of computational load
and no dependency on a central unit. The algorithm consists of two parts:
first, the explored environment is split into subregions corresponding to
individual drones, and second, a trajectory for each drone is created such
that its corresponding subregion is covered. For the environment partitioning,
the approach from [8] was used as a starting point and modified for better
performance.

The trajectories can be generated in 3D space or in 2D space, meaning that
the UAV’s height remains fixed. This thesis focusses on the latter approach,
as it can be advantageous in large areas such as meadows or deserts because
neglecting the third dimension significantly saves computational resources.
This approach is suitable for tasks such as object localisation or search and
rescue missions, where the terrain is scanned from a fixed height. A widely
used path planning algorithm is the Spanning Tree Coverage (STC) algorithm
[12], [8]. This popular algorithm works really well when certain conditions
are met, however, there are some disadvantages of this approach which are
overlooked quite often. In this work, the algorithm was implemented, an
alternative approach was designed, and the two algorithms were compared.

When initial suitable trajectories are found, it is common that they con-
tain rough turns, which makes it hard for the UAV to track the trajectory
accurately. For this reason, a smoothing algorithm is used. There are plenty
trajectory smoothing algorithms already, but in this work a new method is
proposed based on the least squares solution of a system of linear equations,
whose biggest advantage is its simplicity.

1.1 Objective

The main objective of this thesis is to develop an algorithm for the exploration
of large environments with known obstacle maps. This thesis aims to:..1. Implement the Artificially Weighted Spanning Tree Coverage (AWSTC)

algorithm from [8]..2. Propose an improved version of the AWSTC algorithm with less redun-
dancy of coverage..3. Design an alternative algorithm for environment exploration and compare
it to the AWSTC algorithm

2

.................................... 1.2. Contributions..4. Propose a new trajectory smoothing method..5. Implement real time detection of unexpected obstacles and replanning..6. Perform simulation and real world experiments

1.2 Contributions

The contributions of this thesis are:..1. The Improved Artificially Weighted Spanning Tree Coverage (IAWSTC)
algorithm, which is the improved version of the AWSTC algorithm from
[8], with less redundancy and with the ability to handle unexpected
obstacles..2. The Cycle Growing With Environment Partitioning (CGWEP) algo-
rithm, which can be used as an alternative to the IAWSTC or AWSTC
algorithms..3. The Trajectory Smoothing Using Least Squares Solution (TSULSS)
approach, which can be used for fast smoothing of long trajectories

3

4

Chapter 2

Related Works

There are many works that focus on area coverage using multiple UAVs. In
[8] the environment is divided into cells as follows:

Cu = {ci| ci ∈ C, ci ∩A = ∅, ci ∪O = ∅} ,

where A is the area with obstacles O sampled with equal cells C. The coverage
problem is then treated as an optimisation problem

min max ∥Pi∥,

s.t.
N⋃

i=1
Pi = Cu,

where Pi is the spanning tree constructed for the ith agent and N is the number
of agents. The AWSTC algorithm is then proposed to find a suitable solution.
All cells are iteratively assigned score by each agent, and the agents take
turns and pick cells. After this, the individual spanning trees are reorganized
and converted into trajectories, which are then smoothed using Bézier curves.
In this thesis, their work was implemented, modified in order to reduce the
redundancy of the resulting trajectories, and an alternative algorithm was
proposed.

Another approach is presented in [23], where the task is solved using game
theory optimizing energetic efficiency of communication between agents. The
problem is decomposed into two subproblems: coverage maximization and
power control. These subproblems are then solved using a spatial adaptive
play-based algorithm. Unlike the distributed algorithms considered in this
thesis, the coverage algorithm uses a command centre, which means that it is
centralised.

5

2. Related Works
In [15], the environment is represented as a polygon, then decomposed

into multiple subpolygons where a simple trajectory with a minimal number
of turns can be easily generated and, finally, the individual trajectories are
connected. Only one UAV is used in [15], but the same approach could be
applied for multiple UAVs. In [15], neither static nor dynamic obstacles
are considered. Another approach to exploring polygonal environments,
which generates very similar trajectories, is the Geometric Vector Algorithm
proposed in [16].

A similar approach to the one used in this thesis for constructing spanning
trees for the coverage problem can be found in [1], however, there is no further
mention of the trajectory generation from the spanning trees found this way.

In [17] two approaches with similar results are proposed - The Coverage
with Route Clustering algorithm represents the free area as a graph using
boustrophedon cellular decomposition algorithm and then formulates the path
finding problem as MinMax k-Chinese postman problem. The other proposed
algorithm, named Coverage with Area Clustering decomposes the problem
into coverage problems of multiple similar subareas.

A more practical point of view is adopted in [2], where real-world factors
such as maximum flight time, setup time, and battery state of UAVs are
taken into account. The coverage problem is solved in two steps. A graph,
where the vertices represent geographic coordinates, is constructed in a way
that a single UAV would cover the area optimally in terms of cover time.
After this a mixed integer linear programming problem is solved.

In [20] the coverage problem is solved to perform post-earthquake mapping.
The operation bases are also taken into account, which means that the
algorithm must also decide which bases to open and assign each drone an
operation base. The problem is described by a minimax objective function.

In [9] the task of finding objects of interest in a specified area is tack-
led. This surveillance problem is treated as a multivehicle variant of the
Dubins travelling salesman problem with neighbours and solved with unsuper-
vised learning. This approach is computationally inexpensive and is further
improved by reparameterization with the use of Bézier curves.

6

Chapter 3

Problem Formulation

The main goal of this chapter is to describe the problem in depth and to lay
out the necessary terminology which is needed for accurate descriptions of
the algorithms. Please note that some of the definitions arised solely for the
purposes of this work and should not be mistaken for official terminology in
use.

3.1 Definitions

Definition 3.1. Agent is an instance of a robot (UAV) taking part in the
task.
Definition 3.2. Cell is a square cutout of 2D space. It can be divided into
four subcells with equal dimensions. The coordinates of a cell are the
coordinates of its center. A cell is considered explored after the agent
passes through its center or through the centres of all its subcells. A cell is
unexplored if it is not explored.
Definition 3.3. Region is a continuous (meaning no cell is isolated) set of
cells. Its subsets are subregions.
Definition 3.4. Environment is the area where the task is performed. The
goal is to explore the environment fully.
Definition 3.5. Environment representation is a region which fully de-
scribes the environment.
Definition 3.6. Obstacle is a representation of an object in physical space
that prevents the UAV from entering a certain area. An agent can never

7

3. Problem Formulation
visit a cell which contains an obstacle. A cell with an obstacle is considered
explored at the moment the agent obtains the first information about the
obstacle.
Definition 3.7. Trajectory is a sequence of points in space. When the drone
tracks a trajectory, it flies through each point the trajectory consists of.
Definition 3.8. Euclidean distance of cells C1, C2 is a metric defined as:

dC1,C2 =
√

(xC1 − xC2)2 + (yC1 − yC2)2, (3.1)

where xC1 , yC1 are the coordinates of the first cell and xC2 , yC2 are the
coordinates of the second cell.
Definition 3.9. Manhattan distance of cells C1, C2 is a metric defined as:

DC1,C2 = |xC1 − xC2 |+ |yC1 − yC2 |, (3.2)

where xC1 , yC1 are the coordinates of the first cell and xC2 , yC2 are the
coordinates of the second cell.
Definition 3.10. Cells C1, C2 are neighbour cells if

DC1,C2 = CS, (3.3)

where DC1,C2 is the Manhattan distance of cells C1, C2 and CS is the length
of a side of a cell.
Definition 3.11. Cells C1, C2 are diagonal neigbour cells if

dC1,C2 ≤ CD, (3.4)

where dC1,C2 is the Euclidean distance of cells C1, C2 and CD is the length of
a diagonal of a cell. Each neighbour cell is also a diagonal neighbour cell, but
the opposite does not apply.
Definition 3.12. Exploration status of a cell is the information whether
the cell is explored or unexplored and whether it contains an obstacle.
Definition 3.13. Merging is a process in which the environment represen-
tation is divided into blocks and then each block is replaced by a single
cell which shares the exploration status with the original block. Each block
consists of four cells with the same exploration status, where each pair of cells
are neighbour cells. Merging can be performed only on certain environments.
Definition 3.14. Surrounding cycle is an oriented graph consisting of cells
and edges. An edge can connect cell C1 and cell C2 only if C1 and C2 are
neighbour cells. The most important property of the surrounding cycle of a
region Si is that no unexplored cell Cj ∈ Si can be outside of the surrounding
cycle.
Definition 3.15. Left hand rule is a way of navigation inside an environment
representation where we consider a virtual agent Av which is represented
by its position in the environment representation and by its heading hAv ∈
{left, right, up, down}. The left hand rule is used when the Av decides what

8

......................................3.1. Definitions

action to perform. The priority of actions depends on the current heading of
Av. The action with highest priority among all feasible actions is chosen. We
can see the action priority table for the left hand rule in Table 3.1.

Table 3.1: Left hand rule action priority table

Heading of Av
Action with Action with Action with Action with
priority 4 priority 3 priority 2 priority 1

right up right down left
down right down left up
left down left up right
up left up right down

Definition 3.16. Redundancy ratio describes the redundancy of coverage.
It is calculated as follows:

ζr =

N∑
i=1

card (Si)

card(Efree) , (3.5)

where N is the number of agents, card (Si) is the number of cells in the
i-th region Si and card(Efree) is the number of cells from the environment
representation which do not contain an obstacle.
Definition 3.17. Equality ratio describes how much the sizes of subregions
corresponding to the individual agents differ. It is calculated as follows:

ζe =
max

i∈{1,...,N}
card (Si)

1
N card(Efree)

, (3.6)

where N is the number of agents, card (Si) is the number of cells in i-th region
Si and card(Efree) is the number of cells from the environment representation
that do not contain an obstacle.
Definition 3.18. Length ratio describes the redundancy of a trajectory. It
is calculated as follows:

ζe = length (τ)
card(Si) CS

, (3.7)

where length (τ) is the length of trajectory τ , CS is the cell size and card (Si)
is the number of cells in i-th region Si.
Definition 3.19. Curvature ratio describes the curvature of a trajectory.
It is calculated as follows:

ζc =

M−2∑
i=1

∣∣∣arccos
(

vi·vi+1
|vi| |vi+1|

)∣∣∣
length (τ) , (3.8)

9

3. Problem Formulation
where length (τ) is the length of the trajectory τ , M is the number of points
P1, . . . , PM ∈ τ and vi, vi+1 are calculated as follows:

vi = Pi+1 − Pi, (3.9)
vi+1 = Pi+2 − Pi+1. (3.10)

To extend this definition for closed trajectories, we append points PM+1 =
P1 and PM+2 = P2 to the end of the trajectory, but we exclude those auxiliary
points from the length calculation.
Definition 3.20. Length increase ratio describes how much the length of
a trajectory increases due to trajectory smoothing. It is calculated as follows:

ζi = length (τs)
length (τ) , (3.11)

where length (τ) is the length of the original trajectory τ and length (τs) is
the length of the smoothed trajectory τs.
Definition 3.21. Turn intensity describes the smoothness of turns in a
trajectory. The greater the turn intensity, the sharper the turns are. It is
calculated as follows:

ζt =

√
M−2∑
i=1

(
arccos

(
vi·vi+1

|vi| |vi+1|

))2

M − 2 , (3.12)

where M is the number of points P1, . . . , PM ∈ τ and vi, vi+1 are calculated
as follows:

vi = Pi+1 − Pi (3.13)
vi+1 = Pi+2 − Pi+1 (3.14)

To extend this definition for closed trajectories, we append points PM+1 = P1
and PM+2 = P2 to the end of the trajectory.

3.2 Environment Representation

For the purpose of this work, the environment representation from [8] was
adopted. The height is fixed, meaning that in 3D the environment is a plane
with a constant vertical coordinate. This plane is divided into cells.

10

.............................. 3.2. Environment Representation

Path planning in this environment representation consists of two steps.

. Finding regions Si, where i ∈ {1, 2, . . . , N} and N is the number of
agents, such that

N⋃
i=1

Si = Efree,

where Efree is a subset of the environment representation consisting of
cells Cj , j ∈ {1, 2, . . . , M}, where M is the number of cells that do not
contain an obstacle..Generating a trajectory for each subregion Si such that all the cells in
Si are explored and the last cell of the trajectory is equal to the first cell
of the trajectory. The latter condition is suitable for applications such as
surveillance, where the trajectory is tracked multiple times consecutively.

11

12

Chapter 4

Exploration

The main goal of the exploration process is to divide the environment rep-
resentation to subregions corresponding to individual agents and generate
trajectories such that each subregion is fully covered. Preferably, the differ-
ences of lengths of the resulting trajectories should be minimal, which ensures
efficient coverage.

4.1 Environment Partitioning

In the environment partitioning part of the AWSTC algorithm from [8] the
agents take turns, iteratively evaluate all suitable cells, and then pick the
one with the highest calculated score and mark it as explored. This process
ends when all cells in the area of interest are marked as explored. The
original evaluation formula (4.1) taken over from [8] consists of three terms
Ea

j , Eb
j,k, Ec

j . Here Ei,j is the score of the jth cell evaluated by the ith robot
and N is the number of robots used for the task:

Ei,j = Ea
j +

N∑
k=1,k ̸=i

Eb
j,k + Ec

j . (4.1)

The first term Ea
j describes the distance of the evaluated cell from the centre

of inertia of the unexplored area. This ensures that cells on the border of the
unexplored area have higher scores. It is calculated as follows:

Ea
j = σa (|xi − xce|+ |yi − yce|) , (4.2)

13

4. Exploration......................................
where σa > 0 is a constant, xi, yi are the coordinates of the evaluated cell
and xce, yce are the coordinates of the centre of inertia of the environment.

The second term Eb
j,k describes the distance of the jth cell from the region

Sk belonging to the kth agent. This term increases the score of cells that are
far away from the other UAVs. It is calculated as follows 1:

Eb
j,k = σb min

[xi,yi]∈Sk

(|xi − xj |+ |yi − yj |) , (4.3)

where σb > 0 is a constant, xj , yj are the coordinates of the evaluated cell and
xi, yi are the coordinates of the cells belonging to the region Sk belonging to
the kth agent.

The third term Ec
j describes the exploration status (explored / unexplored)

of the jth cell. It decreases the score of already explored cells. It is calculated
as follows:

Ec
j =

{
0 for unexplored cells
−EM for explored cells,

(4.4)

where EM > 0 is a large constant.

The Environment partitioning algorithm is described again in Algorithm 1.

4.1.1 Proposed Approach

In order to improve the behaviour of the AWSTC algorithm, the formula (4.1)
used for evaluation of the feasible cells was modified to:

Ei,j = Ea
j +

N∑
k=1,k ̸=i

Eb
j,k + Ec

j,m + Ed
i,j . (4.5)

1In [8] this term is defined vaguely using a term di,k that the authors define as ’di,k

is the Euclidean distance between the ith cell and the kth agent’, but the formula they
use corresponds to the Manhattan distance, and it is also not clear what they meant by
’distance between cell and agent’. Therefore, we assumed it is the Manhattan distance
between the evaluated cell and kth agent’s region and that they accidentally used d2 instead
of d in the formulas, but our interpretation might not be what the authors originally meant.
However, the behaviour of the algorithm with such corrections matched the behaviour
documented in the article much more closely than the other interpretations that we tried.

14

............................... 4.1. Environment Partitioning

Algorithm 1 The environment partitioning algorithm
Divide the environment into cells Cj

for each cell Cj , j ∈ [1, 2, . . . , M] do
Cj ← unexplored

end for
Initialize subregions Si

for each subregion Si, i ∈ [1, N] do
Si ← ith UAV’s starting point SPi

SPi ← explored
end for
while unexplored, Ci exists do

for each UAVi, i ∈ [1, N] do
Evaluate each cell with one or more neighbour cells belonging to

the region Si with formula (4.1)
find Cbest = argj max Ei,j

Add Cbest to Si

Cbest ← explored
end for

end while

The term Ec
j,m is a modification of the term Ec

j from the original formula
defined as follows:

Ec
j,m =

{
0 for unexplored cells
−EM Dj,u for explored cells,

(4.6)

where EM > 0 is a large constant and Dj,u is the Manhattan distance of the
cell Cj from the closest unexplored cell. To save computational resources,
only the unexplored cells, where Ec

j,m = 0 are evaluated at first. The explored
cells are evaluated only when there is no unexplored cell among the evaluated
cells, which means that Dj,u needs to be calculated infrequently.

The term Ed
i,j describes how many diagonal neighbour cells of the cell j are

from the same region. The purpose of this term is to increase the score of cells
that form clusters, which is convenient for the Cycle Growing (CG) algorithm
(Section 4.2.2) used in the trajectory generation process (Section 4.2). It is
defined as follows:

Ed
i,j = σd NCi,j , (4.7)

where σd > 0 is a constant and NCi,j is the number of diagonal neighbour
cells of cell Cj that belong to the region Si corresponding to the ith agent.

Another improvement is the Algorithm 2, which is used to minimise the in-
tersections of individual regions while maintaining similar cell counts. During

15

4. Exploration......................................
this process, every cell Cj that belongs to more than one region is removed
from every region Si where the absence of Cj does not violate the continuity of
Si. If Cj does not belong to any region afterwards, it is marked as unexplored.
After this, the agents take turns, evaluate each unexplored cell with 4.5 and
pick the cell with the highest score. On each turn, the agent that gets to pick
a cell is the agent whose corresponding region has the smallest number of
cells. This whole process can be repeated until no solvable conflicts emerge,
but in my implementation three iterations are performed, as it is enough to
solve the majority of conflicts and it does not increase the computational
demand much.

Algorithm 2 Algorithm for region intersection reduction
for each cell Cj , j ∈ [1, M] do

if NRCj > 1, where NRCj is the number of regions Si, i ∈ [1, N] which
satisfy Cj ∈ Si then

for each region Si, Cj ∈ Si do
if Si \ Cj is continuous then

remove Cj from Si

end if
end for
if NRCj = 0 then

Cj ← unexplored
end if

end if
end for
while unexplored Cj exists do

i← agent with least cells in its region Si

Evaluate each cell with one or more neighbour cells belonging to region
Si with formula 4.5 as viewed by agent i

find Cbest = argj max Ei,j

Add Cbest to Si

Cbest ← explored
end while

The numerical values of the constants σa, σb, σd, EM can be found in Sec-
tion 7.2. The outcome of the Environment partitioning part of the algorithm
is shown in Figure 4.1. We can see that on some worlds the modified algorithm
behaves almost identically to the original version. However, on some worlds
there is a significant improvement in terms of redundancy.

16

.................................4.2. Trajectory Generation

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 region
UAV 1 region

UAV 2 region

(a) : Original algorithm

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 region
UAV 1 region

UAV 2 region

(b) : Improved algorithm on world
from (a)

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 region
UAV 1 region

UAV 2 region
UAV 3 region

(c) : Original algorithm

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 region
UAV 1 region

UAV 2 region
UAV 3 region

(d) : Improved algorithm on world
from (c)

Figure 4.1: The original and improved environment partitioning - in (a) and
(b) both versions perform almost identically on the same world, however, in (d)
the improved version produces subregions with no overlaps as opposed to the
original version (c) on the same world.

4.2 Trajectory Generation

When a corresponding subregion is assigned to each drone, the trajectories
are planned in a way that each UAV explores each cell of its subregion. For
this, the STC algorithm is used in [8].

17

4. Exploration......................................
4.2.1 Spanning Tree Coverage Algorithm

The main idea of the STC algorithm is to construct a tree Ti which represents
the relevant subregion Si corresponding to ith agent, divide every cell into
four smaller subcells and then generate a trajectory such that each subcell is
visited exactly once.

This approach performs optimally in terms of length of the resulting
trajectory if merging (see Definition 3.13) takes place before the environment
partitioning phase 4.1. Unfortunately this can be done only on some special
worlds (see Figure 4.2). If such preprocessing cannot be applied, the length
of the resulting trajectories increases dramatically, because instead of visiting
only the center of each cell, the drone visits centers of each subcell.

To prevent this, the environment can be approximated using the 2l-size grid
approximation as in [6], but this means that some of the free cells from the
environment representation will be considered obstacles and therefore will not
be explored. This can even cause situations like the one in Figure 4.3 where
no trajectory is generated, because the approximation results in a world full
of obstacles. To cope with this problem, the rendition of the algorithm used
in this work performs a test of the environment at the start of the runtime
and the cells are merged only if no problematic blocks (which consist of both
free cells and cells with obstacles) are found (see Algorithm 3). This means
that on some worlds the STC algorithm performs optimally in terms of length
of resulting trajectories, but on some worlds the trajectories are far longer
than they need to be, which leaves space for improvement.

Algorithm 3 The merging
if no 2x2 block of cells Bj exists such that Cj,1, Cj,2 ∈ Bj and Cj,1 =
obstacle, Cj,2 ̸= obstacle then

for each block of cells Bj do
replace Bj with cell Cj

exploration status of Cj ← exploration status of Bj

end for
end if

For a subregion Si the Spanning Tree Ti is constructed as follows: At
first the orientation of Si is determined. If Si is horizontal, then clusters
of adjacent cells belonging to the same row are connected into horizontal
branches and then the individual branches are connected with the leftmost
cell. If Si is vertical, the procedure is the same, but the branches are formed
from adjacent cells belonging to the same column, and they are connected
via the lowermost cell.

18

.................................4.2. Trajectory Generation

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Obstacle

(a) : World suitable for merging

0 2 4 6 8 10-1 1 3 5 7 9 11

0

2

4

6

8

10

-1

1

3

5

7

9

11
Obstacle

(b) : The result of merging on world (a)

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Obstacle

(c) : World where merging cannot be
done

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Obstacle
Mergeable block

Unmergeable block

(d) : Problematic blocks of cells on
world (c)

Figure 4.2: The merging

After the Spanning Tree is created, each cell is split into four subcells and
a trajectory which passes through the centre of each subcell is generated. The
outcomes of the STC algorithm can be seen in Figure 4.4. The algorithm is
described in Algorithm 4.

19

4. Exploration......................................

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Obstacle

(a) : Before approximation

0 2 4 6 8 10-1 1 3 5 7 9 11

0

2

4

6

8

10

-1

1

3

5

7

9

11
Obstacle

(b) : After approximation

Figure 4.3: World which cannot be preprocessed with 2l-grid approximation,
because it would result in a world full of obstacles

4.2.2 Cycle Growing Algorithm

As we can see in Figure 4.4b, the trajectory generated by the STC algorithm
is unnecessarily long when merging cannot be done. To cope with this, a new
algorithm called the CG algorithm, which performs better on some worlds in
terms of length of the resulting trajectories, is proposed.

In the CG algorithm the surrounding cycle Cs of the region Si is found
at first. A simple state machine, which starts in the left upper corner and
navigates through the region using the left hand rule until the starting position
is reached, is used for this (see Algorithm 5).

The pairs of cells are then appended to Cs in a way that ensures that
the continuity of the cycle is not violated. Both cells of each pair must be
neighbour cells, must not contain an obstacle, none of them can already be in
Cs, and both must have at least one cell from Cs among its neighbours. If
Cs is horizontal, the horizontal pairs are added first and the vertical pairs
afterwards. For vertical Cs it is the opposite. This process of Cs growing is
explained in Algorithm 6.

After this, all cells which have only obstacles or cells belonging to Cs among
its neighbour cells are added to the cycle and marked as priority edges. This
is described in Algorithm 7.

20

.................................4.2. Trajectory Generation

Algorithm 4 The Spanning Tree Coverage algorithm
perform merging (run Algorithm 3)
initialize set xcoords and ycoords
for each cell Cj ∈ Si do

add x coordinate of Cj to xcoords
add y coordinate of Cj to ycoords

end for
if card(xcoords) ≥ card(ycoords) then

orientation = horizontal
else

orientation = vertical
end if
if orientation = horizontal then

for each coordy ∈ ycoords do
connect adjacent cells Cj with the y coordinate Cj,y = coordy into

a branch BRj

end for
for each branch BRj do

connect to BRj−1 and BRj+1 with the leftmost cells
end for

else
for each coordx ∈ xcoords do

connect adjacent cells Cj with the x coordinate Cj,x = coordx into
a branch BRj

end for
for each branch BRj do

connect to BRj−1 and BRj+1 with the lowermost cells
end for

end if

The algorithm then runs recursively on each unexplored continuous subre-
gion of Si and the resulting cycles are connected. The whole CG algorithm is
described in Algorithm 8.

The resulting directed graph is then converted into trajectory using another
state machine which navigates through the graph using the left hand rule with
the exception that edges which are marked as priority edges are assigned higher
priorities than they would otherwise get from the left hand rule. Conversion
of the generated cycle to a trajectory is described in Algorithm 9. The four
phases of the CG algorithm are visualised in Figure 4.5. When this algorithm
is combined with the Environment partitioning algorithm 4.1, the resulting
CGWEP algorithm can be used as an alternative to the AWSTC algorithm
from [8].

21

4. Exploration......................................

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory
Spanning tree

(a) : World where merging can be per-
formed

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory
Spanning tree

(b) : World where merging cannot be
performed

Figure 4.4: The results of the Spanning Tree Coverage algorithm

Algorithm 5 Surrounding cycle retrieval algorithm
Find the upper left corner of unexplored area Cstart

position← Cstart

heading← right
finished← false
initialize the cycle
while not finished do

Add position to the cycle with the appropriate edge
evaluate the neighbour cells of position with left hand rule and choose

the cell Cbest and action Abest with the highest priority
position← Cbest

heading← action
if position = Cstart then

Add appropriate edge to enclose the cycle
finished← true

end if
end while

4.3 Resulting Path Planning Algorithms

When we combine the Environment partitioning algorithm (Section 4.1)
and the STC algorithm (Section 4.2.1), we obtain the AWSTC algorithm
described in [8]. If we combine the STC algorithm with the modified version
of the Environment partitioning algorithm (see Section 4.1.1), we obtain
the IAWSTC algorithm. The combination of the improved Environment

22

...........................4.3. Resulting Path Planning Algorithms

Algorithm 6 Growing of the surrounding cycle
if Cs = horizontal then

Process the horizontal pairs first and then the vertical pairs of neighbour
cells in the following part of the algorithm
else

Process the vertical pairs first and then the horizontal pairs of neighbour
cells in the following part of the algorithm
end if
for each horizontal/vertical pair of neighbour cells Cj,1, Cj,2 do

if Cj,1, Cj,2 /∈ Cs and Cj,1, Cj,2 ̸= obstacle then
if NCS(Cj,1)≥ 1 and NCS(Cj,2)≥ 1, where NCS(Cj) is the number

of neighbour cells of cell Cj which belong to surrounding cycle Cs then
Add Cj,1, Cj,2 to Cs and add/remove appropriate edges
Check the conditions and eventually add to Cs also the pair of

cells next to Cj,1, Cj,2.
end if

end if
end for

Algorithm 7 The addition of priority edges
for each cell Cj /∈ Cs do

neighbours ← all neighbour cells of Cj

u ← 0
for each cell Cn ∈ neighbours do

if Cn = obstacle or Cn ∈ Cs then
u ← u + 1

end if
end for
if u = len(neighbours), where len(vec) is a function which returns the

number of elements in vec then
Add Cj to Cs

add Cj to priority edges
end if

end for

partitioning algorithm and the CG algorithm (Section 4.2.2) results in the
CGWEP algorithm. We can see the execution of the IAWSTC and CGWEP
algorithms for three UAVs in Figure 4.6.

23

4. Exploration......................................
Algorithm 8 The Cycle Growing algorithm

initialize Cs

Run Algorithm 5
Run Algorithm 6
Run Algorithm 7
for each cell Cj ∈ Cs do

Cj ← explored
end for
if unexplored cell exists then

run the whole Algorithm 8 on the unexplored subregion.
connect the result to Cs

end if

Algorithm 9 Cycle to trajectory conversion
Initialize trajectory Traj
Find the upper left corner of the cycle Cs, Cstart

position← Cstart

heading ← right
finished ← false
while not finished do

Add position to Traj
if edge pe from position in priority edges then

remove pe from priority edges
e ← pe

else
e ← choose a cell from edges of position using the left hand rule

end if
position ← goal(e)
update heading
if position = Cstart then

finished ← true
end if

end while

4.4 Time Complexity

The time complexity of the original and improved versions of the Environment
partitioning algorithm (Algorithm 1) is O(n2). The time complexity of the
STC algorithm (Algorithm 4) is O(n) and the complexity of the CG algorithm
(Algorithm 8) is also O(n). Therefore, the resulting combination is O(n2) for
both the original AWSTC algorithm from [8] and the proposed IAWSTC and
CGWEP algorithms.

24

...................................4.4. Time Complexity

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory Priority edges

(a) : Step 1 - The surrounding cycle

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory Priority edges

(b) : Step 2 - Extended cycle

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory Priority edges

(c) : Step 3 - Priority edges

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Generated trajectory Priority edges

(d) : Step 4 - The recursive run on
unexplored subregion

Figure 4.5: The phases of the Cycle Growing algorithm

25

4. Exploration......................................

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 trajectory
UAV 1 trajectory

UAV 2 trajectory

(a) : The IAWSTC algorithm

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

UAV 0 trajectory
UAV 1 trajectory

UAV 2 trajectory

(b) : The CGWEP algorithm

Figure 4.6: The outcomes of IAWSTC and CGWEP algorithms for three drones.

26

Chapter 5

Trajectory Smoothing

The trajectories generated by the algorithms described in Section 4.2 contain
many rough turns. These turns can be smoothed to make it easier for the
UAV’s controller to track the generated trajectory. A fundamental yet effective
optimisation based approach was chosen for the smoothing. It may seem
that the smoothing is unnecessary, because in case the turn is too sharp, the
controller deviates from the trajectory reference, which results in a smooth
turn. However, when this happens, we lose control of the actual path, and
some cells may remain unexplored, as the UAV does not pass through their
centres. Therefore, it is better to smooth the generated trajectories.

There are various approaches to trajectory smoothing that can be generally
divided into three main categories - interpolation based methods, methods
using special curves, and optimisation methods [22]. The interpolation based
methods use polynomial interpolation [5], Bézier curves [26], cubic splines
[18], B-splines [3], or NURBS curves [13]. The methods using special curves
use Dubin’s curves [19], clothoids [4], hypocycloids [21], and other special
curves [22]. The optimisation methods treat the trajectory smoothing as an
optimisation problem, where energy, time of execution, and other criteria are
minimized. In [27] trajectories are viewed as elastic bands where shape and
speed are iteratively improved by solving convex optimisation problems. In
[14] smoothness is achieved by minimizing the integral of squared acceleration
using a numerical solution of a set of nonlinear equations obtained by the cal-
culus of variation. A novel approach based on empirical mode decomposition,
where the high frequencies of changes in x and y coordinates are discarded for
better smoothness, is presented in [25]. Another unconventional approach is
introduced in [11], where neural networks are used to perform the trajectory
smoothing. For an extensive overview of state of the art trajectory smoothing

27

5. Trajectory Smoothing
methods, see [22].

5.1 Trajectory Smoothing Using Least Squares
Solution

The main criterion for the trajectory smoothing algorithm was simplicity and
low computational complexity, because it is used for long trajectories and the
computations are carried out by the UAV’s control unit during flight. Another
important condition is that the trajectory after smoothing should still go
through each of the points of the original trajectory, otherwise the agent
would not fulfil the definition of exploration laid down in Definition 3.2. For
those reasons, the TSULSS approach, which meets all the criteria mentioned
previously, was developed.

5.1.1 The Mathematical Principle

The main idea of the proposed TSULSS approach is to insert p equally distant
points between each two points of the original trajectory (see Figure 5.1) and
then minimise a function, which describes the curvature of the whole new
trajectory τ . The ideal function for this would be the sum of squared angles
between pairs of consecutive vectors vi, vi+1 ∈ τ . However, this function can
not be formulated as least squares solution of a system of linear equations.
Therefore, the vectors vi, vi+1 were decomposed into three consecutive points
Pi, Pi+1, Pi+2 and the distance dmid,i of the middle point Pi+1 from the centre
of mass of the three points was used to describe the angle between the two
vectors vi, vi+1. The distance dmid,i is visualised in Figure 5.2 and the relation
of the distance dmid,i and the angle between vi, vi+1 can be seen in Figure 5.3.

The function for the description of the curvature of τ is the sum of squared
distances dmid,i for each triad of consecutive points from the trajectory τ :

f(τ) =
N−2∑
i=0

[(
Pi,x + Pi+1,x + Pi+2,x

3 − Pi+1,x

)2

+
(

Pi,y + Pi+1,y + Pi+2,y

3 − Pi+1,y

)2
]
. (5.1)

28

....................5.1. Trajectory Smoothing Using Least Squares Solution

0 0.5 1 1.5 2 2.5 3

x coordinate [m]

0

0.5

1

1.5

2

2.5

3

y
 c

o
o

rd
in

a
te

 [
m

]

Smoothed p = 5

Smoothed p = 4

Smoothed p = 3

Smoothed p = 2

Original trajectory

Figure 5.1: The meaning of the p parameter - with higher values of p, more
points are inserted into the trajectory, which leads to smoother turns.

Equation (5.1) describes the curvature of a trajectory τ , but we must
introduce the shift of individual points, because that is what needs to be
computed. Therefore, each point Pi is replaced by Pi + λi δi, where

λi =
{

0 Pi belongs to the original trajectory
1 Pi was added during the first phase of trajectory smoothing,

and δi is the change of the i-th point of the trajectory. The term λi ensures
that the points of the original trajectory will not be changed during the
smoothing process, and therefore, the UAV will explore all the cells. The
resulting function is:

f(τ) =
N−2∑
i=0

[(
Pi,x + λi δi,x

3 −2 Pi+1,x + λi+1 δi+1,x

3 + Pi+2,x + λi+2 δi+2,x

3

)2

+
(

Pi,y + λi δi,y

3 + 2 Pi+1,y + λi+1 δi+1,y

3 + Pi+2,y + λi+2 δi+2,y

3

)2]
. (5.2)

29

5. Trajectory Smoothing

-0.5 0 0.5 1 1.5 2 2.5

x coordinate [m]

-0.5

0

0.5

1

1.5

2

y
 c

o
o

rd
in

a
te

 [
m

]

d=0

Distance d
mid, i

Three consecutive points of

(a) : No turn

-0.5 0 0.5 1 1.5 2

x coordinate [m]

-0.5

0

0.5

1

1.5

2

y
 c

o
o
rd

in
a
te

 [
m

]

d=0.0651

Distance d
mid, i

Three consecutive points of

(b) : < 90◦ turn

-0.5 0 0.5 1 1.5 2

x coordinate [m]

-0.5

0

0.5

1

1.5

2

y
 c

o
o

rd
in

a
te

 [
m

]

d=0.222

Distance d
mid, i

Three consecutive points of

(c) : 90◦ turn

-0.5 0 0.5 1 1.5 2

x coordinate [m]

-0.5

0

0.5

1

1.5

2

y
 c

o
o

rd
in

a
te

 [
m

]
d=0.402

Distance d
mid, i

Three consecutive points of

(d) : > 90◦ turn

Figure 5.2: Distance dmid,i for various turns

For enclosed trajectories (where P1 = PN) one more term must be added
to round off the connection of the start and the end. The final function with
this term is:

ff (τ) = f(τ) +
(

PN−1,x + λN−1 δN−1,x

3 − 2 P1,x + λ1 δ1,x

3 + P2,xλ2 δ2,x

3

)2

+
(

PN−1,y + λN−1 δN−1,y

3 − 2 P1,y + λ1 δ1,y

3 + P2,yλ2 δ2,y

3

)2
. (5.3)

This equation can be rewritten in matrix form for better clarity:

ff (τ) = ∥A x− b∥2, (5.4)

30

....................5.1. Trajectory Smoothing Using Least Squares Solution

Angle between v
i
, v

i+1
 [rad]

D
is

ta
n

c
e

 d
m

id
,
i [

m
]

Figure 5.3: The relation of distance dmid,i and angle between vi, vi+1

where

A =



λ1
3 0 −2 λ2

3 0 λ3
3 0 0 0

0 λ1
3 0 −2 λ2

3 0 λ3
3 0 0

...
...

...
...

...
...

...
...

...
...

...

0 0 λN−2
3 0 −2 λN−1

3 0 λN
3 0

0 0 λN−2
3 0 −2 λN−1

3 0 λN
3

− 2 λ1
3 0 λ2

3 0 0 λN−1
3 0 . . . 0

0 −2 λ1
3 0 λ2

3 0 0 λN−1
3 0 0



,

x =
[

δ1,x δ1,y δ2,x δ2,y δ3,x δ3,y . . . δN,x δN,y

]T

,

31

5. Trajectory Smoothing

b =



− 1
3 P1,x + 2

3 P2,x − 1
3 P3,x

− 1
3 P1,y + 2

3 P2,y − 1
3 P3,y

...

− 1
3 PN−2,x + 2

3 PN−1,x − 1
3 PN,x

− 1
3 PN−2,y + 2

3 PN−1,y − 1
3 PN,y


.

The optimisation problem is then formulated as:

min
x∈R2N

∥A x− b∥2. (5.5)

For better control over the resulting trajectories, the Tikhonov regulariza-
tion was added to penalize significant changes in the trajectory, introducing
the parameter µ, which controls how much the smoothed trajectory can devi-
ate from the original trajectory. The effect of the parameter µ can be seen in
Figure 5.4. The final optimisation problem with Tikhonov regularization is:

min
x∈R2N

(
∥A x− b∥2 + µ∥x∥2

)
. (5.6)

This problem can be solved by singular value decomposition, QR decompo-
sition, or normal equations. In this work the normal equation solution was
chosen, because of its low computational complexity.

5.1.2 Performance

We can see the result of the TSULSS approach in Figure 5.5. The algorithm
performs as expected and it is also possible to change the resulting trajectories
with the parameters p and µ. The algorithm performs fast enough for real
time applications for trajectories with approximately 100 points (before the
insertion of p points). Longer trajectories must be decomposed into shorter
subtrajectories, which can be smoothed separately and then joined into one
final smooth trajectory. When dividing the trajectory into subtrajectories,
the split point should not be in the middle of a turn.

32

....................5.1. Trajectory Smoothing Using Least Squares Solution

0 0.5 1 1.5 2 2.5 3

x coordinate [m]

0

0.5

1

1.5

2

2.5

3

y
 c

o
o

rd
in

a
te

 [
m

]

Original trajectory

Smoothed = 0.3

Smoothed = 0.1

Smoothed = 0.05

Smoothed = 0

Figure 5.4: The meaning of the µ parameter - smoothed trajectories differ less
from the original trajectory for higher values of µ

33

5. Trajectory Smoothing

-1 0 1 2 3 4 5 6 7 8 9 10 11
-1
0
1
2
3
4
5
6
7
8
9

10
11

Before smoothing After smoothing

Figure 5.5: The result of trajectory smoothing

34

Chapter 6

Online Obstacle Detection And Avoidance

After the trajectories are generated, each drone is commanded to its starting
position. After this, they start tracking the trajectories, inform the other
agents about the visited cells, and periodically check for obstacles colliding
with their trajectory. Whenever an unexpected obstacle appears, which is not
in the obstacle map, the UAV immediately stops and observes the obstacle
for time to. If the position of the obstacle does not change during this time,
it is classified as Static obstacle, otherwise it is classified as Dynamic obstacle.
For an example of static and dynamic obstacles, see Figure 6.1.

Figure 6.1: Static and dynamic obstacles

35

6. Online Obstacle Detection And Avoidance
6.1 Dynamic Obstacles

Dynamic obstacles are obstacles, which move and therefore cannot be in the
obstacle map. When a drone detects a dynamic obstacle colliding with it’s
trajectory, it suspends the trajectory execution and waits until the path is
clear. Nothing is signaled to other UAVs. In this work, we assume dynamic
obstacles aware of its surroundings which avoid crashing into the UAV.
Therefore, it is sufficient for the drone to wait until the detected dynamic
obstacle disappears.

6.2 Static Obstacles not Known Beforehand

When the detected obstacle is classified as Static obstacle, the agent sends
the position of the obstacle to the other agents. The other agents add this
new obstacle to their obstacle maps and suspend current trajectory execution.
After this, the trajectories are replanned.

6.3 Replanning

During the replanning process all cells that were already visited by the agents
are marked as explored, and the cells that were not yet visited and do not
contain an obstacle are marked as unexplored. After this, the whole exploration
algorithm is repeated. Replanning is also described in Algorithm 10.

36

..................................... 6.3. Replanning

Algorithm 10 Replanning
Watch for obstacles
if detected obstacle then

Wait for to

if obstacle position changed then
Wait for clear path
Resume trajectory execution

else
Add obstacle to the obstacle map
Signal obstacle position to other agents
Other agents add obstacle to their obstacle maps and suspend

trajectory execution
Mark visited cells as explored and unvisited cells without obstacles

as unexplored
Repeat the exploration algorithm

end if
end if

37

38

Chapter 7

Implementation

7.1 Used Programming Languages and
Environments

The AWSTC, IAWSTC and CGWEP algorithms were implemented in Python
and the Robotic Operating System (ROS)1 using C++ for the simulation
and hardware experiments.

The STC algorithm (Section 4.2.1), which is the trajectory generation part
of the AWSTC algorithm, the CG algorithm (Section 4.2.2) which is the
trajectory generation part of the CGWEP algorithm and the Environment
partitioning algorithm (Section 4.1) along with it’s modified version (see Sec-
tion 4.1.1), which is the first phase of both IAWSTC and CGWEP algorithms,
were implemented in Python only.

The Trajectory smoothing using least squares solution (Section 5.1) was
developed in Matlab 2020a, then implemented in Python and also ROS using
C++ for simulation and hardware experiments.

1https://wiki.ros.org/

39

https://wiki.ros.org/

7. Implementation....................................
7.2 Numerical Values of Constants and Parameters

The values of various constants and parameters used in the implementation
of the algorithms can be seen in Table 7.1.

Table 7.1: Values of used constants and parameters
Name Value

Environment partitioning

σa 1
σb 100
σd 10
EM 10000

Trajectory smoothing p 5
µ 0.15

Replanning to 2 [s]

40

Chapter 8

Quantitative Tests

The individual parts of the algorithm were realized as standalone applications
in Python, and multiple tests were carried out to determine the benefits of
proposed algorithms and algorithm modifications.

8.1 Environment Partitioning Improvement

To prove that the modifications proposed in Section 4.1.1 improve the be-
haviour of the algorithm from [8], the original (AWSTC) and modified (IAW-
STC) versions of the algorithm were launched on 1000 worlds with dimensions
10 x 10 cells, 500 worlds with dimensions 20 x 20 cells, and 200 worlds with
dimensions 30 x 30 cells. All the worlds and starting points of the agents were
randomly generated. The main criteria for the comparison were the redun-
dancy ratio (see Definition 3.16) and the equality ratio (see Definition 3.17).
The results are listed in Table 8.1 and are also visualised in Figure 8.1. We
can clearly see that the modified version of the Environment Partitioning
algorithm used in IAWSTC effectively improves both the redundancy ratio
and the equality ratio.

41

8. Quantitative Tests

Table 8.1: The quantitative tests of the environment partitioning algorithm

World size Number of agents Redundancy ratio Equality ratio
AWSTC IAWSTC AWSTC IAWSTC

10x10
2 1.0029 1.0005 1.0084 1.0068
4 1.0408 1.0052 1.0574 1.0339
8 1.225 1.0327 1.2617 1.1559

20x20
2 1.001 1.0001 1.0023 1.0018
4 1.009 1.0004 1.0131 1.0066
8 1.1198 1.0097 1.1295 1.0387

30x30
2 1.0001 1.0 1.0008 1.0008
4 1.0042 1.0001 1.006 1.0028
8 1.0748 1.0035 1.0791 1.0158

2 3 4 5 6 7 8

Number of UAVs

1

1.05

1.1

1.15

1.2

1.25

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

AWSTC on 10x10 world

IAWSTC on 10x10 world

AWSTC on 20x20 world

IAWSTC on 20x20 world

AWSTC on 30x30 world

IAWSTC on 30x30 world

(a) : Redundancy ratio

2 3 4 5 6 7 8

Number of UAVs

1

1.05

1.1

1.15

1.2

1.25
E

q
u
a
lit

y
 R

a
ti
o

AWSTC on 10x10 world

IAWSTC on 10x10 world

AWSTC on 20x20 world

IAWSTC on 20x20 world

AWSTC on 30x30 world

IAWSTC on 30x30 world

(b) : Equality ratio

Figure 8.1: The dependency of redundancy ratio and equality ratio on number
of drones and world size

8.2 Path Planning Algorithm Comparison

Quantitative tests were also carried out to provide a comparison between the
two presented algorithms for trajectory generation (see Section 4.2). Both
STC and CG algorithms were tested on 1000 randomly generated worlds
with randomly generated dimensions, number of agents, and starting points.
The experiments were performed on worlds, where merging can be done and
therefore the STC algorithm acts optimally and also on worlds where merging
cannot be done, separately. The measured criteria were the length ratio (see
Definition 3.18) and the curvature ratio (see Definition 3.19). The results can
be found in Table 8.2.

42

............................ 8.3. Trajectory Smoothing Evaluation

Table 8.2: The quantitative tests of the path planning algorithms
Algorithm Length ratio Curvature ratio

With merging STC 1.0 27.731
CG 1.0014 34.0451

Merging not possible STC 1.98 86.3356
CG 1.1733 74.3884

We can deduce from the results of quantitative tests that on worlds, where
merging can be done, the STC algorithm outperforms the CG algorithm,
both in terms of length and in terms of curvature. This is no surprise as
the STC algorithm is optimal in terms of trajectory length on such worlds
and the way it is constructed guarantees low curvature. However, on the
worlds where merging cannot be realized, the trajectories generated by the
CG algorithm proved to be far shorter. The CG algorithm performed better
also in terms of curvature on such worlds. Nevertheless, one valuable feature
of the STC algorithm is that it provides an upper bound for the maximal
turn size - for trajectory τ consisting of points P1, . . . , PM :

max
i∈{1,...,M−2}

∣∣∣∣arccos
(

vi · vi+1
|vi| |vi+1|

)∣∣∣∣ ≤ π

2 , (8.1)

where

vi = Pi+1 − Pi, (8.2)
vi+1 = Pi+2 − Pi+1. (8.3)

This does not hold true for the CG algorithm.

8.3 Trajectory Smoothing Evaluation

To examine the influence of the parameters p and µ on the performance
of the trajectory smoothing algorithm, various combinations of values of p
and µ were tested on 100 random worlds with random sizes s ∈ {10 x 10,
11 x 11, . . . ,25 x 25} and random numbers of agents N ∈ {2, 3, . . . , 6}. The
measured criteria were the length increase ratio (see Definition 3.20) and the
turn intensity (see Definition 3.21). The results are listed in Table 8.3 and
are also visualised in Figure 8.2. The results verified the assumption that the
increase of µ parameter or p parameter values lead to smoother trajectories
with greater lengths. On the other hand, smaller values of these parameters
lead to shorter trajectories with sharper turns.

43

8. Quantitative Tests

Table 8.3: The quantitative tests of the trajectory smoothing algorithm
µ parameter p parameter Length increase ratio Turn intensity

0
3 1.0183 20.6074
4 1.0207 15.3694
5 1.0230 12.6498

0.1
3 1.0163 20.4525
4 1.0173 16.0535
5 1.0146 13.1025

0.3
3 1.0092 22.1290
4 1.0061 18.6607
5 1.0043 17.1271

0 0.1 0.2 0.3

1.005

1.01

1.015

1.02

1.025

L
e
n
g
th

 i
n
c
re

a
s
e
 r

a
ti
o

p = 3

p = 4

p = 5

(a) : Length

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
12

14

16

18

20

22

24

T
u
rn

 i
n
te

n
s
it
y

p = 3

p = 4

p = 5

(b) : Turn intensity

Figure 8.2: The dependency of length increase ratio and turn intensity on the p
and µ parameters

44

Chapter 9

Simulation Experiments

9.1 Environment

The simulation experiments were performed in the Gazebo simulator1 (see
Figure 9.1) on a laptop with Intel Core i7-8565U CPU with 8 GB RAM.
Due to the limited computing power of the used hardware, the maximum
of 3 drones could be used in the simulation experiments. However, this
limitation was not an important issue, as three drones are sufficient to test
the functionality of the algorithms.

Figure 9.1: The simulation environment

1https://gazebosim.org/home

45

https://gazebosim.org/home

9. Simulation Experiments
9.2 Results

Both algorithms were tested in the Exploration experiment (Section 9.2.1) and
the Replanning experiment (Section 9.2.2) tested the online obstacle detection
(Chapter 6) and replanning (Section 6.3). All the simulation experiments
were successful.

9.2.1 Exploration Experiment

In this experiment, three UAVs explored a world with all the obstacles known
beforehand. The dimensions of the world were 15 x 15 cells, which corresponds
to 45 x 45 [m]. We can see the result of the IAWSTC algorithm in Figure 9.2
and the result of the CGWEP algorithm in Figure 9.3. It is evident, that
the trajectories generated by the latter algorithm are shorter and also have
smaller overlaps. Both figures are screenshots from a visualization tool called
RViz2 with additionally marked obstacles.

Figure 9.2: IAWSTC algorithm in simulation
2http://wiki.ros.org/rviz

46

http://wiki.ros.org/rviz

....................................... 9.2. Results

Figure 9.3: CGWEP Algorithm in simulation

9.2.2 Replanning

In the Replanning experiment an obstacle, which was not marked in the
obstacle map, had been added. Two UAVs explored a world of 10 x 10 cells
(30 x 30 [m]) using the CGWEP algorithm and when one of them noticed the
unexpected obstacle, they both stopped and replanned their paths. We can
see the original trajectories before replanning in Figure 9.4 and the modified
trajectories after replanning in Figure 9.5.

3The recording of the Replaning experiment can be found here: http://mrs.felk.cvut.
cz/chleboun-2022-bp

47

http://mrs.felk.cvut.cz/chleboun-2022-bp
http://mrs.felk.cvut.cz/chleboun-2022-bp

9. Simulation Experiments

Figure 9.4: Replanning experiment3before unexpected obstacle detection

Figure 9.5: Replanning experiment after unexpected obstacle detection

48

Chapter 10

Hardware Experiments

10.1 Hardware description

Hardware experiments were performed on three UAVs of type DJI F4501

with GPS receiver for localization, 2D LiDAR2 for obstacle detection, Intel
NUC i73 onboard computer and rangeFinder for height estimation. One of
the drones (with propellers taken off) can be seen in Figure 10.1.

Figure 10.1: One of the UAVs used in the experiment

1https://www.dji.com/cz/flame-wheel-arf/feature
2https://www.slamtec.com/en/Lidar/A3
3https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs.

html

49

https://www.dji.com/cz/flame-wheel-arf/feature
https://www.slamtec.com/en/Lidar/A3
https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs.html
https://www.intel.com/content/www/us/en/products/details/nuc/mini-pcs.html

10. Hardware Experiments
The chosen environment was a meadow in the South Bohemian Region

of the Czech Republic. The aerial view of the environment can be seen in
Figure 10.2.

Figure 10.2: The aerial view of the environment

10.2 Results

In the experiment, the IAWSTC and CGWEP algorithms were tested on a
40 x 40 [m] region. The world representation dimensions were 10 x 10 cells.
The cell size was set to 4 x 4 meters so that the collision prediction mechanisms
of the MRS UAV system core would not affect the generated trajectories.
The outcome of the IAWSTC algorithm can be seen in Figure 10.3 and the
outcome of the CGWEP algorithm in Figure 10.3. Both experiments were
successful.

4The recording of the IAWSTC algorithm hardware experiment can be found here:
http://mrs.felk.cvut.cz/chleboun-2022-bp

5The recording of the CGWEP algorithm hardware experiment can be found here:
http://mrs.felk.cvut.cz/chleboun-2022-bp

50

http://mrs.felk.cvut.cz/chleboun-2022-bp
http://mrs.felk.cvut.cz/chleboun-2022-bp

.......................................10.2. Results

Figure 10.3: IAWSTC algorithm on real UAVs4

Figure 10.4: CGWEP Algorithm on real UAVs5

51

52

Chapter 11

Conclusions

11.1 Final Conclusion

In this thesis, the AWSTC algorithm from [8] was implemented and improve-
ments were proposed to reduce the redundancy of coverage, resulting into
the IAWSTC algorithm. An alternative approach, the CGWEP algorithm,
was designed and compared to the IAWSTC algorithm. Quantitative tests
were also carried out along with simulation and hardware experiments. The
results verified that the IAWSTC algorithm produces subregions with less re-
dundancy than the AWSTC algorithm, and also that the IAWSTC algorithm
performs better than the CGWEP algorithm on the worlds where merging
cannot be performed. On the other hand, on worlds where merging is not
possible, the CGWEP algorithm proved to be better in terms of both length
and curvature of the resulting trajectories. The implementations of both
algorithms were enriched with obstacle detection for both fixed and moving
obstacles and replanning. The resulting trajectories were further improved
with a novelty trajectory smoothing approach. The implemented algorithms
are suitable for tasks such as search and rescue missions or object localisation
in cluttered environments.

53

11. Conclusions.....................................
11.2 Future Work Proposition

It would be interesting to extend the exploration algorithms to polygonal
environments with polygonal obstacles. This would result in a more versatile
exploration technique which could be used in more universal spaces. Addition-
ally, an online version of the CG algorithm could be created for environments
where the obstacle map is not known beforehand.

The TSULSS can be extended into three dimensions. Also, instead of using
constant speed, the speed profile could be optimized across the generated
trajectories. This remains an opportunity for future research.

54

Appendix A

Acronyms

AWSTC Artificially Weighted Spanning Tree Coverage

CG Cycle Growing

CGWEP Cycle Growing With Environment Partitioning

IAWSTC Improved Artificially Weighted Spanning Tree Coverage

ROS Robotic Operating System

STC Spanning Tree Coverage

TSULSS Trajectory Smoothing Using Least Squares Solution

UAV Unmanned Aerial Vehicle

55

56

Appendix B

Bibliography

[1] Agmon, N., Hazon, N., and Kaminka, G. Constructing Spanning
Trees for Efficient Multi-robot Coverage. In Proceedings IEEE Interna-
tional Conference on Robotics and Automation (2006), pp. 1698–1703.
Available at https://doi.org/10.1109/ROBOT.2006.1641951.

[2] Avellar, G. S. C., Pereira, G. A. S., Pimenta, L. C. A., and
Iscold, P. Multi-UAV Routing for Area Coverage and Remote Sensing
with Minimum Time. Sensors 15, 11 (2015), 27783–27803. Available at
https://doi.org/10.3390/s151127783.

[3] Biagiotti, L., and Melchiorri, C. Online Trajectory Planning and
Filtering for Robotic Applications via B-spline Smoothing Filters. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems (2013), pp. 5668–5673. Available at https://doi.org/10.
1109/IROS.2013.6697177.

[4] Brezak, M., and Petrović, I. Path Smoothing Using Clothoids
for Differential Drive Mobile Robots. IFAC Proceedings Volumes
44, 1 (2011), 1133–1138. Available at https://doi.org/10.3182/
20110828-6-IT-1002.02944.

[5] Chang, S.-R. A G2 Continuous Path-smoothing Algorithm Using
Modified Quadratic Polynomial Interpolation. International Journal
of Advanced Robotic Systems 11 (February 2014). Available at https:
//doi.org/10.5772%2F57340.

[6] Chunqing, G., Yingxin, K., Zhanwu, L., An, X., You, L., and
Yizhe, C. Optimal Multirobot Coverage Path Planning: Ideal-Shaped
Spanning Tree. Mathematical Problems in Engineering (2018), 1–10.
Available at https://doi.org/10.1155/2018/3436429.

57

https://doi.org/10.1109/ROBOT.2006.1641951
https://doi.org/10.3390/s151127783
https://doi.org/10.1109/IROS.2013.6697177
https://doi.org/10.1109/IROS.2013.6697177
https://doi.org/10.3182/20110828-6-IT-1002.02944
https://doi.org/10.3182/20110828-6-IT-1002.02944
https://doi.org/10.5772%2F57340
https://doi.org/10.5772%2F57340
https://doi.org/10.1155/2018/3436429

B. Bibliography.....................................
[7] Demkiv, L., Ruffo, M., Silano, G., Bednář, J., and Saska, M.

An Application of Stereo Thermal Vision for Preliminary Inspection of
Electrical Power Lines by MAVs. In Aerial Robotic Systems Physically
Interacting with the Environment (AIRPHARO) (October 2021), IEEE,
pp. 1–8. Available at https://doi.org/10.1109/AIRPHARO52252.2021.
9571025.

[8] Dong, W., Liu, S., Ding, Y., Sheng, X., and Zhu, X. An Artificially
Weighted Spanning Tree Coverage Algorithm for Decentralized Flying
Robots. IEEE Transactions on Automation Science and Engineering
17, 4 (2020), 1689–1698. Available at https://doi.org/10.1109/TASE.
2020.2971324.

[9] Faigl, J., Váňa, P., Pěnička, R., and Saska, M. Unsupervised
Learning-based Flexible Framework for Surveillance Planning with Aerial
Vehicles. Journal of Field Robotics 36, 1 (2019), 270–301. Available at
https://doi.org/10.1002/rob.21823.

[10] Feng, K., Li, W., Ge, S., and Pan, F. Packages Delivery Based on
Marker Detection for UAVs. In Chinese Control and Decision Conference
(CCDC) (2020), pp. 2094–2099. Available at https://doi.org/10.
1109/CCDC49329.2020.9164677.

[11] Fujii, S., and Pham, Q.-C. Realtime Trajectory Smoothing with
Neural Nets. CoRR abs/2111.02165 (2021). Available at https://doi.
org/10.48550/arXiv.2111.02165.

[12] Gabriely, Y., and Rimon, E. Spanning-tree Based Coverage of
Continuous Areas by a Mobile Robot. In Proceedings ICRA. IEEE Inter-
national Conference on Robotics and Automation (Cat. No.01CH37164)
(2001), vol. 2, pp. 1927–1933. Available at https://doi.org/10.1109/
ROBOT.2001.932890.

[13] Hashemian, A., Hosseini, S., and Nabavi, s. N. Kinematically
Smoothing Trajectories by NURBS Reparameterization – An Innovative
Approach. Advanced Robotics 31 (November 2017), 1296–1312. Available
at https://doi.org/10.1080/01691864.2017.1396923.

[14] Hussein, A., and Elnagar, A. On Smooth and Safe Trajectory
Planning in 2D Environments. In Proceedings of International Conference
on Robotics and Automation (1997), vol. 4, pp. 3118–3123. Available at
https://doi.org/10.1109/ROBOT.1997.606762.

[15] Jiao, Y.-S., Wang, X.-M., Chen, H., and Li, Y. Research on
the Coverage Path Planning of UAVs for Polygon Areas. In 5th IEEE
Conference on Industrial Electronics and Applications (2010), pp. 1467–
1472. Available at https://doi.org/10.1109/ICIEA.2010.5514816.

58

https://doi.org/10.1109/AIRPHARO52252.2021.9571025
https://doi.org/10.1109/AIRPHARO52252.2021.9571025
https://doi.org/10.1109/TASE.2020.2971324
https://doi.org/10.1109/TASE.2020.2971324
https://doi.org/10.1002/rob.21823
https://doi.org/10.1109/CCDC49329.2020.9164677
https://doi.org/10.1109/CCDC49329.2020.9164677
https://doi.org/10.48550/arXiv.2111.02165
https://doi.org/10.48550/arXiv.2111.02165
https://doi.org/10.1109/ROBOT.2001.932890
https://doi.org/10.1109/ROBOT.2001.932890
https://doi.org/10.1080/01691864.2017.1396923
https://doi.org/10.1109/ROBOT.1997.606762
https://doi.org/10.1109/ICIEA.2010.5514816

..................................... B. Bibliography

[16] Kang, Z., Ling, H., Zhu, T., and Luo, H. Coverage Flight Path
Planning for Multi-rotor UAV in Convex Polygon Area. In Chinese Con-
trol And Decision Conference (CCDC) (2019), pp. 1930–1937. Available
at https://doi.org/10.1109/CCDC.2019.8833382.

[17] Karapetyan, N., Benson, K., McKinney, C., Taslakian, P.,
and Rekleitis, I. M. Efficient Multi-Robot Coverage of a Known
Environment. CoRR abs/1808.02541 (2018). Available at https://doi.
org/10.48550/arXiv.1808.02541.

[18] Li, X., Gao, X., Zhang, W., and Hao, L. Smooth and Collision-free
Trajectory Generation in Cluttered Environments Using Cubic B-spline
Form. Mechanism and Machine Theory 169 (2022), 104606. Available
at https://doi.org/10.1016/j.mechmachtheory.2021.104606.

[19] Lin, Y., and Saripalli, S. Path Planning Using 3D Dubins Curve for
Unmanned Aerial Vehicles. In International Conference on Unmanned
Aircraft Systems (ICUAS) (2014), pp. 296–304. Available at https:
//doi.org/10.1109/ICUAS.2014.6842268.

[20] Nedjati, A., Izbirak, G., Vizvari, B., and Arkat, J. Complete
Coverage Path Planning for a Multi-UAV Response System in Post-
Earthquake Assessment. Robotics 5, 4 (2016). Available at https:
//doi.org/10.3390/robotics5040026.

[21] Ravankar, A., Ravankar, A. A., Kobayashi, Y., and Emaru, T.
SHP: Smooth Hypocycloidal Paths with Collision-Free and Decoupled
Multi-Robot Path Planning. International Journal of Advanced Robotic
Systems 13, 3 (2016), 133. Available at https://doi.org/10.5772/
63458.

[22] Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y.,
and Peng, C.-C. Path Smoothing Techniques in Robot Navigation:
State-of-the-Art, Current and Future Challenges. Sensors 18, 9 (2018),
3170. Available at https://doi.org/10.3390/s18093170.

[23] Ruan, L., Wang, J., Chen, J., Xu, Y., Yang, Y., Jiang, H., Zhang,
Y., and Xu, Y. Energy-efficient Multi-UAV Coverage Deployment in
UAV Networks: A Game-theoretic Framework. China Communications
15, 10 (2018), 194–209. Available at https://doi.org/10.1109/CC.
2018.8485481.

[24] Smrčka, D., Báča, T., Nascimento, T., and Saska, M. Admittance
Force-Based UAV-Wall Stabilization and Press Exertion for Documenta-
tion and Inspection of Historical Buildings. In International Conference
on Unmanned Aircraft Systems (ICUAS) (June 2021), IEEE, pp. 552–559.
Available at https://doi.org/10.1109/ICUAS51884.2021.9476873.

[25] Yuan, H. A Novel Trajectory Smoothing Algorithm Based on Empirical
Mode Decomposition. In Fifth International Conference on Image and

59

https://doi.org/10.1109/CCDC.2019.8833382
https://doi.org/10.48550/arXiv.1808.02541
https://doi.org/10.48550/arXiv.1808.02541
https://doi.org/10.1016/j.mechmachtheory.2021.104606
https://doi.org/10.1109/ICUAS.2014.6842268
https://doi.org/10.1109/ICUAS.2014.6842268
https://doi.org/10.3390/robotics5040026
https://doi.org/10.3390/robotics5040026
https://doi.org/10.5772/63458
https://doi.org/10.5772/63458
https://doi.org/10.3390/s18093170
https://doi.org/10.1109/CC.2018.8485481
https://doi.org/10.1109/CC.2018.8485481
https://doi.org/10.1109/ICUAS51884.2021.9476873

B. Bibliography.....................................
Graphics (2009), pp. 223–226. Available at https://doi.org/10.1109/
ICIG.2009.75.

[26] Zhou, F., Song, B., and Tian, G. Bézier Curve Based
Smooth Path Planning for Mobile Robot. Journal of Information
and Computational Science 8 (December 2011), 2441–2450. Avail-
able at https://www.researchgate.net/publication/285739464_
Bezier_curve_based_smooth_path_planning_for_mobile_robot.

[27] Zhu, Z., Schmerling, E., and Pavone, M. A Convex Optimization
Approach to Smooth Trajectories for Motion Planning with Car-Like
Robots. CoRR abs/1506.01085 (2015). Available at https://doi.org/
10.48550/arXiv.1506.01085.

60

https://doi.org/10.1109/ICIG.2009.75
https://doi.org/10.1109/ICIG.2009.75
https://www.researchgate.net/publication/285739464_Bezier_curve_based_smooth_path_planning_for_mobile_robot
https://www.researchgate.net/publication/285739464_Bezier_curve_based_smooth_path_planning_for_mobile_robot
https://doi.org/10.48550/arXiv.1506.01085
https://doi.org/10.48550/arXiv.1506.01085

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492323Personal ID number:Chleboun JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Spanning Tree Coverage Algorithm on Large Spaces for Multi-UAV Systems

Bachelor’s thesis title in Czech:

Algoritmus pro průzkum velkých prostorů pomocí skupiny kooperujících dronů

Guidelines:

Improve algorithm [1] by optimization on the cell size distribution and the path planning covering a single cel per run,
decreasing the optimization and computational costs. For avoiding sharp turns, propose an adequate smoothing.The final
implementation must experimentally verified on a real robot and compared with exisiting approaches.
Furthermore, the student must consider the following modifications and tasks:
1. The student must consider fixed and moving obstacles.
2. Experiments with real robots must be performed.
3. An optimization smoother for the planned path must applied.
4. Comparisons with state-of-the-art algorithm (reference [1]) must be performed.

Bibliography / sources:

[1] Dong, W., Liu, S., Ding, Y., Sheng, X., \& Zhu, X. (2020). An Artificially Weighted Spanning Tree Coverage Algorithm
for Decentralized Flying Robots. IEEE Transactions on Automation Science and Engineering, 2020
[2] N. Agmon, N. Hazon and G. A. Kaminka, "Constructing spanning trees for efficient multi-robot coverage," Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006

Name and workplace of bachelor’s thesis supervisor:

Tiago Pereira Do Nascimento, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 21.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Tiago Pereira Do Nascimento, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction
	Objective
	Contributions

	Related Works
	Problem Formulation
	Definitions
	Environment Representation

	Exploration
	Environment Partitioning
	Proposed Approach

	Trajectory Generation
	Spanning Tree Coverage Algorithm
	Cycle Growing Algorithm

	Resulting Path Planning Algorithms
	Time Complexity

	Trajectory Smoothing
	Trajectory Smoothing Using Least Squares Solution
	The Mathematical Principle
	Performance

	Online Obstacle Detection And Avoidance
	Dynamic Obstacles
	Static Obstacles not Known Beforehand
	Replanning

	Implementation
	Used Programming Languages and Environments
	Numerical Values of Constants and Parameters

	Quantitative Tests
	Environment Partitioning Improvement
	Path Planning Algorithm Comparison
	Trajectory Smoothing Evaluation

	Simulation Experiments
	Environment
	Results
	Exploration Experiment
	Replanning

	Hardware Experiments
	Hardware description
	Results

	Conclusions
	Final Conclusion
	Future Work Proposition

	Acronyms
	Bibliography
	Project Specification

