Bakalářská práce

Využití slunečního senzoru pro určení orientace

Vojtěch Myslivec

Vedoucí práce:

Ing. Jan Roháč, Ph.D.

Květen 2013
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Vojtěch Myslivec

Studijní program: Kybernetika a robotika
Obor: Systémy a řízení

Název tématu: Využití slunečního senzoru pro určení orientace

Pokyny pro vypracování:
1. Analyzujte možnosti a provedení současných slunečních senzorů včetně jejich konstrukcí, použitých komponent a jejich odolnosti na změny teplot, kosmické záření, apod. Porovnejte vlastnosti analogových a číslicových provedení.
2. Navrhněte a realizujte sluneční senzor využívající kamery pro sledování trajektorie pohybu Slunce.
3. Navrhněte algoritmus, který na základě vyhodnocení pozice Slunce a jeho trajektorie určí pozici senzoru a při znalosti pozice senzoru umožní následně určit orientaci senzoru vůči vektoru dopadajícího záření.
4. Analyzujte dosažitelnou přesnost a velikost zorného pole senzoru, okrajové podmínky jeho funkčnosti a senzor prakticky ověřte pomocí pozemních experimentů.

Seznam odborné literatury:

Vedoucí: Ing. Jan Roháč, Ph.D.

Platnost zadání: do konce zimního semestru 2013/2014

prof. Ing. Michael Šebek, DrSc.
vedoucí katedry

prof. Ing. Pavel Ripka, CSc.
děkán

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně pouze pod odborným vedením vedoucího práce, a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze, dne 24. 5. 2013

[Podpis]
Poděkování

Děkuji především vedoucímu bakalářské práce, Ing. Janu Roháčovi, Ph.D., za čas strávený nad mou prací a za cenné připomínky, kterých nebylo málo. Dále děkuji své rodině za zázemí a klid nejen při zpracovávání této práce.
Obsah

1 Úvod

1.1 Motivace .. 10
1.2 Současné navigační metody na oběžné dráze Země 10
 1.2.1 Snímaní magnetického pole Země 10
 1.2.2 Využití gyroskopů .. 10
 1.2.3 Akcelerometry ... 11
 1.2.4 Snímání expozice Země (angl. Horizon Sensor) 11
 1.2.5 Radiová navigace ... 12
 1.2.6 Snímání polohy hvězdi (angl. Star Tracker) 12
 1.2.7 Snímání polohy Slunce (angl. Sun Sensor) 12

2 Rešeršení slunečních senzorů 14

2.1 Definice slunečního senzoru 14
2.2 Jednoduché sluneční senzory 14
 2.2.1 Analogový sluneční senzor 14
 2.2.2 Binární sluneční senzor 15
2.3 Sluneční štěrbinové senzory s CMOS a CCD čipy 16
 2.3.1 CCD obrazové snímače 17
 2.3.2 CMOS obrazové snímače 17
 2.3.3 Porovnání CMOS a CCD obrazových čipů 18
 2.3.4 Jednoštěrbinový digitální sluneční senzor 19
 2.3.5 Digitální sluneční senzor MEMS 20
2.4 Senzory se solárními panely 21
2.5 Kamerové senzory .. 21
2.6 Vyhodnocovací obvody slunečních senzorů 22
2.7 Environmentální podmínky v kosmickém prostoru 23
 2.7.1 Teplotní výkyvy .. 23
 2.7.2 Kosmické záření a elektricky nabité částice 23
 2.7.3 Mikrometeory a kosmický odpad 24
 2.7.4 Effekt outgassing ... 25

3 Návrh řešení a realizace 26

3.1 Návrh softwarového řešení 26
3.1.1 Výpočet orientace senzoru vůči Slunci 27
3.1.2 Výpočet pozice a orientace senzoru 31
3.2 Realizace v MatLabu .. 37
3.2.1 Stručný popis základních funkcí 37
3.3 Návrh a realizace hardwarového řešení 38
3.4 Zhodnocení navržených postupů a zařízení 40

4 Analyza a testování .. 41
4.1 Testovací měření ... 41
4.2 Přesnost získaných údajů 43
4.2.1 Přesnost změřeného relativního azimuthu a zenitu 43
4.2.2 Přesnost změřené zeměpisné polohy a orientace 44
4.2.3 Celková přesnost ... 45
4.3 Zhodnocení dosažených výsledků 47

5 Závěr .. 48

Seznam obrázků

1 Principy senzorů orientace a polohy[1] 11
2 Příklad slunečního senzoru[16] 13
3 Princip analogového slunečního senzoru[3] 15
4 Předpokládaný tvar výstupního signálu v závislosti na úhlu[3] 15
5 Princip binárního slunečního senzoru[3] 16
6 Princip CCD obrazového snímače 17
7 Princip CMOS obrazového snímače 18
8 Princip jednoštěrbinového digitálního slunečního senzoru 19
9 Micro Digital Sun Sensor 19
10 Princip MEMS digitálního slunečního senzoru 20
11 Princip senzoru se solárními panely 21
12 Obraz z kamery bez a s optickým filtrem 22
13 Navržená měřicí sestava 26
14 Celkové blokové schéma měřicího a vyhodnocovacího algoritmu 27
15 Princip algoritmu pro výpočet orientace 27
16 Princip algoritmu detekce zdroje v obrazu 27
Přílohy

1. Několik fotografií z průběhu konstrukce a měření

2. Snímek měřicí aplikace v MatLabu
Anotace

Smyslem této práce je předeším navrhnout algoritmy, které na základě trajektorie Slunce na obloze dokáží určit zeměpisnou pozici a orientaci, ze které byla tato trajektorie snímana. Dále pak tuto trajektorii vhodným způsobem zaznamenat pomocí zkonstruovaného testovacího senzoru a ověřit funkčnost algoritmů, jednak na vygenerovaných datech simulujících v současné době vyráběné senzory, a jednak na datech změřených testovacím senzorem. Testování na změřených datech má ukázat předeším funkčnost algoritmů s reálnými daty a ověřit navržené postupy pro zpracování dat. Vzhledem k tomu, že je práce přípravou pro realizaci slunečního senzoru pro vesmírné aplikace, jejejí součástí také analýza současných provedení takových senzorů, dále analýza environmentálních podmínek na oběžné dráze Země a problémů, se kterými je potřeba se při konstrukci podobného senzoru vypořádat. Na základě této analýzy je následně navržen a zkonstruován vhodný typ slunečního senzoru, respektive jeho první testovací verze, sloužící předeším pro ověření funkčností, nikoliv pro dosažení vysoké přesnosti. Výstupem práce je tedy analýza podmínek na oběžné dráze, návrh spolehlivého a pokud možno co nejméně výpočetně náročného algoritmu pro výpočet pozice a orientace, který dosahuje vysokých přesností, a konečně návrh a realizace testovacího senzoru, který testuje principy snímání trajektorie Slunce a funkčnost navržených algoritmů za hranicemi pouhých simulací.
Annotation
The purpose of this work is to design algorithms that can determine the geographical position and orientation based on measuring the trajectory of the Sun in the sky, from which was trajectory scanned. Subsequently this trajectory record using constructed test sensor and verify the functionality of algorithms. Testing with measured data is needed for checking up functionality with real data and verification the proposed procedures for data processing. The work is preparation for the implementation of solar sensor for space applications, it involves an analysis of the current design of such sensors, analysis of environmental conditions on Earth orbit and problems, which is needed to deal during the construction of similar sensor. Based on this analysis is then designed and built the appropriate first test version of sun sensor, used mainly to verify the functionality, not to achieve high accuracy. Outcome of this work is the analysis of conditions on Earth orbit, design of reliable algorithm to calculate the position and orientation that achieves high accuracy, and finally the design and construction of a test sun sensor that tests the principles of scanning the Sun and verify the functionality of the proposed algorithms beyond mere simulations.
1 Úvod

1.1 Motivace

1.2 Současné navigační metody na oběžné dráze Země

1.2.1 Snímaní magnetického pole Země

Pomocí magnetometru je snímano magnetického pole Země, následně je z těchto údajů vypočtena poloha senzoru. Magnetometry jsou elektronické senzory snížující velikost a směr magnetické indukce daného magnetického pole. Vzhledem ke snižující se intenzitě magnetického pole Země se zvyšující se vzdáleností od ní lze tento princip využít jen na nízkých orbitách, tedy například ne pro geostacionární družice. Navíc není magnetické pole Země časově stálé, pólů se posouvají, a pole je ovlivňováno slunečními erupcemi. Z těchto důvodů se příliš nehodí pro přesné výpočty polohy.

1.2.2 Využití gyroskopů

Gyrokop je zařízení využívající rotující setrvačník, který je ukotvený v pohyblivých závěsech. Díky konstrukci těchto závěsů a vysokému momentu hybnosti rotujícího setrvačníku si tento setrvačník udržuje svou původní osu rotace bez ohledu na otáčení závěsů, ve kterých je uchycen. Toho lze s výhodou využít při určení orientace v pro-
storu, kdy jsou snímána právě natočení jednotlivých závěsů. Z nich pak lze dopočítat natočení vzhledem k původní orientaci. Celý systém je ale zatížen chybou vzniklou třením v závěsech, kvůli které dochází k ovlivnění orientace osy rotující části gyroskopu a vzhledem k tomu, že měření probíhá inkrementálně, je nutno měřené údaje pravidelně korigovat. Navíc z principu dovolují gyroskopy měřit pouze orientaci v prostoru, nikoliv pozici, proto je nutné je používat v kombinaci s dalšími technologiemi.

1.2.3 Akcelerometry

1.2.4 Snímaná́ expozice Země́ (angl. Horizon Sensor)

Pomocí vhodné kamery je snímán povrch Země́, míra expozice Sluncem a tvar této expozice. Z těchto dat je následně při znalosti aktuálního času vypočtena poloha, ze které je planeta snímána, a tím tedy poloha družice. Tato metoda dosahuje relativně nízkých přesností, navíc nároky na výhodnocovací obvody jsou srovnatelné s jinými, mnohem přesnějšími metodami. Principiální schéma funkce je na obr. 1a.

![a](image)
![b](image)

Obrázek 1: Principy senzorů orientace a polohy

1[1]
1.2.5 Radiová navigace

1.2.6 Snímání polohy hvězd (angl. Star Tracker)

1.2.7 Snímání polohy Slunce (angl. Sun Sensor)

Navigace pomocí snímání polohy a trajektorie Slunce není jednoznačně nejlepší volbou, nicméně patří mezi spolehlivé a přesné metody. Sluneční senzory, stejně jako další senzory využívající optické snímače, musejí být umístěny kvůli rozšíření zorného pole buď na pohyblivou konzoli, nebo musejí být na navigované zařízení umístěny vícekrát. Z důvodu nižší spolehlivosti pohyblivých konstrukčních prvků je obvykle preferována druhá možnost, tedy použití více senzorů i za cenu vyšších nákladů. Vzhledem k zadání se práce dále zabývá pouze navigací pomocí snímání Slunce a další možnosti již neuvádí.
2 Rešerše slunečních senzorů

2.1 Definice slunečního senzoru

Sluneční senzor je obvykle elektronická součástka sníмаjící intenzitu slunečního záření nebo jeho směr, případně obojí. Tuto změřenou veličinu převádí na odpovídající elektrický signál. Výstupem tohoto senzoru tak může být informace o intenzitě dopadajícího slunečního záření nebo informace o poloze dopadajícího záření, případně obojí, navíc pokud je senzor vybaven dalšími vyhodnocovacími obvody, může být výstupem orientace senzoru vůči zdroji záření (Slunci) či vůči Zemi. To ale vyžaduje použití mikroprocesoru.

2.2 Jednoduché sluneční senzory

Na rozdíl od senzorů, které budou následovat, jsou tyto senzory založeny na jednodušších principech. Obvykle sice nejsou tak přesné jako dále uvedené senzory, často jsou ale spolehlivější a levnější, a to především díky jednoduchosti principů, na nichž jsou založeny. Toho lze využít v méně náročných aplikacích, kde je důležitá vysoká spolehlivost a vysoká míra odolnosti vůči vnějším vlivům, zejména vůči teplotním výkyvům a kosmickému záření bez nutnosti nasazení dalších ochranných prostředků. Nízká přesnost je ale předurčuje spíše pro stanovení optimálních náklonů solárních panelů atd., než pro přesné stanovení polohy. Následují dva typy takových senzorů.

2.2.1 Analogový sluneční senzor

2.2.2 Binární sluneční senzor

Následující sluneční senzor je opět založen na jednoduchém, ale velmi spolehlivém principu, který má předpoklady k vysoké odolnosti vůči rušení. Jak je vidět na obr. 5, jedná se o senzor obsahující dvě masky a fotocitlivou část. Sluneční záření je nejprve redukováno první maskou na podlouhlý úzký pruh, který je následně filtrován druhou maskou. Ta obsahuje štěrbiny uspořádané tak, aby v každém místě, kam dopadá pruh záření, propustila toto záření vždy na jiné fotocitlivé prvky pod sebou. Tím již zde dochází ke kvantování a digitalizaci.
Obrázek 5: Princip binárního slunečního senzoru[^9]

2.3 Sluneční štěrbinové senzory s CMOS a CCD čipy

Tyto senzory využívají k určení polohy paprsku procházejícího štěrbinou čip vyrobený technologií Complementary Metal Oxide Semiconductor (CMOS) nebo Charge Coupled Device (CCD). Oproti předchozím senzorům, kde bylo k určení polohy ve dvou osách z principu potřeba dvou takových senzorů, zde postačuje jediný senzor. Také předpoklady pro přesnost jsou vyšší vzhledem k dnešním vysokým rozlišením snímacích čipů. Aby nedocházelo k přebuzení čipů, jsou senzory obvykle doplněny optickými filtry.

Následující text se nejprve zabývá představením CMOS a CCD čipů, jejich porovnáním, a následně přibližuje principy nejčastěji používaných provedení senzorů s těmito čipy. Ty jsou založeny vždy na stejném základním principu a liší se obvykle přesností, velikostí a dalšími parametry.
2.3.1 CCD obrazové snímače

Název CCD čip je zavádějící, správně by se mělo jednat o obrazový čip vyrobený technologií CCD, nicméně název CCD čip je již běžně používaným termínem. To samé platí pro čipy CMOS. Historicky starší čip CCD je složen z mnoha světlocitlivých buněk (obvykle fotodiody nebo fototranzistory), které při dopadu záření produkují elektrický náboj. Tyto náboje z jednotlivých řádků senzoru jsou postupně přesouvány pomocí příslušných obvodů na posuvný registr, kterým je čip vybaven a přes něj dále do zesilovače.

Princip funkce je na obr. 6. Vzhledem k tomu, že je zesilovač umístěn dále od snímačích prvků a je jen jeden pro všechny snímač prvky, vykazují čipy vyrobené technologií CCD nižší šum. Nicméně jejich výroba je nákladnější, dnes již také díky tomu, že technologie CCD není tak rozšířená, jako například dále zmínovaná technologie CMOS.

Obrázek 6: Princip CCD obrazového snímače

2.3.2 CMOS obrazové snímače

Novější čipy vyřáběné technologií CMOS vykazují sice převážně horší vlastnosti než čípy CCD, nicméně vzhledem k tomu, že jsou vyřáběny stejnov technologií, kterou je vyřáběna většina dnešních procesorů, je jejich výroba mnohem levnější. Principiální schéma je na obr. 7. Zásadní rozdíl oproti čipům CCD je ve zpracování informací z jednotlivých fotocitlivých snímačích prvků. Zde má každý snímač prvek své vlastní vyhodnocovací obvody jako jsou zesilovače nebo odvody potlačení šumu, viz obr. 7.

Výhodou tohoto řešení je možnost přístupovat přímo k určitému výřezu snímaného obrazu bez nutnosti nejprve načítat celý snímaný obraz, také celkově rychlejší transport nasnímaných dat z čipu, nevýhodou je především vyšší zatížení šumem (oproti CCD), a také menší aktivní plocha senzoru (plocha, kterou na čipu zaujímají samotné fotocitlivé
prvky, u čipu CMOS zabírají značnou část vyhodnocovací obvody, u méně kvalitních čipů může tvořit aktivní část pouze 30 % plochy čipu[5]).

2.3.3 Porovnání CMOS a CCD obrazových čipů

Z principů senzorů CCD a CMOS uvedených v předchozích kapitolách vyplývá následující tabulka 1, která porovnává některé vlastnosti těchto čipů.

<table>
<thead>
<tr>
<th>Vlastnost</th>
<th>CMOS</th>
<th>CCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>rozměry řešení</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>cena čipu</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>spotřeba energie</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>odolnost vůči šumu</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>rychlost snímání</td>
<td>vyšší</td>
<td>nižší</td>
</tr>
<tr>
<td>rozlišení</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>citlivost</td>
<td>nižší</td>
<td>vyšší</td>
</tr>
<tr>
<td>nativní možnost výřezu</td>
<td>ano</td>
<td>ne</td>
</tr>
</tbody>
</table>

Tabulka 1: Porovnání CMOS a CCD obrazových čipů

Díky širšímu nasazení technologie CMOS jsou čípy vyrobené touto technologií obvykle menší a levnější. Také jejich energetická spotřeba je několikanásobně nižší díky menším součástkám, proudům a tepelným ztrátám. Naopak vyšší odolnost vůči šumu, rozlišení a citlivost vykazují čípy CCD. Nevýhody CMOS čipů ale výrobci vhodnými hardwarovými, případně softwarovými řešeními postupně úspěšně potlačují. Nicméně ve většině
současných řešení slunečních senzorů jejich konstruktéři stále spoléhají na čipy CCD, což
dokazuje i nabídka renomovaných výrobců měřících kamer pro přesná měření (například
firma Moravské přístroje a.s., k datu vydání práce).

2.3.4 Jednoštěrbinový digitální sluneční senzor

Senzor snímá polohu dopadu úzkého svazku slunečního záření na CMOS nebo CCD obra-
zový čip. Tento úzký svazek je vytvořen maskou, kterou tvoří neprůhledný materiál s je-
diným úzkým otvorem tak, jak je vidět na obr. 8. Tento otvor je zakryt poloprůhledným
filtrem, aby nedocházelo k přebuzení čipu. Výstupem čipu je matice reprezentující inten-
situ dopadajícího záření na jednotlivé fotocitlivé prvky čipu. Z této matice je pak pomocí
vyhodnocovacích obvodů vybrána pozice nejvíce exponovaného prvku. Výstupem celého
senzoru je pak poloha světelného bodu dopadajícího na čip ve formátu \([x, y]\).

Příkladem takového senzoru může být senzor nazvaný Micro Digital Sun Sensor
\(\mu\text{DSS})[6], vyvinutý nizozemskou firmou TNO. Senzor využívá CMOS čip s rozlišením
512 x 512 px a čtvercový otvor v jeho masce má rozměry 10 x 10 px. Jeho vyhodnoco-
vací obvody poskytují nová výstupní data s frekvencí až 10 Hz. Celé zařízení má objem
pouze 4 cm\(^3\) a díky použitým speciálním materiálům vykazuje vysokou odolnost vůči
kosmickému záření a tepelným výkyvům, viz kapitola 2.7.

Obrázek 8: Princip jednoštěrbinového digitálního slunečního senzoru

Obrázek 9: Micro Digital Sun Sensor
2.3.5 Digitální sluneční senzor MEMS

Tento senzor je založen na podobném principu jako předchozí jednoštěrbinový senzor s tím rozdílem, že v masce senzoru je otvorů více. Také jeho rozměry jsou podstatně jiné. MEMS je zkratka z anglického Micro-Electronic-Mechanical-Systems. Ta napovídá, že senzor vyrobený touto technologií bude miniaturních rozměrů. Tak je tomu i v případě tohoto senzoru, jeho velikost nepřekračuje velikost jednoho centimtu čtverečního. Principiální schéma je na obr. 10.

![Schéma digitálního slunečního senzoru MEMS](image)

Obrázek 10: Princip MEMS digitálního slunečního senzoru

Výhodou této modifikace je především snížení chyby, dá se říci, že tento senzor provádí mnoho výpočtů paralelně, a celkový výsledek lze získat například průměrem ze všech výsledků. Tím se chyba snižuje. Navíc senzor s jedinou štěrbinou je náchylnější na zanesení něčistotami. Toto riziko samozřejmě hrozí i u senzoru s více štěrbinami, ale v případě velkého počtu štěrbin a patřičného ošetření při zpracování výsledků lze tento problém eliminovat. V porovnání s jednoštěrbinovým senzorem je tento senzor spolehlivější a má vyšší životnost bez údržby, ale menší zorné pole díky většímu počtu otvorů.

Senzorem tohoto typu je například MEMS sluneční senzor vyvinutý v Kalifornském technickém institutu. Čip se vejde na plochu 7 x 7 mm a váží 30 g. Maska, obsahující několik set otvorů, je od CCD čipu vzdálená pouhých 757 µm. Jeho přesnost je v řádech minut (0,016 stupně).
2.4 Senzory se solárními panely

Proud generovaný solárním panelem je přímo úměrný úhlu, pod kterým světlo na panel dopadá. Toho lze využít k určení směru, ze kterého světlo přichází. Při vhodném uspořádání solárních panelů lze dosáhnout použitelných výsledků. Tímto uspořádáním je obvykle tvar krychle. Tedy například celá družice má tvar krychle a její povrch tvoří solární panely, viz obr. 11.

Obrázek 11: Princip senzoru se solárními panely

2.5 Kamerové senzory

Jak již název napovídá, v tomto případě je senzorem digitální kamera. Přestože většina dnešních digitálních i analogových kamer používá CMOS nebo CCD čipy, pro zpracování informace se používá odlišných postupů. V předchozím případě je senzorem vyhodnocována pouze skutečnost, zda je prvek v matici fotocitlivých prvků osvícen či nikoliv, v tomto případě je zpracováván celý obraz oblohy. To přináší řadu výhod ale i nevýhod. Mezi hlavní výhody patří zejména použití standardní kamery pro dané podmínky, kterou lze případně využít i pro jiné aplikace. Další výhodou je možnost použít jako orientační bod jiný světelný bod než Slunce (platí především ve vesmíru). Nevýhodou může být vyšší výpočetní náročnost a tedy složitost vyhodnocovacích obvodů a jejich náchylnost k poruchám.
Snímací čipy obrazových senzorů nejsou koncipovány na snímání přímého slunečního záření, tedy při pohledu kamery do Slunce dochází k přebuzení fotocitlivých prvků a výsledný obraz je nepoužitelný. Proto je obvykle nutné před kameru umístit vhodný optický filtr, který zajistí potřebné korekce. Stupeň filtru je samozřejmě potřeba zvolit s ohledem na jas snímaného objektu. Další výhodou nasazení optického filtru při snímání Slunce je fakt, že je jeho použitím odstraněna většina méně jasných objektů, které jsou pro vyhodnocovací algoritmy velmi rušivé. Příklad obrazu bez použití optického filtru a s jeho použitím je na obr. 12. Na takto upravený a nasnímaný obraz je následně aplikován algoritmus pro nalezení středu slunce (nebo jiného orientačního bodu).

Obrázek 12: Obraz z kamery bez a s optickým filtrem

2.6 Vyhodnocovací obvody slunečních senzorů

Úkolem vyhodnocovacího obvodu, kterým je zařízení obvykle vybaveno, je z dat, která poskytuje samotný senzor, dopočítat požadované údaje, tedy v jednodušší případě vektor dopadajícího záření či úhly, pod kterými záření dopadá, ve složitějším případě i pozici senzoru. Úloha určení pozice vyžaduje implementaci pokročilejších algoritmů pro výpočet teoretické polohy zdroje záření, znalost aktuálního data a času atd.

Vzhledem k nutnosti provádění takových výpočtů se vyhodnocovací obvod slunečního senzoru obvykle neobejde bez mikroprocesoru a zároveň je takový mikroprocesor schopen zajistit veškeré potřebné funkce, tedy vyhodnocovacím obvodem je ve většině případů mikroprocesor s nutnými periferiemi, jako je paměť či napájecí obvydy. Mezi hlavní požadavky na takový obvod patří především spolehlivost a dostatečný výpočetní výkon (který závisí na použitím principu senzoru). Mikroprocesory od renomovaných výrobců dostatečnou spolehlivost zajišťují, tedy řešení spolehlivosti v konkrétní aplikaci přichází až při implementaci konkrétního vyhodnocovacího algoritmu.
2.7 Enviromentální podmínky v kosmickém prostoru

Znalost prostředí, kterému bude zařízení vystaveno, je klíčová pro jeho správné dlouhodobé fungování. To platí nejen na Zemi, ale i v kosmu, kde je tato znalost o to důležitější, vzhledem k omezeným možnostem údržby provozovaných zařízení.

2.7.1 Teplotní výkyvy

V kosmickém prostoru je nutné předpokládat vysoké teplotní výkyvy. Od teplot hluboko pod nulou bez působení slunečního záření, až po několik desítek stupních celsia při jeho působení, podobně jako v podmínkách naší planety. Obvykle je udáván rozsah od -70°C do 70°C\(^\text{[14]}\). Je obecně známo, že se změnou teploty se mění fyzikální parametry látek, a to v důsledku znamená změnu vodivosti součástek, citlivosti snímačů, nebo změnu rozměrů mechanických komponent a rychlé stárnutí některých materiálů, které jsou těmto vlivům vystaveny. Několikanásobné vysší teplotám je nutné ředit při transportu zařízení na oběžnou dráhu, kdy teploty vlivem tření v atmosféře rychle stoupají. To je záležitost především nosných raket a ochranných krytů, kterými je transportované zařízení chráněno.

Negativním důsledkům změny teplot na oběžné dráze lze předcházet různými způsoby. Je důležité zejména vhodná volba součástek a materiálů, dále pak správný návrh mechanických komponent s přihlédnutím k teplotní roztažnosti použitých materiálů. Používají se speciální materiály s nízkou teplotní roztažností a vysokou stálostí dalších parametrů, jako jsou odpor, kapacita atd. Vývoj těchto materiálů jde stále kupředu, nicméně již v současné době existují materiály, které splňují požadavky na dlouhodobý pobyt v kosmu. Jsou jimi různé slitiny kovů či polytetrafluorethen (teflon).

2.7.2 Kosmické záření a elektricky nabité částice

Kromě světla ve viditelném či ultrafalovém spektru, které způsobuje rychlé stárnutí některých materiálů, tvoří záření přicházející z kosmického prostoru z velké části protony a jádra helia. Pochází z různých zdrojů ve vesmíru, včetně Slunce. Na zemský povrch dopadají pouze 2 %\(^\text{[8]}\) kosmického záření, které míří k Zemi, zbytek je odražen jejím magnetickým polem. Tento ochranný účinek ale se vzdáleností od Země klesá a to se negativně projevuje již na oběžné dráze naší planety. Na nízké oběžné dráze (do 2000 km) je ještě tento vliv kosmického záření poměrně malý, na ostatních je již potřeba zajistit patřičnou ochranu. Toto kosmické záření, dopadající na exponovaná elektrická zařízení, může způsobit nejen odlišné chování elektrických obvodů (například může způsobit změnu

Vlivem slunečních erupcí jsou také do kosmického prostoru vyvrhována mračna nabitých částic, která jsou kromě výše uvedených problémů zdrojem vlastního elektromagnetického pole. Taková pole dosahují značných intenzit a tedy jimi indukované proudy nejsou zanedbatelné. Důsledná ochrana stíněním je proto nezbytnou součástí každého elektronického obvodu pracujícího v kosmu. Toto stínění navíc zachytí nabité částice s nižšími energiemi.

Pro ochranu obrazového senzoru se používá tenká skleněná folie, obohacená o cer (cerium, Ce). Tato folie je schopna do velké míry pohltit dopadající kosmické záření a tím chrání fotocitlivé prvky senzoru. Případné ohrožení větším počtem nabitých částic, oblekle v důsledku enormních slunečních erupcí, je řešeno detekcí těchto vlivů a vypnutím zařízení na oběžné dráze. Detekce probíhá nejčastěji sledováním povrchu Slunce z pozemských stanic nebo umístěním speciálních detektorů přímo na oběžnou dráhu.

2.7.3 Mikrometeorie a kosmický odpad

Pevná tělesa vyskytující se v kosmickém prostoru a na oběžné dráze Země lze rozdělit do dvou skupin. První je odpad tvořený pozůstatky lidské činnosti ve vesmíru (na oběžné dráze), kterými jsou například zbytky družic. Takových těles se pohybuje po oběžné dráze obrovské množství s různorodou velikostí, hmotností a rychlostí. Do druhé skupiny patří cizí tělesa přicházející z vesmíru, jako jsou meteory. V obou případech hrozí zařízení na
oběžné dráze naší planety srážka s těmito tělesy. Velká obíhající tělesa jsou sledována rady ze zemského povrchu a případné kolizí se přechází dočasnou změnou dráhy plavidla. Oproti případu zařízení na oběžné dráze jako celku (raketoplán, družice atd.), kdy se navíc používají různorodé technologicky vyspělé materiály, zajišťující dobrou ochranu v případě srážky, v případě slunečních senzorů a dalšího citlivého vybavení, které z principu musí být umístěno vně vesmírného plavidla, se spolehlá především na nízkou pravděpodobnost srážky (vzhledem k rozměrům).

Tělesa připlétající rychlostí z kosmu mohou zařízení na oběžné dráze zasáhnout pouze zhruba na jedné polovině celkového povrchu (při uvažování klasických tvarů), protože zbylá část je chráněna Zemí. Toho lze s výhodou využít. Na ohroženou část zařízení je instalován vrstvený ochranný štít, tzv. bumper shield. Jedná se o štít se speciální vrstvenou strukturou, která dokáže při nárazu tlak rozložit a postupně pohltit. Při každém nárazu sice dochází k poškození štítu, ale díky velkému počtu vrstev nedochází k průrazu a následnému poškození zařízení.

2.7.4 Effekt outgassing

3 Návrh řešení a realizace

Úkolem bylo nejprve zaznamenat pohyb Slunce po obloze pomocí navrženého testovacího slunečního senzoru. Následně na základě takto změřených dat vhodným způsobem určit orientaci a pozici, ze které byla tato data zaznamenána, a tím tedy pozici a orientaci senzoru. Navržené řešení se skládá z hardwarové a softwarové části. Softwarová část je realizována ve výpočetním prostředí MatLab a je popsána v následující kapitole 3.1. Hardwarová část se skládá z testovacího slunečního senzoru popsaného v kapitole 3.3 a počítače, který zajišťuje běh výpočetního prostředí. Tuto celou sestavu ilustruje obr. 13.

3.1 Návrh softwarového řešení

Výstupem aplikace je vypočtená zeměpisná pozice a orientace senzoru vůči zeměpisnému severu, tedy azimut. Tento výsledek je určen na základě znalosti změřené trajektorie Slunce na obloze, směrového vektoru gravitačního zrychlení, nadmořské výšky a předpokládané polohy Slunce. Údaje o směru gravitačního zrychlení, aktuálním čase a nadmořské výšce jsou předem známé hodnoty dodané externě z jiných systémů, například viz kap. 1.2. Nejprve je tedy nutné zaznamenat trajektorii Slunce v čase, touto problematikou se zabývá následující kapitola 3.1.1. Na základě takto změřené trajektorie je následně odhadnuta pozice, ze které bylo Slunce pozorováno, postupy takových výpočtů ukazuje kapitola 3.1.2. Celý postup ilustruje obr. 14.
3.1.1 Výpočet orientace senzoru vůči Slunci

Algoritmus na základě dat z kamery určí orientaci senzoru vůči zdroji záření. Tuto orientaci transformuje vzhledem k lokálnímu horizontu (vodorovná rovina vzhledem k Zemi) pro účely dalšího zpracování. Princip algoritmu je znázorněn na obr. 15. Obrazová data z kamery ve formě matice číselných hodnot, reprezentujících jednotlivé pixely, jsou zpracována algoritmem detekce pozice zdroje, který v obrazových datech identifikuje zdroj záření a určí jeho těžiště, v případě Slunce tedy střed. Na základě této informace je následně určena orientace senzoru vůči tomuto detekovanému zdroji jako relativní azimut a zenit. Následuje popis jednotlivých dílčích algoritmů.

Obrázek 15: Princip algoritmu pro výpočet orientace

Algoritmus detekce pozice

Úkolem tohoto algoritmu je určit polohu zdroje ve formátu \([x, y]\). Jeho schéma je na obr. 16.

Obrázek 16: Princip algoritmu detekce zdroje v obrazu

Nejprve je z RGB obrazu kamery vypočtena pouze jasová složka. Následně jsou blokem filtrace detekovány jasné objekty, a to pomocí prahování, které popisuje vztah

\[
f(x_{ij}) = \begin{cases}
1, & x_{ij} \geq p \\
0, & x_{ij} < p
\end{cases},
\]

(1)
kde \(p \) je prahová úroveň a \(x_{ij} \) je prvek matice pixelů. Na základě tohoto vztahu je tedy matice pixelů převedena na matici obsahující pouze hodnoty 0 a 1. Hodnoty 1 reprezentují světlé objekty. Poté jsou takto detekované jasné body klasifikovány do tříd podle toho, ke kterému objektu v obraze náleží. Blok klasifikace objektů tedy všechny nenulové prvky v matriči \(x_{ij} \) přečísňuje podle toho, jak spolu sousedí. V této nové matrici je následně blokem výběr objektu vyhledán největší objekt, objekty ostatních tříd jsou vynulovány. Posledním krokem je výpočet těžiště. Nejjednodušším způsobem, jak určit těžiště kulatého objektu, je určit souřadnici \(y \) prostředního pixelu při procházení po řádcích a následně souřadnici \(x \) prostředního pixelu při procházení po sloupcích. Postup ilustruje obr. 17.

Obrázek 17: Princip určení těžiště

\[
p = x_{i+R,j} \cdot x_{i-R,j} \cdot x_{i,j+R} \cdot x_{i,j-R},
\]

kde \(R \) je určeno podle vztahu

\[
R = (\sqrt{S/\pi}) \cdot \epsilon,
\]

kde \(S \) je obsah detekovaného objektu v pixelech a \(\epsilon \) je koeficient povolené odchylky, tedy například \(\epsilon = 0.95 \) platí zhruba pro normální rozdělení pravděpodobnosti s \(k = 2 \) (koeficient rozšíření). Pokud \(p = 1 \), pak je výpočet těžiště platný.
Algoritmus výpočtu orientace a transformace vektorů

Na základě detekované souřadnice středu snímaného zdroje záření ve tvaru \([x_s, y_s]\) je dopočítán vektor směrující ke zdroji záření jako

\[
V = A - B,
\]

(4)

kde bod \(B\) je detekovaný bod středu slunce doplněný o nulovou souřadnici \(z\), tedy \([x_s, y_s, 0]\) a bod \(A\) je souřadnice středu čočky, tedy \([0, 0, -z_c]\), kde \(z_c\) je ohnisková vzdálenost použitého objektivu v pixelech. Situaci popisuje obr. 18. Souřadnicový systém je volen dle platných ISO norem ISO 1151-1 a ISO 1151-2.

Obrázek 18: Princip určení vektoru dopadajícího záření

Z vektoru \(V\) vypočteného dle (4) snadno lze určit relativní azimut (azimut vzhledem k referenčnímu vektoru \(R\) senzoru) a zenit následujícím způsobem. Relativní azimut je určen jako

\[
a_R = \cos^{-1}\left(\frac{V' \cdot R}{||V'|| \cdot ||R||}\right),
\]

(5)
elevace jako
\[e = \sin^{-1}\left(\frac{V_3}{||V||}\right), \quad (6) \]
a zenit jako
\[z = 90 - e, \quad (7) \]
kde \(V' \) je vektor prvních dvou složek původního vektoru \(V \) a \(\mathbf{R} \) je referenční vektor \(\mathbf{R} = [-1, 0] \), definující "sever senzoru".

Výše uvedené vztahy platí za předpokladu, že se snímací senzor nachází ve vodorovné pozici, tedy směrový vektor gravitačního zrychlení má tvar \(\mathbf{G} = [0 0 1] \). To ale nelze předpokládat, proto je třeba před samotnými výpočty (5), (6) a (7) provést ještě transformaci vektorů. Hodnota vektoru \(\mathbf{G} \) je určena změřením náklonu senzoru v osách \(x \) a \(y \) buď ručně inklinometrem, nebo lépe vhodně umístěnými senzory náklonu. Případně můžou tyto hodnoty vycházet ze statického umístění senzoru. Vektor \(\mathbf{G} \) je tedy vyjádřen v jiné podobě, jako úhly \(\alpha \) a \(\beta \), reprezentující odklon od os \(x \) a \(z \). Situaci popisuje následující obrázek 19. Rovina vymezená osami \(x \) a \(y \) je zároveň rovinou senzoru. Díky znalosti těchto úhlů lze snadno provést transformaci původního změřeného a vypočteného vektoru pomocí vztahu
\[\mathbf{V}_N = \mathbf{V} \cdot \mathbf{R}_z \cdot \mathbf{R}_x, \quad (8) \]
kde \(\mathbf{R}_z \) je rotační matice podle osy \(z \) a \(\mathbf{R}_x \) rotační matice podle osy \(x \). Ty mají tvar
\[\mathbf{R}_z = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (9) \]
\[
R_x = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\beta) & -\sin(\beta) \\
0 & \sin(\beta) & \cos(\beta)
\end{pmatrix}.
\]

(10)

Výsledkem je nový vektor \(V_N \) již vztažený k rovině lokálního horizontu.

3.1.2 Výpočet pozice a orientace senzoru

Výpočet pozice a orientace senzoru je již komplikovanější a především časově náročnější úloha. Vstupem algoritmu jsou data změřená výše popsaným postupem. Každý změřený bod, respektive dvojice relativního azimut - zenit je doplněna o časový údaj, datum a čas, ve kterém byla změřena. Časová posloupnost takových trojic tvoří změřenou trajektorii.

![Obrázek 20: Princip algoritmu pro výpočet pozice a orientace senzoru](image)

Proložení křivkou

zajišťuje eliminaci výše popsaných nedostatků, ovšem za cenu chyby v řádu setin stupně (výsledek testování). V případě použití přesnějšího senzoru s vyšším rozlišením, navíc již pro účely měření v kosmickém prostoru, nikoliv pro testování na Zemi, je vhodné zajistit buď přesnější proložení, nebo data křivkou vůbec neprokládat. V tom případě je nutné vzniklé chyby detekovat a buď opravit, nebo chybá data nepoužívat k výpočtům.

Data jsou prokládána dvěma křivkami. Průběh azimutu v čase je proložen polynomiální křivkou stupně 1 s předpisem

\[p(t) = p_1 \cdot t + p_2, \]

(11)

kde \(t \) je čas v minutách a \(p_n \) jsou polynomiální koeficienty. Průběh zenitu, který může nabývat složitějších tvarů, je proložen polynomiální křivkou stupně 2 ve tvaru

\[p(t) = p_1 \cdot t^2 + p_2 \cdot t + p_3, \]

(12)

kde \(t \) je opět čas v minutách a \(p_n \) jsou opět polynomiální koeficienty.

Samotné proložení zajišťuje v MatLabu funkce `polyfit`. Kvůli snížení výpočetních nároků následujících algoritmů je výstupem pouze několik bodů ležících na křive, nikoliv celá křivka. Dosavadní testování ukazuje, že tři body ležící v 10 %, 50 % a 90 % celkové délky křivky jsou dostatečně a zároveň příliš nezatěžují následný výpočetní algoritmus.

Obrázek 21: Příklad proložení naměřených dat křivkou
Teoretická data - Solar Position Algorithm

Odhad pozice při znalosti orientace

Funkci popisující odchylku mezi změřenou pozici Slunce a pozici vypočtenou na základě algoritmu SPA lze vyjádřit jako

\[\text{diff}(X,Y) = |A_Z - A_T| + |Z_Z - Z_T|, \]

kde \(A_Z \) je změřený azimut, \(A_T \) teoretický azimut, \(Z_Z \) změřený zenit a \(Z_T \) teoretický zenit. Pokud je tato odchylka vypočtena pro každý bod Zemského povrchu, výsledkem je průběh odchylky na obr. 22.

![Obrázek 22: Mapování odchylky měřené a teoretické pozice Slunce pro celý Zemský povrch](image.png)
Testovaným bodem je pozice 49.3052028 N, 14.1633511 E v jižních Čechách s nadmořskou výškou 378 m, to ale není podstatné vzhledem k symetrii Země, kterou algoritmus SPA předpokládá. Při omezení rozsahu zemského povrchu na sektor 20° x 20° je výsledkem mnohem jednodušší průběh na obr. 23.

Obrázek 23: Mapování odchylky měřené a teoretické pozice Slunce pro sektor 20° x 20°

Tento test lze provést s libovolnou přesností (s omezeními danými použitým výpočetním softwarem a hardwarem) a pro libovolný bod, vždy je výsledkem podobný graf s jednou klíčovou vlastností. Funkce popisující takto vykreslený graf v omezeném rozsahu 20° x 20° má jediné lokální minimum a je klesající nebo rostoucí. To je možné ověřit i jednoduchou úvahou, kdy lze dospět k závěru, že nad Zemským povrchem nelze najít takovou posloupnost zkoumaných bodů se stejnou nadmořskou výškou, aby hodnota odchylek spočítaných výše uvedeným způsobem byla konstantní.

Nejprve je tedy zajištěno nalezení sektoru, ve kterém se nachází globální minimum, které je hledaným bodem. Z obr. 22 je vidět, že pokud je povrch země rozdělen na dostatečný počet sektorů, cca 40, lze nalézt sektor, ve kterém se nachází hledané globální minimum. Ve středu každého sektoru je tedy vypočtena hodnota odchylky dle (13). Sektor s nejmenší odchylkou je označen jako cílový sektor.

Výše popsaný postup lze reckurzivně opět aplikovat na nalezený cílový sektor, dokud není dosaženo požadované přesnosti. To je ale výpočetně náročné. Vzhledem k vlastnostem funkce popisující odchylku v omezeném rozsahu lze s úspěchem použít obdobu tzv. gradientního algoritmu. Nejprve je zvolen počáteční bod, například ve středu pro-
hledávaného sektoru. Pro všechny body v jeho okolí vzdálené o aktuální hodnotu kroku (viz dále) i pro bod, jehož okolí je prohledáváno, je vypočtena hodnota odchylky opět dle (13). Pokud algoritmus v okolí prohledávaného bodu nenalezne bod, který by měl nižší odchylku než je odchylka bodu, ve kterém se nachází, označí aktuální bod jako lokální minimum a ukončí se. Pokud nalezne bod s nižší odchylkou, přesune se do něj a opakuje stejné postup, dokud minimum nenalezne. Co se týče výše zmínovaného kroku, ten není vhodný volit jako konstantní, mohlo by dojít k minutní správnému bodu, pokud by byl krok moc velký. Naopak, při příliš nízkém kroku by byl algoritmus příliš pomalý. Je tedy vhodné volit proměnný krok, a to na základě odchylky v aktuálním bodě. Pro správné fungování algoritmu je nutné zajistit, aby vypočtený následující krok byl vždy menší, než skutečná vzdálenost k hledanému minimu. To je ale obtížné zajistit vzhledem ke způsobu výpočtu odchylky. Do velmi vysoké (i když stále nedostatečné) přesnosti funguje výpočet nového kroku jako polovinu aktuální odchylky. Po dosažení bodu, kdy tento vztah přestává fungovat (nelze najít okolní body s nižší odchylkou, ale nebylo dosaženo požadované přesnosti) je nový krok vypočten jako polovina předchozího. Tento postup se opakuje, dokud není dosaženo dostatečné přesnosti. I když není tento postup optimální, ukazuje se jako dostatečně rychlý a přesný. Zjednodušený vývojový diagram takového algoritmu je na obr. 24 a příklad ilustrující průběh jeho vyhledávání na obr. 25.

Obrázek 24: Zjednodušený vývojový diagram gradientního algoritmu
Obrázek 25: Příklad vyhledávání gradientním algoritmem

Odhad orientace
Algoritmus pro odhad pozice vychází ze znalosti orientace senzoru vůči Zemi. Ta je zatím neznámá a je třeba ji určit. To zajišťuje právě algoritmus pro odhad orientace. Využívá znalostí změřených poloh Slunce na obloze v čase, které jsou výstupem bloku proložení křivkou. Algoritmus prohledává všechny možné orientace senzoru, tedy interval orientace \((0^\circ, 360^\circ) \). Tuto prohledávanou množinu rozdělí do sektorů o stejném rozsahu. Pro každý sektor (resp. hodnotu orientace v jeho středu) a každý ze změrených bodů na vstupu je vypočtena pomocí algoritmu pro odhad pozice zeměpisná poloha. Sektor, ve kterém mají pozice vypočtené na základě všech bodů nejmenší směrodatnou odchylku, respektive součet směrodatnéch odchylk zeměpisné šířky a zeměpisné délky, je opět rozdělen na sektory a rekurzivně opět prohledán stejným postupem. Rekurze se opakuje, dokud není dosaženo požadované přesnosti. Tedy matematicky je nalezeno minimum funkce

\[
\text{dif}(\text{LO}_n, \text{LA}_n) = \sigma(\text{LO}_n) + \sigma(\text{LA}_n),
\]

kde \(\text{LO}_n \) a \(\text{LA}_n \) jsou vektory obsahující vypočtené zeměpisné délky a šířky pro daný sektor \(n \).
3.2 Realizace v MatLabu

3.2.1 Stručný popis základních funkcí

`results = Measure(runTime, g, utc)` vrátí po uplynutí časového intervalu `runTime` strukturu obsahující naměřené polohy Slunce na obloze a polohy na stínitku snímače `results` v tomto časovém úseku. Vyžaduje znalost vektoru směřujícího do středu země vůči osám snímače `g` a časového pásma `utc`, ve kterém je informace o čase (čas počítače).

`points = processData(data, m, n, g, fl)` vrátí tři body křivky, kterou byla proložena naměřená a transformovaná `data`. Údaje `m` a `n` jsou rozměry snímacího senzoru v pixelech, `g` je vektor náklonu senzoru a `fl` je ohnisková vzdálenost snímací kamery.

`oap = determineOaP(data, sector, altitude, ex)` odhadne pozici a orientaci snímacího senzoru `oap` (`oap.position, oap.orientation`) na základě několika údajů o poloze Slunce na obloze v čase. Vstupní `data` jsou ve tvaru `data(n).position` a `data(n).time`. Je prohledáván `sector`, vymezující prohledávanou oblast. Hledání probíhá v nadmořské výšce `altitude`. Probíhá s přesností `ex` rekurzivně. Pokud je `ex = 0`, pak probíhá bez rekurze. Rozsah `ex` je 0 - 1, přičemž čím nižší číslo, tím vyšší přesnost. Pro použití s testovacím senzorem postačuje hodnota 0,01.
3.3 Návrh a realizace hardwarového řešení

Pro základní testování slouží webkamera s rozlišením 352 x 288 pixelů. Její původně proměnná ohnisková vzdálenost byla zafixována na velikosti 660 pixelů (viz dále). Na objektiv kamery je přilepěna dvojice optických filtrů - svářečských skel o tloušťce 2,5 mm a stupni ochrany 10. Celá tato sestava je umístěna do čtvercové konzole umožňující libovolný sklon senzoru. Schématický model zařízení je obr. 26 a fotografie na obr. 27. Několik dalších fotografií z průběhu konstrukce a měření je v příloze 1.

Obrázek 26: Schématický model testovacího zařízení
Vzhledem k provedení vykazuje toto testovací zařízení následující vlastnosti:

1. Ohnisková vzdálenost 660 pixelů byla stanovena měřením, navíc s dále uvedenými vlastnostmi senzoru, tedy její hodnota je jen přibližná.

2. Náklon senzoru je měřen na povrchu optického filtru, ke kterému je přilepen objektiv. Chyba vzniklá tímto lepením byla odhadnuta na 0,1 stupně.

3. Náklon byl měřen inklinometrem s přesností 0,5 stupně.

Z výše uvedených vlastností, i když v některých případech za daných podmínek pouze odhadovaných, lze s jistotou udělat závěr, že takto zkonstruované měřicí zařízení může sloužit pouze pro prvotní testování. Očekávaná přesnost je v okruhu 100 km od místa měření.
3.4 Zhodnocení navržených postupů a zařízení

Co se týče algoritmu pro zpracování dat ze senzoru, funguje dostatečně rychle, na počítači s frekvencí procesoru 2,8 GHz dokáže vzorkovat obraz z kamery s frekvencí až 30 Hz, což je pro danou aplikaci více než dostatečné. problém nastává ve chvíli, kdy se detekovaný bod, tedy Slunce, blíží ke svému zenitu. V tuto chvíli totiž neúměrně vzrůstá vliv chyby určení azimuthu způsobené malým rozlišením snímací kamery. Tato chyba je řešena proložením dat křivkou, nicméně jen do jisté přesnosti. V případě použití přesnějšího senzoru by již vliv této chyby nebyl nezanedbatelný a současný stav vyhodnocovacích algoritmů by byl nevyhovující. Zde je jednoznačně prostor pro další modifikaci některých postupů.

Výpočet polohy a orientace funguje spolehlivě. Přesnost algoritmu je závislá pouze na použitých výpočetních prostředí, na hloubce rekurese a samozřejmě na kvalitě zaznamenaných dat. Jeho výpočetní a časová náročnost závisí také na hloubce rekurese, viz dále. Až do finální podoby prošel algoritmus několika změnami, jejichž cílem bylo především jeho zrychlení a zjednodušení. Nejradikálnější změnu, co se týče výpočetní náročnosti a potřebného času, přineslo nasazení gradientního algoritmu při určování pozice, důsledkem bylo téměř desetinásobné zrychlení.

Původní snaha převést zmíňovaný algoritmus SPA na algoritmus zajišťující opačnou funkci, tedy místo výpočtu polohy Slunce ze zeměpisné polohy výpočet zeměpisné polohy z polohy Slunce, ztroskotala především na nedostatku potřebné dokumentace. Bylo tedy nutné nasadit pomocné algoritmy, které za pomoci algoritmu SPA tento údaj získají oklikou. Otestováno jich bylo několik, ale nejúspěšnější byl právě výše zmíněný gradientní algoritmus.

Při rekursivním prohledávání s nejmenším krokom testované orientace 0,01° a nejmenším prohledávaným sektorem o velikosti zhruba 1 m² trvá celé zpracování pro tři body (které jsou výstupem proložení křivkou a jejichž počet se zatím ukazuje jako dostatečný) na počítači s frekvencí procesoru 2,8 GHz zhruba 110 sekund. V porovnání s časem, potřebným pro změření trajektorie, je tato následná doba výpočtu téměř zanedbatelná. Během této doby se vytížení procesoru pohybuje téměř neustále na maximu. Tedy velmi zhruba lze spočítat, že bylo potřeba zhruba 300 miliard operací. Z tohoto údaje lze dopočítat v případě potřeby orientační dobu zpracování pro daný procesor. Paměťová náročnost algoritmů je minimální.
4 Analýza a testování

4.1 Testovací měření

<table>
<thead>
<tr>
<th>datum</th>
<th>délka [h:m]</th>
<th>změřená poz.</th>
<th>chyba poz. [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. 4. 2013</td>
<td>1:51</td>
<td>49.649950 N 13.774932 E</td>
<td>47,36</td>
</tr>
<tr>
<td>17. 4. 2013</td>
<td>1:46</td>
<td>49.389523 N 14.200241 E</td>
<td>10,46</td>
</tr>
<tr>
<td>18. 4. 2013</td>
<td>1:59</td>
<td>49.320705 N 14.215212 E</td>
<td>4,20</td>
</tr>
<tr>
<td>18. 4. 2013</td>
<td>1:38</td>
<td>49.317064 N 13.837532 E</td>
<td>23,72</td>
</tr>
<tr>
<td>8. 5. 2013</td>
<td>1:38</td>
<td>49.473089 N 14.239815 E</td>
<td>21,62</td>
</tr>
</tbody>
</table>

Tabulka 2: Výsledky provedených měření

Důležitým parametrem senzoru je čas potřebný k získání spolehlivého údaje o poloze, tedy, jak dlouho je třeba snímat polohu Slunce, aby byl výsledek v mezích předpokládané odchylky. Pro teoretická data je tato doba rovna několika málo minutám, ale pro reálná data je tomu již jinak. Výsledkem průběžného zpracovávání naměřených dat a počítání
Obrázek 28: Změřené průběhy relativního azimutu a zenitu

odchylky vypočtené a skutečné pozice je průběh na obr. 29. V grafu jsou vyzačeny dva časy. Čas 77 minut je čas, za který bylo dosaženo konstantního výsledku (při zanedbání drobných odchylek vlivem zaokrouhlování atd.), čas 47 minut je čas, za který došlo k překročení hranice předpokládané odchylky pro danou konfiguraci, viz dále.

Obrázek 29: Výsledky průběžného vyhodnocování polohy během měření
4.2 Přesnost získaných údajů

Znalost přesnosti získaného výsledku je klíčovým parametrem každého měření. Určení přesnosti získaných výsledků je v tomto případě rozděleno do několika částí vzhledem k různým způsobům realizace jednotlivých dílčích úloh a také diametrálně odlišným předpokladům pro přesné výsledky v těchto dílčích úlohách. Vzhledem ke složitosti některých použitých vztahů a postupů je aplikace klasických metod určení nejistoty měření nerealná. Na konkrétní výsledky lze samozřejmě alespoň v případě měření relativního azimutu a zenitu aplikovat klasický postup vycházející z parciálních derivací podle jednotlivých vstupních proměnných, ale v případě určení celkové přesnosti a spolehlivosti výsledku by bylo třeba tento postup provést pro každý reálně změřitelný bod, což by bylo obtížné. Proto následující určení přesnosti výpočtů vychází z několika provedených testů, kdy byla cyklicky, v rozumném rozsahu a s dostatečným rozlišením testovaným algoritům podsvětová data zatížená chybou. Následně byla sledována odezva jejich výstupních hodnot na tato data. Následuje popis těchto testů a jejich výsledky.

4.2.1 Přesnost změřeného relativního azimutu a zenitu

Vstupními veličinami algoritmu popsaného v podkapitole 3.1.2 jsou obraz z kamery, nadmořská výška a informace o naklonění senzoru v osách x a y. Nepřesnost měření může být způsobena následujícími faktory:

1. Změnou pozice senzoru a dalšími dlouhodobými vnějšími vlivy.
2. Otřesy a dalšími krátkodobými vnějšími vlivy.
3. Chybným vyhodnocením těžiště snímaného objektu vlivem zakrytí výhledu senzoru či jeho nedostatečným rozlišením.
4. Chybným údajem o nadmořské výšce.
5. Chybnými údaji o náklonu senzoru.

Předpokladem je stabilní pozice senzoru, tedy první bod lze zanedbat. Druhý a třetí je řešen v případě testovacího senzoru proložením naměřených dat přímou, viz kapitola 3.1.2, ve které je také následně řešení pro případ použití mnohem přesnějšího senzoru. Tedy druhý a třetí bod podle druhu použitého senzoru lze pomínout, nebo nahradit chybou vzniklou prokládáním. Vzhledem ke vzdálenosti Země od Slunce je vliv nadmořské výšky na změřený údaj hluboko pod hranicí přesnosti současných nejpřesnějších senzorů, a to i za předpokladu takové chyby v řádech kilometrů. Zbývá tedy určit vliv
chybného údaje o náklonu senzoru na výsledný vypočtený relativní azimut a zenit. Dalším předpokladem je, že chyba náklonu je konstantní a má stejný vliv na všechny změřené hodnoty. Následující graf na obr. 30 je výsledkem testu vlivu chybně určeného náklonu v jednotlivých osách na vypočtený azimut a zenit. Úhel α je úhel náklonu podle osy x a úhel β podle osy y. Nejmenší prohledávané čtverce měly stranu 1,5 metru (v nejhlubším stupni recenze).

4.2.2 Přesnost změřené zeměpisné polohy a orientace

Vstupními veličinami algoritmu pro finální výpočet polohy a orientace jsou již jen změřené body na trajektorii Slunce, tedy relativní azimut a zenit. Podobně jako v předchozím případě, následující graf na obr. 31 je výsledkem testu chybně změřených hodnot azimutu a zenitu na výslednou vypočtenou polohu, respektive na vzdálenost mezi vypočtenou a skutečnou polohou. Nejmenší krok prohledávání, co se týče rotace, byl 0,01°. Nejmenší prohledávané čtverce měly opět stranu 1,5 metru. Ze získaného grafu je vidět, že přesnost určené pozice ovlivňuje pouze chyba azimutu. Chybná hodnota zenitu, pokud je tato chyba konstantní pro všechny změřené body, viz předpoklady a závěry v předchozí kapitole, výsledek neovlivní. Pokud by chyba nebyla konstantní, byl by graf podobný jehlanu s prakticky totožnými hodnotami.
Obrázek 31: Výsledky testu vlivu chyby změřených dat na výslednou pozici

4.2.3 Celková přesnost

Celkové meze, ve kterých se pohybují získané údaje, lze určit na základě výše získaných grafů. Jejich rozlišení nedovoluje přímý odečet, proto následuje výčet důležitých hodnot.

- V grafu na obr. 30 je ve čtverci o rozsahu vstupní chyby 0,6° x 0,6° maximální hodnota chyby azimutu 0,685° a chyby zenitu 0,335°.
- Ve čtverci o rozsahu vstupní chyby 0,1° x 0,1° je maximální hodnota chyby azimutu 0,138° a chyby zenitu 0,069°.
- V grafu na obr. 31 je ve čtverci o rozsahu vstupní chyby 0,685° maximální hodnota chyby v pozici 72,709 km.
- Ve čtverci o rozsahu 0,138° je maximální hodnota chyby v pozici 14,958 km.
- Ve čtverci o rozsahu 0,016° je maximální hodnota chyby v pozici 0,978 km.

Dosazením výsledků (odečtením z grafu) testu měření relativního azimutu a zenitu do změřených hodnot testu určení orientace a polohy lze získat celkový přehled o dosažitelných výsledcích. Při zanedbání chyby vzniklé prokládáním křivkou, která je v řádu setin stupně (výsledek testování), je při použití testovacího zařízení a inklinometru s přesností 0,5°
vypočtená pozice s maximální odchylkou 73 km, viz odečtené údaje výše. V případě uvažování přesnějšího určení náklonů, například inklinometrem s přesností 0,1°, lze dosáhnout vypočtené pozice s maximální odchylkou 16 km. Zde již chybu proložení křivkou nelze zanedbat, proto je výsledná chyba stanovena jako odmocnina součtu kvadrátů chyb získané z příslušných grafů a chyby způsobené proložením křivkou. Při uvažování použití současných (k datu vydání práce) nejpřesnějších slunečních senzorů, měřících pozici Slunce s přesností na jednotky úhlových minut (0,016°), lze dosáhnout maximální odchylky pouze 1 km. Přehled získaných výsledků je v tabulce 3. Údaj o chybě ve výpočtu orientace vychází z faktu, že maximální odchylka azimutu nebo zenitu na vzdálenosti 1 km je 0,023° (při pohybu kolmo na směr vektoru dopadajícího zařízení, jinak je vždy menší, údaj vychází z testování).

<table>
<thead>
<tr>
<th>použitá konfigurace</th>
<th>max. odchylka poz.</th>
<th>max. odchylka or.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[km] (zaokr.)</td>
<td>[°] (zaokr.)</td>
</tr>
<tr>
<td>testovací zařízení a inklinometr ±0,5°</td>
<td>73</td>
<td>1,75</td>
</tr>
<tr>
<td>testovací zařízení a inklinometr ±0,1°</td>
<td>16</td>
<td>0,35</td>
</tr>
<tr>
<td>nejpřesnější dostupné senzory</td>
<td>1</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Tabulka 3: Porovnání dosažitelných přesností

Pro test s teoretickými daty je výstupem přesná hodnota až do desetinného místa dle volby parametru rekurze ex. Je tedy zřejmé, že samotný algoritmus má rezervy, a pro přesnost je klíčová realizace samotného senzoru.

Je vhodné otestovat, zda po odstranění chyby vzniklé špatným určením náklonu bude výsledek odpovídat výše uvedeným výpočtům. Aplikaci rotačních matic dle (9) a (10) uvedených v kapitole 3.1.1 na změřené vektory dopadajícího záření lze libovolně upravovat již získaná data. Po aplikaci těchto matic tak, aby maximální odchylka mezi teoretickým a změřeným průběhem rel. azimutu i zenitu byla 0,1°, a následněm výpočtu polohy, je vzdálenost mezi skutečnou a změřenou pozicí 14,9 km. Tím je výsledek předchozích výpočtů ověřen. Při aplikaci rotačních matic tak, aby maximální odchylka byla 0,016°, a následněm výpočtu polohy, je vzdálenost mezi skutečnou a vypočtenou polohou 1,4 km. Překročení předpokládané hodnoty o 400 m je pravděpodobně způsobeno nízkým rozlišením senzoru a proložením křivkou.
4.3 Zhodnocení dosažených výsledků

Měření ověřila praktickou funkčnost testovacího zařízení i výpočetních algoritmů. Testovací zařízení dosahuje lepších výsledků, než byl původní předpoklad. Z testu, který ilustruje obr. 29, plyne, že pro určení polohy s dostatečnou přesností (limitovanou parametry zařízení) je třeba Slunce snímat zhruba 45 minut, nicméně k ustálení vypočtených hodnot dojde zhruba po 80 minutách. Simulace prováděné na výpočetních algoritmech za účelem zjištění jejich přesnosti ukázaly, že algoritmy jsou dostatečně přesné pro použití se současnými nejpřesnějšími slunečními senzory, měřícími s přesností v řádech jednotek úhlových minut, a že výsledek je limitován především přesností použitých senzorů a inklinometrů, viz tabulka 3. V sestavě s testovacím zařízením lze dosáhnout přesnosti ±73 km a ±1,75°, v případě použití nejpřesnějších slunečních senzorů na trhu lze dosáhnout ±1 km a ±0,02°. Zásadní vliv na celkovou přesnost má určení náklonu senzoru, což bylo i prakticky ověřeno, viz konec předchozí kapitoly.
5 Závěr

Práce byla jednoznačně zajímavá a obohacující, i když často komplikovaná a náročná na představivost. Letošní rok 2013 zatím pozorovatelům Slunce přišel nepřeje, což se promítilo především do počtu testovacích měření. Úkolem bylo navrhnout algoritmy pro vyhodnocení pozice a orientace na základě měření trajektorie Slunce, dále pak tyto algoritmy vyzkoušet v simulacích a na reálných datech získávaných zkonstruovaným testovacím senzorem. Navržené vyhodnocovací algoritmy pro výpočet pozice z naměřené trajektorie jsou funkční, dostatečně přesné a dostatečně rychlé pro použití v kombinaci se současnými nejpřesnějšími slunečními senzory. Jsou založeny na principech gradientního algoritmu a rekurence. Přesnost s teoretickými daty je v jednotkách metrů, co se týče určení zeměpisné pozice, až v řádech úhlových sekund, co se týče orientace. V kombinaci s reálným senzorem, dosahuje přesnosti v řádech jednotek úhlových minut, je přesnost algoritmu mnohem nižší, okolo jednoho kilometru a dvou setin stupně, ale to je způsobeno přesností slunečního senzoru. Výpočetní náročnost se pohybuje okolo 300 miliard operací potřebných k výpočtu pozice z naměřených dat, což na osobním počítači z frekvence procesoru 2,8 GHz odpovídá času 110 sekund. To je v porovnání s časem potřebným ke změření dat (zhruba 45 minut) zanedbatelný časový interval. Algoritmus pro vyhodnocování dat z kamery vzorkuje dostatečně rychle, při použití procesoru opět s frekvencí 2,8 GHz dosahuje vzorkovací frekvence až 30 Hz. Testovací senzor byl zkonstruován a funguje. Přestože zdálo se nedosahovat přesnosti jako současné senzory dostupné na trhu, splnil požadavky na něj klade před něj senzor, tedy poskytl potřebný prostor pro testování algoritmů a ověřil jejich funkčnost v reálném nasazení. Také díky němu byla odzkoušena různá filtrovací skla a nepřeberné množství lepidel při pokusech o spojení skla a plastu. Co se týče dalšího vývoje, bude třeba rozhodnout, zda pro finální řešení použít některý ze slunečních senzorů dostupných na trhu, či navrhnout a zkonstruovat vlastní. Dále bude třeba pro takový senzor navrhovat a zrealizovat vyhodnocovací obvod s mikroprocesorem a zajistit migraci kódu z vývojového prostředí v MatLabu do jazyka vhodného pro daný mikroprocesor, tedy pravděpodobně do jazyka C. Samozřejmě pak bude testování a optimalizace kódu na dané platformě.
Reference

Příloha 1 - Několik fotografíí

Vlevo nahoře: objektiv připevněný k filtru, vpravo nahoře: nosná konzole,
prostřední řada: hotový testovací senzor, dolní řada: senzor při měření.

Obrázek 32: Několik fotografií senzoru
Příloha 2 - Snímek měřicí aplikace v MatLabu
Měřicí aplikace spuštěná zavoláním funkce Measure() průběžně zobrazuje aktuální data z kamery, zaznamenanou trasu a zaznamenané průběhy relativního azimutu a zenitu. Změřená data náleží k měření dne 8. 5. 2013. Obraz z kamery má automaticky pozměněné rozměry tak, aby se vešel na obrazovku, což je patrné i z tvaru Slunce na snímku.

Obrázek 33: Snímek měřicí aplikace v MatLabu