
Diploma thesis

Feedback control for planar parallel

magnetic manipulation

Aram Simonian

Czech Technical University in Prague

Supervisor:
Ing. Jiří Zemánek

Faculty of Electrical Engineering
Department of Control Engineering
Czech Technical University in Prague

May 2014

Abstract

This thesis deals with self-learning feedback control of a platform for planar non-
contact magnetic manipulation. First, the work briefly describes the instrumentation
of the experimental setup used for evaluation of suggested control methods. Second,
it involves a computer vision part for object detection that is used for image-based
feedback control. The main body of the work resides in study of different adaptive
and learning methods that allow either to develop and enhance an existing controller
or to find a suitable control strategy from scratch in a trial-and-error manner. Finally,
the suggested methods are implemented in MATLAB & Simulink and tested on the
real magnetic manipulator using the PC platform and Speedgoat real-time rapid
prototyping platform.

Abstrakt

Tato diplomová práce se zabývá zpětnovazebním učícím se řízením platformy pro
bezkontaktní magnetickou manipulaci. Řešenou problematiku lze rozdělit do dvou
částí. První část spočívá v návrhu systému počítačového vidění pro detekci polohy
manipulovaných objektů v obraze z kamery snímající povrch platformy. Detekovaná
poloha slouží pro uzavření obrazové zpětné vazby. Druhá část práce prozkoumává
možnosti učících se adaptivních metod, které umožňují buď vylepšovat existující
řízení, nebo nalézt vhodnou řídicí strategii bez předchozí znalosti řízeného systému.
Navržené metody jsou implementovány v prostředí MATLAB & Simulink a otestovány
na reálném modelu ve spojení s platformou PC i s real-time platformou Speedgoat.

Acknowledgement

Foremost, I would like to thank to Ing. Jiří Zemánek for his leadership, improving
ideas and valuable advice. Many thanks go also to Subramanya Nageshrao and Prof.
Dr. Robert Babuška from TU Delft for helping me to get a better insight in rein-
forcement learning and to Dr. Zdeněk Hurák and Kristian Hengster-Movric, Ph.D.
for interesting and inspirative discussions. I would also like to express great gratitude
to my family for their support, patience and calm study environment they provided.

Contents

1. Introduction 1
1.1. Outline . 1
1.2. Motivation and scope . 1

2. Magnetic platform description 3
2.1. Magman mathematical model . 3

2.1.1. Feedback linearization . 5
2.2. Instrumentation . 6

2.2.1. Speedgoat rapid prototyping platform 6
2.2.2. Camera . 7
2.2.3. Ball position measurement . 8

2.3. Speedgoat–Magman interface . 9

3. Computer vision 10
3.1. Problem setting . 10

3.1.1. Notation for computer vision 11
3.2. Background subtraction . 11

3.2.1. Initialization . 12
3.2.2. Detection . 12

3.3. Meanshift . 14
3.3.1. Initialization . 16
3.3.2. Detection . 17
3.3.3. RGB vs. HSV color space . 18

3.4. Linear SVM pixel classification . 21
3.4.1. Detection . 23

3.5. HSV feature thresholding . 23
3.5.1. HSV thresholding in the RGB color space 24

3.6. Comparison of detection methods . 25
3.7. Camera calibration . 28
3.8. Simulink implementation of ball detection 29
3.9. Conclusions . 30

4. Reinforcement learning 31
4.1. Basic terms . 31
4.2. Markov Decision Process . 32
4.3. Taxonomy . 33
4.4. Generalized Policy Iteration . 34
4.5. Temporal difference . 36
4.6. Exploration . 37
4.7. Function approximation . 38

4.7.1. Linear Basis Function Approximation 39

xi

4.8. Online IRL control . 40
4.8.1. Integral reinforcement . 41
4.8.2. Linear system case . 41

4.9. Online LSPI bang-off-bang control . 43
4.9.1. Incremental parameter vector estimation 44
4.9.2. Policy updates . 45

4.10. Online EBAC control . 46
4.10.1. Port-Hamiltonian control paradigm 46
4.10.2. Actor-critic for energy balancing control 47

4.11. Conclusions . 49

5. Auto-identification 51
5.1. Suggested approach . 52
5.2. Open-loop acceleration profile identification 53
5.3. Control with identified acceleration profile 55
5.4. Closed-loop acceleration profile identification 55
5.5. Conclusions . 56

6. Simulations 57
6.1. Online IRL . 57

6.1.1. Noise-free system . 58
6.1.2. Trial learning . 60

6.2. Online LSPI bang-off-bang . 62
6.2.1. Symmetry exploitation . 63

6.3. Online EBAC . 65
6.3.1. Tuning of the learning parameters 67

6.4. Auto-identification . 68
6.5. Conclusions . 70

7. Experiments 71
7.1. Online IRL value iteration . 71
7.2. Online LSPI . 73
7.3. Online EBAC . 75
7.4. Auto-identification . 75
7.5. Conclusions . 77

8. Conclusion 78
8.1. Future work . 79

Appendices

A. Basler acA2000-340kc with BitFlow NEON-CLB 80
A.1. Camera settings . 80
A.2. Camera configuration file . 80

xii

B. Speedgoat Performance Real-Time Platform 81
B.1. Target machine settings . 81
B.2. Camera Link support . 81
B.3. Data logging & file transfers . 82

C. Contents of the attached CD 83

Bibliography 84

xiii

1. Introduction

Adaptive and learning control methods are becoming more and more popular these
days, because of the need to accomplish more complex control tasks and reach higher
efficiency of the resulting control process. They allow us not only to react adequately
to the changes of parameters of the controlled system in real-time or enhance an
existing control, but also to solve difficult control problems that we would not be
able to solve using traditional control design methods at all ([1], [46], [27]). Modern
control systems must be able to extract and exploit the experience from the control
process on-the-go, typically to behave optimally with respect to given criteria. These
criteria can vary quite a lot, from the best possible tracking of reference signal, to
the minimum-energy control to time-optimal control and others. In this thesis we
attempt to apply adaptive and learning control methods to a magnetic platform for
planar manipulation shown in Figure 2.1a, which is designed to manipulate one or
several steel balls on its surface.

1.1. Outline

The introductory Chapter 2 describes the magnetic platform, its instrumentation
and the mathematical model that is used throughout the thesis. The rest of the
thesis is organized in two main thematic blocks, which are the computer vision part
(Chapter 3) and the control part (Chapters 4, 5, 6 and 7). Chapter 3 is dedicated to
the computer vision system for position measurement of the manipulated objects on
the surface of the platform. Beside the description of the detection algorithms, the
section also presents the achieved experimental results in ball detection to preserve
continuity. Chapter 4 addresses the theoretical aspects of reinforcement learning and
its application to control of dynamic systems. The following Chapter 5 presents an
adaptive control scheme for differently sized balls. Finally, the Chapters 6 and 7
describe the results achieved with the presented control methods both in simulations
and with the real platform.

1.2. Motivation and scope

The task of steering a steel ball using an array of electromagnets is an instance of a
broader class of problems, which is the manipulation by shaping force fields. There-
fore the magnetic manipulator (Magman) platform can be regarded as a benchmark
system for testing advanced control algorithms for a whole class of problems. The
device has a spatially distributed set of actuators that allow shaping the force field in

1

1. Introduction

order to control position and/or orientation of a manipulated object. Similar manip-
ulation devices are referred to as programmable force fields or programmable vector
fields in the control community ([7], [9], [32]). However, the authors address devices
manipulating larger objects with a MEMS1 based array of micro-actuators, that have
ability to produce unit force along a single dimension. According to [8] the particular
micro-actuators implementation can be based on various principles including the vi-
bratory surface, electrostatic field, magnetic field, thermo-bimorph cilia or pressurized
air nozzles.

The spatially discrete micro-actuators combined with large manipulated object al-
low quite fine shaping of the resulting force field with respect to the object. By
contrast, Magman’s actuators are comparable in size or even bigger than the manipu-
lated object and produce a continuous force field, which implies higher requirements
on the control of the actuators. In addition, the magnetic actuators cannot produce
repelling force. They can only attract a ferromagnetic object, which results in a more
constrained control problem.

The force field manipulation offers several advantages compared to the standard
contact manipulation using some kind of gripper. First, it can be realized as contact-
less, which allows manipulating micro-scale objects that could not be grasped by any
gripper. Second, different force fields, for example electric or magnetic, can spread
throughout various environments that prevent contact manipulation, e.g. aggressive
chemicals or the interior of human body. In addition, the force fields also allow mas-
sive parallelization, manipulating a whole swarm of objects at once, not focusing on
every single object separately.

Overall, the force field manipulation can open new application areas. On the other
hand, the applications are quite challenging, because it is difficult to precisely model
the force fields for the subsequent controller design. Precise modeling of a mag-
netic field produced by an array of coils with iron cores is a particularly complicated
problem. In addition, the exerted magnetic field is influenced by the magnetizable
manipulated object, which complicates the situation even more. The motivation for
this thesis is to explore the possibilities of learning and adaptive control methods,
that may be able to overcome problems caused by simplified modeling of the mag-
netic field and the manipulated object. The methods can use some prior knowledge
about the system represented by the simplified model and improve the model with
the control strategy according to the experienced behavior of the system, or they can
even learn some control strategy from scratch, without using any prior knowledge at
all.

1Microelectromechanical systems

2

2. Magnetic platform description

The Magman magnetic platform used throughout this work is a laboratory model
developed in the AA4CC group. The platform consists of a modular array of coils that
allow steering a ferromagnetic ball on the platform’s surface by shaping the magnetic
field produced by the coils. The ball is rolling on the surface of the platform at all
times, so there is no dragging or even levitation. The coil array is currently composed
from four independent modules such as the one in Figure 2.1b, each module carrying
four coils with iron cores connected to an iron slab. The modules allow independent
PWM current control for each of their coils. There is a board with electronics for
coil current control, communication and an ARM processor beneath the coils, which
means that the modules can not only communicate with its neighbors, but they also
have their own computing power which can be used for distributed control algorithms
in the future. From the control systems point of view, the platform is a distributed
multiple-input multiple-output nonlinear dynamic system. In this thesis, however,
we will only consider centralized control algorithms with central sensing element and
distributed actuation. In fact, it is the distributed and highly nonlinear character of
the actuators which makes any control task quite challenging.

2.1. Magman mathematical model

This section briefly describes the mathematical model of a ball rolling on the surface
of the platform, controlled by a coil array with a feedback linearization of its input
nonlinearity developed in [49]. Both the model and the feedback linearization concept
are used throughout this thesis. The model is not completely precise and neglects

(a) Magman platform (b) a single module

Figure 2.1. The magnetic manipulator platform (a) is composed from four independent
modules. A detail of a single module is shown in Figure (b). Photographs by J. Zemánek.

3

2. Magnetic platform description

0 1 2 3 4 5
0

1

2

3

4

5

x

y

(a) top view of the platform

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

normalized distance x

F
(x

)
[N

]

(b) 1-D force profile of a single coil

Figure 2.2. Top view of the platform and force profile for a single coil. The scheme of the top
view in (a) shows the orientation of axes for normalized platform coordinates. The Figure
(b) shows the identified one-dimensional profile of magnetic force exerted by a single fully
energized coil on a 30 mm ball. The solid red line marks the center of the activated coil,
while the dashed red lines mark the centers of the neighboring coils.

certain phenomena, which is the motivation for application of adaptive and learning
control. The basic idea is to use the advanced control methods to eliminate the
influence of model’s imprecision on the resulting performance of the controlled system.

The rolling of the ball is decoupled to the 𝑥- and 𝑦-component, modeling the move-
ment in each direction independently as a double integrator⎡⎢⎢⎢⎢⎣

𝑥̇

𝑣̇𝑥

𝑦̇

𝑣̇𝑦

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝑥

𝑣𝑥

𝑦

𝑣𝑦

⎤⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎣
0 0

𝑚−1
ef 0
0 0
0 𝑚−1

ef

⎤⎥⎥⎥⎥⎦
[︃

𝐹𝑥

𝐹𝑦

]︃
(2.1)

where the constant 𝑚ef is the effective mass of the ball, which merges its rotational
and translational inertia and 𝐹𝑥, 𝐹𝑦 are the components of magnetic force. The
integrator is undamped, so the model neglects the rolling resistance between the
rolling ball and the surface of the platform and the eddy currents and hysteresis of
the induced magnetic field in the body of the ball. The position and velocity of the
ball are expressed in normalized platform units, where one unit corresponds to the
distance of centers of two adjacent coils, i.e. 25 mm in reality (see Figure 2.2a).

The components of the magnetic force are determined by superposition of contri-
butions of individual coils of the array as

𝐹𝑥 =
4∑︁

𝑚=1

4∑︁
𝑛=1

𝑈𝑚,𝑛
−𝑎(𝑥−𝑚)

((𝑥−𝑚)2 + (𝑦 − 𝑛)2 + 𝑏)3 (2.2)

𝐹𝑦 =
4∑︁

𝑚=1

4∑︁
𝑛=1

𝑈𝑚,𝑛
−𝑎(𝑦 − 𝑛)

((𝑥−𝑚)2 + (𝑦 − 𝑛)2 + 𝑏)3 , 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡. > 0

where the fractional expression is an analytical model of magnetic force produced by
a single fully energized coil at position [𝑚, 𝑛] and 𝑈𝑚,𝑛 is the corresponding coil acti-
vation factor, which scales the exerted magnetic force linearly. The scaling is realized

4

2.1. Magman mathematical model

Ball
Coils
(field)LinearizationController

𝑥r
𝑥𝐹𝐹 req 𝑈m×n

Figure 2.3. Scheme of the feedback linearization approach. The linearization block solves an
optimization problem to find the coil activation factors that result in an approximation of
the magnetic force requested by the controller.

by PWM control of the coil current. The pure superposition of contributions of indi-
vidual coils is a simplification, which has been justified experimentally by magnetic
field measurements.

Taking advantage of the radial symmetry of the magnetic field produced by a single
coil, the model of the magnetic force was experimentally identified as one-dimensional
force profile, i.e. the magnetic force as a function of only one coordinate 𝑥. During
the experiment, a 30 mm ball was pushed by a force gauge above an energized coil
back and forth, simultaneously recording the position of the ball. The measured data
set was fitted with an analytical expression

𝐹 (𝑥) = − 𝑎𝑥

(𝑥2 + 𝑏)3 [N], 𝑎 = 0.1857, 𝑏 = 0.3303 (2.3)

where 𝑥 = 0 corresponds to the coil center and the constants 𝑎, 𝑏 are the same as in
Equations 2.2. The identified force profile for the 30 mm ball presented in Figure 2.2b
shows that the effect of an individual coil is spatially limited and strongly depends
on the position of the ball.

2.1.1. Feedback linearization

The input nonlinearity of the coil array is solved by a feedback linearization approach
developed in [26] that uses numerical optimization to compute the coil activation
factors, which after superposition of coil contributions result in exerting a requested
magnetic force in the 𝑥- and 𝑦-direction. After reordering the matrix of coil activation
factors into a vector and denoting the fractional expressions from Equations 2.2 as
𝐺𝑥𝑚,𝑛(𝑥, 𝑦) and 𝐺𝑦𝑚,𝑛(𝑥, 𝑦), the overall force is expressed as

[︃
𝐺𝑥1,1(𝑥, 𝑦) . . . 𝐺𝑥4,4(𝑥, 𝑦)
𝐺𝑦1,1(𝑥, 𝑦) . . . 𝐺𝑦4,4(𝑥, 𝑦)

]︃
⏟ ⏞

A

⎡⎢⎢⎣
𝑈1,1

...
𝑈4,4

⎤⎥⎥⎦
⏟ ⏞

x

=
[︃

𝐹𝑥

𝐹𝑦

]︃
⏟ ⏞

b

. (2.4)

The system of equations 2.4 is underdetermined, so a criterion has to be chosen for
the solution. A 2-norm of the coil activation factor vector was chosen to avoid intense
activation of the coils. Because the array cannot exert an arbitrarily large force in
a given direction, the criterion was extended with the 2-norm of the exerted force

5

2. Magnetic platform description

error term to allow an approximate solution in the cases that do not allow an exact
solution. With this extension, the coil activation factors are determined by solving
the problem

minimize
x

||x||+ 𝑐||Ax− b||

subject to 0 ≤ x ≤ 1
(2.5)

where the constant 𝑐 > 0 has to be set high enough to ensure negligible force error
in the situations when it is possible to obtain an exact solution. Removing the input
nonlinearity of the coil array allows using a commanded magnetic force for the ball
position control, as shown in Figure 2.3. The feedback linearization is used as an
underlying layer for the reinforcement learning in this thesis and is also adopted
for the auto-identification adaptive scheme described in Chapter 5. After mastering
the control with the use of the feedback linearization, the reinforcement learning is
planned to be used to directly control the activation factors of the coils.

2.2. Instrumentation

This section provides a brief description of the additional important devices and
specific software used for experiments and their mutual interconnection.

2.2.1. Speedgoat rapid prototyping platform

Speedgoat is a Swiss company which specializes in manufacturing devices for real-time
simulations, which are specifically designed to be used as external targets with the
xPC Target software. The external target workflow proceeds as follows:
∙ First, a Simulink model has to be created on a so-called host PC, which is an

ordinary PC with MATLAB, MATLAB Coder, Simulink, Simulink Coder and
xPC Target installed.

∙ Second, the model is compiled into an executable file and uploaded to the exter-
nal target, which is connected to the host PC.

∙ Third, the execution of the compiled model on the target is launched from the
host PC, allowing online parameter tuning and data import and export. With an
extra license for xPC Target Embedded Option, it is even possible to create fully
standalone target applications that can be deployed and run without connection
to the host PC.

The Speedgoat Performance real-time machine that we use for our experiments is
physically an ordinary PC based on Intel chipset with several PCI I/O expansion
cards including both analog and digital programmable inputs and outputs, an I/O
FPGA board, RS-232/422/485 serial ports, 2-port CAN module and BitFlow NEON-
CLB framegrabber for a Camera Link compatible camera. The presence of the Cam-
era Link framegrabber card was reflected when choosing a suitable camera, which
is described in the following section. Beside Speedgoat, other platforms were consi-
dered, too, including the CompactRIO from National Instruments or Raspberry Pi.
Speedgoat was preferred to CompactRIO because it can be targeted directly from

6

2.2. Instrumentation

MATLAB/Simulink and we were already familiar with this environment, while the
CompactRIO uses LabVIEW, which would be new for us. Compared to Raspberry Pi,
Speedgoat offers a wider range of interfaces (CAN, Camera Link, etc.), which makes
it more versatile for other applications than the magnetic platform control in the
future.

The external target model execution is analogous to the “External mode” model
execution with Real-Time Windows Target but it should in general offer even higher
computing performance. The external target runs xPC Target kernel during the exe-
cution instead of a more complex operating system like Windows, so it can effectively
schedule hardware resources and guarantee real-time response, without the risk that
the simulation will be slowed down by another process. However, the use of an ex-
ternal target also poses some constraints on the executed Simulink model. Because
of the compilation, all blocks in the model have to support C code generation, which
is typically not fulfilled for some more complex blocks e.g. from Image Processing
Toolbox.

We faced some unexpected limitations of xPC Target in the area of Camera Link
support. There are two ways how to grab video from a Camera Link camera interfaced
over Bitflow Neon framegrabber in Simulink. The first option is through the block
From Video Device, which is a part of Image Acquisition Toolbox. The block works
fine in the normal mode in Simulink, but it does not support code generation, so it
cannot be used in the external mode. The other option is the BitFlow CameraLink
block from the xPC Target library, which supports the code generation, but it does not
allow hardware Bayer interpolation1, which is essential for us, because it saves a lot
of computation time. To get the hardware Bayer interpolation support, MathWorks
would have to release an update of the framegrabber’s driver, which would make use
of its full functionality.

The xPC Target has been updated and renamed to Simulink Real-Time recently.
However, MathWorks only allows access to product’s technical documentation to the
users that have purchased Simulink Real-Time license so we cannot comment on
possible improvements in Camera Link support and video processing. There appeared
quite useful guidelines for Speedgoat target machine setup at the manufacturer’s
website [21], which were not available at the time when we were starting using it
and which would have been very helpful. Some practical tips originating from our
experience can be found in Appendix B.

2.2.2. Camera

The other device we would like to briefly describe is the fast RGB camera Basler
acA2000–340kc, which is used for ball position measurement, i.e. providing visual
feedback. It is a high speed industrial camera based on a CMOS image sensor with
resolution 2046 × 1086 pixels. The camera connects to a framegrabber over Camera

1Our color camera provides raw data from its sensor, so we first get a single-layer image, where
50%of pixels represent green, 25% blue and 25%red component of the image and the data has to
be interpolated to get a standard three-layer RGB image.

7

2. Magnetic platform description

Link interface, which is besides Gigabit Ethernet and USB 3.0 another common stan-
dard for high speed devices. The camera can reach up to 340 frames per second at
full resolution in the extended full Camera Link configuration. However, we want to
process all the camera data in real-time, so we use it in base Camera Link configu-
ration below 100 frames per second. It would not be possible to process the data at
camera’s full frame rate online without a specialized hardware (FPGA or GPU com-
putation). Although Speedgoat machine has an FPGA module, it is intended as a
reconfigurable 64-channel I/O interface, thus it is not suitable for processing the data
from a camera. If necessary, the base Camera Link configuration allows to reach frame
rate up to 112 frames per second. The base Camera Link configuration also allows
using more affordable framegrabbers. We use the BitFlow NEON-CLB framegrab-
ber, which comes with MATLAB adapter software and is partially supported by xPC
Target library in Simulink. There occurred several technical issues during the camera
and framegrabber setup, which are addressed in Appendix A.

2.2.3. Ball position measurement

At the time we started working on this thesis, a working ball position measurement
solution was already implemented. This original solution uses a resistive touch foil,
whose analog output data is acquired by Humusoft MF624 data acquisition card
connected to a PC. The main advantage of the solution is that it can achieve quite
high sampling frequency in order of kilohertz. Another interesting feature is the
possibility to estimate the pressure of the ball on the surface of the resistive foil from
the resulting resistance of the foil. The main limitation of the resistive foil is that it
can only measure position of a single object2, which arises from the physical principle
of the measurement of object’s position. In addition, the foil needs a sufficient pressure
on its surface to detect the position of the measured object, which becomes a problem
when one wants to perform experiments with a smaller ball that is not heavy enough
to produce the needed pressure.

For the parallel manipulation, it is necessary to measure position of several objects
simultaneously, so we decided to design a computer vision system for ball detection,
monitoring the platform from the top view with a camera. Unlike the resistive foil,
the computer vision system is not limited only to a single object only and therefore
can be used for feedback control of several objects at once. Furthermore, the weight
of the ball does not cause problem either and we also expect that the visual position
measurement will be less noisy than the one using the touch foil. On the other hand,
we expect that it will not be possible to reach as high sampling frequency as with the
resistive foil, because the object detection in a video-sequence is more computationally
demanding than processing the analog outputs of the resistive touch foil.

2There are also multi-touch resistive foils available on the market (e.g. from Stantum company),
but the platform is only equipped with a single-touch one. The multi-touch foils have the surface
divided into separate domains and every single domain can detect position of one object at a time.

8

2.3. Speedgoat–Magman interface

2.3. Speedgoat–Magman interface

For the experiments, we need to connect the magnetic platform to Speedgoat ma-
chine. The camera cannot be used with Speedgoat due to the limited Camera Link
support in xPC Target mentioned in Section 2.2.1, so we use the resistive foil for the
experiments with a single ball and Speedgoat machine. The hardware interconnec-
tion with the magnetic platform is quite straightforward thanks to the variety of I/O
interfaces offered by Speedgoat. We use the digital and analog inputs and outputs of
the Speedgoat module IO101 to acquire the ball position data from the resistive foil.
The serial communication with the platform is transmitted over the Speedgoat serial
port module IO503 configured in the RS-485 mode.

Even though we use the same signal processing methods as on the PC platform, the
position measured using the Speedgoat interface is remarkably more noisy than with
the Humusoft MF624 card on the PC. The standard deviation of measured position on
Speedgoat is 𝜎𝑥 = 0.045 in the normalized platform units, which is three times higher
compared to the standard deviation 𝜎𝑥 = 0.015 achieved on the PC platform. The
increased noise of the measurement is caused by the Magman’s power supply, which
is used for powering the electronics that allow the readout of the touch foil data when
connecting to Speedgoat. When we use a stabilized laboratory power supply instead,
the standard deviation of the measurement on Speedgoat drops to 𝜎𝑥 = 0.004, which
is even below the value on the PC. Unfortunately, we did not manage to identify the
cause of the higher noise before finishing the control experiments, so we might have
been able to reach better results with the Speedgoat platform than the ones that will
be presented here. The repetition of experiments remains for future work due to the
time reasons.

9

3. Computer vision

In this chapter, we describe different algorithms for detection of position of one or more
steel balls in the video-sequence obtained from camera, which monitors the magnetic
platform from the top view. Our aim is to obtain a real-time detection method that
would give a precision of detected position good enough for applicability of the image-
based feedback. The higher frequency and precision we achieve, the better control we
can get. Our first estimate of a reasonable target sampling frequency of the computer
vision system is 40 Hz. The estimate originates from empirical experience with the
feedback control of a ball using the resistive touch foil measurement. The motivation
for the image-based feedback is given by the possibility to measure position of several
balls at once, not being limited by the size of the balls.

3.1. Problem setting

In our detection problem, we have a scene with constant illumination and distance
from the camera, which is guaranteed to be static except for a detected object or
objects. The detected objects have known visual appearance and they can be either
moving or located statically anywhere in the scene.

The algorithms will be described for a single object to preserve simplicity and
clarity. The algorithms can be afterwards extended for multiple objects by simply
executing the operations for every single object every iteration, except for the back-
ground subtraction method described in Section 3.2, which is only suitable for single
object detection and is described here for completeness of documentation of work.
Our application is simplified by the fact that the detected objects cannot occlude
each other.

As the image data comes from a real experiment and we are sampling a continuous
movement of the detected object, we know that the magnitude of difference of object’s
positions in consecutive video frames is limited. This allows us to make use of the
inter-frame information. We do not have to search for the object in the whole scene
every time, but we can search in a restricted region of interest (ROI) around the
previously detected position instead to optimize speed. In the cases when the previous
position of the ball is unknown, the ROI is set to the whole image.

Because of the need for real-time detection, it is not possible to apply complex
detection algorithms requiring a lot of computation. When only propagating the
captured video frames to Simulink workspace without any further processing, the
system reaches maximum frame rate 60 Hz, which is only 20 Hz above the target
value mentioned in the beginning of this chapter, not leaving a lot of computation

10

3.2. Background subtraction

time for computer vision algorithms. The camera and framegrabber would allow a
higher sampling frequency, as already mentioned in Section 2.2.2, but the bottleneck
of the video acquisition chain is in the propagation of the data from the framegrabber
card to Simulink workspace.

Although the early experiments were conducted with a steel ball without any coat-
ing, we finally decided to paint the manipulated balls with color for several reasons.
First, it will be useful for the parallel manipulation, where the color distinguishes
different balls. Second, a well-marked color of a ball can simplify its detection and
third, using a matte paint can partially suppress reflections of surrounding at the
ball’s surface, which cause problems during the ball detection otherwise.

There are many different detection and tracking methods available in the computer
vision area. Majority of them focuses on more complex and structured objects than
we need (e.g. cars, pedestrians, faces). Besides that, the computer vision is not the
problem we want to focus on the most. Even though there are some overviews and
surveys available such as [48] or [35], it is quite demanding to orientate oneself in such
variety. We have chosen a few simple methods that will be described in this chapter
and afterwards implemented for experiments.

3.1.1. Notation for computer vision

We will use lowercase bold Roman letters such as 𝑥 to denote vectors. Uppercase
bold Roman letters such as 𝑋 will denote matrices, while the elements of matrices
will be referred to as 𝑋𝑖𝑗 or 𝑋(𝑖, 𝑗). When referring to the size of matrices or images
as well as to coordinates of an element of a matrix or image, we will preserve the usual
convention 𝑥 × 𝑦 for size and (𝑥, 𝑦) for coordinates, where 𝑥 denotes the horizontal
size or column index and 𝑦 denotes the vertical size or row index. The origin of the
system of coordinates is located in the upper left corner of the matrix or image, with
𝑥-axis pointing to the right and 𝑦-axis pointing downwards.

3.2. Background subtraction

Different methods for foreground object detection based on background subtraction
are described in [33]. The methods rely on maintaining a model of the image back-
ground, which allows us to separate the foreground, i.e. the moving objects in the
scene. When the model of the background is incrementally updated by new data, it
is possible to separate the foreground even from a varying background under the con-
dition that the background changes are slow compared to the changes in foreground.
According to [33], the running Gaussian average, temporal median filter and mixture
of Gaussians should provide the best computational speed (in the same order).

In our application, we have the advantage of a completely static background of
the scene, so we can build a model of the background in advance and use it for
foreground detection without updating afterwards. The model of the background is
represented as a matrix of the mean pixel intensity values of the field of view (FOV)
of the camera. Omitting the incremental update of the scene model speeds up the

11

3. Computer vision

computation compared to the detection methods mentioned above, but on the other
hand, it makes the algorithm more sensitive to change of illumination, for example.
However, we can afford losing robustness in exchange for the higher computation
speed, because we can ensure constant illumination of the scene.

3.2.1. Initialization

The model of background is measured before placing the detected ball into the field of
view (FOV) of the camera. We use sample mean value computed from 𝑁 consecutive
frames as a model of the background. We have also tried using temporal median
value instead sample mean value, because median filtering is less sensitive to values
biased with extremal additive error than averaging. However, unlike median filtering,
averaging can be implemented iteratively as in (3.1), without storing all the data
acquired over time in memory.

𝐵𝑖+1 = 1
𝑖 + 1 (𝑖𝐵𝑖 + 𝐼𝑖) , 𝐵0 = 0, 𝑖 = 0 . . . 𝑁, (3.1)

where 𝐵 is the estimate of the mean background at the 𝑖-th iteration, 𝐼𝑖 is the 𝑖-th
acquired video frame and 𝑁 is the total number of video frames used for estimation of
the background. The number of frames used for mean background computation was
chosen with respect to the standard deviation of pixel values in time caused by the
additive image noise, which was estimated experimentally. The image noise for every
pixel has approximately Gaussian distribution with zero mean and standard deviation
4.7 (measured on the 0-255 intensity value scale). Having Gaussian distribution of
the image noise, we can claim that the standard deviation 𝜎𝑀 of sample mean value
computed from 𝑁 samples is

𝜎𝑀 = 1√
𝑁

𝜎𝑥, (3.2)

where 𝜎𝑥 is the standard deviation of the original random variable. With 𝜎𝑥 = 4.7
and 𝑁 = 400, we achieve standard deviation of pixel values of background model

𝜎𝐵 = 0.235. (3.3)

The value 𝜎𝐵 is a measure of the uncertainty of the background model. In this case,
it tells us that 95% of samples of a single image pixel will fall to the particular bin of
0-255 scale, which corresponds to the mean value given by the model.

3.2.2. Detection

Having the model of the mean background, we can proceed to detection. The position
of the ball is detected using the absolute difference of the image 𝐼 captured in the
current time step and the model of the static background 𝐵. The detection process
has the following phases:

1. compute difference image 𝐷 from captured image 𝐼 and mean background model
𝐵,

12

3.2. Background subtraction

2. classify each pixel of the difference image as background, foreground, or “not
determined”,

3. estimate the position of the center of the ball from classifications of the difference
image.

The difference image 𝐷 computed in phase 1 is a two-dimensional matrix of the same
size as the size of the region of interest. The pixel values of difference image 𝐷 are
computed as Euclidean distance in RGB color space of every pixel of ROI in captured
image 𝐼 from the corresponding part of the mean background model 𝐵

𝐷M×N : {𝐷(𝑖, 𝑗) = ||𝐼ROI(𝑖, 𝑗)−𝐵ROI(𝑖, 𝑗)||RGB} . (3.4)

In phase 2, we use two thresholds t1, t2 to classify the pixels of difference image
into three classes

𝒞(𝐷𝑖𝑗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 iff 0 < 𝐷𝑖𝑗 ≤ t1,

1 iff t1 < 𝐷𝑖𝑗 ≤ t2,

2 otherwise, t1 < t2.

(3.5)

Classification 𝒞(𝐷𝑖𝑗) = 0 denotes assignment of the pixel to the background, 𝒞(𝐷𝑖𝑗) =
2 denotes foreground (the ball) and finally 𝒞(𝐷𝑖𝑗) = 1 represents the “not determined”
class. The higher threshold t2 is chosen empirically as a quantile of the difference
image pixel values. Therefore it is set to such value that 𝑛 pixel values from the
difference image were above t2. The quantity 𝑛 is one half of the amount of pixels
that would belong to the ball in the image if the classification was ideal. There is a
protective lower bound for t2. The bound prevents setting too low t2 in situations
when the ball is lost, which would lead to random behavior of the detection algorithm.
The lower threshold t1 is chosen as one half of the threshold t2.

In phase 3, we spatially filter the classifications of difference image pixels from
phase 2. First, we form two vectors 𝑣1, 𝑣2, whose lengths are equal to the width
𝑀 and height 𝑁 of the difference image, respectively, so that 𝑣1 contains sums of
columns and 𝑣2 contains sums of rows of the difference image

𝑣1 =
𝑁∑︁

𝑗=1
𝒞(𝐷𝑖𝑗), (3.6)

𝑣2 =
𝑀∑︁

𝑖=1
𝒞(𝐷𝑖𝑗).

Second, we form a digital filter 𝑓 𝑐 whose coefficients are given as lengths of secant
lines of a circle, all perpendicular to the same axis, as shown in Figure 3.1. Motivation
for these specific filter coefficients comes from computation of vectors 𝑣1 and 𝑣2. Given
an ideal-case classification of ideal difference image, vectors 𝑣1 and 𝑣2 would contain
lengths of secant lines of a circle with diameter of the ball in pixels, with some offset
given by the size of background. Expression for 𝑓 𝑐 as a function of distance 𝑑 from the
center of the filter can be obtained from analytical equation that characterizes circle
in plane, centered at the origin with diameter 𝑟, which can be understood as implicit

13

3. Computer vision

−200 −100 0 100 200

−50

0

50

100

150

200

Distance of secant line from the center (px)

Le
ng

th
 o

f t
he

 s
ec

an
t l

in
e

(p
x)

secant line lengths
circle
sample secant lines

Figure 3.1. Length of parallel secant lines of a circle with radius 70 px as a function of their
distance from the circle’s center (red line), i.e. the coefficients of filter 𝑓𝑐. The blue circle
represents projection of a ball to the image plane. A few sample secant lines are shown as
well, plotted with cyan color.

function of 𝑥. Considering only the upper half of the circle above the horizontal axis,
we remove ambiguity and get lengths of upper halves of the secant lines

𝑦 =
√︀

𝑟2 − 𝑥2, 𝑥 ∈ ⟨−𝑟; 𝑟⟩ (3.7)

which yields filter coefficients 𝑓𝑐(𝑥)

𝑓𝑐(𝑥) =

⎧⎨⎩2
√

𝑟2 − 𝑥2 iff 𝑥 ∈ ⟨−𝑟; 𝑟⟩,
0 otherwise.

(3.8)

Finally, we estimate the coordinates 𝑥𝑐, 𝑦𝑐 of the center of the ball within the region
of interest by finding maximal values in vectors 𝑣1, 𝑣2 filtered with the digital filter
𝑓 𝑐

𝑥𝑐 = arg max
𝑖

{(𝑣1 * 𝑓 𝑐)(𝑖)} , (3.9)

𝑦𝑐 = arg max
𝑗

{(𝑣2 * 𝑓 𝑐)(𝑗)} ,

where we are indexing the central parts of the discrete convolutions, which have the
same length as original vectors 𝑣1 and 𝑣2. Estimated coordinates of the center of the
ball in the whole image are afterwards obtained from 𝑥𝑐, 𝑦𝑐 by adding the offset of the
upper left corner of ROI. The whole detection process with background subtraction
is illustrated in Figure 3.2.

3.3. Meanshift

Meanshift is a fast and effective nonparametric method for moving object tracking
in video sequences. It is a simplified variant of camshift algorithm described in [10]
or [3]. Camshift is an abbreviation for “Continuously Adaptive Mean Shift”. As its
name suggests, the camshift algorithm can adapt to changes of the visual appearance

14

3.3. Meanshift

100 200 300

50

100

150

200

250

300

0

1

2

3

4

5

6

x 10
4

(a) ROI of the difference image

100 200 300

50

100

150

200

250

300

0

0.5

1

1.5

2

(b) ROI segmentation after thresholding

100 200 300

50

100

150

200

250

300 0.2

0.4

0.6

0.8

1

1.2

(c) spatial filtering of ROI segmentation

0 100 200

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900
0

100

200

(d) original image with ROI and detection

Figure 3.2. Detection process with background subtraction algorithm. Image (a) shows ROI
of difference image in terms of Euclidean distance in the RGB space. Image (b) shows
segmentation of the ROI into background and foreground after thresholding. Image (c) is
only intended to illustrate the effect of spatial filtration on the segmented ROI. It is not
computed during detection. Image (d) shows the original input image with detected ball
position and ROI in context with the row and column sums and their filtered values.

of the tracked object caused for example by partial occlusions, as well as to changes
of scale of the object in the image caused e.g. by movement of the object, which
significantly changes the distance of the object from the camera. Furthermore, it can
adapt to rotation of the object, too. In our application, the object has constant visual
appearance and the scale changes due to the movement of the object in the field of
view of the camera are negligible. In addition, the ball is radially symmetrical, so we
do not need adaptation to rotation either. These circumstances allow us to use the
meanshift algorithm described in [29] and [36].

The meanshift algorithm searches for such image region, whose pixel intensity value
histogram fits the reference histogram of the detected object the best. Therefore it

15

3. Computer vision

uses prior knowledge of the visual appearance of the ball represented by histograms of
RGB or HSV pixel intensity values. The RGB color space is often used in the image
processing, but as mentioned in [48], it is not a perceptually uniform color space, i.e.
the distance of colors in the color space is not always proportional to the difference
of respective colors perceived by human eye. In addition, there is some correlation
between the values in R, G and B channels (e.g. change of intensity of illumination of
the scene affects the intensities of all channels in a similar way), which indicates that
HSV color space histograms can be more discriminative in some situations for the
detection purposes than the RGB ones. On the other hand, cameras provide image
signal in RGB representation, so HSV histograms require further computation to
transform the color spaces. Qualitative comparison of meanshift applied to different
color spaces is given in Section 3.6.

For general description of the algorithm, it does not make any difference whether
we use RGB or HSV color space image representation, so we assume throughout the
description that every pixel 𝐼(𝑖, 𝑗) of the acquired image represents an RGB triplet
of values 0 – 255, supposing that the situation for the HSV case is analogous in the
sense that each image pixel is described by a triplet of numbers.

3.3.1. Initialization

Before we start the detection, we collect and store the prior knowledge about the
problem in a suitable representation. The prior knowledge about visual appearance
of the ball and the scene is represented by histograms of pixel intensity values in
the desired color space and is extracted from manually annotated video frames. The
frame annotation contains information about the circular envelope of the ball in the
image and can be used for extraction of the prior knowledge as well as for evaluation
of precision of ball detection.

The histograms extracted from the annotated video frames approximate conditional
probability mass functions of occurrence of pixel intensity values (coordinates in the
RGB color space), given the information whether it belongs to the ball or to the
background. We collect six histograms in total, three histograms for the ball and
another three for the background, every histogram representing a single color channel.
The histograms are denoted as ℎ𝐶

𝑎 , where 𝐶 denotes channel of the image (𝑅, 𝐺, or
𝐵 in the RGB case) and 𝑎 represents the condition whether the histogram relates to
the background (𝑎 = 0) or to the foreground (𝑎 = 1). Each of the histograms has 256
bins corresponding to the integral pixel intensity values in range from 0 to 255 and
is normalized so that it sums to one to approximate the probability mass functions
of occurrence of a particular intensity value in the foreground and in the background
respectively. Figure 3.3 shows histograms of intensity values extracted from manually
annotated video frames with a blue ball. The upper graphs contain histograms for
the pixels belonging to the ball, while the lower ones contain histograms for the
background.

Even though we have already mentioned that the RGB channels are correlated in
general, we will consider them being mutually independent. The correlation of the

16

3.3. Meanshift

0 50 100 150 200 250
0

0.02

0.04
ball

R
G
B

0 50 100 150 200 250
0

0.02

0.04
background

R
G
B

(a) pixel intensity histograms in RGB space

0 50 100 150 200 250
0

0.02

0.04
ball

H
S
V

0 50 100 150 200 250
0

0.02

0.04
background

H
S
V

(b) pixel intensity histograms in HSV space

Figure 3.3. Normalized histograms of pixel intensity values of a blue ball (the upper ones)
and background (the lower ones) for both discussed color spaces. The histograms are nor-
malized by the total number of pixels included in the statistic to show relative numerosity
of particular pixel intensity value.

RGB channels is caused by the fact that a change of intensity of illumination affects all
the channels in the same way (higher resp. lower illumination intensity increases resp.
decreases values in all RGB channels). Under a constant illumination of the scene,
we neglect the channel correlation, which allows us to compute following conditional
probabilities for a pixel 𝐼(𝑖, 𝑗) characterized by RGB triplet 𝑥 =

[︁
𝑥R 𝑥G 𝑥B

]︁𝑇

𝑃 (𝑥|0) = 𝑃 (𝑥R|0)𝑃 (𝑥G|0)𝑃 (𝑥B|0) ≈ ℎR
0 (𝑥R)ℎG

0 (𝑥G)ℎB
0 (𝑥B), (3.10)

𝑃 (𝑥|1) = 𝑃 (𝑥R|1)𝑃 (𝑥G|1)𝑃 (𝑥B|1) ≈ ℎR
1 (𝑥R)ℎG

1 (𝑥G)ℎB
1 (𝑥B). (3.11)

Term 𝑃 (𝑥|0) denotes the probability of occurrence of the particular triplet 𝑥 given
the information that the corresponding pixel belongs to the background, while 𝑃 (𝑥|1)
denotes the probability of occurrence of triplet 𝑥 given the fact that it belongs to the
ball, i.e. the foreground.

3.3.2. Detection

During the detection process, we use the prior knowledge about the visual appear-
ance of the ball to detect its position in the image. The detection proceeds in three
consecutive steps

1. backprojection of conditional probabilities into the original image,
2. maximum likelihood classification of image pixels,
3. iterative computation of the probabilistic center of mass of pixels classified as

foreground.
In the phase 1, the histograms of pixel intensity values collected during the ini-

tialization process are used to obtain two probability images 𝑃 0, 𝑃 1, which are two-
dimensional matrices of the same size as the size of ROI in pixels. The pixel values

17

3. Computer vision

of image 𝑃 0 are computed according to equation 3.10, while the pixel values of 𝑃 1
are determined using 3.11.

During the classification phase 2, every pixel of the ROI is assigned either to the
background or to the foreground using maximum likelihood estimation. Maximum
likelihood method can be used to determine parameters of a model from observed
data and prior knowledge. Our model of a pixel has only one binary parameter 𝑐 that
acts as a “foreground indicator”, with value 𝑐 = 1 denoting the foreground. We are
maximizing the likelihood function for every pixel of the ROI separately

ℒ(𝑐|𝑥) = 𝑃 (𝑥|𝑐) ≈ ℎR
𝑐 (𝑥R)ℎG

𝑐 (𝑥G)ℎB
𝑐 (𝑥B), 𝑐 ∈ {0; 1}. (3.12)

An image pixel 𝐼𝑖𝑗 characterized by the particular RGB triplet 𝑥 is therefore classified
as

𝒞(𝑥) = arg max
𝑐

{ℒ(𝑐|𝑥)} . (3.13)

Thus the maximum likelihood estimation of parameter 𝑐 is equivalent to pixel-wise
comparison of probability images 𝑃 0 and 𝑃 1. The classification phase yields a binary
image 𝐵, which is used as a mask for the final detection phase.

In the final phase 3, the algorithm iteratively computes the coordinates of the center
of the ball as the center of mass of foreground pixels in the ROI, where the foreground
pixels are weighted by their likelihood function value ℒ(1|𝑥). The coordinates 𝑥𝑐, 𝑦𝑐

of the center of mass of foreground pixels are determined as

𝑥𝑐 = 1
𝑘

𝑀∑︁
𝑖=1

⎡⎣𝑖
𝑁∑︁

𝑗=1
𝒞(𝑥𝑖𝑗)ℒ

(︀
𝒞(𝑥𝑖𝑗)|𝑥𝑖𝑗

)︀⎤⎦ , (3.14)

𝑦𝑐 = 1
𝑘

𝑁∑︁
𝑗=1

[︃
𝑗

𝑀∑︁
𝑖=1
𝒞(𝑥𝑖𝑗)ℒ

(︀
𝒞(𝑥𝑖𝑗)|𝑥𝑖𝑗

)︀]︃
,

𝑘 =
𝑀∑︁

𝑖=1

𝑁∑︁
𝑗=1
𝒞(𝑥𝑖𝑗)ℒ

(︀
𝒞(𝑥𝑖𝑗)|𝑥𝑖𝑗

)︀
,

where the normalization constant 𝑘 also acts as an indicator of quality of detection,
𝑀 is width of ROI in pixels and 𝑁 is height of ROI in pixels. For the next iteration,
the ROI is centered at 𝑥𝑐, 𝑦𝑐 and a new position of center of mass is determined,
which repeats until the position converges. In practice, we assume that the position
has converged when the distance of mass centers from two consecutive iterations is
shorter than a small positive constant. After convergence, 𝑥𝑐 and 𝑦𝑐 are equal to the
coordinates of the estimated position of the center of the ball.

3.3.3. RGB vs. HSV color space

In this section we briefly compare the RGB and HSV variants of meanshift algorithm
described in previous section. Comparing the histograms of the pixel intensity values
shown in Figures 3.3a and 3.3b, it is noticeable that there is a more remarkable differ-
ence between the background and foreground histograms in the HSV case. Especially

18

3.3. Meanshift

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(a) probability image – background

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(b) probability image – foreground

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(c) foreground pixel weights
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(d) original image with ROI and detection

Figure 3.4. Detection process with meanshift algorithm in the RGB color space. Image (a)
shows backprojection of background likelihood into the ROI. Image (b) shows backprojec-
tion of foreground likelihood into the ROI. Image (c) shows weights of the ROI pixels after
the maximum likelihood classification. Image (d) shows the original input image with the
detected ball position and ROI.

19

3. Computer vision

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(a) probability image – background

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(b) probability image – foreground

50 100 150 200 250

50

100

150

200

250 1

2

3

4

5

6

7

8

9

10
x 10

−8

(c) foreground pixel weights
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(d) original image with ROI and detection

Figure 3.5. Detection process with meanshift algorithm in the HSV color space. Image (a)
shows backprojection of background likelihood into the ROI. Image (b) shows backprojec-
tion of foreground likelihood into the ROI. Image (c) shows weights of the ROI pixels after
the maximum likelihood classification. Image (d) shows the original input image with the
detected ball position and ROI.

20

3.4. Linear SVM pixel classification

the hue channel is quite discriminative. We have to be aware that the histograms
can be visually misleading, because they show relative numerosity of intensity values
for separate channels, not in the context of pixels, as it is utilized during likelihood
estimation 3.12. The separability of background and foreground pixels using intensity
values would be better visualized as a scatter plot in an orthogonal 3D space, whose
dimensions would be interpreted as color space channels.

When we compare the detection processes in RGB and HSV color space illustrated
in figures 3.4 and 3.5, we can see that the HSV case fits reality better than the RGB
one, especially during the background likelihood backprojection (3.4a and 3.5a), where
the RGB histograms do not work well. Despite this difference, the resulting quality
of detection is comparable. A more detailed analysis of speed and precision of all
presented methods is given in Section 3.6.

3.4. Linear SVM pixel classification

Although the meanshift algorithm described in the previous section works well, it
is not fast enough for our purposes. The most computationally expensive part of
its detection process is the likelihood backprojection into the ROI pixels. We were
therefore looking for a different method that would allow us to distinguish between
background and foreground pixels, which led us to SVM. Support vector machines,
also called support vector networks [15], are a popular group of classifiers from su-
pervised learning methods. There exist several variants of SVM [13] including linear,
non-linear, two-class, multi-class or soft margin SVM.

From the classification point of view, our feature space is the RGB color space and
we have two classes of pixels, the background and the foreground. As the background
and foreground are not strictly linearly separable in the RGB color space, we decided
to choose the soft margin variant of two-class linear SVM like the one analyzed in [19].
The general idea of two-class linear SVM is to construct a boundary hyperplane in
the feature space, which separates the two classes and maximizes the distance of the
closest learning samples from the boundary. The data points closest to the boundary
hyperplane are then called support vectors.

A linear SVM classifier is parametrized by a vector of weights 𝑤 and a bias 𝑏. When
these are known, the classification of a sample characterized by feature vector 𝑥 into
one of two classes proceeds as

𝒞(𝑥) = 1
2 [1 + sgn (𝑤𝑥 + 𝑏)] . (3.15)

To learn the weights and bias of the classifier, we use a set of labeled training
samples. The learning process is equivalent to an optimization task

min
𝑤,𝑏
{||𝑤||2} s.t. ∀𝑖 : 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1, (3.16)

where 𝑦𝑖 ∈ −1, 1 is the label of training sample 𝑥𝑖. However, the optimization
task 3.16 is unfeasible for problems that are not linearly separable. Therefore the

21

3. Computer vision

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) SVM pixel classification

0 50 100

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000
0

50

100

(b) original image with detection

Figure 3.6. Detection process with SVM pixel classification in the RGB color space. Image (a)
shows result of SVM pixel classification with foreground pixels black and background pixels
white. Image (b) shows the original input image with the detected ball position in context
with the row and column class sums and their filtered values. ROI was not used when
generating the figures to show the false foreground pixels that would otherwise lay outside
of the ROI.

soft margin SVM introduces for every training sample 𝑥𝑖 a slack variable 𝑠𝑖, which
allows misclassifications in the training data. The slack variables change the opti-
mization task 3.16 to

min
𝑤,𝑏,𝑠
{||𝑤||2 + 𝜉||𝑠||2} s.t. ∀𝑖 : 𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ (1− 𝑠𝑖), 𝑠𝑖 ≥ 0, (3.17)

where the slack variable weight 𝜉 is a tuning parameter which specifies how impor-
tant it is to avoid misclassifications. In addition, we can use a vector of slack variable
weights instead of the scalar value 𝜉, specifying slack variable weight for each training
sample separately. This is particularly useful when we need to eliminate misclassifica-
tions of samples from one class at the cost of more misclassifications of the elements
from the other class. Overall, the slack variables bring more degrees of freedom, which
allows to apply SVM to linearly non-separable problems, too, but on the other hand,
it also increases the number of optimized parameters, which leads to higher computa-
tional requirements and destroys scalability for large training data sets. Nevertheless,
neither the number of parameters of learnt SVM classifier nor the classification speed
are affected by the slack variables.

Both optimization tasks 3.16 and 3.17 can be effectively implemented using a
quadratic programming solver, e.g. the quadprog function from MATLAB’s Opti-
mization toolbox.

22

3.5. HSV feature thresholding

3.4.1. Detection

We are not able to eliminate all false foreground pixels in the SVM classification even
when using different slack variable weights for background and foreground training
samples. It is not surprising, because we are using color as a feature and the back-
ground contains objects with color similar to the ball. We can eliminate the influence
of the false foreground pixels by the same spatial filtering of pixel classifications as
used in phase 3 of the background subtraction method described in Section 3.2.

The detection process with the SVM classifier is illustrated in Figure 3.6. We can
see that the SVM classifier output depicted in Figure 3.6a gives much better estima-
tion of foreground pixels than the thresholding of distance from mean background
shown in Figure 3.2b, which results in a more precise detection of the ball’s position.
The resulting detection of ball position in Figure 3.6b is quite precise (see Table 3.2
in Section 3.6), despite the numerous false foreground pixels visible in Figure 3.6a.
Moreover, unlike the background subtraction, the linear SVM method can simulta-
neously detect more than one ball, using different SVM classifiers for different balls.

3.5. HSV feature thresholding

The last detection method we present here is the HSV feature thresholding. The
method is inspired by high discriminativity of the hue channel in histograms shown
in Figure 3.3b. The idea is to set lower and upper bound on the hue (H), saturation
(S) and value (V) channels to distinguish between the background and foreground
pixels.

The bounds for HSV channels are set using histograms of HSV values of ball pixels
extracted from the annotated video frames. For every channel, we start with equal
lower and upper bound located at the maximum of the histogram. Afterwards, we
decrease the lower bound and increase the upper one until the range between the
bounds covers 95% of ball pixels in the given channel. These bounds are then used
for pixel classification. Every pixel, whose H, S and V features lay within the defined
ranges, is classified as foreground, all the others are considered as background:

𝒞(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 iff 𝐻low ≤ 𝑥H ≤ 𝐻upp ∧ 𝑆low ≤ 𝑥S ≤ 𝑆upp ∧

𝑉low ≤ 𝑥V ≤ 𝑉upp,

0 otherwise.

(3.18)

According to our empirical experience, it is possible to omit the upper bound on
saturation and both bounds on value for successful ball detection, which saves some
computation time. The classification 3.18 results in a binary image which is further
processed by the spatial filtering which was also used in phase 3 of the background
subtraction method (see Section 3.2). The detection process with HSV thresholding
is illustrated in Figure 3.7.

23

3. Computer vision

50 100 150 200 250

50

100

150

200

250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) binary ROI after HSV thresholding
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

(b) original image with detection

Figure 3.7. Detection process with thresholding in the HSV color space. Image (a) shows the
binary image resulting from the thresholding process. Image (b) shows the original input
image with the detected ball position and ROI marked with green dashed line

3.5.1. HSV thresholding in the RGB color space

While the HSV feature thresholding is computationally cheap, the transformation of
RGB camera image to the HSV color space turned to be more lengthy than the HSV
thresholding itself. Even though there is a non-linear transformation from RGB to
HSV color space, we found out that it is possible to perform the HSV thresholding
directly in the RGB color space, without any further transformation. When we look
at the hue, saturation and value isosurfaces in the RGB space (see Figure 3.8), it
is obvious that they are linear or piecewise linear in terms of RGB components. If
we describe the isosurfaces corresponding to the hue, saturation and value bounds
analytically using plane equations, we will be able to do the HSV thresholding by
simply checking whether a pixel lays above or below a set of boundary planes in the
RGB space.

The hue isosurfaces shown in Figure 3.8a can be represented as boundary planes
defined by an oriented line segment

→
𝑙 , which is common for all hue values, and a

specific point 𝐴, whose location depends on the particular value of hue. The oriented
line segment is the space diagonal of the RGB cube, which starts at the origin of the
RGB color space and ends at point 𝑄 =

[︁
255 255 255

]︁𝑇
. The base location of

point 𝐴 for hue level 𝐻 = 0 is

𝐴 =
[︁

255 0 0
]︁𝑇

.

The locations of point 𝐴 for other values of hue are generated by rotating the base
location of point 𝐴 around

→
𝑙 in positive direction about angle

𝜙 = 2𝜋𝐻𝑥, 𝐻𝑥 ∈ ⟨0; 1),

where 𝐻𝑥 is the hue value we are interested in.

24

3.6. Comparison of detection methods

The saturation isosurfaces shown in Figure 3.8b have a more complicated structure
than the ones for hue. Such surface can be described as a hexagonal pyramid with
apex located at the origin of the RGB color space and axis pointing in the direction
of line segment

→
𝑙 which was defined above for the hue boundary planes. The base

vertices of the pyramid are located at the edges and face diagonals of the RGB cube
that pass through point 𝑄, which was also defined for the hue boundary planes. The
location of the vertices on the edges and diagonals depends on the particular value
of saturation. In the singular case, when 𝑆 = 0, all of the vertices overlay at 𝑄.
When the saturation increases, the vertices move along the corresponding edges and
diagonals, so that their distance 𝑑𝑖 from point 𝑄 is

𝑑𝑖 = 𝑑𝑖𝑆𝑥, 𝑆𝑥 ∈ ⟨0; 1),

where 𝑑 is the length of the corresponding edge or face diagonal and 𝑆𝑥 is the satu-
ration value.

The value isosurfaces in Figure 3.8c are structured, too. Every of them consists of
three mutually perpendicular planes defined by three neighboring faces of a cube with
one vertex located in the origin of the RGB color space and edges parallel with the
edges of the RGB cube. The length of edges of the cube that defines the boundary
planes is linear with respect to the value of value channel.

𝑎 = 255𝑉𝑥, 𝑉𝑥 ∈ ⟨0; 1),

where 255 is edge length of the RGB cube and 𝑉𝑥 is the particular value of value
channel.

After computing parametrization of boundary planes for particular HSV limits,
only the minimal required subset of them is selected for thresholding. A typical
selection for ball detection is illustrated in Figure 3.8d, which depicts the situation
for lower and upper hue bound and a lower saturation bound. The other bounds
were omitted. The red saturation boundary planes in Figure 3.8d were rejected for
the classification purpose, because they wouldn’t affect the classification due to the
selected hue bounds.

HSV thresholding in the RGB color space brings a great computational speed im-
provement compared to the thresholding of an image converted to HSV color space.
According to statistics presented in Table 3.1, the computation speed nearly tripled.

3.6. Comparison of detection methods

In this section, we compare speed and precision of the suggested detection methods.
We use manually annotated video-sequences for evaluation. The training set contains
192 frames with both red and blue ball, while the evaluation sets consist of 100 frames
with red ball and 100 frames with blue ball.

When evaluating the speed of the algorithms, we measure the time of processing of
the 200 frames from the evaluation sets using MATLAB profiler. The measured time
does not include initialization procedures of the detection methods like the boundary

25

3. Computer vision

050100150200250

0
50

100
150

200
250

0

50

100

150

200

250

RG

B

(a) hue isosurfaces in RGB space

0
50

100
150

200
250

0

100

200

0

50

100

150

200

250

R
G

B

(b) saturation isosurfaces in RGB space

0
50

100
150

200
250

0

50

100

150

200

250

0

50

100

150

200

250

R

G

B

(c) value isosurfaces in RGB space (d) boundary plane selection

Figure 3.8. Hue and saturation isosurfaces in the RGB color space. Image (a) shows isosur-
faces for 𝐻 = 0 (yellow), 𝐻 = 0.25 (red), 𝐻 = 0.5 (green) and 𝐻 = 0.75 (blue). Image (b)
shows isosurfaces for 𝑆 = 0.25 (red), 𝑆 = 0.5 (green) and 𝑆 = 0.75 (blue). Image (c)
shows isosurfaces for 𝑉 = 0.25 (red), 𝑉 = 0.5 (green) and 𝑉 = 0.75 (blue). Image (d)
shows selection of applicable boundary planes for particular hue and saturation bounds
𝐻low = 0.1, 𝐻upp = 0.3 and 𝑆low = 0.5 (the upper saturation bound was omitted). There
are two yellow planes which stand for lower and upper hue limit, the green planes are a
subset of saturation boundaries selected for thresholding and the red planes are a subset
of saturation boundaries that were rejected because they are not necessary for the given
range of hue.

26

3.6. Comparison of detection methods

Detection method 200 frames [s] 1 frame [ms] Frame rate [Hz]
Background subtraction 0.99 4.9 202
Meanshift in RGB space 3.58 17.9 55
Meanshift in HSV space 8.08 40.4 24
Linear SVM 0.44 2.2 459
HSV thresholding 3.02 15.1 66
HSV thresholding (planes) 0.84 4.2 236

Table 3.1. Ball detection speed with ROI size 300×300 pixels and one ball. The computation
times were measured in a 64-bit operating system running Intel Core i5 3550 @ 3.30 GHz.

Median error [px] Worst error [px]
Detection method red ball blue ball red ball blue ball
Background subtraction 1.98 3.77 14.37 34.94
Meanshift in RGB space 3.01 11.85 6.65 27.57
Meanshift in HSV space 3.17 8.90 6.30 13.74
Linear SVM 1.16 3.19 3.05 11.11
HSV thresholding 1.59 1.66 3.13 4.74

Table 3.2. Error of ball detection measured in Euclidean distance of the detected position
from the manually annotated ball centers.

plane computation for HSV feature thresholding, because these operations are per-
formed just once and can be done in advance, so they are not time-critical. All of the
methods use restricted ROI of size 300×300 pixels for detection. The results of speed
evaluation for detection of one ball are summarized in Table 3.1. The necessary com-
putational time for simultaneous detection of several balls approximately multiplies
with the number of detected balls.

When we look at Table 3.1, we can see that the fastest method is the linear SVM,
followed by the HSV thresholding in RGB space and background subtraction while the
methods based on meanshift are too slow to be useful for our application. Although
the computation should run faster without the profiler, the difference is at most in the
order of percent. Note that the frame rates in Table 3.1 are only theoretical, because
we only measured the ball detection computation time. In a practical application,
we will have to grab the camera image and compute control actions besides the ball
detection, so the resulting achievable frame rate will be lower.

The precision of detection is evaluated on the same video frames as the speed, for
red and blue ball separately to show certain dependence of precision on ball color and
camera settings. For good detection quality, it is necessary that the ball contrasts
with the local part of the background, which is not always true. Especially the blue
ball, which is relatively darker than the red one, blends into the dark background
when it gets away from the area above the coil array. The precision of detection
methods is compared in Table 3.2. The best results in terms of median and maximal
error are achieved with HSV thresholding, which slightly outperforms the second-best

27

3. Computer vision

linear SVM method in blue ball detection. We can notice that the detection of the
red ball is apparently more precise with all algorithms because the red ball contrasts
with the background better than the blue one. We should also emphasize that we
compute position error with respect to manually annotated positions, which are not
perfectly precise themselves, so even a precise detection can result in a non-zero error
in the evaluation.

3.7. Camera calibration

When we want to use the computer vision system for visual feedback, we need to
calibrate the camera to be able to transform between the image coordinates and real-
world coordinates. The real-world coordinates represent the 𝑥- and 𝑦-coordinates of
the ball on the surface of the platform, normalized so that we have unit distance
between the centers of every two neighbouring coils of the array.

Although it is quite common calibrate the camera using a calibration image, which
is usually a special high-contrast pattern, we can use the magnetic platform itself in-
stead. We attract the ball to all coils of the platform by turning them on one-by-one.
When the ball settles above a coil, we detect its position in several consecutive video
frames and move on to another coil. This procedure gives us sets of corresponding
image and scene points, which allow us to determine the parameters of a homography
([14]) between the image plane coordinates (𝑥′, 𝑦′) and the normalized coordinates on
the surface plane of the platform (𝑥̂, 𝑦). The homography is a projective transforma-
tion ⎡⎢⎣ 𝑢

𝑣

𝑤

⎤⎥⎦ = 𝐻

⎡⎢⎣ 𝑥′

𝑦′

1

⎤⎥⎦ ,

[︃
𝑥̂

𝑦

]︃
= 1

𝑤

[︃
𝑢

𝑣

]︃
(3.19)

To find the homography parameters 𝐻, we build up an overdetermined system of
homogeneous linear equations

𝐴ℎ = 0, (3.20)

where the matrix 𝐴 contains measured corresponding points ordered as

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′
1 𝑦′

1 1 0 0 0 −𝑥̂1𝑥′
1 −𝑥̂1𝑦′

1 −𝑥̂1
0 0 0 𝑥′

1 𝑦′
1 1 −𝑦1𝑥′

1 −𝑦1𝑦′
1 −𝑦1

...
...

...
...

...
...

...
...

...
𝑥′

𝑁 𝑦′
𝑁 1 0 0 0 −𝑥̂𝑁 𝑥′

𝑁 −𝑥̂𝑁 𝑦′
𝑁 −𝑥̂𝑁

0 0 0 𝑥′
𝑁 𝑦′

𝑁 1 −𝑦𝑁 𝑥′
𝑁 −𝑦𝑁 𝑦′

𝑁 −𝑦𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and vector ℎ is formed by stacking columns of the homography matrix 𝐻. We use
singular value decomposition (SVD) to find the approximate solution of the system
of equations 3.20, which minimizes the quadratic error

ℎ* = arg min
||ℎ||2=1

{︁
ℎ𝑇 𝐴𝑇 𝐴ℎ

}︁
. (3.21)

28

3.8. Simulink implementation of ball detection

The constraint on the norm of ℎ for minimization is necessary to prevent selecting a
zero vector. Decomposing 𝐴 with SVD as 𝐴 = 𝑈Σ𝑉 𝑇 gives the sought approximate
solution ℎ* as the column of 𝑉 corresponding to the smallest singular value on the
diagonal of Σ. When we reconstruct the matrix 𝐻 from the approximate solution
vector, we are able to transform the image plane coordinates to the platform plane
coordinates according to expression 3.19.

3.8. Simulink implementation of ball detection

All the ball detection methods described above were first developed and tested in
MATLAB. Afterwards, we converted the linear SVM and the HSV thresholding in
the RGB color space to Simulink blocks. The other detection methods were rejected
because they were either too slow (meanshift, HSV thresholding with colorspace con-
version) or too imprecise (background subtraction has relatively good median error,
but the worst errors are extremely high).

During the experiments, we acquire the video through the block From Video Device
from Image Acquisition Toolbox in Simulink’s normal mode because of the missing
hardware Bayer interpolation support in the external mode. This solution is not de-
ployable on the Speedgoat platform, but the software Bayer interpolation in Simulink
would not be feasible anyway because of computational speed reasons.

The Simulink blocks for computer vision are implemented as Level-2 MATLAB
S-Functions, which allow storage of the internal state of the detection algorithm be-
tween consecutive simulation time-steps. The use of Level-2 MATLAB S-Functions
is possible thanks to the normal mode of model execution. For the external mode, we
would have to provide a handwritten TLC file for each S-Function to support code
generation. The TLC file specifies the structure of a Simulink block and its data and
controls the C code generation process. Unfortunately, the TLC file is too complex
to be written manually for as complicated S-Functions as the ones for ball detection.

The detection methods were also implemented as MATLAB Function blocks for
potential future use in the external mode. The MATLAB Function blocks allow direct
embedding of MATLAB code into models that generate C code, but they cannot store
their internal state between consecutive simulation time-steps. The internal state of
the detection algorithms is therefore stored in an external memory and is passed to
the MATLAB Function block as an input argument every simulation period.

The Simulink implementations were profiled in the normal execution mode. The
Simulink profiler measured longer execution times than the MATLAB profiler. Namely,
we measured 5.5 ms per frame for the linear SVM and 4.6 ms per frame for the HSV
thresholding in the RGB space, both of them implemented as Level-2 MATLAB S-
Functions. We do not know how to explain that the difference for linear SVM is
more remarkable. Furthermore, Simulink profiler revealed that the MATLAB func-
tion implementations are not suitable for the normal mode in Simulink, because their
computation times are approximately ten times longer than those achieved with the
MATLAB S-Functions. We think that this is caused by the fact that unlike the rest of

29

3. Computer vision

the Simulink model, the MATLAB Functions are compiled even in normal execution
mode, which makes passing of the arguments to the MATLAB function lengthy. In
addition, we found out that just the transfer of the data from the framegraber to
Simulink takes approximately 14 ms, so we cannot reach a higher frame rate than
50 Hz for a single ball or 40 Hz for two balls with the presented computation times.

3.9. Conclusions

We have chosen several suitable methods for ball detection in the video frames. All of
the methods except for the background subtraction support simultaneous detection of
more than one ball. The methods were implemented both in MATLAB and Simulink
in a way that allows deployment on an external target, although the use with an
external target is not possible so far due to the lack of hardware Bayer interpolation
support. The Simulink blocks for ball detection were integrated in a Simulink library
accessible from Simulink Library Browser, which ensures automatic update of the
blocks in all referenced Simulink models after any change in the library. The library
is available on the attached CD.

The detection methods were evaluated from the point of view of speed and precision.
We have annotated sets of video frames for the purposes of ball detector training and
evaluation.The speed was optimized with use of MATLAB profiler, which helped to
identify bottlenecks of the algorithms and suggest improvements as in the case of
HSV thresholding in the RGB color space.

An experiment with a ball in steady position has shown that the visual position
measurement is less noisy than the touch foil measurement. While the standard
deviation of the foil measurement is 𝜎 = 0.375 mm, the visually detected ball position
does not have an approximately normal distribution, so it does not make sense to
characterize it with standard deviation. The detected ball position is quantized due
to the character of the detection methods, and the visually detected coordinates were
either single values during the whole experiment or they oscillated between discrete
values whose distance from each other was at most 0.2 mm.

The Simulink profiler discovered a significant delay of the visual position measure-
ment. The delay consists of the camera’s exposure time (8 ms), transfer of the data to
Simulink (14 ms) and the detection computation time (approximately 5 ms), resulting
in a total delay around 27 ms, which affects the performance of any feedback control.

Overall, the visual position measurement can be used for feedback control, but it
is limited to the use with at most two balls, because the lengthy data transfer from
the framegrabber to Simulink does not leave enough computation time for detection
of more balls.

30

4. Reinforcement learning

This chapter is dedicated to the area of reinforcement learning which is a promising
and still developing field of modern learning control techniques. We will describe the
basic principles of reinforcement learning and take a look at the particular methods
that were applied to the control of the magnetic platform.

The term reinforcement learning refers to a set of machine learning methods that
combine experience-based learning process, which is typical for animals, with optimal
and adaptive control. A fundamental publication in the area of reinforcement learning
is [39], which introduces and explains the basic concepts of the broad field of rein-
forcement learning. There are several near-synonym terms to reinforcement learning
in the literature, including approximate/asymptotic/adaptive dynamic programming
(ADP, [34]), heuristic dynamic programming (HDP, [2]) or neuro-dynamic program-
ming (NDP, [5]), altogether called Adaptive Critic Designs (ACD, [45]). All of the
terms denote methods that are attempting to determine an optimal control policy in
terms of long-term outcome by finding approximate solution to the Hamilton-Jacobi-
Bellman equation. The aim is to find a mapping from particular situations to suitable
actions, which allow achieving either a single-time goal (episodic task, e.g. a mobile
robot reaching a desired location with minimal energy consumption), or maximizing
the outcome of some continuing task according to a specific criterion (e.g. trajectory
tracking with minimal error).

4.1. Basic terms

The reinforcement learning has a specific terminology. The learner is called an agent,
which is continually interacting with an environment through some actions. An agent
can be therefore understood as a controller and the environment as a controlled sys-
tem. At every time step, the agent selects a suitable action 𝑢 based on its previous
experience and current situation, i.e. the observable state of the environment 𝑥. The
set of rules for action selection (mapping from environment’s state to actions) is called
policy and is usually denoted ℎ(𝑥). By taking a particular action, the agent gets into
a different situation and beside the information about the new state of the environ-
ment it also receives a reward, denoted 𝑟(𝑥, 𝑢). The reward is a scalar numerical
signal which indicates whether the agent reached its goal or how close to the goal it is
and tells the agent how well or badly it performs. The agent incorporates the reward
signal into its experience in order to improve its policy, attempting to maximize the
long-term cumulative reward. For the continuing infinite-horizon tasks, it is neces-
sary to weigh the reward exponentially with a discount factor 𝛾 ∈ ⟨0, 1) to make the

31

4. Reinforcement learning

Environment
(System)

Policy update rule

Agent
(Controller)

reward

action state

Figure 4.1. Reinforcement learning scheme. The agent interacts with the environment
through taking some actions. The action outcomes are evaluated by a reward signal, which
is used to update the agent’s policy.

cumulative reward finite. The scheme of the agent–environment interaction is shown
in Figure 4.1.

The particular reinforcement learning methods differ in the way how the agent
projects the information from the reward signal into its policy. The experience of the
agent is accumulated in a value function, which represents the expected cumulative
reward received in the future when following a given policy. A Q-function or state-
action value function 𝑄ℎ(𝑥, 𝑢) specifies the expected outcome of a trajectory starting
from state 𝑥 by taking action 𝑢 and following the policy ℎ onwards. A V-function
or state value function 𝑉 ℎ(𝑥) = 𝑄ℎ(𝑥, ℎ(𝑥)) is sometimes used as an alternative to
the Q-function, assuming that already the starting action of the evaluated trajec-
tory is selected using the policy ℎ. Note that every value function is always related
to a particular policy. While following a policy, the agent has to balance between
exploitation of the policy (taking the best actions according to its experience) and
exploration (trying new actions to find out whether or not they are better than the
ones that already have been tried).

4.2. Markov Decision Process

The reinforcement learning requires some properties of the state of the environment
observable by the agent to work properly ([39], Chapter 3.5). Although the obser-
vable state typically does not contain complete information about the environment,
it should contain all the information from the environment’s history, which is rele-
vant for future transients. A state that retains all the relevant information is called
Markovian. In reinforcement learning, we endeavor to get the environment’s state
which is at least approximately Markovian. As the decisions of the agent are based
on the current state, it should carry enough information about the environment to
allow making efficient decisions. Since we are interested in application of reinforce-
ment learning to control of dynamic systems, it is a good idea to include the state of

32

4.3. Taxonomy

the dynamic system into the state of the environment available to the agent, because
the state of the dynamic system has the Markov property.

When the observable state of the environment has the Markov property, reinforce-
ment learning can be considered a Markov Decision Process (MDP), which provides
a theoretical framework for the description of the algorithms. A formal definition
found in [31] says that MDP (𝑋, 𝑈, 𝑃, 𝑅) consists of a set of states 𝑋, a set of ac-
tions 𝑈 , transition probabilities 𝑃 and a cost function 𝑅. The transition probabilities
𝑃 : 𝑋×𝑈×𝑋 → [0; 1] are the conditional probabilities of transition to a state 𝑥′ ∈ 𝑋

given the current state 𝑥 and taking action 𝑢. The cost function 𝑅 : 𝑋×𝑈×𝑋 → R is
the expected cost of transitioning from 𝑥 to 𝑥′ by taking 𝑢. In reinforcement learning
terms, the reward signal can be taken as the negative value of some cost function.
The main goal of the MDP is to find an optimal policy that minimizes the expected
future cost, i.e. maximizes the future cumulative discounted reward

ℛ𝑡 =
𝑘𝑡𝑒𝑟𝑚∑︁
𝑘=0

𝛾𝑘𝑟(𝑥𝑡+𝑘+1, 𝑢𝑡+𝑘+1), (4.1)

where the final time step 𝑘𝑡𝑒𝑟𝑚 specifying the horizon of interest can be either finite
(for episodic tasks) or infinite (for continuing tasks). The episodic tasks can be
generalized to continuing tasks by defining an absorbing final state, which always
transitions to itself with a zero reward. It is obviously necessary to use discount
factor 𝛾 < 1 for infinite horizon tasks to ensure finite ℛ𝑡.

4.3. Taxonomy

In this section we would like to comment on the status of reinforcement learning
amongst other machine learning methods as well as on the basic classes of reinforce-
ment learning algorithms.

While it is usual to distinguish supervised and unsupervised machine learning met-
hods, the reinforcement learning is standing between these two groups. In the super-
vised learning (also called “learning with a master”), we have to provide the learner
with a learning set of input vectors labeled with desired outputs, so that it can pre-
cisely see its errors. Such labeling can make the learning process quite effective, but
it also requires that the correct labeling is known in advance, so the designer – master
must know the right solution. In the reinforcement learning, the learner – agent is
responsible for the learning process itself, exploring the environment through execut-
ing some actions. The selection of the actions to perform is based on the information
from the environment’s state (an input vector) and agent’s experience. However,
the observed states of the environment are not labeled with any “correct” actions
to take. The agent has to explore which actions are the correct ones in every par-
ticular situation and it can only observe the positive or negative effect of the taken
actions through the environment transitions and a reward signal. The reward signal
only indicates the goal being reached or some distance from the goal, which is much
less informative than some labeling of input vectors and allows the designer to only

33

4. Reinforcement learning

know what to achieve, not how to achieve it. This is why reinforcement learning is
sometimes quite descriptively referred to as “learning with a critic” ([20]) or “learning
from interaction” ([39]).

If we divide the machine learning methods into model-based and model-free met-
hods, we can find instances of reinforcement learning in both groups. A model can
significantly accelerate the learning rate and improve the performance of the agent,
especially with gradient actor-critic methods ([38]), because it can introduce some
prior knowledge and structure to the learning process. There are also model-learning
methods ([23]), which are sometimes confusingly called model-based in the literature,
too. The model-free methods typically learn more slowly, but require less prior in-
formation about the controlled system, which is advantageous when a good model is
not available.

The reinforcement learning methods themselves can be divided into several groups
according to different criteria ([12]). All the methods can work either online or offline.
The online methods adjust the parameters of the learner every few steps, while the
offline methods wait with the update until the final goal is reached. Apparently, the
online methods have a more complicated task than the offline ones, because they
typically do not know the exact final outcome of the last decision at the time of
parameter update, whereas the offline methods have a whole sequence of decisions
and state transitions available for learning. The online methods are more suitable
for control of dynamic systems, because it may take very long time for the offline
methods before the agent reaches the goal during the initial trials. In addition, the
ability to learn “on the go” makes the online methods applicable not only to episodic,
but also to continuing tasks.

The reinforcement learning methods can be also split to on-policy and off-policy
ones. The on-policy methods evaluate and improve directly the policy, which is used
to make decisions, so they sacrifice optimal performance to exploration of the environ-
ment (e.g. the SARSA algorithm presented in [39] or actor-critic methods presented
later in this section). In a stationary environment, the exploration can be attenu-
ated over the time in, but in a time-varying environment the exploration level has to
be maintained in order to adapt to possible changes. The off-policy methods like Q-
learning ([39]) attempt to learn a deterministic optimal policy while following another
one, which ensures sufficient amount of exploration.

4.4. Generalized Policy Iteration

The classical reinforcement learning methods estimate value functions in order to
determine a policy. As the reinforcement learning originates from the area of discrete
systems, the value functions and policies were originally often represented in some
lookup tables, so the methods are sometimes called “tabular” in the literature.

The aim of reinforcement learning is to find an optimal policy in terms of long-
term reward. An optimal policy ℎ*(𝑥) is a policy, whose expected long-term reward
is greater than or equal to any other policy. Especially in discrete problems (discrete

34

4.4. Generalized Policy Iteration

states, actions), there can exist more than one optimal policy. However, for all optimal
policies, there exists a common optimal state value function 𝑉 *(𝑥) and an optimal
state-action value function 𝑄*(𝑥, 𝑢). The optimal value functions satisfy the Bellman
optimality equation

𝑉 *(𝑥) = max
𝑢

∑︁
𝑥′

𝑃 𝑢
𝑥𝑥′

[︀
𝑅𝑢

𝑥𝑥′ + 𝛾𝑉 * (︀
𝑥′)︀]︀

, (4.2)

𝑄*(𝑥, 𝑢) =
∑︁
𝑥′

𝑃 𝑢
𝑥𝑥′

[︂
𝑅𝑢

𝑥𝑥′ + 𝛾max
𝑢′

𝑄* (︀
𝑥′, 𝑢′)︀]︂

, (4.3)

where 𝑃 𝑢
𝑥𝑥′ is the probability of transitioning from state 𝑥 to 𝑥′ after taking action 𝑢,

𝑅𝑢
𝑥𝑥′ is the expected reward for the transition and 𝛾 is the discount factor. Note that

there are two different conventions for optimization. In the computer science commu-
nity, it is usual to consider rewards and maximize the performance index (cumulative
return), while in the control community, it is common to consider costs and therefore
minimize the performance index (cumulative cost). We will use the “reward–return”
convention here to be consistent with the reinforcement learning terminology.

With a known optimal value function, it is already easy to find an optimal policy,
because every optimal policy is greedy with respect to the corresponding optimal
value function. The crucial contribution of the optimal value function is that it
allows maximizing the long-term cumulative reward by local maximization of the
value function.

The optimal value function can be estimated iteratively by applying a concept
which is called Generalized Policy Iteration (GPI, [39]). The method combines two
antagonistic interacting processes. The first process, called policy evaluation (see
Algorithm 4.1), estimates the value function of the current policy from the observed
environment states and rewards, which typically makes the policy non-greedy with
respect to the estimate of the value function. The value function in Algorithm 4.1
is represented in a tabular form 𝑉 (𝑥), which allows both read and write operations.
The other process, called policy improvement, makes the policy greedy with respect
to the latest estimate of the value function, which typically invalidates the current
estimate of the value function. The combination of some form of policy evaluation
with alternating or simultaneous policy improvement illustrated in Figure 4.2 is a
fundamental concept of reinforcement learning.

Algorithm 4.1 Iterative policy evaluation
repeat

Δ← 0
for all 𝑥 ∈ 𝑋 do

𝑣 ← 𝑉 (𝑥)
𝑉 (𝑥)←

∑︀
𝑥′ 𝑃

ℎ(𝑥)
𝑥𝑥′

[︁
𝑅

ℎ(𝑥)
𝑥𝑥′ + 𝛾𝑉 (𝑥′)

]︁
Δ← max {Δ, |𝑣 − 𝑉 (𝑥)|}

end for
until Δ > 𝜀, 𝜀 is a small positive number

35

4. Reinforcement learning

Policy
ℎ(𝑥)

Value function
𝑉 (𝑥)

evaluation

improvement

ℎ*(𝑥) 𝑉 *(𝑥)

Figure 4.2. Generalized Policy Iteration alternates between making the value function con-
sistent with the policy (policy evaluation) and making the policy greedy with respect to
current value function (policy improvement). The optimal policy and value function are
consistent with each other.

The two processes can interact at different levels of granularity. In the classical
policy iteration, the policy improvement does not start until the policy evaluation
converges to a solution. However, it is also possible to truncate the policy evaluation,
which is itself an iterative procedure (see Algorithm 4.1), after a single update of the
value function for each state, resulting in the so-called value iteration method. In an
extreme case, which is referred to as asynchronous dynamic programming, the policy
evaluation updates the value function entries only for one or several states before
switching back to policy improvement. All of the above approaches eventually lead
to convergence to the optimal value function and optimal policy, where the policy
evaluation and improvement do not make any changes anymore, because an optimal
policy is already greedy with respect to its value function.

4.5. Temporal difference

The classical exact GPI methods mentioned in the previous section require a precise
model of the environment in a form of state transition probabilities, which can be
difficult or even impossible to obtain. Although there are extensions available called
Monte Carlo methods ([39]) that avoid the need for a model, they update value
function estimates and policy on an episode-by-episode basis, which can become a
problem when the episodes take a long time. The temporal difference (TD) methods
overcome both need for a model and episode-by-episode learning problems. They
allow a fully incremental step-by-step learning without a model, which is particularly
suitable for online applications. The key idea of the temporal difference methods is
to compare the actual received reward with its estimated prediction after every step
𝑘. The agent at state 𝑥𝑘 applies an action 𝑢𝑘, receives reward 𝑟𝑘+1, observes the next
state 𝑥𝑘+1 and computes the temporal difference error

𝛿𝑘 = [𝑟𝑘+1(𝑥𝑘, 𝑢𝑘) + 𝛾𝑉 (𝑥𝑘+1)]− 𝑉 (𝑥𝑘). (4.4)

36

4.6. Exploration

If the agent was using a Q-function instead of V-function, it would be also necessary
to choose the next action 𝑢𝑘+1 for the temporal difference error computation as in
the SARSA algorithm ([39])

𝛿𝑘 = [𝑟𝑘+1(𝑥𝑘, 𝑢𝑘) + 𝛾𝑄𝑘(𝑥𝑘+1, 𝑢𝑘+1)]−𝑄𝑘(𝑥𝑘, 𝑢𝑘). (4.5)

The temporal difference error is used to update the value function estimate. The
general idea is to move the value function estimate against the temporal difference
error

𝑉𝑘+1(𝑥𝑘) = 𝑉𝑘(𝑥𝑘) + 𝛼𝑘𝛿𝑘, (4.6)

where 𝛼𝑘 ∈ (0; 1⟩ is the learning rate. The policy is usually updated in longer intervals
and/or with lower learning rate than the value function, which is similar to the natural
learning process – if some situation stops fitting our previous experience, we also go
through it several more times before we ultimately adjust our behavior (policy) to
that change.

It is noticeable that an agent in both cases 4.4 and 4.5 uses the estimate of value
function for computation of temporal difference error. Therefore it updates a value
estimate for some state on the basis of value estimate for some other state, which is
called bootstrapping. Even though the updates are performed using imprecise data,
it can be proven ([39]) that the learning process still converges to the optimal value
function in the mean with a sufficiently small constant learning rate 𝛼𝑘 and it is
guaranteed to converge when the learning rate decreases in time and satisfies the
stochastic approximation conditions

∞∑︁
𝑘=1

𝛼𝑘 =∞,
∞∑︁

𝑘=1
𝛼2

𝑘 <∞. (4.7)

There is a specific group of temporal difference methods called actor–critic methods,
which use two separate independent structures to represent the policy and value
function. The structures are called an actor and a critic. The actor implements the
policy, i.e. it selects the actions to be executed, while the critic evaluates the actions
taken by the actor, which estimates a state value function. The main purpose of the
critic is to produce a scalar temporal difference error signal, which is used to tune
both of the structures simultaneously. The explicit representation of policy minimizes
computational costs for large action spaces and is easily extensible from discrete to
continuous environments.

Overall, the temporal difference methods are state of the art methods for online
applications that do not need an environment model and have the ability to learn
incrementally along trajectories. All of the methods we applied to the magnetic
platform are based on the temporal difference.

4.6. Exploration

As already mentioned, the agent has to balance between the exploration (i.e. try-
ing new actions and discovering new states) and the exploitation (using its previous

37

4. Reinforcement learning

experience to maximize the obtained reward). It is a difficult trade-off because the
agent risks visiting undesirable states during the exploration beside discovering some
policy improvements, which often decreases the reward. On the other hand, when the
agent only exploits its experience in order to get maximal possible reward based on
its current knowledge, it will stay stuck with a suboptimal policy. However, too much
exploration makes it impossible to evaluate the current policy, because the effect of
exploration can prevail over the effect of the actions intended by the current policy.
In addition, the situation can be complicated by a stochastic environment, which re-
quires trying an action in some state several times before getting a reliable estimate
of the resulting reward.

A very common solution of the above dilemma is the 𝜖-greedy action selection ([39]).
In every step, the algorithm decides between a greedy action, which is selected with
probability (1−𝜖) and exploratory (random) action, which is selected with probability
𝜖. A greedy action is the one which has the highest expected reward according to the
current estimate of the value function, exploratory action is any other one. When the
action space is discrete, all of the actions have equal probabilities of being selected
as an exploratory action. In the continuous action case, the exploratory action is
selected as a random number drawn from a uniform distribution over the available
interval of actions.

The 𝜖-greedy action selection is not suitable for some tasks, because a bad ex-
ploratory action can completely destroy the task (e.g. the cliff walking example
in [39]). In such cases a softmax action selection is more convenient. The softmax
selection works similarly to the 𝜖-greedy selection, but it uses a different than uniform
distribution during exploratory action selection to discriminate the bad-rated actions
in favor of the better-rated ones. [39] mentions the Boltzmann distribution as the
most common one for softmax action selection.

In continuous action spaces, it is also possible to use an additive exploratory term
in every time step ([38]). The action is then computed as a sum of a component given
by current policy and the exploratory term, which is a random number, typically from
normal distribution with zero mean value. It is a common practice to decrease the
variance of the exploratory term in time to get a better performance after the agent
has already explored the relevant areas of the environment.

4.7. Function approximation

The experience and policy of an agent in simple discrete environments can be easily
represented in a tabular form. However, if the agent has to learn in a high-dimensional
(or continuous) environment with large (or infinite) number of states, the tabular
representation becomes inappropriate. Although the continuous environment could be
discretized (sampled), a fine sampling would lead to a vast state space anyway. Several
problems arise with the huge state spaces, jointly called the curse of dimensionality.
First, the tabular representations would require huge amounts of memory. Second, the
computational requirements for maintenance and searching through the tables would

38

4.7. Function approximation

be too high and third, the probability of experiencing an exact state represented by
every single table entry would drop close to zero, which is probably the most serious
problem out of the three ones. Acting in vast and/or continuous environment, the
agent needs the ability to generalize from experienced states to similar ones. The
generalization ability is brought by function approximation.

Function approximation attempts to estimate a function in some region from ob-
served samples, i.e. to generalize. The principle will be demonstrated on the approxi-
mation of a general function 𝑓(𝑥), which can be in practice a V-function, a Q-function
or a policy function ℎ(𝑥) for a continuous action space. An approximator 𝑓(𝑥, 𝜃) for
the function 𝑓(𝑥) is not only function of the state 𝑥, but also of a parameter vector
𝜃 = [𝜃1, 𝜃2, . . . , 𝜃𝑛]𝑇 . Training a function approximator is a supervised learning task
which searches for the suitable parameters 𝜃 that minimize the approximation error.
The parametrization of the function approximator brings the generalization ability,
because an adjustment of a parameter causes change of 𝑓(𝑥, 𝜃) in a whole region of
the state-space.

There is a variety of function approximators used for reinforcement learning in-
cluding the tile coding, fuzzy approximation, neural networks, and basis function
approximation ([39], [37]). The basis function approximators (BFA) are probably the
most commonly used option for control applications ([38], [43], [40], [11]), although
some of the authors call them neural networks. Formally, the BFA can be described
as a single-layer feedforward neural network with a single output neuron, but the
principle is still the same.

4.7.1. Linear Basis Function Approximation

The linear BFA are parametric approximation methods, which are linear in their
parameters. Each parameter 𝜃𝑖 has a corresponding basis function 𝜑𝑖(𝑥), which spe-
cifies the region of influence of the parameter in the state-space. Some parameters
can therefore have a global influence, while the others are only local. The function
approximation is computed as

𝑓(𝑥, 𝜃) =
𝑛∑︁

𝑖=1
𝜑𝑖(𝑥)𝜃𝑖 = 𝜑𝑇 (𝑥)𝜃, (4.8)

where 𝜑(𝑥) = [𝜑1(𝑥), 𝜑2(𝑥), . . . , 𝜑𝑛(𝑥)]𝑇 is a vector of basis functions. The linearity
in parameters 𝜃𝑖 is a big advantage that can be exploited for tuning of the parameter
vector. With a known desired approximated value 𝑓𝑘(𝑥𝑘), actual parameter vector
estimate 𝜃𝑘 and learning rate 𝛼, we get the new parameter vector estimate using a
gradient-based update as

𝜃𝑘+1 = 𝜃𝑘 + 𝛼
[︁
𝑓𝑘(𝑥𝑘)− 𝑓(𝑥𝑘, 𝜃𝑘)

]︁
∇𝜃 𝑓(𝑥, 𝜃)

⃒⃒⃒
𝑥=𝑥𝑘,𝜃=𝜃𝑘

, (4.9)

where the gradient of the approximated value function is directly the basis function
vector thanks to the linearity in parameters

∇𝜃𝑓(𝑥, 𝜃) = 𝜑(𝑥).

39

4. Reinforcement learning

Beside the gradient-based parameter tuning, which is not limited only to linear
function approximators, the linear least squares can be applied ([44]), either in batch
or recursive form, solving a system of linear equations in form

𝜑𝑇 (𝑥𝑘)𝜃 = 𝑓𝑘(𝑥𝑘), 𝑘 = 1 . . . 𝑁, (4.10)

where 𝑁 is the length of a batch or 𝑁 →∞ for recursive least squares.
The function approximation is a powerful tool that allows extension of reinforce-

ment learning to continuous environments, although it is typically impossible to reach
zero approximation error, which is a payoff for the generalization ability. The com-
bination of nonzero approximation error with temporal difference learning can in
extreme cases lead to divergence of the learning process ([18]) or to converge to a
region instead of a point ([22]) including oscillations around the solution. However,
it is usually possible to tune the parameters of the learning algorithm to reach con-
vergence.

4.8. Online IRL control

The first of the applied methods we will describe here is the integral reinforcement
learning (IRL, [31], [44], [43]). The method allows an online solution of an optimal
control problem with only partial knowledge of the controlled system. The IRL is
developed for a nonlinear dynamic system representable in form

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢, (4.11)

where 𝑥 is the state of the controlled system and 𝑢 is the control input. The optimal
feedback control policy 𝑢 = ℎ(𝑥) is sought using temporal difference learning on a
state value function

𝑉 ℎ (𝑥 (𝑡)) =
∫︁ ∞

𝑡
𝑟 (𝑥 (𝜏) , 𝑢(𝜏)) d𝜏, (4.12)

where the reward is defined as 𝑟(𝑥, 𝑢) = 𝑄(𝑥)+𝑢𝑇 𝑅𝑢 with negative-definite function
𝑄(𝑥) and negative-definite matrix 𝑅. The optimal policy satisfies the continuous-time
version of Bellman equation

0 = 𝑟 (𝑥, ℎ(𝑥)) + 𝑉̇ ℎ(𝑥), 𝑉̇ ℎ(𝑥) =
(︁
∇𝑉 ℎ

𝑥

)︁𝑇
[𝑓(𝑥) + 𝑔(𝑥)ℎ(𝑥)] (4.13)

For the case of a linear system we attempt to solve an LQR control problem, so
the model and value function turn into

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (4.14)

and
𝑉 ℎ (𝑥 (𝑡)) = 1

2

∫︁ ∞

𝑡

(︁
𝑥𝑇 (𝜏)𝑄𝑥(𝜏) + 𝑢𝑇 (𝜏)𝑅𝑢(𝜏)

)︁
d𝜏 (4.15)

with both 𝑄 and 𝑅 being negative-definite matrices. The usual linear quadratic
performance index for LQ-optimal control assumes positive (semi–)definite weighting
matrices, but we are using the reward convention instead of cost here, so the sign of
the weights is opposite.

40

4.8. Online IRL control

𝐺 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢

𝜌̇ = 𝑟(𝑥, 𝑢)
Sampler V–function

update

Figure 4.3. Hybrid architecture of the IRL. The control loop and integral reinforcement can
be implemented in continuous-time (e.g. in an analogue way), while the value function and
feedback gain are updated in discrete time-steps.

4.8.1. Integral reinforcement

As the adaptive algorithm execution runs on a digital computer, it is inevitable to use
some form of sampling. Although it would be possible to discretize the Equation 4.13
with sampling period 𝑇 and sampled reward 𝑟𝑠 to get its discrete form

0 = 𝑟𝑠 (𝑥𝑘, ℎ(𝑥𝑘))
𝑇

+ 𝑉 ℎ(𝑥𝑘+1)− 𝑉 ℎ(𝑥𝑘)
𝑇

, (4.16)

the continuous Bellman equation would be only approximated in such case. The
IRL can provide an exact variant called integral reinforcement form, which allows
processing of sampled signals but preserves the continuous time. The Equation 4.13
is rewritten as

𝑉 ℎ (𝑥(𝑡)) = 𝜌(𝑡) + 𝑉 ℎ (𝑥(𝑡 + 𝑇)) , 𝜌(𝑡) =
∫︁ 𝑡+𝑇

𝑡
𝑟 (𝑥(𝜏), 𝑢(𝜏)) d𝜏, (4.17)

where 𝜌(𝑡) is called integral reinforcement. The IRL is a hybrid framework, where the
integration of reward signal is performed in the continuous time domain, while the
value function is updated at discrete moments with period 𝑇 using sampled informa-
tion from the system. After every update of value function, the policy is set greedy
with respect to it as

ℎ𝑘(𝑥) = −1
2𝑅−1𝑔𝑇 (𝑥)∇𝑉 ℎ𝑘 . (4.18)

The feedback control can be performed in continuous time, too, with a piecewise
constant control policy.

4.8.2. Linear system case

The value function is approximated with BFA in form 4.8. In the case of a linear
system, we know that the optimal value function for an infinite horizon LQR problem
is a quadratic form

𝑉 ℎ*(𝑥) = 𝑥𝑇 𝑃 𝑥 ≈ 𝜑𝑇 (𝑥)𝜃, 𝑥 ∈ R𝑛, 𝜃 ∈ R[𝑛(𝑛+1)/2] (4.19)

and the corresponding optimal control policy is a linear state feedback

ℎ*(𝑥) = −𝑅−1𝐵𝑇 𝑃 𝑥, (4.20)

41

4. Reinforcement learning

Algorithm 4.2 IRL policy iteration with value function aproximation
initialize an admissible policy ℎ(𝑥) with a zero parameter vector 𝜃

repeat
collect a set of samples {[𝑥𝑖(𝑡), 𝑥𝑖(𝑡 + 𝑇), 𝜌𝑖(𝑡)]} using policy ℎ𝑘(𝑥)
solve system of equations

[︁
𝜑𝑇 (𝑥𝑖(𝑡))− 𝜑𝑇 (𝑥𝑖(𝑡 + 𝑇))

]︁
𝜃𝑘+1 = 𝜌𝑖(𝑡)

reconstruct 𝑃 𝑘+1 from 𝜃𝑘+1
update the policy as ℎ𝑘+1(𝑥) = −𝑅−1𝐵𝑇 𝑃 𝑘+1𝑥

until ||𝜃𝑘 − 𝜃𝑘+1|| > 𝜀, 𝜀 is a small positive number

where 𝑃 ∈ R𝑛×𝑛 is a symmetric negative-semidefinite solution1 of continuous-time
algebraic Riccati equation (CARE)

𝐴𝑇 𝑃 + 𝑃 𝐴 + 𝑄− 𝑃 𝐵𝑅−1𝐵𝑇 𝑃 = 0. (4.21)

Because the optimal value function is a quadratic function of state, it is advantageous
to use quadratic functions of the state variables as the basis functions for BFA

𝜑(𝑥) =
[︁

𝑥2
1 𝑥1𝑥2 . . . 𝑥1𝑥𝑛 . . . 𝑥2

2 𝑥2𝑥3 . . . 𝑥2𝑥𝑛 𝑥2
𝑛

]︁𝑇
.

With the quadratic basis functions, the parameter vector 𝜃 of the function approx-
imator contains the estimates of the elements of the CARE solution 𝑃 with the
off-diagonal elements multiplied by a factor of 2, because we have

𝜑𝑇 (𝑥)𝜃 ≈ 𝑥𝑇 𝑃 𝑥 =
𝑛∑︁

𝑖=1
𝑃𝑖𝑖𝑥

2
𝑖 + 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑃𝑖𝑗𝑥𝑖𝑥𝑗 . (4.22)

The learning process can be carried out either as policy iteration (Algorithm 4.2)
or as value iteration (Algorithm 4.3). Both of the algorithms collect state, action
and reward samples along the trajectory and use them to build up an overdetermined
system of equations

Γ𝜃 = 𝑧 (4.23)

where the index 𝑖 in both algorithms can be understood as an equation index, because
the 𝑖-th equation of the system of equations yields from the 𝑖-th collected set of samples
{[𝑥𝑖(𝑡), 𝑥𝑖(𝑡 + 𝑇), 𝜌𝑖(𝑡)]}.

The policy iteration has more strict requirements on the initial policy than the
value iteration. The initial policy for policy iteration must be admissible, which
means that it is stabilizing and yields a finite discounted reward. The value iteration
does not necessarily need an admissible initial policy to converge, but for a real
application it is reasonable that it is admissible, too, because a destabilization may
e.g. damage the controlled system. Another difference between the two variants is
that the policy iteration has a quadratic rate of convergence to the optimal solution,
while the convergence rate of the value iteration is not defined and typically slower.

The IRL is able to solve the CARE online without the knowledge of the full system
dynamics. We can see that both algorithms 4.2 and 4.3 exploit only knowledge of the

1When 𝑄 is negative-definite or (𝐴, 𝑄) is an observable pair, 𝑃 is negative-definite.

42

4.9. Online LSPI bang-off-bang control

Algorithm 4.3 IRL value iteration with value function aproximation
initialize an arbitrary policy ℎ(𝑥) with a consistent parameter vector 𝜃

repeat
collect a set of samples {[𝑥𝑖(𝑡), 𝑥𝑖(𝑡 + 𝑇), 𝜌𝑖(𝑡)]} using policy ℎ𝑘(𝑥)
solve system of equations 𝜑𝑇 (𝑥𝑖(𝑡))𝜃𝑘+1 = 𝜌𝑖(𝑡) + 𝜑𝑇 (𝑥𝑖(𝑡 + 𝑇))𝜃𝑘

reconstruct 𝑃 𝑘+1 from 𝜃𝑘+1
update the policy as ℎ𝑘+1(𝑥) = −𝑅−1𝐵𝑇 𝑃 𝑘+1𝑥

until ||𝜃𝑘 − 𝜃𝑘+1|| > 𝜀, 𝜀 is a small positive number

input matrix 𝐵 of the controlled system. In addition, the IRL can also adapt to the
changes of the system’s dynamics during the learning process. A disadvantage of the
proposed method is that it requires a full state information to learn and control the
system, which can become a problem when the full state cannot be measured directly
and the model of the system is unknown. For mechanical systems like our ball on
the platform, we are often able to measure the position, but the information about
the velocity is missing, so we have to apply a filtering or numerical differentiation
to compute the velocity from the position data. Output feedback variants of policy
and value iteration have been already developed in [30], which do not need the full
state information. However, they assume a deterministic (i.e. noise-free) linear time-
invariant system, so they are not applicable for a real model.

Another drawback of the IRL is the need for persistent excitation of the controlled
system to prevent the system of equations 4.23 from becoming rank-deficient, which
would lead to ambiguous parameter vector 𝜃. The issue is addressed more in detail
in Section 6.1.

4.9. Online LSPI bang-off-bang control

The second method selected for the control of the platform is the online least-squares
policy iteration (LSPI) developed in [11]. It is an online algorithm acting in a con-
tinuous state-space, discrete action space and discrete time with presented successful
results in control of a real physical model of an underactuated inverted pendulum. Un-
like the IRL presented in the previous section, the online LSPI does not presume any
particular structure of the controlled system and considers a single-input controlled
dynamic system in a general form

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), 𝑢𝑘 = ℎ(𝑥𝑘). (4.24)

The policy iteration is run with a Q-function approximated with a BFA

𝑄(𝑥, 𝑢) ≈ 𝑄̂(𝑥, 𝑢) = 𝜑𝑇 (𝑥, 𝑢)𝜃, 𝜃 ∈ R𝑛 (4.25)

which yields a subspace 𝑆, the subspace of representable Q-functions. Because we
have a discrete action space, with three control actions available for the bang-off-
bang control, the Q-function can be represented as a union of three separate V-
functions, one for each control action. The BFA uses a joint vector of basis functions

43

4. Reinforcement learning

𝜑(𝑥) =
[︁
𝜑1(𝑥), . . . , 𝜑𝑛/3(𝑥)

]︁
for all control actions, learning the coefficients 𝜃𝑖 for

every action separately. This approach leads to a stacked basis function vector

𝜑(𝑥, 𝑢) =
[︁
ℐ(𝑢 = 𝑢1) · 𝜑𝑇 (𝑥), ℐ(𝑢 = 𝑢2) · 𝜑𝑇 (𝑥), ℐ(𝑢 = 𝑢3) · 𝜑𝑇 (𝑥)

]︁𝑇
(4.26)

with an indicator function ℐ, which is 1 when the equality in its argument holds and
0 otherwise. Note that the joint basis function vector is independent on the control
action. The dependence of 𝑄̂(𝑥, 𝑢) on the control action is introduced by the indicator
function ℐ.

4.9.1. Incremental parameter vector estimation

The approximate Q-function is computed using a projection-based policy evaluation
([4]). The “projection” refers to the fact that the method solves the Bellman equa-
tion 4.3 projected into the subspace of representable Q-functions 𝑆. At every iteration
𝑘 of the algorithm, the current approximation of the Q-function 𝜑𝑇 𝜃𝑘 is combined
with reward 𝑟𝑘 to produce a sample of the estimated Q-function. The samples col-
lected in consecutive iterations usually characterize a function that does not lie in
the subspace 𝑆, so they have to be projected into it using weighted least-squares pro-
jection 𝑃 𝑤 in order to compute a new approximation 𝜑𝑇 𝜃𝑘+1. The process leads to
projected Bellman equation

𝑄̂(𝑥, 𝑢) = 𝑃 𝑤
(︁
𝑟(𝑥, 𝑢) + 𝛾𝑄̂(𝑥, 𝑢)

)︁
, (4.27)

which can be expressed in form of a weighted least-squares problem suitable for in-
cremental updates

Γ𝜃 = 𝑧 + 𝛾Λ𝜃. (4.28)

Parameters Γ and Λ are square matrices from R𝑛×𝑛 and 𝑧 is a vector from R𝑛. The
parameters are initialized with zeros except for Γ, which is initialized as a small mul-
tiple of an identity matrix 𝜀𝐼𝑛×𝑛, 𝜀 > 0 to guarantee its invertibility. The weighting
of the least-squares is hidden in the way how Γ, Λ and 𝑧 are updated. Along the
controlled system’s trajectory, as the control policy ℎ(𝑥) is being applied, a set of
data {𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1, 𝑟(𝑥𝑘, 𝑢𝑘)} is collected every time step 𝑘. The collected data set is
used for an incremental update of the least-squares problem 4.28 as

Γ𝑘+1 = Γ𝑘 + 𝑤𝑘𝜑𝑇 (𝑥𝑘, 𝑢𝑘), (4.29)
Λ𝑘+1 = Λ𝑘 + 𝑤𝑘𝜑𝑇 (𝑥𝑘+1, ℎ(𝑥𝑘+1)),
𝑧𝑘+1 = 𝑧𝑘 + 𝑤𝑘𝑟(𝑥𝑘, 𝑢𝑘)

with weight vector 𝑤𝑘 = 𝜑(𝑥𝑘, 𝑢𝑘). Note that the IRL solution in Section 4.8.2
uses BFA as well, but the approximator can fit the sought quadratic form precisely,
so it does not require any projection. It is also noticeable that in LSPI, the data
points collected over the time are accumulated in the parameters Γ, Λ and 𝑧 using
summation to combine the previously collected and latest data. This is a significant
difference from the IRL approach in 4.23, where every data sample generates one

44

4.9. Online LSPI bang-off-bang control

equation and the previously collected data are forgotten after every policy update.
Unlike the IRL, the online LSPI retains the past data, which does not allow adaptation
to system parameter changes during learning, but does not require persistence of
excitation between every two consecutive policy updates. Another positive fact is that
the computational complexity of solving problem 4.28 depends only on the length of
the BFA parameter vector 𝜃, not on the amount of data observed.

4.9.2. Policy updates

The algorithm uses an 𝜖-greedy control policy with respect to the latest estimate
of the Q-function. The exploration rate 𝜖 decreases exponentially over time, which
ensures sufficient amount of exploration at the beginning of the learning process and
dominant exploitation of the control policy in the later learning phases when the
policy is already close to an optimal one. It is necessary to choose such value of
decay rate for 𝜖 that the exploration covers a time interval long enough for learning
a good policy. The algorithm would probably stay stuck on a bad and/or suboptimal
policy with a too fast decrease of 𝜖. On the other hand, a too slow decrease would
unnecessarily deteriorate the performance during learning.

Every 𝐾 transitions, the system of equations 4.28 is solved to update the BFA
parameter vector 𝜃 and thus also the policy. The constant 𝐾 is a tuning parameter of
the algorithm and it can vary from 1 to several thousands, defining the period of policy
updates. The extreme variant with 𝐾 = 1 which updates the BFA and policy after
every transition is called fully optimistic, because it believes that the most recent
sample of data (starting and resulting state, action and reward) is representative
enough for an update, which is not necessarily true in stochastic environments. When
𝐾 is set in the order of thousands, the online LSPI gets closer to its offline variant,
which fully evaluates the current policy before making an update.

The greedy policy after 𝑙-th update of the BFA can be expressed as

ℎ𝑙+1(𝑥) = arg max
𝑢

{︁
𝑄̂𝑙(𝑥, 𝑢)

}︁
. (4.30)

Note that the policy is not represented explicitly, but it is computed on demand after
measuring a particular state, because an explicit representation may be difficult in
continuous state-space and the greedy action computation 4.30 is not computationally
demanding.

The online LSPI seems to be a powerful tool for real-time online learning and
control. Its capabilities were experimentally demonstrated in [11] on a real model of an
inverted pendulum, which was swung up and stabilized in the upper unstable position.
The advantage of LSPI is that it does not assume any specific structure or knowledge
about the controlled system except for the at least approximately Markovian property
of the system’s state. In addition, the simplicity of the bang-off-bang control could
be appealing for direct coil currents control in the future.

45

4. Reinforcement learning

4.10. Online EBAC control

The third method for the Magman control we will present is the energy-balancing
actor-critic control (EBAC, [38]), which combines passivity based control (PBC) for
port-Hamiltonian systems with actor-critic reinforcement learning control. Although
the method requires a model of the controlled system, which seems to oppose to our
original aim of implementing a model-free learning controller it is appealing mainly
from two reasons. First, when the previously described RL methods did not work very
well, we were looking for a method that would effectively incorporate prior knowledge
about the controlled system into the learning process. Second, although the EBAC
uses a model knowledge, it is claimed to be robust to unmodeled nonlinearities like
actuator saturation.

4.10.1. Port-Hamiltonian control paradigm

Port-Hamiltonian paradigm is a specific way of representing, analyzing and controlling
dynamic systems. A detailed description can be found e.g. in [16]. The paradigm
is based on the description of the total energy stored in the system and exchanged
with its surrounding through ports. It is quite close to the bond graph paradigm. An
input-state-output port-Hamiltonian system is represented as

𝑥̇ = [𝐽(𝑥)−𝑅(𝑥)] (∇𝑥𝐻(𝑥)) + 𝑔(𝑥)𝑢, (4.31)
𝑦 = 𝑔𝑇 (𝑥) (∇𝑥𝐻(𝑥)) .

with a state vector 𝑥 ∈ R𝑛, control input 𝑢 ∈ R𝑚 and output 𝑦 ∈ R𝑚. The intercon-
nection matrix 𝐽(𝑥) and damping matrix 𝑅(𝑥) are mappings from the state space R𝑛

to the space R𝑛×𝑛. The interconnection matrix is antisymmetric, i.e. 𝐽(𝑥) = −𝐽(𝑥)𝑇 ,
while the damping matrix is symmetric and positive semi-definite. The Hamiltonian
𝐻(𝑥) : R𝑛 → R expresses the total energy stored in the system and 𝑔(𝑥) : R𝑛 → R𝑛×𝑚

is a full-rank input matrix. The input and output are conjugated variables whose
product is power. The change of the energy accumulated in the system is given by
the difference of dissipated and added power, which is expressed by the power balance
equation

𝐻̇(𝑥) = (∇𝑥𝐻(𝑥))𝑇 𝑥̇ = −
[︁
(∇𝑥𝐻(𝑥))𝑇 𝑅(𝑥) (∇𝑥𝐻(𝑥))

]︁
+ 𝑢𝑇 𝑦 (4.32)

where the term in brackets expresses the power dissipated in the open-loop and the
term 𝑢𝑇 𝑦 the added power supplied through the input port.

The objective of energy-balancing passivity-based system control (EB-PBC) is to
design such feedback for the controlled system that its new Hamiltonian function
𝐻d(𝑥) has the minimum located at a desired equilibrium 𝑥*, i.e. to make the system
passive with respect to a desired Hamiltonian function, which describes the total
energy of the closed-loop system. In addition, the feedback also has to ensure a
desired damping 𝑅d(𝑥). The task is accomplished by means of energy shaping and

46

4.10. Online EBAC control

damping injection, leading to a closed-loop system

𝑥̇ = [𝐽(𝑥)−𝑅d(𝑥)] (∇𝑥𝐻d(𝑥)) , (4.33)
𝐻̇d(𝑥) = − (∇𝑥𝐻d(𝑥))𝑇 𝑅d(𝑥) (∇𝑥𝐻d(𝑥)) . (4.34)

The control policy consists of an energy shaping part ℎe(𝑥) and a damping injec-
tion part ℎd(𝑥). The energy shaping part ensures that the minimum of the desired
Hamiltonian function coincides with the desired equilibrium. The analytic expression
for the energy shaping part presented in [38] is

ℎe(𝑥) = 𝑔†(𝑥)𝐹 (𝑥) (∇𝑥𝐻a(𝑥)) , (4.35)

𝑔†(𝑥) =
(︁
𝑔𝑇 (𝑥)𝑔(𝑥)

)︁−1
𝑔𝑇 (𝑥),

𝐹 (𝑥) = 𝐽(𝑥)−𝑅(𝑥),

where 𝐻a(𝑥) = 𝐻d(𝑥) − 𝐻(𝑥) is the added energy function, so its time derivative
𝐻̇a(𝑥) is the power added by the controller through the system’s input port. The
added energy function solves the set of partial differential equations2[︃

𝑔⊥(𝑥)𝐹 𝑇 (𝑥)
𝑔𝑇 (𝑥)

]︃
(∇𝑥𝐻a(𝑥)) = 0, 𝑔⊥(𝑥)𝑔(𝑥) = 0. (4.36)

The damping injection part of the control policy feeds back the output of the energy-
shaped system to ensure the desired damping 𝑅d(𝑥) = 𝑅(𝑥) + 𝑔(𝑥)𝐾(𝑥)𝑔𝑇 (𝑥) with
𝐾(𝑥) being a symmetric matrix. Although the traditional EB-PBC assumes positive-
semidefinite matrix 𝐾(𝑥), it can be advantageous to relax this constraint to be able
to supply energy into the controlled system through the damping term, as shown in
the inverted pendulum swing-up [38]. When the matrix 𝐾(𝑥) is known, the damping
injection can be expressed as

ℎd(𝑥) = −𝐾(𝑥)
[︁
𝑔𝑇 (𝑥) (∇𝑥𝐻d(𝑥))

]︁
. (4.37)

The overall control policy for the energy-balancing passivity-based control is obtained
as the sum of energy shaping and damping injection part

ℎ(𝑥) = ℎe(𝑥) + ℎd(𝑥). (4.38)

4.10.2. Actor-critic for energy balancing control

The contribution of the actor-critic reinforcement learning for energy balancing [38] is
that it does not require explicit specification of the desired Hamiltonian function and
damping matrix neither the analytic solution of partial differential equations 4.36 or
finding the damping injection matrix. The control objective is specified by the reward
signal instead and the reinforcement learning is used to find the corresponding para-
meters 𝐻d(𝑥) and 𝐾(𝑥). The EBAC framework uses one critic and two independent
actors that learn in trials. The critic approximates a V-function, one of the actors is

2The vector 𝑔⊥(𝑥) is the full-rank left annihilator of 𝑔(𝑥).

47

4. Reinforcement learning

responsible for the energy shaping part of the policy, learning the desired Hamiltonian
function, and the other one serves for the damping injection, learning the damping
matrix.

The critic is a BFA (4.8) in form 𝑉 (𝑥, 𝜃) = 𝜑𝑇
c (𝑥)𝜃. The critic parameter vector is

tuned using temporal difference gradient descent method with eligibility traces [39].
The eligibility traces attempt to speed up the learning by retaining information about
the previously visited states and propagating the temporal difference signal not only
to the value of the last visited state but also to the preceding ones. Although there
are empirical results which claim that eligibility traces can be counterproductive for
some tasks ([41]), the authors of [38] find them helpful for the inverted pendulum and
we have a positive experience for the ball, too. The incremental parameter vector
update for the critic with temporal difference 𝛿 and eligibility traces 𝑒 is

𝜃𝑘+1 = 𝜃𝑘 + 𝛼c𝛿𝑘+1𝑒𝑘+1, (4.39)

where 𝛼c is the critic learning rate and the temporal difference and eligibility traces
are defined as

𝛿𝑘+1 = 𝑟(𝑥𝑘+1, 𝑢𝑘) + 𝛾𝜑𝑇
c (𝑥𝑘+1)𝜃𝑘 − 𝜑𝑇

c (𝑥𝑘)𝜃𝑘, (4.40)
𝑒𝑘+1 = 𝛾𝜆𝑒𝑘 + 𝜑c(𝑥𝑘),

with reward signal 𝑟, discount factor 𝛾 and eligibility trace decay rate 𝜆 ∈ ⟨0; 1).
The energy shaping actor is constrained by conditions arising from the system of

partial differential equations 4.36, which can be rewritten as[︃
𝑔⊥(𝑥)𝐹 𝑇 (𝑥)

𝑔𝑇 (𝑥)

]︃
⏟ ⏞

𝐴(𝑥)

[(∇𝑥𝐻d(𝑥))− (∇𝑥𝐻(𝑥))] = 0. (4.41)

The matrix 𝐴(𝑥) typically has a kernel with basis 𝑁(𝑥) ∈ R𝑛×𝑏 so 4.41 can be
expressed as

(∇𝑥𝐻d(𝑥))− (∇𝑥𝐻(𝑥)) = 𝑁(𝑥)𝑎, 𝐴(𝑥)𝑁(𝑥) = 0, 𝑎 ∈ R𝑏. (4.42)

The state vector 𝑥 of the system can be reordered and split into two components as
𝑥 =

[︁
𝑤𝑇 𝑧𝑇

]︁𝑇
, where the vector 𝑤 corresponds with the non-zero rows of 𝑁(𝑥)

and the vector 𝑧 with the zero ones. After the reordering, 4.42 turns into[︃
∇𝑤𝐻d(𝑥)
∇𝑧𝐻d(𝑥)

]︃
−

[︃
∇𝑤𝐻(𝑥)
∇𝑧𝐻(𝑥)

]︃
=

[︃
𝑁𝑤(𝑥)

0

]︃
𝑎, (4.43)

from where it is already obvious that the energy shaping can be done only on state
variables 𝑤, because 4.43 requires that ∇𝑧𝐻d(𝑥) = ∇𝑧𝐻(𝑥). The desired Hamilto-
nian function is therefore parametrized as a combination of the original Hamiltonian
function and a BFA 4.8 acting on the energy-shaping state variables

𝐻̂d(𝑥, 𝜉) = 𝐻(𝑥) + 𝜑𝑇
e (𝑤)𝜉, 𝜑e(𝑤), 𝜉 ∈ R𝑑, (4.44)

48

4.11. Conclusions

which implicitly satisfies the conditions imposed by 4.41.
The damping injection is parametrized with a variant of BFA 4.8 acting on the

whole state. However, the form 4.8 approximates only a scalar function, while 𝐾(𝑥)
is a matrix in general, so there is a separate approximator for each element of 𝐾(𝑥)

𝐾̂𝑖𝑗(𝑥, Ψ𝑖𝑗) = 𝜑𝑇
d (𝑥)Ψ𝑖𝑗 , 𝜑d(𝑥), Ψ𝑖𝑗 ∈ R𝑒 (4.45)

The symmetry of matrix3 𝐾̂(𝑥, Ψ) is enforced by setting Ψ𝑖𝑗 = Ψ𝑗𝑖. The control
policy 4.38 with the use of approximators 4.44 and 4.45 changes to

ℎ(𝑥, 𝜉, Ψ) = 𝑔†(𝑥)𝐹 (𝑥)
[︃

(∇𝑤𝜑e(𝑤))𝑇 𝜉

0

]︃

− 𝐾̂(𝑥, Ψ)𝑔𝑇 (𝑥)
[︃

(∇𝑤𝜑e(𝑤))𝑇 𝜉 +∇𝑤𝐻(𝑥)
∇𝑧𝐻(𝑥)

]︃
(4.46)

The learning of actor and critic approximators requires sufficient exploration, which
is ensured by extending the control action with a random additive component Δ𝑢̂

drawn from a normal distribution 𝒩 (0, 𝜎2). The variance of the distribution is chosen
with respect to the available range of control action, usually around 50% of the
maximal available amplitude. At every time step 𝑘, a control action is generated

𝑢̂𝑘 = ℎ(𝑥𝑘, 𝜉𝑘, Ψ𝑘) + Δ𝑢̂𝑘. (4.47)

Afterwards, the control action 𝑢̂𝑘 is saturated to the available range yielding a valid
control action 𝑢𝑘 ∈ ⟨𝑢min; 𝑢max⟩ and an updated exploration term Δ𝑢𝑘 consistent
with the saturated value is computed

Δ𝑢𝑘 = 𝑢𝑘 − ℎ(𝑥𝑘, 𝜉𝑘, Ψ𝑘). (4.48)

The updated exploration term is used together with the temporal difference produced
by the critic to update the parameters of both actors

𝜉𝑘+1 = 𝜉𝑘 + 𝛼ae𝛿𝑘+1Δ𝑢𝑘∇𝜉ℎ̄(𝑥, 𝜉, Ψ), (4.49)
[Ψ𝑖𝑗]𝑘+1 = [Ψ𝑖𝑗]𝑘 + 𝛼ad𝛿𝑘+1Δ𝑢𝑘∇Ψ𝑖𝑗 ℎ̄(𝑥, 𝜉, Ψ), (4.50)

where 𝛼ae and 𝛼ad are learning rates of the energy shaping and damping injection
actors and ℎ̄(𝑥, 𝜉, Ψ) denotes the control policy saturated to the valid range of control
actions. The saturation of the control actions has to be taken into consideration
because it zeroes the gradient of the policy when it is out of bounds.

4.11. Conclusions

This chapter provided a brief introduction to the reinforcement learning together with
the description of the three different methods that were selected for implementation,
simulation and experimental evaluation with the physical magnetic platform. Even

3The parameter Ψ is a three-dimensional matrix, so its elements Ψ𝑖𝑗 are vectors.

49

4. Reinforcement learning

though two of the selected methods use partial (IRL) or even full knowledge (EBAC)
of the model of the controlled system, they should be able to adapt to the unmodeled
dynamics. All of the three methods seem to be suitable for learning a control policy
in real-time along the trajectories of the controlled system. The implementation of
the methods and experimental results achieved in simulations and with real magnetic
platform are addressed in Chapters 6 and 7.

50

5. Auto-identification

This chapter addresses the topic of a simple controller design for the magnetic plat-
form that uses auto-identification approach to control differently sized balls. The
auto-identification scheme can be seen as an instance of adaptive control. The main
difference between the adaptive and learning control is that while the learning control
is very flexible and it attempts to find the suitable control strategies itself like the
reinforcement learning, the adaptive control rather relies on tuning of parameters of
some rigid structure, which already defines the control strategy up to certain extent.
However, the adaptation ability still allows dealing with imprecision of the model of
the controlled system or reacting to the changes of the system’s parameters in real-
time. The adaptive control is a well-explored area with a number of publications and
overviews available like [28] or [17].

The adaptive control methods can be classified with respect to different criteria.
First, we can distinguish between direct (or implicit) and indirect (or explicit) adap-
tive control. As the term suggests, the direct adaptive schemes adjust directly the
parameters of the controller, not attempting to identify any model of the controlled
system. On the contrary, the indirect scheme first estimates the parameters of the
model of the controlled system and then applies some controller design method to
determine the parameters of the controller analytically.

We can also distinguish them by the time horizon of the adaptation. There are
methods with continuous adaptation ([28]), which never stop estimating and tuning
the parameters and therefore are suitable for control of systems whose parameters
change over the time. The other option is to adjust the controller parameters dur-
ing some initialization phase and then continue with the tuned controller as in the
traditional feedback control. Such approach is referred to as vanishing adaptation
([28]). The vanishing adaptation is suitable for control of imprecisely modeled plants
with constant parameters, because it cannot adapt to any changes of the controlled
system after the initialization phase. Unlike the continuous adaptation, the vanishing
adaptation usually does not have to deal with obstacles like the insufficient excitation
of the controlled system in steady state, which is a typical problem of closed-loop
identification.

As we have devoted a lot of time and effort to get into the reinforcement learn-
ing and the scope of the thesis is limited, we decided to design a simple auto-
identification scheme instead of studying and implementing some more sophisticated
adaptive method like iterative feedback tuning (IFT, [24]), model-reference adaptive
control (MRAC, [17]) or multiple-model adaptive control (MMAC, [17]). Because a
pure feedforward control is not suitable for our application, we could also consider
some hybrid schemes combining feedforward iterative learning control (ILC, [42],[47])

51

5. Auto-identification

with traditional feedback control into schemes called feedback error learning or current
cycle feedback (FEL, CCF, [42]).

5.1. Suggested approach

In the auto-identification approach, we will exploit the feedback linearization principle
described in Section 2.1.1. Although the magnetic force exerted by a magnetic field
on a ball scales with the mass of the ball and the acceleration of the ball produced
by a given force scales with the inverse of its mass, which seem to compensate each
other, the behavior of differently sized balls on the magnetic platform differs. The
difference is caused by the fact that the mass of a smaller ball is concentrated closer
to the coil array, where the the magnetic field is stronger. However, even though the
same coil activation factors produce different accelerations for differently sized balls,
for a fixed ball size, the resulting acceleration produced by a coil still scales with the
coil activation factor. This fact allows us to parametrize the feedback linearization in
such way that we will be able to use the same feedback controller for differently sized
balls while maintaining the control performance.

The feedback linearization presented in Section 2.1.1 is parametrized by an iden-
tified force profile and therefore computes coil factors needed to produce a required
force. This approach would not work for differently sized balls when using the same
controller parameters due to the different behavior of the balls described above. How-
ever, if we parametrize the feedback linearization by an acceleration profile, the con-
troller will be able to command ball acceleration instead of exerted force, which will
allow it to control differently sized balls in the exactly same way. The suggested
auto-identification method is based on identification of ball acceleration magnitude
profile as a function of distance from a single energized coil. It is sufficient to iden-
tify the magnitude of acceleration, because its direction yields from the position of
the ball with respect to the activated coil. We will refer to the “acceleration magni-
tude profile” as “acceleration profile” from now on. The acceleration profiles can be
measured for different balls separately and subsequently are used to parametrize the
linearization component, so that the ball position controller can always command a
required acceleration regardless of the size of the controlled ball. The optimization
constraint 2.4 from Section 2.1.1 is modified to

[︃
𝐴𝑥1,1(𝑥, 𝑦) . . . 𝐴𝑥4,4(𝑥, 𝑦)
𝐴𝑦1,1(𝑥, 𝑦) . . . 𝐴𝑦4,4(𝑥, 𝑦)

]︃
⏟ ⏞

A

⎡⎢⎢⎣
𝑈1,1

...
𝑈4,4

⎤⎥⎥⎦
⏟ ⏞

x

=
[︃

𝑎𝑥

𝑎𝑦

]︃
⏟ ⏞

b

, (5.1)

where the elements 𝐴𝑥𝑚,𝑛(𝑥, 𝑦) and 𝐴𝑦𝑚,𝑛(𝑥, 𝑦) are defined with the use of the iden-
tified acceleration profile 𝑎(𝑑) and the distance 𝑑 between the ball and a particular

52

5.2. Open-loop acceleration profile identification

coil [𝑚, 𝑛] as

𝐴𝑥𝑚,𝑛(𝑥, 𝑦) = −𝑎(𝑑) · (𝑥−𝑚)
𝑑

,

𝐴𝑦𝑚,𝑛(𝑥, 𝑦) = −𝑎(𝑑) · (𝑦 − 𝑛)
𝑑

.

The auto-identification approach can be overall classified as an indirect adaptive
scheme with vanishing adaptation. We assume that the parameters of the system do
not change over time.

5.2. Open-loop acceleration profile identification

During the initialization phase, we use an open-loop coil switching to identify the ball
acceleration profile. The identification assumes that the magnetic field produced by
every single coil is radially symmetrical and that all of the coils produce the same
magnetic field. We do not consider the mutual influencing of the neighboring coils.
Although the mutual influencing should be present in reality due to the iron slab
connecting the cores of coils on each module, the force measurements mentioned in
Section 2.1 have proven that the effect of mutual influencing is negligible.

With the above assumptions, we can freely choose an arbitrary internal coil 𝑐𝑖𝑗 of
the array1 and use it for the acceleration profile identification. The ball is attracted
to one of the coils neighboring with the coil 𝑐𝑖𝑗 and when it settles in the new position,
the neighboring coil is turned off and the coil 𝑐𝑖𝑗 is fully energized. The oscillations of
the ball above the coil 𝑐𝑖𝑗 are measured and the data is stored for subsequent offline
processing. The whole process is repeated several times for all neighbors of 𝑐𝑖𝑗 to
collect a sufficiently large dataset.

Since we are estimating acceleration from a noisy position measurement, it is ad-
vantageous to process the data offline, because the offline processing allows using non-
causal symmetrical differentiation filters which better suppress the noise and produce
more precise results than some higher order backward difference filters that would
have to be used for online processing. We compute the acceleration using noise ro-
bust differentiators for second derivative estimation from[25]. The differentiators are
odd-length symmetrical digital filters and they can compute precise second derivative
on up to third order polynomials2. The second derivative of a series 𝑥 at point 𝑥(𝑘)
is computed as

𝑥′′(𝑘) ≈ 1
2𝑁−3𝑇 2

[︃
𝑠0𝑥(𝑘) +

𝑀∑︁
𝑖=1

𝑠𝑖

(︂
𝑥(𝑘 + 𝑖)− 𝑥(𝑘 − 𝑖)

)︂]︃
(5.2)

where 𝑁 ≥ 5 is the odd length of the filter, 𝑇 is the sampling period of the differenti-
ated signal, {𝑠𝑖}𝑀𝑖=0 are the coefficients of the differentiator filter and 𝑀 = (𝑁 − 1)/2.

1By an internal coil of the array, we mean a coil that is surrounded with other coils from all sides.
2A completely precise result is achieved only for a noise-free signal.

53

5. Auto-identification

0 0.5 1 1.5 2
0

1

2

3

4

5

6

normalized distance from coil center

||a
||

[m
/s

2]

measured data
identified profile

(a) open-loop identification

0 0.5 1 1.5 2
0

1

2

3

4

5

6

normalized distance from coil center

||a
||

[m
/s

2]

theoretical profile
identified profile

(b) closed-loop identification

Figure 5.1. Identification of the acceleration profile with a 30 mm ball. Graph (a) shows
the result of open-loop identification. The measured data points are marked with blue
dots, the red dashed lines show the borders of the bins for acceleration sorting. The yellow
points denote the median-filtered values for each bin. This illustrative example uses a
lower number of bins than the identification algorithm to improve readability. Graph (b)
shows the result of closed-loop identification. The acceleration profile which yields from
the analytical force profile described in Section 2.1 is plotted with blue line for comparison,
because the data from the closed-loop identification is not suitable for visualization.

The differentiator filter coefficients 𝑠𝑖 are generated by a recursive algorithm

𝑠𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for 𝑖 > 𝑀,

1 for 𝑖 = 𝑀,
(2𝑁−10)𝑠𝑖+1−(𝑁+2𝑘+3)𝑠𝑖+2

𝑁−2𝑖−1 otherwise.
(5.3)

The acceleration profile identification has three phases. First, we compute the
𝑥– and 𝑦–acceleration component from the position in 𝑥– and 𝑦–direction according
to 5.2. The computation is efficiently implemented by convolution of the measured
data with the differentiator filter 𝑠𝑑 with coefficients 5.3. We determine the magni-
tudes of the acceleration vector 𝑎 =

[︁
𝑎𝑥 𝑎𝑦

]︁𝑇
over time

||𝑎(𝑘)|| =
√︁

𝑎2
𝑥(𝑘) + 𝑎2

𝑦(𝑘), 𝑎𝑥 = 𝑥 * 𝑠𝑑, 𝑎𝑦 = 𝑦 * 𝑠𝑑 (5.4)

Second, we sort the acceleration magnitudes into 𝐾 bins according to the correspon-
ding distance from the center of the activated coil 𝑐𝑖𝑗 at which the acceleration oc-
curred. The binning of acceleration according to distance is illustrated in Figure 5.1a.
Finally, we apply median filtering in each bin to estimate the magnitude of accelera-
tion as a function of distance from the coil center. The function is defined in a tabular
form as a set of pairs {𝑑𝑖, 𝑎̄𝑖}𝐾𝑖=1 where the values 𝑑𝑖 are the distances corresponding to
the centers of the bins and 𝑎̄𝑖 are the acceleration magnitudes. The pairs are plotted
with yellow points in Figure 5.1a. We have to be aware that the binning approach is

54

5.3. Control with identified acceleration profile

sensitive to the choice of bin size, which can bias the results, but the sensitivity does
not become evident if we use a sufficiently large dataset for the identification.

5.3. Control with identified acceleration profile

After the identification of the acceleration profile, the control scheme is completely
analogous to the force feedback linearization approach described in Section 2.1.1,
with the only difference that the controller commands acceleration of the ball instead
of the exerted magnetic force. The feedback linearization block uses the identified
acceleration profile as a lookup table to determine the contribution of each coil to the
overall acceleration of the ball at every time step, depending on how far from the coil
the ball is. Because the acceleration profile is defined by a set of discrete values and
the distance of the ball from a coil is a continuous variable, we use linear interpolation
between the discrete values to compute the acceleration contribution for any distance
from a particular coil when it is fully energized. The contributions of coils that are
not fully energized scale proportionally according to their activation factors.

When the position controller commands acceleration vector 𝑎̂, the feedback linea-
rization block solves an optimization problem

min ||𝑓 || s.t. 𝑎̂ =
𝑛∑︁

𝑖=1
𝑣𝑖𝑎̄(𝑑𝑖)𝑓𝑖, 𝑓 = [𝑓1, 𝑓2, . . . , 𝑓𝑛]𝑇 , (5.5)

where 𝑛 is the total number of coils, 𝑣𝑖 is unit direction vector pointing from the ball
position towards the 𝑖–th coil, 𝑎̄(𝑑𝑖) is the interpolated acceleration magnitude for
fully energized 𝑖–th coil and 𝑓𝑖 is its activation factor, which has to be determined.
The activation factors are afterwards converted to PWM duty cycles that produce
the commanded acceleration of the ball.

5.4. Closed-loop acceleration profile identification

The acceleration profile can be also identified under closed-loop control, which brings
a possibility to periodically improve the estimate of the acceleration profile while si-
multaneously controlling the ball. We can collect the information about the position
of the ball and coil activation factors over the time in the closed-loop. Having a suf-
ficient amount of such data from 𝑁 time-steps, we can turn the constraint from the
optimization problem 5.5 into a least-squares problem where the vector of accelera-
tion magnitudes 𝑎̄ is unknown, using the binning approach from Section 5.2 with 𝐾

equidistant bins centered at positions 𝑑𝑖

Γ𝑎̄ = 𝑧, Γ ∈ R2𝑁×𝐾 , 𝑎̄ ∈ R𝐾 , 𝑧 ∈ R2𝑁 (5.6)

The right-hand side 𝑧 is formed by stacking the observed ball accelerations over
time as 𝑧 = [𝑎𝑥1, 𝑎𝑦1, 𝑎𝑥2, 𝑎𝑦2, . . . , 𝑎𝑥𝑁 , 𝑎𝑦𝑁]𝑇 . The formation of matrix Γ is a bit
more complicated. The data from each time-step are used to generate two rows of
the matrix according the Algorithm 5.1. The resulting least-squares problem for

55

5. Auto-identification

Algorithm 5.1 Building least-squares problem for closed-loop identification
inputs from 𝑘–th time-step: position [𝑥, 𝑦]𝑇 , coil activation factors 𝑓

initialize rows Γ2𝑘 and Γ2𝑘+1 with zeros
compute direction vectors 𝑣𝑖 and distances 𝑑𝑖 from the position [𝑥, 𝑦]𝑇 to all 𝑛 coils
for 𝑖 = 1 . . . 𝑛 do

𝑏← [the bin index corresponding to distance 𝑑𝑖]
Γ(2𝑘, 𝑏) = Γ(2𝑘, 𝑏) + [𝑣𝑥]𝑖𝑓𝑖

Γ(2𝑘 + 1, 𝑏) = Γ(2𝑘 + 1, 𝑏) + [𝑣𝑦]𝑖𝑓𝑖

end for

acceleration magnitudes is afterwards solved in a standard way

𝑎̄ =
(︁
Γ𝑇 Γ

)︁−1
Γ𝑇 𝑧. (5.7)

The closed-loop identification needs sufficient excitation of the controlled system
which requires a rich reference signal. We chose a combination of harmonic and
stair-like reference signals to force some faster transients, because it is impossible to
extract useful information from the closed-loop in steady state or during slow changes.
If we compare Figures 5.1a and 5.1b, it is obvious that even with a rich reference
signal, the closed-loop identification is outperformed by the open-loop variant. The
open-loop identification is more precise because the ball under the closed-loop control
usually does not reach as high acceleration as during the free oscillations above a
fully energized coil. The low acceleration generated by the coils that are not fully
energized can be less noticeable than the measurement noise. In addition, the closed-
loop identification may also suffer from the correlation of the control input with the
measurement noise, which is a common problem of closed-loop identification.

5.5. Conclusions

We used the existing mathematical model and feedback linearization approach to de-
sign a simple adaptive control scheme based on auto-identification procedure, which
allows controlling position of differently sized balls using the same ball position con-
troller while maintaining the control performance thanks to the parametrization of
the underlying feedback linearization. The evaluation of the suggested approach in
simulations and with the real platform is given in Chapters 6 and 7. The methods
and models for collecting the data for auto-identification can be used for enhancement
and further analysis of the mathematical model of the platform in the future, e.g. to
determine whether the damping of the movement of the ball is mainly caused by the
rolling resistance on the surface of the platform, magnetic hysteresis or eddy currents
in the body of the ball.

56

6. Simulations

This chapter describes the implementation details and the results achieved with
the particular reinforcement learning methods and auto-identification in simulations.
The methods were first implemented as pure simulations in MATLAB functions and
scripts, because such implementation makes tuning and debugging of the algorithms
quite efficient. The simulations also allow to avoid all possible real-world compli-
cations like measurement noise, disturbances, actuator saturations, delays or model
imprecisions that could cause problems when deploying the algorithms with the real
magnetic platform. It is therefore reasonable to carry out the simulations first to
find out whether the problem is feasible at all. We started evaluating the methods
on a noise-free linear system, gradually adding the noise, saturations etc. to the
model. After being simulated, the control algorithms were implemented in Simulink
and evaluated with the real platform.

The first step with the reinforcement learning methods is the control of ball position
in one dimension, let’s say along the 𝑥–axis, above a single row of coils. The chosen
control objective for evaluation of reinforcement learning is to stabilize the ball in the
middle of the row of coils. In the presented results, we use the normalized platform
coordinates defined in Section 2.1, but we add an offset, so that the origin of the
coordinate system corresponds to the center of the platform.

The position control in two dimensions was planned as an extension after fully
mastering the one-dimensional control, including the set-point tracking and command
following. However, even the one-dimensional stabilization appeared to be quite a
complicated task, so the two-dimensional control is not addressed. We agreed with
the thesis supervisor to focus on the deployment of the control algorithms for a single
ball and leave the parallel manipulation mentioned in the assignment of the thesis as
a future work.

6.1. Online IRL

The IRL requires full state information and knowledge of the system’s input gain,
i.e. the projection from the inputs to the states. The state provided to the IRL does
not necessarily have to be directly the position and velocity of the ball, but it has to
be possible to reconstruct them from the provided information. This is a relatively
strict limitation of the IRL, because designer needs to have a good knowledge of the
structure of the controlled system in order to decide which measurements to use. The
benefit of the IRL is that it can adapt to unknown parameters of the dynamics of
the system. Although the ball one-dimensional movement dynamics is modeled as a

57

6. Simulations

double integrator (see Equation 2.1), we have already mentioned the presence of some
damping. The damping is not modeled, quantified or explored, so the actual state
transition matrix 𝐴 is perturbed, which is the area where the IRL can be helpful.

6.1.1. Noise-free system

The policy iteration and value iteration from Section 4.8 with batch least-squares
weight estimation were initially implemented with a noise-free model. We used a
model of a double integrator both with and without damping to generate data for the
learning algorithms, which only knew the data and the input gain of the model, but
they did not know that the model was a double integrator neither if it was damped
or not. The simulations have confirmed that both of the algorithms converge to the
optimal solution of the LQ–problem. The convergence of the policy and value itera-
tion along a trajectory for a noise-free double integrator is illustrated in Figure 6.1.
However, although we obtained convergence, two interesting issues occurred.

First, the least-squares estimation of the Riccati solution 𝑃 requires persistent
excitation (PE, [6]) of the system throughout the estimation process. The PE is
a sufficient condition for convergence of the least-squares estimation. For a least-
squares problem Γ𝜃 = 𝑧, the PE requires that the data accumulated in matrix Γ at

0 2 4 6 8 10
−2

0

2

S
ta

te

x
v

0 2 4 6 8 10
0

0.5

1

F
ee

db
ac

k
ga

in

Time [s]

(a) policy iteration

0 2 4 6 8 10
−1

0

1

2

S
ta

te

x
v

0 2 4 6 8 10
0

0.05

0.1

F
ee

db
ac

k
ga

in

Time [s]

(b) value iteration

Figure 6.1. Convergence of the IRL algorithms for a noise-free double integrator, learning
on batches of 10 samples. The optimal feedback gains computed just for comparison by
solving the corresponding CARE are marked with asterisks at the ends of gain transients.
The feedback gains are plotted with the same color as the corresponding state. The red
dots indicate satisfying the PE for every batch, but the PE is only theoretical, because the
amplitudes of the states at the end of the transients are in order around 10−12, which is
practically zero. It is obvious that the policy iteration at (a) converges significantly faster
than the value iteration at (b).

58

6.1. Online IRL

the moment of estimation of parameter vector 𝜃 satisfy condition

𝑐1𝐼 <
N∑︁

𝑖=1
Γ𝑖Γ𝑇

𝑖 < 𝑐2𝐼 <∞, 𝑐1, 𝑐2 > 0, (6.1)

where Γ𝑖 is the vector of data collected at the 𝑖–th step of the estimation horizon 𝑖 =
1 . . . N. Naturally, the length of the estimation horizon has to be greater than or equal
to the number of the estimated parameters. Both policy and value iteration of the IRL
attempt to converge to the optimal feedback gain online along the trajectory of the
controlled system, so the states are being regulated to the origin during the learning
process, which can destroy the PE before the algorithm converges.The authors of
[31] suggest injecting a probing noise into the control input to ensure PE, but such
solution is suitable just for gradient descent versions of the algorithms. We have
tried the probing noise injection with the least-squares parameter estimation and we
observed that the probing noise completely biased the parameter estimation, which
destroyed the convergence of the parameters to the optimal values. Another option
of ensuring the PE is to reset the system to a new (possibly random) initial state
when the PE is lost. This solution was also used by the authors of [31], although not
explicitly mentioned in the text. The state resetting preserves the convergence of the
algorithms, but it can cause difficulties for a real system. If we are unable to drive the
system to a required initial state, we can still generate a new initial state by applying
a sequence of random actions. However, then we have to be sure that the random
actions cannot damage the controlled system. In our case, the ball could e.g. get out
of the area of attraction of the coil array. Beside checking the PE condition 6.1, we
also check the condition number1 of the matrix Γ to prevent solving an ill-conditioned
problem.

The second issue, also related to the problem of PE, is the sensitivity of the algo-
rithms to the tuning parameters, namely to the weighting matrices 𝑄 and 𝑅 of the
LQ–criterion and the initial control policy. It is not surprising that the states of the
system can be regulated close to the origin before the gains converge to the optimal
solution, especially when the weighting matrices prefer state penalization to control
input penalization to get a more aggressive controller. Although the Figure 6.1 shows
that the PE is accomplished throughout the whole simulation, it is satisfied only the-
oretically, because the amplitudes of state variables are below the order of 10−6 after
6 seconds. Nevertheless, we can see that the value iteration algorithm converges until
the end of the simulation. Due to some measurement noise, disturbances etc., it is
impossible to estimate any parameters from such tiny values in a practical applica-
tion. If we impose a lower bound on the state amplitude for a policy update, the
policy iteration still converges fast enough, but the value iteration is too slow to be
learned from a single transient, as shown in Figure 6.2a.

The performance of policy iteration can be also affected by the choice of the initial
stabilizing gain. Figure 6.1a shows an initial overshoot of feedback gains. Our empiri-
cal experience is that the overshoot grows with the distance of the initial feedback gain

1The condition number of a matrix is the ratio of its largest and smallest singular value. A high
condition number indicates an ill-conditioned least-squares problem.

59

6. Simulations

0 2 4 6 8 10
−1

0

1

2

S
ta

te

x
v

0 2 4 6 8 10
0

0.05

0.1

F
ee

db
ac

k
ga

in

Time [s]

(a) slow convergence of value iteration

0 2 4 6 8
−20

0

20

40

S
ta

te

x
v

0 2 4 6 8
−0.5

0

0.5

1

F
ee

db
ac

k
ga

in

Time [s]

(b) instability of policy iteration

Figure 6.2. Issues of the IRL algorithms for a noise-free double integrator. Figure (a) shows
too slow convergence of the value iteration when we impose a lower bound on the state
amplitude used for update. Figure (b) illustrates instability of the closed-loop system with
a control delay under policy iteration control. The other parameters (weighting matrices,
initial control policy, batch length) are the same as in Figure 6.1.

vector from the optimal one. The high initial feedback gain can cause instability for
a real system when there is a delay in the control loop caused by state measurement,
computation and propagation of the control action. Figure 6.2b shows the instability
of the policy iteration learning process caused by a control delay. Although the learn-
ing parameters were the same as for the example at Figure 6.1a, the control delay
causes initial oscillations that result in bad parameter estimation and destabilizing
feedback gains. We have also experienced situations when the high initial feedback
gains drove the system on a trajectory which headed towards the origin, but required
so little control action that it led to loss of PE after the first update of the control
policy even in the simulation.

6.1.2. Trial learning

This section addresses the usage of IRL with a noisy state measurement. We consider
an additive noise with normal distribution and zero mean value and vary its standard
deviation to inspect its influence on learning. The usual period of policy updates
for the IRL is tens of samples collected along a trajectory ([31]). However, when we
introduce a measurement noise, such batches of noisy data are not long enough to
give a good estimate of nominal parameter values and the learning destabilizes the
closed-loop system. The problem is that the batches of data for the least-squares
problem are built from scratch after every policy update, so that the previously accu-
mulated information is lost. We have also unsuccessfully tried the recursive variant of
least-squares (RLS) with limited exponential forgetting, which would retain the past
information. As the RLS needs to be initialized with large values in the covariance

60

6.1. Online IRL

matrix of the parameters to adapt well, the initial estimates are strongly biased by
the noise and yield a destabilizing feedback gain, from which the algorithm does not
recover.

We therefore modified the batch learning to a trial learning, updating the policy
only after completion of a trial. The length of the trials is chosen so that it is possible
to regulate the system within a single trial and after each trial, the system is reset
to a new initial state to ensure excitation. Overall, the trials are equivalent to longer
batches, allowing to observe several hundreds of samples for a more reliable update.
The extension of learning batches can suppress the influence of the measurement noise
up to a certain extent.

Under the presence of noise, we found it reasonable to explicitly force the negative
definiteness of the estimated CARE solution 𝑃 which yields from the parameter
vector 𝜃. When the update does not yield a negative definite estimate of 𝑃 , it is
rejected and the trial data is disposed, which slows down the learning, but prevents
the destabilization of the closed-loop. We have to emphasize that a negative definite
estimate of 𝑃 does not guarantee that the resulting feedback gain is stabilizing, but
it can filter at least some of the bad cases. On the other hand, with a growing noise
level, more updates are being rejected. The update rejection causes that sometimes
the algorithms perform many trials without a single update and when the noise is too
strong, they do not update at all.

The simulations have shown that the value iteration is less susceptible to noise than
the policy iteration, which can be explained by the fact that it updates the control
policy in smaller steps, resulting in more trials needed for learning. Behavior of both
algorithms with different levels of noise is compared in Figures 6.3 and 6.4. With
a low noise level, the trials are sufficiently long to get convergence to the optimal
feedback gain values. When the noise level grows, the policy iteration converges to
biased values instead of the optimal ones (Figure 6.3b), while the value iteration
retains performance. If we increase the noise level even more, many policy updates
are rejected and while the value iteration converges to biased values after the initial
update rejections, the policy iteration gets unstable due to a bad policy update, which
was not captured by the 𝑃 negative definiteness check . It is noticeable that the policy
iteration turns to a less aggressive control strategy with the growing level of noise.

Even though the learning in trials is more resistant to measurement noise than the
original IRL, its resistance is limited. The noise level of the foil position measurement
is too high to be dealt with the IRL policy iteration, while the camera measurement
is less noisy, but it has a significant delay, which destroys convergence. Only the
value iteration is a reasonable candidate for the real platform. As we are directly
measuring only the position of the ball and the velocity has to be determined using
differentiation, the noise is amplified. The noise amplification is the reason why the
standard deviations for velocity in Figure 6.3 are approximately 40 times higher than
the standard deviations for position. Furthermore, not only the learning, but also
the feedback linearization will suffer from imprecise position measurement, which will

61

6. Simulations

0 0.5 1 1.5 2 2.5
−4

−2

0

2

Time [s]

S
ta

te
s

 x
v

0 5 10 15 20
0

0.1

0.2

Trials

F
ee

db
ac

k
ga

in

(a) 𝜎𝑥 = 0.001, 𝜎𝑣 = 0.04

0 0.5 1 1.5 2 2.5
−2

0

2

Time [s]

S
ta

te
s

 x
v

0 5 10 15 20
0

0.1

0.2

Trials

F
ee

db
ac

k
ga

in

(b) 𝜎𝑥 = 0.003, 𝜎𝑣 = 0.12

0 0.5 1 1.5 2 2.5
−2

0

2

4

Time [s]

S
ta

te
s

 x
v

0 5 10 15 20
−0.1

0

0.1

Trials

F
ee

db
ac

k
ga

in

(c) 𝜎𝑥 = 0.01, 𝜎𝑣 = 0.4

Figure 6.3. IRL policy iteration performance with different levels of measurement noise. The
lower figures show the transients of feedback gains averaged over 20 runs. The upper figures
show a sample trial trajectory from the end of the learning process for different noise levels.
The feedback gains are plotted with the same color as the corresponding state, with the
theoretical optimal values marked with asterisks.

0 0.5 1 1.5 2 2.5
−4

−2

0

2

Time [s]

S
ta

te
s

 x
v

0 10 20 30 40
0

0.05

0.1

Trials

F
ee

db
ac

k
ga

in

(a) 𝜎𝑥 = 0.001, 𝜎𝑣 = 0.04

0 0.5 1 1.5 2 2.5
−4

−2

0

2

Time [s]

S
ta

te
s

x
v

0 10 20 30 40
0

0.05

0.1

Trials

F
ee

db
ac

k
ga

in

(b) 𝜎𝑥 = 0.003, 𝜎𝑣 = 0.12

0 0.5 1 1.5 2 2.5
−4

−2

0

2

Time [s]
S

ta
te

s

x
v

0 20 40 60 80
0

0.05

0.1

Trials

F
ee

db
ac

k
ga

in

(c) 𝜎𝑥 = 0.01, 𝜎𝑣 = 0.4

Figure 6.4. IRL value iteration performance with different levels of measurement noise with
the same parameters as for policy iteration presented in Figure 6.3. Note that the number
of learning trials was doubled for the highest noise level in (c).

lead to a bigger difference between the commanded and exerted magnetic force. The
experimental results with real platform are presented in Section 7.

6.2. Online LSPI bang-off-bang

Similarly to the IRL, the evaluated control objective for the LSPI was the stabiliza-
tion of the ball in one dimension in the center of a single row of coils. The evaluation
of the online LSPI included selecting suitable parameters for the BFA for Q-function
approximation. The BFA uses Gaussian radial basis functions (GRBF) that are dis-
tributed in a grid above the two-dimensional phase plane of the double integrator.
The grid is equidistant in each dimension separately and the grid step determines the
variance of the GRBF in the respective dimension. The value of a GRBF at position
[𝑖; 𝑗] of the grid is defined as

𝜑𝑖𝑗(𝑥, 𝑣) = 𝑘e
−

[︂
(𝑥−𝜇𝑖)2

2𝑑2
𝑥

+
(𝑣−𝜇𝑗)2

2𝑑2
𝑣

]︂
(6.2)

62

6.2. Online LSPI bang-off-bang

where 𝑥, 𝑣 are the position and velocity, 𝜇1, 𝜇2 are the coordinates of the GRBF in the
phase plane and 𝑑𝑥, 𝑑𝑣 are the grid steps for position and velocity. The normalization
constant 𝑘 is variable, because the whole vector of basis function values is normalized
to have a unit sum at every step.

For the double integrator control, we have cut down the size of the GRBF grid to
3×3, which appeared to be sufficient to learn a Q-function that yields a control policy
for stabilization of the ball in the middle of a row of coils. We have 9 unique basis
functions that are replicated for each available control action, so the basis function
vector contains 27 functions in total. The unique basis functions are located at phase
plane positions 𝜇 = {−1.5, 0, 1.5} × {−2, 0, 2}, both position and velocity expressed
in the normalized platform units. The position coordinate is offset to get 𝑥 = 0 in the
middle of the row of coils, so 𝑥1 = ±1.5 correspond to the centers of the outer coils of
the row. The range for the velocity was chosen to cover the range of speeds reached
by the ball during the learning process. The set of control actions was selected as 𝑈 =
{−0.03, 0, 0.03} to balance between fast and smooth transients. The learning process
is split into 30 trials that start from a fixed initial state and last for 5 seconds. The
updates of the BFA are performed several times per trial with exponentially decaying
exploration rate, using a quadratic reward function 𝑟(𝑥𝑘, 𝑢𝑘) = 𝑥𝑇

𝑘 𝑄𝑥𝑘 + 𝑅𝑢2
𝑘 with

negative definite 𝑄 and 𝑅. Due to the exponential exploration decay, there is a
possibility that the algorithm will not converge to a stabilizing greedy control policy
because of bad initial exploration. When the policy does not approach to a stabilizing
one before the exploration rate drops significantly, the algorithm will stay stuck with
a bad policy.

The simulations have shown that the algorithm can converge quite fast even under
the presence of noise, because the GRBF have a smoothing effect on the noisy data.
However, we were not able to reach zero steady-state error with the resulting greedy
policy. An example of a greedy control policy with equilibrium offset is shown in
Figure 6.5a. We can clearly see that the zero-control area between the positive and
negative control action regions does not intersect the line 𝑥2 = 0 in the phase plane
at the origin, while the resulting equilibrium is located within the intersection area,
as shown on the sample trajectory in Figure 6.6a controlled by the greedy policy in
Figure 6.5a. The offset is caused by asymmetrical distribution of the exploration in
the phase plane during the learning process, which results in different precision of
Q-function estimation in areas corresponding to different GRBF.

6.2.1. Symmetry exploitation

We decided to exploit the symmetry of the double integrator to prevent the offset
of the learned equilibrium. We know that the control policy for a double integrator
should be antisymmetric with respect to the origin of the phase plane, so we learn
the Q-function only in the right half of the phase plane where 𝑥1 ≥ 0, using the
point antisymmetry to generate Q-function values in the other half of the phase plane
when needed. Beside decreasing the number of learned parameters from 27 to 18, this
modification avoids the offset of the resulting equilibrium, as shown in Figure 6.5b.

63

6. Simulations

position

ve
lo

ci
ty

−2.3 −1.1 0 1.1
 −3

 −2.3

 −1.5

−0.75

 0

 0.75

 1.5

 2.3

 3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(a) original LSPI
position

ve
lo

ci
ty

−2.3 −1.1 0 1.1
 −3

 −2.3

 −1.5

−0.75

 0

 0.75

 1.5

 2.3

 3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(b) symmetry-exploiting LSPI

Figure 6.5. Examples of greedy control policies after the LSPI learning process visualized
in the phase plane. Red color denotes 𝑢 = 𝑢max, blue color 𝑢 = 𝑢min and green color
𝑢 = 0. The policy (a) has a visible positive offset of the equilibrium position. The small
green area around the origin in symmetry-exploiting policy (b) is an explicitly defined
zero-control region which prevents oscillations around the equilibrium.

Unfortunately, the exploration of the phase plane is still not symmetrical, so we can
notice that the learned and generated part do not connect perfectly smoothly and
there is a very sharp changeover between the positive and negative control action
regions around the origin. Such sharp changeover in practice causes small steady os-
cillations around the origin, which is a common problem of switching control that can
be solved by explicitly defining a zero-control area around the equilibrium. The zero-
control area introduces a small steady-state error, but the oscillations are avoided.
The symmetry-exploiting LSPI is able to learn faster, because it has to learn less
parameters than than the original variant. While we have used 30 trials for the basic
LSPI, the symmetry-exploiting LSPI is learned in 15 trials. The example policies
in Figure 6.5 show quite good generalization ability of the function approximator,
because the trials were initialized at position 𝑥0 = [1.5, 0]𝑇 and the resulting policies
are stabilizing further from the origin, too. Examples of stabilization transients are
given in Figure 6.6. If we compare the two transients 6.6a and 6.6b, we find out that
the original LSPI converged to a more aggressive policy with nonzero steady error,
while the symmetry-exploiting LSPI tries to keep the position very close to the origin,
so that it sometimes reacts to the measurement noise.

It is noticeable that the policy in Figure 6.5a has areas where it does not stabilize
the ball (the lower left corner of the phase plane). However, these states are not
visited during learning neither during the subsequent control. It nicely illustrates
how the reinforcement learning focuses on the experienced situations. Although it
is possible to get a stabilizing policy for the whole region shown here, the learning
sacrifices the performance in the rare states to a better performance in the frequently
visited ones. Nevertheless, the random exploration sometimes also leads to a control

64

6.3. Online EBAC

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

x
/ v

 /
u

x
v
u

norm

(a) original LSPI

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

x
/ v

 /
u

x
v
u

norm

(b) symmetry-exploiting LSPI

Figure 6.6. Sample trajectories showing stabilization of the ball by the greedy control policies
presented in Figure 6.5. The control input was normalized by 𝑢max to make its amplitude
visible compared to the states. Figure (a) shows a remarkable offset of the equilibrium with
the original LSPI control, which is eliminated by the symmetry exploitation in Figure (b).

policy that is stabilizing in the whole region, as shown in Figure 6.5b. Overall, the
symmetry-exploiting LSPI is a suitable candidate for the real platform.

6.3. Online EBAC

The general MATLAB implementation of the EBAC learning framework was kindly
provided by Subramanya Nageshrao from TU Delft, together with a demo example
for an inverted pendulum swing-up learning, so we did not have to implement the
algorithms from scratch, but accommodated the existing code for our purposes.

For the experiments, we first need to convert the original linear model of the rolling
ball (see Equation 2.1) to the port-Hamiltonian form. We change the original position-
velocity state vector 𝑥orig = [𝑥, 𝑣]𝑇 to a state vector 𝑥 = [𝑥, 𝑝]𝑇 , where 𝑥 is still the
position, but 𝑝 is the magnitude of momentum. It would be possible to use the
original state vector as well, but we wanted to be consistent with the existing EBAC
framework implementation. Then, we describe the total accumulated energy of the
ball in terms of the new state vector. As the platform’s surface is horizontal, the
accumulated energy of the ball has only the kinetic component and therefore does
not depend on the position of the ball. The Hamiltonian function and its gradient
are defined as

𝐻(𝑥) = 1
2mef

𝑝2 → ∇𝑥𝐻(𝑥) =
[︃

0
𝑝

mef

]︃
. (6.3)

65

6. Simulations

The resulting port-Hamiltonian representation of the ball rolling in one dimension is

𝑥̇ =
{︃[︃

0 1
−1 0

]︃
−

[︃
0 0
0 0

]︃}︃ [︃
0
𝑝

mef

]︃
+

[︃
0
1

]︃
𝑢, (6.4)

𝑦 = 𝑝

mef
,

where the input port 𝑢 represents the force exerted by the magnetic field and the
output port 𝑦 is the velocity of the ball, satisfying the port-Hamiltonian description
requirement that the product of the conjugated input and output ports is power. Note
that the model 6.4 is in standard metric units, which is necessary for expressing the
energy of the system. However, the presented simulation results will be scaled to the
normalized platform units to make them better comparable to the results achieved
with the other methods.

In the next step, we determined which states allow the energy shaping according
to the condition 4.41. With the parameters of port-Hamiltonian representation 6.4,
the condition 4.41 from Section 4.10.2 turns into[︃

0 1
0 1

]︃ [︃
𝜕

𝜕𝑥𝐻a(𝑥)
𝜕
𝜕𝑝𝐻a(𝑥)

]︃
= 0, (6.5)

which yields that the energy can be shaped only on the position. Therefore the energy
shaping actor acts only on the first state variable. The BFA for the critic and the
actors use 3rd order harmonic cosine basis, whose advantage is that it automatically
ensures the symmetry of approximated value function and policy. On the other hand,
the BFA with harmonic basis does not have a generalization ability outside the fun-
damental period of its basis functions, because the approximation is periodic. The
fundamental periods therefore has to be chosen carefully to cover the whole range of
the state space, where we want to control the system. The basis function value com-
putation for a single state variable (for the energy-shaping actor) is straightforward

𝜑𝑖(𝑥) = cos(𝜋ℎ𝑖𝑥), 𝑖 = 1 . . . 4, ℎ𝑖 = 0 . . . 3. (6.6)

The situation is more complicated when the BFA acts on the whole state vector. The
𝑖-th harmonic basis function value acting on a vector 𝑥 ∈ R2 is determined as

𝜑𝑖(𝑥) = cos
(︁
𝜋ℎ𝑇

𝑖 𝑥
)︁

, 𝑖 = 1 . . . 16, (6.7)

where the vectors ℎ𝑖 = [ℎ𝑥
𝑖 , ℎ𝑝

𝑖]𝑇 exhaust all possible ordered combinations of har-
monic frequencies ℎ𝑥, ℎ𝑝 = 0 . . . 3. The base learning rates for the critic and the
actors are normalized by the magnitude of the harmonic frequency vector, but pre-
venting normalization by zero

𝛼𝑖 = 𝛼base

max
{︁
||ℎ𝑖||, 1

}︁ (6.8)

resulting in vectors of learning rates, which are used for BFA updates. The learning
rate normalization is necessary for successful learning, because it forces the approx-

66

6.3. Online EBAC

imation to estimate the lower frequencies first and then use the higher ones to app-
roximate the details of the approximated function. Similarly to the online LSPI, the
learning relies on a quadratic reward function 𝑟(𝑥𝑘, 𝑢𝑘) = 𝑥𝑇

𝑘 𝑄𝑥𝑘 + 𝑅𝑢2
𝑘.

6.3.1. Tuning of the learning parameters

Although the algorithm uses full knowledge of the controlled system, it turned out
that it is necessary to tune the base learning rates for the critic and actors and the
weighting matrices of the quadratic reward function carefully to get convergence even
in the noise-free simulations. The tuning of the learning parameters is a lengthy
manual work done rather in a trial-error manner. Although there exist some rules of
thumb, like that the critic base learning rate should be higher than the base learning
rates for actors, it is not possible to determine the suitable values of the parameters in
advance. In addition, as the algorithm uses gradient-based tuning of the parameters,
the learning rates are interconnected with the weighting matrices of the quadratic
reward function. If we e.g. multiply both of the weighting matrices by a positive
constant, thus changing the magnitude of the resulting value function, not its shape,
we will probably also have to adjust the base learning rates to preserve convergence,
because the change will project into the size temporal difference error which can affect
the stability of learning.

Finally, we succeeded in finding suitable learning parameter values for convergent
learning by running a vast number of learning simulations with automatically gener-
ated combinations of the base learning rates, checking the resulting cumulative reward
at the end of every situation. We attempted to further optimize the selected learning
parameter values using the fminsearch function from MATLAB’s Optimization Tool-
box, using our selection as the initial point for search. However, the dependence of
the resulting control performance on the learning parameters is so bumpy that the
optimization did not improve anything.

Although the algorithm is usually able to converge to a stabilizing policy during the
first 15 trials, we use 30 trials in total, each lasting 6 seconds, to fine-tune the policy
and get a better control performance. Figure 6.7 shows an example of a learned control
policy in the phase plane together with a sample controlled trajectory. It is evident
that a major part of the policy presented in Figure 6.7a hits the saturation boundaries
of the control input, which were set to prevent the controller from commanding a force
that cannot be exerted by the real coil array.

When introducing the measurement noise, we decreased the base learning rates for
the actors and critic to 50% of the values that were used for the noise-free simulations
to preserve the convergence. The convergence is therefore slower and we use 50 trials
for learning, but the algorithm finally arrives to a very similar policy as in the noise-
free simulation and successfully stabilizes the ball in the origin, as shown in Figure 6.8.

67

6. Simulations

position

ve
lo

ci
ty

−1.25 0 1.25
−6.5

−3.2

 0

 3.2

−0.1

−0.05

0

0.05

0.1

(a) sample control policy

0 1 2 3 4
−3

−2

−1

0

1

2

Time [s]

x
/ v

 /
u no

rm

x
v
u

norm

(b) sample controlled trajectory

Figure 6.7. Example of a control policy learned by the online EBAC (a) with a sample
trajectory obtained by control of the double integrator system using the policy (b). The
control input in (b) has been normalized by 𝑢𝑚𝑎𝑥 to make its amplitude comparable to the
states.

position

ve
lo

ci
ty

−1.25 0 1.25
−6.5

−3.2

 0

 3.2

−0.1

−0.05

0

0.05

0.1

(a) sample control policy

0 1 2 3 4
−3

−2

−1

0

1

2

Time [s]

x
/ v

 /
u no

rm

x
v
u

norm

(b) sample controlled trajectory

Figure 6.8. Example of a control policy (a) learned by the online EBAC under the presence
of measurement noise with a sample trajectory (b) obtained by controlling the double
integrator system using the policy. The control action has been normalized by 𝑢𝑚𝑎𝑥 for
readability.

6.4. Auto-identification

For the simulation of auto-identification adaptive control, we consider four balls of
different sizes. The different size of a ball projects into the change of the input gain
of its linear model. In addition, as mentioned in Section 5.1, the resulting magnetic
force exerted on a differently sized ball will change as well due to different distance
of the ball’s center of mass from the coils. However, all of these changes project into

68

6.4. Auto-identification

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

time [s]

po
si

tio
n

27.5 g
55 g
110 g
220 g

(a) non-adaptive control

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

time [s]

po
si

tio
n

27.5 g
55 g
110 g
220 g

(b) adaptive control

Figure 6.9. The effect of parametrization of feedback linearization with the auto-identified
acceleration profiles. All of the simulations were run with the same PIDf feedback controller,
the transients in Figure (a) were produced with the use of the manually identified analytical
force/acceleration profile for the 110 g ball. The transients in Figure (b) use the identified
acceleration profiles.

the acceleration profile, so if we identify the acceleration profile for a particular ball,
we can avoid the undesirable effect of its different size on the control performance.

We have used four linear models of the rolling ball corresponding to masses 27.5 g,
55 g, 110 g and 220 g together with the known manually identified model of the
magnetic force for the 110 g (30 mm) ball presented in Section 2.1 to generate free-
oscillation data as described in Section 5.2. Therefore we have neglected the changes
in the magnitude of the exerted magnetic force for different balls in simulations, be-
cause we do not have the force profiles for the other ball sizes available. However,
any scaling of the magnetic force would project into the measured acceleration profile
and therefore would be captured and canceled out during the feedback linearization.
Furthermore, the binning approach that we use for the acceleration profile approxi-
mation is non-parametric and can possibly adapt even to significant changes of shape
of the force profile. The generated data which include a model of Gaussian measure-
ment noise is processed with noise-robust numerical differentiation, resulting in four
different acceleration profiles.

For the evaluation purposes, we have tuned a simple PIDf feedback controller to
control the 110 g ball with the manually identified analytical model of the magnetic
force2 that was presented in Section 2.1. The PIDf controller was afterwards used
to control the differently sized balls from position 𝑥 = −1.5 to position 𝑥 = 0 in the
offset normalized coordinates with a step reference input. Figure 6.9 compares the
transients for differently sized balls with and without the use of auto-identification.
The transients in Figure 6.9a were generated when controlling all of the balls using
the analytical model of the magnetic force for feedback linearization, i.e. as if we

2The model of magnetic force was converted to a model of acceleration profile using the known
effective mass of the 110 g ball to fit into the acceleration profile framework.

69

6. Simulations

were controlling the 110 g ball in all four cases. Even though the controller is able
to drive the ball to the reference position, the quality of control differs significantly.
The transients in Figure 6.9b were generated with the same feedback controller, but
using the corresponding identified acceleration profile to parametrize the feedback
linearization for every particular ball. The random generators for the measurement
noise were initialized with the same seed every time. We can see that the control
performance is preserved in the second case, except for the smallest ball. The tran-
sient for the smallest ball differs from the rest because the sampling period used for
the identification of its acceleration profile was not sufficiently high and biased the
estimated profile. The bigger balls did not oscillate so fast during identification ex-
periment, so their acceleration profiles were estimated more precisely. Increasing the
sampling frequency for the identification experiment would solve the problem for the
smallest ball, but we wanted to demonstrate the limitations of the method here. The
minor differences in the transients for the bigger balls are caused by imprecision of
the numerical differentiation and acceleration profile approximation.

6.5. Conclusions

We have implemented simulations for evaluation of the selected control methods to
verify their sensibility for a real application. All of the methods work well in ideal
noise-free simulations, except for the original LSPI, which suffers from the offset of
the equilibrium. We have suggested modifications for the IRL (trial learning to reach
convergence with noisy data) and the LSPI (symmetry exploitation for equilibrium
offset avoidance and faster learning). Without the modifications, the IRL could not be
deployed on a system with measurement noise, and the LSPI would probably result in
control policies with offset equilibrium. The EBAC learning framework is able to find
good control policies, but it requires manual tuning of the learning parameters, which
is lengthy and it would take even longer time when involving a real system instead
of performing simulations. The auto-identification approach has been shown to work
quite well in simulations, but there is a possibility that we could be limited by the
upper bound of the achievable sampling frequency of the position measurement on the
real system. After the simulated evaluation, we decided to implement the IRL policy
iteration, symmetry-exploiting LSPI, EBAC and auto-identification in Simulink for
the use with the real platform.

70

7. Experiments

In this chapter we will present the results achieved with the real magnetic platform.
The real-time control is implemented in Simulink models using Real-Time Windows
Target and xPC Target libraries, which ensure precise timing, meeting the required
sampling periods.

7.1. Online IRL value iteration

Based on the simulation results, we rejected the policy iteration and decided to imple-
ment the value iteration for the real platform. The initial learning experiments failed,
because the value iteration increases the feedback gains very slowly at the beginning
(see Figure 6.3c), which turned out to be a problem with the real platform. Even
if we initialize the value iteration with a more aggressive initial control policy, the
algorithm first decreases the feedback gains before converging to the solution. In the
simulations, even the low gains are sufficient to start moving the ball. On the real
platform, however, there is some minimal force magnitude needed to make the ball
move, because the surface of the touch foil bends below the ball and slightly prevents
the ball from rolling. The small initial control forces therefore do not move the ball at
all, which results in collecting data sets that are useless for current policy evaluation
and all of the policy updates are consecutively rejected.

Finally, we decided to initialize the algorithm with a very low initial gain that
stabilizes the ball and makes it roll at least slowly to generate some data for policy
evaluation and update. Furthermore, we use the low initial gain for position as a
minimal allowed gain in the updated policy. The element 𝑘𝑥 of the feedback gain
vector 𝐾 = [𝑘𝑥, 𝑘𝑣] is set at least to the initial gain value after every policy update,
which prevents the algorithm from decreasing the gain too much and losing possibility
to collect data for improving the control policy. The constraint on gain 𝑘𝑥 is put into
effect only during the first few trials before the algorithm starts setting a higher value
itself. The gain 𝑘𝑣 is not constrained in any way and can be set arbitrarily during the
policy update.

The algorithm is able to reach a good stabilizing solution with the constrained gain
𝑘𝑥. The solution is different from the theoretical optimal solution computed for an
ideal double integrator, but the difference is expectable because the real system does
not behave exactly the same as the double integrator. However, if not stopped when
the gains reach relatively steady levels, the algorithm continues updating the policy,
which results in deterioration of the control performance and can eventually lead to
the instability of the closed loop system. Figure 7.1 illustrates a typical behavior of

71

7. Experiments

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12

Trials

F
ee

db
ac

k
ga

in

k

x

k
v

(a) feedback gains during learning

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

x
/ v

x
v

(b) performance with initial policy

0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

Time [s]

x
/ v

x
v

(c) performance with final policy

0 1 2 3 4 5
−4

−2

0

2

4

6

Time [s]

x
/ v

x
v

(d) deteriorated performance

Figure 7.1. The IRL value iteration learning on the PC platform with the real magnetic
manipulator. Figure (a) shows the development of feedback gains during learning. The
dashed blue line at the beginning shows the values that were constrained by the initial
gain. The red dashed line marks the trial where the learning would be stopped if we did
not want to show the further behavior of the algorithm. Figure (b) shows the performance
under the initial stabilizing policy for comparison with the performance under the policy
at the moment of stopping the learning in Figure (c). Figure (d) presents the unstable
behavior of the closed-loop system during the 80th trial.

the learning algorithm including the phase of policy deterioration. The deterioration
is caused by the fact that when the control policy is already performing well, the trial
data that is used for policy update loses its richness, which leads to bad parameter
estimation. In addition, there is also the correlation of measurement noise and control
signal due to the feedback control. The moment when the policy updates should be
stopped can be detected as the moment when the policy update attempts to decrease
both 𝑘𝑥 and 𝑘𝑣 at once. The update stopping moment (marked with red dashed line
in Figure 7.1a), divides the feedback gain transients into the initial smooth interval
of convergence and the subsequent divergence due to the low richness of data. It is
interesting that the initial control policy does not produce a rich data either, but the

72

7.2. Online LSPI

first feedback gain update together with the constraint on 𝑘𝑥 results in an oscillatory
closed-loop response, which drives the convergence further on.

The execution of a single learning trial was implemented as a Simulink model both
on the PC and Speedgoat platform. The whole learning process is controlled by a
MATLAB code that launches the Simulink model, downloads and processes the exper-
imental data and waits for manual reset of the system in a loop. The value iteration
performs well on the PC, while on the Speedgoat platform with the same settings it
gets stuck immediately after the first policy update due to the noisy position measure-
ment. The stronger noise makes the estimate of the 𝑃 matrix different than negative
definite, so the policy updates are rejected. Setting a more aggressive initial policy
(and therefore also a higher limit for the gain 𝑘𝑥) does help to overcome the obstacle,
but then the difference between the initial and final policy is not so remarkable as on
the PC platform, so we do not consider the algorithm useful then.

7.2. Online LSPI

The symmetry-exploiting LSPI implementation was fully converted into a Simulink
model. Thanks to the 𝜖-greedy exploration, the algorithm needs manual reset of the
ball position only after a trial that results in stabilization of the ball in the middle
of the platform or in the cases when the ball remains out of the area in which it is
controllable by the coils.

In the initial experiments, we attempted to let the learning algorithm even hit the
border of the magnetic platform with the ball. We had an idea that the controller
may learn to use the borders of the platform for controlled bouncing of the ball at
situations when it is already not possible to stabilize the ball without hitting the
border. Although we managed to simulate such behavior, the bounces destroyed the
learning on the real platform. Unlike in the simulation, where the bounces were
deterministic, they are quite different one from each other on the real platform. The
variability of bounces violates the Markov property of the system, which is one of the
basic assumptions for the reinforcement learning.

Our first idea how to prevent the ball from hitting the border was to introduce
an extra penalization for the area that is closer to the border of the platform than
a certain threshold. The learning algorithm should behave more carefully then in
order to avoid the extra penalization. However, this approach appeared not to be
suitable because it introduces a discontinuity in the Q-function, which is approximated
by smooth basis functions. The learning focused on avoiding the contact with the
boundary, but it neglected the stabilization objective. In addition, the ball could still
hit the border as a result of an exploratory action.

Instead of the extra penalization, it is possible to end a trial immediately when
the ball’s position gets out of defined bounds. When we detect a bound violation, we
do not generate the next reward value neither update the policy nor the Q-function
estimate, but we reset the state and start a new trial, which turned out to be a
suitable solution of the problem.

73

7. Experiments

position

ve
lo

ci
ty

 −1.5 −0.75 0 0.75 1.5
 −2

−1.5

 −1

−0.5

 0

 0.5

 1

 1.5

 2

−0.05

0

0.05

(a) an aggressive policy

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

x
/ v

 /
u no

rm

x
v
u

norm

(b) trajectory under the aggressive policy

position

ve
lo

ci
ty

 −1.5 −0.75 0 0.75 1.5
 −2

−1.5

 −1

−0.5

 0

 0.5

 1

 1.5

 2

−0.05

0

0.05

(c) a moderate policy

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

x
/ v

 /
u no

rm

x
v
u

norm

(d) trajectory under the moderate policy

Figure 7.2. Examples of LSPI policies learned on Speedgoat machine with the real magnetic
platform. The Figure (a) shows an aggressive control policy, which results in a slow and os-
cillatory stabilization. The policy in Figure (b) is more energy-efficient, which paradoxically
leads to a faster state transient.

Beside the trial truncation, we also increased the amplitude of the discrete control
actions from 𝑈𝑚 = 0.03 which was used in simulations to 𝑈𝑚 = 0.05. The larger
amplitudes of the control actions simplify the learning process for the algorithm,
because their influence is more remarkable in the noisy data.

The real-model experiments run with the PC have shown that even though the
algorithm sometimes converged to a control policy that would be able to control a
model in simulation, it did not stabilize the ball in reality or produced an oscillatory
behavior. On the Speedgoat platform, where we were able to reach the sampling
frequency 120 Hz compared to the 50 Hz on the PC, the algorithm is able to learn
to stabilize the ball in approximately two out of three runs. The failures can be
caused by a combination of bad exploration with measurement noise, because the
measurement noise affects not only the learning, but also the feedback linearization.
As a result, the platform exerts a different than commanded force, which can confuse
the learning. The resulting control policies can vary in behavior quite a lot. Two
examples of stabilizing policies with sample controlled trajectories are presented in

74

7.3. Online EBAC

Figure 7.2. The policy in Figure 7.2a is quite aggressive, leaving only a small part of
the phase plane with zero-control. The trajectory in Figure 7.2b apparently oscillates
around the switching line between the positive and negative control action area in
the phase plane. Although the response is slow and oscillatory, the aggressive policy
can stabilize the ball from any position above the row of coils if the initial velocity of
the ball is zero. With a non-zero initial velocity, the ball may get into an area of the
phase plane where the policy is not stabilizing (the upper right and lower left corner
of the displayed region). The policy in Figure 7.2c is much more efficient than the
aggressive one. We can also see that it can stabilize the ball faster. On the other
hand, it does not stabilize the ball from the borders of the platform even with zero
initial velocity.

7.3. Online EBAC

The Matlab EBAC implementation was transformed into a Simulink model. The
original EBAC framework uses structures that are not supported for Simulink code
generation, so we did not attempt to preserve the universality of the original frame-
work and exploited the knowledge of the controlled system to simplify the source
code.

When we started the experiments on the PC platform, we did not achieve satisfac-
tory results. The algorithm converged to a policy that expelled the ball to the borders
of a platform. We thought that it was necessary to adjust the learning parameters
to different values than the ones used in simulations. However, the parameter tuning
did not bring any improvements. In addition, the manual parameter tuning with the
real platform is quite time-demanding, so we abandoned the EBAC after a bunch of
attempts and focused on improving the other methods. When revising the results of
the experiments, we discovered a serious bug in the Simulink implementation, which
prevented the EBAC algorithm from correct execution. Therefore we do not present
the experimental results for the EBAC here. From time reasons, the repetition of the
experiments remains for future work.

7.4. Auto-identification

We have used balls of two different sizes for the verification of the auto-identification
approach. First, it was the 30 mm ball, which was used for the experiments with
reinforcement learning, and second, it was a 20 mm ball. The bigger ball weights
110 g, while the smaller ball only 32.7 g, which makes it more difficult to control. In
addition, we have to use the delayed position measurement from the camera, because
the small ball cannot be detected by the touch foil. The visual position measurement
delay does not affect the identification of the acceleration profile, which is done offline,
but the subsequent control of the ball. We were also limited by the maximal achiev-
able sampling rate of the visual measurement. The smaller ball is more sensitive to
the exerted magnetic force, so it can experience accelerations of magnitude around

75

7. Experiments

0 1 2 3 4
0

2

4

6

x

0 1 2 3 4
0

2

4

6

Time [s]

y

(a) easy evaluation transient

0 1 2 3 4
1

2

3

4

5

6

x

0 1 2 3 4
0

1

2

3

4

5

Time [s]

y
(b) difficult evaluation transient

Figure 7.3. Evaluation responses of the ball position to a step change of reference position.
The transients in the 𝑥- and 𝑦-direction are shown separately for better readability. The red
line marks the performance of the PIDf controller with the 30 mm ball using the analytical
model of the force profile. The green line and the blue line mark the performance with the
30 mm ball, resp. 20 mm ball using the corresponding auto-identified acceleration profile.
Finally, the black dashed line shows the behavior of the 20 mm ball being controlled with
the analytical force profile for 30 mm.

10 m.s-2. The estimated magnitudes of acceleration are lower than the real ones with
a too low sampling frequency. We were aware that we would get biased estimates for
the small ball with the maximal sampling rate 50 Hz, so we energized the attracting
coil with activation factor only 0.5 during the identification experiment and then nor-
malized the resulting acceleration profile by the activation factor, i.e. multiplied it
by the factor of 2.

The evaluation experiments succeeded only on the PC platform, because Speed-
goat does not allow to use the camera and its noisy touch foil position measurement
is not suitable for acceleration estimation. In addition, we would not be able to mea-
sure the position of the smaller ball using the touch foil. The experiments consist
of two-dimensional control of the position of a ball. The evaluation experiments use
the same PIDf controller and differ in the size of the controlled ball and usage of
analytical or auto-identified force/acceleration profile. We compare the original con-
trol of the 30 mm ball which uses the manually identified analytical force profile with
the suggested auto-identification scheme applied to both 30 mm and 20 mm ball. To
emphasize the effect of the auto-identification, we present also transient measured
with the 20 mm ball using the force profile for the 30 mm ball. Figure 7.3 illustrates
the four variants of two different transients of the ball’s position that were chosen for
evaluation. First, it is the response to the step of reference position from platform
coordinates 𝑥 = [1, 1]𝑇 to the center of the platform 𝑥 = [2.5, 2.5]𝑇 . Second, it is
the response to the step of reference position from platform coordinates 𝑥 = [4, 1]𝑇

76

7.5. Conclusions

to position 𝑥 = [3, 3]𝑇 . The first transient in Figure 7.3a is easier for the controller,
because the ball moves along the diagonal of the platform, so the off-diagonal coils
are distributed symmetrically with respect to the position of the ball and the impreci-
sions of their contributions that would drive the ball off the diagonal cancel out. The
other transient shown in Figure 7.3b already reveals the imprecision of the identified
acceleration profile for the 20 mm ball. Especially the 𝑥-coordinate transient differs
significantly from the ones that were measured for the 30 mm ball. On the other hand,
there is a noticeable contribution of the auto-identification, because the switch from
the 30 mm to the 20 mm ball causes instability without the use of the auto-identified
model.

7.5. Conclusions

We have converted the MATLAB implementation of the selected algorithms to Simulink
models that allow execution with the real magnetic manipulator, including the inter-
connection of the magnetic manipulator with Speedgoat machine. We ran the expe-
riments and succeeded to deploy the IRL value iteration and auto-identification on
the PC and the LSPI on Speedgoat platform.

The IRL value iteration on Speedgoat machine was limited by the increased position
measurement noise caused by the power supply of the magnetic platform, but it
worked on the PC with the same settings of the algorithm. It is possible that after
removing the problem by using the laboratory power supply, it will be possible to
deploy the IRL value iteration on Speedgoat platform as well.

The LSPI was deployed only on Speedgoat platform, because it turned out that
the learning required a sampling frequency 120 Hz, which was not achievable on the
PC. The algorithm has proven a certain robustness, because it was able to learn even
under the presence of the increased measurement noise.

The auto-identification with the real platform succeeded in controlling both balls of
different sizes using the same settings for the controller using the feedback linearization
parametrized with identified acceleration profiles. However, the control performance
with the 30 mm and 20 mm ball apparently differed from each other. The difference
is caused by imprecise acceleration profile identification due to the limited position
measurement sampling frequency for the real system. The subsequent feedback con-
trol with the identified acceleration profiles also suffered from the delay of the visual
position measurement. We could not use the touch foil measurement with the smaller
ball, because it does not generate sufficient pressure on the surface of the platform to
be detected.

77

8. Conclusion

The main tasks of the thesis were to design a system for visual measurement of
position of manipulated objects, explore the possibilities of learning and adaptive
control methods and deploy them on the laboratory model of the magnetic platform
connected to a PC or Speedgoat target machine.

The designed computer vision system brought the possibility to measure positions
of one or more balls simultaneously, but it reaches the selected target sampling fre-
quency for visual feedback control (40 Hz) only when detecting one or two balls. The
main drawback of the visual position measurement is its significant delay (approxi-
mately 27 ms), which could not be eliminated, because its major part is caused by the
propagation of the video signal from a framegrabber card to Simulink environment.
A possible solution is to use an external device for fast implementation of the ball de-
tection and propagate only the detected positions to Simulink. For example, a camera
with a built-in FPGA board like some of the devices manufactured by Optomotive
company could be used.

The tested reinforcement learning methods performed well in noise-free simulations,
although we had to abandon the initial idea of learning a policy along a single trajec-
tory and switch to the trial learning due to the requirement of persistent excitation.
In the subsequent experiments, we managed to deploy two of the selected methods
on the real magnetic platform, namely the IRL value iteration on PC and the LSPI
on Speedgoat platform.

The IRL value iteration on Speedgoat was unfortunately affected by the increased
noise of position measurement caused by Magman’s power supply. The strong noise
caused that the estimated solution 𝑃 of the Riccati equation was not negative definite
as required, so the algorithm rejected all policy updates.

The experiments showed that the success of learning can depend not only on the
quality of measurements of states provided to the reinforcement learner, but also on
the sampling frequency, because the LSPI run on Speedgoat machine with sampling
frequency 120 Hz was able to converge to a solution even with the more noisy posi-
tion measurement compared to the PC with better position measurement sampled at
50 Hz, where the LSPI failed. With sampling frequency decreased to 50 Hz, the LSPI
did not converge on Speedgoat platform either. Therefore we think that it would be
useful to put more effort in improving the position measurement in the future to get a
solution that will be at once less noisy and fast, because some of the learning methods
may require high sampling rates in order to work effectively.

The reinforcement learning methods that use random exploration during the learn-
ing process also face a problem of missing guarantees for performance of the learned
policy. The problem is caused by the limited amount of exploration, which is at-

78

8.1. Future work

tenuated during learning or stopped after some learning period elapses, because it
deteriorates the performance of the learned policy. Although the exploration attenu-
ation is set to provide the algorithms enough time for converging to a good solution,
we still only rely on the fact that the algorithms converge before the exploration
vanishes.

Similarly to the reinforcement learning, the suggested auto-identification would
also profit from a better position measurement. Especially for the identification of
the acceleration profile for the 20 mm ball, it would be useful to have a higher sampling
frequency available than 50 Hz from the visual position measurement. The subsequent
control with the auto-identified acceleration profiles suffered also from the position
measurement delay.

Although the Speedgoat rapid prototyping platform has its limitations, we find it
quite handy. First, it is because of the variety of interfaces that allow connecting
different peripherals easily. Second, Speedgoat provides high performance and exact
synchronization during the execution of target applications thanks to the real-time
kernel. Finally, the target application development with Speedgoat is definitely faster
and easier than writing one’s own target applications e.g. in C, even with the relatively
lengthy code generation, compilation and target initialization of the Simulink models,
which seemed clumsy at first.

8.1. Future work

First of all, the future work includes repeating the experiments with Speedgoat plat-
form together with the low-noise resistive foil measurement improved by using a sta-
bilized laboratory power supply instead of Magman’s power supply. It is possible that
the control algorithms will perform better.

Second, the experiments with the corrected Simulink implementation of EBAC
should be performed to evaluate its behavior with the real magnetic platform.

Third,within the scope of this thesis, we managed to accomplish the task of one-
dimensional stabilization of a single ball above a row of coils using two different
reinforcement learning methods, so the logical next steps are the command following
(still in one dimension) and the subsequent extension to the two-dimensional control of
one ball, afterwards extended to the parallel control of more balls. Every extension will
increase the dimensionality and therefore also the difficulty of the learning problem.
The parallel manipulation will be challenging also because of the possible interaction
of the manipulated objects. Beside increasing the dimensionality of the controlled
system, it would be also interesting to use the reinforcement learning for direct coil
control without the feedback linearization layer.

79

Appendix A.

Basler acA2000-340kc with BitFlow
NEON-CLB

The Camera Link camera and the framegrabber have a specific way of settings. Both
of them come with a specialized software from their manufacturer and can be config-
ured independently. However, their configurations have to be consistent in order to
work correctly together.

A.1. Camera settings

The camera is configured through Basler Pylon Viewer software, which allows adjust-
ing various parameters from the exposure settings to the area of interest (AOI) to
the parameters of serial communication with the framegrabber card. All the camera
settings that are available in Pylon Viewer form a configuration set. It is possible
to store four different configuration sets in the non-volatile internal memory of the
camera. One of the configuration sets is used as the default startup set, which spe-
cifies the default parameter values that are set every time the camera reboots. The
default configuration set is the only way how to adjust the camera when being used
with Speedgoat platform, because Speedgoat cannot run Pylon Viewer.

A.2. Camera configuration file

The framegrabber needs information about the connected camera including the num-
ber of active pixels, bit depth and possibly the hardware triggering options. The
information is contained in the camera configuration file and has to fit the current
camera settings adjusted through Pylon Viewer, otherwise the acquired image is bro-
ken apart. The camera configuration files can be browsed and edited using CamEd
utility from BitFlow SDK. Beside the camera information, the configuration files also
allow turning on or off the hardware Bayer decoding on the framegrabber, as well as
the Power over Camera Link (PoCL) option, which can power the camera from the
framegrabber card without the need for an external power adapter.

80

Appendix B.

Speedgoat Performance Real-Time
Platform

B.1. Target machine settings

The target machine settings are accessible through a graphical interface of the xPC
Explorer, which is launched by the command ‘xpcexplr’ in Matlab on the host PC.
The settings can be changed only when the target machine is disconnected and they
are persisted on the target machine by updating its kernel. The kernel is transferred
on a USB stick in a following procedure:

1. Save the settings in the xPC Explorer.

2. Connect the USB stick to the host PC (suppose that it connects e.g. as drive
‘E:’) and generate updated boot files for the target machine by the command
‘speedgoatmachineboot(‘E:’)’.

3. Plug the USB stick into the target machine and boot it. The target machine
will automatically load the updated kernel with settings.

4. After a prompt, remove the USB stick from the target machine and reboot it
with the new settings.

B.2. Camera Link support

Although we could not use the Camera Link camera for experiments due to the
missing Bayer decoding support, we have an interesting remark that applies also to
monochromatic cameras. The Simulink block for the video acquisition using BitFlow
Neon framegrabber is parametrized with a camera configuration file, but it does not
allow to adjust the camera settings like the exposure time, bit depth, image sensor
gain etc., which are usually set using a software provided by the manufacturer of
the camera. As the software cannot be installed on Speedgoat, one needs a PC with
a compatible framegrabber card to pre-configure the camera in advance, persist the
settings in its registers and then connect it to Speedgoat. The Basler cameras have a
default startup configuration set that can be used for this purpose.

81

Appendix B. Speedgoat Performance Real-Time Platform

B.3. Data logging & file transfers

The measured signals can be logged to Speedgoat’s local HDD using the xPC File
Scope block from Simulink library. The files can be afterwards downloaded to the
host PC for further processing. The easiest way how to transfer the files between the
target machine and host PC is to use the xpctarget.ftp object as

ftp = xpctarget.ftp;
ftp.get(’fileName.dat’);

to store the data file from the target machine in the current Matlab directory on the
host PC. The data is stored in binary xPC Target file format, which can be loaded
into a structure in Matlab workspace using a specialized utility

dataStructure = readxpcfile(’fileName.dat’);

Although it is quite common to save the captured video-sequences when experimenting
with a camera, the xPC Target does not provide a reasonable tool to save a video
signal. Although the video can be transmitted to the host PC over UDP, this option
works only for low resolution and frame rate of the video. When we used a USB
webcam that produced a 640 × 480 px RGB signal at 30 frames per second, the
resulting frame rate on the host PC after UDP transmission was 3 frames per second.
We therefore attempted to save the video to Speedgoat’s local HDD through the xPC
File Scope, but even this solution is not suitable, because every pixel intensity value is
processed as a single signal by the File Scope, resulting in tens of thousands of signals.
Compilation and initialization of a target application for saving a 204× 204 px video
through the File Scope takes approximately 17 minutes. For a higher resolution, the
compilation was terminated with an error. In conclusion, it is not possible to save a
high resolution video using the xPC Target.

82

Appendix C.

Contents of the attached CD

A CD with Matlab source codes and other materials is attached to the thesis. The
content of the CD is organized in following directories:
∙ Thesis/ : contains electronic version of the thesis text
∙ MATLAB/control: the implementation of the discussed control algorithms
∙ MATLAB/magSimulink: the Simulink library with basic blocks for Magman
∙ MATLAB/vision: the implementation of the computer vision

83

Bibliography

[1] P. Abbeel, A. Coates, M. Quigley, and A.Y. Ng. An application of reinforcement
learning to aerobatic helicopter flight. In In Advances in Neural Information
Processing Systems 19, page 2007. MIT Press, 2007.

[2] A. Al-tamimi, M. Abu-Khalaf, and F. Lewis. Machine Learning, chapter Heuris-
tic Dynamic Programming Nonlinear Controller. InTech, 2009.

[3] J.G. Allen, R.Y.D. Xu, and J.S. Jin. Object tracking using camshift algorithm
and multiple quantized feature spaces. Technical report, School of Information
Technologies, University of Sydney, 2006.

[4] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena
Scientific, 3rd edition, 2007.

[5] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-
entific, 1st edition, 1996.

[6] R.R. Bitmead. Persistence of excitation conditions and the convergence of adap-
tive schemes. Information Theory, IEEE Transactions on, 30(2):183–191, Mar
1984.

[7] K.F. Böhringer and H. Choset. Distributed Manipulation. Springer US, 2000.

[8] K.F. Böhringer, B.R. Donald, and N.C. MacDonald. Single-crystal silicon actu-
ator arrays for micro manipulation tasks. In Micro Electro Mechanical Systems,
1996, MEMS ’96, Proceedings. An Investigation of Micro Structures, Sensors,
Actuators, Machines and Systems. IEEE, The Ninth Annual International Work-
shop on, pages 7–12, Feb 1996.

[9] K.F. Böhringer, B.R. Donald, and N.C. MacDonald. What programmable vector
fields can (and cannot) do: Force field algorithms for mems and vibratory plate
parts feeders. In Proceedings IEEE International Conference on Robotics and
Automation, pages 822–930, 1996.

[10] G.R. Bradski. Computer vision face tracking for use in a perceptual user interface.
Intel Technology Journal, 2, 1998.

[11] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuška. Online least-squares pol-
icy iteration for reinforcement learning control. In American Control Conference
(ACC), 2010, pages 486–491, June 2010.

84

Bibliography

[12] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuška. Approximate reinforce-
ment learning: An overview. In Adaptive Dynamic Programming And Reinforce-
ment Learning (ADPRL), 2011 IEEE Symposium on, pages 1–8. IEEE, 2011.

[13] H. Byun and S.W. Lee. Applications of support vector machines for pattern
recognition: A survey. In Pattern recognition with support vector machines,
pages 213–236. Springer, 2002.

[14] P. Corke. Robotics, Vision and Control, chapter Planar Homography. Springer
Berlin Heidelberg, 2011.

[15] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[16] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx. Modeling and
Control of Complex Physical Systems. Springer, 2009.

[17] G.A. Dumont and M. Huzmezan. Concepts, methods and techniques in adap-
tive control. In American Control Conference, 2002. Proceedings of the 2002,
volume 2, pages 1137–1150 vol.2, 2002.

[18] M. Fairbank and E. Alonso. The divergence of reinforcement learning algorithms
with value-iteration and function approximation. In Neural Networks (IJCNN),
The 2012 International Joint Conference on, pages 1–8, June 2012.

[19] H. Funaya and K. Ikeda. A statistical analysis of soft-margin support vector
machines for non-separable problems. In Neural Networks (IJCNN), The 2012
International Joint Conference on, pages 1–7, June 2012.

[20] P.Y. Glorennec. Reinforcement learning: an overview. In European Sym. on
Intelligent Techniques, 2000.

[21] Speedgoat GmbH. Support – Target Machine Setup Guides. http://www.
speedgoat.ch/TargetMachines_Landing.aspx, March 2014.

[22] G.J. Gordon. Reinforcement learning with function approximation converges to a
region. In Advances in Neural Information Processing Systems, pages 1040–1046.
The MIT Press, 2001.

[23] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuška, and E. Schuitema. Effi-
cient model learning methods for actor-critic control. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 42(3):591–602, June 2012.

[24] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin. Iterative feedback
tuning: theory and applications. Control Systems, IEEE, 18(4):26–41, Aug 1998.

[25] P. Holoborodko. Noise robust differentiators for second derivative es-
timation. http://www.holoborodko.com/pavel/numerical-methods/
numerical-derivative/smooth-low-noise-differentiators, March 2014.

85

http://www.speedgoat.ch/TargetMachines_Landing.aspx
http://www.speedgoat.ch/TargetMachines_Landing.aspx
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators

Bibliography

[26] Z. Hurák and J. Zemánek. Feedback linearization approach to distributed feed-
back manipulation. In American Control Conference (ACC), 2012, pages 991–
996, June 2012.

[27] A. Hyo-Sung, Ch. Yang-Quan, and K.L. Moore. Iterative learning control: Brief
survey and categorization. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 37(6):1099–1121, Nov 2007.

[28] I.D. Landau, R. Lozano, and M. M’Saad. Adaptive control. Springer, 1998.

[29] I. Leichter, M. Lindenbaum, and E. Rivlin. Mean shift tracking with multiple ref-
erence color histograms. Computer Vision and Image Understanding, 114(3):400
– 408, 2010.

[30] F.L. Lewis and K.G. Vamvoudakis. Optimal adaptive control for unknown sys-
tems using output feedback by reinforcement learning methods. In Control and
Automation (ICCA), 2010 8th IEEE International Conference on, pages 2138–
2145, June 2010.

[31] F.L. Lewis, D. Vrabie, and K.G. Vamvoudakis. Reinforcement learning and
feedback control: Using natural decision methods to design optimal adaptive
controllers. Control Systems, IEEE, 32(6):76–105, Dec 2012.

[32] L. Matignon, G.J. Laurent, and N. Le Fort-Piat. Design of semi-decentralized
control laws for distributed-air-jet micromanipulators by reinforcement learning.
In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 3277–3283, Oct 2009.

[33] M. Piccardi. Background subtraction techniques: a review. In Systems, Man and
Cybernetics, 2004 IEEE International Conference on, volume 4, pages 3099–3104
vol.4, 2004.

[34] W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. John Wiley and Sons, 2007.

[35] D.K. Prasad. Survey of the problem of object detection in real images. Interna-
tional Journal of Image Processing, 6, 2012.

[36] A. Salhi and A.Y. Jammoussi. Object tracking system using camshift, mean-
shift and kalman filter. World Academy of Science, Engineering and Technology,
64:674–679, 2012.

[37] E. Schuitema. Reinforcement learning on autonomous humanoid robots. PhD
thesis, TU Delft, November 2012.

[38] O. Sprangers, G.A.D. Lopes, and R. Babuška. Reinforcement learning for port-
hamiltonian systems. 2013. Submitted, available at http://arxiv.org/abs/
1212.5524.

86

http://arxiv.org/abs/1212.5524
http://arxiv.org/abs/1212.5524

Bibliography

[39] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, vol-
ume 28. MIT press, 1998.

[40] K.G. Vamvoudakis and F. Lewis. Online actor-critic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica, 46:878–
888, 2010.

[41] H. van Seijen and R. S. Sutton. True online td(𝜆). In ICML ’14: Proceedings of
the 31th International Conference on Machine Learning, 2014. To appear.

[42] W.J.R. Velthuis. Learning feed-forward control. PhD thesis, University of Twente,
February 2000.

[43] D. Vrabie and F. Lewis. Neural network approach to continuous-time direct adap-
tive optimal control for partially unknown nonlinear systems. Neural Networks,
22:237–246, 2009.

[44] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. Lewis. Adaptive optimal
control for continuous-time linear systems based on policy iteration. Automatica,
45:477–484, 2009.

[45] F.-Y. Wang, H. Zhang, and D. Liu. Adaptive dynamic programming: An intro-
duction. Computational Intelligence Magazine, IEEE, 4(2):39–47, May 2009.

[46] S. Wang, J. Braaksma, and R. Babuška. Reinforcement learning control for biped
robot walking on uneven surfaces. In Proceedings of the 2006 International Joint
Conference on Neural Networks, pages 4173–4178, 2006.

[47] Y. Wang, F. Gao, and F.J. Doyle. Survey on iterative learning control, repetitive
control and run-to-run control. Journal of Process Control, 19:1589–1600, 2009.

[48] A. Yilmaz, O. Javed, and S. Mubarak. Object tracking: A survey. ACM Com-
puting Surveys, 38(4), 2006.

[49] J. Zemánek and Z. Hurák. Experimental modular platform for distributed planar
manipulation by shaping magnetic field. IEEE/ASME Transactions on Mecha-
tronics, 2014. to be submitted.

87

	Introduction
	Outline
	Motivation and scope

	Magnetic platform description
	Magman mathematical model
	Feedback linearization

	Instrumentation
	Speedgoat rapid prototyping platform
	Camera
	Ball position measurement

	Speedgoat–Magman interface

	Computer vision
	Problem setting
	Notation for computer vision

	Background subtraction
	Initialization
	Detection

	Meanshift
	Initialization
	Detection
	RGB vs. HSV color space

	Linear SVM pixel classification
	Detection

	HSV feature thresholding
	HSV thresholding in the RGB color space

	Comparison of detection methods
	Camera calibration
	Simulink implementation of ball detection
	Conclusions

	Reinforcement learning
	Basic terms
	Markov Decision Process
	Taxonomy
	Generalized Policy Iteration
	Temporal difference
	Exploration
	Function approximation
	Linear Basis Function Approximation

	Online IRL control
	Integral reinforcement
	Linear system case

	Online LSPI bang-off-bang control
	Incremental parameter vector estimation
	Policy updates

	Online EBAC control
	Port-Hamiltonian control paradigm
	Actor-critic for energy balancing control

	Conclusions

	Auto-identification
	Suggested approach
	Open-loop acceleration profile identification
	Control with identified acceleration profile
	Closed-loop acceleration profile identification
	Conclusions

	Simulations
	Online IRL
	Noise-free system
	Trial learning

	Online LSPI bang-off-bang
	Symmetry exploitation

	Online EBAC
	Tuning of the learning parameters

	Auto-identification
	Conclusions

	Experiments
	Online IRL value iteration
	Online LSPI
	Online EBAC
	Auto-identification
	Conclusions

	Conclusion
	Future work

	Basler acA2000-340kc with BitFlow NEON-CLB
	Camera settings
	Camera configuration file

	Speedgoat Performance Real-Time Platform
	Target machine settings
	Camera Link support
	Data logging & file transfers

	Contents of the attached CD
	Bibliography

