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Abstract
In this thesis, we explore solutions to the
supervised clustering problem, focusing
on neural network-based methods. We are
motivated by problems such as semantic
text summarization, topic extraction, and
fast annotation of data.

The goal of a supervised clustering
model is to partition a set of a variable
number of elements into clusters. This
is done by first training the model using
labeled data.

In the first part, we explore machine
learning approaches to processing set-
structured data and the current state of
the art methods for solving the super-
vised clustering problem. The theory nec-
essary to define set-processing methods is
reviewed, and two state of the art models
for solving the supervised clustering prob-
lem are described in detail. We further
propose two new methods, each using a
different representation of the input and
output.

Using experiments on one real-world
and two synthetic datasets, we compare
the two state of the art methods with the
proposed methods. We explore the ability
to deal with intra-cluster data dependen-
cies and the scalability of the examined
models to the size of a set of elements to
be clustered.

Keywords: supervised clustering,
machine learning, neural networks,
set-structured data

Supervisor: Ing. Jan Drchal, Ph.D.,
Artificial Intelligence Center FEE

Abstrakt
V rámci této práce zkoumáme možná ře-
šení pro problém supervizovaného shlu-
kování se zaměřením na metody založené
na neuronových sítích. Naší motivací jsou
problémy jako je shrnutí textu podle sé-
mantiky, extrakce tématu z textu a rychlá
anotace dat.

Cílem modelu řešícího supervizované
shlukování je zpracovat množinu obsahu-
jící proměnný počet prvků a rozdělit tyto
prvky do shluků. Za tímto účelem je mo-
del nejdříve trénován pomocí dat u kte-
rých známe správné rozdělení prvků do
shluků.

V první části zkoumáme přístupy stro-
jového učení ke zpracování dat strukturo-
vaných jako proměnný počet prvků v mno-
žině a současné state of the art metody pro
řešení supervizovaného shlukování. Uvá-
díme teorii nezbytnou k definování me-
tod zpracovávajících množiny prvků a po-
drobně popisujeme dva state of the art
modely pro řešení supervizovaného shlu-
kování. Dále jsme navrhli dvě nové me-
tody, z nichž každá používá jiné kódování
vstupu a výstupu.

Pomocí experimentů na jednom reál-
ném a dvou syntetických datasetech po-
rovnáváme popsané state of the art me-
tody s metodami které jsme navrhli. Za-
měřujeme se na schopnost zpracovat data
se závislostmi mezi prvky uvnitř shluků
a na škálovatelnost zkoumaných modelů
při rostoucí velikosti vstupu.

Klíčová slova: supervizované
shlukování, strojové učení, neuronové sítě,
data strukturovaná do množin

Překlad názvu: Kódování vstupů a
výstupů pro metody supervizovaného
shlukování
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Chapter 1
Introduction

Clustering is traditionally an unsupervised learning problem used frequently
for statistical and exploratory data analysis. Its task is to partition a set
of elements (samples) into multiple clusters, where elements from the same
cluster are supposed to be more similar than elements from different clusters.
With some data, however, it might not always be clear what the similarity of
elements means. Most unsupervised clustering methods utilize a distance of
the elements’ representations.

Instead of solving the clustering problem as an unsupervised one, we
build on recent advancements in supervised learning. These advancements
are mainly due to deep learning networks that are able to learn a useful
representation of the input data. Using supervised clustering, we want to
omit the need to specify similarity between elements manually. Instead, we
use ground truth clustering information to learn a deep learning model to
infer the clusters directly or indirectly (by learning the similarity metric).

There are two problems with the supervised approach to clustering. First,
supervised deep learning methods primarily work with samples with fixed-
sized representation, whereas a set of elements we want to cluster can be of
variable size. Second, when using deep learning for classification or regression,
the number of outputs is generally known before the training. This is not the
case with clustering, where the number of clusters is arbitrary. As such, a
method solving a supervised clustering problem needs to be able to predict the
number of clusters in given data. This essentially means that the supervised
clustering problem consists of working with a variable number of inputs and
outputs.

Our work on supervised clustering started with the Newspaper dataset
described in Section 5.3. In short, we are given textboxes from a newspaper
page. Each textbox is described by a set of features (such as position or font
size) and our task is to cluster the textboxes into articles. Example of such
page is shown in Figure 1.1. To solve this problem, we proposed MIL model
(see Section 4.1). At that time, state of the art models described in Chapter
3 were published, and we decided to compare them with our approach. We
proposed another model (Permutation Equivariant Model — PEM) inspired
by the state of the art model Deep Amortized Clustering (Section 3.1) to test
if architecture using simpler building blocks would work.
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1. Introduction .....................................

Figure 1.1: Examples of pages from Newspaper dataset. Text-boxes bounded
with rectangle of same colour are from same cluster (article).

The approach of MIL and ABC (Attention Based Clustering — one of
the state of the art methods) can be to some extent described as learning
a similarity metric between two elements using the context of all other
elements in the input. On the other hand, DAC and PEM process the whole
variable-sized input directly and produce a part of the clustering at once.

We are also interested in datasets with intra-cluster dependencies. In such
clusters, samples are not independently distributed. To provide an example,
consider the difference between samples drawn from a mixture of Gaussians
distribution versus samples representing points on multiple intersecting circles.
Discussed intra-cluster dependency can also be found in the positioning of
articles in the Newspaper dataset (see Figure 1.1). The headline is typically
center- or left-aligned on top relative to other textboxes, and textboxes
containing the body of the article are mostly structured into columns.

1.1 Motivation

Apart from the Newspaper dataset, we provide some possible uses of super-
vised clustering.

Consider, for example, a large number of documents that a user wants to
separate into several groups based on semantics. Defining a rule-based system
to do such clustering might be tedious and unfeasible. Instead, the user could
divide a small portion of the documents into desirable groups and use the

2



................................. 1.2. Problem specification

model to learn to cluster the rest of the texts. This approach removes the
need to formulate the definition of clusters or to define a similarity between
two texts manually.

Another possible use is cheaper and faster data labeling that could work by
first visualizing the data using some low-dimensional embedding such as PCA
or t-SNE. Using this visualization, an annotator could quickly pick elements
that should be assigned the same class (assuming such elements would be
embedded close to each other in the low-dimensional embedding) according
to sought-out labeling. This crude labeling would then be used as ground
truth information to train a supervised clustering model. Afterward, the rest
of the dataset could be quickly divided by the trained model into groups that
satisfy the annotator’s demands (specified by the initial crude labeling of the
part of the dataset).

1.2 Problem specification

We are given a dataset consisting of sets (instead of fixed-sized samples).
Each set contains a variable number of elements, where each element is
represented by a vector xi ∈ Rd with a fixed number of features d. A whole
set can be denoted as X = {x1, . . . ,xnX}, where nX is the variable number
of elements in set. We trade the mathematical correctness of our notation
for clarity by using the same letter X for representing the set as matrix
X = [x1, . . . ,xnX ]T ∈ RnX×d, with elements stored as rows. A ground truth
clustering for each set X is given by vector y ∈ [1, . . . , kX ]nX , where kX is a
true number of clusters in X. Clusters in set X are denoted with numbers
1, . . . , kX and for element xi, the true cluster number is given by i-th element
yi of vector y.

The goal of a supervised clustering model is to process elements of a set
X and predict the true cluster number yi (denoting to which cluster the
i-th element belongs) for each element xi (i = 1, . . . , nX) of the set. This
is done by first optimizing the model using a dataset of sets for which we
have the ground truth clustering informationx. Both the number of elements
and the number of clusters are variable. That is, the number of elements
and the number of clusters can differ from set to set. Supervised clustering
models must further satisfy an important property: the cluster assignment
they predict must be invariant to permuting the order of elements in the
input set. This means that upon shuffling the elements xi of X, the same
elements must be assigned to the same clusters as before.

3
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Chapter 2
Background

Before defining individual models that solve the supervised clustering prob-
lem specified in Section 1.2, we describe fundamental ideas and methods
behind them. These ideas and methods are based on the neural network
paradigm. Methods discussed in this chapter do not address the supervised
clustering problem directly, but rather the task of processing set-structured
data generally, since supervised clustering is a set-processing task. The task
of processing sets includes a range of problems — for example, 3D shape
recognition, detecting set outliers, or multiple instance learning.

We can divide methods in this chapter into two groups. The first group of
methods maps elements of a set from one representation to another. Such
method’s output is a set with the same number of elements as in the input
set. A simple one-layer feedforward neural network could do this by mapping
each element individually, but that would omit information, a context, from
the rest of the set. A better approach is to embed the context into the output
representation of each element. Such representation can then be pooled
(using, for example, max or mean function) into a single vector or processed
by a feedforward neural network element-wise. Equivariant Layer (Section
2.3) and Self-Attention Block from Set Transformer (Section 2.5) discussed
in this chapter belong into this category of methods. Because a set is, by
definition, an unordered group of elements, methods from this group must be
permutation equivariant, as discussed in [12]. A funtion f operating on sets
is permutation equivariant, if for any permutation π it holds:

f [xπ(1), . . .xπ(nX)] = [f(xπ(1)), . . . , f(xπ(nX))], (2.1)

that is, the order of elements in the output set permutes correspondingly
upon permuting elements in the input set.

The second group of methods maps sets with a variable number of elements
into fixed-sized representation. This is a case of Multiple Instance Learning
(Section 2.2) and Pooling by Multi-head Attention block (Section 2.5). Having
a fixed-sized representation of the variable-sized set then, for example, allows
us to use well-researched machine learning methods for fixed-length represen-
tation. We require a method from this group to be permutation invariant
(discussed again in [12]): the output does not change upon permutation of
elements in the input set (shuffling rows of its matrix representation).

5



2. Background .....................................
Since in this thesis we work exclusively with data structured as a variable

number of elements in a set, where the elements have a fixed number of
features, we continue to use the notation proposed in Section 1.2.

We denote a set of elements as:

X = {x1, . . . ,xnX}, xi ∈ Rd (2.2)

and use the same letterX for representing the set as matrixX = [x1, . . . ,xnX ]T ∈
RnX×d, where the elements are stored as rows.

2.1 Neural Networks

All methods used in this work fall within the field of machine learning, specif-
ically neural networks. This means we can consider all described models
(methods) to be functions with a large number of modifiable parameters. For
each model, we also define a proper loss function. Since all mathematical op-
erations in our models are differentiable, we can evaluate the loss function on
training data (set X and corresponding ground-truth cluster numbers y), dif-
ferentiate the loss function with respect to all parameters (back-propagation),
and optimize the parameters using a gradient-based method like Adam [5].
This process of optimizing the model’s parameters using loss function and
training data is generally called training in machine learning.

A frequently used component in the models we discuss is a standard
feedforward neural network layer (with bias). We apply it row-wise to input
matrix and denote it rFF. Considering a set X ∈ RnX×d, rFF is defined as:

rFF(X) = XW + bT , (2.3)

where W ∈ Rd×dM is a weight matrix and b ∈ RdM is a bias. Shape of the
output is given by parameter dM : rFF(X) ∈ RnX×dM .

2.2 Multiple Instance Learning

Multiple Instance Learning (MIL) formalism assumes samples to be structured
as multisets (considering the mathematical definition of set and multiset, a
multiset, unlike a set, can contain an element repeatedly). The multisets are
called bags in the MIL literature. We denote these bags (multisets) as sets to
be concise with the rest of the thesis but do not require the elements in the
set to be unique.

Each set contains a variable number of fixed-sized elements x. The ground
truth information y (class label or continuous variable) is only available for
the set as a whole compared to having one label for each element. The goal
is to find a function f(X) that predicts label y of this set. Such function
must be invariant to permuting the order of elements in the input set X
(Permutation invariance).

This formalism is motivated by difficulty to describe real-world objects
with fixed-sized numerical vectors. Using a set of vectors is usually more

6



...................................2.3. Equivariant Layer
natural. To give examples of such problems, we state two datasets used to test
methods solving MIL problems in [9]: Musk dataset, where one set represents
a molecule, and each element of that set represents one conformation of this
molecule. The goal is to predict if the molecule is active, which happens if at
least one of the conformations is active. And Protein dataset, where each
set represents one protein and an element contains molecular and chemical
properties of some part of that protein’s sequence. The task is to predict if a
protein represented by a set belongs to a particular family of proteins.

Authors of [9] proposed Neural Network formalism to solve MIL problems.
This formalism is based on embedding the set X into a fixed-sized vector
using mapping:

φ(X) ∈ Rm. (2.4)

Having set X represented as a fixed-sized vector, we can apply any differen-
tiable function to obtain the estimate of ground-truth label y.

Mapping φ consists of embedding each element x ∈ Rd individually using
neural network ka"

ka(x, θa) ∈ Rm (2.5)

with parameters θa. Embedded elements are then aggregated feature-wise
by a pooling function g into a single vector of the same size m. If we use a
pooling function for which we can compute derivative during back-propagation
(e.g., mean or max), parameters θa can be optimized using a gradient-based
method.

The whole architecture we will use can be denoted as:

y ≈ kb(g({ka(x1, θa), . . . , ka(xnX , θa)}), θb), (2.6)

where kb is neural network with parameters θb. We specify the exact form of
neural networks ka and kb later.

A general function called Invariant model working with sets and labels on
set-level is also described in [12]. The resulting architecture is of the same
form as the one described above. Moreover, such architecture was also proven
by authors of [12] to be a universal approximator for any set function.

2.3 Equivariant Layer

Article [12] focuses on functions working with set-structured data generally,
motivated by problems such as estimation of population statistics or processing
of data in cosmology. It introduces the Invariant model mentioned in the
previous section, and Equivariant layer described below.

The Equivariant Layer again works with sets of a variable number of
elements with a fixed size. For a set X on the input, it produces an output set
with the same number of elements of size dM (defined as a parameter of the
layer). In contrast to rFF (2.3), elements of the set (rows of matrix X) are not

7



2. Background .....................................
processed independently. During the processing of setX, information from the
input representation of one element is used to produce the representation of
each element of the output set. This enables the model to encode interactions
between the elements and process the elements in context to each other.

We consider the set X to be represented as matrix: X ∈ RnX×d in the
following definitions. Equivariant layer is then defined as

EquivLayer(X) = σ(XΛ− 11TXΓ), (2.7)

where Λ,Γ ∈ Rd×dM are trainable parameters. The part (11TX) ∈ RnX×d

of the equation above results into a matrix with identical rows, where j-th
element of the row equals to the sum of j-th column of X (sum of j-th feature
over all elements in the set X). Output of EquivLayer is a set of elements
again. Number of elements is preserved: Y ∈ RnX×dM . Max and mean
version of the Equivariant Layer can be defined as:

EquivLayermax(X) = σ(XΛ− 1MAX(X)Γ), (2.8)
EquivLayermean(X) = σ(XΛ− 1MEAN(X)Γ). (2.9)

Max and mean in the equations above are computed for each column of X indi-
vidually: 1max(X), 1mean(X) ∈ RnX×d. We use EquivLayerMEAN instead
of the default Equivariant Layer (2.7), since difference between 1mean(X)
and 11TX is only in scaling by nX .

A single equivariant layer is permutation equivariant. Stacking multiple
equivariant layers results in a model that is also permutation equivariant.

2.4 Self-Attention

We deviate shortly into sequence processing to explain the motivation behind
the self-attention mechanism but return to set-structured data to define it
precisely.

Recurrent neural networks (RNN) are today a standard model architecture
used to process sequences of data in tasks such as machine translation.
Part of solution for such problems is mapping variable-length sequence of
symbols represented as (x1, . . . , xn) to another representation of same length
(y1, . . . , yn). In RNN, a sequence is processed sequentially and the hidden
state of the RNN after processing xi is needed before xi+1 can be processed.
This inhibits the use of parallelization and, in practice, restricts the modeling
of dependencies between symbols with large distances in the sequence. Self-
attention allows to model these dependencies between symbols irrespective of
their distance and enables parallel computation. These advantages motivated
the use of the self-attention mechanism jointly with RNN in sequence modeling
tasks.

The Transformer [10] is a model for sequence modeling that took this
approach further and is based entirely on self-attention instead of recurrence.
The reliance on self-attention is motivated by the problems of recurrence-
based models described above. We mention the Transformer architecture

8



.................................... 2.4. Self-Attention

because it inspired the Set Transformer described in the next section and
popularized the self-attention mechanism we describe below.

Attention is a function mapping set of n queries and a set of m key-value
pairs to n outputs. Queries, keys, values and outputs are all vectors and we
represent them as rows of matrices Q ∈ Rn×dq , K ∈ Rm×dq , V ∈ Rm×dv . This
is consistent with how we represent sets in the rest of this thesis. Single vector
from output of attention function Attention(Q,K, V ) ∈ Rn×dv is weighted
sum of values V with weights computed by a compatibility function with the
corresponding query and key as input:

Attention(Q,K, V ) = softmax(compat(Q,K))V, (2.10)

where compat(Q,K) is a compatibility function defined in the following text.
Authors of the Transformer architecture [10] use scaled dot-product com-

patibility function defined as

compatmul(Q,K) = QKT√
dq
, (2.11)

which adds ·√
dq

operation to simple dot-product (multiplicative) compatibility

function to adress possibly large values of dot-product QKT . Such values can
subsequently push softmax function to regions with a very small gradient.

We also use additive compatibility function from [1], as it is originally used
in the Attention Based Clustering model defined in the next chapter:

(compatadd(Q,K))i,j = tanh(qi + kj)Tw, (2.12)

where w is vector of trainable parameters and qi , kj are i-th and j-th row of
Q and K. Differences between these two compatibility functions are discussed
in [10] with the conclusion that both perform similary, but the scale-dot
product compatibility function can be implemented more space and time
efficiently.

Instead of performing single attention function, [10] proposed to first create
h different dMq , dMq , dMv - dimensional representations as linear projections of
Q, K, V (each row is projected independently) and apply attention function
to each of these h projections. This enables the model to attend to different
positions of the input set at once and was shown to achieve better results in
various tasks. Such Multi-head attention function is defined as:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)WO, (2.13)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (2.14)

where WQ
i ∈ Rdq×dM

q , WK
i ∈ Rdq×dM

q , W V
i ∈ Rdv×dM

v , WO ∈ Rdv×dM

are learnable parameters. We use dMq = dq

h and dMv = dv
h , dM is a model

parameter.
The self-attention (or intra-attention) is then attention with queries, keys

and values being the same set of vectors. This allows us to relate elements
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2. Background .....................................
(vectors) of the input set between each other and compute representation
containing information about interactions between the elements of the input
set.

2.5 Set Transformer

The Set Transformer builds on the Transformer architecture [10] (mainly
attention and self-attention) with a focus on processing set-structured data,
motivated by the same type of problems as [9] and [12], discussed in previous
sections. It is inspired by the general set-processing function from [12]
(identical to architecture (2.6)). The Set Transformer is composed of blocks
that use self-attention to process sets. This allows the blocks to encode
pairwise and higher-order interactions between elements in the set. We are
only interested in the individual blocks but show an example of the final
model architecture at the end of this section.

In the following definitions, we consider two sets of nX and nY elements
[x1, . . . ,xnX ]T , [y1, . . . ,ynY ]T stored as rows of matrices X ∈ RnX×dx , Y ∈
RnY ×dy .

Main building part is Multi-head Attention Block (MAB) defined as:

MAB(X,Y ) = H + rFF(H), H = X + rFF(MultiheadAtt(X,Y )), (2.15)

where rFF is row-wise feedforward layer. The output of MAB(X,Y ) contains
the same number of elements (rows of output matrix) as the input set X,
dimension of the output elements dM is given by weight matrix used for
projection in (2.13).

Using MAB, we define Self-Attention Block (SAB):

SAB(X) = MAB(X,X), (2.16)

capable of encoding relationships between elements of set X into the output
set. By stacking variable number of SABs, we can model more complicated
interactions between the elements of input set X. Such stack of L SABs is
denoted SABL.

To encode a set with an arbitrary number of elements into k elements, we
use Pooling by Multi-head Attention (PMA):

PMAk(X) = MAB(S,X), (2.17)

where S = [i1, . . . , ik]T are trainable parameters and since S is the first input
of the MAB, size of the output is MAB(S,X) ∈ Rk×dM .

To solve the O(n2) time complexity of SAB, authors of [7] used Induced
Self-Attention Block instead:

ISAB(X) = MAB(X,PMAk(X)), (2.18)

Rather than comparing elements of X between each other directly (which
is the source of the quadratic complexity), ISAB compares them through k

10



.................................. 2.6. Spectral Clustering

inducing points S (learnable parameters of the PMA block). This modification
reduces the time complexity of ISAB to O(kn). We can again stack L ISABs,
which we denote ISABL.

The overall Set Transformer architecture is structured as an encoder and
decoder (similarly to 2.6). Encoder can be composed of L SAB or ISAB
stacked blocks:

Encoder(X) = SABL(X) Encoder(X) = ISABL(X), (2.19)

which transforms set X ∈ RnX×d into a set representation Z ∈ RnX×dM ,
where dM is parameter of Encoder. Decoder can be, for example, defined as:

Decoder(X) = rFF(SAB(PMAk(Z))) ∈ Rk×d′
M . (2.20)

It maps the features Z into set with fixed number of elements k of defined
length d′M . If k = 1 (as it would be to obtain single label per set, for example
to solve MIL problem), the SAB block in the Decoder can be omitted.

2.6 Spectral Clustering

Most of the models described in the two following chapters do not output
cluster assignment directly, but their output can be transformed into a
similarity matrix of the set to be clustered. A similarity matrix of set X is
defined as S ∈ RnX×nX , where si,j ∈ [0, 1] describes the similarity between
i-th and j-th element of X.

We decided to use spectral clustering to obtain cluster assignment from the
similarity matrix, as it is already used with the ABC [3] model described in
Section 3.2. Furthermore, there exists a method for estimating the number of
clusters from the similarity matrix, which is particularly designed for spectral
clustering (the number of clusters in a set is generally not known in the
supervised clustering problem).

The set X can be viewed as a weighted graph G = (V,E,W ), where
V = {v1, . . . , vnX} are vertices representing elements X = {x1, . . . ,xnX} of
this set. The weight matrix is set equal to the similarity matrix W = S.
Since S and consequently W are symmetric, graph G is undirected. Several
variants of spectral clustering exist, and they differ in what type of graph
Laplacian they use. We used spectral clustering implemented in Python
library Scikit-learn, which uses normalised symmetric Laplacian [8]. The
normalized symmetric Laplacian is defined as follows:

Lsym = D−
1
2LD−

1
2 , (2.21)

where:

L = D −W (2.22)

11



2. Background .....................................
is unnormalised Laplacian and D is a diagonal matrix with degrees of vertices
vi:

di =
nX∑
j=1

wi,j (2.23)

on the diagonal.
The algorithm defined in [8] then follows by finding first kX eigenvectors

u1, . . . ,ukX
of Lsym corresponding to kX lowest eigenvalues. These eigenvec-

tors form matrix U ∈ RnX×kX with u1, . . . ,ukX
as columns. From U , matrix

N is created by normalizing rows to norm 1. Rows (ni)i=1,...,nX ∈ RkX of N
are then fed as nX points into the k-means algorithm to be clustered into
kX clusters. Since vectors (ni)i=1,...,nX are what’s called a spectral embed-
ding of elements (xi)i=1,...,nX of the original set X, the cluster number of ni
corresponds to cluster number of element xi.

Other types of Spectral clustering (described for example in [11]) also use
eigenvectors of corresponding graph Laplacian and k-means but differ in some
details.

We use the number of clusters kX throughout the algorithm, but that is
not known in the type of problem described in Section 1.2. In [11], authors
describe the eigengap heuristic to solve this problem. This heuristic says to
choose the number of clusters kX so as that all eigenvalues λ1, . . . , λkX

are
very small and λkX+1 is relatively large. Using this heuristic, authors of [3]
estimate the number of clusters as:

NumClusters(X) = argmaxi∈{1,...,n}{λi − λi+1}, (2.24)

where λi is the i-th largest eigenvalue of Lsym.
Various reasons for why Spectral clustering and the eigengap heuristic work

are stated in [11].
The most computationally demanding part of this clustering process is

eigenvalue decomposition, whose time complexity is O(n3), where in our case
n is the dimension of the similarity matrix S, which equals to the number of
elements nX in the set X.
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Chapter 3
State Of The Art

In this chapter, we show two selected state of the art methods for solving
supervised clustering problems. In Chapter 7, we evaluate these methods
on artificial and real-world datasets (described in Chapter 5) and compare
them to methods proposed in Chapter 4. Both methods are built as neural
networks (functions with a large number of optimizable parameters and an
appropriate loss function) and use the attention and self-attention mechanism
defined in Section 2.4.

Deep Amortized Clustering model is the only model presented in this
thesis that outputs cluster assignment directly (although iteratively), while
Attention Based Clustering only produces a similarity matrix of elements in
the input set. A kernel-based unsupervised clustering method must be used
to obtain cluster assignment from such similarity matrix.

See Table 4.1 for a brief summarization of properties of the models described
in this and the following chapters.

In the following definitions, we continue to follow the notation of set X
and ground truth cluster numbers y from Section 1.2.

3.1 Deep Amortized Clustering

Part of the motivation behind Deep Amortized Clustering (DAC) [6] is to
be able to efficiently learn a model that infers cluster assignment directly
(in comparison to producing similarity matrix of elements in the input set),
irrespective of the number of clusters in the set. To do this, DAC takes a
set X with a variable number of elements of fixed size and infers members
of clusters one cluster per iteration. Elements whose membership to some
cluster is inferred at the current iteration are held out, and the resulting
smaller set is fed into the model in the next iteration. This process is repeated
until all elements are assigned to some cluster, or the maximum number of
iterations is reached. Authors of DAC call this process of iterative clustering
Filtering. Because DAC uses blocks from Set Transformer, it is capable of
working with a variable number of elements in each set (variable number of
inputs).

Blocks of Set Transformer that DAC model is composed of are defined in
[7] and described in Section 2.5. Only scale-dot compatibility (2.11) in the
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3. State Of The Art ...................................
attention mechanism is used in this model. There are two types of the model
that differ in the strategy of choosing the next cluster to infer: Anchored
Filtering and Minimum Loss Filtering.

Anchored Filtering randomly samples one of the elements at each itera-
tion. This sampled element xa is called anchor, where a is row index of xa
in matrix X (input set). The model then proceeds to infer all elements of X
that belong to the same cluster as the anchor. Elements inferred to belong to
the same cluster as the anchor are held out, and the rest of the set is fed as
input to the model again. Once all elements are assigned to some cluster (or
the defined maximum number of iterations is reached), this iterative process
ends.

Model’s architecture can be described as:

HX = ISABL(X), HX|a = MAB(HX ,ha), (3.1)
Hm = ISABL′(HX|a), m = sigmoid(rFF(Hm)), (3.2)

where ha is a-th row of HX andm = [m1, . . . ,mn]T is a vector of probabilities
of the elements of set X belonging to the same cluster as sampled anchor
xa. The holding out of elements whose cluster is already inferred is done by
setting the corresponding value of compatibility function in (2.10) to negative
value with large magnitude. This forces the output of softmax to be zero,
effectively discarding the hold out elements from the weighted sum of V .

The loss function is defined as:

L(y,m, a, nX) = 1
nX

n∑
i=1

BCE(mi,1{yi=ya}), (3.3)

where BCE is Binary cross entropy function and 1{yi=ya} is 1 if the i-th
and a-th elements are in the same cluster and 0 otherwise.

Minimal Loss Filtering uses following loss function:

L(y,m, nX) = minj∈{1,...,kX}

(
1
nX

n∑
i=1

BCE(mi,1{yi=j})
)
, (3.4)

and cluster to be inferred at the current iteration is based on the minimisation.
Choosing the next cluster to infer via anchor helps the model learn to

cluster more complicated datasets easily. We only use Anchored Filtering
and therefore do not show the detailed architecture for the Minimal Loss
Filtering.

During the training process, we sample only one anchor per set in batch,
compute m and optimize the weights using the loss function with Adam
optimizer. This means complete clustering is not inferred while training. To
obtain the full clustering, the iterative process described above is used. In an
optimal situation, only kX iterations are needed to infer the clusters. The
time complexity of a feedforward of one set through the DAC model grows
linearly with the number of elements nX in the set X.
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.............................. 3.2. Attention Based Clustering

3.2 Attention Based Clustering

Authors of the Attention Based Clustering model (ABC) [3] were strongly
motivated by processing data in context, providing an example of clustering
characters according to which language they belong to. Consider some
characters from Greek and Latin that resemble each other (for example, χ
and X or capital of τ and T). It should be easier to cluster such characters
correctly if given in the context of other characters from the same language
(for example, in a word of some text). This focus on context corresponds
with our interest in methods capable of inferring clusters with intra-cluster
dependencies (for example, the Circles dataset described in Section 5.2).

The ABC model processes a set X with a variable number of elements of
fixed size and outputs symmetric nX ×nX matrix A, where Ai,j describes the
pairwise similarity between the i-th and j-th element of the set X. Clusters
of set X are then inferred using spectral clustering (any unsupervised kernel-
based clustering method can be used). For the use of such unsupervised
clustering method, the number of clusters needs to be predicted first. To do
this, authors of ABC use the eigengap method that was described along with
the spectral clustering in Section 2.6.

For the following architecture definition, we consider the same matrix
representation X of a set of elements and vector y with true indices of
clusters as in the previous sections. Since the output of the ABC model is a
prediction of the similarity matrix, we define Y ∈ RnX×nX to be ground-truth
pairwise similarity matrix computed from y. Element yi,j ∈ {0, 1} of Y
describes if the i-th and j-th elements of the input set are similar (yi,j = 1),
or disimilar (yi,j = 0).

The ABC model’s architecture can be divided into embedding layer:

T (X) = SABL(rFFN (X)), (3.5)

where rFFN is N stacked row-wise feedforward layers with tanh activation
function in between. Stacked SAB ensures information from each input
element of set X is encoded into all elements of the output set T (X). The
output of the embedding layer is of shape T (X) ∈ RnX×dM , where dM is
the parameter of rFFN (2.3) and SAB (both rFF and SAB have parameter
denoted dM , that is set to a same value in T ). Symmetric similarity matrix
is computed from embedding Z = T (X) with function κ:

κ(Z) = 1
2[sigmoid(compat(Q,K)) + sigmoid(compat(Q,K))T ], (3.6)

where Q = rFFQ(Z) ∈ RnX×dM , K = rFFK(Z) ∈ RnX×dM and rFFK, rFFQ
are single row-wise feedforward layers.

With T and κ defined, output of the model A = ABC(X) ∈ RnX×nX is
computed simply as:

ABC(X) = κ(T (X)). (3.7)
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3. State Of The Art ...................................
We experiment with both types of compatibility functions for the attention
inside SAB and in (3.6). These models are denoted as ABCMULTI and
ABCADD.

The loss function is defined as:

L(ABC(X), Y ) = 1
n2
X

∑
i,j

BCE(ABC(X)i,j , Yi,j). (3.8)

Since the loss function is optimized using only Y as ground-truth infor-
mation (true pairwise similarity), the ABC model can be trained without
ground truth cluster assignment.

During training, we only compute the similarity matrix (output of ABC)
without inferring clusters and use Adam optimizer to optimize the model.
Because stacked SAB is used in the ABC model, its time complexity is O(n2

X)
during training. To infer clusters, we use spectral clustering with the eigengap
method whose time complexity is O(n3

X).
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Chapter 4
Proposed methods

In this chapter, we propose new methods to solve the supervised learning
problem. Those models are based on definitions in Chapter 2 and in contrast
to SOTA methods described in the previous chapter, they do not (apart from
MILPMA) use the attention mechanism.

In Table 4.1, we briefly summarise properties of the models described in
this and previous chapters.

4.1 Multiple Instance Learning with Pair
Representation

We propose a method transferring a supervised clustering problem into a
multiple instance learning one. This is done simply by estimating the pairwise
similarity of elements in input set X, while representing a pair of elements
from X as another set.

Assume we have set X of elements that we want to cluster. We sample
random pair of elements xi, xj of set the X and create a new set Xpairi,j

using Pair Representation. Using model solving multiple instance learning
problems, we then process Xpairi,j

and predict the probability of pair xi, xj
being in the same cluster. If we create all possible pairs of elements from
X, we can construct a pairwise similarity matrix and proceed to infer the
clusters using eigengap method for the number of clusters estimation and
Spectral clustering in the same fashion as with the ABC model in Section 3.2.

Given setX = {x1, . . . ,xnX} and a pair of it’s elements xi,xj , we construct
the Pair Representation as:

Xpairi,j
= {x′

1, . . . ,x
′
nX
}, (4.1)

where

x′
k = [xTk ,xTi ,xTj ]T ∈ R3d, (4.2)

that is, we concatenate features of the original element with index k and
features of the elements from the sampled pair. Motivation for this repre-
sentation follows the discussion in Chapter 1 about our focus on datasets
with intra-cluster dependencies. In such case, pairwise similarity depends
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4. Proposed methods ..................................
not only on the sampled pair alone but rather on the pair in the context
of the whole set X. This approach to embed the context into the pairwise
similarity prediction is simpler, although more naive than the one using the
self-attention mechanism in the ABC model.

We represent the pair set as matrix Xpairi,j
∈ RnX×3d and define the MIL

model used in this thesis as:

MIL(Xpairi,j
) = rFFN ′(g(rFFN (Xpairi,j

))), (4.3)

where rFFN denotes N stacked row-wise feedforward layers (with ReLU
activation functions in between) and g(·) is a pooling function. We experiment
with two types of g(·), first is a simple feature-wise mean(·) and we call such
model MILMEAN.

Next, we use the Pooling by Multi-head Attention with S = [i1]:

g(·) = PMA1(·), (4.4)

which aggregates nX fixed sized elements into 1 element of the same size using
the attention mechanism. In some experiments, MILPMA using attention
in the pooling operation achieves greater results than MILMEAN, and we
attribute that to the comparison of elements in set with each other that takes
place in the attention inside PMA.

The loss function is:

L(MIL(Xpairi,j
), yi,j) = BCE(MIL(Xpairi,j

), yi,j), (4.5)

where yi,j is element of the true similarity matrix Y (see Section 3.2), that
is, it equals 1 if the i-th and j-th elements are in the same cluster and 0
otherwise.

To cluster a set X, we sample all possible unordered pairs with replacement
and construct pair sets Xpairi,j

. Since we can create (nX+1)nX

2 pairs from a
set of nX elements and each set Xpairi,j

representing one pair contains nX
elements of size 3d (d is the size of element from the input set), this method
is very time and memory consuming. All pair sets are then fed to MIL model
and we construct the prediction of similarity matrix A from the results. From
this matrix, we can infer clusters in the same way as with the ABC model’s
output.

To make the training process more tractable, we only sample 50 pairs from
each set X on the input.

During training, we do not compute the similarity matrix and do not infer
the clusters, time complexity then depends on whether we sample all pairs:
O(n2

X), or if we sample defined amount of pairs from each set (as we do in
this thesis): O(nX). To cluster the dataset, we must evaluate the MIL model
on all possible pairs (O(n2

X)) to obtain the similarity matrix and then use
spectral clustering with the eigengap method to obtain the clusters (O(n3

X)).
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4.2 Permutation Equivariant Model with Same
Cluster Representation

The last architecture, Permutation Equivariant Model (PEM), is inspired by
the DAC model’s process of inferring clusters. Instead of self-attention, in
this model we use Equivariant layer defined in Section 2.3 to obtain useful
representation of the input set.

We sample random element xa of the input set X and call it anchor.
The whole set X with xa is then fed into the PEM model, which returns a
probability of each element of the set being in the same cluster as the anchor
(Same Cluster Representation of the output). To infer cluster membership of
all elements in the set X, we choose every element, one by one, of the set as
the anchor and pass it to the model with the whole set. From the outputs, we
construct a pairwise similarity matrix and use the same process as with ABC
and MIL (spectral clustering with eigengap method) to predict the clusters.

Considering the set is represented as matrix X ∈ RnX×d, we first encode
X using:

He = [
Ne︷ ︸︸ ︷

(EquivLayer ◦ ELU) ◦ · · · ◦ (EquivLayer ◦ ELU)](X), (4.6)

with ELU (Exponential Linear Unit) as an activation function. This activation
function was used in [12] when building models with the Equivariant Layer.
Ne is the number of (EquivLayer ◦ ELU) blocks. Anchor is encoded using:

ha = [
Na︷ ︸︸ ︷

(rFF ◦ ReLU) ◦ · · · ◦ (rFF ◦ ReLU)](He), (4.7)

where Na is the number of (rFF ◦ ReLU) blocks. Each row of He is then
replaced with a concatenation of itself and hTa , creating Hea ∈ RnX×(de+da),
where de is the size of the encoded elements in He and da is the size of ha.

The i-th row of the matrix Hea contains a concatenation of features of the
i-th row of the matrix He and features of the encoded anchor ha. This tells
the model we want to infer elements from the cluster to which the anchor
belongs. Finally, we compute vector of probabilities m as:

m = [
Nea︷ ︸︸ ︷

(EquivLayer ◦ ELU) ◦ · · · ◦ (EquivLayer ◦ ELU) ◦rFF](Hea), (4.8)

where mi is the probability of i-th element of X belonging to the same cluster
as the anchor. Nea is the number of (EquivLayer ◦ ELU) blocks.

The loss function is defined as:

L(y,m, a, nX) = 1
nX

nX∑
i=1

BCE(mi,1{yi=ya}), (4.9)

where 1{yi=ya} is 1 if the i-th and a-th elements of X are in the same cluster
and 0 otherwise.
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4. Proposed methods ..................................
To compute the similarity matrix A, we sample each element of X as

the anchor and feed it to the model with X. From outputs m1, . . . ,mnX

corresponding to a = 1, . . . , nX , we construct matrix M ∈ RnX×nX with
vectors mi stored as rows. To ensure A is symmetric, we compute it as:

A = 1
2(M +MT ). (4.10)

The output of PEM (Same cluster representation) is of the same form as
the output of DAC. Both models output vector m ∈ RnX , where mi is the
probability that i-th element of the input set belongs to the same cluster as
the anchor (used in both PEM and DAC models’ forward passes). This lends
itself to infer clusters using PEM with the same iterative process as with the
DAC model. We experimented with this process to infer clusters with PEM
but achieved worse results than using the method described above (creating
similarity matrix and inferring clusters using spectral clustering).

Throughout the training process, we sample only one anchor per set in
batch. Since PEM consists of rFFs and Equivariant layers, the time complexity
during training is O(nX). To infer the clusters in set X, we must pass X
into the model nX -times (with each element of X as the anchor each time)
to create the similarity matrix. This leads to time complexity O(n2

X) to
create the similarity matrix and O(n3

X) to infer the clusters using spectral
clustering.
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Model Output Attention
Train

complex-
ity

Clustering
complex-

ity

DAC Assignes clusters
directly.

Uses only
scale-dot
compatibil-
ity.

O(nX) O(kXnX)

ABC Outputs similarity
matrix.

Uses both
compat-
ibility
functions.

O(n2
X) O(n3

X)

MIL

Outputs pairwise
similarity, from
which a simi-
larity matrix is
constructed.

Uses atten-
tion only for
attention
pooling.

O(nX) O(n3
X)

PEM

Same cluster
representation
of output. Sim-
ilarity matrix is
constructed.

Does not
use atten-
tion.

O(nX) O(n3
X)

Table 4.1: A short summary of examined models. Training (time) complexity
accounts for training process described in each section for corresponding model.
Clustering process differs from training (evaluating all pairs with MIL, iterating
through all elements as anchors with PEM) and hence the different clustering
(time) complexity.
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Chapter 5
Datasets

We use three different datasets to test the models described in Chapters 3 and
4. The first two, Mixture of Gaussians (MoG) and Circles, are artificial. This
allows us to test the models on sets with different parameters, for example,
lower or higher number nX of elements and fixed or variable number of
clusters in a set. We use MoG to test scalability to the number of elements in
a set of examined models and Circles to experiment with the model’s ability
to cluster sets with intra-cluster dependencies.

The third dataset, Newspaper, consists of pages of Czech newspaper Právo.
We are given individual textboxes on each page, and the goal is to divide
those textboxes into articles. This primarily serves to show the use of the
supervised clustering model on real-world data.

5.1 Mixture of Gaussians

This is a well-known dataset with a simple cluster structure (two-dimensional
Gaussian distribution) and can be usually seen as a toy-problem case to
show various unsupervised clustering methods. To generate this dataset, we
slightly modify a process described in appendix B of [6]. We show this process
with our modifications in the following text. We use this dataset to compare
scalability to the size of sets of models discussed in this thesis.

A set of the MoG (Mixture of Gaussians) dataset consists of nX elements
(points on a two-dimensional plane) structured into several clusters. Number
of elements nX is defined as parameter. Each cluster is defined by Gaussian
distribution with two-dimensional mean and variance. The goal of learned
model is to predict the true cluster yi (i = 1, . . . , nX) for each element in the
set. A sample of few such sets is shown in Figure 5.1.

Each set is generated using the following process. First, a random number
kX of clusters is chosen from specified bounds [kmin, kmax]:

kX ∼ Unif(kmin, kmax). (5.1)

A true cluster number yi is generated for each element using categorical
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Figure 5.1: Examples of sets from the MoG dataset. Displayed are sets with 2,
3, 4 and 5 clusters respectively.

distribution with custom probabilities p sampled using Dirichlet distribution:

p ∼ Dir(
kX︷ ︸︸ ︷

[1, . . . , 1]), (5.2)
(yi)nX

i=1∼Cat(p). (5.3)

For each cluster, two-dimensional mean µj and variance σj are sampled from
Normal and logNormal distribution:

(µj)kX
j=1∼Normal([0, 0]T , 9I), (5.4)

(σj)kX
j=1∼logNormal(log(0.25)[1, 1]T , 0.01I). (5.5)

Finally, each element is generated as:

(xi)nX
i=1 ∼ Normal(µyi , diag(σ2

yi
)). (5.6)
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....................................... 5.2. Circles

As is apparent from the generation process above, we generate two features
for each element xi ∈ R2 (x and y coordinate in a two-dimensional plane)
and a true cluster number yi.

5.2 Circles

This dataset was used in [3] (where the ABC model was introduced) to
simulate real-world datasets with intra-cluster dependencies and cluster in-
tersections, which require the use of context during the clustering process.
Such problems were discussed in Section 3.2 in more detail. We test all
models examined in this thesis on this dataset to compare them on sets with
a structure more complicated than simpler MoG.

Each set again consists of nX points (elements) lying on kX likely to be
overlapping circles. Number nX of points in a set is defined as parameter
during training and evaluation. Model’s task is to cluster those points
according to the circle they lie on. A sample of sets from the Circles dataset
with various number of clusters is displayed in Figure 5.2 .

To generate one set of the Circles dataset, we use the following process
(used in [3]). A random number kX of clusters is sampled from given bounds
[kmin, kmax]:

kX ∼ Unif(kmin, kmax). (5.7)

For each cluster, center Oj of the circle constituting the j-th cluster is
generated as:

(rcj)kX
j=1 ∼

√
Unif(0, 1) (θcj)kX

j=1 ∼ Unif(0, 2π) (5.8)

Oj =
[
rcj cos(θcj)
rcj sin(θcj)

]
. (5.9)

Radius of each circle (cluster) is randomly chosen from Normal distribution
and clamped to the range [0.2, 0.4]:

(r′j)
kX
j=1 ∼ Normal(0.3, 0.1) rj = min[max(r′j , 0.2), 0.4]. (5.10)

Before generating true cluster assignments randomly, we ensure each cluster
contains at least one element (point):

(yi)kX
i=1 = i (5.11)

The rest of the true labels is then generated using categorical distribution
with uniform probabilities p:

p = [
kX︷ ︸︸ ︷

1/kX , . . . , 1/kX ] (yi)nX
i=kX+1 ∼ Cat(p). (5.12)
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Figure 5.2: Examples of sets from the Circles dataset. Displayed are sets with
2, 3, 4 and 5 clusters respectively.

Afterwards, each element of set is generated as:

(θi)nX
i=1 ∼ Uniform(0, 2π) (5.13)

xi = Oyi +
[
ryi cos(θi)
ryi sin(θi)

]
. (5.14)

As in the MoG dataset, each element xi ∈ R2 consists of two features (x
and y coordinate in a two-dimensional plane) and true cluster number yi.

5.3 Newspaper

To showcase the examined models on real-world data, we use pages of Czech
daily newspaper Právo, kindly provided by Newton Media, a.s.1 for re-

1https://www.newtonmedia.cz
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..................................... 5.3. Newspaper

search use only. The dataset is not public and cannot be provided as a part
of this work.

Each page is represented as one set. One page contains a variable number
of textboxes (called elements in the vocabulary used throughout this thesis).
Each textbox (denoted as xi) belongs to one article given by a true cluster
number yi. Examples of two pages from the Newspaper dataset are shown
in Figure 5.3. Textboxes contain not only bodies of text, but also headlines,

Figure 5.3: Examples of pages from the Newspaper dataset. Textboxes bounded
with rectangle of same colour are from a same cluster (article).

image captions, author names, citations and in some cases clusters with only
one textbox occur (such as PROFESE textbox in the bottom part of the page
on the right in Figure 5.3).

Textboxes on each page were divided into articles by Ing. Radek Mařík,
CSc.2 using expert rules to create a dataset we could use to train our models.
My supervisor Ing. Jan Drchal, Ph.D. discarded pages, where clustering done
via expert rules was not optimal to create a cleaner dataset. For tabloid-
style newspapers with a more complicated structure (position and shape) of
articles, expert rules are not a feasible option to create the training dataset
automatically, and manual annotation would need to be used.

For each textbox, we have six features xi ∈ R6, and those are x and y
coordinates describing the position of lower-left and upper-right corner of
the textbox, the font size used in the given textbox and the length of the

2https://comtel.fel.cvut.cz/en/users/marikr
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5. Datasets.......................................
text as character count. All features were standardized to be in the range
[0, 1] before any further division into train and test parts. Since we also have
the full-text content of each textbox, we could use it to construct features
conveying the semantics of the text. In this work, we were able to achieve
quite favorable results without such features, but they might help to learn a
better model if some newspaper with a more complicated article structure
(usually tabloid type) was used.

In total, the Newspaper dataset contains 349 pages (sets) and 2295 articles.
This is a relatively small dataset (in comparison to the generated Circles and
MoG datasets we use, or most datasets used for modern machine learning
tasks).

The distribution of the number of clusters (articles) per page in the News-
paper dataset is shown in the top histogram of Figure 5.4. Apart from one
outlier (page with 24 articles), the number of articles is distributed around a
mean value 6.5. The bottom histogram shows the distribution of the number
of elements (textboxes) per page.
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Figure 5.4: Histogram showing distribution of number of articles and textboxes
per page in Newspaper dataset.

We also explore the distribution of features describing textboxes throughout
all pages of the Newspaper dataset. The left histogram in Figure 5.5 shows
one particular font size is used in the majority of all textboxes, which is
expected as most textboxes contain body text of the article. There are some
outliers, mainly in higher values corresponding to titles and quotes. The
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Figure 5.5: Histogram showing distribution of font sizes and character counts
throughout all textboxes in the Newspaper dataset.

distribution of the number of characters in textboxes throughout the whole
Newspaper dataset is displayed in the histogram on the right half of Figure
5.5. Apart from a large number of outliers in low values and few outliers
in very high values, the distribution looks as expected. Low-value outliers
correspond mostly to textboxes with only 1 or 2 characters. This is caused
usually by some artefacts such as blue boxes next to subtitles or abbreviations
in infographics (both shown in Figure 5.6).

Figure 5.6: Textboxes with low number of characters. Blue boxes on the right
are counted as one character. Abbreviations such as the ones on the map usually
occur in an infographic.

Features describing position of textbox are displayed in Figure 5.7. Hor-
izontal position (left histograms) shows regular positioning of textboxes
into columns. Right histograms showing vertical position tell no interesting
information.
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Figure 5.7: Histograms showing distribution of features describing position of
textboxes in Newspaper dataset. Horizontal position is given by x, vertical by y.
Values are standardised to be in the range [0,1].
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Chapter 6
Implementation

All models are implemented using Python1 mainly with PyTorch2 and NumPy3

libraries. The DAC4 and ABC5 models were implement by their authors in
PyTorch and we used their implementation in our code with modifications
to facilitate for all used datasets. We further implemented the additive
compatibility function to work with DAC’s attention implementation and
used it in ABC instead of their attention implementation because DAC’s
implementation was faster. We also used Equivariant layer6 implemented by
its author. For spectral clustering, we used implementation from scikit-learn7

Python library. For the proposed models, we used our implementation. The
MIL model’s implementation is also available on GitHub8 with examples and
documentation.

To generate the MoG dataset, we used the implementation of DAC’s
authors in PyTorch, which we modified according to the process described in
Section 5.1. Generation of Circles dataset was also implemented in PyTorch
by ABC’s authors but had to be modified to allow generating sets with a
variable number of clusters.

The same training and evaluation pipeline is adapted to be used with all
datasets from Chapter 5. This makes it easy to add new datasets to train
and test the models on.

The training process is done on batches of data with size defined by batch
size B. This means each batch contains B sets, where each set generally
contains a different number of elements nX . The model processes one batch,
computes the value of the corresponding loss function, and updates its
parameters using an optimizer (back-propagation). All models in this thesis
use Adam as the optimizer.

PyTorch represents data as multidimensional tensors and their shape in

1https://www.python.org
2https://pytorch.org
3https://numpy.org
4https://github.com/ICLR2020anonymous/dac
5https://github.com/DramaCow/ABC
6https://github.com/manzilzaheer/DeepSets
7https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

SpectralClustering.html
8https://github.com/jakubmonhart/mil_pytorch
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6. Implementation....................................
our implementation corresponds to shapes of matrices in this thesis. We
intentionally set the number of elements in set nX to a constant value when
using the MoG and Circles datasets to allow for faster processing of batches
of data. In such case, a tensor with a batch of data is of shape [B,nX , d],
where d is a fixed number of features of an element.

In the case of the Newspaper dataset, where each set (page) contains a
different number of elements (textboxes), the whole batch cannot be repre-
sented as one tensor because shapes of all dimensions of tensor must be fixed.
Because of this, we save each set into a separate tensor of shape [1, nX , d]. The
model processes B such tensors and aggregates the gradients. The weights of
the model are then optimized using the aggregated gradients.

As for hardware, we used Research Center for Informatics9 High Perfor-
mance Computing cluster to train and evaluate the models. This enabled us
to train more models faster using their GPUs on a server.

To organize all experiments (at the time of writing this chapter, we have
more than 900 individual runs logged - including hyperparameter searches
and training and testing runs), we used Weights and Biases [2] tracking tools.

The implementation of all models, along with code for the MoG and
Circles dataset generation can be found in the src/ folder of the attachement
code.zip. Scripts for running individual models on the synthetic datasets
are to be found in the folder scripts/. The implementation is also available
as a GitHub repository10.

6.1 Bug in DAC’s implementation

We came across a bug in the implementation of DAC by its authors. When
creating stacked SAB or ISAB block, in file dac/neural/attention.py, lines
50-52 and 81-83 create the required number of blocks, but they are all copies
of each other, sharing the same set of weights (parameters). This effectively
causes the model to iterate the data through the same SAB (or ISAB) layer
L times (L is the number of required stacked SABs or ISABs) instead of
having L blocks with parameters updated individually. This might have been
caused by a different behavior of the original implementation based on the
used version of PyTorch. We implemented this part of DAC correctly in our
code.

9http://rci.cvut.cz
10https://github.com/jakubmonhart/supervised-clustering-methods
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Chapter 7
Experiments

Models described in Chapters 3 and 4 were tested on datasets from Chapter
5 in various experiments. We start with experiments on the Circles dataset
to test the model’s ability to infer overlapping clusters with intra-cluster
structure. To explore the input size scalability of the models (we are interested
in a growing number of elements in the input set), we test the models on
the Mixture of Gaussians dataset. Finally, we evaluate the models on the
real-world Newspaper dataset.

Before showing the results, we specify a training procedure we used to
optimize the models and an evaluation procedure used to obtain the metrics
from the predicted clustering. For each model on each dataset, we first carried
out a hyperparameter search to find the optimal setting. This was done by
experimenting with various hyperparameter combinations and choosing the
setting with which the model achieved lowest loss on the validation dataset.
For the artificial datasets (Circles and MoG), we generated a training dataset
consisting of 100k sets, each with 100 elements (number nX of elements is
later specified for various experiments, but the hyperparameter search was
conducted with nX = 100). The number of sets in the training dataset
was reduced to 10k for both MIL models, as they are significantly more
time-consuming than the rest of the models but trained well on this smaller
dataset. From this training dataset, 5% was held out from optimization
(back-propagation) and used for early stopping. The trained model was then
evaluated on generated validation dataset with 1k sets. This procedure was
repeated only three times with both MIL and ABCADD models due to long
training times, but five times with all other models. Best hyperparameters
were chosen based on the model’s results on the validation dataset. Since
Circles and MoG are synthetic datasets, the same repeated process was used
to test the model and obtain the reported results.

The Newspaper dataset is relatively small (349 sets with approximately
30-40 elements per set). We left 10% of the data (testing part), which was
not used before the final evaluation. The rest of the data (training part)
was divided into five parts and individual parameter settings were evaluated
using 5-fold cross-validation during hyperparameter optimization. During
this cross-validation, one fold of the training part is used as a validation
dataset at a time, and the rest of the folds is used as a training dataset.
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7. Experiments .....................................
5% of the training dataset is used for early stopping. Best hyperparameters
were chosen based on the model’s results on validation datasets during the
cross-validation. After best hyperparameters are found, models are trained
on the whole train part and tested on the test part (10% of the original data).
During this evaluation, 5% of the training part is left out for early stopping.
This process for final evaluation is repeated five times to obtain the reported
results.

For optimization, we used Adam optimizer for each model on each dataset.
To compare true and predicted clustering, we need a suitable metric. This

metric must output the same value when numbers (indices) of clusters are
changed in either true or predicted clustering. We mainly use the Adjusted
Rand Index (ARI) because of its clear interpretation and Normalized Mutual
Information (NMI) to confirm the ARI results. Both metrics are symmetric
and return a similarity of the two clusterings in the range [0, 1].

Given true and predicted clusterings ytrue,ypred ∈ [1, . . . , kX ]nX of set
X = {x1, . . . ,xnX}, simple Rand Index considers all possible pairs of elements
and computes number of pairs that belong to same cluster according to both
clusterings ytrue,ypred and number of pairs that belong to different clusters
according to both of the clusterings. Value of Rand Index is then computed
as a sum of those two numbers divided by the total number of pairs. From
this description, Rand Index can be considered as an analogy to accuracy.
Adjusted Rand Index is Rand Index corrected for chance (see [4] for precise
definition). This means random labeling has an ARI score near 0 and perfect
labeling has an ARI score equal to 1.

As another measure, we use normalization of Mutual Information, which
computes agreement of true and predicted clustering, normalized into the
range [0,1]. Value 0 corresponds to no mutual information (as defined in
information theory) between true and predicted clustering, and value 1 corre-
sponds to perfect correlation (perfect predicted clustering). In contrast to
ARI, NMI is not adjusted for chance.

In most cases, the order of models according to ARI values in an experiment
corresponds to the order of models according to NMI values.

We use box plots to compare results of an experiment graphically. Each
box corresponds to one experiment, which consists of 3 or 5 (depending on
the model) measurements of given metric. We show sample box plot with
description in Figure 7.1 for illustration.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

1

medianQ1 Q3 outlier

Figure 7.1: Illustrative box plot
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....................................... 7.1. Circles

Consider the measurements sorted in an array, divided into halves. Q1
denotes a first quartile, which is a median of the lower half of the array, Q3
is a third quartile, which is a median of the upper half of the array. Space
between first and third quartile is called interquartile range (IQR = Q3−Q1).
Left whisker displays either Q1− 1.5IQR or the lowest sample from the array,
depending on which is higher. Analogously, the right whisker displays either
Q3 + 1.5IQR or the highest sample from the array, depending on which is
lower. Any data points from the array that are not in between the two
whiskers are plotted as an outlier (small circle).

In the following tables, we show optimal hyperparameter settings for
individual models that were used during the experiments.

Parameter Circles MoG Newspaper

Learning rate 1e−4 3e−4 1e−4

Batch size 64 64 8

dM — dimension of Multi-
head attention output 256 128 512

L = L′ — number of ISAB
blocks 8 4 4

h— number of heads in Multi-
head attention 8 4 8

k— number of inducing points
in ISAB 32 32 32

early stopping — number of
epochs after achieving the low-
est validation loss before the
learning is stopped

10 10 40

number of learnable parame-
ters (thousands) 8621 1107 17215

Table 7.1: DAC hyperparameters

7.1 Circles

Using the Circles dataset described in Section 5.2, we explore the model’s
ability to cluster sets with intra-cluster dependency — a circle structure in
the case of this dataset. As a default dataset setting, we consider the number
of elements in set to be fixed to nX = 100 and number of circles (clusters)
kX drawn randomly (5.7) from range [2,6] for each set.

To see if the number of elements in a set affects the model’s performance
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Parameter Circles, MoG Newspaper

ABC type ADD MULTI ADD MULTI

Learning rate 1e−4 1e−4 1e−4 3e−4

Batch size 32 32 8 8

Hidden size — defines
size of rFF and parame-
ter dM of SAB in (3.5)

256 256 512 512

N — number of rFF lay-
ers in (3.5) 2 2 2 2

L — number of SAB
blocks in (3.5) 8 8 2 2

h — number of heads in
Multi-head attention 8 8 4 4

early stopping — num-
ber of epochs after
achieving the lowest val-
idation loss before the
learning is stopped

10 10 10 10

number of learnable pa-
rameters (thousands) 2304 2303 2891 2891

Table 7.2: ABC hyperparameters

while keeping the other dataset settings fixed, we run experiments in Subsec-
tion 7.1.2.

Similarly, we test the effect of fixing the number of clusters in all sets in
Subsection 7.1.3.

Due to a very long computation time for training MILPMA model and
large traffic on the RCI cluster used for the experiments, we were not able to
complete the necessary computations in time to present the results of this
model on the Circles dataset.

7.1.1 Dataset with default setting

Before any modifications of the dataset, we report comparison of the model
on the default settings in Table 7.5. Results from this experiment are further
displayed using box plot in Figure 7.2.

From the box plot, we see both versions of the ABC model are (apart
from being best performing) almost deterministic compared to the rest of the
models. This is probably caused by the lack of stochasticity in ABC’s training
process, where all elements of the input set are processed and used in back-
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Parameter Circles MoG Newspaper

MIL type MEAN PMA MEAN PMA MEAN PMA

Learning rate 1e−3 1e−3 1e−3 1e−3 1e−3 1e−3

Batch size 32 32 32 32 16 16

Hidden size — de-
fines size of both
rFFs in (2.6)

256 256 256 256 256 512

N = N ′ — num-
ber of rFF layers
in (2.6)

3 3 3 3 3 3

h — number of
heads in Multi-
head attention
(applies only to
MILPMA)

- 4 - 4 - 4

early stopping —
number of epochs
after achieving
the lowest valida-
tion loss before
the learning is
stopped

20 10 5 10 40 40

number of learn-
able parameters
(thousands)

265 529 265 529 269 2113

Table 7.3: MIL hyperparameters

propagation. In contrast to this, when training DAC and PEM models, only
one anchor is randomly sampled per input set, and when training MIL models,
only 50 pairs are randomly sampled from the input set. This random sampling
of anchors and pairs introduces stochasticity into the training process, which
propagates into stochastic results of the experiment.

We further note that all state of the art models perform better than models
proposed in this thesis.

The mean version of Permutation Equivarinat model PEMMEAN performs
significantly better than the max version PEMMAX, which we try to explain
by how max and mean operations propagate inputs to output differently.
Max function in the Equivariant layer propagates information from only one
element in each feature, which seems counter-productive in tasks where the
context (all other elements in the set) is important.
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Parameter Circles MoG Newspaper

PEM type Both Both MAX MEAN

Learning rate 1e−4 1e−4 3e−4 3e−4

Batch size 64 128 16 16

de = da — hidden
size of Equivariant
layers in (4.6) and
rFFs in (4.7)

256 256 256 512

Ne = Na = Neq —
number of Equiv-
ariant layers in
(4.6) and (4.8) and
rFFs in (4.7)

6 6 6 6

early stopping —
number of epochs
after achieving
the lowest valida-
tion loss before
the learning is
stopped

20 20 20 20

number of learn-
able parameters
(thousands)

4134 4134 4140 16538

Table 7.4: PEM hyperparameters

7.1.2 Effect of number of elements in input set

We anticipate that decreasing the number of elements in a set, and therefore
reducing the context from which the model can draw information, will at
some point lead to a decrease in the model’s performance. With a lower
number of elements, it becomes increasingly harder to infer the underlying
structure of the cluster. In the case of a circle, at least 3 points are necessary
to infer its position and radius, but more is needed to see the shape clearly
and, more importantly, to distinguish various circles from each other.

We use the default dataset setting but decrease the number of elements in
a set and test the models on a dataset of sets with nX = 20, 50, 100 elements
to confirm our hypothesis above. Achieved metrics are reported in Table 7.6
and compared using box plot in Figure 7.3. Three box plots are displayed
for each model corresponding to 20, 50, and 100 elements (from left to right).

Performance of each model is significantly decreased by the drop from 50
to 20 elements in the set, less so by the drop from 100 to 50 elements. This
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....................................... 7.1. Circles

Model ARI NMI

DAC 0.9345± 0.0204 0.9372± 0.0192
ABCmulti 0.9791± 0.0018 0.9794± 0.0017
ABCadd 0.9908± 0.0011 0.9909± 0.0010

MILMEAN 0.8561± 0.0296 0.8580± 0.0283
MILPMA - -
PEMMAX 0.7960± 0.0208 0.8186± 0.0184
PEMMEAN 0.8817± 0.0089 0.8860± 0.0079

Table 7.5: Results on Circles dataset with constant nX = 100. Number of
clusters sampled randomly from range [2, 6] for each set (see Section 5.2). For
MIL models and ABCADD, we report ARI and NMI averaged on 3 runs. For all
other models, results were averaged on 5 runs. Results are further compared
graphically in Figure 7.2.
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Figure 7.2: Box plot representation of results from experiment reported in Table
7.5.

is consistent with our hypothesis. In comparison to other models, DAC and
ABCMULTI are capable of learning and inferring the cluster structure (circles)
relatively well even from the dataset with only 20 elements.

7.1.3 Effect of number of clusters in set

Supervised clustering problem with a same number of clusters kX in each
set naturally seems to be easier to solve. We test this on dataset with the
default setting, but with number of clusters set constant kX = 4. Results are
reported in Table 7.7 and compared using box plots in Figure 7.4.

All models but DAC achieve greater results on a dataset with a fixed
number of clusters. The DAC model actually benefits from the variable
number of clusters. This is caused by the iterative process it uses to infer the
clusters of the input set. During training, one element is randomly sampled
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7. Experiments .....................................
Model 20 elements 50 elements 100 elements

ARI NMI ARI NMI ARI NMI

DAC 0.6397 0.7688 0.8942 0.9085 0.9345 0.9372
ABCmulti 0.6333 0.6963 0.9291 0.9412 0.9791 0.9794
ABCadd 0.1378 0.1826 0.9568 0.9646 0.9908 0.9909

MILMEAN 0.2968 0.3333 0.6397 0.6611 0.8561 0.8580
MILPMA - - - - - -
PEMMAX 0.4361 0.4869 0.7374 0.7799 0.7960 0.8186
PEMMEAN 0.2656 0.2962 0.7983 0.8246 0.8817 0.8860

Table 7.6: Results on Circles dataset with number of clusters sampled randomly
from the range [2, 6] for each set. We report ARI and NMI averaged on 3 runs
for both MIL and ABCADD models and on 5 runs for the rest of the models.
Results are further compared using box-plots in Figure 7.3.

Model 4 clusters 2-6 clusters
ARI NMI ARI NMI

DAC 0.8460 0.8460 0.9345 0.9372
ABCmulti 0.9893 0.9875 0.9791 0.9794
ABCadd 0.9952 0.9944 0.9908 0.9909

MILMEAN 0.9098 0.9068 0.8561 0.8580
MILPMA - - - -
PEMMAX 0.8301 0.8407 0.7960 0.8186
PEMMEAN 0.9206 0.9155 0.8817 0.8860

Table 7.7: Results on Circles dataset with 100 elements. We report ARI and
NMI averaged on 5 runs (results for MIL are averaged on 3 runs due to time
consumption). Box-plot comparison is in Figure 7.4.

as an anchor and processed with the input set by the model. For this input,
the DAC model predicts which elements of the input set belong to the same
cluster as the anchor. After this, the model is presented with a new set. This
means that during training on a dataset with constant kX = 4, the DAC
model only encounters sets with 4 clusters. But during the iterative cluster
infer process, elements of the set are iteratively held out if assigned to some
cluster, and the rest of the set is processed by the model again. This creates
a situation where the DAC model must process a set with less than 4 clusters,
even though it was never trained on such sets during the training phase. By
presenting it with sets with a variable number of clusters, we also train the
model on sets it will encounter during the cluster inferring. This fact is used
for the DAC model trained on the Newspaper dataset as data augmentation.
If a set of Newspaper dataset is presented to the DAC model during training,
we discard a random number of clusters to create a set with a lower number
of clusters, solving the problem that occurred when training DAC on the
Circles dataset with kX = 4.
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Figure 7.3: Comparison of results from experiment reported in Table 7.6.

7.2 Mixture Of Gaussians

MoG dataset is arguably an easier supervised clustering problem than the
Circles dataset, and for this reason, we chose it to test the scalability of the
examined models. In the following experiments with MoG, we again randomly
sample the number of clusters kX from the range [2, 6]. For each experiment,
we fix the number of elements nX in the input set to some value and measure
the time to train the model and the time to cluster the test dataset, which
consists of 1k sets of nX elements.

In Figure 7.5, we compare achieved ARI on test dataset plotted against
time required to train the model. Models are divided with colour. The same
plot, additionally with measurements of the MILPMA model, is displayed in
Figure A.1 in Appendix A. Train time of MILPMA is very large and when
plotted, it obfuscates other results in the plot. Results from training the
model on various datasets with different nX are displayed. The plus sign
marks the position of mean of both measured values (time and ARI). The
number next to the two-dimensional mean denotes the number of elements
nX used for that particular experiment. In Figure A.2 in Appendix A, we also
display these results with median values and two-dimensional version of box
plots. We moved the two-dimensional box plot Figure A.2 into the appendix
because the results are dispersed and hard to follow. Cleaner results might
be achieved by running each experiment for several more times but that was
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Figure 7.4: Box plot comparison of results from experiment reported in Table 7.7.

not possible due to limited computational resources. The two-dimensional
box plot representation is described in detail in the appendix.

We see that overall, the DAC model performs best based on both the time
and the clustering results. Performance of ABCMULTI model given by ARI is
also high compared to other models; on the dataset with 100 elements, it even
surpasses DAC. Since the box plots (Figure A.2) of DAC and ABCMULTI
overlap, their relative precedence in performance could be questioned.

Because of reasons described in Section 4.1, the MIL model’s time perfor-
mance is significantly worse compared to all other models. Training time
of MILPMA (see Figure A.1) is even higher than of MILMEAN due to the
attention mechanism used in pooling.

On some occasions, the model’s performance based on ARI decreases when
the number of elements was raised. This contradicts with our finding from
Subsection 7.1.2. Clusters in the MoG dataset, however, do not have an
intra-cluster structure, and our argument that a larger number of elements
helps the model to detect such structure fails here. It might also be caused
by the low number of measurements (as seen for example on the results of
DAC model in Figure A.2).

Looking at the scale of the ARI axis, the performance of the PEMMEAN
modle is only slightly worse than of ABCMULTI, while its training time is
significantly lower for the same set size.

Time required to infer the clusters is compared to the achieved ARI in
Figure 7.6. The approximate order of models based on measurements in
Figure 7.5 did not change in Figure 7.6, but the difference between the DAC
and other models became much more significant. This is caused by the low
time complexity (O(kXnX)) of DAC’s clustering process. All other models
use spectral clustering, whose time complexity is O(n3

X), which inhibits the
use of these models for problems with a very large number of elements.

A two-dimensional box plot version of Figure 7.6 is displayed in Appendix
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Figure 7.5: ARI achieved on test dataset vs time to train the model on the MoG
dataset, with the number of clusters sampled randomly from the range [2, 6] for
each set. Numbers of elements nX in each set for corresponding measurements
are displayed next to the plus signs. Mean values are displayed.

A as Figure A.3.

7.3 Newspaper

We present performance of examined models on the real-world Newspaper
dataset in Table 7.8, box plot comparison of these results can be seen in
Figure 7.7. Contrary to the Circles and MoG artificial datasets, where DAC
and ABC models dominated in performance, the best model to cluster the
Newspaper dataset turned out to be MIL (both versions). A possible reason
for this is that MIL (as a model with simpler structure — see Table 7.3 for
number of trainable parameters) is able to generalize from small Newspaper
dataset, whereas other used models fail to do so well. When experimenting
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Figure 7.6: ARI achieved on test dataset vs time to cluster 1000 sets of the MoG
dataset. Numbers of elements nX in each set for corresponding measurements
are displayed next to the plus signs. Mean values are displayed.

with artificial data, much larger datasets were generated, and because of that,
the problem with generalization from small dataset would not occur.

The MILPMA model using attention for pooling scored slightly better than
MILMEAN. The difference is, however, not significant enough (the quartiles in
box plot overlap) to rule out the MILPMA as a better model. We will need to
investigate further how attention versus mean pooling affects the performance
of the MIL model.

7.4 Discussion of results

Throughout the experiments on synthetic data, the state of the art models
showed greater performance than proposed methods. This shows that a more
complex model architecture using self-attention is propably needed to solve
such problems. On the real-world Newspaper dataset, we achieved best results
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................................. 7.4. Discussion of results

Model ARI NMI

DAC 0.7989± 0.0554 0.8607± 0.0371
ABCADD 0.8581± 0.0076 0.9047± 0.0116

ABCMULTI 0.7779± 0.1289 0.8435± 0.1061
MILMEAN 0.8692± 0.0531 0.9152± 0.0398
MILPMA 0.9094± 0.0125 0.9420± 0.0076
PEMMAX 0.5908± 0.0497 0.6937± 0.0389
PEMMEAN 0.5821± 0.0406 0.6798± 0.0331

Table 7.8: Models comparison on Newspaper dataset. Box-plot representation
of these results can be seen in Figure 7.7. We report ARI and NMI averaged on
5 runs.

using our proposed model MILPMA.
We showed that the DAC model is the only feasible model for problems with

a large number of elements in set due to time consumption of training and
clustering, but on datasets with smaller sets, MIL (on the Newspaper dataset)
and ABC (on the synthetic datasets) models showed better performance.
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Figure 7.7: Graphical comparison of results from Table 7.8.
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Chapter 8
Conclusion

In this thesis, we focused on the supervised clustering problem and comparison
of models that use different approaches to represent the input and output
to solve the problem using neural networks. We explored current literature
and chose two state of the art architectures, DAC and ABC, both relying on
the self-attention mechanism as a fundamental building block. Another two
models, MIL and PEM, were proposed to explore the clustering ability of
simpler architectures. Basic ideas and methods behind the examined models
were organized and described in Chapter 2, followed by detailed description
of the models in Chapters 3 and 4.

The implementation of DAC and ABC was modified to be compatible
with all used datasets. Some further modifications were needed to solve bugs
and to optimize the computation of attention in the ABC model. Together
with our implementation of the proposed methods, all models form a unified
software project that enables us to run experiments easily, store the results
and quickly integrate new datasets to test the models on.

In the experimentation phase, we compared the models on one real-world
and two synthetic datasets. This included searching for optimal parameters
for each model on each dataset and running a large number of experiments.
First, we focused on the intra-cluster dependencies of the Circles dataset.
Next, the scalability of models to growing input was explored using the MoG
dataset. As a real-world example, the Newspaper dataset was used.

8.1 Future work

All models but DAC use spectral clustering (another unsupervised clustering
method could be used), which also forces us to use some method for estimating
the number of clusters. In future work, we want to focus more on methods
that are able to infer the clusters directly and are trained end-to-end such as
DAC. As shown in experiments on the MoG dataset, the independence of a
model on an unsupervised clustering method greatly increases the scalability
to growing input size.

We also plan to use supervised clustering models to attempt to solve some of
the problems discussed in Section 1.1, such as fast and cheap data annotation,
text summarization and topic detection.
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Appendix A
Mixture of Gaussian experiments -
additional plots

Additional figures for Section 7.2 are displayed here.
In Figure A.2 and A.3, results are displayed using a "two-dimension box

plot". The plus sign marks position of median of both measured values
(time and ARI) during the particular experiment. Rectangle around median
displays the Q1 and Q3 (described in the introduction of Chapter 7) positions
for values displayed on y axis (ARI) and x axis (time) analogously to normal
box plot (see Figure 7.1). Outliers are not displayed. Number next to the
plus sign showing the median value denotes number of elements nX used for
that particular experiment. Models are divided with colour.
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Figure A.1: ARI achieved on test dataset vs time to train the model on the MoG
dataset, with the number of clusters sampled randomly from the range [2, 6] for
each set. Numbers of elements nX in each set for corresponding measurements
are displayed next to the plus signs. Mean values are displayed.
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Figure A.2: ARI achieved on test dataset vs time to train the model on the MoG
dataset, with the number of clusters sampled randomly from the range [2, 6] for
each set. Numbers of elements nX in each set for corresponding measurements
are displayed next to the plus signs. Median values with two-dimensional box
plots are displayed.
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Figure A.3: ARI achieved on test dataset vs time to cluster 1000 sets of the MoG
dataset. Numbers of elements nX in each set for corresponding measurements
are displayed next to the plus signs. Median values with two-dimensional box
plots are displayed.
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