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Abstract

This thesis addresses the problem of
instance-level image retrieval in large-
scale picture collections, intending to
find the greatest number of images
corresponding to a query. Convolutional
neural networks (CNNs) have demon-
strated their ability to provide effective
descriptors for content-based image
retrieval (CBIR). Given the current
knowledge, we focused our efforts on
utilizing fine-tuned CNNs for global
feature extraction with the goal of using
those for image retrieval problems.

Firstly, we examined several methods
proposed to improve image retrieval, such
as GeM [RTC18] and DELF [NAS+17].
As the main result of this thesis, an
extendable and highly-customizable
image retrieval framework based on
the work of Radenović et al. [RTC18]
was re-implemented in TensorFlow 2.
This approach produces state-of-the-art
retrieval results, while using relatively
short descriptors. As a validation, we
trained the networks on the SfM120k
landmark images dataset and performed
experiments on two image retrieval
benchmarks (revisited Oxford5k and
Paris6k). Different training strategies,
network architectures and loss functions
were used in the experiments. The final
project code was successfully merged
into the official Tensorflow repository
managed by Google, as a part of the
DELF [Tena] research library.

Keywords: CBIR, image retrieval,
landmark retrieval, TensorFlow, CNN.

Abstrakt

Tato práce se věnuje vyhledávání nej-
větší množiny obrázků příslušící vyhle-
dávanému objektu v rozsáhlých dato-
vých kolekcích. Konvoluční neuronové sítě
(CNNs) prokázaly svoji schopnost poskyt-
nout efektivní deskriptory pro vyhledá-
vání obrázků. Zabýváme se tedy použi-
tím vyladěných CNN k extrakcí globál-
ních deskriptorů pro použití v problému
vyhledávání obrázků (CBIR).

V práci jsme studovali současný stav po-
znání metod vyhledávání obrázků jako na-
příklad GeM [RTC18] a DELF [NAS+17].
Klíčovým přínosem této práce je Tensor-
Flow 2 implementace rozšiřitelného a vy-
soce přizpůsobitelného frameworku pro
CBIR, založená na práci Radenoviće et
al. [RTC18]. Tento přístup poskytuje vý-
sledky srovnatelné s nejlepšími součas-
nými metodami, přičemž ale používá rela-
tivně krátké deskriptory. Pro ověření vý-
sledků jsme natrénovali sítě na SfM120k
datasetu a provedli experimenty na dvou
standardních datasetech (revisited Ox-
ford5k a Paris6k). Během experimentů
byly využity rozlišné trénovací strategie,
architektury neuronových sítí a ztrátové
funkce pro komplexní zhodnocení imple-
mentovaného přístupu. Finální zdrojový
kód byl přidán do oficiálního repozitáře
TensorFlow 2, jakožto součást výzkumné
knihovny DELF [Tena].

Klíčová slova: CBIR, vyhledávání
obrázku, vyhledávání orientačních bodu,
TensorFlow, CNN.

Překlad názvu: Vyhledávání obrázků
pomocí CNN v TensorFlow 2
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Chapter 1

Introduction

Content-Based Image Retrieval (CBIR), particularly instance-level image
retrieval, is a computer vision problem of searching similar images in sizeable
unordered image collections. The term content-based reflects the fact that
the search analyzes the information that can be derived from the image pixels
alone, rather than the metadata, such as labels, text descriptions, or image
attributes. In terms of this work, we only consider answering the queries
made using input images containing the object of interest. This problem is
referred to as instance image retrieval.

Image retrieval systems are usually one of two categories, text-based (TBIR)
or content-based (CBIR). The former approach requires much human effort
and time for image annotation, and is also subject to human perception and
annotation quality. The latter approach pays greater attention to global
and local image information, such as the color, shape, and texture of an
image [HTS+06]. Therefore, as opposed to the image meta-search, CBIR is
better suited for the task of image retrieval.

Image retrieval is one of the fundamental problems of academic research and
industrial development since it can be applied in many practical applications,
such as but not limited to object detection, visual place recognition, market-
place visual search systems in e-commerce [OSXJS16], [LLQ+16], searching
in large image and video collections, or computer-aided diagnosis [QAAM17].
On a personal level, CBIR can be helpful in searching and organizing private
photo collections [GNPS18]. Additionally, CBIR systems are developed in
order to search for similar images on the Internet. Nowadays, there is a num-
ber of publicly available content-based image retrieval engines, allowing users

3



1. Introduction .....................................
to perform reverse image search, including Google Image Search [Goo], Bing
Visual Search [Mic], Yandex Image Search [Yan], Pinterest [Pin], etc [Wik].
Moreover, CBIR can be utilized to block or filter malicious web content, be
used in security and criminal investigations or copyright protection (such
as searching in fingerprint databases or trademark databases, respectively).
Those mentioned above as well as multiple other applications, motivate re-
searchers to look for efficient and accurate approaches for content-based image
retrieval.

Figure 1.1: Example of perspective and scale variability for the same object
instance.

Figure 1.2: Example of the occlusions of various degrees (some of the points
of interest corresponding to the object are covered by the surrounding environ-
ment).

Figure 1.3: Example of varying lighting conditions caused by the day cycle and
seasonal changes.

Figure 1.4: Example of visually similar but non-matching objects.

Despite years of effort, image instance-level retrieval remains a pressing
problem. This is attributed to problems related, firstly, to the visual contents
and, secondly, properties of the image itself. The former is due to the dramatic
variations in visual appearance and the ambient environment caused by factors
such as an arbitrary direction of cameras capturing the object (Fig. 1.1),
significant changes across time and space, background clutter and occlusions
(Fig. 1.2), unstable lighting conditions (Fig. 1.3), and differentiating non-
matching objects that share similar appearances (Fig. 1.4). As far as the
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......................................1. Introduction

properties of the image are concerned, resolution can also have a drastic effect
on the retrieval accuracy, as some of the features can be lost in the re-scaling
process. Therefore, an adequate image representation for retrieval has to be
able to find the characteristics of the objects that are stable within the class
and discriminative between the other classes. At the same time, the search
needs to be fast and run online (i.e., upon the query’s submission) on the
query image, even in extensive image collections.

With such a considerable interest in the area of CBIR, new image retrieval
models are being developed every year, creating a need for benchmarking
of the newly introduced approaches. This was one of the reasons for the
creation of the DELF [Tena] under the TensorFlow Model Garden [Tenb] by
the Google research team. In this repository, a number of implementations of
the state-of-the-art research models aim to demonstrate the best practices of
network implementation so that users can take full advantage of TensorFlow
for their research and product development.

Fostering progress in the problem of instance-level image retrieval was one
of the motivations behind this thesis’ goal of re-implementation of the [RTC18]
research paper in TensorFlow 2. The resulting implementation was added to
the Model Garden, allowing researchers to compare their approaches with
other state-of-the-art practices. This bachelor project is supported by Google
Research and produced in conjunction with the Landmark Retrieval Challenge
2020/2021 [Kag], organized by Google on the Kaggle platform. This competi-
tion challenges Kagglers to build models that retrieve all correct database
landmark images for a given query. The landmark retrieval competition is a
complicated challenge as it provides a dataset containing a large number of
classes (there are a total of 15K classes in this challenge) and an unbalanced
distribution of training examples. The code developed during the work on
the thesis is publicly available and can be used as a building block for the
upcoming competitions.

1.0.1 Contributions

This thesis is concerned with the unsupervised fine-tuning of CNNs for
instance-level image retrieval. The project was supported by Google Research
and it seeks to provide a state-of-the-art benchmark for image retrieval in
Tensorflow 2. In particular, during the work on the project, the following
contributions have been made:..1. An extendable and highly-customizable image retrieval framework based
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1. Introduction .....................................
on the architecture proposed by Radenović et al. in [RTC18] was re-
implemented1 in TensorFlow 2 as a part of the official DELF TensorFlow
image retrieval library [Tena]. The code adheres to the stringent code
conventions imposed by the repository standards. On top of that, we
ensured high modularization, enabling the code to function and adapt
to various environments and making it useful across projects...2. In addition, the networks were trained and fine-tuned to achieve similar
results as stated in the original paper. For the validation of the imple-
mentation, we performed the retrieval experiments on two image retrieval
benchmarks (revisited Oxford5k and Paris6k [RIT+18]). Experiments
were run under different training strategies, network architectures and
loss functions. In particular, we experimented with parameters such
as different global pooling strategies (Section 5.10) and loss functions
(Section 5.12)...3. Further, we investigated the problem of reoccurring clusters in the
SfM120k dataset (Section 5.13) and experimented with the speed proper-
ties of the GeM pooling layer (Section 5.11), which generalizes existing
common pooling schemes for CNNs.

1.0.2 Organization of the Thesis

The remainder of the thesis is structured as follows: In Chapter 2, we address
common techniques for content-based image retrieval and investigate state-of-
the-art methods based on convolutional neural networks. The datasets used
for training and assessment, as well as the evaluation protocols, are covered
in Chapter 3. Chapter 4 introduces the background of the re-implemented
CBIR method and delineates the extracted image representation. Moving
on, we present the pipeline of the CBIR retrieval system based on [RTC18]
and provide technical details. Chapter 5 shows our experimental findings
and retrieval results in various training configurations and, finally, Chapter 6
draws conclusions.

1Data, networks, and code can be found at: https://github.com/tensorflow/models/
tree/master/research/delf.
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Chapter 2

Theoretical Background

2.1 Image Representation

CBIR is built around feature extraction. Most computer vision tasks do not
use raw image data directly for two major reasons: high data dimensionality
and redundancy. First of all, the high dimensionality of images makes
it impractical to use whole images. Secondly, much of the information
embedded in the image is redundant. Rather than using the entire picture,
a representation of only the most essential information is extracted. The
process of extracting an appropriate image representation is referred to as
feature extraction, and the resulting representation is called a feature vector
or a descriptor. As a result, feature extraction can be thought of as mapping
the image from image space to the feature space.

In general, image features can be classified as either local or global. Local
descriptors represent low-level scene properties (key points in the image), while
global features describe the image as a whole to generalize the entire object.
Although global features have been successfully employed for image retrieval,
they possess an inherent weakness that limits their efficiency – the resulting
descriptors cannot differentiate between different image parts (i.e., the object
of interest and the background). As a result, they are usually less accurate
for retrieving cluttered and complex scenes, as suggested by [HTS+06]. A
combination of global and local features is shown to improve the accuracy
of retrieval while incurring computational overheads. Global descriptors
include, for example, shape matrices, invariant moments, Histogram-Oriented
Gradients (HOG), and global CNN-based features. SIFT, SURF, LBP,
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2. Theoretical Background ................................
BRISK, MSER, FREAK [Işı14], and local deep neural features are some
examples of local descriptors.

2.2 Standard CBIR Pipeline

Figure 2.1: Abstraction of a typical CBIR image retrieval system. Different
kinds of visual features, such as color, shape and texture, are extracted from the
image pixels. The result is then a multidimensional feature vector that represents
the image content. The set of feature vectors from all images in the collection in
hand is stored in a feature database.

Image retrieval systems usually share the structure of the pipeline shown
in Fig. 2.1. In the first step of the algorithm, image features are extracted
from raw dataset images and converted into image descriptors that play the
role of the digital signature of the images. All dataset image descriptors are
then written into a collection structure. This is performed, usually, offline,
meaning that the descriptors are already pre-computed upon the query’s
submission. For the test image, we extract the features in an online manner
and perform image matching with the descriptors in the feature collection.
Ideally, given an image query, the task of the image retrieval system is to
retrieve all images matching this query from the provided image collection.
However, a usual approach is to rank all images in the dataset according to
how likely they are to be similar to the object of interest, choosing the first

8



....................... 2.3. Content-Based Image Retrieval Approaches

N images as the pipeline output.

Contrary to image classification, where the object of interest is commonly
assigned to a predefined class, image retrieval does not entail such assumptions.
The number of possible object instances is indefinite, with new additions
being possible over time. A major distinction can be observed between image
retrieval and the process of adding new instances - that is as for every instance
added to a standard classification scheme, a retraining of the classification
algorithm would have to take place. In case of retrieval, on the other hand,
if new images are added to the data collection, their feature vectors are
extracted and added to the feature database in an offline manner without
requiring any changes to the algorithm.

2.3 Content-Based Image Retrieval Approaches

This section offers an overview of the existing approaches to content-based
image retrieval. CBIR methods are typically subdivided into two categories,
namely, traditional and CNN-based, which are both discussed in the sections
that follow.

2.3.1 Conventional Methods

CBIR methods were first introduced in the early 1990s. These low-level feature
descriptor approaches, using, for example, color histograms [HKM+97], were
primarily focused on color, texture or edge properties of images. Around
the same time, researchers attempted to segment image color by separating
images into spatial regions, producing a relationship between multiple color
regions. However, these techniques were unable to capture the intricate
image structures whose descriptors had been severely affected by image
transformations and provided results that did not match the query image
at an instance level. This led to the need of introducing more sophisticated
approaches, incorporating more powerful image descriptors.

The first significant advances in the area of instance-level image retrieval
were achieved by the aggregation of local features via SIFT [Low99] or
SURF [BETVG08] image descriptors (and optionally complementary global
features obtained by GIST [SI07] descriptors) by either employing the bag-
of-visual-words (BoW) method [SZ03], or one of its more elaborate analogs.
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2. Theoretical Background ................................
These methods treat image features as words and are insensitive to local
transformations and illumination changes [SDMP17]. Multiple methods
were further employed to improve the accuracy of BoW. Geometric verifi-
cation [PCI+07], query expansion [CPS+07], feature selection or creating
compact image representations (VLAD [JDSP10], Fischer vectors [PLSP10])
are only some to mention.

2.3.2 CNN-Based Methods

Nowadays, since the success of Krizhevsky et al. [KSH12], the most advanced
image representations for instance-level retrieval are based on CNNs. The
idea that deep convolutional networks can extract high-level features in deeper
layers led researchers to investigate ways to reduce the semantic gap in image
retrieval [HTS+06]. High-level image representation provided by CNN-based
approaches is not only efficient but also requires a minimal amount of memory
resources.

The first CNN-based image retrieval approaches relied on networks pre-
trained on the ImageNet [DDS+09] dataset, while using descriptors from the
activations of fully connected (FC) layers. We can think of FC as a way to
aggregate local information from convolutional layers – a characteristic that
stems from the convolutional layers’ attribute of having spatial dimensions,
thus being able to carry local information. These methods were further
improved by employing data augmentation, while bearing the cost of increased
computational costs. It was later demonstrated that extracted features from
both fully connected (global features) and convolutional layers (local features)
could be used as image representations. Further approaches proposed using a
range of pooling layers (MAC, SpoC, GeM) instead of FC layers, followed
by the idea of spatial weighting on convolutional activations [BL15] and
regional poolings such as (R-MAC) [TSJ16], which on top of retrieval allow
localizing the object of interest in the picture. Proposed architectures start
from pre-trained CNN models (i.e., VGG, ResNet, EfficientNet), which differ
mainly in the top layers designed to aggregate local convolutional features,
as illustrated in Fig. 2.2.

Later research [RTC18] discovered that fine-tuning, or starting the back-
bone with a pre-trained network and retraining it for a particular image
domain, significantly improves networks’ adaptability. When using a fine-
tuned CNN model, descriptors are typically generated end-to-end, and the
network produces the image representation without the need for additional
explicit encoding or merging steps. Unlike classification tasks, where viewing
same-class objects as equivalent is sufficient, in retrieval tasks, we care about

10



....................... 2.3. Content-Based Image Retrieval Approaches

the similarity of objects even within the same class, making the concept of
comparing images the crux of retrieval systems. A practical approach to
learning relative distances between samples, a task that is often called metric
learning, uses a Siamese-fashion network with an appropriate ranking loss. In
these cases, however, training necessitates the use of both matching and non-
matching picture pairs. As a consequence, the problem of data annotation
becomes even more acute since labels must be provided for image pairs rather
than separate classes, as in classification problems. Using manually labelled
training data in a classification training fashion was one of the first effective
fine-tuning methods for landmark image retrieval [BL15]. To compensate for
the lack of human annotation, later methods suggested GPS-tagged image
databases [AGT+16]. Furthermore, Radenović et al. [RTC18] proposed a
completely automated solution to this issue, based on the geometry and
camera positions available from 3D landmark data reconstruction.

Figure 2.2: Examples of end-to-end CNN retrieval architectures. The approaches
differ in how they build the final image representation after the pre-trained con-
volutional backbone: Local features can be aggregated with (A) fully connected
layers or (B) via direct global pooling and additional post-processing (whitening);
(C) To generate a set of region vectors, local descriptors can be locally pooled.
An additional layer for region pooling, followed by region post-processing and
sum-pooling, is added to accomplish this.
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Chapter 3

Datasets for Metric Learning and Training
Data Representation

A task of primary importance is generating training data for metric learning.
The process of gathering a new image dataset is typically divided into web
scraping and data cleaning. Web scraping is a procedure executed by a
computer program that automatically searches for objects of interest through
text queries on an image search engine. As a result, the search allows
downloading a noisy collection of retrieved labeled images, some of which
can often be incorrect or unrelated. Consequently, the outcome comprises
substantial intra-class image variations (such as interior or exterior images
of a particular building) and great diversity in image quality. Following web
crawling, one of two data cleaning approaches is standardly used: manual
or automated data cleaning. Manual cleaning entails examining all images
by hand for moderate-sized datasets or using crowdsourcing platforms for
large-scale datasets. Alternatively, one can use automatic data cleaning where
the images’ metadata, such as geolocation, is exploited to determine geometric
consistency between images.

3.1 Structure-from-Motion (SfM120k) Dataset

The authors of the research paper Fine-tuning CNN Image Retrieval with No
Human Annotation [RTC18] eliminate the need for manually annotated data
and any assumptions on the training dataset. In essence, image labels are no
longer required to find similar images. Instead, retrieving the desired images
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3. Datasets for Metric Learning and Training Data Representation...............
is achieved by utilizing the geometry and estimated camera locations from
3D models that have been automatically reconstructed using a Structure-
from-Motion (SfM) pipeline. The SfM pipeline receives an unordered image
collection as input from which it attempts to create all possible 3D mod-
els. This is accomplished through local spatial verification, as described in
[SRCF15]. Moreover, the SfM pipeline filters out the majority of mismatched
images from the cluster, in conjunction to providing camera locations for
all matched images. Redundant (overlapping) 3D models are excluded, but
models reconstructing the same landmark from disjoint perspectives are
considered non-overlapping.

For the initial noisy data, Radenović et al. [RTC18] used an extensive
unlabeled image collection downloaded from Flickr with keywords of famous
landmarks, cities, countries, and architectural sites. The largest reconstructed
cluster includes 11042 images after data cleaning, while the smallest one
solely contains 25. For clusters of 300 or fewer images, the number of training
queries per cluster is 10% of its size, while for larger clusters, it is 30 images.
In this manner, a total number of 181697 images (out of 91642 different
clusters) is selected for training queries and 1691 for validation queries (out
of 6403 clusters).

One of the challenges of the dataset is its high intra-class variability, which
is caused by the creation of massive 3D reconstructions, including multiple
points of interest, during the dataset creation. At the same time, not all
overlapping clusters are eliminated from the dataset, introducing a high
probability of selecting false negatives during the network training phase
(Section 5.13).

3.1.1 Training Image Tuples

Once the annotated training dataset is available, it is critical to choose
an adequate strategy for selecting training tuples. For training purposes,
we create training tuples consisting of (q, p(q), n1(q), · · · , nN (q)), where q
represents a query image, p(q) is a positive image that matches the query,
and ni(q) are negative images that do not match the query (Fig. 3.1). These
tuples are used to generate training image pairs, with each tuple representing
N +1 pairs. We want negative images to be similar to query images, therefore
generating the most significant loss and making training more effective.
Moreover, due to discrepancies in views or intra-class heterogeneity, a random
query selection of positive images from the same class is not obligated to
include an appropriate positive pair.
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........................3.1. Structure-from-Motion (SfM120k) Dataset

Figure 3.1: Examples of the training tuples consisting of 1 query image, 1
positive image and 4 hard-negative images. Each row represents a separate
training tuple. Positive images are hardcoded, while negative images are mined
for a particular query.

Hard-Negative Mining

As previously mentioned, randomly sampling image tuples is an inefficient
strategy, as many of them may already fulfill the contrastive and triplet
loss margin criteria. In other words, the CNN model’s weights remain
unchanged, and no learning occurs since an error is not created, nor are
gradients backpropagated. A typical technique for dealing with negative
pairs entails iterating over non-matching images that are “hard” negatives,
meaning they are similar in the descriptor space and incur a high loss. Since
the clusters are presumed to be non-overlapping, negative examples are chosen
from clusters other than that of the query image. Out of all non-matching
images, the k-Nearest Neighbors (kNN) are chosen, out of which the subset
containing at most one negative image per cluster is selected for training.
Re-mining is repeated every N epochs of model training in order to train
the network with even more complicated cases, as hard negatives are chosen
based on the current CNN parameters.
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Positive Image Pairs

A typical technique for selecting positive pairs consists of sampling images
from the same class, 3D point, or clusters. For instance, some methods choose
positive pairs with the shortest distance within the embedding space. To
avoid sampling very similar images, Radenović et al. use a matching pipeline
from 3D reconstruction to single out the positives sharing the minimum
amount of local matches while having the closest camera positions to the
query. This process ensures that selected positives depict the same object
as the query while guaranteeing variability of perspectives. As far as the
SfM120k dataset is concerned, hard positive pairs are chosen offline and are
fixed throughout the training phase.

Once matching and non-matching pairs are selected, the model can be
trained in a Siamese manner (Section 4.1) with ranking loss to distinguish sim-
ilar images from non-similar ones, resulting in accurate vector representations
for each image.

3.2 Revisited Oxford and Paris Buildings Datasets

One of the standard data collections for image retrieval analysis includes the
Oxford and Paris Buildings datasets representing the major tourist attractions
in Oxford and Paris. Radenović et al. [RIT+18] recently renovated these
datasets, and we use the newly introduced revisited Oxford (further ROxford)
and Paris (further RParis) datasets to evaluate the search performance of
the networks. Both databases include 70 queries as well as 4993 and 6322
database photos, respectively. A bounding box is annotated on the object
whose other images are to be retrieved, evaluating the object’s visibility out
of four possible labels: Easy (the object is clearly visible and there is no
significant perspective change), Hard (25% of the object is clearly visible with
a possible change of the original viewpoint), Negative (object of interest is
missing) and Unclear (the object of interest is heavily occluded or depicts a
different side of the query object). All photos that do not appear on the list
of possible positives are automatically marked as Negative [Rad19].
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3.2.1 Performance Evaluation

Image retrieval is usually formulated as a ranking problem, with the aim
of ordering database images in decreasing order of similarity to the object
of interest [RARS19]. In order to evaluate the image retrieval’s quality, the
top N retrieval result is obtained for each of the query images and their
relevance is evaluated based on whether they display the same landmark.
The mean average precision (mAP) is a widely used metric the evaluating
model performance in retrieval and object detection tasks. It is computed by
averaging the precision (AP) through all of the test set’s queries.

mAP =
∑Q

q=1AP (q)
Q

. (3.1)

In the equation above, the variable Q represents the number of query images.
It is worth noting that average precision (AP) computation does not employ
the finite sum method, widely used in the literature on information retrieval.
Instead, the implemented AP averages two adjacent precision points (by
interpolation), then multiplies by the recall step, allowing to integrate over
the precision-recall curve. This is the convention for the revisited Oxford and
Paris datasets. In addition to mAP, the mean precision at rank K (mP@K)
can be evaluated, considering only top K retrieval results.

We use a standard assessment method for the revisited Oxford and Paris
datasets. As far as queries are concerned, only the regions of test images
surrounded by bounding boxes are used. By treating labels (Easy, Hard, and
Unclear) as positives or negatives, or ignoring them, three evaluation setups
of varying difficulty are defined for these datasets:

. Easy: Easy images are considered positives, whereas Hard and Unclear
are ignored..Medium: Easy and Hard images are considered positive, while Unclear
are ignored..Hard: Hard images are considered positive, while Easy and Unclear are
ignored.

In the scenarios, where the system does not return any positive images for
a particular query as an output (for example, when only easy images are
retrieved for a query under the Hard evaluation protocol), said query is
eliminated from the mAP calculation.
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Chapter 4

Network Architecture and Image
Descriptors

In this chapter, we discuss the architecture of the re-implemented end-to-
end retrieval network based on the work of Radenović et al. [RTC18], as
well as explain the extracted image representation obtained as the output
of the network. As previously mentioned, it is possible to obtain a vector
representation of an image by extracting local features from a pre-trained
CNN-backbone before the pooling layer. Following that, the authors perform
a global pooling operation to reduce dimensionality, normalization procedures,
and post-processing, which result in the output of the image descriptor. Then,
it is possible to fine-tune the network to boost its performance for a specific
domain using Siamese metric learning with an appropriate ranking loss (such
as triplet or contrastive losses) by training a network with positive and
negative image pairs. Furthermore, we discuss how whitening can be applied,
either learned end-to-end with the network or added as a post-processing
step after training.

4.1 Metric Learning with Siamese Architectures

Siamese Neural Network [KZS15], or simply SNN, is a type of neural network
that uses the same architecture and weights in multiple instances of the same
model (Fig. 4.1). This architecture demonstrates its strength when learning
with limited data and successfully addresses the issue of adding new instances
to the dataset without the need for constant network re-training. This means
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4. Network Architecture and Image Descriptors .......................
that once a network has been tuned, we can use powerful discriminative
features to generalize the network’s predictive abilities not only to new data
but to entirely new data classes. Aside from these benefits, the fundamental
justification for using SNNs for retrieval tasks is the concept of the retrieval
problem. Precisely, in order to find the most similar images to a given query,
an image retrieval system must calculate a similarity score between the images
in the test set and the query. SNNs allow direct training of networks for
metric learning, which is the process of learning the similarity function over
objects, thus providing a solution to the retrieval task.

Figure 4.1: Used Siamese network architecture. During the training phase,
image triplets are sampled, and a ranking loss (triplet or contrastive) is applied
simultaneously to every image in the training tuple.

As previously stated, the aim of SNNs is to build several stream networks
that all share the same parameters. The network receives a labeled tuple of
images as input (query, positive, and negatives). After the network generates
an embedding for those images, we compute their distance (in our case,
Euclidean distance) between sample representations. The model is then
optimized to minimize the distance for similar samples and maximize it for
dissimilar samples. As a result, the model learns similar representations for
samples defined as positives and distant representations for samples defined
as negatives. In our case scenario, learning in the network can be achieved
with either triplet or contrastive loss. Losses are initially calculated in a
pair-wise manner and subsequently aggregated for the whole training tuple.

4.1.1 Triplet Loss

The most common ranking loss used with Siamese architectures is the triplet
loss. Similar to the contrastive loss, it operates with triplets of samples and
consists of:

20



....................... 4.1. Metric Learning with Siamese Architectures..1. Query: anchor sample, which is the reference of the triplet...2. Positive: a positive sample similar to the anchor...3. Negative: a negative sample, which is dissimilar to the anchor.

The triplet loss is formally defined as follows [AGT+16]:

L = max
(
0, d2

(
f̄(q), f̄(p)

)
− d2

(
f̄(q), f̄(n)

)
+ α

)
, (4.1)

where d(a, b) is the Euclidean distance between vectors a and b, α is the
loss margin parameter, q, p, and n are the representations of the query, the
positive, and the negative images, respectively. Here and in the following
sections, f̄(i) is the L2-normalized descriptor (the output of the network) of
image i.

The negative vector forces learning in the network, while the positive vector
serves as a regularizer, as seen in equation 4.1. The margin ensures that
the model does not linger enlarging the distinction between the positive and
negative samples of a triplet when it already does so properly, allowing it
to concentrate on more challenging triplets. In other words, the margin
determines whether a triplet’s network efficiency is already optimal.

Figure 4.2: Visualization of triplet loss. The learning process is depicted on the
left side of the picture, in which the model learns to minimize distance for similar
samples and maximize distance for dissimilar samples. The hard-, semi-, and
easy-negative samples are separated on the right side based on their distance
from the query feature vector.

4.1.2 Easy, Hard, and Semi-Hard Triplets

During the loss computation, three forms of triplets (see Fig. 4.2) can be
observed depending on the distances between triplet samples:
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. Easy triplets:

d
(
f̄(q), f̄(n)

)
> d

(
f̄(q), f̄(p)

)
+ α (4.2)

Easy triplets are the ones where the negative sample is sufficiently far
from the anchor sample in the descriptor space compared to the positive
sample. In this case, the gradients and the loss are both zero. As a result,
when training with easy triplets, network weights do not get updated and
the network efficiency is not improved. Hence, it would be optimal to
eliminate easy triplets from network training data to save computational
time.. Semi-hard triplets:

d
(
f̄(q), f̄(n)

)
< d

(
f̄(q), f̄(p)

)
+ α (4.3)

As for the semi-hard triplets, the negative sample representation is further
away from the anchor than the positive descriptor, but the difference is
still less significant than the loss margin. As a result, the network has to
widen the gap between the positive and the negative samples..Hard triplets:

d
(
f̄(q), f̄(n)

)
< d

(
f̄(q), f̄(p)

)
(4.4)

In hard triplets, the negative sample descriptor is closer to the query
sample than the positive descriptor. This suggests that the network is
unable to differentiate between the positive and negative samples in hard
triplets. Therefore, those triplets have the highest loss and are the best
candidates for network training.

4.1.3 Contrastive Loss

The training input for contrastive loss [CHL05] is a tuple of image descriptors
corresponding to the query, positive and negative, similar to the triplet loss.
The following formula is used to measure the pair-wise contrastive loss:

L(i, j) =


1
2d

2
(
f̄(q), f̄(j)

)
, if Y (q, j) = 1

1
2

(
max

(
0, α− d

(
f̄(q), f̄(j)

)))2
, if Y (q, j) = 0

(4.5)

Label Y (i, j) = 1 indicates that the pair of images is matching, whereas
Y (i, j) = 0 is used for a non-matching pair, and α is a margin hyperparameter
that determines when non-matching pairs are separated by a wide enough
distance for the loss to disregard them.
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Figure 4.3: Plots of the pair-wise contrastive loss based on image descriptor
distance. The positive pair loss is depicted on the left plot, while the negative
pair loss is depicted on the right.

4.2 Network Architecture

In practice, when initializing the network for image retrieval, one of the popular
pre-trained architectures for classification tasks (such as ResNet [HZRS16],
VGG [SZ14], or EfficientNet [TL19]) is used as the network’s backbone. The
fully connected layers of such architectures are discarded, resulting in a fully
convolutional backbone. Then, given an input image of the size [W ×H ×C],
where C is the number of channels, W and H are image width and height,
respectively; the output is a tensor X with dimensions [W ′ ×H ′ ×K], where
K is the number of feature maps in the last layer (Fig. 4.4). Tensor X
can be considered as a set of the input image’s deep local features. For
deep convolutional features, the simple aggregation approach based on global
pooling arguably provides the best results. This method is fast, has a small
number of parameters, and a low risk of overfitting. Keeping this in mind,
we convert local features to a global descriptor vector using one of the
retrieval system’s global poolings (MAC, SPoC, or GeM). After this stage,
the feature vector is made up of the maximum activation per feature map
with dimensionality equal to K. The final output dimensionality for the most
common networks varies from 512 to 2048, making this image representation
relatively compact (Tab 4.1).

Vectors that have been pooled are subsequentlyL2-normalized. The ob-
tained representation is then optionally passed through the fully connected
layers (global whitening discussed in Section 4.5) before being subjected to a
new L2 re-normalization. The finally produced image representation allows
comparing the resemblance of two images by simply using their inner product.
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Supported
Network

Architecture

Number of
feature maps K
in the last layer

Occupied space
per one image

representation [B]
VGG16 512 2048
VGG19 512 2048
ResNet50 2048 8192
ResNet101 2048 8192

ResNet101V2 2048 8192
ResNet152 2048 8192

DenseNet121 1024 4096
DenseNet169 1664 6656
DenseNet201 1920 7680
EfficientNetB5 2048 8192
EfficientNetB7 2560 10240

Table 4.1: Table of supported TensorFlow network architectures, along with
their output descriptor dimensions and memory requirements.

The network is then fine-tuned after being initialized with the Ima-
geNet [DDS+09] weights. As demonstrated by Radenović et al. in [RTC16],
fine-tuning accounts for much better retrieval accuracy since the CNN fires
fewer to ImageNet classes, such as vehicles, people, and geological forma-
tions. Additionally, the fully connected whitening layer is pre-computed from
the same training data before the model training, which increases network
training speed and accuracy.

Figure 4.4: Network pipeline: The convolutional backbone processes an input
image with dimensions of [W ×H × C]. The CNN produces a 3D tensor with
[W ′ ×H ′ ×K] dimensions representing the set of image’s local features. In the
next step, global pooling is applied, and the obtained vector is L2-normalized.
Finally, the global descriptor f is optionally whitened by passing through the
fully connected (FC) layer and subsequently re-normalized.
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4.3 Global Pooling

The output of the fully convolutional network is tensor Xi - a set of all
W ′ ×H ′ activations for feature map i ∈ {1...K} (Fig. 4.3). Instead of down
sampling feature map patches, global pooling down samples the entire feature
map to a single value in a layer-wise manner, reducing the dimensionality
of the network output by producing solely a K-dimensional vector. On top
of that, global pooling drops redundant spatial information, resulting in an
increase in geometric invariance.

Figure 4.5: Global pooling dimensionality.

In earlier work, a variety of methods for local features aggregation were
used – these range from fully connected layers to various global-pooling layers
and regional aggregation strategies. In terms of this work we experimented
with MAC, SPoC, and GeM global pooling layers.

.Maximum Activations of Convolutions (MAC) [TSJ16] is simply
constructed by max-pooling over all the dimensions per feature map.
The method follows a similar strategy as the local Max pooling of CNN
pooling layers, but uses a global kernel over each feature map:

f = [f1, ..., fK ]T , with fi = max
x∈Xi

x. (4.6)

Otherwise stated, we take the maximum value for each feature map Xi

to get a K-length long vector representation of the image.. Sum-Pooled Convolutional features (SPoC) is given by [BL15]:

f = [f1, ..., fK ]T , with fi = 1
|Xi|

∑
x∈Xi

x. (4.7)

In other words, for each feature map Xi, the average value is taken.
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.Generalized-Mean (GeM) pooling layer generalizes MAC and SPoC

poolings and is based on a generalized-mean with learnable parameters.

f = [f1, ..., fK ]T , with fi =

 1
|Xi|

∑
x∈Xi

xpi

 1
pi

. (4.8)

For pi equal to 1, GeM becomes the average pooling, while as pi ap-
proaches ∞ it converts to maximum pooling. The pooling parameter pi

can be either manually set or learned since it is differentiable and can
be backpropagated. In terms of this work, we set parameters pi to be
identical for each feature map.

4.4 Normalization

In order to compare images at the level of L2 norms and obtain a global view
of image similarities, the last network layer comprises an L2-normalization
layer. L2-normalization modifies the values in the vector such that the sum
of the squared values in a given axis becomes equal to one:

f̄ = f√
max

(∑
fi∈f f

2
i , ε

) . (4.9)

In the equation above, ε is the lower bound value for the norm. This way,
the
√
ε will be used as the divisor for small norms, preventing mathematical

precision errors. L2-normalized network output is denoted as f̄ and constitutes
the image descriptor, allowing the similarity between two images to be
evaluated with the inner product.

4.5 Descriptor Whitening

Whitening is a data-processing procedure that removes redundant information
from image representation data. Whitening decreases the degree of correlation
between adjacent pixel or feature values, which can be high in real world
scenarios. In the network implementation, we provided two ways of achieving
the descriptor whitening: end-to-end learned whitening in a form of a fully
connected layer and whitening as a post-processing procedure learned in a
discriminative manner.
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4.5.1 Whitening as a Fully Connected Layer

The former approach suggests adding a fully connected layer as the last layer
in the network and training it end-to-end with the rest of the network. The
layer is represented in the following manner:

Y = AX + b, (4.10)

where X is the L2-normalized pooled fully convolutional network output (i.e.,
descriptors f̄ of the inputted images), A is the kernel matrix, b is the bias,
and Y are the whitened descriptors.

4.5.2 Whitening as a Post-Processing Step

The other approach is applying whitening as a post-processing step for image
descriptors:

Y = PT (X− µ), (4.11)

where P is the projection matrix, and µ is the mean descriptor vector used
to perform centering. This approach allows pre-computing P and µ on the
training data and further using these values in the evaluation process. To
achieve this, we begin by obtaining the descriptors of the images in the
training dataset by a forward pass through the convolution-only network with
subsequent pooling and normalization, and calculating the mean descriptor
vector µ over the dataset. Then, we are able to calculate the projection
matrix in the following manner:

P = CS
− 1

2 eig
(
CS
− 1

2 CDCS
− 1

2
)
, (4.12)

where CS
− 1

2 is the interclass covariance matrix calculated for the positive
pairs as:

CS =
∑

Y (i,j)=1

(
f̄(i)− f̄(j)

) (
f̄(i)− f̄(j)

)T
, (4.13)

And CD is calculated in a similar manner for the non-matching pairs:

CD =
∑

Y (i,j)=0

(
f̄(i)− f̄(j)

) (
f̄(i)− f̄(j)

)T
. (4.14)

Moreover, whitening allows to reduce the dimensionality of the final image
descriptors. By using only the eigenvectors corresponding to the D largest
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eigenvalues, we can minimize the descriptor dimensionality to D dimensions.
When applying the mentioned approach, the network is optimized first,
followed by the whitening parameters P and µ. After the fine-tuning of the
CNN is completed, whitening acts as a post-processing stage.

4.5.3 Conversion Between the Whitening Representations

Whitening consists of vector shifting and transformation, which are modeled
in a straightforward manner with a fully connected layer, as discussed above.
We observed that using a pre-computed whitening transformation to initialize
the fully connected layer enhances network convergence time and accuracy.
Hence, we convert the discriminatively learned projection matrix P and the
mean vector µ to the FC layer by simply setting the kernel matrix A = PT

and bias equal to the projected shifting vector b = −PTµ. This substitution
stems from: Y = PT (X− µ) = PT X−PTµ = AX + b.

4.6 Image Similarity Search

After the network has been trained, the retrieval of images is as simple
as conducting an exhaustive Euclidean search over database descriptors in
relation to the query descriptor. The inner product of all the database vectors
with the query image representation is computed, and the results are sorted
from highest to lowest. The images with the highest scores are evaluated
as most similar, whereas those with the lowest scores are assessed as least
similar. The representation is rather compact and, therefore, suitable for
efficient online database searching. For example, when using the ResNet101
backbone, each descriptor requires 2048 float32 numbers, making up 8192
bytes per image to be stored.

To boost the system’s scale invariance, which has already been learned to
some extent during training, we use multi-scale processing of the submitted
query, which adds additional invariance without requiring any further learning.
This is achieved by feeding the network with differently sized query images.
Finally, the multiple descriptors are pooled and re-normalized, yielding a
scale-invariant representation of the query image.
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Chapter 5

Image Retrieval Experiments

This chapter goes through the specifics of the training’s implementation,
examines various aspects of the re-implemented instance-based image retrieval
method, and compares different training setups. Additionally, we further
experiment with the SfM120k dataset’s re-occurring cluster problem and
various global pooling strategies.

5.1 Training Configuration

This work was implemented in Python, making use of the TensorFlow 2
and Keras frameworks. For the sake of this project, the Google Research
team generously provided the experimental environment on the Google Cloud
Platform, composed of Intel(R) Xeon(R) processors, four instances of Tesla
P100-PCIe GPU with 16 GB of memory, Debian GNU/Linux 10, TensorFlow
version 2.2, and CUDA version 11.0.

The implemented framework allows for a highly customizable training
pipeline. To name a few its parameters, the user can choose from multiple
backbone network architectures and initialization options, including but not
limited to momentums, weight decays, and one of the three supported global
pooling types (MAC, SPoC, and GeM). In addition, we provide the option
of training the network end-to-end with an FC whitening layer or applying
whitening as a post-processing procedure after the training is completed.
Moreover, the system supports several optimizers (SGD or Adam) and loss
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5. Image Retrieval Experiments ..............................
functions (triplet and contrastive losses) with appropriate hyperparameters.
As far as the training tuples are concerned, the user can set the number of
query images per training epoch, the size of the negative pool from which
hard-negative images are chosen, and the number of negative images N per
training tuple (q, p, n1, · · · , nN ). Moreover, the framework in place supports
the ability to resume training from previously saved checkpoints and extract
the trained model in a format required by the Kaggle Landmark Retrieval
Challenge.

5.2 Implementation Details

When training a Siamese network, there is a few practical considerations
to keep in mind. Firstly, we need to consider training tuple sampling, a
factor that was previously discussed in Section 3.1.1. Random sampling
of the training data would almost always yield triplets that are too easy,
and therefore do not incur any loss nor network weights updates. As was
previously mentioned, the positive pairs are predefined and are not altered
during network training. In contrast, negative samples are chosen by the
network on the fly with a bias towards hard triplets generating a high loss.
It is worth noting that, in principle, the set of suitable candidates for the
non-matching pairs should be re-calculated every time the model is updated,
which is highly time-consuming. However, in practice, most of the hard
triplets remain hard even after the model weights get updated several times.
Therefore, we can only update the set of successful candidates every N
iterations. In the case of this work, the pre-selected setup updates the
training data every training epoch, which by default consists of 2000 query
images, with one positive pair and 5 negative samples, resulting in a total of
12000 triplets per epoch. With the batch size of 5, this results in 400 network
weight updates per epoch. Furthermore, the network implementation allows
for the frequency of such training data re-mining to be set, resulting in a
substantial reduction in time demands.

Another factor to consider is the amount of memory exploited during
training since we use high resolution images (resized to 1024 pixels with the
aspect ratio preserved) with up to seven network streams (one for query, one
for positive, and five for negative images) at once. GPU memory constraints
are partially overcome by associating each query with a tuple that includes a
query in conjunction with corresponding positive and n hard-negative images.
Consequently, the network is fed with n+2 photos, which represent n training
pairs. Granted that we are using triplets rather than tuples, the naive method
would require n triplets in need of pre-processing and memory storage of 3n
images instead of solely n+ 2. Under our setup, we could only fit one training
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tuple in memory on a single 16 GB GPU while using the VGG16 or VGG19
architectures. To perform weight updates in the network with a batch of size
greater than one, we follow two steps. Initially, we compute and aggregate
the gradients of the loss concerning the network parameters for each training
tuple sequentially. Then, we perform the actual update after every B tuples,
with a default batch size B set to 5.

The problem becomes even more complicated when using more extensive
networks like ResNet101. With such architectures. For instance, there is not
enough memory with such architectures to process even a single training data
tuple consisting of seven full-sized images. This led to the necessity to use
an alternative method detailed in Algorithm 1 in lieu of reducing the image
dimensionality, which usually results in a loss of pivotal information. Rather
than processing all of the images in a tuple simultaneously, this method
allows to process them sequentially using a single stream. This process
produces identical gradients but provides a significant reduction in memory
requirements at the cost of lowering computational efficiency. This way, we
are able to reduce memory requirements from the original 15 GB down to a
sole estimate of 6 GB per training batch. Thus, deeper architectures can be
used to train the retrieval network without reducing the size of the training
images.

5.3 Computational Cost

In the default setup, to perform the fine-tuning, we initialize the network
with pre-trained convolutional layers of ResNet101. The fully connected
whitening layer is learned end-to-end and is pre-initialized with the pre-
computed weights (Section 4.5.3). We use a 5 ·10−7 learning rate, exponential
decay with a 0.01 exponent, a momentum of 0.9 for the Adam optimizer,
weight decay of 10−6, and loss margin for triplet loss of 0.85. The default
batch size is set to 5 training tuples, and we use GeM global pooling as the
aggregation layer. Training images are resized to a maximum resolution of
1024 pixels for the larger image dimension while maintaining the original
aspect ratio. Training lasts at most 100 epochs, with the best network being
chosen based on validation set mean Average Precision (mAP). On a single
GPU, fine-tuning ResNet101 for one epoch, including hard-negative re-mining
with a pool size of 20000 images and number of queries equal to 2000, takes
on average 1.3 hours. In particular, hard negative re-mining under the default
setup can take up to 42 minutes, while training requires around 36 minutes.

The default model converges after approximately 40 epochs or 2.5 days
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Algorithm 1: Memory efficient model training
1 Define Process_Training_Tuple
2 Input: (Q,P,N1, · · · , Nn), where
3 Q: Query image,
4 P : Positive image,
5 Ni: Negative image.
Result: Updates model weights for one training batch.

6 Main:
7 accumulated_gradients = list of zeros of the size of network

trainable parameters
// We load tuples into memory consequently.

8 for tuple in batch_size do
// Record gradients and loss through the network.

9 Start Record Gradients
10 descriptors = empty list
11 for img in tuple do

// Compute descriptor vector for each image by a forward pass

through the network and append them to the list of

descriptors.

12 descriptors.append(model(img, training=True))
13 end

// Based on the knowledge that the first image in the tuple is a

query, the second is the positive and the rest are negatives,

calculate one of the ranking losses.

// Losses are initially calculated in a pair-wise manner as in

Equations 4.1 and 4.5 and subsequently aggregated for the whole

training tuple.

14 loss = ranking_loss(descriptors)
15 grads = Stop Record Gradients
16 accumulated_gradients.add(grads)
17 end
18 optimizer.apply_gradients(accumulated_gradients)

of training when initialized with the pre-trained classification weights and
pre-computed whitening layer. If the whitening layer is not pre-initialized
and is instead initialized with random weights, the convergence rate is slower,
taking about 75 epochs or approximately 5 days of training. After the network
has been fine-tuned, extracting the descriptor of one image on a single GPU is
performed within 130 milliseconds, corresponding to an image rate of about 8
images per second. Computing the similarity between two images boils down
to computing the dot product between their representations, which is highly
efficient. A standard processor can perform millions of such comparisons per
second.
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5.4 Retrieval Results

Figure 5.1: Example of Top 50 retrieval results for a query image from ROxford
dataset. Easy, hard, unclear (junk), and negative retrieved images are represented
with the frames of corresponding colors. Retrieval results are sorted based on
the relevance score from left-to-right and top-to-bottom.

As discussed in Section 3.2, we evaluated we evaluated the trained networks
on revisited Oxford and Paris datasets. All training clusters, containing
images from the ROxford5k or RParis6k test datasets, are omitted for the
training phase, resulting in no overlap between the training and testing data.

According to the top 50 retrieval results for one of the query images shown
in Fig. 5.1, the network generalizes properly and is unaffected by over-fitting.
We can see that out of 50 images retrieved from the ROxford dataset for
the given query, we got 31 easy, 8 hard, 6 unclear, and 5 negative examples.
As predicted, easy examples have higher retrieval scores than the majority
of the other categories (i.e., in Fig. 5.1, easy images are generally closer to
the beginning of the retrieved list). Furthermore, negative examples for this
question are only found in the last ten retrieved results.

Furthermore, we have used t-distributed Stochastic Neighbor Embedding
(t-SNE) to visualize the images in datasets based on their descriptors and
examine similarities produced by the network. t-SNE allows to reduce de-
scriptor dimensionality to 2 and plot the result in a 2D space. The database
images of both ROxford5k and RParis6k are depicted in Figs. 5.2 and 5.3.
We can observe that even when there is a noticeable shift in perspective,
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scale, or lighting conditions or occlusions, pictures of the same landmark are
clearly grouped. Likewise, we observe that the RParis6k dataset seems to be
more distinctly divided into clusters, and therefore, we expect the network to
have a higher retrieval efficiency on this dataset compared to the ROxford5k
dataset. In further experiments (Section 5.7), this prediction was proven to
be correct, with mAP on Paris landmarks being on average 11% higher than
that on Oxford landmarks for medium evaluation difficulty.

Figure 5.2: Visualization of the ROxford5k dataset with t-SNE and several
zoomed in selections of clusters.
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Figure 5.3: Visualization of the RParis6k dataset with t-SNE and several
zoomed in selections of clusters.

5.5 Convolutional Backbone Architecture

For the convolutional backbone of the network, we evaluate several popu-
lar classification architectures: VGG16, VGG19, ResNet50 and ResNet101.
Initially, we begin fine-tuning from publicly available models pre-trained on
ImageNet data in all of the cases. Then, fully connected whitening layer is
initialized with pre-computed whitening weights, as discussed in Section 4.5.2.
All subsequent fine-tuning is performed on the SfM120k Landmarks dataset.
Given that ResNet101 considerably outperforms VGG16 and VGG19 for all
the evaluation scenarios (Table 5.1), we only experiment with ResNet101
in further sections since we assume that its intricate network design allows
learning a more invariant representation of the images.
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Architecture ROxford (E, M, H) RParis (E, M, H)
ResNet50 GeM 81.23 63.51 38.23 88.92 75.12 52.98
ResNet101 GeM 84.50 65.86 39.76 91.64 76.26 54.33
VGG16 GeM 77.38 60.22 33.62 84.27 68.94 44.27
VGG19 GeM 78.94 62.17 33.89 85.63 69.51 43.98

Table 5.1: Single-scale mAP of the end-to-end learned networks with whitening
for several different convolutional backbone architectures with GeM aggregating
layer. Networks are evaluated on ROxford5k and RParis6k benchmarks under
Easy (E), Medium (M) and Hard (H) setups.

5.6 Off-the-Shelf and Fine-Tuned Network
Comparison

To demonstrate the benefits of fine-tuning, we performed a comparison of the
off-the-shelf network pre-trained on ImageNet with the fine-tuned network.
The first significant accuracy improvement, as compared to the off-the-shelf
network, was the introduction of descriptor post-processing, which boosted
the network performance by a substantial margin (13% for ROxford5k and
8.5% for RParis6k on a Medium setup), as indicated by Table 5.2. The
ability to fine-tune the network for a particular domain increases network
performance even further (by 24.5% on ROxford5k and 12.2% on RParis6k for
a Medium setup compared to the naive implementation without whitening).

ROxford5k (E, M, H) RParis6k (E, M, H)
Off-the-shelf network,
no whitening

57.02 41.36 15.53 83.21 64.07 36.04

Off-the-shelf network
with whitening as a
post-processing step

73.30 54.38 25.77 88.99 72.56 49.62

Fine-tuned network
with whitening learned
end-to-end

84.50 65.86 39.76 91.64 76.26 54.33

Table 5.2: Comparison of the off-the-shelf network with the fine-tuned networks.
The demonstrated networks, sharing ResNet101 backbone architecture with GeM
pooling, were evaluated on ROxford5k and RPais6k benchmarks under Easy (E),
Medium (M), and Hard (H) setups.
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5.7 Final Re-Implementation Results

We further compared the original paper [RTC18] implementation with its
TensorFlow re-implementation to ensure that similar results are reproduced.
From Table 5.3, we can notice that the original implementation demonstrates
slightly better performance on the RParis6k dataset while showing lower
mAP results on the RParis5k benchmark. Both network implementations
are trained with three different training data randomization seeds to assert
consistency throughout the experiments. The results indicate that the seed
has a minimal effect on the network performances and the average standard
deviation for the experiments is only around 0.03%. Overall, we declared
that both implementations achieve comparable performance.

Implementation ROxford5k (E, M, H) RParis6k (E, M, H)
Original impl. seed=0 84.11 65.69 39.48 91.86 76.45 54.69
Original impl. seed=1 84.15 65.64 39.52 91.80 76.39 54.60
Original impl. seed=2 84.09 65.58 39.43 91.80 76.38 54.62
Original impl. mean 84.12 65.64 39.48 91.82 76.41 54.64
Original impl. std 0.025 0.045 0.037 0.028 0.031 0.039
TF re-impl. seed=0 84.55 65.86 39.74 91.67 76.20 54.31
TF re-impl. seed=1 84.49 65.81 39.72 91.61 76.31 54.39
TF re-impl. seed=2 84.47 65.91 39.83 91.64 76.27 54.30
TF re-impl. mean 84.50 65.86 39.76 91.64 76.26 54.33
TF re-impl. std 0.034 0.041 0.048 0.024 0.045 0.040
Mean difference -0.39 -0.22 -0.29 0.18 0.15 0.30

Table 5.3: Comparison of the original implementation accuracy with the repro-
duced results. Networks for both implementations are trained with different
seeds. In both cases, we used ResNet101 with the maximum training image size
set to 1024, the number of negative images per training tuple equal to 4, and a
batch of 5 training tuples. The mAP is evaluated on ROxford5k and RPais6k
benchmarks under Easy (E), Medium (M), and Hard (H) setups.

5.8 Single- and Multi-Scale Evaluation

To incorporate information from various scales, we consider extracting and
integrating features from images that have been resized to different resolutions.
The aim is to enhance object matching and retrieval of small objects and
database images at different scales. The network has a useful property in
that it produces descriptors of the same length regardless of the input image’s
size. On the other hand, two different resolutions of the same image will
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most likely result in different output descriptors. The network’s first part is
entirely convolutional, allowing it to process inputs of various sizes directly.
At the same time, the pooling layer incorporates the size-dependent number
of input features into a fixed-length representation. Following this logic, we
extract descriptors from the image that has been resized at various scales
and then merge them into a single final representation by sum-aggregation
and subsequent L2-normalization.

In the proposed setup, we use three sizes, with the larger side of the image
scaled to [1,

√
2, 1/

√
2] of the images with 1024 full pixel resolution while

maintaining the original aspect ratio. The multi-scale evaluation method
increases the computational time during feature extraction. Using three
distinct picture scales in the evaluation phase takes about three times as
long as single-scale evaluation. On the other hand, the cost of searching
and storing is persistent. Table 5.3. presents single- and muli-scale mAP
evaluation results for the identical networks. According to the findings,
multi-scale mAP estimation increases network efficiency by 2% on average.

Setup ROxford5k (E, M, H) RParis6k (E, M, H)
Single-scale mAP 84.50 65.86 39.76 91.64 76.26 54.33
Multi-scale mAP 86.83 67.89 41.83 92.31 77.61 56.29

Table 5.4: Single- and multi-scale (with scales [1,
√

2, 1/
√

2]) mAP results for
the default network on ROxford5k and RPais6k benchmarks under Easy (E),
Medium (M), and Hard (H) setups.

5.9 Randomly Initialized and Pre-Computed
Whitening Comparison

As demonstrated in Table 5.2, whitening has a major impact on the network
performance. Furthermore, we discovered that the network convergence
is faster with the whitening layer, requiring less computational resources.
However, the issue of the whitening layer’s initialization arises. Essentially,
we test two options: random FC weight initialization and discriminative
pre-computing of the weights, as discussed in Section 4.5.2. We compared
identical network training processes (one with random weight initialization
and the other with pre-computed whitening) by plotting the evolution of
mAP on the testing data as a function of the number of training epochs
(Fig. 5.4). The results clearly showcase that using pre-initialized whitening
improves the outcomes by a margin of 4% on both ROxford5k and RParis6k
benchmarks under a Medium evaluation setup. Moreover, we observe that
learning the fully connected whitening layer end-to-end after initializing it
with random weights is inefficient due to the hindered convergence rate.
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Figure 5.4: The plots exhibit the evolution of single-scale mAP as a function of
the number of training epochs for a Medium evaluation protocol on ROxford5k
and RParis6k benchmarks. The initial epoch 1 corresponds to the network
after the first training epoch. The presented plots correspond to two identically
initialized networks (ResNet101 with GeM pooling and FC whitening layer, with
the maximum training image size set to 800 pixels), one with the pre-computed
and the other with randomly initialized FC layer.

5.10 Global Pooling Layer Comparison

In Figure 5.5, we present the evaluation results of GeM (with a shared
power p = 3), MAC, and SPoC descriptors on ROxford5k and RParis6k
benchmarks in the form of training progress. In our experiments, GeM
pooling appears consistently superior to the other mentioned pooling types.
Furthermore, though SpoC pooling has the slowest convergence rate, it
generally outperforms MAC, which, under our setup, turns out to be the
weakest descriptor in terms of performance. Lastly, both validation and
training losses for all of the pooling types gradually decrease with similar
trends (Fig. 5.6).

5.11 GeM Pooling Properties

As mentioned in section 4.3, GeM pooling is a generalization of the other
pooling types, such as MAC and SPoC poolings, for certain values of the
power p. There is a different pooling parameter per feature map as described
in section 4.3, but it is also possible to use a shared one. In this case,
pi = p, ∀i ∈ [1,K] and we simply denote it by p. In Fig. 5.7, we compared the
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Figure 5.5: MAC, SPoC, and GeM (with power p = 3) pooling layer performance
comparison with the same network architecture. The plots display the evolution
of single-scale mAP as a function of the number of training epochs for Easy,
Medium, and Hard evaluation setup on ROxford5k and RParis6k benchmarks.
The experiment is performed with the ResNet101 architecture with whitening
and one of the aforementioned pooling layers.

Figure 5.6: Losses for training with MAC, SPoC, and GeM pooling layers (with
power p = 3) for the same network architecture.

similarity of the output matrices after MAC, SPoC, and GeM poolings for
different values of shared p. As suggested by the definition of GeM pooling,
for p = 1, we obtained results identical to SPoC, and with the increasing p,
the result becomes more similar to the one after MAC pooling.

Further, instead of down sampling the entire feature map to a single value,
we experimented with local GeM pooling to down sample patches of the
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Figure 5.7: Plot of the similarity of the MAC, SPoC, and GeM poolings based
on the value of the GeM power parameter p.

Figure 5.8: CPU and GPU speed comparison for Average, Max, and GeM
pooling. For CPU setup (on the left), we used kernel sizes from 2 to 10. GPU
(on the right) uses kernel sizes 2, 8, 16, 32, 64, 128, 256, 512, 1024.

input feature map, in a similar manner as pooling layers in convolutional
networks. We hypothesized that replacing Max pooling layers with local
generalized pooling may yield improvements in both speed and network
accuracy in standard classification architectures (e.g., VGG16 or VGG19).
The argument for speed enhancement is based on the assumption of faster
arithmetical computations on the GPU compared to maximum element
searching. Additionally, we reasoned that adding another learnable parameter
(GeM power p) would result in improved model accuracy.

To validate our hypothesis, we benchmarked the runtime of Max, Average,
and GeM pooling layers on 1024 x 1024 randomly initialized feature maps
with both CPU and GPU setups (Fig. 5.8). Contrary to our expectations,
in both experiments, GeM was the slowest performance pooling layer. A
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possible explanation of this inconsistency might be the optimization of the
bult-in Keras Max and Average pooling layers implementations or an effective
multi-core CUDA parallelization.

5.12 Contrastive and Triplet Loss Comparison

In addition to the previous experiments, we performed a comparison of
the effect of contrastive and triplet loss on the networks with identical
hyperparameters, whose results are presented in Fig. 5.9. Unlike in [RTC18],
the results display that the contrastive loss appears to be inferior under the
experimental setup. Moreover, we observe slight oscillations of the validation
loss for contrastive loss, which might imply overfitting.

Figure 5.9: The plots show the evolution of single-scale mAP (for Medium
evaluation protocol) as a function of the number of training epochs for two
identical networks trained with contrastive and triplet losses.

5.13 SfM120k Cluster Re-Occurrence

One of the issues with the SfM120k dataset used for network training is
that some of the initial image clusters were split up into several separate
subclusters during the automatic creation phase of the dataset. As a result,
we can encounter the same object of interest in various clusters and assign
those images as false negatives for query images, which would be an invalid
negative selection. Since hard negative mining is performed during network
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training, those images would likely be chosen as negative examples because
they would generate the highest loss. Indeed, when examining the selected
training tuples, we discover a large number of false-negative examples, such
as the one depicted in Figure 5.10. Since we only allow one image per cluster
to be chosen for the training tuple, this example showcases that there must
be at least three clusters in the dataset depicting the Sydney Opera House.

Figure 5.10: Example of the false-negative training images choice selected as a
result of multiple clusters representing the same landmark. Two of the negative
images correspond to the same landmark as the one depicted in the query
image.

Figure 5.11: Bar graph of the possible number of similarities per cluster as
suggested by the trained network.

To confirm our observations, we conducted the cluster similarity analysis of
the SfM120k dataset. This was achieved by extracting the descriptor vectors
for every image in the dataset with a fine-tuned network. Then, we used
FAISS [JDJ17] - a Facebook research library for efficient similarity search and
dense vector clustering on the GPU, to find the most similar descriptors for
each image among different clusters and their similarity scores. By calculating
the cumulative cluster similarity scores and setting the similarity threshold,
we can determine how likely the clusters are to contain the same objects of
interest. According to the analysis estimates, out of 712 total clusters, around
200 clusters contain instances of similar landmarks (Fig. 5.11).

Determining whether the found similar clusters indeed include the same
objects of interest is not a trivial task. For example, Fig. 5.12 depicts example
images from the overlapping clusters successfully found during the experiment.
On the contrary, Fig. 5.13 demonstrates a wrong cluster similarity estimation.
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Even though one of the discovered clusters is visually analogous to the query
cluster, it does not depict the same object of interest.

Figure 5.12: The most similar clusters found by the network for the query
cluster 80 (Sagrada Familia, Barcelona). Each row consists of the example
images from the corresponding cluster (on the left). All of the found similar
clusters correspond to the same landmark.

5.14 The Impact of False Negatives

To assess the extent to which false-negative selection affects the training,
we investigated deliberate false-negative introduction during the training
process. In this experiment, false-negatives are represented by randomly
selected images from the query cluster. However, due to the high intra-class
variability, the chosen random samples are not guaranteed to depict the same
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Figure 5.13: Similarities found by the network for cluster 31 (Powder Tower,
Prague). Even though the pictures in cluster 58 are very similar to the query
cluster, they do not correspond to the same landmark.

landmark and are, therefore, more prone to being less hard than the actual
false-negatives. Plots in Fig. 5.14 showcase mAP as a function of the number
of training epochs for identical networks with 0%, 10%, 25%, and 50% chances
of infusing new false-negatives during the training tuple selection. From there,
we see that the network is very robust to the inconsistencies in the training
data since even for a 50% chance of false-negative pick for every negative in
the training tuple of size 7 (1 query, 1 positive, 5 negatives), the performance
downgrades only by around 1% on both benchmarks.

Based on the obtained results, we concluded that the network is resistant
enough to deal with the mistakes in the training data. On the other hand,
injecting errors in tuples with a smaller number of negatives or choosing hard
false negatives is likely to downgrade the network performance even further
than in the previous experiment, highlighting the need to clean the training
dataset. These experiments might be the scope of future works.
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Figure 5.14: Plot of the effect of false-negative selection on the network accuracy.
ResNet101 with GeM pooling and whiten layer, with the maximum training
image size set to 362 pixels, and 5 negative images within the training tuple, was
used in all of the experiments.
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Chapter 6

Conclusions

In this thesis, we tackled the problem of instance-level image retrieval with the
use of CNNs and re-implemented a state-of-the-art image retrieval framework
based on the work of Radenović et al. [RTC18] in TensorFlow 2.

We fine-tuned CNNs for image retrieval from an extensive collection of
landmark images and replicated the original implementation results. On
top of that, we conducted a number of experiments discussing both the
training dataset’s issues as well as learning with different hyperparameters
and strategies. The final project code was successfully integrated into the
official TensorFlow repository, as a part of the DELF [Tena] library. This
implementation can be further used as a benchmark for future research in the
area of CBIR. Moreover, it is to be provided as one of the baseline solutions
for the upcoming annual Kaggle Landmark Retrieval Challenge organized by
Google.
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