České vysoké učení technické v Praze
Fakulta elektrotechnická
Katedra řídicí techniky

Diplomová práce
Prohlášení

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne ………………………. …………………………………….

podpis
Poděkování

Na tomto místě bych rád poděkoval vedoucímu diplomové práce ing. Jindřichu Fukovi za cenné rady a pomoc, bez kterých by tato práce nemohla vzniknout.
Téma
Příprava projektově orientované výuky řídicích systémů.

Abstrakt
V první části práce je popsán program RSTune, který je propojen přes DDE protokol s programem Simulink nebo programovatelným automatem se simulací matematického modelu soustavy. Návrh zesílení konstant PID regulátoru tímto programem je porovnán s výsledky obecných metod návrhu PID regulátoru. Stěžejní část díla je věnována popisu Motion modulu 1756-M02AE v programovém prostředí RSLogix 5000 a demonstrace připojení rychlostního servomechanizmu AMIRA DR300. Modul je umístěn do šasi automatu ControlLogix s procesorem Logix5550 firmy Allen-Bradley. Pro systém zmíněného servomechanizmu je vytvořena vizualizace v programu RSView32 umožňující nastavení konstant a správu systému. Pro prezentaci laboratoře Allen-Bradley na internetu byly zrealizovány nové webové stránky.

Theme
Preparation of project oriented education of control systems

Abstract
In the first part of this work is described a program RSTune that is connected using DDE protocol to a program Simulink or programmable controller with mathematic simulation model system. The results of PID design by RSTune are compared with results of general PID design methods. The main part of this work considers a description of Motion module 1756-M02AE using program RSLogix 5000 and its demonstration on a servomechanism AMIRA DR300. The module is placed in a chassis of a programable automat ControlLogix with a processor Logix5550 designed by Allen-Bradley. For this system is designed a vizualization using a program RSView32 allowed set constants of system and its control. The new web pages were designed for Allen-Bradley laboratory presentation on the internet.
OBSAH

1 ÚVOD ... I

2 RSTUNE .. 3
 2.1 Nastavení RSLinxx ... 4
 2.2 Vytvoření projektu .. 5
 2.3 Získání dat pro návrh PI/PID regulátoru ... 6
 2.3.1 Auto Tune... 7
 2.3.2 Manuální sběr dat ... 8
 2.3.3 Archivovaná data... 9
 2.4 Návrh regulátoru v RSTune .. 9
 2.5 Správa navzorkovaných dat .. 10
 2.6 Model v Simulinku ... 11
 2.7 Analýza dat získaných při návrhu ... 12
 2.7.1 Závislost PV na návrhu ... 13
 2.7.2 Kvalita regulace a bezpečnost ... 14
 2.8 Návrhy regulátorů – syntéza obvodu .. 15
 2.9 Návrh regulátorů a porovnání výsledků .. 16
 2.10 Zhodnocení programu a výsledků .. 17

3 CONTROLLOGIX 5550 A MODEL SERVOMECHANIZMU............................... 19
 3.1 Moduly pro ControlLogix .. 20
 3.1.1 Modul s analogovými výstupy - 1756-OF4 ... 20
 3.1.2 Motion modul - 1756-M02AE .. 21
 3.1.2.1 I/O rozhraní - konektor .. 21
 3.1.2.2 Vnitřní regulátory modulu .. 22
 3.2 Propojení servomechanizmu s Motion modulem ... 23
 3.3 Komunikace ControlLogix - servozesilovač .. 25
 3.4 Nastavení a konfigurace osy ... 26
 3.4.1 Struktura datového typu MOTION_GROUP ... 26
 3.4.2 Skupina pohybu - Motion Group ... 27
 3.4.3 Vlastnosti skupiny pohybu ... 28
 3.4.4 Nová osa ... 28
 3.4.5 Konfigurace řízené osy .. 28
 3.4.5.1 Základní nastavení .. 30
 3.4.5.2 Jednotka polohy a průměrná rychlost ... 32
 3.4.5.3 Mód pozice a signál inkrementálního čidla .. 32
 3.4.5.4 Zvolení typu servomechanizmu ... 33
 3.4.5.5 Homing – startovací pozice .. 34
 3.4.5.6 Zavěšení osy .. 35
 3.4.5.7 Tuning – ladění regulatoru .. 38
 3.4.5.8 Dynamika soustavy .. 39
 3.4.5.9 Konstanty regulatoru PI a dopředuňho řízení 40
 3.4.5.10 Ostatní nastavení ... 41

V
4 VIZUALIZACE MODELU AMIRA DR300 V PROSTŘEDÍ RSVIEW32........... 42

4.1 Konfigurace RSView32 ... 42

4.2 Vizualizační okna ... 43
 4.2.1 Hlavní okno ... 43
 4.2.2 Ovládání servomechanizmu ... 44
 4.2.3 Automatické ladění – tuning ... 45
 4.2.4 Nastavení servomechanizmu ... 46
 4.2.5 Stavy Motion modulu ... 49

5 WEBOVÁ PREZENTACE LABORATOŘE ALLEN-BRADLEY 50

5.1 Základní popis .. 50

5.2 Stromové menu ... 51

5.3 Značení souborů ... 52

6 ZÁVĚR .. 53

LITERATURA .. 54

SEZNAM SOFTWARE ... 55

SEZNAM ZKRATEK .. 56

Obsah přiloženého CD ... 56

A PŘÍLOHA - REGULÁTORY MOTION MODULU ... 57

B PŘÍLOHA - INSTRUKCE ŘÍZENÍ POHYBU ... 59
 B.1 Stavové instrukce .. 60
 B.2 Polohové instrukce ... 61
 B.3 Instrukce skupiny os .. 62
 B.4 Instrukce vnějších událostí .. 62
 B.5 Konfigurační instrukce .. 63
 B.6 Přímé příkazy pro Motion modul .. 63

C PŘÍLOHA - CHYBOVÁ HLÁŠENÍ MODULU 1756-M02AE 65

D PŘÍLOHA - I/O KONFIGURACE ... 67

E PŘÍLOHA – WEBOVÁ PREZENTACE ... 70
Seznam obrázků

Obr. 2.1	Schéma soustavy s regulátorem ..	3
Obr. 2.2	Vytvoření komunikačního kanálu mezi ControlLogixem a RSTunem ...	4
Obr. 2.3	Úvodní obrazovka programu RSTune ..	5
Obr. 2.4	Vlastnosti projektu ..	6
Obr. 2.5	Režim Online - popis okna ..	7
Obr. 2.6	Archivace dat do souboru ..	8
Obr. 2.7	RSTune – Získání dat pro návrh regulátoru ...	8
Obr. 2.8	Návrh konstant regulátoru ..	10
Obr. 2.9	RSTune - Navzorkovaná data ..	10
Obr. 2.10	Model soustavy v Simulinku ..	11
Obr. 2.11	Simulovaná soustava s bílým šумem ..	12
Obr. 2.12	RSTune – analýza regulované soustavy ...	13
Obr. 2.13	Průběh odevz na skok žádané hodnoty podle typu návrhu ...	14
Obr. 2.14	Závislost odevz na velikosti bezpečnostního faktoru ..	14
Obr. 2.15	Přechodové charakteristiky pro různé způsoby návrhu PID regulátoru ..	17
Obr. 3.1	Systém ovládání os ..	19
Obr. 3.2	Propojení modulu s řízeným systémem a vyšší vrstva ovládání ...	20
Obr. 3.3	Nastavení výstupu VOUT-3 na modulu 1756-OF4 ...	21
Obr. 3.4	Svorovnice Motion modulu ..	22
Obr. 3.5	Propojení servomechanizmu AMIRA DR300 s Motion modulem ..	23
Obr. 3.6	PC - Connector ...	25
Obr. 3.7	Signál pro zajištění komunikace ...	25
Obr. 3.8	Zapojení astabilního klopného obvodu s NE555 ...	26
Obr. 3.9	Nová skupina os v menu Controller Organizer ..	27
Obr. 3.10	Nový tag s datovým typem MOTION_GROUP ...	27
Obr. 3.11	Vlastnosti Motion Group – Atributy ..	28
Obr. 3.12	Nová osa, její přidání v liště Controller Organizer ..	29
Obr. 3.13	Nový tag s datovým typem AXIS_SERVO ...	29
Obr. 3.14	Vlastnosti Motion Group – Přiřazení os ...	30
Obr. 3.15	Vlastnosti osy ...	30
Obr. 3.16	Základní nastavení osy ...	31
Obr. 3.17	Jednotka pozice a průměrná rychlost ...	32
Obr. 3.18	Parametry zpětné vazby ...	33
Obr. 3.19	Typ servomechanizmu a nastavení sledovaných atributů ...	34
Obr. 3.20	Nastavení domácí polohy ..	35
Obr. 3.21	Program mód kontroleru ...	35
Obr. 3.22	Hookup – nastavení polarity kodéru a výstupu ...	36
Obr. 3.23	Test přítomnosti referenční značky inkrementálního čidla ..	36
Obr. 3.24	Test zpětné vazby od inkrementálního čidla ..	37
Obr. 3.25	Ukončení Hookup testu ...	37
Obr. 3.26 Ladění konstant servomechanizmu ... 39
Obr. 3.27 Dynamika soustavy .. 40
Obr. 3.28 Nastavení konstant regulátoru ... 40
Obr. 4.1 Definice připojení ... 42
Obr. 4.2 RSView32 - Hlavní okno .. 43
Obr. 4.3 RSTune – přímé ovládání servomechanizmu ... 45
Obr. 4.4 Automatické ladění .. 46
Obr. 4.5 RSTune – Nastavení konstant .. 46
Obr. 4.6 RSTune – Nastavení dynamiky ... 47
Obr. 4.7 RSTune - Výstup řízení .. 47
Obr. 4.8 RSTune – Omezení ... 48
Obr. 4.9 RSTune - Offset ... 48
Obr. 4.10 RSTune – Stavy Motion modulu ... 49
Obr. 5.1 Úvodní stránka webu ... 51
Obr. A. 1 Rychlostní řízení .. 57
Obr. A. 2 Polohové řízení ... 58
Obr. B. 1 Přímé příkazy pro Motion modul ... 64
Obr. C. 1 Indikátory stavu Motion modulu ... 65
Obr. D. 1 Nový modul v lišti Controller Organizer ... 67
Obr. D. 2 Výběr typu pohybového modulu .. 67
Obr. D. 3 Pojmenování modulu a nastavení slotu .. 68
Obr. D. 4 Další možnosti nastavení modulu .. 68
Obr. D. 5 Přiřazení osy kanálu pohybového modulu .. 69

Seznam tabulek

Tab. 2.1 Konstanty regulátorů podle metody Zieglera a Nicholse 15
Tab. 3.1 Význam svorek konektoru PC - Connector ... 24
Tab. 3.2 Datové typy os ... 29
Tab. B. 1 Stavové instrukce .. 60
Tab. B. 2 Polohové instrukce ... 61
Tab. B. 3 Instrukce skupiny os ... 62
Tab. B. 4 Instrukce vnějších událostí .. 62
Tab. B. 5 Konfigurační instrukce .. 63
Tab. C. 1 Stavy indikátoru OK LED .. 65
Tab. C. 2 Stavy indikátoru FDBK ... 66
Tab. C. 3 Stavy indikátoru DRIVE ... 66
1 ÚVOD

Práce se věnuje popisu a aplikaci moderních hardwarových a softwarových produktů od firmy Rockwell Automation, která patří mezi vedoucí automatizační společnosti. Je těž na čele vývoje nových automatizačních prostředků a metod, např. v oblasti řízení servopohonů to bylo zaintegrováni instrukcí pro řízení pohybu přímo do automatu typu ControlLogix. Hlavní část práce se věnuje ukázce řízení pohybu servopohonu a popisuje jeho potřebnou konfiguraci.

Třetí kapitola se zabývá konfigurací speciálního Motion modulu 1756-M02AE automatu ControlLogix, který řídí rychlostní servomechanizmus Amira DR300. Pro tento systém je vytvořen program v prostředí RSLogix 5000. Podrobně je popsáno nastavení dvou interních zpětnovazebních smyček určených pro řízení pohybu a dalších parametrů, jako jsou řízení rychlosti, akcelerace atd. Dále je uveden postup přidání skupiny os, nové osy a automatického ladění regulátoru rychlostního řízení.

Součástí práce je vývoj vizualizace ovládání servomechanizmu v prostředí RSView32. Kapitola čtyři obsahuje popis jednotlivých vizualizačních oken, ve kterých je možné nastavit parametry pro řízení servomechanizmu, hodnoty žádané polohy a zobrazovat stavy Motion modulu.

V rámci přípravy úloh pro projektově orientovanou výuku řídicích systémů v laboratoři Allen-Bradley byla vytvořena nová webová prezentace laboratoře, včetně její anglické verze. V páté kapitole je k dispozici popis webu a návod pro jeho správu.
2 RSTUNE

Tento program dodávaný firmou Rockwell Automation je určen pro analýzu řízeného systému a ladění PID regulátorů programovatelných automatů PLC-5, SLC 500 a ControlLogix. Firma dodává dvě verze tohoto programu:

- RSTune – pro kompletní ladění řídící smyčky.
- RSTune Professional – obsahuje navíc sadu nástrojů pro analýzu získaných dat zobrazovaných v doplňkových oknech. Pro účely této práce byl použit RSTune Professional.

Program RSTune navrhuje hodnoty zesílení PID regulátoru na základě průběhu hodnot regulované veličiny a akčního zásahu (Obr. 2.1). Ze změřených charakteristik počítá frekvenční charakteristiku a za použití frekvenčních metod syntetizuje expertním systémem určí nejlepší návrh konstant pro PI, příp. PID regulátor.

Základní charakteristika:

- Podpora OPC (pouze pro RSLogix ver. 2.1 a výše) a DDE protokolu.
- Vizualizace měřených hodnot v reálném čase.
- Komunikační cesta automat - RSTune je vytvořena programem RSLogix.
- Histogramy PV, CO a regulační odchylky.
- Archivace získaných dat.
- Robustnost systému.
- Analýza systému, návrh zesílení PID regulátoru.

Obr. 2.1 Schéma soustavy s regulátorem
2.1 Nastavení RSLinx

Program RSLinx slouží ke zprostředkování zdrojů dat dostupných programovatelných automatů jednotlivými programům z balíku Rockwell Software. Obsahuje ovladače pro jednotlivé sběrnice od sériového propojení automatu s osobním počítačem po průmyslové sběrnice a síť ethernet. Pro testování programu RSTune je využito spojení automatu ControlLogix s osobním počítačem po vnitřní sítí ethernet a propojení s programem Simulink přes DDE protokol. Pro zpřístupnění datové oblasti procesoru je třeba nakonfigurovat dynamický zdroj dat.

Konfigurace propojení se provádí v nabídce **DDE/OPC ➔ Topic Configuration** (Obr. 2.2). Tlačítkem **New** se založí nový datový zdroj. Při založení můžeme zvolit libovolné jméno, které se zobrazí ve stromě **Topic List**. V pravé části okna ve složce **Data Source** se zvolí cesta na procesor automatu. Dále v položce **Data Collection** se zaškrtní **Polled Messages** s udáním hodnoty frekvence obměny dat mezi RSLinxem a automatem. Po nastavení všech potřebných položek se konfigurace ukončí stiskem tlačítka **Done**.

![DDE/OPC Topic Configuration](image_url)

Obr. 2.2 Vytvoření komunikačního kanálu mezi ControlLogixem a RSTunem
2.2 Vytvoření projektu

Po spuštění programu RSTune je zobrazeno spouštěcí okno (Obr. 2.3). Ve zpracování již vytvořeného projektu se vybere požadovaný soubor a pokračuje se na další obrazovku tlačítkem Faceplate…. Nový projekt pro ladění konstant regulátoru se založí tlačítkem New loop.... Po zadání názvu souboru je otevřena obrazovka s následujícími nastaveními zmíněnými dále. Jednotlivé projekty je samozřejmě možné editovat (Edit setup…).

Obr. 2.3 Úvodní obrazovka programu RSTune

Na další obrazovce (Obr. 2.4) jsou následující volby:

PV Engineering units: Definice jednotky regulované veličiny.

Advanced: Nastavení barev proměnných, možnost přidat extra smyčku (např. pro kaskádní řízení) a proměnnou do grafu, dále přizpůsobit některé nastavené vlastnosti PID regulátoru ControlLogixu.

RSLinx Communications: Způsob komunikace mezi programem a automatem.
- Nastavení předefinovaného Topicu (viz 2.1).
- Interval vzorkování dat v rozmezí 0,1 ÷ 61 sekund.
- Prototol komunikačního kanálu.

Processor Type: Zvolení automatu, který počítá PID instrukci. Volba *Software simulation* obsahuje předefinovaná data a je vhodná pro základní seznámení s vlastnostmi a možnostmi programu.
Další volba je přístupná, pokud je vybrán typ programovatelného automatu. Pro ControlLogix je následující:

ControlLogix Loop: Název proměnné s daty PID instrukce.

Správné nastavení je možné otestovat stiskem tlačítka **Test**.

![ControlLogix Loop](image)

Obr. 2.4 Vlastnosti projektu

2.3 Získání dat pro návrh PI/PID regulátoru

Sběr dat pro analýzu a syntézu systému lze provést buď automaticky nebo manuálně. Ladění konstant je možné v režimech (Obr. 2.3):

- **Online** - Nastavování probíhá v okně (Obr. 2.5), které se otevře po stisku tlačítka **Faceplate**....
 - Umožňuje ladění konstant z měřených nebo archivovaných dat.

- **Offline** - Po stisku tlačítka **Off-line**...., analýza bez nutnosti přímého připojení s PID instrukcí automatu. Možná je pouze, pokud existují soubory s archivovanými daty (viz 2.3.3). V opačném případě tato volba není k dispozici.
2.3.1 Auto Tune

Automatické navržení konstant PID regulátoru lze provést dvěma způsoby zapojení systému (lze je změnit v kolonce Mód řízení na Obr. 2.5):

- **Auto (automatický režim)** - Zapojení se zpětnou vazbou, uzavřená smyčka, měření přechodové charakteristiky, vstupem soustavy je akční veličina.

- **Manual (manuální režim)** - Zapojení bez zpětné vazby, otevřená smyčka, měření impulzní charakteristiky, vstupem soustavy je řídící veličina.

Po stisku tlačítka **AutoTune...** na Obr. 2.5 program po uživateli vyžádá potvrzení o ustálení procesu. Ještě je systém nestabilní, bude třeba zmenšit proporcionální složku regulátoru nebo přejít z automatického módu do manuálního. Následuje dotaz na velikost žádané hodnoty SP, která je standardně nastavena na 7% maximální hodnoty regulované veličiny. Ta lze pomocí tlačítka **Differrent** změnit (Obr. 2.7). K nastavení nové žádané hodnoty dojde po potvrzení změny a program opět čeká na ustálení procesu. Pro získání dat s dostatečnou vypovídací hodnotou je třeba měření provést po dobu minimálně 4 † 6-ti násobku doby náběhu přechodové charakteristiky. Další omezení je v počtu vzorků, který musí být větší než 33. Celý proces měření se automaticky uloží do souboru, jehož úplná cesta se zobrazí v informačním okně (Obr. 2.6).
2.3.2 Manuální sběr dat

Data regulované veličiny a akčního zásahu je možné získat také manuálním sběrem (pouze pro automatický režim). Postup popisují následující kroky:

1) Kontrola, zda akční zásah není mimo rozsah.
2) Ustálení procesu.
3) Spuštění archivace dat (výběr Archive ➔ Archive On).
4) Změna žádané hodnoty přibližně o 10%.
5) Po záznamu potřebného množství dat změna na původní žádanou hodnotu a čekání na ustálení.
6) Konec archivace dat (výběr Archive ➔ Archive Off).
Pro kvalitní návrh regulátoru je doporučeno provést 200 ÷ 500 vzorků měření.

2.3.3 Archivovaná data

Po každém měření jsou data uložena do souboru a lze je zpětně vyvolat stiskem tlačítka Tune from archived data…. (Obr. 2.5). Po jejich načtení se automaticky provede analýza a syntéza systému s návrhem jednotlivých zesílení včetně možností editace a verifikace charakteristik, jak je popsáno v kap. 2.5.

2.4 Návrh regulátoru v RSTune

Po provedení sběru dat (viz 2.3) následuje návrh regulátoru. Na Obr. 2.8 jsou znázorněny volby pro nastavení parametrů návrhu regulátoru. Je možné zvolit požadovaný typ regulace PI/PID, zvolit rychlost výsledné soustavy, či použít filtr. Při každé změně parametrů výpočtu konstant regulátoru se tyto okamžitě přepočítají a zobrazí vedle aktuálních konstant v levé dolní části obrazovky. Aktuální konstanty nastavené v automatu se nacházejí ve sloupci Current, nově vypočítané hodnoty ve sloupci New. Pokud sloupec New obsahuje nové konstanty s požadovanými vlastnostmi, je možné je pomocí tlačítka Download nahrát do automatu a následně provést simulaci pro ověření návrhu. Pro návrh parametrů PID instrukce lze použít jeden z následujících algoritmů (popis dle [15]):

1. **Load tuning – Fastest**
 Nejrychlejší a doporučovaný návrh pro většinu soustav, který zajistí minimální regulační odchylku. Pokud se zadá nízká hodnota parametru Safety Factor, je navržený regulátor mnohem citlivější na změny vstupu.

2. **Load tuning – Fast**
 Návrh je proveden s amplitudou sníženou o čtvrtinu.

3. **Load tuning – Slow**
 Návrh zajistí 10% překmit regulované veličiny na skok žádané hodnoty.

4. **Set Point tuning**
 Regulace na žádanou hodnotu bez překmitu v čase, který je možný změnit v položce Response time.

5. **Lambda tuning – lag rule**
 Regulace bez překmitu, stejně jako Set Point Tuning.
2.5 Správa navzorkovaných dat

Po úspěšném sběru dat impulzní charakteristiky nebo přechodového děje se otevře nové okno (Obr. 2.9). Naměřené hodnoty jsou zde rozdělené na regulovanou veličinu (PV) a akční zásah (CO). Pomocí volby Options je možné data filtrovat, provést korelací, statistickou analýzu nebo vykreslit histogramy regulační odchylky, akční a řídicí veličiny.
2.6 Model v Simulinku

Přes DDE protokol je s ControlLogixem spojeno simulinkové schéma uložené v souboru `simulink_automat.mdl` (Obr. 2.10). Do automatu ControlLogix je třeba nahrát program `PID_soustava_ze_simulinku.ACD`, který obsahuje PID instrukci a převodní konstanty. Dále v RSLinxu provést konfiguraci dvou názvů Topic. Jeden pro připojení Simulinkové soustavy a druhý pro připojení programem RSTune (viz 2.1). Blok DDE_Source a DDE_Sink na následujícím obrázku mají parametry:

- **DDE Service**: 'RSLinx' - název služby obsluhující DDE protokol.
- **DDE Topic**: 'DDE_model' - název Topicu (nedefinovaného v RSLinxu).
- **DDE Item**: 'CVariable' - název tagu z RSLogixu5000.

Komunikačním kanálem DDE nelze posílat data s desetinou čárkou, proto jsou na výstupu simulinkové soustavy vynásobena konstantou 1000, zaokrouhlena a v automatu přepočítána na správnou hodnotu. Stejný postup je použit při přenosu dat z automatu do simulinkového schématu.

Obr. 2.10 Model soustavy v Simulinku

Příklad průběhu simulované soustavy je zobrazen na Obr. 2.11.
2.7 Analýza dat získaných při návrhu

RSTune vypočítá hodnoty PID regulátoru z již identifikované soustavy (Obr. 2.12). Prohlédnutí analýzy takové soustavy je možné po stisku tlačítka Analysis na Obr. 2.8, které je viditelné, pokud jsou k dispozici data pro návrh regulátoru. Navrácení k již jednou naměřeným vzorkům se proveďte stiskem tlačítka Tune from archived data.

Následuje popis jednotlivých oken analýzy soustavy, které se nacházejí na Obr. 2.12. Významy a názvy jednotlivých oken jsou následující:

1) **Model systému**

 Okno umístěné v levé horní části obrázku obsahuje matematický model systému. Program umí určit matematický model systému maximálně druhého řádu s dopravním zpožděním.

2) **Frekvenční charakteristika systému**

 Okno v pravé horní části obrazovky zobrazující frekvenční charakteristiku systému v logaritmických souřadnicích. Obsahuje amplitudovou a fázovou charakteristiku identifikovaného systému a matematického modelu.
3) **Přechodová charakteristika**

Je vykreslená v pravé dolní části obrazovky. Obsahuje přechodovou charakteristiku pro proměnné PV a CO. Modrou barvou je naznačen aktuální tvar přechodové charakteristiky, barva červená pak představuje přechodovou charakteristiku vypočtenou z nových hodnot konstant PID regulátoru.

4) **Robustní stabilita**

Charakteristiky potřebné pro ověření robustní stability nalezneme v levé dolní části obrazovky. I zde modrá barva představuje aktuální průběh, červená barva nový průběh a barva zelená kritickou oblast.

![Obr. 2.12 RSTune – analýza regulované soustavy](image)

2.7.1 Závislost PV na návrhu

Na Obr. 2.13 jsou uvedeny změny průběhů regulačního procesu na způsobu návrhu regulátoru (viz 2.4). Použita byla soustava s přenosem druhého řádu v simulinkovém modelu.
2.7.2 Kvalita regulace a bezpečnost

Porovnání průběhu regulačního procesu na skok žádané hodnoty v závislosti na volbě bezpečnostního faktoru je na Obr. 2.14.
2.8 Návrhy regulátorů – syntéza obvodu

Vzhledem k tomu, že se programové vybavení omezuje pouze na regulátor typu PI a PID, jsou dále zmíněny návrhy přenosů pouze těchto regulátorů:

\[G_{PI}(s) = r_0 + \frac{r_\omega}{s} = r_0(s + \omega) \]
\[G_{PID}(s) = r_1 + r_0 + \frac{r_\omega}{s} = \frac{r_1}{s}(s + \omega)(s + \omega) \] \hspace{1cm} (2.1) \hspace{1cm} (2.2)

- **Metoda Ziegler-Nichols**

Je empirická metoda založená na zjištění kritické frekvence \(\omega_k \) a kritického zesílení \(|S(j\omega_k)|\) regulované soustavy (ty jsou k nalezení ve frekvenční charakteristice při průchodu argumentu hodnotou \(\phi = -180^\circ \)). Následně se pomocí rovnic (2.3) vypočtou konstanty požadovaného regulátoru (Tab. 2.1).

\[T_k = \frac{2\pi}{\omega_k} \quad ; \quad r_{0k} = \frac{1}{|S(\omega_k)|} \] \hspace{1cm} (2.3)

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_0)</td>
<td>0,45(r_{0k})</td>
<td>0,6(r_{0k})</td>
</tr>
<tr>
<td>(r_1)</td>
<td>0,85(T_k)</td>
<td>0,5(T_k)</td>
</tr>
<tr>
<td>(r_\omega)</td>
<td>-</td>
<td>0,12(T_k)</td>
</tr>
<tr>
<td>(\omega_0)</td>
<td>0,187(\omega_{0k})</td>
<td>0,318(\omega_{0k})</td>
</tr>
<tr>
<td>(\omega_D)</td>
<td>-</td>
<td>1,33(\omega_{0k})</td>
</tr>
</tbody>
</table>

Tab. 2.1 Konstanty regulátorů podle metody Zieglera a Nicholse

- **Frekvenční metody syntézy**

Při syntéze pomocí frekvenčních charakteristik se upravuje frekvenční charakteristika otevřené smyčky regulačního obvodu tak, aby byly splněny dané ukazatele kvality regulace. S ohledem na amplitudovou a fázovou bezpečnost se volí výsledný systém. Amplitudová bezpečnost říká, kolikrát ještě můžeme zvětšit zesílení \(K \) ve zpětnovazebním obvodu, než se tento obvod dostane na mez stability. Fázová bezpečnost je úhel, o který by bylo nutno natočit frekvenční charakteristiku, aby se uzavřená smyčka ocitla na mezi stability [6]. Podrobný popis metody návrhu regulátoru je uveden v [7]. Základní vztahy pro návrh regulátorů:
A. PŘÍLOHA - REGULÁTORY MOTION MODULU

PI:
\[\phi_\lambda: \phi_\lambda = -135^\circ + \Delta \phi \]
\[\omega_\lambda: \arg(S(\omega_\lambda)) = \phi_\lambda \]
\[\omega_i: \omega_i = \omega_D \]
\[r_0: r_0 = \frac{\omega_\lambda}{\sqrt{2} | S(\omega_\lambda)|} \]
(2.4)

\[20 \log(r_0): 20 \log(r_0) = -20 \log |S(\omega_\lambda)| - 3 \text{dB} + 20 \log(\omega_\lambda) \]

PID:
\[\phi_\lambda: \phi_\lambda = -225^\circ + \Delta \phi \]
\[\omega_\lambda: \omega_\lambda \]
\[\omega_D: \omega_\lambda \]
\[r_0: r_0 = \frac{1}{\sqrt{2} | S(\omega_\lambda)|} \]
(2.5)

\[\omega_i: \omega_i = 0.1 \omega_D \]

\[20 \log(r_0): 20 \log(r_0) = -20 \log |S(\omega_\lambda)| - 3 \text{dB} \]

, kde:
\[\phi_\lambda \] fázový úhel frekvenční charakteristiky regulované soustavy
\[\omega_i \] integrační frekvence
\[\omega_D \] derivační frekvence
\[\Delta \phi \] plánovaná fázová bezpečnost
\[r_0 \] proporcionální zesílení
\[r_1 \] integrační zesílení
\[r_1 \] derivační zesílení

- **GMK – Geometrické místo kořenů**
 Vychází z pólů a nul otevřeného regulačního obvodu a na jejich základě určuje polohu pólů uzavřeného regulačního obvodu v závislosti na změně zesílení otevřeného regulačního obvodu. Pomocí jednoduchých pravidel se volí poloha pólů a nul regulátoru [7].

2.9 Návrh regulátorů a porovnání výsledků

Pro simulaci byla použita soustava třetího řádu:
\[G(s) = \frac{0.16}{s^3 + 1.4s^2 + 0.56s + 0.16} \]
(2.6)

Výpočet konstant regulátorů pro jednotlivé metody (viz 2.8), srovnání výsledků je na Obr. 2.15. Model soustavy byl simulován v automatu ControlLogix (soubor *PID_Servo.ACD*) a jeho nastavení bylo provedeno podle kurzu spojitého řízení [17].
- Ziegler-Nichols: \(r_0 = 0.3 \quad r_{-1} = 1.825 \quad r_1 = 0.44 \)
- Ruční optimalizace: \(r_0 = 2.3 \quad r_{-1} = 0.3 \quad r_1 = 2 \)
- Frekvenční metody: \(r_0 = 3.06 \quad r_{-1} = 0.21 \quad r_1 = 3.71 \)
- Metoda GMK: \(r_0 = 3.21 \quad r_{-1} = 0.5 \quad r_1 = 4.27 \)
- RSTune: \(r_0 = 1.6 \quad r_{-1} = 0.11 \quad r_1 = 0.02 \)

Metoda Ziegler-Nichols vedla na nestabilní systém, posloužila jako základ pro metodu ruční optimalizace.

Obr. 2.15 Přechodové charakteristiky pro různé způsoby návrhu PID regulátoru

2.10 Zhodnocení programu a výsledků

Pro první rychlé seznámení s programem slouží simulace (bez připojení k automatu), který je součástí programu. Program dokáže přímo nahrávat navržené konstanty PID regulátoru do automatu. Dále je možné zaznamenat laděné konstanty do předem
připraveného reportu. Dají se do něho uložit všechny obrázky a konstanty regulátoru, které jsou k vidění při ladění konstant PID regulátoru.

Během ladění soustavy je dobré soustavu nejdříve vybudit pomocí PID konstant tak, aby přechodová charakteristika neměla aperiodický průběh. Výsledná soustava s konstantami navrženými programem RSTune má přechodovou charakteristiku s překvapením 10 % a to i pro nastavení programu na co nejrychlejší průběh s minimální bezpečností. Program je navržen tak, aby konstanty jím navržené vedly vždy na stabilní regulaci.

Simulinkový model je vhodný pro pomalé soustavy, kde je delší doba ustálení a je možno navzorkovat více bodů při měření. Pro věrohodnější výsledky návrhu konstant zesílení byla soustava ještě simulována přímo v automatu ControlLogix.
3 CONTROLLOGIX 5550 A MODEL SERVOMECHANIZMU

Programovatelný řídící automat ControlLogix 5550 (dále jen ControlLogix), modul 1756-M02AE a software RSLogix 5000 plně poskytuje integrovanou podporu pro řízení pohybu [14] (Obr. 3.1).

- V ControlLogixu je spuštěna vysokorychlostní pohybová úloha, která vykonává jednotlivé příkazy pro řízení pohybu a generuje informační profil rychlosti a pohybu. Řídící automat tento profil posílá Motion modulu. Je možné použít několik procesorů, přičemž každý je schopen obslužit nejvýše 16 Motion modulů, to představuje 32 pohybových os.
- Motion modul se připojuje k rozhraní servozesílače (viz 3.2) a uzavírá vysokorychlostní zpětnovazební smyčku.
- Programovací software RSLogix 5000 umožňuje kompletní konfiguraci os a podporu programování pro řízení pohybu.

Obr. 3.1 Systém ovládání os
A. PŘÍLOHA - REGULÁRÍY MOTION MODULU

3.1 Moduly pro ControlLogix

V laboratoři Allen-Bradley na katedře řídicí techniky ČVUT v Praze se nacházejí celkem tři automaty ControlLogix a každý z nich je připojen na jiný fyzikální model. K dispozici je řada nejrušnějších typů modulů, jejichž seznam je k dispozici na stránkách laboratoře (viz 5). Pro řešení úkolu řízení servomechanizmu je využito třech modulů, z nichž dva jsou zmíněny v následujících podkapitolách. Třetím je modul pro připojení na ethernet 1756-ENET/B, pomocí kterého je přístupováno k automatu.

3.1.1 Modul s analogovými výstupy - 1756-OF4

Zde je uvedeno pouze nastavení důležité z hlediska funkčnosti Motion modulu a servomechanizmu. Na případné řešení problémů v konfiguraci odkazují na literaturu [12], kde je také zapojení konektorov modulu.

Modul je vložen na pozici číslo 4 v rámě ControlLogixu. Na výstup VOUT-3 je připojeno napájení pro generátor signálu potvrzujícího aktivní stav řídicího systému, zajišťujícího komunikací se servozesilovačem (viz 3.3). Aby se odpojilo napájení klopného obvodu (Obr. 3.8) v případě chyby během režimu automatu Program Mode, je
třeba v nastavení Module Properties ➔ Configuration změnit chování tohoto modulu podle Obr. 3.3. Pokud k chybě nedojde (normální operační stav), modul na výstup VOUT-3 nastaví hodnotu 5V.

![Module Properties - Local 4 (1756-OF4 1.1)](image)

Obr. 3.3 Nastavení výstupu VOUT-3 na modulu 1756-OF4

3.1.2 Motion modul - 1756-M02AE

1756-M02AE je specializovaný modul obsahující vysokorychlostní smyčku pro řízení dvou servomechanizmů. Na základě informací ze zpětné vazby z inkrementálního čidla generuje akční veličinu trajektorie pohybu, tj. rychlost a polohu. Jeho konektor se zapojením pro 16 signálů na každou osu je na Obr. 3.4.

3.1.2.1 I/O rozhraní - konektor

I/O rozhraní je následující (míněno pro jednu osu, analogicky pro druhou osu, viz [13]):

- Analogový výstup s rozsahem ±10V (svorky 2 ÷ 4).
- Vstupy kvadratického kodéru pro inkrementální čidlo (svorky 26 ÷ 36).
- Výstupy pro zastavení servomechanizmu (svorky 6 ÷ 8).
- Vstupy informující o chybě servomechanizmu (svorky 10, 14).
- Stínění kabelů (svorky 12, 24).
- Vstup pro připojení referenčního spínače domácí polohy (svorky 16, 14).
- 5V a 24V vstupy pro připojení registračních senzorů (svorky 18, 20, 14).
- Výstup pro hardwarový stop (svorky 21 ÷ 22).
3.1.2.2 Vnitřní regulátory modulu

Motion modul je schopen řídit servomechanizmus dvěma způsoby. Podle typu použitých interních zpětnovazebních smyček jde o:

Rychlostní řízení (Obr. A. 1) - Analogie řízení rotace.
- Je zavedena jak zpětná vazba polohy, tak zpětná vazba rychlosti, to umožní zachovat konstantní moment motoru.

Polohové řízení (Obr. A. 2) - V blokovém schématu je zavedena zpětná vazba pro řízení polohy, nikoli však pro rychlost.
- Pro konstantní rychlost generuje Motion modul na vstupu regulátoru rampu o příslušném sklonu a regulátor pouze sleduje vstupní signál.

Motion modul používá přímé vazby pro ovládání akcelerace a rychlosti, dále číslicové PI regulátory rychlosti a polohy.
3.2 Propojení servomechanizmu s Motion modulem

Použitý Servozesilovač (actuator) je dodán firmou AMIRA a slouží jako spojovací článek mezi servomechanizmem a Motion modulem, který je nutný k unifikaci vstupních a výstupních signálů. Na jeho zadní straně jsou konektory pro připojení servomechanizmu a modulu (Obr. 3.5):

- SYSTEM CONNECTOR
- PC Connector

![Obr. 3.5 Propojení servomechanizmu AMIRA DR300 s Motion modulem](image)

Připojen je řídicí signál pro motor a výstupní signály z inkrementálního čidla. Zapojení konektoru PC-Connector je na Obr. 3.6 a popis významu jednotlivých svorek je uveden v Tab. 3.1.
<table>
<thead>
<tr>
<th>Číslo pinu</th>
<th>Reservace</th>
<th>Číslo pinu</th>
<th>Reservace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inkrementální číslo CHA</td>
<td>26</td>
<td>NC</td>
</tr>
<tr>
<td>2</td>
<td>Inkrementální číslo CHB</td>
<td>27</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>28</td>
<td>NC</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>29</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>30</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>31</td>
<td>AGND</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>32</td>
<td>Tachodynamo</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>33</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>System připraven</td>
<td>34</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>Inkrementální číslo Index +</td>
<td>35</td>
<td>Digitální výstup 1</td>
</tr>
<tr>
<td>11</td>
<td>Inkrementální číslo Index -</td>
<td>36</td>
<td>Digitální výstup 2</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>37</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>NC</td>
<td>38</td>
<td>NC</td>
</tr>
<tr>
<td>14</td>
<td>NC</td>
<td>39</td>
<td>NC</td>
</tr>
<tr>
<td>15</td>
<td>AGND</td>
<td>40</td>
<td>NC</td>
</tr>
<tr>
<td>16</td>
<td>Proud motorem</td>
<td>41</td>
<td>NC</td>
</tr>
<tr>
<td>17</td>
<td>Proud Generátorem</td>
<td>42</td>
<td>DGND</td>
</tr>
<tr>
<td>18</td>
<td>Inkrementální číslo –CHA</td>
<td>43</td>
<td>DGND</td>
</tr>
<tr>
<td>19</td>
<td>Inkrementální číslo –CHB</td>
<td>44</td>
<td>NC</td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
<td>45</td>
<td>NC</td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
<td>46</td>
<td>NC</td>
</tr>
<tr>
<td>22</td>
<td>NC</td>
<td>47</td>
<td>Řídící signál pro GENERATOR</td>
</tr>
<tr>
<td>23</td>
<td>NC</td>
<td>48</td>
<td>Řídící signál pro MOTOR</td>
</tr>
<tr>
<td>24</td>
<td>NC</td>
<td>49</td>
<td>NC</td>
</tr>
<tr>
<td>25</td>
<td>NC</td>
<td>50</td>
<td>NC</td>
</tr>
</tbody>
</table>

Tab. 3.1 Význam svorek konektoru PC - Connector
3.3 Komunikace ControlLogix - servozesilovač

Komunikace je chráněna zabezpečovacím signálem úrovně TTL (Obr. 3.7). Ten je generován pro případ přerušení komunikace nebo selhání programu řídicího systému. V případě jeho přerušení se odpojí výkonový výstup na motor. Podle původního návrhu měla být zabezpečovací funkce generována dvěma signály [1] připojenými na svorky DO1 a DO2 (Obr. 3.6), kde na svorku DO1 je při připojení řídicího systému vygenerován spouštěcí puls se sestupnou hranou šířky 40 - 100 ms a následně do uplynutí 100 ms je na svorku DO2 přiveden sled impulsov o frekvenci 10Hz - 1kHz. Začátek komunikace je startován signálem na DO1. Použit je ale jednodušší způsob, kdy na DO1 je cyklicky přiváděn startovací puls, následkem čehož již není třeba generovat signál na DO2. Tento způsob má tu nevýhodu, že při přepnutí tlačítka STOP na předním panelu actuatoru v sekci Power servo se automaticky naváže komunikace. Hlavní požadavek odpojení servomechanizmu v případě poruchy je však splněn.
Původně byl průběh signálu generován programově, ale to neumožňuje provést ladění a testování systému v programomódě. Pro generování signálu DI1 připojeného na DO1 je tedy nově použit astabilní klopný obvod [5], jehož zapojení je na Obr. 3.8. Napájení obvodu je připojeno na výstup VOUT-3 modulu s analogovými výstupy 1756-OF4 [12]. Při vzniku chybového stavu se přeruší napájení obvodu, přestane se generovat signál potvrzující aktivní stav řidičího systému. Nastavení analogového modulu je popsáno v kapitole 3.1.1.

![Obr. 3.8 Zapojení astabilního klopného obvodu s NE555](image)

3.4 Nastavení a konfigurace osy

Před zahájením nastavování osy je důležité nejprve přidat novou osu v I/O konfiguraci Controller Organizeru. Tento postup je popsán v příloze D. Následně je možné přidat, konfigurovat a editovat vlastnosti a nastavení Motion modulu pro řízení servomechanizmu v programu RSLogix 5000. Nejdříve se přidá skupina pohybu (Motion Group) a té se přiřadí osy, jejichž vytvoření je popsáno dále. Konfigurace řízené osy je důležitá z hlediska nastavení nejrůznějších parametrů a konstant pro řízení servomechanizmu. V následujících podkapitolách je tento problém podrobně rozepsán.

3.4.1 Struktura datového typu MOTION_GROUP

Obsahuje konfigurační informace a informace o stavu skupiny os. Hodnoty této datové struktury jsou změněny, když některá z přiřazených os o změnu požádá. Datová struktura tohoto typu je dosti obsáhlá a je obsažena v manuálu Motion modulu [13].
3.4.2 Skupina pohybu - Motion Group

Každý program vytvořený v RSLogixu může mít pouze jednu skupinu pohybu (automat dokáže ovládat pouze jednu skupinu). Ta musí být vytvořena před tím, než se do skupiny přidá osa. Vytvoření nové skupiny se provede kliknutím pravým tlačítkem myši na Motion Groups a výbere se z menu položka New Motion Group (Obr. 3.9).

![Obr. 3.9 Nová skupina os v menu Controller Organizer](image)

Otevře se nové okno (Obr. 3.10), ve kterém se nadefinuje jméno nového tagu s datovým typem MOTION_GROUP (viz 3.4.1). RS Logix 5000 podporuje pouze jeden tag typu MOTION_GROUP pro jeden procesor.

![Obr. 3.10 Nový tag s datovým typem MOTION_GROUP](image)
3.4.3 Vlastnosti skupiny pohybu

Přidání či odebrání osy (Axis Assignment) ve vlastnostech Motion Group lze provést až po jejím vytvoření (viz 3.4.4). V záložce Attribute se nastaví perioda, se kterou pohybová úloha spouští výpočet polohy, rychlosti a akcelerace. Ten je posílán do Motion modulu během provádění instrukcí pohybu (Obr. 3.11).

![Obr. 3.11 Vlastnosti Motion Group – Atributy](image)

3.4.4 Nová osa

Dále je třeba skupině pohybu přidat osu. Ve složce Motion_Group->New Axis se vybere datový typ AXIS_SERVO (Obr. 3.12). Protože budeme řídit jednu osu, přidáme jednu položku s tímto datovým typem. Ten umožňuje lokální přístup k ose servomechanismu.
Podobně jako při konfiguraci skupiny Motion Group (viz 3.4.2) se zadá nový tag s tím rozdílem, že datový typ zvolíme **AXIS_SERVO** (Obr. 3.13). Je možné zvolit i jiný datový typ (Tab. 3.2) v závislosti na tom, jaký typ dat z Motion modulu budeme odebírat.

<table>
<thead>
<tr>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIS_CONSUMED</td>
</tr>
<tr>
<td>AXIS_SERVO</td>
</tr>
<tr>
<td>AXIS_SERVO_DRIVE</td>
</tr>
<tr>
<td>AXIS_VIRTUAL</td>
</tr>
</tbody>
</table>

Tab. 3.2 Datové typy os

Obr. 3.13 Nový tag s datovým typem **AXIS_SERVO**
Tímto krokem je docíleno přidání osy do složky Motion Group. Zde je možné osu jak přidat, tak odebrat (Obr. 3.14).

3.4.5 Konfigurace řízené osy

Jakmile je vytvořena nová osa, je třeba provést její vlastní konfiguraci v menu Controller Organizer ➔ Název osy (Axis_X) ➔ Axis_Properties (Obr. 3.15).

Ve vlastnostech osy je k dispozici řada specifických nastavení, jejichž význam je popsán v následujících podkapitolách.
3.4.5.1 Základní nastavení

Obecná nastavení pro datový typ AXIS_SERVO, který je použit pro řízení servomechanismu Amira, jsou na Obr. 3.16.

Axis Configuration:

- **Servo** – Zavedení zpětné vazby pro řízení servomechanismu. Toto nastavení umožní vydávat příkazy k jeho řízení.
- **Feedback Only** – Osa bude sloužit jen pro měření pohybu, podstatně se obsahově ztěži tabulka konfigurace řízené osy.

Assigned Motion Group:

Přiřazení tagu datové struktury MOTION_GROUP (viz 3.4.3).

Associated Module-Module:

Název Motion modulu (Obr. D. 3).

Associated Module-Channel:

Výběr ze dvou kanálů Motion modulu (model serva je přivедen na kanál 0).

Output Cam Execution Targets:

Stanovuje, kolik sledovacích průběhů je vytvořeno pro danou osu příkazem MAOC. Maximální počet je 9.
3.4.5.2 Jednotka polohy a průměrná rychlost

Toto nastavení je stejné pro všechny datové typy os (Obr. 3.17). Pokud je k tomuto nastavení přistupováno ještě z jiného automatu, pak může měnit parametry pouze první připojený, druhý je v režimu čtení.

Position Units:
- Parametr typu string, definice inženýrské jednotky (např. Revs - otáčky).

Average Velocity Timebase:
- Časový interval pro měření průměrné rychlosti osy. Musí být dostatečnou dlouhý na odfiltrování malých změn nebo naopak krátký na zaznamenání rychlosti. Optimální nastavení je v rozmezí 0,25 ÷ 0,5 s.

Obr. 3.17 Jednotka pozice a pra průměrná rychlost

3.4.5.3 Mód pozice a signál inkrementálního čidla

Nastavení parametrů zpětné vazby je na Obr. 3.18.

Positioning Mode:
- Zde záleží na tom, jaký druh servomechanizmu je k dispozici (lineární nebo rotační).

Conversion Constant:
- Nastavení parametrů zpětné vazby. Pro servomechanizmus Amira DR300 odpovídá 4096 pulsů z kodéru signálů inkrementálního čidla jedné otáčce.
A. PŘÍLOHA - REGULÁTOŘI MOTION MODULU

3.4.5.4 Zvolení typu servomechanizmu

Následující nastavení je důležité z důvodu výběru polohového a rychlostního řízení (Obr. 3.19). Odvíjí se od něj další nastavované parametry.

External Drive Configuration:

Podle typu servomechanizmu se určí regulátor.
- Velocity - Odpojení vnitřní digitální rychlostní smyčky – polohové řízení.
- Torque - Aktivní digitální rychlostní smyčka – rychlostní řízení.

Loop Configuration:

Konfigurace smyčky, pro typ AXIS_SERVO je možný jen výběr Position Servo.

Enable Drive Fault Input:

- Slouží pro detekci chyby na straně servomechanizmu.
- Příslušná odpověď na tento stav se zvolí v nastavení Fault Actions.

Real Time Axis Information:

Výběr maximálně dvou atributů, jako je např. Velocity Error (Obr. A. 1), které lze pak získat v programu RSLogix5000 instrukci GSV.
3.4.5.5 Homing – startovací pozice

Nastavení osy do referenční polohy. Zde je definováno, co je to referenční poloha.

Mode:
Zvolení módu dojezdu na referenční polohu:

- **Active** - Provede se home sekvence definovaná níže. - Vykoná předefinování absolutní pozice osy na referenční hodnotu.

- **Passive** - Stejně jako Active, pouze neprovádí žádné příkazy pohybu. Automat čeká na událost vyvolanou v závislosti na home sekvenci.

Position:
Nastavení referenční hodnoty polohy po provedení home sekvence.

Sequence:
Druhy nastavení polohy home:

- **Immediate** - Nastaví polohu home okamžitě, bez nutnosti pohybu osy.

- **Switch** - Roztočí servomechanizmus v definovaném směru a čeká na home limit switch.

- **Marker** - Roztočí servomechanizmus v definovaném směru a čeká na referenční značku inkrementálního čidla.
• Switch-Marker - Kombinace obou předchozích, nejprve čeká na home limit switch.

Obr. 3.20 Nastavení domácí polohy

3.4.5.6 Zavěšení osy

Hookup neboli zavěšení (Obr. 3.22) představuje provedení tří testů, kterými se ověří funkce kodéru signálů z inkrementálního čidla. Je nutné, aby byl automat při provádění těchto testů v programovacím režimu Program Mode (Obr. 3.21). V opačném případě není možné test uskutečnit.

Obr. 3.21 Program mód kontroleru
K dispozici jsou následující testy:

- **Test Marker** - Test přítomnosti referenční značky na kotouči inkrementálního čidla a kontrola kanálů A, B a Z. Po jeho spuštění se zobrazí okno, ve kterém je třeba potvrdit uložení stávajících proměnných. Následně je test spuštěn a čeká se do doby, než bude manuálně provedena minimálně jedna otáčka osy. Po provedení se zobrazí okno zobrazující výsledek úspěšného provedení testu (Obr. 3.23).

![Test Marker](image1)

Obr. 3.22 Hookup – nastavení polarity kodéru a výstupu

![Test Marker](image2)

Obr. 3.23 Test přítomnosti referenční značky inkrementálního čidla
• **Test Feedback** - Nastavení pozitivního směru otáčení osy. Po spuštění je třeba manuálně pohnout osou v tomto směru (Obr. 3.24). Pozitivní směr pohybu osy je chápán proti směru otáčení hodinových ručiček při pohledu od inkrementálního čidla.

![Online Command - Encoder Test](image1)

Obr. 3.24 Test zpětné vazby od inkrementálního čidla

• **Test Output & Feedback** - Spuštění testu sloužícího ke kontrole správného nastavení směru otáčení osy a je-li třeba, překonfigurování obou nastavení směru otáčení¹. V testu je nejprve třeba pohnout osou ve směru hodinových ručiček při pohledu od inkrementálního čidla. Následně se provede test otočení osy počtem otáček nastavených v **Test Increment**. Je potřeba vizuálně zkontrolovat směr otáčení osy a potvrdit nastavení směru otáčení a ukončení testu (Obr. 3.25).

![RSLogix 5000](image2)

Obr. 3.25 Ukončení Hookup testu

¹ Pro DR300 jsou obě polarity nastaveny *Negativ*.

37
3.4.5.7 Tuning – ladění regulátoru

Automatické ladění provádí nastavení parametrů vnitřního regulátoru z dat získaných jednorázovou experimentální identifikací servomechanizmu připojeného k Motion modulu (Obr. 3.26). Automat musí být v Program módu.

- **Travel Limit** - Specifikace max. rychlosti při testu.
- **Speed** - Hodnota maximální rychlosti osy při testu.
- **Torque** - Hodnota maximálního momentu při testu.
- **Direction** - Směr otáček osy při testu.
- **Damping Factor** - Relativní tlumení, to čím je větší, tím je delší doba náběhu na žádanou hodnotu a menší překmit.

Před automatickým laděním je třeba zrušit přednastavení výstupního napětí (*Output Offset*) a nastavit, které složky regulátoru budou aktivní:

- **Position Error Integrator** - Integrační složka regulátoru polohy.
- **Velocity Error Integrator** - Integrační složka regulátoru rychlosti.
- **Velocity FeedForward** - Rychlostní přímá vazba.
- **Acceleration FeedForward** - Akcelerační přímá vazba.
- **Output Filter** - Výstupní filtr regulátoru.

Start ladění se zahájí stiskem tlačítka (*Start Tuning…*). Výsledkem jsou nové hodnoty číslicových regulátorů a nastavení filtru výstupu. Potvrzení nových parametrů automaticky přenastaví staré hodnoty.
A. PŘÍLOHA - REGULÁTORY MOTION MODULU

3.4.5.8 Dynamika soustavy

Maximální rychlost, zrychlení a zpomalení (Obr. 3.27) se nastaví při automatickém ladění (viz 3.4.5.7). Automat musí být v Program módu (neplatí pro Manual Adjust, viz níže).

- **Program Stop Action:**
 Výběr, jakým způsobem se provede zastavení osy při změně módů procesoru nebo při použití instrukce MGPS.
 - Fast Disable - Osa je zpomalována aktuálně nastavenou hodnotou zpomalení.
 - Fast Stop - Osa je zpomalena maximální hodnotou zpomalení. Osa se odpojí okamžitě. Stavy Drive Enable a Servo Action se nastaví na hodnotu nula.
 - Hard Disable - Osa se odpojí okamžitě. Stavy Drive Enable a Servo Action se nastaví na hodnotu nula.
 - Hard Shutdown - Osa je okamžitě nastavena do režimu Shutdown.

- **Manual Adjust:**
 Nastavení dynamiky, zesílení, výstupu, limitů a offsetů v Run módu procesoru.
3.4.5.9 Konstanty regulátoru PI a dopředného řízení

Nastavení konstant regulátoru rychlosti, pozice a dopředného řízení rychlosti a akcelerace je na Obr. 3.28. Jejich význam je možné vyčíst z blokového schématu v příloze A. Všechny hodnoty se automaticky nastaví při procesu ladění. Integrační složku regulátoru je možné zakázat v zaškrtnávacím poli Integrator Hold.
3.4.5.10 Ostatní nastavení

V nastavení Offset je důležité v položce Output Offset zadat hodnotu pro překonání suchého tření, která pro servomechanizmus Amíra představuje velikost napětí na motor cca 1 V. Fault Actions obsahují volby vypnutí servomechanizmu při vzniku chyb. Nastavení Output představuje zadání hodnoty výstupního filtru, která je stanovena při automatickém ladění.
4 VIZUALIZACE MODELU AMIRA DR300 V PROSTŘEDÍ RSVIEW32

Software RSView32 je vizualizační program pro automaty Allen-Bradley. Propojení s okolím je zajištěno programem RSLinx, OPC/DDE protokoly, či konfigurací propojení přímo v programu.

V následujících kapitolách jsou místy uvedena slova bez diakritiky, v převážné většině jde o názvy tagů použitých v programu. To je způsobeno převzetím názvů tagů z programu RSLogix5000, kde je použití diakritiky dosti omezeno.

4.1 Konfigurace RSVView32

V RSLinxu se nastaví ovladač umožňující připojení k automatu ControlLogix. Nastavení RSLinxu se provede analogickým způsobem jako v kap 2.1. RSView32 funguje jako OPC server zajišťující s RSLinx výměnu dat každých 50 ms. Položka Name obsahuje název topicu specifikovaného v RSLinx.

Obr. 4.1 Definice připojení
4.2 Vizualizační okna

K ovládání servomechanizmu slouží 9 vizualizačních oken:
1) Hlavní okno.
2) Ovládání servomechanizmu.
3) Automatické ladění – tuning.
4) Nastavení servomechanizmu:
 a) nastavení konstant,
 b) nastavení dynamiky,
 c) výstup řízení,
 d) omezení,
 e) offset.
5) Stavy Motion modulu.

4.2.1 Hlavní okno

Úvodní obrazovka nabízí přechod na okna ovládání, automatického ladění, nastavení a zjištění stavu servomechanizmu. Také je zde možné ukončit program.
4.2.2 Ovládání servomechanizmu

Okno pro ovládání rychlosti a polohy servomechanizmu a zjišťování aktuálních hodnot polohy je na Obr. 4.3. Vizualizace je rozdělena do třech částí:

- **Výstupy serva:**
 - Kolonka obsahuje aktuální hodnotu polohy hřídele v otáčkách, aktuální rychlost a zrychlení.

- **Přímé ovládání:**
 - Zde je možné změnit směr otáčení servomechanizmu, žádanou rychlost, zrychlení a zpomalení v rozmezí napsaných v závorkách. Zrychlení a zpomalení se změní při změně rychlosti.

- **Dojezd na pozici**
 - položka Žádaná rychlost je pro zadání rychlosti, kterou má servomechanizmus dostat na pozici Koncová pozice. Tlačítko Reset nastaví počáteční pozici na nulovou hodnotu. Tlačítko Potvrď spustí proces.
 - Tlačítko STOP zastaví servomechanizmus a nastaví žádanou rychlost na nulu. Pro rozběh osy se jen změní hodnota žádané rychlosti. Pod obrázkem servomechanizmu je přidán posuvník pro jednodušší nastavení rychlosti osy servomechanizmu. Pokud je potřeba upravit stav Motion modulu, je k dispozici tlačítko Stav Motion modulu. Homing provede dojezd na referenční pozici definovanou v nastavení osy (viz 3.4.5.5). Pokud je předpokládána změna stavu modulu nebo homing, dané tlačítko se rozbliká. Pod posuvníkem žádané rychlosti je graf zobrazující aktuální rychlost. Tlačítko Zpět vrátí vizualizaci do Hlavního okna.
4.2.3 Automatické ladění – tuning

Automatické ladění se spustí tlačítkem Spust' automatické ladění (MRAT), jehož výsledek je prezentován v okně alarmů. Po úspěšném provedení testu se rozbliká druhé tlačítko požadující aplikaci vypočtených konstant.
4.2.4 Nastavení servomechanizmu

Zde se jednoduše zadávají parametry servomechanizmu (Obr. 4.5, Obr. 4.6, Obr. 4.7, Obr. 4.8 a Obr. 4.9), které jdou za normálních okolností upravovat pouze v režimu automatu Program Mode. Sloupec Nastavené hodnoty zobrazuje aktuální hodnoty tagů ControlLogixu. Nové hodnoty kopírují hodnoty nastavené a je možné je změnit. V okně na Obr. 4.6 je použit objekt z knihovny ActiveX integrované v programu RSView32.

Obr. 4.4 Automatické ladění

Obr. 4.5 RSTune – Nastavení konstant

<table>
<thead>
<tr>
<th>Atribut Motion modulu</th>
<th>Nastavené hodnoty</th>
<th>Nové hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vel PP Gain</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
<tr>
<td>Acc PP Gain</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
<tr>
<td>Pos P Gain</td>
<td>10,8 1/8</td>
<td>10,8 1/8</td>
</tr>
<tr>
<td>Pos I Gain</td>
<td>0,015 1/60-1</td>
<td>0,015 1/60-1</td>
</tr>
<tr>
<td>Vel P Gain</td>
<td>85,0 1/8</td>
<td>85,0 1/8</td>
</tr>
<tr>
<td>Vel I Gain</td>
<td>0,904 1/60-3</td>
<td>0,904 1/60-3</td>
</tr>
</tbody>
</table>
Nastavení dynamiky servomechanizmu

<table>
<thead>
<tr>
<th>Atribut Motion modulu</th>
<th>Nastavené hodnoty</th>
<th>Nové hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Speed</td>
<td>60,0 cts</td>
<td>62,0 cts</td>
</tr>
<tr>
<td>Maximum Acceleration</td>
<td>218,7 cts²/s²</td>
<td>218,7 cts²/s²</td>
</tr>
<tr>
<td>Maximum Deceleration</td>
<td>464,0 cts²/s²</td>
<td>464,0 cts²/s²</td>
</tr>
<tr>
<td>Program Stop Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Shutdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Shutdown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obr. 4.6 RSTune – Nastavení dynamiky

Výstup řízení

<table>
<thead>
<tr>
<th>Atribut Motion modulu</th>
<th>Nastavené hodnoty</th>
<th>Nové hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity Scaling</td>
<td>1,16 % (0V%)</td>
<td>1,16 % (0V%)</td>
</tr>
<tr>
<td>Torque Scaling</td>
<td>0,25 % (0V²/s²)</td>
<td>0,25 % (0V²/s²)</td>
</tr>
<tr>
<td>L-P Output Filter BW</td>
<td>67,7 Hz</td>
<td>67,7 Hz</td>
</tr>
</tbody>
</table>

Obr. 4.7 RSTune - Výstup řízení
Nastavení limitů parametrů servomechanizmu

<table>
<thead>
<tr>
<th>Atribut</th>
<th>Nastavené hodnoty</th>
<th>Nové hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Positive</td>
<td>0,0 Ω</td>
<td>0,00 Ω</td>
</tr>
<tr>
<td>Maximum Negativ</td>
<td>0,0 Ω</td>
<td>0,00 Ω</td>
</tr>
<tr>
<td>Position Error</td>
<td>11,1 Ω</td>
<td>11,1 Ω</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Lock</td>
<td>0,025 Ω</td>
<td>0,025 Ω</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Limit</td>
<td>10,0 V</td>
<td>10,0 V</td>
</tr>
</tbody>
</table>

![Obr. 4.8 RSTune – Omezení](image1)

Nastavení offsetu

<table>
<thead>
<tr>
<th>Atribut</th>
<th>Nastavené hodnoty</th>
<th>Nové hodnoty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction Compensation</td>
<td>0,7 %</td>
<td>0,70 %</td>
</tr>
<tr>
<td>Velocity Offset</td>
<td>0,0 cm/s</td>
<td>0,0 cm/s</td>
</tr>
<tr>
<td>Torque Offset</td>
<td>0,0 %</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Output Offset</td>
<td>1,0 V</td>
<td>1,0 V</td>
</tr>
</tbody>
</table>

![Obr. 4.9 RSTune - Offset](image2)
4.2.5 Stavy Motion modulu

Na základě stavů chybových hlášení Motion modulu (viz C) se mění stavy LED indikátorů na přední straně modulu. To je vizualizováno pod popiskem Panel Motion modulu (Obr. 4.10). Na základě stisknutých tlačítek lze měnit stav Motion modulu. Ve spodní tabulce je zobrazován stav servomechanizmu, zavedení zpětné vazby, stav osy a nápověda s informacemi pro uživatele. Ovládání je zjednodušeno tím, že pro předpokládanou změnu stavu osy se rozblíží tlačítko, které mění stav.

Obr. 4.10 RSTune – Stavy Motion modulu
5 WEBOVÁ PREZENTACE LABORATOŘE ALLEN-BRADLEY

5.1 Základní popis

Při tvorbě nových stránek byly použity PHP scripty [8]. S jejich pomocí bylo zajištěno postupné načtení celého (jediného) souboru HTML. Bylo využito dynamické stromové menu zkonstruované technologií javascript, které je volně přístupné [16]. Do jeho struktury je jednoduché přidat odkaz na libovolnou stránku, což jistě ocení budoucí administrátoři stránek. Velice užitečná je schopnost menu pamatovat si stav, kde je rozbaleno, což značně zvyšuje přehlednost a orientaci. Při jeho výběru byl kladen důraz na správné zobrazení v prohlížečích Mozilla, Opera, Netscape Navigator a Internet Explorer.

Struktura stránek byla přepracována a doplněna o několik nových položek jako “Diplomky“, “Spolupráce s průmyslem“, či “Odkazy“. Položka “Modely“ byla rozdělena na modely simulované a fyzické, Položka “Úlohy“ obsahuje zadání konkrétního úkolu, který si student vybírá v rámci své semestrální práce a je doplněna o odkazy na příslušné soubory potřebné ke splnění požadovaného úkolu. Vzhled úvodní stránky je na Obr. 5.1.

Novinkou oproti předchozí verzi je možnost zobrazení stránek v anglickém jazyce. Doporučené rozlišení je 1024x800 bodů, ale je pamatováno i na uživatele s rozlišením 800x600 bodů. Splnění pravidel syntaxe HTML bylo ověřeno validátorem konsorcia W3C [10]. Webová prezentace laboratoře Allen-Bradley byla v rámci přípravy projektově orientované výuky prezentována na konferenci Process Controll [3].
5.2 Stromové menu

Změna stromového menu se provede v souboru menu.js. Po jejím provedení je důležité upravit také anglickou verzi menu, obsaženou v souboru en_menu.js. Přidání nové položky se provede v závislosti na jejím umístění v menu. Záleží také na tom, co se má po kliknutí myši na položku vykonat, jestli rozbalit další podskupinu nebo otevřít novou webovou stránku. Princip přidání položky je poměrně jednoduchý a je pochopitelný po shlédnutí částečného zdrojového kódu uvedeného v příloze E.
5.3 Značení souborů

Každá stránka webové prezentace má svůj soubor s příponou php. Je třeba dodržovat následující způsob názvu souborů (souboru v angličtině se přidá před název předpona en_):

- soubor v českém jazyce - název.php
- soubor v anglickém jazyce - en_název.php

6 ZÁVĚR

Diplomová práce mapuje možnosti programu RSTune a dále seznamuje s použitím speciálního modulu 1756-M02AE pro řízení pohybu. Program RSTune, který slouží pro nastavení konstant PID regulátorů programovatelných automatů Allen-Bradley, byl prakticky zkoušen na modelech regulovaných soustav. Program načítal prostřednictvím protokolu DDE hodnoty ze soustavy třetího řádu, která byla simulována v programovatelném automatu ControlLogix. Pro porovnání získaných hodnot byla soustava modelována i v Simulinku. Výsledky měření ukazují, že program RSTune je vhodný pro nastavení konstant regulátorů soustav s delší dobou ustálení. Návrh je omezen nutností získat minimálně 33 vzorků dat při minimální dosažitelné periodě vzorkování 100 ms, která je dána programem RSTune. Porovnání přechodových charakteristik pro nastavení získaná pomocí jiných metod (frekvenční metody, Ziegler-Nichols, ruční optimalizace, GMK) s návrhem podle RSTune ukazuje, že tento dosahuje malého překmitu a je málo citlivý na změny i při nejrychlejším navrženém průběhu s nejmenším bezpečnostním faktorem.

Další část popisuje spojení Motion modulu a servomechanizmu AMIRA DR300. Kapitola 3 ukazuje postup konfigurace skupiny os, přidání nové osy a následné nastavení parametrů servomechanizmu. Poté byl vytvořen program pro jeho řízení.

V programu RSView32 byla provedena vizualizace celého systému, pomocí které lze přehledně ovládat rychlost, akceleraci a dojedn na žádanou polohu. Lze měnit nastavení regulační smyčky, offsetu a dynamiky soustavy. Dále je umožněno sledovat a měnit stavy modulu, provádět automatické ladění interních regulátorů apod. Ve vizualizačním prostředí nelze provést nastavení parametrů inkrementálního rotačního čidla, které by však bylo možné pro větší komfort obsluhy doplnit.

Kompletně byla přepracována webová prezentace laboratoře A-B. Byly doplněny nové úlohy, vytvořené v rámci semestrálních a diplomových prací jinými studenty. Navržená struktura stránek umožňuje jednoduše prohledat uveřejněné materiály. Stránky byly navíc doplněny přehledem vybavení laboratoře, popisem dostupných programů a jinými užitečnými informacemi.
LITERATURA

SEZNAM SOFTWARE

RSLinx [počítačový program]. Ver. 2.41.00 (Build 10). Rockwell Software, Inc., 2003.

RSLogix 5000 [počítačový program]. Ver. 11.11.00. Rockwell Software Inc., 2002.

SEZNAM ZKRÁTEK

<table>
<thead>
<tr>
<th>AbécEDA</th>
<th>VÝZNAK</th>
<th>OSTATNÍ VYSLOVÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>Allen-Bradley</td>
<td></td>
</tr>
<tr>
<td>DDE</td>
<td>Dynamic Data Exchange; dynamická výměna dat</td>
<td></td>
</tr>
<tr>
<td>GMK</td>
<td>Geometrické místo kořenů</td>
<td></td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language; označovací jazyk pro hypertext</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>Not Connected; nezapojeno</td>
<td></td>
</tr>
<tr>
<td>OPC</td>
<td>OLE for Process Control; OLE pro řízení procesu</td>
<td></td>
</tr>
<tr>
<td>OLE</td>
<td>Object Linking and Embedding; vkládání a propojování objektů pro procesní řízení</td>
<td></td>
</tr>
<tr>
<td>PHP</td>
<td>PHP: Hypertext Preprocessor; předzpracování hypertextu</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>Proportional, integral, derivative; proporcionální, integrační, derivační</td>
<td></td>
</tr>
<tr>
<td>PLC-5</td>
<td>Programmable logical controller; programovatelný logický automat, 5 – typ automatu</td>
<td></td>
</tr>
<tr>
<td>SLC 500</td>
<td>Small logical controller; programovatelný logický automat řady 500</td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor Transistor logic; tranzistorová logika</td>
<td></td>
</tr>
<tr>
<td>RT Toolbox</td>
<td>Real Time Toolbox; jedna z knihoven programu Matlab</td>
<td></td>
</tr>
</tbody>
</table>

OBSAH PŘÍLOŽENÉHO CD

- soubor Cti_me.txt obsahující informace o obsahu CD
- manuály v elektronické podobě
- software pro řízení a vizualizaci servomechanizmu
- webové stránky laboratoře Allen-Bradley
- text diplomové práce
Obr. A. 1 Rychlostní řízení
B PŘÍLOHA - INSTRUKCE ŘÍZENÍ POHYBU

Tato kapitola popisuje jednotlivé instrukce pro pohyb programovacího softwaru RSLLogix 5000. Ty se dělí do pěti základních podskupin [11].

1) **Stavové instrukce** - řízení a změna stavu jednotlivých os. (Motion State Instructions)

2) **Polohové instrukce** - kompletní řízení pohybu os. (Motion Move Instructions)

3) **Instrukce skupiny os** - řízení a změna stavu skupiny os. (Motion Group Instructions)

4) **Instrukce vnějších událostí** - kontrola vnějších událostí. (Motion Event Instructions)

5) **Konfigurační instrukce** - diagnostika a zjištění parametrů soustavy. (Motion Configuration Instructions)

Typy časování:

- **Immediate** - Instrukce se vykoná okamžitě v jednom skenu.
- **Process** - Doba vykonání instrukce je závislá na vykonávaném úkonu, nelze přesně určit dobu zpracování instrukce.
- **Message** - Posílá jednu nebo více zpráv Motion modulu, vykoná se za více skenů.
B.1 Stavové instrukce

<table>
<thead>
<tr>
<th>Instrukce</th>
<th>Zkratka</th>
<th>Popis</th>
<th>Typ časování</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>MSO</td>
<td>Připojení výstupu regulátoru k servomechanizmu a aktivace zpětné vazby od řízené osy.</td>
<td>Message</td>
</tr>
<tr>
<td>Off</td>
<td>MSF</td>
<td>Odpojení výstupu regulátoru k servomechanismu a deaktivace zpětné vazby od řízené osy.</td>
<td>Message</td>
</tr>
<tr>
<td>Shutdown</td>
<td>M ASD</td>
<td>Zablokování řízené osy, což má za následek blokaci všech pohyb vyvolávajících instrukcí.</td>
<td>Message</td>
</tr>
<tr>
<td>Shutdown Reset</td>
<td>MAS R</td>
<td>Odblokování, reset řízené osy.</td>
<td>Message</td>
</tr>
<tr>
<td>Drive On</td>
<td>M DO</td>
<td>Připojení výstupu regulátoru od servomechanizmu a nastavení hodnoty výstupního napětí.</td>
<td>Message</td>
</tr>
<tr>
<td>Drive Off</td>
<td>M DF</td>
<td>Odpojení výstupu regulátoru od servomechanizmu a nastavení hodnoty výstupního napětí na referenční hodnotu.</td>
<td>Message</td>
</tr>
<tr>
<td>Fault Reset</td>
<td>MAF R</td>
<td>Smazání všech chybových hlášení.</td>
<td>Message</td>
</tr>
</tbody>
</table>

Tab. B.1 Stavové instrukce
B.2 Polohové instrukce

<table>
<thead>
<tr>
<th>Instrukce</th>
<th>Zkratka</th>
<th>Popis</th>
<th>Typ časování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Axis Stop</td>
<td>MAS</td>
<td>Řízené zastavení všech procesů vykonávajících pohyb osy.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Axis Home</td>
<td>MAH</td>
<td>Nastavení řízené osy do pozice Home.</td>
<td>Message Process</td>
</tr>
<tr>
<td>Motion Axis Jog</td>
<td>MAJ</td>
<td>Nastavení rychlosti pohybu řízené osy.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Axis Move</td>
<td>MAM</td>
<td>Nastavení nebo změna polohy řízené osy.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Axis Gear</td>
<td>MAG</td>
<td>Aktivace elektronického sledování mezi dvěma řízenými osami.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Change Dynamics</td>
<td>MCD</td>
<td>Změna rychlosti, zrychlení, či zpomalení osy, která je aktivní instrukcí MAJ nebo MAM.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Redefine Position</td>
<td>MRP</td>
<td>Změna aktuální hodnoty pozice řízené osy.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Calculate Cam Profile</td>
<td>MCCP</td>
<td>Proložení křivky body, které jsou zadané v datovém poli.</td>
<td>Immediate</td>
</tr>
<tr>
<td>Motion Axis Position Cam</td>
<td>MAPC</td>
<td>Elektronické sledování dvou řízených os s odchytkou danou křivkou.</td>
<td>Immediate Process</td>
</tr>
<tr>
<td>Motion Axis Time Cam</td>
<td>MATC</td>
<td>Sledování řízené osy po vygenerované křivce jako funkce času.</td>
<td>Immediate Process</td>
</tr>
</tbody>
</table>

Tab. B. 2 Polohové instrukce
B.3 Instrukce skupiny os

<table>
<thead>
<tr>
<th>Instrukce</th>
<th>Zkratka</th>
<th>Popis</th>
<th>Typ časování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Group Stop</td>
<td>MGS</td>
<td>Zastavení pohybu os ve skupině.</td>
<td>Process</td>
</tr>
<tr>
<td>Motion Group Shutdown</td>
<td>MGSD</td>
<td>Zablokování řízených os ve skupině, což má za následek blokaci všech pohyb vyvolávajících instrukcí.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Group Shutdown Reset</td>
<td>MGSR</td>
<td>Odblokování, reset řízených os ve skupině.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Group Strobe Position</td>
<td>MGSP</td>
<td>Odebrání vzorku aktuální pozice řízených os ve skupině.</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

Tab. B. 3 Instrukce skupiny os

B.4 Instrukce vnějších událostí

<table>
<thead>
<tr>
<th>Instrukce</th>
<th>Zkratka</th>
<th>Popis</th>
<th>Typ časování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Arm Watch Position</td>
<td>MAW</td>
<td>Povolení kontroly události – podmínka pro splnění dosažené pozice.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Disarm Watch Position</td>
<td>MDW</td>
<td>Konec kontroly události MAW.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Arm Registration</td>
<td>MAR</td>
<td>Povolení kontroly události – podmínka pro splnění dosažené pozice dané interval.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Disarm Registration</td>
<td>MDR</td>
<td>Konec kontroly události MAR.</td>
<td>Message</td>
</tr>
<tr>
<td>Motion Arm Output Cam</td>
<td>MAOC</td>
<td>Aktivace sledování osy.</td>
<td>Immediate</td>
</tr>
<tr>
<td>Motion Disarm Output Cam</td>
<td>MDOC</td>
<td>Deaktivace sledování osy.</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

Tab. B. 4 Instrukce vnějších událostí
B.5 Konfigurační instrukce

<table>
<thead>
<tr>
<th>Instrukce</th>
<th>Zkratka</th>
<th>Popis</th>
<th>Typ časování</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Apply Axis</td>
<td>MAAT</td>
<td>Aplikace dat (zesílení regulátorů) získaných po vykonání instrukce MRAT.</td>
<td>Message</td>
</tr>
<tr>
<td>Tuning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion Run Axis</td>
<td>MRAT</td>
<td>Získání nových konstant pro vnitřní regulátor řízené osy.</td>
<td>Message</td>
</tr>
<tr>
<td>Tuning</td>
<td></td>
<td></td>
<td>Process</td>
</tr>
<tr>
<td>Motion Apply Hookup</td>
<td>MAHD</td>
<td>Aplikace dat (nastavení kodéru IRC čidla a směr otáčení) získaných po vykonání instrukce MRHD.</td>
<td>Message</td>
</tr>
<tr>
<td>Diagnostic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion Run Hookup</td>
<td>MRHD</td>
<td>Vykonání jednoho ze tří diagnostických testů pro danou osu.</td>
<td>Message</td>
</tr>
<tr>
<td>Diagnostic</td>
<td></td>
<td></td>
<td>Process</td>
</tr>
</tbody>
</table>

Tab. B. 5 Konfigurační instrukce

B.6 Přímé příkazy pro Motion modul

Motion modul lze ovládat nejen v žebříčkovém diagramu, ale také tzv. přímými příkazy, které lze najít v menu RSLogixu5000: Tools ➔ Motion Direct Commands (Obr. B. 1).

Při provádění přímých instrukcí pohybu mohou nastat dva druhy chyb. První může nastat během verifikace operandů v instrukci. Ta je prezentována upozorněním v okně “Failed to verify”. Druhá nastane při vzniku chyby prováděné instrukce a je zobrazena jako “Execution Error”.

63
Obr. B. 1 Přímé příkazy pro Motion modul
C PŘÍLOHA - CHYBOVÁ HLÁŠENÍ MODULU 1756-M02AE

Indikátory Motion modulu (Obr. C. 1) nabývají pěti stavů a upozorňují na případné problémy zpětnovazební komunikace s automatem. Po zapnutí modul provede jejich test, kdy se po dobu jedné vteřiny indikátory rozsvítí červeně a vzápětí, pokud komunikace mezi modulem a automatem funguje, se rozsvítí zeleně. Případné události které mohou nastat jsou rozebrány v tabulkách Tab. C. 1, Tab. C. 2, Tab. C. 3.

| 2 AXIS SERVO |
CH 0	CH 1
FDBK	FDBK
DRIVE	DRIVE
OK	

Obr. C. 1 Indikátory stavu Motion modulu

<table>
<thead>
<tr>
<th>Stav OK LED</th>
<th>Stav modulu</th>
<th>Řešení</th>
</tr>
</thead>
</table>
| Zhasnutá | Modul nepracuje. | • Zkontrolujte napájení šasi.
• Ujistěte se, zda je modul správně vložen do šasi. |
| Zeleně blikající | Modul provedl vnitřní diagnostiku. Data obsahující informace pohybu nejsou dostupná. | • Nic, pokud není nakonfigurovaný modul.
• Pokud je modul nakonfigurovaný, zkontrolujte v jeho nastavení číslo slotu, ve kterém je umístěn. |
| Trvale zelená | • Data s informacemi o pohybu jsou přenášena.
• Modul je v normálním operačním stavu. | • Nic, modul je připraven. |
| Červeně blikající | • Vyskytla se hlavní chyba, která jde opravit.
• Chyba komunikace, chyba časovače nebo se provádí aktualizace NVS.
• Rozepnutý OK kontakt. | • Zjistěte číslo chyby a diagnostikujte ji podle tabulky chyb.
• Vymažte chyby způsobené chybným použitím instrukcemi pohybu.
• Pokud tento stav dále přetrvává, překonfigurujte modul. |
| Trvale červená | • Vyskytla se neopravitelná chyba.
• Rozepnutý OK kontakt. | • Restartujte modul
• Pokud tento stav dále přetrvává, vyjměte modul. |

Tab. C. 1 Stavy indikátoru OK LED
Tab. C. 2 Stavy indikátoru FDBK

<table>
<thead>
<tr>
<th>Stav FDBK LED</th>
<th>Stav modulu</th>
<th>Řešení</th>
</tr>
</thead>
</table>
| Zhasnutá | Osa se nepoužívá. | • Nic, pokud osu nepoužíváte.
| | | • Pokud ano, ujistěte se o správném
| | | nakonfigurování modulu a zda je ose
| | | přiřazen správný tag. |
| Zeleně blikající | Osa je v normálním, neaktivním stavu. | Nic, stav servomechanizmu je změněn pohybovou instrukcí. |
| Trvale zelená | Aktivní stav osy. | Nic, stav servomechanizmu je možné změnit pohybovými instrukcemi. |
| Červeně blikající | Chyba smyčky uzavírající zpětnou vazbu, překročena tolerance hodnot. | • Najděte zdroj problému.
| | | • Odstraňte chybu použitím instrukce
| | | MAFR.
| | | • Pokračujte v operacích. |
| Trvale červená | Vyskytla se chyba na dekodéru zpětné vazby. | • Zkontrolujte nastavení a napájení dekodéru.
| | | • Odstraňte chybu použitím instrukce
| | | MAFR.
| | | • Pokračujte v operacích. |

Tab. C. 3 Stavy indikátoru DRIVE

<table>
<thead>
<tr>
<th>Stav DRIVE LED</th>
<th>Stav modulu</th>
<th>Řešení</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhasnutá</td>
<td>Osa se nepoužívá.</td>
<td>Zkontrolujte konfiguraci modulu, konfiguraci osy a přiřazení správného tagu osy.</td>
</tr>
<tr>
<td>Zeleně blikající</td>
<td>Servo je v normálním, neaktivním stavu.</td>
<td>Nic, stav osy servomechanizmu je změněn instrukcemi pohybu.</td>
</tr>
<tr>
<td>Trvale zelená</td>
<td>Aktivní stav serva.</td>
<td>Nic, stav osy servomechanizmu je možné změnit instrukcemi pohybu.</td>
</tr>
</tbody>
</table>
| Červeně blikající | Výstup serva je ve stavu vypnutí. | • Zjistěte zdroj chyby.
| | | • Proveďte instrukci MASR.
| | | • Pokračujte v operacích. |
| Trvale červená | Chyba serva. | • Zkontrolujte stav servomechanizmu.
| | | • Odstraňte chybu použitím instrukce MAFR.
| | | • Pokračujte v operacích. |
D PŘÍLOHA - I/O KONFIGURACE

Přidání nového modulu se provede v menu Controller Organizer (Obr. D. 1).

Obr. D. 1 Nový modul v liště Controller Organizer

Výběr nového modulu z databáze RSLogix5000 je na Obr. D. 2.

Obr. D. 2 Výběr typu pohybového modulu

Přiřazení kanálu 0 (kde je fyzicky připojen servomechanizmus) nedefinované ose je na Obr. D. 5. Pokud není osa typu AXIS_SERVO k dispozici, je nutné ji nejprve vytvořit (viz 3.4.4). Všechny důležité vlastnosti pohybového modulu jsou tímto bodem nastaveny.
Obr. D. 5 Přiřazení osy kanálu pohybového modulu
Část zdrojového souboru vytvořeného menu:

USETEXTLINKS = 1
STARTALLOPEN = 0
USEFRAMES = 0
USEICONS = 0
WRAPTEXT = 1
PERSERVESTATE = 1

foldersTree = gFld("Laboratoř A-B","index.php")
aux1 = insFld(foldersTree, gFld("O laboratoři"))
aux2 = insFld(aux1, gLnk("S", "Historie", "historie.php"))
aux2 = insFld(aux1, gLnk("S", "Současnost", "soucasnost.php"))
aux1 = insFld(foldersTree, gFld("Vybavení laboratoře"))
aux2 = insFld(aux1, gFld("Hardware"))
aux3 = insDoc(aux2, gLnk("S", "SLC 500","hardware01_SLC.php"))
aux3 = insDoc(aux2, gLnk("S", "PLC-5","hardware02_PLC.php"))
aux3 = insDoc(aux2, gLnk("S", "ControlLogix","hardware03_CL.php"))
aux3 = insDoc(aux2, gLnk("S", "Flex 1/O","hardware04_flex.php"))
aux3 = insDoc(aux2, gLnk("S", "Panely operátorů","hardware05_panely.php"))
aux3 = insDoc(aux2, gLnk("S", "Ostatní","hardware06_ostatni.php"))
aux2 = insFld(aux1, gLnk("S", "Software","software.php"))
aux2 = insFld(aux1, gLnk("S", "Síť","site.php"))
aux1 = insFld(foldersTree, gFld("Modely"))
aux2 = insFld(aux1, gFld("Fyzické"))
aux3 = insFld(aux2, gFld("Vodárny","mod_vodarny.php"))
 insDoc(aux3, gLnk("S", "Vodárna č.1","mod_vodarna01.php"))
 insDoc(aux3, gLnk("S", "Vodárna č.2","mod_vodarna02.php"))
 insDoc(aux3, gLnk("S", "Vodárna č.3","mod_vodarna03.php"))
 insDoc(aux2, gLnk("S", "Frekvenční měniče","mod_frm.php"))
 insDoc(aux2, gLnk("S", "Podavač nástrojů č.1","mod_podavac1.php"))
 insDoc(aux2, gLnk("S", "Podavač nástrojů č.2","mod_podavac2.php"))
 insDoc(aux2, gLnk("S", "Servo-mechanismus","mod_servo.php"))
 insDoc(aux2, gLnk("S", "Tepelný systém","mod_pec.php"))

Struktura souboru s HTML a PHP kódem:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 ?? include "uvodni.php"; ??
 ? HTML kód ?
 ?? include "konecny.php"; ??
</html>