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Abstract

This thesis deals with development of a control system for a tracked
mobile robot. Firstly, the task of Simultaneous Localization And
Mapping (SLAM) is briefly introduced and main SLAM approaches are
described. As the main part of the thesis, the control system is designed
and implemented in Robot Operating System (ROS). It consists of path
planning, motion control and exploration. As a result, the developed
robotic system is able to semi-autonomously explore and map the
unknown environment. Finally, the presented solution was tested in real
world experiments.

Keywords: simultaneous localization and mapping, path planning, con-
trol, exploration, unmanned ground vehicle, ROS

Abstrakt

Tato práce se zabývá návrhem ř́ıd́ıćıho systému pro pásový robot.
Nejprve stručně představuje úlohu Simultánńı Lokalizace A Mapováńı
(SLAM) a popisuje hlavńı př́ıstupy k jej́ımu řešeńı. Hlavńı část́ı této
práce je pak návrh ř́ıd́ıćıho systému vytvořeného v prostřed́ı ROS.
Jeho součást́ı je plánováńı trasy, ř́ızeńı pohybu a prohledáváńı pros-
toru. Výsledný systém je schopen prohledávat a mapovat neznámé
prostřed́ı v režimu částečné autonomie. Nakonec bylo prezentované
řešeńı otestováno v reálném prostřed́ı.

Kĺıčová slova: simultánńı lokalizace a mapováńı, plánováńı trasy, ř́ızeńı,
explorace, bezosádkové pozemńı vozidlo, ROS
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Chapter 1

Introduction

Autonomous robot systems have undergone fast development in recent decades. Plat-
forms are being developed to be able to undertake assigned tasks without direct external
commands. This approach is present in many fields of human work, such as automotive
industry, agriculture, aircraft, military, rescue operations and many others. In general, the
importance of autonomous robotics is growing in time.

One of the main categories of autonomous systems is unmanned ground vehicles
(UGV). They can be used for the situations when a human presence is not desirable,
such as hazardous environments, rescue operations indoors and underground and many
others. These environments are often unknown or changed. For this reason, exploration
and mapping can be one of the tasks for autonomous vehicles.

The prerequisite for autonomous vehicles is the ability to perceive the outside world.
This sensor information must be processed so that the robots are able to move in the
environment, avoid obstacles and fulfill assigned tasks. This addresses the problem of Si-
multaneous Localization And Mapping (SLAM). It is one of the most widely researched
topics in robotics in past decades. The idea is to place the robot equipped with sensors
into an unknown environment. As it moves and observes the surroundings, it incrementally
builds the map of the environment and simultaneously estimates its position.

This thesis focuses on the SLAM problem from the theoretical and practical point
of view. The problem definition and overview of main SLAM approaches is given in the
chapter 2. As the main part, the control system for partly autonomous unmanned ground
vehicle is developed. The control algorithm is implemented in Robot Operation System
(ROS) and consists of chosen SLAM algorithm, map preprocessing and path planning. To-
gether with hardware interface, this control system is designed for an exploration of indoor
environments. Description of the used hardware platform, sensors, onboard computer and
other hardware and software is given in the chapter 3. Used solution is described in the
chapter 4. Finally, the developed platform is tested, and these experimental results are
presented in the chapter 5.



2 Chapter 1. Introduction

1.1 State of the art

The topic of autonomous ground vehicles used for exploration is extensive and was
widely researched in past decades. It consists of all the subtopics such as path planning,
control, sensors, localization and mapping, hardware design and others. These tasks were
solved in different ways, and detailed overview of each subtopic is beyond the scope of
this thesis. There are many different types of platforms (for example: four-legged robots
[4], wheeled, tracked and crawling platforms [5]) used for exploration, and each of them
requires different path planning and control approach, depending on its hardware design
and given environment and application.

Open research area is the problem of Simultaneous Localization And Mapping in real-
world environments. A brief overview of mainly used sensors and state-of-the-art SLAM
methods is given in the next chapter. Contemporary research is focusing on the multi-
robot systems and cooperation between ground and aerial unmanned vehicles [6], [7]. To
give an example of such research, the paper [5] describes the autonomous exploration
in the subterranean environment. The research team from FEE CTU 1 in Prague used
wheeled, tracked and crawling unmanned ground vehicles together with drones. Each of
the platforms is carrying different type of sensors (2D or 3D high-range lidars, cameras).
The robots are sharing information with each other and are able to autonomously build
the 3D spatial map of the environment and localize some objects of interest without the
need of GPS signal.

In general, the aim of this work is not to push the boundaries of human knowledge,
but to demonstrate the basic principles and develop a control system for the specific robotic
platform.

1Faculty of Electrical Engineering, Czech Technical University



Chapter 2

SLAM

Simultaneous Localization And Mapping (SLAM) is considered to be a fundamental
problem for truly autonomous robots. As mentioned in [8], the popularity of the SLAM
problem is connected with the emergence of indoor applications of mobile robotics. In
these environments, typical localization methods (GPS) are not available. The localization
systems based only on the robot’s odometry are not accurate enough and the accumulated
error diverges.

The SLAM is sometimes referred as the “chicken-and-egg” problem. The mapping
could be done easily if the exact position of the robot is known. Also, the localization in
the known environment is easy to solve. But both processes are taken simultaneously and
depend on each other, which makes this problem challenging.

2.1 SLAM problem definition

SLAM problem has been formulated and solved as a theoretical problem in a number
of different ways. Following definition is based on the broadly used probabilistic approach
described in [9] or [10]. Assume a robot equipped with sensors in the unknown environment.
The robot position is described as xt at the given time t. The path of the robot is then:

X0:t = {x0, x1, ..., xt}, (2.1)

where x0 is the known starting position. The map of the environment m describes the
locations of all landmarks and obstacles. The environment is mostly assumed as static (not
changing in time).

The robot moves according to the control inputs ut. These controls can be sensed by
an odometry (for example wheel encoders), which characterized the motion of the robot
between the time t and t− 1. The sequence

U1:t = {u1, u2, ..., ut} (2.2)
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describes the control inputs or the data from motor encoders from start to time t. As
the robot moves through this environment, it measures the relative positions of obstacles
around (landmarks). There are many different types of sensors, such as laser scanners,
cameras, sonars and others). These observations are described as

Z1:t = {z1, z2, ..., zt}, (2.3)

where zt is the measurement done at time t. In the real world applications, the odometry
data are not perfectly accurate to reconstruct the robot motion precisely. The uncertainty
is growing with the motion. Also the observations are affected by noise and inaccuracy of
the sensors. Because of this, the goal is to derive the “most probable” position of the robot
and landmarks in the environment. In that point of view, we are searching for probability
distribution

p(xt,m|Z1:t, U1:t). (2.4)

The equation 2.4 defines the whole SLAM problem. The goal is to estimate the “most
probable” robot position xt and map state m, depending on the given measurements and
odometry data (both affected by some error) recorded until time t.

The structure of the SLAM problem and involved variables are described in the
figure 2.1. The map m and positions xi (white) are unknown and should be estimated, the
observations zi and odometry ui (brown) are directly observable to the robot. The arrows
represent the dependency.

Figure 2.1: Graph visualisation of the SLAM problem. Source: [1]
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2.2 Types of SLAM

The equation 2.4 refers to the Online SLAM problem. This approach is recovering
only the most recent pose of the robot. This is used mostly in applications, where the robot
moves autonomously and must interact with the environment. On the other hand, we can
also define Full SLAM as probabilistic distribution

p(X0:t,m|Z1:t, U1:t). (2.5)

In that case, we are estimating the whole path of the robot, not only the recent position.
The data are often processed at one time. This process requires more computing power
and is not suitable for autonomous control and planning in real-time [11].

There is no single best solution to the SLAM problem. The chosen solution for a
given application will depend on many factors, such as type of used sensor, desired map
resolution, the nature of the environment and others [1].

By the years, many different solutions addressing the SLAM problem were developed.
One significant approach is based on probabilistic theory, more precisely on Extended
Kalman filters and Particle filters. Another important group of algorithms belongs to the
category of graph-based methods. These three approaches are referred as main paradigms of
SLAM problem ([1]) and are briefly described in the following sections and some remarkable
algorithms are mentioned.

2.3 Filter based methods

One of the classical approaches is based on theory of Bayes filters. These techniques
provide a recursive solution using motion and observation model of the system. Then the
observation model is formulated as

p(zt|xt,m), (2.6)

and describes the probability of measuring zt, when the position of the robot and landmarks
are given. The motion model describes the robot state xt at time t based on the given robot
state xt−1 and control input ut:

p(xt|xt−1, ut). (2.7)

We assume that the next state of the robot depends only on the previous state and the
control input and is independent of both the observations and the map.

2.3.1 Extended Kalman filters

This method described in [10] is based on one of the most popular implementation
of Bayes filters: Kalman filters. The algorithm itself consists of two steps: prediction and
correction.
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In the prediction step, the next state of the system (position of the robot and land-
marks) is predicted. This is done based on the previous estimate of the state of the system
and motion model. After that, the expected “observation data” are calculated by the
observation model (what sensors expect to measure in the predicted state). Both these
predictions and real measurement obtained by the sensor contain some level of uncer-
tainty. As the result, the prediction and measured data are combined and weighted mean
is calculated. This result is taken as new estimate of the system. Then the prediction and
correction is repeated in next iteration.

The main idea of this filter based approach is to reduce the Gaussian noise in the
motion and measurement combining these two inputs (prediction and correction) together.
For example, if the precision of the measurement is poor, the Kalman filter estimate de-
pends more on the motion prediction (odometry). On the other hand: if the measurement
precision is high, the estimate is based more on the actual sensor data.

The key assumption of this algorithm is that the uncertainty present in the system
(noise in the measurement and motion of the robot) is Gaussian. This approach requires the
linear motion model of the system, hence called Linear Kalman Filter (LKF). The possible
nonlinearity is solved using Extended Kalman filter, which takes the local linearization
using Taylor expansion.

The implementation of the EKF SLAM algorithm requires the covariance matrix rep-
resenting all correlations between landmarks and robot position, which is the key limiting
factor, as stated in [1]. The algorithm complexity (in the naive implementation) increases
quadratically with the number of landmarks. Because of that, this approach is not suitable
for larger environments, as written in [9].

2.3.2 Particle filters

Another probabilistic approach based on the different type of Bayes filters are particle
filters. The idea of particle filters is following. The probability density function (estimat-
ing, for example, the robot position) is represented with weighted discrete samples called
particles. As the first step, the particles are sampled from proposal (at the start of the
algorithm, the particles are distributed equally, because each position has the same prob-
ability). As the data from sensors arrive, the algorithm increases the weights of particles
representing the probable robot positions (based on the observation and motion model). In
other words, the particles on the poses that fit the measurements and odometry represent
more probably the real robot position. After that, the discrete distribution is resampled
and least-important particles are thrown away.

The particle filter approach (known as Monte Carlo sampling) allows representing
also the non-gaussian distributions [9]. It works well in low dimensional problems, such
as localization. On the other hand, the SLAM problem is high-dimensional (we need to
estimate the position of the robot and each landmark).
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This problem was solved by the FastSLAM algorithm [12]. In combines the EKF and
particle filter methods. It makes use of a modified particle filter to estimate the probability
distribution. Afterwards, each particle possesses K Kalman filters that estimate the K land-
mark locations [11]. This reduced the computing complexity compared to EKF methods
and is also usable in environments with a higher number of landmarks.

This problem is solved in another worth-mentioning SLAM implementation: Fast-
SLAM algorithm. This algorithm combines the particle filters and extended Kalman filter
approaches. Compared to the basic EKF approach, FastSLAM works efficiently even in
the high-dimensional spaces and decreases the SLAM problem complexity. There is also
no problem with nonlinearities. Another example of this method is Gmapping algorithm
described in [13], very popular in the robotic community.

2.4 Graph-based methods

Another popular approach addressing SLAM problem are the graph-based methods.
As the name suggests, the SLAM problem is represented with a graph data structure. Every
node of that graph corresponds with a pose of the robot during mapping (the corresponding
sensor data measured at this position are stored in the memory). Every edge between two
nodes corresponds to spatial constraints between them.

Generally, we can divide the solution into two parts: front-end and back-end. In the
front-end, the goal is to find the correspondence between nodes of the graph. This process
is called as data association. In other words, we need to find the relation between observed
data and landmarks discovered so far.

Then, in the back-end part, the optimization techniques are used to minimize the error
introduced by constraints. The minimization is commonly solved via Gauss-Newton or the
Levenberq-Marquart methods [8]. In other words, the goal is to find the transformation
that places all corresponding measurements to the correct place on the map. These two
steps go recursively (the edges are updated based on the estimated transformation). The
GraphSLAM algorithm [14] is application of this technique.

These algorithms generally reduce the dimensionality of the SLAM problem and allow
to use of modern optimization techniques. They focus on reconstruction of the robot’s path
X0:t, but not all the landmarks positions. The idea behind is: when the robot path X0:t is
known, it is easy to reconstruct the map with the observations measured in every position.

2.4.1 Scan-matching

The graph based approach in simplified in the scan-matching SLAM algorithms. The
main idea is based on data association and reducing the computational complexity. The
main difference is that the data are not localized relative to the whole map (path), but
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only to slightly older scans. Once the localization (using some optimization techniques) is
done, it is assumed as correct. This assumption makes the algorithm much faster. On the
other hand, it is not a solution to the full SLAM and can only accommodate very small
amounts of location uncertainties, as stated in [1]. Also the loop closing and wrong data
association might be an issue. The loop closing is the task of deciding whether the robot
returned to a previously visited area. In the “full SLAM” solutions, the correct loop closing
reduces the uncertainty of the pose estimate and provides the understanding of the real
topology of the environment [8]. This is not guaranteed in scan-matching methods.

To give an example of scan matching methods, the ICP (Iterative Closest Point) al-
gorithm consists of three steps: association, transformation and error evaluation. In the as-
sociation step, each landmark in new measurement is associated with the nearest landmark
in the previous measurements. Then, the optimization process minimizes the mean-squared
distance between the associated points. As a result, the spatial transformation (rotation
and translation) is applied to the new scan. In the third step, the mean-squared error is
evaluated. If the error is over some limit, the process is repeated. Otherwise the process is
terminated and the map is updated.

2.5 Other types of SLAM

Various methods were used to solve the SLAM and there is still intensive research in
this field. Most of the methods mentioned above focus on the 2D SLAM, but also 3D SLAM
algorithms were developed. Each application requires a different approach. Also, the range
of used sensors is wide. The main group of sensors are laser rangefinders. They provide
relatively accurate scanning in 2D or 3D. Another family of SLAM algorithms are called
Visual SLAM. These algorithms are using data from a monocular or stereo camera. We
can also use other types of sensors, such as sonar, radar, acoustic waves or wifi signal. The
contemporary research focuses on the visual SLAM methods and the use of deep learning
methods [8].

2.6 Opened issues

The SLAM is considered to be a solved problem on the theoretical and conceptual
level. On the other hand, the research is still in progress and some open issues remain [8].

Major challenge is the development of algorithms for long term applications. In that
case, the robotic system should be able to robustly perform SLAM for a longer period
of time with minimal human supervision. Research is needed to develop algorithms that
don’t fail after limited time, recover from mistakes and deal with the dynamically changing
environments [1]. Most of the methods mentioned before work only in the largely static
environments. Unfortunately, real-world scenarios are mostly dynamic. Also the sensors
might be affected by the changing outdoor conditions (light, weather...).
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Another direction of research is to not create the map always from scratch, but partly
exploit the prior knowledge of the environment or data from other robots in multi-robot
applications. Another research topic is the complexity of the SLAM algorithms. Although
the algorithms have undergone significant development in this area, the efficient mapping of
large areas is still challenging. Also the effort of minimizing the robotic platforms requires
more efficient algorithms that would be applicable to on-board computers [8].

2.7 The SLAM algorithm for this project

The goal of this thesis is to create partly autonomous robotic system, that localizes
itself and incrementally builds the map without the need of GPS signal and wheel odometry.
Depending on these comparison [11] of different SLAM implementations, the Hector slam
algorithm was selected.

2.7.1 Hector SLAM

This SLAM algorithm described in [15] is based on scan-matching principle. It pro-
vides online localization and mapping. The computing requirements are relatively small
and allow the usage on the small onboard computer. Hector SLAM also does not re-
quire the robot’s odometry, which is not available on the used robotic platform. It takes
two-dimensional laser scan data as the input and produces two-dimensional map of the
environment.

It is worth mentioning that this algorithm is not the full SLAM solution and we can
classify it into a group of Scan matching methods, lacking the loop closing mentioned in
2.4.1. Despite this fact, it works sufficiently good in the real world scenarios [15].

Map representation

The map is represented as a grid of cells. These grid map cell values can be viewed as
samples of the continuous probability distribution, representing the probability of landmark
presence in the given point. The discrete representation limits the precision and does not
allow the direct computation of derivatives. Because of this, there is a need for interpolation
of values between “discrete samples” (cells). This approximation is managed by bilinear
filtering and depends on the nearest grid values.

Working principle

The data from the sweep scanner are preprocessed (downsampling, outliers removal).
The laser scan data are converted into a point cloud, where each point represents the laser
beam endpoint (where the laser beam was reflected from the obstacle). The main idea of
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this approach is scan matching. New measurement (point cloud) is aligned with the existing
map. Because of the inaccuracy of the sensor, the points from new measurement does not
ideally fit the previous point clouds. The matching is done using gradient-optimization
based on the Gauss-Newton approach.

We need to get transformation ξ = (px, py, ψ) , which minimizes the criterion

ξ∗ = argmin
n∑
i=1

[1−M(Si(ξ))]
2, (2.8)

where Si(ξ) is the position of the measured landmark in the world coordinates si =
(six , siy)T :

Si(ξ) =

[
cosψ − sinψ
sinψ cosψ

] [
six
siy

]
+

[
px
py

]
. (2.9)

Si is a function of ξ, because measurements are relative to the robot position. M(Si(ξ))
returns the map value on the given position Si(ξ). In other words, we are looking for trans-
formation that minimizes the error between measurement and actual version of the map
(landmarks present there). Also, the robot’s position is represented by this transformation.

The equation 2.8 is non-linear least squares problem and can be transformed into
Gauss-Newton equation. As a result, one step ∆ξ towards the minimum is evaluated,
and transformation ξ is updated. This “descent method” consists of the risk of getting
into local minima, because the optimized function is not convex. Despite this fact, this
algorithm works sufficiently good in real applications, as stated in [15]. This risk is also
minimized by multi-resolution map representation.

Multiresolution map representation

The maps with the different resolution are stored in the memory in a “pyramid”
pattern. Multiple occupancy grids are used with each coarser map having half the resolution
of the preceding one. When new sensor data are available, the optimization process is
performed on the grid with the lowest resolution. The computed suboptimal scan matching
transformation is used as a starting estimate to the following grid. This process is repeated
from the map with the lowest resolution to the map with the highest resolution. All the
grids with the different resolution are simultaneously updated and stored in memory. In
spite of all these features, computational requirements are relatively low. Moreover, the
accuracy of the created map and localization is sufficient in practice, according to [15].
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Preliminary

3.1 Software

3.1.1 ROS

The Robot Operating System (ROS) is a flexible open-source framework for writing
robot software. ROS was originally developed by researchers from Standford University,
Willow Garage and the University of Southern California [16]. It runs on Unix-based plat-
forms and can be controlled using a command-line. It supports different programming
languages, such as C++, Python, Octave and others. The code is organised into packages,
which can be easily added and updated. The compilation is provided using CMAKE.

A deployed system is composed of small computing units called nodes. The structure
is illustrated in figure 3.1. Nodes communicate via messages with a strictly defined struc-
ture. These messages are published into topics, which can be subscribed by other nodes
interested in this particular message type and information included in that message. ROS
also provides communication using request and response messages. This functionality is
called service.

The communication between multiple nodes is directed by a master. ROS supports
peer-to-peer communication, so that nodes can communicate directly with each other, while
the communication is first established by a master coordinator node. ROS contains many
useful existing tools. Multiple nodes can be packaged and ran together using roslaunch
command. Logging and replaying measured data is provided by rosbag functionality. Sys-
tem structure and nodes communication could be plotted using rqt tool, which is useful for
debugging. The transformation library builds transformation tree and computes transfor-
mation between different reference systems.
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Figure 3.1: ROS node graph — vizualization of communication between nodes in a deployed
system.

3.1.2 RVIZ

This program provides 3D visualisation for ROS framework. It supports all ROS
standard message types. RVIZ also allows publishing into given topics which can be used
for commanding the robot. It is also a powerfull tool for debugging and data vizualisation.
An example of RVIZ environment if given in figure 3.2.

Figure 3.2: A 2D map of an environment vizualized by the RVIZ tool.
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3.2 Hardware

3.2.1 Hardware platform

The robot platform “Saladin” was originally created by Tomáš Báča and Antońın
Novák and is described in [17]. The body of the robot is made of 1.5 mm thick aluminium
plate. The dimensions of the robot with tracks are 28 × 41 cm. The undercarriage consists
of two iron tracks and 16 wheels. Each track is driven by DC motor with planetary gearbox.
The tracks are able to rotate in both directions, which allows the robot to rotate around
a vertical axis. The motors are controlled using ZD ESC-30A motor controllers.

(a) The tracks and wheels. (b) The robot drive unit.

Figure 3.3: Hardware platform in its original state (before the work on this thesis started).

3.2.2 Onboard computer

The Odroid XU-4 is used as the computing unit. It is equipped with Samsung Exy-
mos5422 Cortex-A15 2 GHz and Cortex-A7 Octa core CPUs with Mali-T628 MP6 GPU.
The eMMC module is used as a storage. There computer has 3 USB ports, ethernet and
HDMI output. It is supplied with 5 V (4 A) power supply. The system is running on a
GNU/LINUX Ubuntu 18.04 operating system.

Figure 3.4: Odroid XU4. Source: [2].
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3.2.3 Used sensor

Figure 3.5: Working principle of RPLIDAR sensor. Source: [3]

The equipped sensor described in [3] provides distance measurement in a horizontal
plane in all directions. The distance measurement is based on the “triangulation-ranging”
principle. The sensor is transmitting modulated infrared laser signal. The system ranges
more than 16000 times per second. When the laser signal encounters some object, it returns
back to the sensor. The distance is calculated using the measured angle of reflected laser
signal. The sensor uses the optical encoder to measure the actual angle of the rotating head.
This is done every time the light beam is detected by the sensor. These values (measured
distance and corresponding angle) are sent to the ROS topic.

3.2.4 Other hardware

These are other hardware components used in this project:

• Microcontroller: Arduino Nano with ATmega328P chip

• Wireless access point

• Switching voltage regulator Foxy UBEC 6A

• Power source: 14.8 V, 6750 mAh, Li-Po battery
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Control system design

The control system of the unmanned ground vehicle consists of several subsystems.
First of all, the measured sensor data should be processed by the SLAM algorithm. This
provides the localization and mapping of the environment. Next key component is the path
planning algorithm, which finds the best way from the current position to the goal. The
execution of the planned trajectory is done using waypoint tracking subsystem. It calculates
the motor commands based on the planned path and current position. These commands
are then sent to the motors via hardware interface: serial line and Arduino microcontroller.
There is also a need of communication between UGV and operator. In the applications,
such as Urban search and rescue (USAR) tasks at dangerous environments, the sensored
data (created map and estimated position) should be presented to the operator in real-time.
On the other hand, the operator should be able to give the commands to the platform,
which are executed with some level of autonomy. This is managed by the user interface.

The developed control system involves all the subsystems described above: sensors,
SLAM, map processing, path planning, exploration, waypoint tracking, hardware and user
interface. The software is organized into ROS packages and implemented in C++ and
Python. The developed platform is able to operate in three different modes: autonomous,
semi-autonomous and manual. All these parts of the system are described in this chapter.

4.1 Control system structure

The structure and all dependencies are illustrated in the figure 4.1. The subsystems
are shown as rectangles (ROS nodes are bold). These nodes are sharing data via ROS
topics. These topics are shown as ellipses. The relations between nodes (publishers and
subscribers) are illustrated with arrows.
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Figure 4.1: The structure of the control system. Each subsystem is square (ROS nodes are
bold), ROS topics are elliptical. The dependencies are illustrated with arrows.

4.2 Coordinate system

The coordinate system is described as follows. The origin is located on the starting
position of the robot (where mapping procedure started). We assume the robot is moving
on flat ground. Because of this, the robot state vector xr is

xr =
[
xr yr φr

]T
, (4.1)

where xr and yr are planar coordinates and φr describes heading of the robot. The origin
of the coordinate system is placed at the spot where HectorSLAM algorithm started the
mapping procedure.

4.3 SLAM

The simultaneous localization and mapping is provided by HectorSLAM1 algorithm
described in the section 2.7. The map resolution is set to 4 cm, the map size is set to 40
× 40 m. The input is data from RPLIDAR laser scanner in the sensor_msgs/LaserScan

message type. The outputs are robot position xr in the world coordinates and a map of the
environment represented as ROS nav_msgs/OccupancyGrid message type. It is an array
of int8_t data type, where an unexplored area is -1, free space is 0 and obstacle is 100.

1Available at:https://github.com/tu-darmstadt-ros-pkg/hector slam

https://github.com/tu-darmstadt-ros-pkg/hector_slam
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4.4 Distance transform

The goal is to efficiently calculate the distance from each cell to the nearest obstacle.
This is done using the “convolutional” approach widely used in image processing algo-
rithms. The whole procedure uses 4 sliding windows (convolution kernels) going through
the map. These windows are described in 4.1.

cell* 1

1
√
2

(a)→↓

√
2 1

1 cell*

(b)←↑

1 cell*

√
2 1

(c)←↓

1
√

2

cell* 1

(d) →↑

Table 4.1: Four sliding windows used for distance transform. The cell* represents the actual
position in the map, the direction of movement through the table is illustrated with arrows.

The whole distance transform procedure is described in the algorithm 1. As the first
step of the distance transform algorithm, the cell values are initialized. The initial value is
0 for obstacles and +∞ for free cells. Each of the four windows starts in a different corner
and goes through the grid map. For example, the sliding window (a) in 4.1 starts in the
top left corner, goes through the first row, second row and rest of the map. As a result,
the approximate euclidean distance to the nearest obstacle is stored in each yet observed
map cell. The obstacle values are set to 0, unexplored area is marked with -1 and detected
frontiers are 100 in the output map.

Algorithm 1 Distance transform algorithm pseudocode
procedure Distance transform

Input:

map . Output of HectorSLAM: nav msgs/OcuupancyGrid map

for each cell in map do
if map value(cell) is obstacle then

map value(cell) ← 0
else

map value(cell) ← ∞
end if

end for
for each window in sliding windows do . Four sliding windows described in 4.1

for each cell∗ in map do . cell∗ refers to the actual window position, as shown in 4.1
for each neighbour in window do . neighbour refers to the other window cells, as in 4.1

if map value(neighbour) > map value(cell∗)+window value(neighbour) then
map value(neighbour) ← map value(cell∗)+window value(neighbour)

end if
end for

end for
end for
detect frontiers() . described in 4.6
Output:

map . updated map

end procedure
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4.5 Path planning

The goal is to find path towards the goal, which is:

• optimal: the shortest path to the goal

• safe: the robot avoids collision with obstacles

The safety could be ensured if the robot drives in the safe distance from obstacles. The
exact safe distance for this type of robot is difficult to define. The robot is able to drive
forward or rotate on the spot. The rotation requires much bigger “safe space” than forward
motion. If we define this limit arbitrary, the robot will not plan the path to the spots, that
are reachable by some type of motion. Another approach is to drive “as far as possible”
from the obstacles. Finally, the “safety” is in contrast to optimality in some way and both
requests should be balanced.

Path planning is provided by modified A* algorithm. The distance map (transformed
output of HectorSLAM) is taken as a graph with nodes n. The goal is to find optimal way
from the robot actual position nstart to the goal ngoal. The motion in the graph is allowed
in 8-neighbourhood. Because of that, the grid distance distgrid (defined in pseudocode 2) is
used in the cost and heuristic function. Moreover, it is necessary to avoid obstacles along
the route and drive around all obstacles in the safe distance. The expanding function omits
the cells closer than 20 cm from obstacles as the minimal safe distance for the motion. It
also penalizes the positions that are closer than 1 m to the obstacles.

The algorithm is based on an evaluation function

f(ni) = h(ni) + g(ni), (4.2)

where h(ni) is the heuristic function, g(ni) is the cost function and ni is the current node
in the algorithm. The heuristic function is calculated as:

h(ni) = distgrid(ni, ngoal) + αp(ni). (4.3)

The p(ni) is the penalty function, which penalizes the nodes that are closer than 1 m to
the nearest obstacle as follows:

p(ni) =

{
1−m(ni) if (1−m(ni)) > 0

0 otherwise
,

where m() is the recalculated diagonal distance to the nearest obstacle from the distance-
trasformed map in meters. It is weighted by the parameter α. This parameter sets how
much the path planning algorithm is avoiding obstacles. The cost function is defined as

g(ni) =
i∑

a=1

distgrid(na−1, na). (4.5)

In other words, the cost function g(ni) represents the real distance from starting node to
the current node ni.
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Algorithm description

The planning process starts at the starting node nstart. The current node is expanded.
Its neighbours are added to the open_nodes list (list of explored notes) and their f() value
is calculated (nodes closer than 20 cm to the nearest obstacle are omitted to avoid collision
with the obstacle). After that, the nodes in open_nodes list are sorted depending on their
f() value (this is implemented using heap data structure). The node with the lowest f()
value is popped and taken as the new current node. The previous node is added to the
closed_nodes list (list of visited nodes). When the goal node is reached, the path is
reconstructed. If the open_nodes list is empty and the goal was not reached yet, there is
no path to the goal.

Algorithm 2 modified A* algorithm
procedure find path(map, nstart, ngoal)

open nodes . heap data structure sorted by f() value
closed nodes
open nodes ← nstart . add initial position
while open nodes not empty do

ncurrent ← open list.pop() . Get node with lowest f() value from heap
new nodes = expand(ncurrent) . find all accessible neighbours
closed nodes.add(ncurrent)
if ncurrent is ngoal then

return reconstruct path() . return path
end if
for each ni in new nodes do

if ni in closed nodes then
continue

end if
h(ni)← GRID DISTANCE(ni, ngoal) + αp(ni)
f(ni)← h(ni) + g(ni)
if ni in open nodes then

if g(ni) < g(open nodes[ni]) then . new g() value is better than previous for the given node
update ni

end if
else

open nodes.add(ni)
end if

end for
end while
return None . no path to the goal

end procedure
procedure grid distance(na, nb)

dx← |xa − xb|
dy ← |ya − yb|
return |dx− dy|+

√
2(min(dx, dy))2

end procedure

Optimality and variability

According to the theory, the A* algorithm finds the optimal path if the heuristic is
consistent and admissible. The heuristic h() is admissible, if

0 ≤ h(n) ≤ h∗(n) ∀n, (4.6)
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where h∗(n) is the true cost of going from n to the nearest goal). In this case, the h() is
not admissible heuristic, because p() is not calculated in the cost function g(). Despite this
fact, this algorithm provides sufficient path planning with avoiding obstacles. The results
are presented in the next chapter.

The parameter α could be used for changing the behaviour of the algorithm. If α = 0,
the algorithm is equivalent to the standard A* (with admissible and consistent heuristics).
The greater the α is, the more the algorithm prioritizes the obstacle avoidance along the
planned path and minimize the risk of collision with an obstacle. On the other hand, a
big value of α may increase the time of path planning. If the p() is much greater than
the calculated distance to the goal, the algorithm behaves more like a breadth-first-search
algorithm and expands more nodes.

4.6 Exploration

In the autonomous mode, the robot is able to find the nearest reachable unexplored
area and pass this goal to the path planning algorithm. The exploration is based on frontier
detection. This approach was described in [18]. As frontier is taken the discovered field on
the grid map that is adjacent to at least 2 undiscovered fields. These frontiers are detected
in the distance transform node. The exploration process is based on the Breadth-first
search (BFS) algorithm. The exploration starts at the actual robot position and expands
all discovered positions, that are at least 20 cm from the nearest obstacle. This ensures
that non-reachable positions are ommited. After the frontier is found, it is sent to the
planning subsystem as the new goal for the robot.

4.7 Waypoint tracking

The waypoint tracking subsystem should control the robot motion in order to follow
the planned trajectory. The first input of this algorithm is the estimated robot position
from SLAM algorithm xr. The second input is the planned path of the robot, described as

W =
[
w1 ... wn

]
, (4.7)

where wi =

[
xwi

ywi

]
is the coordinate of the waypoint.

The robot as always navigating to the one selected current waypoint wc. In the
beginning, the robot is navigating to the first waypoint wc := w0. If the distance between
robot position and current waypoint is below the setted limit distmin, the current waypoint
is updated wc := wc+1. This condition is checked by the internal ROS timer at 100 Hz
frequency. This process continues until the last waypoint of the path is reached.
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The motion towards the actual waypoint wc is calculated every time the update of
robot position comes from SLAM algorithm. First of all, the angle to the next waypoint is
calculated as:

φwc = atan2(ywc − yr, xwc − xr). (4.8)

The angles φwi
and φr are in range [−π, π] (in the world coordinates). Because of this, the

difference ∆φ between robot orientation φr and angle to the next waypoint φwi
is calculated

as:

∆φ =


(φwc − φr) + 2π if (φwc − φr) < −π
(φwc − φr)− 2π if (φwc − φr) > π

φwc − φr otherwise

.

Based on control error ∆φ, the controller action is calculated. The chassis track construc-
tion allows rotation around the vertical axis. Expected operating space of the robot is an
indoor environment. To ensure the ability of movement in the confined spaces and also the
continuity of the motion in open areas, the robot uses the rotation only when ∆φ is greater
the setted limit φrotate =0.8 rad. When the control error is small, the robot drives towards
the next waypoint. This movement forward is controlled by the proportional regulator. The
whole control system is described in the algorithm 3:

Algorithm 3 The control system
procedure Position callback

Input:

wc . current waypoint
xr . position of the robot

Output:

right motor . command to left motor
left motor . command to right motor

calculate φwc . calculate angle to the actual waypoint, via eq. 4.8
calculate ∆φ . calculate control error, via eq. 4.9
if −φrot < ∆φ < φrot then . rotate on the spot

if ∆φ < 0 then
left motor ← backward
right motor ← forward

else
left motor ← forward
right motor ← backward

end if
else . drive towards the actual waypoint

left motor ← (forward− P∆φ)
right motor ← (forward+ P∆φ)

end if
end procedure

procedure Timer callback . 100 Hz timer callback
dist← distance(xr,wc)
if dist < distmin then

wc ← wc+1 . update current waypoint
end if

end procedure
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Figure 4.2: Waypoint tracking procedure vizualization. φr (red) is the heading of the robot,
φwc (blue) is the angle to the current waypoint, distmin (green) is the distance when the
current waypoint is updated.

4.8 Hardware interface

The commands calculated in the waypoint tracking algorithm should be sent to the
hardware platform and transformed into PWM signal commanding the motors. This is
managed by the serial line protocol and Arduino microcontroller.

4.8.1 Serial line protocol

After the control command is calculated, it is sent to the Arduino via serial line. The
communication between ROS and Arduino microcontroller is provided using the ROS pack-
age mrs_serial2 . One message consists of 6 bytes of data, where each byte is represented
as 8 bits. The message is defined as

[b][payload_size][ID][left_motor_command][right_motor_command][checksum]

where byte ’b’ represents the beginning of the message, payload_size defines length of the
message, ID defines message type. Bytes left_motor_command and right_motor_command

of type uint8_t represent desired motor speed. This value is in range 0–200, where 0–99
represents backward motion, 100 stop command, 101–200 forward motion. After all, the
checksum is calculated and send via serial line. This ensures the validity of data received
on the Arduino.

2Available at:https://github.com/ctu-mrs/mrs serial

https://github.com/ctu-mrs/mrs_serial
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4.8.2 Arduino

The code is written in the programming language wiring based on C++. The Ar-
duino receives a message via serial line. According to received commands, Arduino gener-
ates PWM(pulse width modulation) signal. Pulse width modulation is based on generating
a square wave oscillating between 0 and 5 V. Depending on the pulse width, the motor
controller sets the speed on the motor.

Another device connected to the Arduino is the sound buzzer. It indicates the source
of command messages (manual/automatic control). In manual mode, the signal 30 ms long
is heard every 5 seconds. The autonomous and semi-autonomous mode is indicated every
second by signal of the same length. The error state (no messages coming from ROS) is
indicated with 300 ms signal repeated every second.

4.9 Modes of operation

The communication between operator and robot is provided using the Wifi access
point. The robotic platform is able to operate in 3 different modes: autonomous, semi-
autonomous and manual:

• autonomous mode (exploration): the robot is searching for the nearest reach-
able frontier (border point between explored and unexplored area) and drives there
autonomously without any human input

• semi-autonomous mode: human operator clicks to the map and robot drives au-
tonomously to that location

• manual mode: human operator controls the motion of the tracks directly

4.10 User interface

The estimated map and position of the robot is presented to the operator in the
RVIZ tool, as illustrated on the right side of the figure 4.3. The planned path is marked
with the green line, to robot position is shown as the grey cube and axis determining the
robot orientation. In the semi-autonomous mode, the desired goal position is clicked to the
map in RVIZ. The mode of operation is switched using the command line control interface
illustrated in 4.3. The terminal interface is commanded by following commands:
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Keyboard input command
1 switch to manual mode
2 switch to semi-autonomous mode
3 switch to autonomous mode

Manual mode command
Q left motor forward
A left motor back
E right motor forward
D right motor back
W drive forward
S drive backward
X stop

Table 4.2: Keyboard commands for human operator

Figure 4.3: Control interface for human operator. On the left side, the operator can give
commands (mode switching/manual control) via command line and see what is happening
in the control system. On the right side, the map, current path and robot position are
presented in RVIZ tool.
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Testing and results

The developed UGV system was tested in the real-world environments. It is impor-
tant to mention that objective testing of such a complex system is challenging. The used
platform is unique and there is no second control system for comparison available. The
testing is divided into two parts. Firstly, the main subsystems (path planning, waypoint
tracking) are evaluated separately. Secondly, the created system is tested as a whole in out-
door and indoor conditions. These experiments are also used for evaluation of autonomous
and semi-autonomous mode. All these results are presented and commented in this chapter.
The scale of each map presented below is represented with a grid with 1 m per cell.

Figure 5.1: Testing indoors and outdoors.

5.1 Planning

The objective evaluation of the planned trajectory is challenging. As mentioned in
chapter 4.5, the planned path should be safe (avoiding obstacles) and optimal (shortest),



26 Chapter 5. Testing and results

which is contrary in some way. The path planning was tested in several experiments. An
example of planned trajectory is shown in 5.2. As we can see, the path is avoiding obstacles
in a safe distance, and the shorter path (from two options) was chosen by the algorithm.
It is planned only in the 8-neighbourhood and the green curve connecting all planned
waypoints is not “smooth”.

Figure 5.2: An example of the planned path (green).

5.2 Waypoint tracking

The waypoint tracking subsystem should control the motion according to the planned
path. The comparison of planned (green) and executed (red) trajectory is shown in figure
5.3. We can see that the biggest control deviation is caused by the shape of the planned
path, which is planned only in 8-neighbourhood. The quantitative evaluation of path fol-
lowing precision is difficult to calculate, because of the used waypoint tracking and path
planning method. It is important to mention that the precise following of the path planned
in 8-neighbourhood is not desired behaviour. The shape of the executed path (if the mo-
tion is “smooth” and not oscillating) is more important. The maximal distance between
the planned and executed path (between the nearest points of both) is below 7 cm. In
general, the planned path is smooth and follows the executed path in the safe distance
from obstacles.
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Figure 5.3: Comparison of the planned path (green) and the real path of the robot (red)

5.3 Experiment 1: Indoor autonomous mapping

The autonomous mode was tested in the indoor environment of a small house. The cre-
ated map is presented in the figure 5.4, video is available at http://mrs.felk.cvut.cz/saladin.
The robot was placed in the starting position (1). After the autonomous mode was enabled,
it explored the reachable area without any commands from the human operator. The path
of the robot is marked with red line.

The comparison between created map and precise construction plan of the building
is presented in figure 5.5. The sensors were able to spot all the main obstacles in the indoor
environment. The table legs and chairs are visible at position (2). The robotic platform also
overcame the door sill during the motion through the house position (3). In that situation,
the sensor was not in the horizontal position for a few seconds. Despite this fact, the used
SLAM algorithm tackled with that situation and mapping procedure was not broken. We
can state that the chosen sensor and SLAM algorithm are sufficient for mapping and path
planning indoors.

As we can see from the marked path (red) in figure 5.4, the robot avoided all the
obstacles safely. The exploration subsystem worked — no unexplored reachable areas left.
On the other hand, the BFS exploration is computationally expensive and takes significant
time to compute. For that reason, the robot sometimes stopped for few seconds until new
frontier was found. Another drawback of the used exploration method (revealed during
testing) is zigzag behavior in some situations. The system is always navigating to the
nearest frontier and sometimes changes the direction of the motion several times in the
row. This problem could be solved by planning to the farthest frontier, which would require
a different exploration approach.

http://mrs.felk.cvut.cz/saladin
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Figure 5.4: Experiment 1: Final map created in autonomous mode. Executed path is red.

Figure 5.5: Experiment 1: Comparison of the created map and construction plan.
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5.4 Experiment 2: semi-autonomous outdoor mapping

The robotic platform was tested in the garden around a family house. The move-
ment of the robot was controlled in semi-autonomous mode. In other words, the operator
controlled the motion via setting the goal in the map. The experimental results are shown
in 5.6 and 5.7. The robot started at the position (1), then drove clockwise around family
house (2) and then returned back to the starting position. The greenhouse is located at
(3).

As we can see from the maps, the mapping algorithm is able to spot all the obstacles
in the horizontal level, such as trees (4), walls and greenhouse. The biggest issues were the
lack of 3D spatial information and hardware limitations of the robotic platform. The used
2D sensor is not able to spot some spatial conditions, such as terrain unevenness, ground
steps and others. As a result, the path planning subsystem is not avoiding these obstacles.

Also the scan matching SLAM technique limitations are shown in 5.7. After the robot
drove around the house, the sensor was not in the horizontal position for the moment
and the sensor data were wrongly associated. The left side of the map 5.7 is shifted,
which is visible in the corner of the garden (5). After this wrong data association, the
simultaneous localization and mapping procedure was broken and not corresponding with
the real environment.

(a) Starting position (1) and greenhouse (3) (b) Created map in the middle of experiment

Figure 5.6: Experiment 2: Mapping in the garden. The environment is illustrated on left,
the map in the middle of the experiment is on right side.
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Figure 5.7: Experiment 2: Final map of the garden. The robot started at position (1) and
drove around the house (2) clockwise and returned back to starting position. The mapping
procedure was broken in the last part of experiment, which is obvious in corner of the
garden (5).

5.5 Summary

According to the experiments, the developed platform is able to fulfill the main task:
safely drive towards the given goal. The used methods of path planning and waypoint
tracking are relatively simple (the planning is provided only in 8-neighbourhood, the path
is not “smooth”, the robot is navigating to the waypoint which is in front of the robot). On
the other hand, the combination of these methods is sufficient for the given application.

The used combination of sensor and SLAM algorithm works well in the indoor envi-
ronment. The outdoor application is possible only if the terrain is not significantly uneven.
The sensor cannot spot obstacles which are too thin or under the level of measurement.
This is visible in figure 5.5, where the downstairs were not detected by the control system.

The semi-autonomous mode is working and control of the robot is simple. The option
of commanding the robot manually is helpful in some situations when the robot encounters
some obstacles, which are not detected by the sensor. The autonomous mode is applicable
and the platform is able to explore the area without direct commands.
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Conclusion

This thesis presented a solution to the feedback control system of the tracked robot.
The brief overview of key principle for autonomous robots — SLAM — was given in chapter
2. The robotic platform was equipped with sensor, onboard computer, microcontroller,
power source and other hardware providing the communication and motor control. Used
hardware was described in chapter 3.

As the main part of the thesis, the autonomous control system was developed in the
ROS environment. The HectorSLAM algorithm was used for simultaneous localization and
mapping. The produced map is then transformed using the distance transform algorithm.
These data are used for path planning. Finally, the waypoint tracking system together with
the developed hardware interface control the motion towards the goal.

The developed system is able to work in three different modes. In the autonomous
mode, the platform explores the reachable unexplored areas without direct human control.
In the semi-autonomous mode, the robot navigates itself to the given goal. Lastly, the
robot could be controlled directly by the operator.

The developed system was tested in both indoor and outdoor conditions. According
to this testing, the robot could be used for mapping of unknown indoor environment. The
developed control system is able to safely navigate towards the given goal. In conclusion, it
is possible to state that assignment has been fulfilled with some improvement (autonomous
exploration).

6.1 Future work

Work presented in this thesis provides an introduction to the topic of unmanned
ground vehicles. There presented solution could be improved in different ways. First of all,
the used sensor and SLAM algorithm provides only 2D mapping, which is not sufficient
in some real-world scenarios. The robotic platform could be equipped with some extra
sensors, such as inertial measurement unit, 3D lidar, camera or depth sensor. This could
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improve the precision and reliability of mapping and localization procedure in environments
with a significantly uneven surface. The motion planning procedure could be improved by
modelling and planning the whole motion of the robot, not only the path of the central
point of the robot. Also, the goal-setting in the autonomous mode could be improved to
higher efficiency with some more advanced methods.
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Appendices





CD Content

In Table 1 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
ros packages implementation of path planning, waypoint tracking,

distance transform and exploration
arduino code code for Arduino

Table 1: CD Content
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List of abbreviations

In Table 2 are listed abbreviations used in this thesis.

Abbreviation Meaning
SLAM Simultaneous Localization And Mapping
PWM Pulse Width Modulation
UGV Unmanned Ground Vehicle
USAR Urban Search And Rescue
ROS Robot Operating System
BFS Breadth-first search
LKF Linear Kalman Filter
EKF Extended Kalman Filter
GPS Global Positioning System

Table 2: Lists of abbreviations
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