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Abstract
Development of autonomous cars is shaping the future of transportation. High-
performance motion controllers are necessary to deploy the technology under a wide
range of driving conditions. This thesis addresses trajectory tracking for autonomous
vehicles, with the goal of developing a racing controller. We factor the task into the
subproblems of vehicle dynamics modeling and model-based control design.

In the first part, we review the single-track models of vehicle motion, analyze
their properties, such as response variation with speed, and limitations, such as
prediction mismatch of the linear model under high lateral acceleration.

In the second part, we decompose the control problem into independent longitu-
dinal and lateral controllers. The core contribution of the thesis is the formulation
of the tracking controllers under the servomechanism problem framework, allowing
a unified design approach using state-space methods. In particular, we compared
the performance of reactive (LQR) and predictive (MPC) control strategies, and an-
alyzed the structure of the unconstrained MPC, drawing the link between the works
based on the classical control design and the recent optimization-based approaches.

The last part presents the test results achieved on a handling track in a vehicle
dynamics simulator. We designed a minimum-time trajectory to operate the vehicle
at the handling limits, demonstrated the functionality of the proposed solution and
the peak performance achievable using the traditional decoupled control architec-
ture, linear models, and constrained predictive controllers.

Keywords: vehicle dynamics, steering control, cruise control, autonomous vehicle,
trajectory tracking, servomechanism, model predictive control, autonomous racing.

Abstrakt
Rozvoj autonomních vozidel utváří budoucnost dopravy. Přesné a spolehlivé řízení
pohybu je nutné pro nasazení samořiditelných vozidel v rozličných jízdních pod-
mínkách. Tato práce se zabývá návrhem sledování trajektorie pro samořiditelná
vozidla. Cílem práce je vyvinout kontrolér pro závodní aplikace. Úloha je rozdělena
na modelování jízdní dynamiky a následný návrh řízení založený na modelu.

První část práce nabízí přehled jednostopých modelů vozidla, analýzu jejich
chování, zejména závislost odezvy na rychlosti, a omezení linearizovaných modelů,
zejména nepřesnost předpovědi chování při vyšších hodnotách bočního zrychlení.

V druhé části je návrh řízení rozdělen na nezávislé řízení podélné a příčné dy-
namiky vozidla. Hlavním přínosem práce je formulace sledování pomocí problému
servomechanismu, který sjednocuje návrhu řízení a umožňuje použití stavových
metod. Dalším přínosem je srovnání reaktivního (LQR) a prediktivního (MPC)
řízení pro danou aplikaci a rozbor zpětnovazební struktury prediktivního řízení bez
omezení, která objasňuje souvislosti mezi staršími přístupy, založenými na klasické
teorii řízení, a přístupy nedávnými, založenými na optimalizaci.

Závěrečná část prezentuje výsledky dosažené na simulovaném závodním okruhu.
Pro experimentální ověření byla navržena trajektorie průjezdu okruhem v minimál-
ním čase, na hranici jízdních možností vozidla. Výsledky dosažené v těchto pod-
mínkách prokazují funkčnost řešení a limity dosažitelného chování pomocí oddělené
řídicí architektury založené na prediktivních kontrolérech s omezeními.

Klíčová slova: dynamika vozidla, autonomní vozidlo, sledování trajektorie, ser-
vomechanismus, prediktivní řízení.
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1 | Introduction

The topic of this thesis is model-based design of a trajectory tracking controller for
autonomous road vehicles. We focus specifically on the vehicle dynamics involved
in the task, going beyond the typical parking and lane keeping applications into the
domain of autonomous car racing.

1.1 Motivation

The motivation for developing the controller is found both in the academia and
industry. Competitions such as the Formula Student Driverless [1] or the downscaled
F1/10 Autonomous Racing Competition [2] emerged recently to foster the academic
research in autonomous driving. One of the aims of the thesis is to provide a case
study of a vehicle motion controller design for the CTU teams participating in the
competitions mentioned above. Autonomous racing may soon become a part of the
motorsport mainstream. In 2016, Roborace [3, 4] was announced as a supporting
series of the FIA Formula E, aiming to be the first international track championship
for autonomously driven cars. In the past, many of the technological advances
were adopted from racing onto production cars. The new racing competitions pave
the way for further research and development in the areas of autonomous driving,
networking, and electric drives.

The thesis was started in collaboration with Porsche Engineering Services, Pra-
gue, sharing the interest to adopt the controller for automation of vehicle handling
tests. But possible industrial applications surpass the racing tracks. With the
progress in sensing, perception algorithms, and vehicle localization, future driver
assistance systems can extend beyond vehicle stabilization to offer path tracking.
Knowledge of the vehicle position and the desired path can be used to keep the ve-
hicle on the road in emergency situations and reduce the number of road accidents.
Control performance of a virtual racing driver can enable the operation of fully au-
tonomous vehicles during worsened weather conditions and reduced adhesion on wet
or icy roads.

1.2 Problem Definition

In mobile robotics, the terms path and trajectory are distinguished. A path is defined
as a time-independent ordered sequence of positions (or poses) to be traversed with
some tolerance. A trajectory additionally includes the speed (and acceleration) at
which the path shall be traversed and hence is parametrized in time. Trajectory
defines both the positional and the velocity reference, the complete rigid body state.
A trajectory is dynamically feasible if the system can generate such state response
while satisfying constraints of control inputs and states.

1



1. Introduction

The primary task of the thesis is to design a vehicle motion controller to track a
prescribed feasible trajectory at the vehicle handling limits. The secondary task is to
design the trajectory based on a given fixed path and a parametrization of the vehicle
handling limits. The difficulty of the problem arises from the nonlinearity of the
vehicle motion and uncertainties in modeling the tire-road interaction. Longitudinal
and lateral vehicle motion dynamics are coupled and require a trajectory to be
designed for decoupling and possible linearization. Even when linearized, the control
problem remains velocity dependent and thus time-varying.

1.3 Related work

The first milestone in autonomous car racing was the Defense Advanced Research
Projects Agency (DARPA) Grand Challenge in 2005, consisting of a 212 km off-road
course. Out of the 23 finalists, only five vehicles completed the course. Steering
control of the winning robot Stanley [5], created by the Stanford University’s team,
was based on a kinematic motion model and classical control theory. No information
on the future path was used and the controller was responding only to the current
tracking errors. The other two medalists, Sandstorm and H1ghlander [6] of the
Carnegie Mellon University, relied on a modification of the heuristic-based pure-
pursuit path following algorithm [7].

In 2005, the problem of automatic vehicle steering control was analyzed system-
atically in [8] using a dynamic model of vehicle motion with a nonlinear model of tire
force generation. The control of lane change maneuvers for obstacle avoidance on
straight roads was formulated using Model Predictive Control (MPC) and started
a series of articles applying the MPC approach to traction [9], steering [10], lateral
stabilization [11] or lanekeeping [12] control problems. The MPC framework is well-
equipped for including the available information about the future path, augmenting
the feedback controller with an optimal feedforward input.

In 2009, BMW implemented the TrackTrainer [13] to teach driving at the friction
limits. The car was capable of repeating a racing course recorded by a professional
racing driver. However, the application was limited by the need of prerecorded data
and included no mean of adjusting the speed profile to changes in road surface con-
ditions. The results played an essential role in the successive research of automated
highway driving [14].

This thesis was inspired by [15], describing the controllers implemented for Shelly,
Stanford’s Audi TTS, which completed the first autonomous run up Pikes Peak
in Colorado. The control problem was decoupled by designing a minimum-time
trajectory, separating the longitudinal and lateral motion dynamics. However, the
controllers were designed using classical control methods with multiple control loops
in parallel, limiting the performance achievable by repetitive tuning.

In [16] a clothoid-based model predictive controller was designed for Scania
trucks. The subsystem structure similar to [15] and use of MPC inspired the re-
search in this work, however, neither the clothoid-based path representation nor the
kinematic model was found suitable for the race track driving application. The last
major source of inspiration was found in [17], where a lateral motion controller was
designed as a constrained linear time-varying MPC controller based on a kinematic
vehicle model.

2
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Figure 1.1: System architecture, main topics of the thesis highlighted

1.4 Contributions
The problem was solved by designing a decoupling trajectory and decomposing the
problem into separated lateral and longitudinal control similarly as in [15] and [16].
However, the controller design extends the work of [17] using the model predictive
control methodology.

The problem of trajectory tracking was formalized as a servomechanism problem
and described using a state-space model. The structure allowed a unified design
approach for both the lateral and longitudinal controllers, using both state-space
and model predictive control methods. Our approach solved the design task, and
moreover allowed a further analysis. Structure and performance of reactive (state
feedback) and predictive control strategy were compared. Moreover, the approach
used in this thesis allowed a broader comparison of the controller structures, drawing
a link between the older works based on classical control design methods [5, 15] and
the recent optimization-based approaches [17].

Finally, the performance of the controller was verified in a vehicle dynamics
simulator, in the scenario of driving the Nardo handling track. A minimum-time
trajectory was designed to operate the vehicle at the handling limits to demonstrate
the peak performance achievable using the traditional decoupled control architec-
ture, linear models, and predictive controllers with constraints.

1.5 Outline
The main topic of the thesis is model-based control design. System architecture
shown in Fig. 1.1 captures the outline. Chapter 2 describes vehicle dynamics mod-
eling in the scope of trajectory tracking. The subsequent control design is based
on linear models and state-space methods. Basic principles of race car driving and
minimum-time trajectory generation is covered in Chapter 3, together with other
components required for implementation of a closed-loop trajectory tracking exper-
iment. The servomechanism state-space structure used for both the lateral and
longitudinal tracking controllers is introduced in Chapter 4. The model-predictive
formulation of the tracking problem is described in Chapter 5. Longitudinal velocity
controller is designed in Chapter 6 and lateral steering controller in Chapter 7. Fi-
nally, Chapter 8 presents the experimental results, consisting of simulated handling
track driving. The thesis is concluded discussing the achieved results and topics
opened for future work in Chapter 9.
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2 | Vehicle Modeling

This chapter introduces simplified mathematical models of vehicle motion, which
become essential in the later chapters for model-based controller design using model
predictive control. In Section 2.2, description of a kinematic bicycle model is given,
representing the basic constraints of a car-like motion. Similarly, a differential model
of a curvature-continuous curve is described. In Section 2.3, a dynamic single-track
planar model of vehicle motion with tire-road force interaction is introduced. The
model is developed neglecting the suspension kinematics, body roll, load transfer and
the track width with respect to the turn radius. However, the model captures the
main dynamic properties for trajectory tracking while being tractable for analysis
and controller design. A key part of the dynamic model is the description of the
tire-road force interaction. A brief overview of tire modeling and its influence on
vehicle handling is given in Section 2.4.

A commercial vehicle dynamics simulator IPG Carmaker was used to obtain
representative test data, instead of carrying out highly demanding testing on a real
full-scale vehicle with the expensive hardware for data acquisition. Assuming that
the vehicle model provided in IPG Carmaker captures the behavior of a real vehicle
with high fidelity if appropriately parametrized, its responses can serve as the refer-
ence for modeling. Although the vehicle model provided with IPG Carmaker could
not have been validated due to the unavailability of a full-scale vehicle test platform,
the behavior observed in simulations is in correspondence with experimental data
published in the literature [18], [19, Sec. 6.15], [20, Sec. 14.1]. Therefore, the mod-
eling attempts to capture the simulated behavior using lower-order (and possibly
linear) models. Control algorithms are validated on the high-fidelity vehicle model
of IPG Carmaker, using model-in-the-loop validation, an approach often utilized by
vehicle manufacturers. A survey of available vehicle dynamics simulators is listed in
Appendix A and the used parametrization of the vehicle model in Appendix B.

Validation in Section 2.5 shows that the simplified model captures the essential
properties for trajectory tracking with a real vehicle. Section 2.6 analyzes the prop-
erties of the linear model of lateral motion dynamics, in particular, the response
variation with the longitudinal velocity and model discretization. Section 2.7 eval-
uates the ability of the simplified models to generate open loop predictions of the
high-fidelity model response. Finally, Section 2.8 describes separate modeling of the
longitudinal dynamics.

2.1 Coordinate Frame Convention

Several standards of defining coordinate frames exist in the automotive industry.
The main two standards are Society of Automotive Engineers (SAE) convention and
International Organization for Standardization (ISO) convention. Models derived
in this thesis are planar. Therefore, the definition of the reference frame in the

5



2. Vehicle Modeling
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Figure 2.1: Coordinate frame convention used in kinematic models

horizontal plane is of concern. The SAE sign convention [21] defines x-axis pointing
forward, y-axis pointing right, z-axis pointing downward and rotation positive in the
clockwise direction. The ISO sign convention [22, 23] defines x-axis (longitudinal)
pointing forward, y-axis (lateral) pointing left, z-axis (normal) pointing upward
and rotation positive in the counter-clockwise direction. The SAE convention is an
American National Standard while the ISO standard is commonly used in Europe.
Moreover, the ISO frame convention is equivalent to the frame commonly used in
mobile robotics [24, 25]. Therefore, the ISO convention is used in this thesis. The
only exception to the ISO convention is the definition of tire slip angle, whose sign is
changed so that positive tire slip angle induces positive lateral tire force. The SAE
and ISO coordinate frames, each with the two possible tire slip sign conventions, are
compared in [26, Appendix 1], from which we use the adapted ISO option.

2.2 Kinematic Model of Vehicle Motion

This section introduces a kinematic model of vehicle motion based on the steering
geometry, which is commonly used for control of maneuvers at low speeds or low
levels of lateral acceleration. The presented kinematic model is based on [27]. The
key properties of the model are also summarized in [28], comparing the kinematic and
dynamic (force-based) models in the context of model-predictive trajectory tracking.

2.2.1 Kinematic Bicycle Model

The key modeling assumption is that the vehicle moves with none of the wheels
slipping sideways, meaning that the velocity vector of each wheel is aligned with
the longitudinal axis of the wheel. Hence, the motion of the kinematic model is
constrained by non-holonomic constraints. This assumption is valid when the lateral
acceleration is low, and the lateral force exerted by each tire is negligible. During
steady-state turning, the wheels are moving along concentric circular paths, aligned
with the circle tangents and with no lateral slip. Therefore, it is possible to represent
the two left and right wheels by a single wheel located in the center of the axle.
Vehicle motion is assumed planar, the mass of the vehicle is modeled as a point
mass located in the center of mass. The coordinate frame convention used in the
kinematic model is shown in Fig. 2.1a.

6



2.2 Kinematic Model of Vehicle Motion

The nonlinear equations of motion are

Ẋ = v cos(ψ + β), (2.1a)
Ẏ = v sin(ψ + β), (2.1b)

ψ̇ = v cos(β)
lf + lr

tan(δ), (2.1c)

v̇ = a, (2.1d)

β = tan−1
(

lr
lf + lr

tan (δ)
)
, (2.1e)

where X,Y are the vehicle coordinates in the global planar reference frame, ψ is
the vehicle heading angle, v = ‖v‖ is the magnitude of the velocity vector of the
center of mass, β is the vehicle side slip angle, the angle between vehicle longitudinal
axis and the direction of the velocity vector of the center of mass, lf , resp. lr, is the
distance between the center of mass and the front, resp. the rear, axle. Only front
wheel steering is modeled and δ denotes the steering angle of the front wheel.

The kinematic model describes vehicle motion without considering the forces
affecting it. Advantages of using the kinematic model for control design are twofold.
First, the model can be used for motion control at low speeds, including standstill.
As will be shown later in Section 2.3, any tire model becomes singular at low speeds
due to vehicle velocity in the denominator of the wheel slip angle. Secondly, the
model is described by a smaller number of parameters, which facilitates system
identification and application of the controller to different platforms. Only the
wheelbase and the position of the center of mass, described by lf and lr, need to
be determined.

The model is converted to a Linear Parameter-Varying (LPV) form for the pur-
pose of lateral motion control design, by considering the longitudinal velocity dy-
namics decoupled and treating the velocity v as a time-varying parameter vx instead.
Goniometric functions are approximated using small-angle assumption: sin(x) ≈ x,
cos(x) ≈ 1, tan(x) ≈ x, because the steering angle δ is typically below |δ| ≤ 20◦
during driving (excluding parking maneuvers). Equations of motion simplify to

ψ̇ = vx
L

tan(δ) = vxκ ≈
vx
L
δ, (2.2a)

β = lr
L
δ, (2.2b)

where L = lf + lr is the wheelbase, and κ = 1
R is the instantaneous curvature of

motion, assuming the vehicle is moving along a circle of radius R. The small-angle
approximation is valid for sufficiently large turn radius, meaning that R� L.

2.2.2 Model of a Curve
A curve can be described using its curvature as a function of the distance traveled
along the curve, the arc length s. The coordinate frame used for the differential
description of a curve is shown in Fig. 2.1b. The kinematic bicycle model of Eq. (2.2)
represents a geometric curve. Rewriting Eq. (2.2a) using the chain rule

ψ̇ = dψ
dt = dψ

ds
ds
dt = κṡ, (2.3)

the velocity of the motion along the curve ṡ is the time derivative of the arc length s.
Curvature κ is the derivative of the curve tangential heading ψ with respect to the
arc length s.

7



2. Vehicle Modeling

A curve used commonly in road design is a clothoid, a spiral whose curvature is
an affine function of its arc length [27, 29]. The path must have continuous curvature
to be kinematically feasible. While not imposed by Eq. (2.2) directly, in practice
steering angle rate δ̇ (slew rate of the steering servo) is limited and the steering
angle cannot be changed instantaneously while moving along the curve. Therefore,
curvature continuity is an essential property of a curve representing the desired path
of the vehicle. The motion of a particle along a curvature-continuous curve can be
described by

κ̇ = u, (2.4a)
ψ̇ = κvref , (2.4b)

where input u is the rate of curvature change and vref is a time-varying parameter
representing the tangential velocity of the motion along the curve vref = ṡ. This
differential representation of a curve is equivalent to the linearized kinematic bicycle
model. The Cartesian coordinates of the curve can be recovered by integration
of Eq. (2.1a)–(2.1b) with β = 0.

2.3 Dynamic Model of Vehicle Motion
This section introduces a mathematical model of vehicle motion based on force
interactions. The aim is to obtain a model which covers a larger envelope in terms of
lateral acceleration than the kinematic model of Section 2.2. At a constant steering
angle, the turning radius of a car typically changes with speed. This behavior
is important for path tracking but is not captured in the kinematic model. The
dynamic model presented in this section improves path prediction accuracy and is
suitable for controller design using linear system methods.

As in the previous section, the motion of the vehicle is assumed planar; the
vehicle is assumed to be a rigid body with mass m and moment of inertia Iz with
respect to the axis normal to the horizontal plane at the center of mass. Since
tires are the only part in contact with the road surface during normal operation,
modeling tire forces is the essential part of a vehicle motion model. As in Section 2.2
we restrict ourselves to a single-track model, with the left and right tires lumped into
one, representing the whole axle. By doing so, the roll dynamics of the suspension
and lateral weight transfer are neglected, and a large turning radius is assumed,
such that the left and right tires undergo approximately the same lateral deflection
as the virtual tire in the middle. The coordinate frame and angular variables used
in the dynamic bicycle model are shown in Fig. 2.2a.

A rigid body constrained to the planar movement has three degrees of freedom
and its motion is governed by the following Newton-Euler equations

ẍ = m−1 (Fx,r + Fx,f cos(δ)− Fy,f sin(δ)) + ψ̇ẏ, (2.5a)
ÿ = m−1 (Fy,r + Fx,f sin(δ) + Fy,f cos(δ))− ψ̇ẋ, (2.5b)
ψ̈ = I−1

z (lfFx,f sin(δ) + lfFy,f cos(δ)− lrFy,r) , (2.5c)

where ẋ, ẏ are components of the velocity in the body-fixed coordinate frame and ψ̇
is the yaw rate, the angular velocity of the rigid body with respect to the normal
axis at the center of mass. Only the front wheel is assumed steered with δ denoting
the steering angle. Tire forces are modeled and expressed in the respective tire-
fixed coordinate frames, with the convention depicted in Fig. 2.2b. Therefore, the
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Figure 2.2: Coordinate frame convention used in the dynamic model

forces related to the front steered wheel are transformed to the body-fixed coordinate
frame by rotation of δ about the normal axis at the tire point of contact. The same
procedure can be used for modeling steered rear wheel or incorporating all four tires
in the twin-track model. The position of the vehicle center of mass in the global
coordinate frame is obtained by integrating

Ẋ = ẋ cos(ψ)− ẏ sin(ψ) = v cos(ψ + β), (2.6a)
Ẏ = ẋ sin(ψ) + ẏ cos(ψ) = v sin(ψ + β), (2.6b)

where
v =

√
ẋ2 + ẏ2 (2.7)

is the magnitude of the velocity vector at the vehicle’s center of mass and

β = arctan
(
ẏ

ẋ

)
(2.8)

is the vehicle side slip angle, the direction of the velocity vector at the center of
mass with respect to the body-fixed coordinate frame. To obtain the yaw angle, the
heading of the vehicle, Eq. (2.5c) is integrated twice. From Eq. (2.5b), the lateral
acceleration at the center of mass of the vehicle is given as

ay = ÿ + ψ̇ẋ. (2.9)

2.4 Tire Modeling
Characterizing the force interaction between the vehicle tires and the road surface is
the major challenge in modeling and control of vehicle motion. The actual physical
interaction of an elastically deformable pneumatic tire sliding over the road surface
is very complex and still not fully understood [26]. In this thesis, we focus on
simplified models of the interaction for control design and vehicle motion simulation,
describing the forces exerted in the longitudinal and lateral directions as a function
of the vehicle states. This section provides a brief description of tire properties based
on [27, Chapter 13], [30, Chapter 2], and [26, Chapter 1].

The most important tire characteristic for trajectory tracking is the generation
of lateral force. The ability to generate lateral force is strongly dependent on tire
contact patch, determined not only by tire dimensions but also by the vertical load
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2. Vehicle Modeling

and inflation pressure. The force is generated by adhesion of the two surfaces. The
adhesion depends mainly on road surface conditions, being reduced on a wet or icy
road. Centrifugal force pushes the vehicle outwards of the turn during cornering.
The adhesion between the tire and the road surface supplies the centripetal force and
prevents the tire contact patch from sliding outwards. As a result, the tire deforms
elastically between the contact patch and the wheel rim, causing lateral deflection
and twisting of the tire tread at the tire contact patch [31]. According to the elastic
foundation model for lateral force generation, first developed in [32] by Fiala, the
elasticity of the tire opposes the deflection with a certain stiffness, exerting lateral
force. During cornering, an angle exists between the wheel pointing direction and
the velocity vector of the tire contact patch. The angle is denoted as the tire slip
angle α and is used as the input variable in modeling of tire lateral force. For the
front tire of the single-track model, the tire slip angle αf is defined as

αf = δ − θf = δ − arctan
(
ẏ + lf ψ̇

vx

)
, (2.10)

where θf is the direction of the velocity vector at the tire contact patch in a body-
fixed coordinate frame and δ is the wheel pointing direction, transforming θf into
the tire-fixed coordinate frame. Rear tire slip angle αr is calculated similarly, sub-
stituting axle arm lf with −lr and with a zero steering angle. Due to the presence of
the tire slip angle, a force is generated opposing the non-zero lateral velocity, which
contributes to the lateral deflection of the tread.

Three ranges of operation with respect to tire slip angle exist: elastic (or lin-
ear), transitional, and frictional [26, 30]. In the elastic range, the lateral force is
approximately linear with respect to the tire slip angle. In the transitional range,
tire sliding starts to occur and the elastic capability of the tire is becoming satu-
rated. In the frictional range, the adhesion limit is exceeded and the surfaces begin
to slide against each other. The source of the lateral force is no longer an elastic,
but a frictional force.

The key behavior the lateral tire model shall cover is the following: the force
increment decreases as the tire slip is increased, the maximum available force is
limited, and the maximum varies with tire-road friction and the vertical loading
force of the tire. The above operational ranges are captured in the most widely used
tire models, Pacejka [33, 26] and Fiala [32], both semi-empirical. Each of the models
describes an analytic curve which defines the typical shape of the tire cornering force
characteristic. The model is usually fitted to data obtained by measuring the force
exerted by the tire at different values of tire slip angle and under different values
of vertical loading force in a tire testing rig. The models vary in the number of
parameters and hence in the flexibility of the fit.

2.4.1 Pacejka Magic Formula
The Magic Formula tire model introduced in [33] and covered in detail in [26] pro-
vides an analytic formula for an accurate description of measured steady-state tire
force behavior. The formula for the lateral force with zero horizontal and vertical
shift is

Fy(α) = D sin [C arctan{Bα− E (Bα− arctanBα)}] , (2.11)

with B stiffness factor, C shape factor, D peak value and E curvature factor, deter-
mining the curve shape [27]. The slope of the curve at the origin, the tire cornering
stiffness Cα, is given as BCD.
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2.4 Tire Modeling

(a) Pacejka, for varying Fz (b) Fiala, for varying Fx

Figure 2.3: Normalized lateral force curves of the selected tire models

A typical shape of the lateral force coefficient (lateral force normalized by the
vertical load) is shown in Fig. 2.3a, with parameter values selected arbitrarily to
show the typical shape as in [30]. The curve is anti-symmetric and was plotted
only for positive values of tire slip angle α. The Pacejka Magic formula captures all
three ranges of tire operation and with four parameters offers sufficient freedom to
fit the curve to measured tire data. Tire load sensitivity modeled using D ∝ F 0.8

z is
shown, creating the typical decrease of lateral force coefficient with increasing tire
loading force. While the curve is plotted for the use case of lateral force generation,
Eq. (2.11) can be used for a description of longitudinal force or tire self-aligning
moment generation. In contrast to Fiala tire model shown later, Pacejka tire model
can capture the reduction of lateral force in the frictional range of operation.

2.4.2 Fiala Tire Model
During combined generation of lateral and longitudinal force, the total force exerted
in the horizontal plane is limited by the adhesion µFz, where Fz is the normal load
applied to the tire and µ is the friction coefficient. The relation between longitudinal
and lateral force limit can be modeled using the friction or Kamm’s circle of forces

µFz ≥
√
F 2
x + F 2

y , (2.12)

neglecting factors such as the tire load sensitivity. Tire models describing the com-
bined force generation in more detail using combined slip are described in [26, 27, 30].

In this thesis, a simpler model of combined force generation will be used, the
modified Fiala tire model as described in [34], where the model was used to analyze
drift equilibria of the nonlinear single-track vehicle model and to design a controller
for sustained drifting. The model with the adapted ISO sign convention is given as

Fy =

Cα tan(α)− C2
α

3Fy,max
| tan(α)| tan(α) + C3

α
27F 2

y,max
tan(α)3, |α| < αsl,

sgn(α)Fy,max, |α| ≥ αsl,
(2.13)

where Cα is the tire cornering stiffness, α is the tire slip angle and

αsl = 3Fy,max
Cα

(2.14)

is the tire slip angle at which the exerted force reaches the available maximum and
becomes saturated. The maximum lateral tire force is

Fy,max = νµFz. (2.15)
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2. Vehicle Modeling

The modified Fiala tire model of Eq. (2.13) incorporates the coupling between
the lateral, longitudinal, and normal force as a function Fy(α, Fx, Fz), meaning that
the lateral force Fy is dependent on the forces acting in the remaining x, z directions.
The total force in the horizontal direction is restricted by the friction circle Eq. (2.12)
and so the available lateral force is reduced by coefficient ν

ν(Fx, Fz) =
√
µ2F 2

z − F 2
x

µFz
∈ 〈0, 1〉, (2.16)

assuming |Fx| ≤ µFz.
A shape typical for the Fiala tire model is shown in Fig. 2.3b with the tire corner-

ing stiffness indicated in red. Compared to the Pacejka tire model of Fig. 2.3a, the
increment of the lateral force coefficient (slope of the curve) decreases faster and its
decrease rate cannot be controlled by a parameter. Behavior in the frictional range
cannot be parametrized, the lateral force coefficient becomes saturated. Although
Fiala tire model curve is not as flexible, it can be parametrized more easily using a
single parameter Cα. While Fiala model does not include longitudinal dynamics of
the wheel (wheel rotational inertia and generation of longitudinal slip), it describes
the reduction of the available lateral force when a longitudinal force is applied during
braking or accelerating.

Since the interface for trajectory tracking controller shall be the longitudinal
acceleration command, the modified Fiala tire is a viable validation model without
the need of using tire models of higher complexity. Additionally, through Fz the
model can take into account longitudinal weight transfer as a result of longitudinal
acceleration or increase of dynamic load due to aerodynamic downforce. Therefore,
Fiala tire model was selected for use in the nonlinear single-track model of vehicle
dynamics.

2.4.3 Linear Tire Model

For classical control design, a linear approximation of the cornering force character-
istic is used, resulting in a linear model and allowing controller design using linear
systems methods. However, the cornering force characteristic is nonlinear and the
approximation holds only for small slip angles, resp. up to medium levels of lateral
acceleration, approximately for |ay| ≤ 4 m/s2. For the controller design, the nonlin-
ear Eq. (2.5) of vehicle motion is linearized. The linearized model is known in the
literature as Linear bicycle model of lateral vehicle dynamics.

To obtain linear models, the longitudinal and lateral dynamics shall be decou-
pled. The lateral dynamics model is usually derived with the assumption of constant
longitudinal velocity ẋ, neglecting the longitudinal dynamics of Eq. (2.5a), and for
the range of tire slip angles, where the tire cornering force characteristic is ap-
proximately linear. A linear model of longitudinal vehicle dynamics is described
separately in Section 2.8.

Decoupling is done by assuming that the longitudinal velocity dynamics are
handled by an independent controller. The trajectory is planned below the max-
imum force limit to avoid the stronger coupling in force saturation. Under such
assumptions, the longitudinal velocity ẋ is replaced by a time-varying parameter vx
and Eq. (2.5a) is not further used in linearizing the model of lateral dynamics.

Second, the small angle approximation is used for the steering angle δ, approx-
imating sin(δ) ≈ δ, cos(δ) ≈ 1, and for the slip angle of each tire in Eq. (2.10)
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2.5 Validation and Identification

αf = − arctan
(
ẏ + lf ψ̇

vx

)
+ δ ≈ − ẏ + lf ψ̇

vx
+ δ, (2.17a)

αr = − arctan
(
ẏ − lrψ̇
vx

)
≈ − ẏ − lrψ̇

vx
. (2.17b)

The lateral tire force is approximated as proportional to the tire slip angle α for
small slip angles [27], resp. in the elastic range of tire operation [26]. A first-order
approximation of the tire force characteristic is obtained from Taylor expansion of
the tire cornering force characteristic

Cα = ∂Fy
∂α

∣∣∣
α:=0

. (2.18)

Proportionality constant Cα equals the tire cornering stiffness of the Fiala tire
model Eq. (2.13), or BCD of the Pacejka tire model Eq. (2.11). Lastly, the effect
of the forward wheel tractive force Fx,f to lateral motion dynamics ÿ is neglected by
taking Fx,f sin(δ) ≈ 0.

Tire cornering forces are expressed as linear functions of slip angles, respectively
as linear functions of the vehicle states, rewriting Eq. (2.5b) and (2.5c) into

ÿ = Fy,r + Fy,f
m

− ψ̇vx = 1
m

[
−Cαr

(
ẏ − lrψ̇
vx

)
− Cαf

(
ẏ + lf ψ̇

vx
− δ

)]
− ψ̇vx,

(2.19a)

ψ̈ = lfFy,f − lrFy,r
Iz

= 1
Iz

[
lrCαr

(
ẏ − lrψ̇
vx

)
− lf Cαf

(
ẏ + lf ψ̇

vx
− δ

)]
(2.19b)

and collecting the terms into a state-space form with state vector x = [ẏ, ψ̇]>

[
ÿ

ψ̈

]
=


−
Cαr + Cαf

mvx

lrCαr − lfCαf

mvx
− vx

lrCαr − lfCαf

Izvx
− l

2
rCαr + l2f Cαf

Izvx


︸ ︷︷ ︸

A

[
ẏ

ψ̇

]
+


Cαf

m
lfCαf

Iz


︸ ︷︷ ︸

B

δ. (2.20)

2.5 Validation and Identification
In this section, the nonlinear single-track model of Section 2.3 with Fiala tire model
described in Subsection 2.4.2 and with the linear tire model of Subsection 2.4.3 are
identified and validated with respect to a high-fidelity model of vehicle dynamics
provided in the commercial software IPG Carmaker. The focus of identification is
steering behavior and lateral dynamics of the vehicle. Since obtaining experimental
measurements with a real vehicle is cost prohibitive for an academic thesis, a high-
fidelity model is used as a reference instead. The goal is to fit the simplified models
to the simulated results of the high-fidelity model. The physical parameters, such as
mass, its distribution, and moment of inertia can be obtained based on a multibody
model from computer-aided design software available to the vehicle manufacturers.
The main parametric uncertainty comes from the nonlinear tire-road interaction,
which is to be described using a first-order approximation.
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Firstly, the lateral transient response is identified using the ISO 7401 step steer
test method [35] at speed of 80 km/h. The simulation results are used to parametrize
the simplified models derived in the previous section. Subsequently, the ISO 7401
step steer test at two different speeds, namely at 60 km/h and 100 km/h as suggested
in [35], is used to validate the model with identified parameters. Many phenomena
are influencing the steering characteristics of a real vehicle which were not included
in the simplified models, such as lateral load transfer, tire camber induced by vehicle
rolling motion, by tire self-aligning moment, or by suspension kinematics. All these
phenomena influence the lateral transient response of the vehicle.

The tire cornering stiffness of the simplified single-track model cannot be deter-
mined based on the tire cornering force characteristic and the static load distribution
alone. As discussed in [26], front and rear axle effective side force characteristics are
introduced. The wheels are steered not only by the steering wheel, but a steering
angle exists due to body roll through suspension kinematics, steer compliance, initial
toe and camber angle of the wheels. Therefore, the values of tire cornering stiffness
have to be adjusted to account for the unmodeled phenomena to improve the abil-
ity of the simplified model predicting the behavior of a higher-order, high-fidelity
vehicle model. The effective cornering stiffness of an axle is defined as the ratio of
the axle side force and the virtual axle slip angle [26], which is defined with respect
to the center of the axle. Results of the ISO 7401 step steer test were used to lower
the values of the front and rear cornering stiffness to match the effective values.

The identification test was executed at a constant speed of 80 km/h. The steering
wheel was abruptly moved to an angle at which the steady-state lateral accelera-
tion reaches ay,ss = 4 m/s2. The required position of the steering wheel angle is
determined beforehand, using a slow ramp steer or steady-state circular motion.
Mandatory measured signals of the experiment, as defined by the ISO 7401 stan-
dard, are shown in Fig. 2.4a in blue color.

Lateral force is generated only at the front axle during the rising edge of the step.
The slip angle at the rear axle occurs with a time delay, and as it increases, lateral
force is generated at the rear axle. The vehicle side slip angle is initially positive,
but as the rear axle slip angle increases, its sign changes, reaching a negative steady-
state value. In the steady-state cornering conditions, the tire cornering forces and
the centrifugal force are in balanced. Similarly, the moments of the tire cornering
forces are in balance with respect to the center of mass.

The test is used to match the steady state yaw rate gain δ → ψ̇, lateral accelera-
tion gain δ → ay and time-constants of the steering response. Simulated results were
compared against the response of the linear model Eq. (2.20) and Cαr , Cαf values
were adjusted to minimize the Root Mean Square (RMS) errors in β and ψ̇, each
normalized by the respective steady-state value. Note that ẏ = vxβ for the linear
model. The response of the identified linear model is shown in Fig. 2.4a in yellow.
The response of the nonlinear single-track model with Fiala tire model of the same
tire cornering stiffness is shown in orange. Values of the identified cornering stiffness
are summarized in Tab. B.1 of Appendix B.

Both simplified models show similar behavior as the high-fidelity model, gains
in yaw rate and lateral acceleration channels are well-matched. The high-fidelity
model has a slightly different transient response in the side slip angle. Since the
increment of tire force decreases with increasing tire slip angle for the Fiala tire
model, the simulated response of the nonlinear model has a lower yaw rate and
lateral acceleration gain. A larger value of side slip angle β has to be developed to
achieve a balance of the front and rear tire forces during the steady-state cornering.
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(a) Model identification (b) nonlinear single-track

Figure 2.4: Prediction using simplified dynamic models

However, in Section 2.7, the tire nonlinearity plays an important role when predicting
the response during more aggressive maneuvers with higher peak lateral acceleration.

Fig. 2.4b shows the tire slip angles and tire forces, comparing the response of
the high-fidelity and the linearized bicycle model. The quantities are plotted per
tire, meaning that the lateral force of the whole axle of the single-track model was
divided by two. The First two letters in the legends of Fig. 2.4b distinguish front
and rear tires, the second two letters indicate the side of the vehicle, the averaged
value or the single-track model response (denoted st.). While the rear tire slip angle
and rear tire lateral force of the linearized model match well the averaged quantities
of the two rear tires, the front axle effective cornering stiffness had to be lowered
by a factor of 0.46. In Fig. 2.4b, the front axle slip angle αf was multiplied by the
same factor to match the averaged value of tire slip of the high-fidelity model. The
front axle effective cornering stiffness appears lower in the overall response as result
of the suspension kinematics. Fig. 2.4b also shows the normal forces loading the
tires, resp. the lateral weight transfer, which becomes even more significant with
increasing lateral acceleration.
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(a) at 60 km/h (b) at 100 km/h

Figure 2.5: Validation experiment using ISO 7401 step steer maneuver
executed at two different speeds.

Pneumatic tires do not behave according to the laws of dry friction and the
increase in the lateral force is below-proportional to the increase in the normal force.
Lateral weight transfer decreases the total available lateral force. The nonlinear tire
model helps to account for the tire load sensitivity as the increment of the tire
cornering force decreases with increasing tire slip angle in the transitional range of
operation, which is induced by higher levels of lateral acceleration.

Validation experiments in Fig. 2.5 show that the simplified models are valid at
different speeds and that the linear parameter-varying model, parametrized by the
velocity, can be used to predict the behavior of the vehicle at different speeds, with
other parameters fixed. Steady-state gains in the yaw rate and lateral acceleration
match. Transient behavior of the side slip angle is slightly different, but the sim-
plified models can approximate the response shape, including the occurrence of a
non-minimum phase response at higher speeds.
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Figure 2.6: Variation of system poles and zeros with longitudinal velocity

2.6 Properties of Linear Model of Lateral Dynamics

The previous section showed that the linear dynamic bicycle model of Eq. (2.20) cap-
tures some of the properties important for trajectory tracking, which the kinematic
model does not. The required steady-state value of the steering angle to maintain a
circular trajectory of curvature κ at longitudinal velocity vx is described by

δ = Lκ+
(
mf
Cαf

− mr
Cαr

)
︸ ︷︷ ︸

KV

v2
xκ, (2.21)

where KV is the understeer gradient. Based on the sign of KV , three types of cars
exist: neutral steer (KV = 0), understeer (KV > 0) and oversteer (KV < 0). These
terms refer to the typical behavior of the vehicle during steady-state cornering and in
the linear region of tire operation. For example, an understeering vehicle executes
an arc of larger radius as vx is increased while keeping δ fixed. Most passenger
cars are designed as understeer, since an oversteer vehicle becomes unstable above
the critical velocity when L = −Kvv

2
x. Understeer gradient describes the speed

dependency of the steady-state yaw rate gain and is vital for correct prediction of
the vehicle turning radius at different speeds and levels of lateral acceleration.

2.6.1 Variation of Transient Response with Longitudinal Velocity

Not only the steady-state properties vary with velocity, but also the transient re-
sponse. First, let us analyze the map of poles and zeros of the continuous-time
linear dynamic bicycle model (with an understeer parametrization) in Fig. 2.6. The
system has a pair of poles and transfer function of each output channel has one
distinct zero. At low velocities (vx ≤ 5 m/s), the dynamics are relatively stiff, with
both poles real. As the velocity is increased, both poles and zeros shift towards
right-hand side, meaning a slower transient response. For vx ≥ 10 m/s, the poles
become complex conjugate, meaning an oscillatory response. The damping is fur-
ther reduced with increasing velocity. As the velocity is further increased, one of the
zeros transitions into the right-hand side of the plane, resulting in the non-minimum
phase response.

The response of the system to a unit step of δ = 1◦ is shown in Fig. 2.7. Under
the small angle assumption, Eq. (2.8) simplifies into β = ẏ/vx and so β can be
viewed as normalized lateral velocity and used as the output in place of ẏ. The
results match the behavior expected based on the pole-zero map. As the velocity
is increased, the response becomes oscillatory with decreasing damping. The non-
minimum phase response caused by the positive real part zero is visible in the side
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(a) vehicle side slip angle (b) yaw rate

Figure 2.7: Linear model response to a unit step of δ = 1◦. Response of
the continuous-time model compared with the system discretized using the
bilinear transform sampled at fs = 20 Hz.

(a) preimages of stable solutions (b) discretized system poles

Figure 2.8: Discretization using Forward Euler method yields unstable
discrete-time system at low speeds, shown for sampling with fs = 10 Hz.

slip response in Fig. 2.7a. Approximately for velocities vx ≥ 20 m/s, the response
is initially positive and changes the sign during settling. This characteristic non-
minimum phase behavior was also observed in the case of the higher-complexity
IPG Carmaker vehicle model in Fig. 2.4a and in Fig. 2.5b, while at lower speed
in Fig. 2.5a, the β response was minimum phase.

2.6.2 Discretization
Since the controller in this thesis will operate at discrete time steps, the continuous
time dynamics of the linear parameter-varying system need to be discretized. As
seen in Fig. 2.6, the system response is relatively stiff at low velocities, meaning
that the associated time constants of the response are fast. Therefore, care must be
taken not only because the model becomes singular at low velocities, but also because
the sampling rate might be insufficient or the selected discretization method may
yield incorrect results. This thesis addresses variation of poles and zeros location
with longitudinal velocity, which has the main influence. A root locus analysis with
respect to other parameters of the single-track model is described in [36].

Fig. 2.8b shows the poles of the continuous-time linear system parametrized
at different speeds and the region for which discretization using forward Euler ap-
proximation results in a stable solution of the difference equation. Forward Euler
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discretization maps only the poles inside of the circle in Fig. 2.8a to stable discrete-
time images. At low speeds, the discretized system would be unstable and thus not
usable for predictions in the controller. At high speeds, the boundary of the stable
region is approached. A similar analysis was ignored in [28] and the dynamic bicycle
model was discretized using forward Euler discretization method at fs = 10 Hz and
even at fs = 5 Hz!

A different discretization method must be used, such as the backward Euler
method or the bilinear transform (Tustin’s method). The latter ensures a one-to-
one mapping between stable regions of the Laplace and Z-transform complex planes,
while backward Euler method may stabilize some unstable dynamics. In this thesis,
the bilinear transform is used, which requires calculation of a matrix inverse to
discretize the plant.

Bilinear transform discretization of a linear state-space model is obtained by
approximating the integrals in the solution of the state-transition equation

xk+1 − xk =
∫ tk+1

tk

ẋ dt = A
∫ tk+1

tk

x dt+ B
∫ tk+1

tk

u dt (2.22)

using the trapezoidal rule

xk+1 − xk =ATs
2 [xk+1 + xk] + BTs

2 [uk+1 + uk] ,[
I−ATs

2

]
xk+1 =

[
I + ATs

2

]
xk + BTs

2 (uk+1 + uk) ,

xk+1 =
[
I−ATs

2

]−1 [
I + ATs

2

]
︸ ︷︷ ︸

Ad

xk +
[
I−ATs

2

]−1
BTs

2︸ ︷︷ ︸
Bd

[uk+1 + uk] .

(2.23)
To obtain a causal discretization scheme, the first-order hold at the input is reduced
to a zero-order hold, assuming uk+1 ≈ uk and so

uk+1 + uk
2 ≈ uk → Bd =

[
I−ATs

2

]−1
BTs. (2.24)

When approximating the integrals, the time-varying model is assumed as parameter-
varying instead, with the values of parameters fixed between the sampling steps.
Therefore, system matrices can be factored out of the integrals.

Response of the system discretized at fs = 20 Hz using Eq. (2.23) and (2.24) is
shown in Fig. 2.7 using dot markers. The discretized response is stable, however,
some difference exists at low speeds vx ≤ 5 m/s, an overshoot and oscillations in the
discretized response. Therefore, an insufficient controller performance at low speeds
may also be caused by a low sampling frequency.

2.7 Model-based Prediction

In this section, the derived models of vehicle dynamics are used to predict the tra-
jectory of the high-fidelity model of IPG Carmeker. Since this thesis deals with
model-based control design and in particular with model predictive control, accu-
rate predictions of system state response are necessary. If the prediction of system
states is not accurate, the controller cannot account for the effect of its actions in
the future. Simulating open-loop predictions helps us to determine a reasonable
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2. Vehicle Modeling

(a) lateral, linear parameter-varying (b) nonlinear single-track

Figure 2.9: Prediction using simplified dynamic models

prediction horizon length. Using an excessive length of the prediction horizon in-
creases the computational burden and does not bring any useful information as the
prediction no longer correspond to what the actual future behavior of the system
will be. Similarly, an accurate model is required to design a state-estimator for cal-
culation of unmeasured observable system states. Model accuracy has a significant
impact on the quality of state estimation based on noisy measurements and limits
the achievable control performance.

The scope of the application is controlling the vehicle motion in the linear region
and possibly in the transitional range of tire operation, up to the limits of adhesion.
For verification of the open-loop predictions, ISO 3888-1 double lane change maneu-
ver is used. It is a closed-loop, severe lane-change maneuver used for determining
the obstacle avoidance performance of a vehicle and its road-holding ability. For
more details on the dimensions of the double lane-change track, refer to [37].

The reference data were obtained by simulating the execution of the maneuver
in IPG Carmaker using the IPG Driver. The maneuver was executed at a speed
of vx = 90 km/h. Subsequently, an open-loop simulation of the simplified model was
executed, initialized from the vehicle true state. If the model prediction is accurate,
the simulated response shall correspond with the development of the reference model.
Comparison of the responses is shown in Fig. 2.9. The model was simulated for 1 s,
applying the steering input δ. Then, the state was re-initialized and simulation of
the prediction window was repeated. Each 1 s window is shown in a distinct color.

Fig. 2.9a shows predictions using the LPV model of Eq. (2.20) discretized using
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2.8 Linear Model of Longitudinal Dynamics

the bilinear approximation at fs = 20 Hz. During the maneuver, the vehicle is
operating past its linear range. While the predicted yaw rate ψ̇ approximately
matches the reference model, predicted lateral acceleration ay is overestimated. This
is due to the unmodeled transitional region of tire operation, tire load sensitivity and
lateral load transfer. The capability of the tires to generate lateral force decreases
in the transitional region, and the tire is not capable of producing the lateral force
required to counteract the centrifugal force. Therefore, steering angle δ and side
slip angle β of the reference model are higher to generate the required lateral force.
As a result, the linear model predicts a higher lateral acceleration (also with faster
responsiveness) and a lower side slip angle for the given input δ.

The prediction is improved in the case of the nonlinear single-track model with
Fiala tire model, which covers the transitional range of tire operation. As a result,
predictions of side slip angle β and lateral acceleration ay in Fig. 2.9b match the
IPG Carmaker model more closely and approximate the response over the whole
prediction window. Inspecting the response, lateral force generation capability of the
IPG Carmaker model decreases more during the peaks of lateral acceleration at t ∈
〈2, 3〉 s and for t ∈ 〈4, 5〉 s. Predictions are more accurate outside these intervals
when the lateral acceleration is lower and the handling limits are not approached.

In conclusion, the prediction provided by the linear model is only approximate
in the transitional range of operation. While the model may still be usable for
the linear parameter-varying formulation of Model Predictive Control (LPV MPC),
longer prediction horizons are unlikely to increase the controller performance. The
nonlinear model matches well the response of the reference model even during abrupt
maneuvers, high levels of lateral acceleration and in the transitional range of tire
operation. The nonlinear model may be used to improve control performance in
Nonlinear MPC or for nonlinear state estimation using an Unscented Kalman Filter.

2.8 Linear Model of Longitudinal Dynamics

In this section, longitudinal dynamics of Eq. (2.5a) are simplified into a linear model.
For trajectory tracking, we design a higher-level velocity controller to track the de-
sired velocity trajectory while interacting with a lower-level powertrain controller
through the interface of desired longitudinal acceleration ax,des. The interface us-
ing ax,des is commonly used in Adaptive Cruise Control (ACC). The underlying
powertrain controller is a Proportional Integral (PI) type controller of the desired
acceleration ax,des, which controls the brakes and the accelerator pedal, generating
longitudinal forces Fx,r, Fx,f . Thus, Eq. (2.5a) is collected into

ẍ = m−1 (Fx,r + Fx,f cos(δ)− Fy,f sin(δ))︸ ︷︷ ︸
ax

+ψ̇ẏ ≈ ax, (2.25)

where ψ̇ẏ and Fy,f are neglected for decoupling. The integrative character of the
lower-level controller compensates the unmodeled slowly-varying dissipative forces,
such as rolling resistance or aerodynamic drag. The higher-level controller must en-
sure that the constraints of the applicable longitudinal acceleration ax are respected
so that the predictive control is based on a feasible strategy. A traction controller
is optionally recommended as a part of the lower-level controller to improve the
effectiveness of longitudinal force generation.

Dynamics of the lower-level controller and the powertrain are commonly mod-
eled using a first-order transfer function, called the generalized vehicle longitudinal
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2. Vehicle Modeling

(a) identified response (b) residuals for different τL

Figure 2.10: Identified acceleration response

dynamic system in [38]

ax = KL
τLs+ 1 ax,des, (2.26)

with the system gain usually KL = 1 and a time constant τL. In [38], the model was
used for a predictive multi-objective vehicular ACC. A similar modeling approach
was applied in [39] for model predictive control of transitional maneuvers for adaptive
vehicle cruise control. A first-order approximation of the lower-level controller is also
suggested in [27, Chapter 5].

Collecting Eq. (2.25) and Eq. (2.26), the linear state space model of longitudinal
dynamics is [

ȧx(t)
v̇x(t)

]
=
[
−τ−1

L 0
1 0

]
︸ ︷︷ ︸

A

[
ax(t)
vx(t)

]
+
[
τ−1

L
0

]
︸ ︷︷ ︸

B

ax,des(t), (2.27)

with state vector x = [ax, vx]> and input ax,des.

2.8.1 Longitudinal Dynamics Identification

In the Eq. (2.27) model, the time constant τL has to be determined. An identifica-
tion experiment was executed by periodically commanding impulse acceleration up
to the maximum speed, followed by periodically commanding impulse deceleration
using ax,des while driving straight. Provided that the desired acceleration of 1 m/s2

was feasible at given speed and power limit, the observed behavior was approxi-
mately linear and not varying with speed.

An acceleration impulse is shown in Fig. 2.10a. The response was fitted with
a first-order transfer function, with a time constant of τL = 0.13 s resulting in the
lowest RMS error. Error between the reference and the identified model is shown
in Fig. 2.10b. A deceleration impulse is shown in Fig. 2.11a. Compared to accel-
eration, the falling edge during deceleration is not as smooth and contains some
nonlinear artifacts, but a first-order transfer function is still a reasonable approxi-
mation. The response was fitted with a time constant of τL = 0.16 s, which results
in the lowest RMS error but is different from the time constant identified for positive
acceleration commands. Error between the reference and identified model is shown
in Fig. 2.11b, revealing the artifacts in the edges, compared to Fig. 2.10b.

To obtain a simple model, a single time constant is used for both cases. Best
match in terms of RMS error in velocity was achieved for τL = 0.14 s. A validation
experiment is shown in Fig. 2.12, combining acceleration followed by deceleration.
Modeled response shows that the first-order approximation Eq. (2.26) is sufficient
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2.8 Linear Model of Longitudinal Dynamics

(a) identified response (b) residuals for different τL

Figure 2.11: Identified deceleration response

(a) aceleration model (b) velocity model

(c) residual ax for different τL (d) residual vx for different τL

Figure 2.12: Validation of linear model of longitudinal dynamics

to abstract the behavior of the lower-level longitudinal controller and Eq. (2.27)
provides an accurate velocity prediction when disturbances (such as road slope) are
not present. Modeled longitudinal dynamics of the electric powertrain vehicle are
relatively simple, with no dead-time or combustion engine lag.

Lateral motion models are typically formulated with the wheel steering angle as
the input, neglecting the dynamics of the steering mechanism. The lower-level is
typically vehicle-dependent, and we did not include it explicitly in the lateral motion
model. Steering rate limits are assumed during control design to reflect some of the
mechanical constraints. Nonetheless, the underlying steering mechanism dynamics
can be added to our framework in the same way as the dynamics of the lower-level
acceleration controller if needed.
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3 | Trajectory Generation

This chapter describes the basic concepts of race car driving and presents an al-
gorithm for generating a minimum-time velocity trajectory based on an idealized
vehicle model. A velocity trajectory is necessary for decoupling of the controllers
and the possible application in racing motivated using the trajectory that results
in the fastest lap time. Typically, the minimum-time trajectory requires operating
the vehicle close to its handling limit, testing the performance of the decoupled con-
trol architecture under a significant model mismatch. Nonetheless, the controllers
are independent of the trajectory generation and can be used in other applications,
such as lane keeping and cruise control, tracking trajectories generated with different
performance objectives, including ride comfort, safety, and efficiency.

3.1 Race Car Driving

The problem imposed by racing is well-summarized by [30, Chapter 1]. The technical
objective in racing is to traverse a given course in minimum time. Moving along the
track, the velocity vector of the vehicle is tangent to the path of the vehicle’s center
of gravity. A race circuit consists of a number of straight and curved segments, and,
as the vehicle progresses along the track, the velocity vector is changing both its
magnitude and its direction. Driving performance can be quantified in terms of the
change of the velocity vector in time, using the total acceleration. Tire adhesion lim-
its the total available force, recalling the friction circle Eq. (2.12). Summing the force
contributions of all four tires and normalizing by weight of the vehicle leads to the
concept of the vehicle gg diagram. The diagram captures the operational envelope
of the vehicle expressed by the combined acceleration in the longitudinal and lateral
directions, optionally normalized to multiples of the gravitational acceleration g.

To maximize the average speed, the maximum longitudinal acceleration ax is
applied at the exit of each turn to utilize the straight segment. Similarly, braking
with the maximum effort shall be initiated just ahead of a turn. Cornering results
in lateral acceleration ay due to changing the velocity vector direction. Each corner
shall be executed at the maximum velocity, limited by the available tire cornering
force, which translates to the maximum lateral acceleration. Hence, the goal of a
racing driver is to control the car along the gg diagram boundary, maximizing the
total acceleration atot =

√
a2
x + a2

y, fully utilizing the available tire adhesion.
Exceeding the envelope relates to reaching the peak of the tire force characteris-

tic and the frictional range of tire operation, resulting in a reduction of the available
force, loss of adhesion, and possibly sliding. Although a skilled racing driver is capa-
ble of controlling the car in a slide, the dynamics become strongly coupled, and the
operation of the two controllers is no longer independent. Therefore, the trajectory
is designed near the boundary of the gg diagram, but with some safety margin to
keep the assumption of decoupled longitudinal and lateral dynamics applicable.
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3. Trajectory Generation

3.2 Trajectory Generation Algorithm
The problem of racing trajectory generation can be formalized as finding control
inputs u(t) that minimize the time tfinish when the vehicle crosses the finish line,
defined by the distance sfinish traveled from the start

minimize
u(t)

tfinish (3.1a)

subject to s(tfinish) = sfinish, (3.1b)
ẋ(t) = f (x(t),u(t), t) , (3.1c)
g (x(t),u(t), t) ≤ 0, (3.1d)

where Eq. (3.1c) represents a nonlinear model of the vehicle dynamics and con-
straints Eq. (3.1d) can represent vehicle handling limits, track borders and other
constraints, including the boundary conditions of the problem.

The minimum lap time problem was originally a research interest of professional
racing teams. Approaches capable of simultaneously optimizing both the path and
the speed profile exist: based on a single-track model with load transfer in [40] or
using a twin-track vehicle model in [41, 42], both formulated using nonlinear pro-
gramming. Local optimization based on a nonlinear MPC maximizing the progress
along the track was described in [43].

In this thesis, we consider the path fixed and aim to find a velocity trajectory that
results in traversing the path in minimum time. The reference path can be obtained
by a kinematic planner as a minimum curvature path, or it can be determined by
a human driver and repeated by the autonomous controller as in [11]. Minimum-
time speed optimization over a fixed path was formulated as a convex optimization
problem in [44]. This thesis utilizes a simpler iterative integration scheme similar
to the one introduced in [45] and utilized by [15, 46]. Instead of clothoid curves, we
use the algorithm with a uniform discretization of a general reference curve.

3.2.1 Simplified model

For the optimization problem Eq. (3.1), we assume the path to be a curvature-
continuous curve, described by curvature κ along the arc length s in the form κ(s).
The vehicle model is idealized as a point-mass particle moving along the curve with
a single degree of freedom

f (x(t),u(t), t) =
[
ṡ
v̇

]
=
[
0 1
0 0

] [
s
v

]
+
[

0
ax(κ(s), v)

]
, (3.2)

where the state x = [s, v]> consists of the cumulative distance s travelled along the
curve and the tangential velocity v. A single input ax (κ(s), v) controls the motion,
the available longitudinal acceleration, a nonlinear function of the vehicle velocity
and track curvature. The road contact model is idealized as a single isotropic tire,
with combined force-generating capabilities of the four tires, neglecting lateral and
longitudinal load transfer. For simplicity, the effect of the road bank angle and the
road grade is neglected. Formulas with the road inclination included can be found
in [15]. The maximum transferable force is limited by the tire force using the friction
circle model, with the normal force Fz and the friction coefficient µ

F 2
x + F 2

y ≤ (µFz)2, (3.3)
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where

Fx = max + bv + 1
2 ρAcDv

2 = max + Fdis, (3.4a)

Fy = mv2κ, (3.4b)

Fz = mg + 1
2 ρAcLv

2, (3.4c)

in which ax is the input longitudinal acceleration of the vehicle, b ≥ 0 is the coefficient
of linear rolling resistance, ρ is air density, A is the frontal reference aerodynamic
area, cD ≥ 0 is the drag coefficient,m is the vehicle mass, and cL ≥ 0 is the coefficient
of the aerodynamic downforce (negative lift).

3.2.2 Solving the Optimization
An approximate solution of the optimization Eq. (3.1) with the idealized motion
model of Eq. (3.2) and Eq. (3.3) is obtained using a two-pass iterative forward-
backward algorithm. The nonlinear model Eq. (3.2) is discretized by approximating
the derivatives using forward differences and by assuming the input piecewise con-
stant ak ← ax(κ(sk), vk) at time step k with a step length of ∆t

vk+1 = vk + ak∆t, (3.5)

sk+1 = sk + vk∆t+ 1
2 ak(∆t)

2 = sk + ∆s. (3.6)

The optimization is solved by discretizing the curve κ(s) at a fixed step ∆s in arc
length s. Substituting ∆t from Eq. (3.5) into Eq. (3.6) yields

∆s = vk

(
vk+1 − vk

ak

)
+ ak

2

(
vk+1 − vk

ak

)2
=
v2
k+1 − v2

k

2ak
, (3.7)

from which the update of velocity after step of ∆s is

vk+1 =
√
v2
k + 2ak∆s. (3.8)

With the assumption of piecewise-constant acceleration, the distance increment is

∆s = vk∆t+ 1
2 ak(∆t)

2 = vk∆t+ ∆v
2 ∆t = vk+1 + vk

2 ∆t, (3.9)

where ak∆t = ∆v = vk+1 − vk is the velocity increment and ∆t = tk+1 − tk is the
time increment. The time update is obtained from Eq. (3.9) as

tk+1 = tk + 2∆s
vk+1 + vk

. (3.10)

The formulas of Eq. (3.8) and Eq. (3.10) are applied to approximate the solution
of Eq. (3.2) along a curve. The curve is sampled at N steps using a fixed discretiza-
tion step of ∆s. The arc length samples form an array s(k), k ∈ {1, . . . , N}, and the
curvature samples form an array κ(k)← κ(s(k)).

The optimization is split into two passes through the arrays. First, the backward
algorithm iterates the sampled curve in the reverse order, starting from the finish,
determining the maximum velocity in turns and the necessary braking distance
before each turn. Second, the forward algorithm iterates in the forward order from
the start, maximizing the speed and determining the optimal times of transition
between acceleration and braking.
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Algorithm 1: Backward pass
Data: κ(k), vlim, ∆s
Result: vbwd(k), vmax(k)
k ← length(N);
vbwd(k)← vlim;
while k > 1 do

vmax(k − 1)← solution of Eq. (3.3) for κ(k − 1);
vmax(k − 1)← min(vmax(k − 1), vlim);
alim ← [v2

max(k − 1)− v2
bwd(k)]/(2∆s) ; Eq. (3.7)

a(k − 1)← −h(κ(k), vbwd(k), −1) ; Eq. (3.14)
a(k − 1)← min(a(k − 1), alim);
vbwd(k − 1)←

√
vbwd(k)2 + 2a(k − 1)∆s ; Eq. (3.8)

k ← (k − 1);
end

Backward Pass

The steps of the backward algorithm are summarized in Algorithm 1. At each step,
the algorithm calculates the maximum velocity for the previous sample vmax(k− 1)
by solving Eq. (3.3) for κ(k− 1) and ax = 0, taking the real positive solution of the
quartic equation in velocity v. The result is saturated by a user-defined limit vlim.

Next, the backward pass determines the deceleration required to achieve veloc-
ity vmax(k−1) at step (k−1) and the maximum available braking deceleration using
function h, which will be described in Subsection 3.2.3. Note that ak is taken as
positive due to integration backward in time. The lower of the two accelerations is
applied and next iteration continues by moving backward along the curve.

Forward Pass

The steps of the forward pass are described using Algorithm 2. The forward pass
generates the time-optimal velocity vfwd(k) and acceleration a(k) profiles. When
below the velocity profile vbwd(k) of the backward pass, the maximum available
positive acceleration is applied to increase the speed. Once vbwd(k) is reached, the
optimal braking or coasting is applied as in vbwd(k). During the forward pass, the
profile parametrized originally in discrete distance steps is reparametrized using time
steps, forming the trajectory parametrized in time.

As a result, the optimal transition times between acceleration and braking are
determined to execute the track in the minimum time and under the acceleration
constraints. The described iterative scheme results in a bang-bang type of trajectory,
applying the maximum available input at each step with a single change of input
polarity per one turn. The bang-bang control is a typical solution in the minimum-
time problems with bounded control inputs.

3.2.3 Powertrain model

Both the backward and the forward pass algorithm utilized a function h(κ, v, d) to
determine the maximum available longitudinal acceleration in direction d = ±1,
with forward positive. Function h also depends on the vehicle and environmental
parameters, such as µ, g, ρ, but these are assumed constant and omitted in the
list of the function arguments. Using κk, vk at step k, the available longitudinal
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Algorithm 2: Forward pass
Data: κ(k), vbwd(k), ∆s, v0
Result: vfwd(k), a(k), t(k)
k ← 1;
t(k)← 0;
vfwd(k)← v0;
while k < N do

alim ← [v2
bwd(k + 1)− v2

fwd(k)]/(2∆s) ; Eq. (3.7)
a(k)← h(κ(k), vfwd(k), +1) ; Eq. (3.14)
a(k)← min(a(k), alim);
vfwd(k + 1)←

√
vfwd(k)2 + 2a(k)∆s ; Eq. (3.8)

t(k + 1)← t(k) + 2∆s[vfwd(k + 1) + vfwd(k)]−1 ; Eq. (3.10)
k ← (k + 1);

end

acceleration is determined from Eq. (3.3) as

ax(κ, v, d) = 1
m

(dFx − Fdis) = 1
m

(
d
√
µ2F 2

z (v)−mFy(κ, v)− Fdis(v)
)
, (3.11)

based on the maximum available tire force in the longitudinal direction.
When d = 1, the value of ax is further limited by the vehicle powertrain. In case

of an electric-drive vehicle withNmtr motors, the angular speed of each electric motor
is calculated based on the vehicle translational speed (neglecting possible wheel
slipping), and the available torque is transformed to the wheel tractive force Ftrc

ωi(v) = ki,trans
120πr v, (3.12)

Ftrc(v) = 1
r

Nmtr∑
i=1

ki,eff ki,trans τi(ωi), (3.13)

where r is the wheel rolling radius, ktrans is the transmission ratio, keff is the trans-
mission efficiency, and τ(ω) represents the torque-rpm curve of the motor. The
maximum available longitudinal acceleration is given by

h(κ, v, d) =


1
m

[
−Fdis(v) + min

(√
µ2F 2

z (v)− F 2
y (κ, v), Ftrc(v)

)]
, if d = +1,

1
m

[
−Fdis(v)−

√
µ2F 2

z (v)− F 2
y (κ, v)

]
, if d = −1.

(3.14)

3.2.4 Solution for a Single Turn
An example trajectory generated using the two-pass algorithm is shown in Fig. 3.1.
The path is shown in Fig. 3.1a and consists of two straight segments, a circu-
lar segment, and two transitional segments of increasing curvature, as indicated
in Fig. 3.1b. Calculated longitudinal acceleration ax is shown in Fig. 3.1c. As vehi-
cle speed increases, the available acceleration decreases due to the maximum power
limitation of the motors. As curvature starts to increase at s = 50 m, the lateral
acceleration starts increasing in Fig. 3.1e. When vfwd = vbwd, braking before the
turn starts by following the profile calculated during the backward pass. A con-
stant speed, resulting in the maximum lateral acceleration, is maintained during the
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(a) path in the xy plane (b) path curvature

(c) longitudinal acceleration (d) velocity profile

(e) total acceleration (f) velocity trajectory

Figure 3.1: Generated minimum time acceleration and velocity trajectory

turn. As the curvature starts to decrease at s = 150 m, longitudinal acceleration
is gradually applied, keeping the total acceleration at the available limit. Fig. 3.1f
shows the resulting velocity trajectory, parametrized in time. Vehicle parameters
used for the trajectory generation are summarized in Appendix B and correspond
to the parameters of Tesla Model S from IPG Carmaker. For a race car, the effects
of aerodynamics would typically be more significant. In Fig. 3.1c the effect is visible
as the slight increase of |ax,min| at higher speeds.

3.3 Path Interpolation
The previous section described the generation of the time-optimal velocity trajec-
tory given the curvature description of the vehicle path. In some scenarios, such
as repeating a path driven by a human driver or traversing a path consisting of
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user-defined waypoints, curvature description is not directly available. This section
presents optional steps of recovering the curve based on the positions sampled from
it. The sampling in position is assumed to be accurate, and hence the measured posi-
tions are interpolated with a curve. In case of inaccurate position measurement and
multiple traversals of the same path, the task can be reformulated using smoothing
instead of interpolation.

The resulting curve shall be continuous in curvature. Therefore, the points are in-
terpolated using a cubic spline [47], a piecewise cubic polynomial curve with C2 con-
tinuity (up to the second derivative) at all the internal knots (interpolated points)
and with the not-a-knot end conditions. The spline is the interpolating solution
with the minimum curvature among all interpolating functions having continuous
derivatives up to the second one. As the positions are not sampled equidistantly,
cumulative chordal distance (Euclidean distance of the neighboring knots) is used
as the interpolation parameter s, approximating the true arc length.

Curvature of a planar curve in the xy plane is defined as

κ(s) = x′(s)y′′(s)− y′(s)x′′(s)[
(x′(s))2 + (y′(s))2

] 3
2
, (3.15)

where x′(s) = d
dsx(s), x′′(s) = d2

ds2x(s) denote the derivatives with respect to the arc
length s. Using the interpolating splines x(s), y(s), the curvature can be obtained
analytically by substitution of the derivatives into Eq. (3.15). Since x(s), y(s) are
cubic polynomials, the derivatives are also polynomial and continuous. The resulting
curvature Eq. (3.15) is a rational function, continuous except at the roots of the
denominator, which is always nonzero provided that the interpolated positions do
not contain subsequent duplicate values and that the points are spaced sufficiently.
Both can be assured by an appropriate preprocessing of the measured positions.
Using the spline interpolation, the position and the curvature can be resampled
along the curve for an arbitrary value of s, for example at a fixed step of ∆s to
obtain the discretized curve for the velocity profile generation.

3.4 Trajectory Preview

At each control steps, the position of the vehicle in the world coordinate frame is
converted to a path-fixed coordinate frame to evaluate the tracking errors. The origin
of the path-fixed coordinate frame is selected as the point on the curve that minimizes
the Euclidean distance to the origin of the body-fixed coordinate frame. The solution
is approximated by finding the closest point on a piecewise-linear approximation of
the spline curve. The accuracy of the approximation can always be improved by
resampling the spline [x(s), y(s)]> with a finer step in s.

Given the vehicle position v in the the world coordinate frame, and n-th candi-
date line segment, defined by endpoints wn and wn+1 in the the world coordinate
frame, with segment length dn and normalized line vector sn

dn = ‖wn+1 −wn‖2, sn = d−1
n (wn+1 −wn), (3.16)

the closest point cn on the segment n is obtained by evaluating the projection of
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vector pn onto the segment line vector sn

pn = v−wn, (3.17)
k̂n = pn · sn, (3.18)
kn = median([0, k̂n, dn]), (3.19)
cn = wn + kn sn, (3.20)
en = v− cn, (3.21)

where k̂n is limited so that cn is located between the segment endpoints. The
unsigned distance error is en = ‖en‖2. To speed-up the calculation, the closest
points are evaluated only over a local window of candidate line segments which are
likely to contain the closest point. Once segment n∗ with the lowest en∗ is found,
signed distance error ed is calculated

ed = sign
(
det ([sn∗ , en∗ ])

)
en∗ . (3.22)

Heading of the curve at a given point can either be obtained by numeric integration
of κ(s), or, to avoid possible offset due to integration, by approximating the curve
heading using the segment directions. The heading at wn is

θn = atan2(sn,y, sn,x). (3.23)

Reference heading at cn∗ is obtained by linear interpolation

ψref = θn∗ + kn∗(θn∗+1 − θn∗), (3.24)

and wrapped
ψref ← mod

(
ψref − (ψ − π), 2π

)
+ (ψ − π), (3.25)

so that the heading error eψ = (ψref − ψ) ∈ ±π.
By determining the position in the path coordinate frame, current arc length s

is obtained as the cumulative choral length

snow = kn∗ +
n∗−1∑
n=1

dn. (3.26)

To preview the precalculated trajectory, the reference time corresponding to the
current arc length snow is obtained using linear interpolation with s(k) and t(k).
Next, a time vector sampling the trajectory at uniform time steps Ts is created

tnow ← t(snow), t = tnow +
[
0, Ts, . . . , TsNp

]>
, (3.27)

and the reference values are obtained by linear interpolation in the precalculated
discrete trajectory. The steps can be implemented using two look-up tables, the
first recovering t(snow) and the second sampling the reference trajectory p(t) and
the longitudinal acceleration limits alim(t)

p(t) =
[
ax(t), vfwd(t), κ(t)

]>
, alim(t) =

[
ax,min(t), ax,max(t),

]>
, (3.28)

at time values of t to obtain p(tnow) containing the reference generator states aref ,
vref , κref and a preview over the prediction horizon.
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4 | Controller Structure

This chapter defines the general structure of a tracking controller. In control theory,
the goal of tracking is to follow a non-zero reference signal, usually with some guar-
antees of steady-state tracking errors for different classes of reference signals. The
reference signal may be defined either explicitly, as a desired output of the system,
or, more compactly, as a response of another dynamic system. The second option is
used in this thesis, formulating the tracking task as a servomechanism problem.

The servomechanism problem approach allows using the same model structure for
abstraction of different tracking controllers and feedback design using the state space
methods, such as a Linear Quadratic Regulator (LQR) or a linear Model Predictive
Controller (MPC). The structure can abstract the problems of asymptotic tracking,
known disturbance rejection, or model matching in a unified approach. Moreover,
the identical model structure used for the design of both LQR and MPC helps to
compare when the two controllers behave identically and what are the benefits of a
predictive control strategy.

4.1 Servomechanism Problem
Linear continuous-time servomechanism problem is defined as controlling error out-
put e of the dynamic system[

ẋ1(t)
ẋ2(t)

]
=
[

A1 0
0 A2

] [
x1(t)
x2(t)

]
+
[

B1
0

]
u(t),

e(t) =
[
−C1 C2

] [ x1(t)
x2(t)

]
−D1u(t),

(4.1)

where x1 ∈ Rnp is the state of the controlled system (A1,B1,C1,D1) with (A1,B1)
stabilizable, x2 ∈ Rng is the state of the reference generator, which is a linear
autonomous system with (A2,C2) observable. No direct feedthrough needs to be
modeled in the vehicle motion controllers, and so D1 = 0 is assumed for simplicity.

The output of the controlled system C1x1 shall track the output C2x2 of the
reference generator system. The reference output trajectory is generated as an
unforced response to an initial condition of x2. To change the reference, state x2
is reset, which is possible as the reference generator is a virtual system within the
controller. Changing the reference results in a transient response to the new initial
condition.

The reference generator can be viewed either as a command generator or as
a disturbance model. The command generator can be a simplified model of the
controlled system or a generator of a selected class of signals. For example, the
model of a constant output reference is a single integrator. Similarly, a double
integrator models ramp reference signals.
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ẋ2 = A2x2 C2

K2

ẋ1 = A1x1 +B1u1 C1

K1

x2
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y2

−
y1

−

−
u

e

Figure 4.1: State feedback within the servomechanism problem structure

4.2 Structure with State Feedback

For the servomechanism system of Eq. (4.1), a linear state-feedback controller can
be designed

u = −K1x1 −K2x2, (4.2)

where u ∈ Rnu is the control input and K1 ∈ Rnu×np , K2 ∈ Rnu×ng are the feedback
matrices. Structure of the servomechanism problem with state feedback is shown
in Fig. 4.1.

Tracking error e converges to zero if the Internal Model Principle (IMP) is sat-
isfied [48, 49]. In a simplification, the principle requires the presence of all the
unstable modes of the reference generator A2 in the controlled system A1, and that
the unstable modes common to both subsystems are mapped to the error outputs
with corresponding degrees. While the internal states are generally non-zero, the
tracking error converges to zero if the system satisfies the IMP.

The first step in controller design is to formulate the model according to the
servomechanism structure of Eq. (4.1) using continuous-time models. The next step
is to discretize the model as a whole, and, finally, the design of the controller is done
in discrete time. The block structure of the system remains the same, only the time
index is changed to k, and discretized models are assumed instead.[

x1(k + 1)
x2(k + 1)

]
=
[

A1 0
0 A2

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]
+
[

B1
0

]
︸ ︷︷ ︸

B

u(k). (4.3)

4.3 Linear Quadratic Servomechanism
The problem of tracking a nonzero reference trajectory is different from the regu-
lation task of controlling x(t) → 0. To use the formulas developed for LQR, the
quadratic performance criterion is formulated to penalize the error e instead of the
state x, so that the criterion value is bounded. The quadratic cost function of the
tracking problem over a finite horizon of length N with free final state is

J = 1
2 x>(N)Qx(N) + 1

2

N−1∑
k=0

e>(k)Qee(k) + u>(k)Ru(k), (4.4)

where QN � 0 and Qe � 0 are positive semi-definite weighting matrices of the
terminal cost, resp. the tracking error cost, and R � 0 is a positive definite weighting
matrix of the control input cost. In addition to the IMP, the pair (A1,

√
QeC1)
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4.3 Linear Quadratic Servomechanism

must be detectable so that the criterion reflects all states of the controlled system.
The input and output variables are selected to allow both e(t) → 0 and u(t) → 0
as t → ∞. Therefore, input increments or input rates of change are used as the
controlled variable u.

The quadratic cost Eq. (4.4) is expressed using the state x as

J = 1
2 x>(N)QNx(N) + 1

2

N−1∑
k=0

[
x>(k) u>(k)

] [Q S
S> R

] [
x(k)
u(k)

]
, (4.5)

where Q = C>QeC and S = 0 since D1 was assumed zero in Eq. (4.1). The general
case with D1 6= 0 is treated in [49]. The problem of LQ optimal servomechanism is
solved by iterating the Joseph’s stabilized Riccati equation

P(k) = [A−BK(k)]>P(k + 1) [A−BK(k)] + K>(k)RK(k) + Q, (4.6)

where
K(k) =

(
R + B>P(k + 1)B

)−1 (
B>P(k + 1)A

)
, (4.7)

is the time-varying optimal feedback gain. The iterations are initialized at time
k = N−1 with P(k+1) = QN and evolve backwards in time over the control horizon.
Utilizing the structure of the state weighting matrix Q and of the matrix P(k)

Q =
[
Q11 Q12
Q>12 Q22

]
=
[

C>1 QeC1 −C>1 QeC2
−C>2 QeC1 C>2 QeC2

]
, P(k) =

[
P11(k) P12(k)
P>12(k) P22(k)

]
,

(4.8)
the feedback law can be split in correspondence to the states of the subsystems x1
and x2 as in Eq. (4.2). The iterative formulas simplify to

K1(k) =
(
R + B>1 P11(k + 1)B1

)−1 (
B>1 P11(k + 1)A1

)
, (4.9)

K2(k) =
(
R + B>1 P11(k + 1)B1

)−1 (
B>1 P12(k + 1)A2

)
, (4.10)

which depend only on P11, P12 blocks of P

P11(k) = [A1 −B1K1(k)]>P11(k + 1) [A1 −B1K1(k)] +
+ K>1 (k)RK1(k) + Q11,

P12(k) = [A1 −B1K1(k)]> [P12(k + 1)A2 −P11(k + 1)B1K2] +
+ K>1 (k)RK2(k) + Q12,

(4.11)

initialized with P11(N) = Q11, P12(N) = Q12. The feedback part of K1(k), P11(k)
is identical as in the LQR problem, independent of the reference generator.

When the length of optimization horizon N grows, the solution converges to a
constant feedback gain K∞. Applying the steady state condition P(k) = P(k + 1)
to Eq. (4.6) results in the discrete-time algebraic Riccati equation (DARE). How-
ever, it cannot be solved using the conventional solvers (such as dare of Matlab
Control system toolbox), as the eigenvalues of the reference generator system are
uncontrollable. To obtain K∞ either iterations of the difference Riccati Eq. (4.6) are
used, or more advanced approach of solving the algebraic Riccati equation, based
on selecting the maximum stabilizing element from the lattice of all solutions [50],
is used. An option for simple systems is to solve for K1 using dare with (A1,B1)
controllable, and then determine K2 from K1 such that u = 0 when e = 0 using
the system structure.
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Figure 4.2: Servomechanism structure extended for known disturbance d

In Section 4.4 of [51], the discrete-time LQ tracking problem is derived for explicit
output reference signal, resulting in the same feedback gain K1, but in a different
feedforward part, corresponding to program control in [49]. This approach offers
better tracking of time-varying references but requires storing and prefiltering the
whole output reference to obtain the feedforward input. In Section 8.4 of [51], the
command-generator tracker (CGT) is introduced by incorporating the dynamics
of the output reference generation into the control system for the continuous-time
case. Tracking for the structure Eq. (4.1) in continuous time is described under the
term regulator with model following, but with the restrictive assumption of (A,B)
stabilizable, not applicable to the reference generators considered in this thesis.

4.4 Structure with Known Disturbance
Structure of the servomechanism problem can be extended for apriori-known changes
in the reference signal generation. The model structure Eq. (4.3) is augmented to[

x1(k + 1)
x2(k + 1)

]
=
[
A1 0
0 A2

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]
+
[

B1
0

]
︸ ︷︷ ︸

B

u(k) +
[

0
E2

]
d(k)︸ ︷︷ ︸

Ed(k)=b(k)

,

e(k) =
[
−C1 C2

]
︸ ︷︷ ︸

C

[
x1(k)
x2(k)

]
,

(4.12)

where d(k) is the known disturbance entering the reference generator system at time
step k, altering the generator state and hence the generated reference output to be
tracked. Structure of the discrete-time servomechanism problem with the known
disturbance is shown in Fig. 4.2.

The knowledge of future disturbance can be utilized in a predictive control strat-
egy. Model structure Eq. (4.12) forms the state-transition equation

xk+1 = Akxk + Bkuk + bk. (4.13)

of a single stage of the Linear Time-Varying (LTV) MPC problem described in Chap-
ter 5. In the context of MPC, lower subscripts denotes the discrete time index for
notation brevity, while in Chapter 4 the subscripts distinguish the controlled and
the reference generator systems.
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5 | Model Predictive Control

Model Predictive Controller (MPC) is a control strategy based on solving a finite
horizon open-loop optimal control problem. The controller is based on a discrete-
time model of the system which is used to predict the system response to the control
input along a number of discrete time steps, the prediction horizon. Predicted
system response is compared with the reference and both the tracking error and the
control input are penalized using a performance cost function. Future behavior of
the controlled system is optimized by choosing the best admissible control input,
minimizing the performance cost and respecting the input and state constraints.

Feedback control is established by applying only the first input of the calculated
optimal input sequence. Applying the rest of the sequence would result in open-loop
control, unable to respond to model uncertainties and disturbances. In the next
control step, the finite horizon window is shifted and the optimization is repeated,
resulting in the control scheme known as the Receeding horizon control (RHC).
Classical feedback control laws, such as a Proportional, Integral and Derivative
(PID) controller, are reactive. Control input is generated in response to the tracking
error. On the contrary, MPC computes the predicted response of the system and
can utilize a preview of the reference. Control input can be generated even before
the tracking error occurs to achieve higher performance during transients.

MPC originates in the 1970s, in control of refining and petrochemical processes,
where the system dynamics were relatively slow and allowed to solve the optimiza-
tion problem within the sampling period. A survey of industrial MPC applications
until the year 2000 is given in [52], more recent applications and theoretical results
are summarized in [53]. Development of more powerful hardware and specialized
solvers enabled the use of MPC in many domains, including fast dynamical systems
controlled at sampling rates below the order of milliseconds. In the automotive in-
dustry, and the vehicle motion control in particular, MPC was utilized for traction
control [9], active steering control of evasive maneuvers [10], yaw and lateral stabi-
lization [11], lane keeping [12], obstacle avoidance and stabilization at the handling
limits [54], trajectory tracking for trucks [55] and for passenger vehicles [17], to select
several successful applications in the related area.

5.1 MPC Problem Formulation

5.1.1 Model used for Predictions

The system model must be descriptive enough to capture the most significant dy-
namics of the system, yet simple enough to allow solving the optimization problem
in real-time. In this thesis, we focus on MPC with a LPV model for response pre-
diction and a quadratic cost function as the performance criterion. LPV model is a
special case of a LTV model with the change of the model parameters know and in-
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dependent of the model states. Moreover, we focus on the servomechanism problem
structure described in Section 4.4. The state-transition and the output equations
used in the MPC formulation are

xk+1 = Akxk + Bkuk + Ekdk, (5.1)
ek = Ckxk, (5.2)

with the lower subscript k ∈ N indicating the discrete time step index, xk ∈ Rnx
being the system state, uk ∈ Rnu the control input, dk ∈ Rnd the disturbance, ek ∈
Rne the tracking error, with appropriately sized system matrices Ak ∈ Rnx×nx , Bk ∈
Rnx×nu , Ek ∈ Rnx×nd , Ck ∈ Rne×nx of the discrete-time dynamical system. For
the parameter-varying formulation, we assume the system matrices Ak,Bk,Ek,Ck

generally different at each time step k, and no input feedthrough term, Dk = 0.

5.1.2 Quadratic Programming Structure

MPC is most often formulated using a quadratic cost function and solved as an
instance of Quadratic Programming (QP), the problem of minimizing a quadratic
function under linear equality and inequality constraints. Formulating the MPC
problem as a QP is a well-established tractable optimization problem and many
specialized solvers exist, utilizing the specific structure of QPs arising from MPC.
A positive semidefinite quadratic function is convex, its local optimum is also the
global optimum, and so the solver cannot get stuck locally at a sub-optimal solution.
The MPC problem is arranged into the QP problem structure

minimizez
1
2 z>Hz + g>z (5.3a)

subject to Aeqz− beq = 0, (5.3b)
blb ≤ Aiqz ≤ bub, (5.3c)
zlb ≤ z ≤ zub, (5.3d)

where z ∈ Rnz is the optimized variable, nz is the problem dimension, Eq. (5.3a) is
the objective function quadratic in z, with the Hessian of the problem H ∈ Rnz×nz
and the vector of the linear part g ∈ Rnz . Eq. (5.3b) are the equality constraints
with Aeq ∈ Rneq×nz , beq ∈ Rneq , Eq. (5.3c) are the inequality constraints with
matrix Aiq ∈ Rniq×nz , and blb ∈ Rniq the lower and bub ∈ Rniq the upper bound
vector. Eq. (5.3d) are the box constraints imposed on the optimization variable z,
with zlb ∈ Rnz being the lower and zub ∈ Rnz the upper bound vector. Some of the
constraints may be omitted in particular formulations.

Usually, solvers take advantage of distinguishing particular types of constraints
for computational performance reasons. Formally, the notation can be further com-
pacted by including all the constraints under the inequality type

minz
1
2 z>Hz + g>z (5.4a)

s.t. Acz ≤ bc, (5.4b)

with

Ac =
[
−A>eq, A>eq, −A>iq, A>iq, −I>, I>

]>
, (5.5)

bc =
[
−b>eq, b>eq, −b>lb, b>ub, −z>lb, zub

]>
. (5.6)
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5.1.3 Quadratic Cost Function
The goal of MPC at time step n is to find a sequence of control inputs

ū = [u>n , . . . ,u>n+Np−1]> ∈ RnuNp . (5.7)

such that the state response

x̄ = [x>n+1, . . . ,x>n+Np ]> ∈ RnxNp , (5.8)

predicted based on ū and the initial state xn, minimizes the weighted quadratic
cost over the prediction horizon, a window of Np time steps. The quadratic cost at
step k, called the stage cost or the running cost, is defined as

Lk(xk,uk) = 1
2

[
xk
uk

]> [
Qk S>k
Sk Rk

] [
xk
uk

]
= 1

2 x>k Qkxk + 1
2 u>k Rkuk, (5.9)

where Qk ∈ Rnx×nx , Qk � 0 is a positive semi-definite weighting matrix of the
state and Rk ∈ Rnu×nu , Rk � 0 is a positive definite weighting matrix of the
control input. The cross weighting matrix Sk between the states and the inputs is
considered zero as in Section 4.3. No linear penalties are considered in Lk. The
initial and terminal cost functions can be viewed as specialized cases of the running
cost Lk. The initial state is given and penalizing it in the initial cost does not change
the optimization result. The last input does not influence any of the states within
the prediction horizon, and so the controller would not utilize it. Therefore, the
input is not included in the terminal cost.

In MPC, the optimization criterion of Eq. (5.3a) is the running cost Eq. (5.9)
summed over the prediction horizon. Using the state and input sequences x̄, ū, the
criterion has a similar structure as the running cost

J(z) = 1
2 x̄>Q̄x̄ + 1

2 ū>R̄ū = 1
2 z>

[
Q̄

R̄

]
z = 1

2 z>H̄z, (5.10)

with the optimization variable vector z = [x̄>, ū>]> and matrices

Q̄ =


Qn+1

Qn+2
. . .

Qn+Np

 , R̄ =


Rn

Rn+1
. . .

Rn+Np−1

 , (5.11)

of the optimization criterion.

5.1.4 Incorporating State Predictions
Eq. (5.10) defines the control performance criterion. The remaining task is to embed
the system dynamics described by Eq. (5.1) into the quadratic programming problem
of Eq. (5.3), for which two main approaches exist.

In the first approach, denoted as sparse, or simultaneous, both the sequence of
states and of control inputs form the optimization variable z = [x̄>, ū>]>. The
state transition equation is included for each time step in the form of equality con-
straints Eq. (5.3b). The second formulation, denoted as primal dense or sequential,
uses recursion of the state transition equation Eq. (5.1) to express the predicted
sequence x̄ as a function of the control input sequence ū and the initial state xn.
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Formulation names refer to the structure of the Hessian matrix H, which has a
sparsity pattern for the simultaneous formulation. When the states are eliminated
in the primal dense formulation, Hessian size is reduced and contains no zero entries
in general. The sparsity pattern is lost and the Hessian becomes dense. Solvers
optimized for each formulation exist, therefore, the MPC problem is derived for
both cases.

5.1.5 Sparse Formulation
Let us write several steps of the state response prediction using Eq. (5.1)

xn+1 = Anxn + Bnun + Endn,
xn+2 = An+1xn+1 + Bn+1un+1 + En+1dn+1

= An+1 (Anxn + Bnun + Endn)︸ ︷︷ ︸
xn+1

+Bn+1un+1 + En+1dn+1,

= An+1Anxn + An+1Bnun + Bn+1un+1 + An+1Endn + En+1dn+1,

xn+3 = An+2xn+2 + Bn+2un+2 + En+2dn+2

= An+2 (An+1xn+1 + Bn+1un+1 + En+1dn+1)︸ ︷︷ ︸
xn+2

+Bn+2un+2 + En+2dn+2,

(5.12)
which can be collected into a matrix form

Āx̄ + B̄ū− b̄ = 0, (5.13)

where

Ā =


−I

An+1 −I
An+2 −I

. . . . . .

 , B̄ =


Bn

Bn+1
Bn+2

. . .

 , (5.14)

describe the dynamics of the system and the vector

b̄ =


−Anxn −Endn
−En+1dn+1
−En+2dn+2

...

 (5.15)

is the influence of the initial condition xn and of the disturbance sequence. Using
the optimization variable z = [x̄>, ū>]>, Eq. (5.13) is collected into the form of an
equality constraint Eq. (5.3b) with

Aeq ←
[
Ā 0
0 B̄

]
, beq ← b̄. (5.16)

Together with the cost Eq. (5.10) in place of Eq. (5.3a), the sparse formulation is
complete. Alternatively, in the terms of x̄, ū, the sparse formulation is

minimize
x̄, ū

1
2
(
x̄>Q̄x̄ + ū>R̄ū

)
(5.17a)

subject to Āx̄ + B̄ū− b̄ = 0, (5.17b)
blb ≤ Aiq[x̄>, ū>]> ≤ bub, (5.17c)
x̄lb ≤ x̄ ≤ x̄ub, (5.17d)
ūlb ≤ ū ≤ ūub. (5.17e)
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5.1.6 Primal Dense Formulation
In the primal dense formulation, state variables are eliminated by expressing the
sequence of states x̄ from Eq. (5.12) as a function of the control input sequence, of
the known disturbances, and of the initial state

xn+1
xn+2
xn+3
...


︸ ︷︷ ︸

x̄

=


Bn

An+1Bn Bn+1
An+2An+1Bn An+2Bn+1 Bn+2

...
...

... . . .


︸ ︷︷ ︸

B̂


un

un+1
un+2
...


︸ ︷︷ ︸

ū

+ . . .


En

An+1En En+1
An+2An+1En An+2En+1 En+2

...
...

... . . .


︸ ︷︷ ︸

Ê


dn

dn+1
dn+2
...


︸ ︷︷ ︸

d̄

+


An

An+1An

An+2An+1An
...


︸ ︷︷ ︸

Â

xn,

(5.18)

where Â ∈ R(nxNp)×nx , B̂ ∈ R(nxNp)×(nuNp), and Ê ∈ R(nxNp)×(ndNp) are the pre-
diction matrices, which can be calculated recursively. The diagonal of B̂ consists of
the input matrices Bn to Bn+Np−1. Entries below the diagonal are calculated recur-
sively, with k ∈ {1, . . . , Np}. Starting at row k, the entries left of the diagonal on
the row (k+1) are obtained by left-multiplying the entries of the k-th row by An+k.
Structure of Ê is formed identically using En to En+Np−1. Propagation of the initial
condition in Â is obtained by recursive left-multiplication, starting with An on the
first row, and left-multiplying the row above by An+k−1 at row k.

Substituting Eq. (5.18) for the states into the objective function Eq. (5.10) gives

J(ū) = 1
2
(
B̂ū + Âxn + Êd̄

)>
Q̄
(
B̂ū + Âxn + Êd̄

)
+ 1

2 ū>R̄ū (5.19)

Expanding the expression and collecting the terms with respect to the reduced op-
timization variable ū, the quadratic cost becomes

J(ū) =1
2 ū>

(
B̂>Q̄B̂ + R̄

)
︸ ︷︷ ︸

Ĥ

ū +
(
x>n Â> + d̄>Ê>

)
Q̄B̂︸ ︷︷ ︸

ĝ>

ū + const. (5.20)

Constant terms not dependent on ū do not influence the optimizer ū∗, but only
shift the function value at the minimum. As we are interested only in the optimizer,
constant terms in Eq. (5.20) are omitted. Further, the vector ĝ can be factored to a
part of the initial state xn and the disturbance preview d̄, and a part of the linear
parameter-varying system dynamics, denoted G,

ĝ = B̂>Q̄
[
Â Ê

]
︸ ︷︷ ︸

G

[
xn
d̄

]
, (5.21)

which becomes constant in the case of a Linear Time-Invariant (LTI) system.
Primal dense formulation incorporates the state transitions by injecting the pre-

diction matrices from Eq. (5.18) into the cost function. Compared to the sparse
formulation, the problem size is reduced from Np(nx+nu) to Npnu and the problem
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is not equality-constrained. However, the originally sparse structure is lost and even
simple box constraints of the state variables

x̄lb ≤ x̄ ≤ x̄ub (5.22)

have to be expressed using prediction matrices of Eq. (5.18) as more complicated
polytopic constraints of the control input sequence ū

x̄lb − Âxn − Êd̄︸ ︷︷ ︸
blb

≤ B̂ū ≤ x̄ub − Âxn − Êd̄︸ ︷︷ ︸
bub

. (5.23)

A polytope is an intersection of a finite number of half-spaces. To reduce the number
of inequality constraints, Eq. (5.18) can be left-multiplied by an output matrix
before the insertion into Eq. (5.23), selecting only the states to be constrained.
Similarly, Eq. (5.18) can be left-multiplied by an output matrix to formulate any
polytopic state constraints of the original sparse problem. The resulting quadratic
programming problem in the primal dense formulation is

min
ū

1
2 ū>Ĥū + ĝ>ū (5.24a)

s.t. blb ≤ B̂ū ≤ bub, (5.24b)
ūlb ≤ ū ≤ ūub, (5.24c)

with the cost criterion of Eq. (5.20), optional box constraints on the states Eq. (5.23)
expressed as Eq. (5.24b), and control input box constraints Eq. (5.24c).

5.2 Solution of Unconstrained MPC
In this section, an analytic solution of the unconstrained version of the MPC prob-
lem Eq. (5.24a) is described, comparing it with the state feedback structure obtained
using LQR in Section 4.3. Unconstrained control performance is studied as a neces-
sary prerequisite to achieve good performance once constraints are applied.

Assuming minimization of the quadratic cost function Eq. (5.20), the analytic
solution is obtained using the first-order necessary condition of optimality, by setting
the first derivative of the cost function equal to the zero vector: Ĥū + ĝ = 0, from
which the stationary point is obtained as

ū∗ = −Ĥ−1ĝ = −Ĥ−1G
[
xn
d̄

]
. (5.25)

To guarantee that ū∗ is the minimum, the Hessian Ĥ of the cost must be positive
definite. Since R̄ � 0 was chosen as positive definite and Q̄ as positive semi-definite,
Ĥ is positive definite, which also guarantees that its inverse exists.

However, Eq. (5.25) serves for illustration and the minimizer shall not be ob-
tained numerically by calculating the inverse. Especially in the case of unstable
systems, the predicted response is growing in time. Therefore, B̂ and Ĥ are ill-
conditioned. The solution is more appropriately obtained using Cholesky factor-
ization of Eq. (5.25), or even better as a least-squares problem solution, as shown
in [56, Chapter 3] and repeated here.

First introduce “square-roots” SQ̄, SR̄ of the weighting matrices Q̄, R̄ as

S>Q̄SQ̄ = Q̄, S>R̄SR̄ = R̄, (5.26)
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which can be obtained by applying square root to the individual elements for di-
agonal matrices, or using Singular Value Decomposition (SVD) for non-diagonal
symmetric positive semidefinite matrices. For example Q̄ is diagonalized as

Q̄ = USU>, → SQ̄ = US
1
2 U>, (5.27)

where U is an orthogonal diagonalizing matrix and S is diagonal. Next, assume a
vector [

SQ̄

(
B̂ū + Âxn + Êd̄

)
SR̄ū,

]
(5.28)

of the weighted tracking error and control effort. Squared l2 norm of Eq. (5.28),
is the quadratic cost Eq. (5.19), up to the scalar multiplication by 1

2 . The optimal
control sequence is obtained by setting Eq. (5.28) equal to the zero vector and solving
the (almost always in MPC) overdetermined system[

SQ̄B̂
SR̄

]
︸ ︷︷ ︸

Alsq

ū = −
[
SQ̄Â SQ̄Ê

0 0

]
︸ ︷︷ ︸

Blsq

[
xn
d̄

]
, (5.29)

for ū in the least-squares sense, minimizing l2 norm of Eq. (5.28). The dimension
of the zero block in Blsq is (nuNp)× (nx + ndNp).

As discussed in [56], the analytic solution Eq. (5.29) has a better conditioning
over Eq. (5.25), the prediction matrices are not squared as in the cost Eq. (5.20).
Solution of Eq. (5.29) is obtained numerically using the QR algorithm, in the Matlab
notation M = Alsq \ Blsq. Only the first part of the solution, corresponding to
nu inputs, is used as the input in the current control step

u = −NM︸ ︷︷ ︸
K

[
xn
d̄

]
= −K1x1 −K2x2 + Fd̄, (5.30)

where N = [I, 0], with identity matrix I ∈ Rnu×nu , zero matrix 0 ∈ Rnu×nu(Np−1),
selects the first nu rows of M. In the LTI system case, the matrix K is constant and
can be split into three parts, the state feedback gain K1 from the controlled system,
the state feedback gain K2 from the reference generator, and a feedforward gain F
from the disturbance preview d̄.

When the MPC cost function Eq. (5.10) is formulated with constant weighting
matrices Q, R over the whole prediction horizon and the horizon length is increased,
gains K1 and K2 converge to the solution of the infinite horizon LQR problem, as
in Section 4.3. While LQR problem optimizes the state feedback gain, MPC opti-
mizes directly the control sequence. However, in the unconstrained case and without
the preview (d̄ = 0), the resulting structure is identical: a state feedback law. With
the disturbance preview, the state feedback structure becomes augmented. The
gain F represents coefficients of a non-causal Finite Impulse Response (FIR) filter
acting upon the preview of the known disturbance signal d.

5.3 Solution of Constrained MPC
Solving the constrained version of MPC results in an instance of Quadratic Program-
ming Eq. (5.3) Only a brief description of methods for solving QPs falls within the
scope of this thesis. Three main methods are described from the application perspec-
tive, as some of the properties are important for the solver selection in Section 5.4.
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An introductory overview of the basic methods is summarized in a bachelor’s [57], a
master’s [58], and a doctoral [59] thesis, all available online. An introduction is given
in books dedicated to MPC, in [60, Chapter 12] and in [56, Chapter 3.3]. A further
level of detail is found in the books [61, 62, 63] dedicated to numerical optimization.

5.3.1 Active Set Method

The most common [60] method for solving a QP is the Active Set Method (ASM).
The method is based on the observation that possibly only some of the inequality
constraints are active at the constrained optimum. The solution lies at the boundary
of the active constraints which constitute the active set. An equality constraint is
imposed by each of the active inequality constraints. Inactive inequality constraints
do not restrict the solution.

The active set method iteratively adds and removes potentially active constraints
into the working set and solves a QP subject to the equality constraints at each
iteration. The iterations are repeated until a feasible solution of the original problem
is found. A potential shortcoming of the method is that the number of iterations
may be large when many constraints are active since a single constraint is added or
removed per iteration. A computational speed-up is achieved by reusing the active
set from the previous control step as an initial guess for warm-starting.

5.3.2 Barrier Interior Point Method

In the barrier interior point method, inequality constraints are removed, and the op-
timization criterion is modified by an additive barrier function to prevent constraint
violation. The barrier function shall be differentiable to use Newton’s method and
shall approach infinity as the optimization variable approaches the constraint bound-
ary. Often a logarithmic barrier function is used.

The constrained quadratic problem is replaced by an unconstrained nonlinear
problem at each iteration. Newton’s method is applied and the unconstrained nonlin-
ear problem is approximated by a quadratic function. As the solution is approached,
the barrier function is incrementally lowered so that the optimizer is unbiased by the
barrier function. The method requires starting in the interior of the feasible region.
Interior methods are becoming more favored for real-time applications, because of
better constant run-time guarantees.

5.3.3 Gradient Projection Method

The Gradient projection method utilizes the steepest descent, a step in the negative
gradient direction at each iteration, projected onto the feasible set. While projection
onto the feasible set is computationally expensive for the general type of constraints,
it can be obtained without difficulty for box constraints using element-wise median
with the bounds of the box. Since only the gradient of the problem is used to deter-
mine the step direction, the method converges slowly for ill-conditioned problems
due to an uneven scaling of the optimization criterion.

5.4 Solvers for Constrained MPC
This section provides an overview of the available state-of-the-art QP solvers and
justifies the solver selection for the controller implementation. Decision criteria are
not only the computational performance, but also licensing, supported interfaces to
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Matlab and Simulink, interface for time-varying systems, and quality of the docu-
mentation. Only solvers specialized for MPC are considered. Utilizing the particular
problem structure, these outperform the general QP solvers in the MPC application.
A recent overview of solvers for embedded optimization (running on hardware with
limited resources and with real-time computational time) is given in [64]. For a
detailed performance comparison of the solvers, refer to [65, 66]. As licensing of the
software is an important aspect for the possible industrial use, a license with free
modification, proprietary distribution, and commercial use is preferred for prototyp-
ing, such as the GNU Lesser General Public License (GNU LGPL) [67].

5.4.1 FiOrdOs

FiOrdOs, First Order Optimization Software [68], is a Matlab toolbox for generation
of C implementations of the gradient projection methods. While general inequality
constraints are supported, only box constraints on the optimization variables are
handled efficiently. The computation time of gradient methods depends on the
Hessian condition number. The servomechanism problem formulation would require
prescaling to improve the Hessian conditioning due to the unstable dynamics. The
package is released under GNU GPL 3 license.

5.4.2 CVXGEN

CVXGEN [69, 70] by Mattingley and Boyd offers automated generation of optimized
C code from a high-level description of the optimization problem, utilizing primal-
dual interior point method to find the solution. Generated code is best suited for
smaller QPs, approximately with less than 50 decision variables. The size of the
generated branching-free and library-free code may be restrictive for embedded ap-
plication with larger problem size. The code must be regenerated when, for example,
problem size is changed, which is less convenient for fast prototyping. A free license
is granted for academic use only.

5.4.3 FORCES

Similar to CVXGEN, FORCES (Fast Optimal Real-time Control on Embedded Sys-
tems) package [71, 72] produces automatically generated code, featuring interior
point methods with Newton step, specialized to the MPC problem structure. More-
over, it offers interfaces to Matlab and Simulink, and LTV systems are supported.
The package was utilized for the MPC-based motion control of the AMZ Driverless
Formula [73, 74] and for 1:43 scale RC cars racing in [43]. The package offers some of
the best computational performance in the recent benchmarks [65], and, compared
to CVXGEN, scales better with problem size [66]. However, a free license is granted
for non-commercial academic research only.

5.4.4 qpDUNES

Specialized quadratic programming solver qpDUNES [75, 76] utilizes Dual Newton
Strategy, which combines the benefits in terms of structure exploitation of the in-
terior point methods and warm-starting capabilities of the active set methods. The
package is written in plain C with an interface to Matlab and support for LTV prob-
lems. In [75], a superior performance over FORCES was reported. The package is
published under the terms of GNU LGPL, free for both academic and industrial use.
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5.4.5 qpOASES
Solver qpOASES [77] extends the online active set strategy [78], and utilizes warm
starting based on the assumption that the active set does not change significantly
between the consecutive control steps. When the assumption is valid, it provides very
fast computational times [65], especially for small and medium-sized problems, below
100 decision variables. The package is written in C++ and extensively documented,
including the interfaces to both Matlab and Simulink. LTV systems are supported.
The solver is optimized for the dense formulation, with an interface as in Eq. (5.24).
The package is distributed under the industry-friendly GNU LGPL license.

5.4.6 HPMPC
HPMPC, the library for High-Performance implementation of solvers for MPC [79]
utilizes an interior point method with Riccati-based solver [80]. Based on [81],
HPMPC is the highest-performing solver for QPs with the structure arising from
MPC. It supports LTV system description in the sparse formulation, offers code opti-
mizations for embedded target architectures, and is published under the GNU LGPL
license. However, a detailed documentation and a Simulink interface is missing.

5.4.7 Solver Package Selection
Based on the above survey, qpOASES was selected for implementing the controller
as it offers fast computational times, interfaces to Matlab and Simulink, extensive
documentation, and is published under the GNU LGPL license. HPMPC or qp-
DUNES are viable second options, as they utilize the sparse formulation, which is
easier to implement. However, the documentation is not as detailed, compared to
qpOASES, and the two packages are developed and supported only under Linux.

5.5 Constraint Handling
While MPC supports a systematic account of constraints, these shall be imposed
with extra care as the problem complexity is increased and special measures must
be taken to ensure the problem feasibility. An MPC controller is only defined when
the set of possible solutions is non-empty. Otherwise, the problem is infeasible and
the resulting control may be arbitrary.

The two main causes of constraint violation are unrealistic control objectives and
model-plant mismatch [60]. In the first case, the constraints are mutually inconsis-
tent. An example is demanding a quick change in position using position constraints
together with an overly restrictive velocity constraint. In the second case, the future
behavior of the system differs from the prediction. When the system is operating
at the boundary of a constraint, the actual state response may end up violating
the constraint as a result of model mismatch, including the effects of unmodeled
disturbances, or measurement noise. The controller may be unable to find a feasible
control input that would bring the state inside the constraints in a single time step,
and the problem becomes infeasible.

5.5.1 Constraint Types
Two types of constraints are distinguished: hard and soft. Some level of violation
is allowed only for soft constraints. The constraint boundary may be shifted if the
feasible set of the original hard-constrained problem was empty.
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Input constraints such as actuator limitations are usually hard. Variables directly
manipulated by the optimization (the input sequence) can have hard constraints im-
posed as these can always be satisfied. If both input rate and input level constraints
are imposed, the bounds must be selected consistently over the horizon.

State constraints arise from restrictions of the allowed or preferred operating
range. The predicted state response depends on the initial state which is not ma-
nipulable in the optimization. Therefore, hard state constraints cause infeasibility
problems and only soft state constraints shall be imposed.

5.5.2 Softening the Constraints

Soft constraints are formulated by introducing an additional optimization variable,
called the slack variable, which represents the amount of constraint violation and is
simultaneously minimized. We reformulate the primal dense formulation of MPC
from Eq. (5.24) with soft constraints as

min
ū, ε

1
2 ū>Ĥū + ĝ>ū + w‖ε‖2 + v‖ε‖1 (5.31a)

s.t. blb −Mε ≤ B̂ū ≤ bub + Mε, (5.31b)
ūlb ≤ ū ≤ ūub, (5.31c)
ε ≥ 0, (5.31d)

where ε ∈ Rnε is the vector of slack variables and M ∈ Rniq×nε is a matrix mapping
the slack variables to the individual constraints, often an identity. Parameters w, v
determine constraint weights, with w ≥ 0 and v > 0.

Some small w shall be used to maintain a smooth cost function. Value of v
is more critical as it determines whether the constraints are exact. An exact soft
constraint is violated only if no other option exists. The cost of constraint violation
cannot be outweighed by the control performance cost. An inexact soft constraint
can be violated unnecessarily, in a tradeoff for a lower value of the combined cost
criterion. To obtain an exact constraint, slack variable penalization cannot be purely
quadratic with v = 0, as such would always result in some violation when active [56,
pg. 98]. A linear cost must be introduced. To obtain exact constraints, the value of v
must be selected to be higher than v∗, the largest of the Lagrange multipliers of the
original hard-constrained problem at the optimum [56, pg. 99]. However, v∗ is not
precisely known apriori, especially in time-varying problems. Usually, a sufficiently
large value is selected based on simulations.

Considering the above arguments, it may seem that all state constraints shall
be softened. However, that would significantly increase the number of optimization
variables and the computational time. To limit the number of variables, constraints
are often reformulated using l∞ norm. A single slack variable is used, representing
the worst case violation for a given state or output over the whole prediction horizon.
Matrix M maps the same slack variable to multiple scalar constraints, reducing the
required nε. However, an equal level of violation is permitted along the whole
prediction horizon once the slack variable becomes nonzero. A combination of both
approaches may be used to provide more granularity, splitting the prediction horizon
into subintervals, each covered by one slack variable. Particular applications of
softened state constraints are discussed in Section 6.5, 7.5, and 8.5.
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5.6 Move and Preview Blocking

A common strategy to reduce the computational complexity ismove blocking [82, 83].
It reduces the number of input changes (moves) over the prediction horizon, for
example by repeating an input value multiple times in few consecutive time steps of
the horizon. The size of the optimization variable and the required computational
time is reduced. A move blocking strategy can be described by a mapping

ū = Ūūr, (5.32)

where Ū ∈ RnuNp×nuNc projects the reduced input moves ūr ∈ RnuNc to the original
input sequence covering the whole prediction horizon ū ∈ RnuNp . The number of
input degrees of freedom is denoted Nc.

A simple move blocking strategy for the tracking formulation is based on using
input rates in the optimized control input sequence. Assuming that the system is
approaching a steady state towards the end of the prediction horizon, the input level
shall also approach its steady-state value and no further change shall be required.
Therefore, the input rates towards the end of the horizon can be fixed to zero by
using a move blocking matrix

Ū =
[

INc×Nc

0N̄c×Nc

]
⊗ 1 =



1 0 . . . 0

0 1
...

... . . . 0
0 . . . 0 1
0 . . . . . . 0
...

...
0 . . . . . . 0


, (5.33)

where ⊗ denotes the Kronecker product, Nc is the control horizon, N̄c = Np − Nc
denotes the number of steps during which u = 0, and 1 ∈ Rnu is a vector of ones,
sized according to the number of system inputs nu.

To satisfy the steady-state assumption, the disturbance preview d̄ shall be clipped
to zero after Nw ≤ Nc steps so that no change of the reference is commanded where
the controller no longer has a control authority. A preview blocking matrix can be
defined similarly as

D̄ =
[

INw×Nw 0Nw×N̄w
0N̄w×Nw

0N̄w×N̄w

]
⊗ 1 (5.34)

where I is an identity and 0 is a zero matrix of indicated sizes, with N̄w = Np−Nw,
and 1 ∈ Rnd . The primal-dense problem matrices are changed to

B̂blk ← B̂Ū, Êblk ← ÊD̄, R̄blk ← Ū>R̄Ū. (5.35)

Other possible move blocking strategies spread the control inputs over the prediction
horizon in blocks of increasing length, offering some control authority even at the
horizon end. However, move blocking is a heuristic technique. Stability guarantees
developed for MPC are lost. By blocking control moves at some of the predicted
steps, a further discrepancy arises between the receding horizon formulation and
the infinite horizon optimal control problem, because an input change is eventually
possible at every step of the receding horizon control. Possible negative impacts of
move blocking on the performance have to be determined experimentally.
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This chapter introduces a controller of the vehicle longitudinal velocity. The con-
troller is based on the modeling of Section 2.8 and formulated using the servomech-
anism problem structure described in Section 4.1. The goal of the longitudinal
controller is to track a velocity trajectory that was designed to decouple the longi-
tudinal and lateral dynamics. The model used in the independent lateral motion
controller is parametrized with the trajectory of the desired longitudinal velocity,
and therefore a low tracking error in the longitudinal velocity is necessary for the
validity of the approximation. Moreover, accurate velocity tracking helps to en-
sure that the maximum allowed level of lateral acceleration is not exceeded during
cornering, by braking to the required cornering speed in advance.

6.1 Controller Structure
For the controller design, the desired velocity trajectory is approximated as a piece-
wise ramp signal. The objective is to track the trajectory while satisfying the con-
straints of the longitudinal acceleration and of its time derivative, the longitudinal
jerk. Constraint satisfaction is addressed separately in Section 6.5.

The reference generator is modeled as a double integrator, the model of ramp
reference signals. Reference velocity and acceleration values are set using the initial
condition. Input u2 of the reference generator system is the time derivative of the
reference acceleration, approximated using forward difference of the reference accel-
eration trajectory. The model of the controlled longitudinal dynamics is summarized
in Eq. (2.27). Control input u1 used in the optimization is the time derivative of the
commanded longitudinal acceleration. The controller incorporates a model of the
reference, resulting in zero steady-state tracking error of ramp reference signals in ve-
locity with zero steady-state value of the control input variable u1. Continuous-time
model of the system is

d
dt


vact
aact
acmd
vref
aref

 =


0 1 0 0 0
0 −τ−1

L τ−1
L 0 0

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

A


vact
aact
acmd
vref
aref


︸ ︷︷ ︸

x

+


0
0
1
0
0


︸ ︷︷ ︸

B

u1 +


0
0
0
0
1


︸ ︷︷ ︸

E

u2, (6.1)

where subscripts are used to distinguish between actual, commanded and reference
values of the longitudinal velocity and acceleration. Since all variables are related
to the longitudinal direction, x index is omitted. Velocity tracking error is given as

ev =
[

1 0 0 −1 0
]

︸ ︷︷ ︸
C

x. (6.2)
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The continuous-time LTI model Eq. (6.1) is discretized at fs = 20 Hz using exact
discretization with input zero-order hold, assuming constant jerk between the time
steps. Prediction time is given as Tp = Np/fs, where Np is the horizon length.

6.2 Performance Criterion

Using the discretized version of the state-space model Eq. (6.1), discrete-time con-
trollers are designed using LQ servomechanism and MPC techniques, both with a
quadratic performance criterion. As the controller is tuned for a race track appli-
cation, the vehicle is expected to undergo high levels of acceleration to track the
prescribed velocity trajectory. Therefore, the acceleration level is not penalized, but
acceleration level constraints are imposed later.

The cost function at each step is

Lk(xk,uk) = qe2
v(k) + rȧ2

cmd(k) = x>k qC>C︸ ︷︷ ︸
Q

xk + ȧ2
cmd(k). (6.3)

In the single input case, parameter r penalizing the control effort can be fixed r = 1,
as only the ration of Q to r determines the performance. Only a single parameter
is used to tune the performance: q determining the importance of accurate velocity
tracking. Increasing q places more emphasis on close tracking of the velocity tra-
jectory, making the controller more aggressive. Tuning the controller for a different
application, such as for a passenger vehicle, reducing the weight q would increase the
ride comfort, smoothing the velocity trajectory and reducing the rate of transition
from acceleration to braking and conversely.

6.3 Unconstrained Controller
As described in Section 4.3 and Section 5.2, both the LQ servomechanism and the
unconstrained MPC formulation consist of a state feedback. Receding horizon con-
trol applies only the first input of the optimal sequence and shifts the end of the
horizon after each step. In the finite horizon LQR, the end of the horizon is assumed
fixed and time-varying gains are precalculated for each time step. However, when the
same weighting matrices are used in the quadratic costs Eq. (4.4) and Eq. (5.10) and
the horizon length is increased, the feedback gains at the beginning of the horizon
converge to identical values, as shown in Fig. 6.1.

Gains obtained from iterating Eq. (4.6) are shown in Fig. 6.1a. When used for
time-varying state feedback, LQR gains would be applied in the reversed order of
the horizon time indicated by the horizontal axis and would change only in the last
few time steps. Solutions of the difference Riccati equation converge to the solution
of the algebraic Riccati equation of the infinite horizon problem.

Convergence of the unconstrained MPC can be ensured either by a sufficiently
long prediction horizon as in Fig. 6.1b, or by an appropriate setting of the terminal
cost weight. Using the steady-state solution P∞ of the Riccati Eq. (4.6) as the
terminal cost Qn+Np in the unconstrained MPC problem ensures convergence of the
feedback gains regardless of the prediction horizon length Np, as shown in Fig. 6.1c.

Fig. 6.2 analyzes the feedforward part F of the unconstrained MPC, calculated
using Eq. (5.30). When weighting matrices of the cost function are uniform over
the prediction horizon, the shape of the filter coefficients evolves with increasing
horizon length as in Fig. 6.2a. For Tp ≥ 0.5 s, the filter coefficients start to converge,

50



6.3 Unconstrained Controller

(a) LQR (b) MPC: Qn+Np = Q (c) MPC: Qn+Np = P∞

Figure 6.1: Convergence of state feedback gains with increasing horizon
length for longitudinal velocity controller Eq. (6.1) discretized at fs =
20 Hz.

(a) with Qn+Np = Q (b) with Qn+Np = P∞

Figure 6.2: Shape of feedforward coefficients F, the gains from distur-
bance d previewed at time t in the future, obtained for q = 103, fs = 20 Hz.

at a similar horizon length as the feedback part in Fig. 6.1b. For Tp ≥ 1.5 s, the
shape does no longer change and any further coefficients are negligible. In the
unconstrained case, it makes no performance improvement to preview the reference
further into the future. For Tp ≥ 0.8 s, some of the coefficients become negative,
meaning that the controller would initially command acceleration in the opposite
direction to achieve closer velocity tracking. This behavior is a result of penalizing
only the velocity error using q = 103 and no penalization of the acceleration error.

Fig. 6.2b shows the feedforward part F obtained with the steady-state solu-
tion P∞ of Eq. (4.6) as the terminal weight. The shape of the filter does not change
from the result obtained for an infinitely long prediction horizon. Horizon length
determines only the number of nonzero coefficients, clipping the filter at t = Tp.

Obtaining the same solution in the unconstrained MPC as in LQR is essential
because both controllers share the same stability guarantees. P∞ in the terminal
cost is the sum of the remaining cost-to-go of the infinite horizon problem. There-
fore, the controller behaves as if there was LQ-optimal state feedback applied past
the prediction horizon. Setting the terminal cost improves stability and reduces
the discrepancy between the predicted input sequence and its receding horizon im-
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(a) closed-loop responses (b) MPC feedforward response

Figure 6.3: Comparison of LQR and MPC longitudinal velocity controllers
in response to a unit step of reference acceleration.

plementation, making the calculated input sequence more useful for state response
predictions. When constraints are imposed, further conditions must be satisfied to
guarantee stability: the recursive feasibility as described in [53].

6.4 Importance of Preview
This section illustrates the importance of preview and benefits of the predictive
control strategy. In particular, the impact of the preview-based feedforward F is
analyzed. The controllers are implemented in discrete time at fs = 20 Hz and system
response is simulated using the continuous-time model. Prediction time of Tp = 2 s,
resp. prediction horizon length of Np = 40 samples, was used.

Comparison of closed-loop responses to a unit step of the reference acceleration
is shown in Fig. 6.3a. Both configurations achieve zero steady-state tracking error of
ramp reference velocity. Utilizing the preview, MPC achieves a lower velocity error
during the change of reference, with a lower peak in the longitudinal acceleration,
and significantly lower and smoother longitudinal jerk. The lag due to the first-order
response from the acceleration command to the actual acceleration is accounted for
in the predictive control and acceleration is commanded further in advance.

The response of the feedforward filter to the same reference acceleration step
is shown in Fig. 6.3b. In the lowermost plot, the unit impulse response of the
feedforward input longitudinal jerk is shown. The shape of the feedforward input is
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a mirror image of the coefficients plotted in Fig. 6.2b. Upon integration, the resulting
acceleration and velocity without feedback are higher, as shown in the two upper
plots of Fig. 6.3b. A larger input value has to be generated in the feedforward part as
the feedback part is opposing the change before the reference changes for t < 0. The
feedforward gain is higher than unity and depends on the feedback gains. Using
MPC, the feedforward part is designed consistently with the particular values of
LQR feedback gains. The feedforward from the previewed disturbance results in
optimal transitions on reference changes.

6.5 Longitudinal Constraints
Imposing constraints is critical for the decoupled operation of the longitudinal and
lateral controller. The total acceleration of the vehicle is limited, and the allocation
of acceleration between the longitudinal and lateral directions is handled in the
trajectory generation problem. Lateral motion has a higher priority to maintain
the vehicle on the track. Therefore, the longitudinal controller must respect this
allocation in the form of constraints to avoid coupling.

Constraining longitudinal acceleration during cornering helps to prevent power
oversteer : sliding of the rear tires when too much throttle is applied in turn. Corner-
ing forces of the rear tires are reduced due to the combined generation of tire force,
increasing the vehicle sideslip angle. A similar effect also occurs during simultaneous
braking and cornering. The front tires apply most of the braking force as a result of
the forward weight transfer. Cornering forces of the front tires are reduced due to
the combined force generation, producing a lower yaw rate and causing understeer:
the vehicle executes an arc of larger radius.

Exceeding the maximum velocity may lead to an excessive lateral acceleration
in corners and loss of tire grip. Depending on the setting of q, a velocity constraint
may be necessary to slow down to the speed required in the corner and to prevent
an early acceleration at the corner exit. Without the upper bound on velocity, the
controller may relax its braking effort in a tradeoff for a lower penalization of the
control effort as acceleration from the corner is anticipated.

To formulate constraints of the velocity error and the acceleration level, we first
define the outputs to be constrained. The velocity error is defined in Eq. (6.2). The
acceleration command is obtained as

acmd =
[

0 0 1 0 0
]

︸ ︷︷ ︸
Ca

x. (6.4)

Formally, the output matrices are collected using the Kronecker product ⊗ into

C̄ =
[

INc×Nc ⊗C
INc×Nc ⊗Ca

]
, (6.5)

where I is an identity matrix of indicated dimensions. Matrix C̄ projects the pre-
dicted states into a vector of predicted velocity errors and predicted acceleration
commands over the first Nc steps, the part of the horizon with possible control
action where we select to impose the constraints.

Longitudinal jerk constraints are implemented as simple box constraints of the
optimization variable in the form of Eq. (5.24c). Together with the constraints of
the acceleration command, both input rate and input level are constrained. Accel-
eration command bounds change along the trajectory and are precalculated during
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the trajectory generation based on the available tire grip using track curvature and
reference velocity. The bounds assume the form of

alb =
[
amin(tn), amin(tn + Ts), . . . , amin(tn + Tc)

]>
,

aub =
[
amax(tn), amax(tn + Ts), . . . , amax(tn + Tc)

]>
.

(6.6)

Bounds of the acceleration command acmd can be formulated as hard, provided that
the bounds on ȧcmd are sufficiently tolerant, and that the bounds on acmd from the
previous step are only shifted in time with no abrupt change. For example with
the setting of |ȧcmd| ≤ 20 m/s3 and the sample time Ts = 0.05 s, the command can
change |∆acmd| ≤ 1 m/s2 per control step, typically enough to follow the bounds.
For larger changes, the controller can use multiple steps as the horizon is sufficiently
long Tc = 2 s. We did not encounter any infeasibility problems with the above
settings in simulations.

Only an upper bound is imposed on the velocity error to prevent exceeding the
reference velocity by more than vε. The bounds are

vlb = −∞1, vub = vε 1, (6.7)

where 1 ∈ RNc is a vector of ones. However, the velocity error constraint must be
softened. The controller has to cope with model mismatch, such as reduced braking
efficiency due to reduced friction coefficient, or unmodeled disturbances, such as the
road grade. It is not possible to guarantee reduction of the velocity below the upper
bound in a single step. Therefore, the parameter vε is used as a slack variable. For
low complexity, a single slack variable is used, representing the worst case error over
the whole horizon. The linear penalization weight v of the soft constraint was set
to v = 106 so that the soft constraint is exact.

Finally, the constraints are collected into the form of Eq. (5.24b) as[
vlb
alb

]
− C̄Âxn − C̄Êd̄︸ ︷︷ ︸

blb

≤ C̄B̂︸︷︷︸
Aiq

ū ≤
[
vub
aub

]
− C̄Âxn − C̄Êd̄︸ ︷︷ ︸

bub

. (6.8)

6.6 Performance on Time-Optimal Velocity Profile
This section compares the tracking performance of the infinite-horizon discrete-time
LQR and constrained MPC using a realistic reference, a minimum-time velocity and
acceleration trajectory, generated as described in Chapter 3. The selected portion
represents a transition between two turns, with acceleration followed by braking and
cornering. Controller parameters are set as in Subsection 6.4, with fs = 20 Hz and
Np = 40. For both controllers, longitudinal jerk was constrained to |ȧcmd| ≤ 20 m/s3

and acceleration command to acmd ∈ 〈−8, 5〉m/s2. While MPC handles the input
limits explicitly as optimization constraints, saturation had to be applied in the
LQR case. Typically, the performance of MPC in saturation is better. Applying
saturation with LQR can induce command oscillations, as rate constraints are not
considered, or even lead to instability.

Velocity tracking is shown in Fig. 6.4a, initialized with vact = (vref−2) m/s. The
response to the initial condition is identical. However, the control input generated by
MPC accounts for constraints and does not windup during acceleration saturation.
The recovery from saturation is less oscillatory in the case of MPC, both because of
handling the constraints systematically and previewing the future reference.
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6.6 Performance on Time-Optimal Velocity Profile

(a) tracking (b) performance indicators

Figure 6.4: Comparison of LQR (reactive) and MPC (predictive) longitu-
dinal controllers tracking a time-optimal velocity profile.

The major difference becomes apparent when the model transitions from accel-
eration to braking at time t = 6 s. The change is anticipated in MPC, braking is
initiated earlier, resulting in a superior tracking performance. Moreover, the effect
of the first-order response is accounted for and braking is commanded further in
advance. Anticipating the change in reference reduces the tracking error. Moreover,
the required control input is lower and smoother, thus less demanding on the vehicle.

The advantages of the predictive control are further highlighted in Fig. 6.4b.
A lower velocity error translates into a lower deviation from the planned lateral
acceleration in the turn. When the reference velocity is exceeded, the resulting
centrifugal force is higher, demanding a higher tire cornering force to maintain the
turning radius. Similarly, braking only in reaction to the velocity error requires a
higher longitudinal acceleration to track the trajectory. Both these effects contribute
to the total acceleration. The limit of the total acceleration, for which the trajectory
was designed, was significantly exceeded in the LQR case, as indicated in the third
subplot of Fig. 6.4b. Such controller reaction would likely result in saturation of
tire forces and a slide. Therefore, the predictive control helps to maintain the total
acceleration in the designed limits and prevents forcing the vehicle into the region of
strongly nonlinear operation. In lateral motion control, anticipating corners helps
similarly to reduce the lateral jerk and lateral acceleration. Therefore, utilizing a
preview-based feedforward control is necessary to execute a trajectory at the limits
of the vehicle handling with additional constraints not considered in the trajectory
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optimization, such as the rate limits of the acceleration command.
Lastly, the performance of both approaches can be compared by evaluating the

quadratic cost at each step. Although the same criterion is optimized, utilizing future
information further helps to reduce the criterion value, as shown in the lowermost
subplot of Fig. 6.4b. Anticipating the step change of acceleration, the predictive
controller deviates slightly at first to obtain a lower overall penalization later during
the braking part of the trajectory. The predictive controller performs better in terms
of the quadratic cost, the tracking error, and satisfaction of the constraints.
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7 | Lateral Controller

Lateral motion controller uses steering to track the reference path. The problem can
be posed as model matching using the servomechanism problem structure described
in Chapter 4, allowing to combine different models of the controlled system and the
reference generator from Chapter 2 for particular tracking tasks.

7.1 Controller Formulation

To follow a reference path closely, the control system must keep the velocity vector
of the vehicle aligned with the tangent of the reference curve. A sufficiently smooth
curved path can be locally approximated using an osculating circle, which is tangent
to the curve and of the same curvature at the given point of approximation. The
distance of the vehicle from the curve in the radial direction of the osculating circle
defines the crosstrack error and change in the relative heading of the vehicle is used
to suppress it. Small crosstrack deviations are permitted, for example, to achieve
reduced lateral acceleration and jerk, for a smoother ride experience in the situations
where the risk of collision with an obstacle is not increased.

Consider situation depicted in Fig. 7.1 showing a bicycle model following a curved
path in the xy plane. At the point closest to the vehicle, a tangential curve-fixed
reference frame is attached, and the curve is approximated using the osculating
circle. The crosstrack error ed is governed by a differential equation, obtained as the
projection of the vehicle velocity vector v from the body-fixed coordinate frame into
the radial direction yc, perpendicular to the tangential heading of the curve ψref .
The projection, representing the crosstrack error rate, is given as

ėd = ẋ sin(ψ − ψref) + ẏ cos(ψ − ψref), (7.1)

similar as assuming Eq. (2.6b) in the reference frame of the curve, called the curvi-
linear abscissa reference frame in the literature [84, 85].

As the vehicle is supposed to move along the reference curve closely, the difference
in orientation |ψ − ψref | is typically smaller than a 15◦ angle and ed is small with
respect to the reference radius R = κ−1

ref at higher speeds. Therefore, crosstrack error
rate ėd can be linearized for small heading errors as

ėd ≈ vx(ψ − ψref) + ẏ ≈ vx(ψ + β − ψref) ≈ vxeψ. (7.2)

For the kinematic model, lateral velocity component is often neglected ẏ ≈ 0, as
in [17], because no sideways slipping is assumed in the kinematic model of Section 2.2.
The crosstrack error ed is the integral of the heading error eψ. The purpose of the
controller is to regulate ed to zero and to keep headings of the controlled and the
reference system aligned.
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Figure 7.1: Coordinate frame convention used in the lateral motion con-
troller. All angles are oriented positively in the counter-clockwise direction.

7.1.1 Kinematic Models

Several configurations of the servomechanism problem are possible, selecting differ-
ent models to represent the heading response. The reference generator can either
be formulated using Eq. (2.2) when a reference steering trajectory is known, for
example from a higher-level planner utilizing the simpler kinematic model, or us-
ing Eq. (2.4) when the reference path is a geometric curve represented by curvature.
The reference generator model of a C2-continuous curve in the state-space form is[

ψ̇ref
κ̇ref

]
=
[
0 vx
0 0

] [
ψref
κref

]
+
[
0
1

]
u2 = A2,ψz2 + E2u2, (7.3)

where z2 denotes the reference state and the input u2 represents the rate of curvature
change of the reference curve.

For control of maneuvers at low levels of lateral acceleration, the kinematic model
of Eq. (2.2) can be used as the model of the controlled system, with an additional
state introducing the continuity of the commanded steering angle δ[

ψ̇

δ̇

]
=
[
0 vx/L
0 0

] [
ψ
δ

]
+
[
0
1

]
u1 = A1,ψz1 + B1u1, (7.4)

where z1 denotes the controlled state and the input u1 is the rate of steering an-
gle change. This setup provides tracking feedback. However, the ideal open-loop
steering u1 is already known from the input u2 of the generator.

7.1.2 Dynamic Model

On the contrary, utilizing the dynamic model Eq. (2.20) leads to a model matching
task. The controller provides not only a crosstrack error feedback but also deter-
mines the appropriate feedforward steering such that the reference curve heading is
followed, utilizing the knowledge of the vehicle’s velocity-dependent yaw rate and
sideslip transient responses. The task is no longer kinematic.
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7.1 Controller Formulation

State-transition Eq. (2.20) of the controlled system is rewritten as


ψ̇
ÿ

ψ̈

δ̇

 =


0 0 1 0

0 −Cαr+Cαf
mvx

lrCαr−lfCαf
mvx

− vx
Cαf
m

0 lrCαr−lfCαf
vx

− l2rCαr+l2f Cαf
Izvx

lfCαf
Iz

0 0 0 0


︸ ︷︷ ︸

A1,ψ


ψ
ẏ

ψ̇
δ


︸ ︷︷ ︸

z1

+


0
0
0
1


︸ ︷︷ ︸

B1

u1, (7.5)

with the state z1 augmented by yaw rate ψ̇ and lateral velocity ẏ ≈ vxβ of the
dynamic bicycle model in contrast to the kinematic model of Eq. (7.4). The pair
(A1,ψ,B1) represents a model of the vehicle heading response and the dynamic
bicycle of Eq. (7.5) is used in this work.

7.1.3 Velocity Projection

The third ingredient is how the state of each subsystem affects the resulting cross-
track error. Although Eq. (7.1) shall be integrated to obtain the crosstrack error,
we first integrate the contribution of each subsystem separately and then subtract
the integrals to comply formally with Eq. (4.12), where the errors are formulated
using a linear combination of subsystem states. From Eq. (7.1), output matrix is
introduced for the curve model as

Cd2(vx) =
[
vx 0

]
, (7.6)

for the kinematic bicycle model as

Cd1(vx) =
[
vx vx

lr
L

]
, (7.7)

and for the dynamic bicycle model as

Cd1(vx) =
[
vx 1 0 0

]
, (7.8)

Defining additional system states d1 and d2 representing the contribution of each
subsystem to the crosstrack error ed = d1 − d2, the two subsystems are joined
according to the structure of Eq. (4.12)

ḋ1
ż1
ḋ2
ż2

 =


0 Cd1 0 0
0 A1,ψ 0 0
0 0 0 Cd2

0 0 0 A2,ψ



d1
z1
d2
z2

+


0

B1
0
0

u1 +


0
0
0

E2

u2. (7.9)

The above block-diagonal structure is required for the LQ tracker design as described
in Section 4.3. However, for MPC formulation the structure can also be written as ėd

ż1
ż2

 =

 0 Cd1 −Cd2

0 A1,ψ 0
0 0 A2,ψ


 ed

z1
z2

+

 0
B1
0

u1 +

 0
0

E2

u2, (7.10)

for model compatibility with the related work [17]. Further in this work, only the
structure of Eq. (7.9) is used for the controller design.
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7.1.4 Error Outputs
Several error outputs can be penalized. The most important one to ensure path
tracking is the crosstrack error, the only output from which all controllable states are
observable. Secondly, heading error can be penalized as it is the source of crosstrack
error and low heading error ensures the validity of Eq. (7.1) linear approximation.
Yaw rate and lateral acceleration errors allow tuning the aggressivity of the response,
reducing the deviation from the planned trajectory in terms of lateral acceleration
and demand of lateral tire force. In this order, outputs are introduced as follows

d1
ψ + β

ψ̇
ay


︸ ︷︷ ︸

y1

=


1 0 0 0 0
0 1 vx

−1 0 0
0 0 0 1 0
0 a21 a22 a23 + vx a24


︸ ︷︷ ︸

C1(vx)


d1
ψ
ẏ

ψ̇
δ


︸ ︷︷ ︸

x1

, (7.11)

for the controlled system based on the dynamic bicycle model, with a2j indicating
the j-th column of the second row of A1,ψ from Eq. (7.5), forming ay as in Eq. (2.9).
Outputs of the generator based on the model of a curve are

d2
ψref
ψ̇ref
ay,ref


︸ ︷︷ ︸

y2

=


1 0 0
0 1 0
0 0 vx
0 0 v2

x


︸ ︷︷ ︸

C2(vx)

 d2
ψref
κref


︸ ︷︷ ︸

x2

. (7.12)

The error output is formed as e = y1 − y2 with an output matrix C = [C1, −C2].

7.2 Controller Tuning
With five states of the controlled system, three states of the reference generator and
linear parameter-varying dynamics, implementation and tuning of the lateral con-
troller is more a complex task than was the case of the longitudinal controller. Both
the state-transition matrix A(vx) and the output matrix C(vx) of the servomecha-
nism structure depend on the longitudinal velocity. Therefore, a steady-state solu-
tion of the difference Riccati equation exists only for vx fixed. In contrast, the MPC
formulation can be parametrized with a velocity trajectory over the prediction hori-
zon to provide optimal control of the parameter-varying system.

For the the MPC formulation, the criterion weights can vary with the velocity
similarly as the system dynamics as long as Qx � 0,R � 0. However, this option
was not investigated for the sake of controller tuning simplicity. A fixed, velocity-
independent diagonal matrix of tracking error weights Qe was used

Qe = diag
([

0.25, 25, 4, 0.01
])
, R = 10. (7.13)

with the errors ordered as e = [ed, eψ, eψ̇, eay ]>. The choice of Qe and C(vx) defines
the matrix Qx of weights in terms of the system states

Qx = C>(vx) Qe C(vx), (7.14)

which is velocity-dependent, non-diagonal due to the squared differences between
states, but positive semidefinite. The symbolic structure of Qx is rather complicated
and thus is kept in the unexpanded form.

60



7.2 Controller Tuning

(a) State response (b) Error response

Figure 7.2: Response of the unconstrained lateral state-feedback controller
to an initial crosstrack error ed = 0.5 m at velocity vx = 15 m/s.

7.2.1 Response to Initial Conditions

First, the response of the structure to initial conditions is analyzed in the uncon-
strained case and at fixed vx = 15 m/s, where the controller acts as a linear state
feedback. The feedback gains can be equivalently obtained as the steady-state solu-
tion of the difference Riccati Eq. (4.6) or as the solution of the unconstrained MPC
from Eq. (5.30). Response to an initial crosstrack error ed = d1 − d2 = 0.5 m is
shown in Fig. 7.2. State responses are shown in Fig. 7.2a, while errors introduced
in Eq. (7.11) are shown in Fig. 7.2b, together with the weighted quadratic costs.

At each step, the controller reduces the cost of the current state as the output
error is regulated to zero. Relative weights of the errors are essential for tuning
the controller behavior. The controller has to develop an error in all of the output
variables to steer the system to zero and the criterion weights determine the tradeoff.
To illustrate the relation, the heading error eψ grows until t = 1.0 s, the controller is
pointing the vehicle towards the path and the crosstrack error ed starts decreasing.
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7. Lateral Controller

(a) State response (b) Error response

Figure 7.3: Response of the unconstrained lateral state-feedback controller
to initial heading error eψ = −5◦ at velocity vx = 15 m/s and reference
radius of curvature κ−1 = 100 m.

At t = 1.2 s, the two weighted quadratic errors become of the same order and the
controller starts to realign the vehicle with the path heading.

The servomechanism structure of the lateral controller was designed to achieve a
zero steady-state crosstrack error on circular paths, which translates into offset-free
tracking of ramp reference in ψ and of parabolic reference in d1. Tracking a circular
path with κ−1

ref = R = 100 m at velocity vx = 15 m/s is shown in Fig. 7.3. The
response is started with an additional heading error, which increases the crosstrack
error peak, before the required curvature is reached. The weights of eψ̇ and eay
limit aggressivity of the response at the beginning of the transient, respectively the
deviation from the reference yaw rate and lateral acceleration. The absolute levels
of ψ̇ and ay are not penalized as achieving non-zero reference values is necessary for
tracking, but exceeding the preplanned reference may lead to a loss of tire adhesion.

In the steady state, zero tracking errors are achieved in Fig. 7.3b, which justifies
the choice of the tracking error outputs. Similarly, the control input and the criterion
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value reaches zero in steady state. In the second row of Fig. 7.3b, vehicle yaw angle ψ
does not align with the path heading ψ2 6= ψ1, the vehicle is moving along the circular
path at a sideslip angle β 6= 0, which the heading error eψ has to reflect in order to
be zero in the steady state.

As in the first case, the response has initial peaks of δ̇, δ, ψ̇ in Fig. 7.3a, amplified
by the growing reference. A relatively large input is developed in the first time steps
to avoid the state penalization in the future. The controlled system can be viewed
as a cascade of an integrator, a second-order underdamped system, and a double
integrator. From the control theory perspective, the single overshoot in δ and ψ
responses indicates a zero at the origin in the transfer function from the reference
generator states to the states of the controlled system once the state feedback is
closed. To prevent an abrupt reaction, input constraints will be imposed to resolve
the initial peak of the control input.

7.2.2 Lateral Tracking with Preview
This section presents the performance of lateral tracking when preview of the distur-
bance κ̇ref is utilized. The disturbance represents the change of reference curvature.
Previewing becomes essential when the controller is operating close to the system
limits, either in terms of the control input or state responses. With the preview,
the transition to a new reference can be spread over a time interval, respecting the
system limitations. In this respect, the effect of the preview is similar to a refer-
ence governor, which smoothens the reference and ensures that an abrupt change
that could destabilize the system is not commanded. In the MPC formulation, the
reference change is predicted based on the apriori known disturbance entering the
reference generator and the controller selects an input to match the anticipated
response optimally with respect to the quadratic cost. The preview scheme is pos-
sible only because the disturbance κ̇ref is known in advance based on the desired
trajectory and the non-causal filtration can be realized.

The behavior is analyzed using a step in the reference curvature to a value at
which the lateral acceleration is ay = 4 m/s2, as in the steepsteer identification
of Section 2.5. The experiment is simulated at two different speeds, vx = 15 m/s
and vx = 50 m/s, to compare how the performance changes in the presence of
reduced damping and non-minimum phase β response at higher speeds with the
velocity-independent weighting Qe of Eq. (7.13). The variation of the model tran-
sient response with speed was analyzed in Fig. 2.7, showing that damping of β and ψ̇
is reduced and the period of oscillations is increased with increasing speed, possibly
prolonging the horizon length required for the system settling.

Prior to analyzing the response, let us recall the steady-state cornering values of
the linear dynamic bicycle model from [27]. The steady-state steering angle required
to track a circular trajectory of curvature κref is given as

δss(vx, κref) =
(
L+KV v

2
x

)
κref (7.15)

and consists of the kinematic steering angle δkin = Lκref increased by the lateral
acceleration in proportion to the vehicle understeer gradient KV . The steady state
sideslip angle βss is

βss(vx, κref) =
(
lr −

lf
2CαrL

mv2
x

)
κref , (7.16)

and becomes negative for the second case with vx = 50 m/s.
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(a) for vx = 15 m/s (b) for vx = 50 m/s

Figure 7.4: Response to step change in curvature at different velocities.

The controller was implemented at fs = 20 Hz and the continuous-time model
was used for simulation of the response using a variable-step solver. The response
simulated at vx = 15 m/s is shown in Fig. 7.4a and at vx = 50 m/s in Fig. 7.4b. In
both cases, offset-free tracking of the reference curve in ed is achieved, because the
controlled system contains the model of the reference curve. Heading error with the
sideslip angle β included reaches zero in steady state and is the correct indicator
of the vehicle heading. The preview of the reference change is utilized to execute
the transition from a straight segment into the turn smoothly, with lower tracking
errors, lower peak values of lateral acceleration and yaw rate, and lower steering
rate, compared to the reactive control in Fig. 7.3.

While δss of Eq. (7.15) was derived in [27] to be used as a feedforward input
in a steering controller, presented MPC formulation determines the steady-state
steering angle required for tracking the reference curvature implicitly. Moreover,
the controller accounts for the transient behavior and adjusts the control input to

64



7.3 Structure Comparison

ψref vx

Pd Pψ
dref ed ∆ψ∆ψ eψ δ d

ψ−−

Figure 7.5: Reference architecture of a lateral motion controller based on
a cascade structure and classical control design.

dampen the oscillations at higher speeds, improving the performance compared to
a static feedforward gain.

7.3 Structure Comparison

In the recent related work [10, 11, 86, 17, 54, 43], both linear and nonlinear MPC was
applied for the control of lateral vehicle motion, but, to our knowledge, the resulting
controller structure was never compared with the previous works [5, 15] based on
the classical control design methods. This section compares the controller structures
using a unified notation, where Px indicates a proportional gain from variable x and
Kx indicates a proportional state feedback gain from x.

Fig. 7.5 shows the reference controller structure implemented for a scale RC car
in [87]. For simplicity of the comparison, we consider only proportional controllers in
place of the PIDs, as typically only P gains were tuned nonzero. Output saturation
is neglected to compare the nominal linear control law. The steering control law is

δ = Pψ(ψref − ψ + ∆ψ) = Pψ(ψref − ψ) + PψPd(dref − d). (7.17)

Considering Eq. (7.1), the structure is equivalent to PD control of ed. When the
controller is tracking a circular trajectory, the steady-state error ed cannot reach
zero as nonzero δ is required for tracking. No feedforward based on path curvature
is utilized. High controller gains are required for low steady-state errors.

In Stanley [5], the winning car of the 2005 DARPA challenge, a nonlinear feed-
back law was used. Neglecting the δ saturation, Stanley’s steering control law can
be rewritten using the same notation as Eq. (7.17) into

δ = Pψ
(
ψref−ψ−βss(κref , vx)

)
+arctan

(
Pd

1 + vx
ed

)
+Pψ̇

(
ψ̇−ψ̇ss(κref , vx)

)
. (7.18)

The first two terms were designed based on the kinematic model and later augmented
by the yaw rate damping term, since yaw dynamics become more oscillatory at higher
speeds as the damping due to the tire forces decreases, as we analyzed in Fig. 2.7b.
The nonlinearity of arctan was used to smoothly reduce the steering command for
larger crosstrack errors ed. A gain scheduling of Pd was done dividing it by (1 + vx)
to account for the LPV dynamics dependent on vehicle longitudinal velocity.

In 2012, Shelly, Stanford’s Audi TTS [15], completed the first autonomous run
up Pikes Peak in Colorado. The lateral motion controller for the task was designed
using the classical control methods and consisted of three components

δ = δss(κref , vx)︸ ︷︷ ︸
δfeedforward

+Pd
(
ed + xlaeψ

)
︸ ︷︷ ︸

δcontrol

+Pψ̇

(
ψ̇ − ψ̇ss(κref , vx)

)
︸ ︷︷ ︸

δdamping

. (7.19)
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7. Lateral Controller

The feedforward part was based on track curvature and the dynamic bicycle model as
expressed in Eq. (7.15). A lookahead distance xla was used to project the crosstrack
error into the curve-fixed reference frame, creating a prediction

êd = ed + xla sin(eψ) ≈ ed + xlaeψ (7.20)

of the crosstrack error ed based on the heading error eψ. The result is equivalent as
a proportional control of eψ with gain Peψ ← Pdxla. Yaw damping was introduced
to suppress yaw oscillations at higher speeds, as in the case of Stanley in Eq. (7.18).

Finally, let us analyze the state-feedback structure obtained using the presented
lateral controller (LQR or MPC) in the unconstrained case and at a fixed speed.
In contrast to the above approaches, steering rate δ̇ is controlled. The controller
commands the steering rate, changing the steering angle until a steady state is
reached. In the steady state with δ̇ = 0, the feedback structure can be grouped into

δ̇ =−Kd (d− dref)︸ ︷︷ ︸
ed

−Kψ (ψ − ψref + β)︸ ︷︷ ︸
eψ

− . . . (7.21)

−Kψ̇

(
ψ̇ − ψ̇ss(κref , vx)

)
−Kδ

(
δ − δss(κref , vx)

)
−Kβ

(
β − βss(κref , vx)

)
. (7.22)

The controller contains all the typical components: a proportional feedback from the
crosstrack error ed, from the heading error eψ, a yaw rate damper, a δ feedforward
based on Eq. (7.15), and an additional sideslip β compensation. Moreover, the MPC
version features the preview-based feedforward Fd̄, creating an additional input to
achieve optimal transient behavior when the reference is changing.

In contrast to controllers of Eq. (7.17) and Eq. (7.18), zero crosstrack error on
circular trajectories is possible. Compared to Eq. (7.18), the state feedback law is
designed all at once, instead of the sequential design of multiple SISO control laws. A
similar approach as we present is adopted in the modern flight control systems [88],
achieving typically a superior performance using the MIMO design compared to
successive designs of dampers and autopilots as SISO loops.

Including reference curvature κref as a state of the reference generator model is
essential, allowing to model the steady-state cornering and to obtain the feedforward
and compensation terms of Eq. (7.22) in the state feedback structure, thanks to
the servomechanism problem formulation. MPC can be viewed as an online gain-
scheduling scheme along an arbitrary velocity trajectory, taking into account the
LPV dynamics, with the additional benefit of constraint handling. However, it
can also be used for offline gain scheduling for relaxed constraints and vx given.
Controlling the steering rate δ̇ with constraints results in a smoother response of the
steering angle δ. In Shelly [15], δ was the control input variable, causing non-smooth
abrupt changes in presence of noise and disturbances.

7.4 Performance with Noise and Disturbance

To analyze the controller performance under noise, the typical accuracy of Oxford
Technical Solution RT3002 [89] was used to create an estimator noise model. RT3002
is a high-grade sensing system which features dual-antenna GPS with an IMU to
measure the position and the orientation of the vehicle in the inertial frame and the
vehicle velocities in the vehicle body frame. RT3002 is used in vehicle dynamics
testing and as a ground-truth reference for autonomous driving tests. In 2005, two
of the five teams that successfully completed the DARPA Grand Challenge used
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7.4 Performance with Noise and Disturbance

(a) 5× σ of RT3002 (b) 10× σ of RT3002

Figure 7.6: Performance of the lateral controller with simulated additive
white Gaussian noise in the estimated state of the controlled system.

RT3002 for state estimation. The sensing system was also used for MPC-based
autonomous steering in the experiments of [10, 86].

With differential corrections from a base station, the accuracy of RT3002 [89] is

σx = σy = 0.02 m, σψ = 0.1◦, nvx,RMS = 0.05 km/h, σẏ = 0.2%vx. (7.23)

The noise model accuracy in acceleration and yaw rate measurements was based on
the Bosch SMI710 inertial sensor for vehicle dynamics control [90]

nψ̇,RMS = 0.15◦/s, σax = σay = 0.06 m/s2. (7.24)

While a different noise models would be more appropriate in some of the state
variables, such as a random walk in heading ψ, a zero-mean additive white Gaussian
noise was used with standard deviations of Eq. (7.23) and Eq. (7.24), and zero
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7. Lateral Controller

(a) unmeas. +1◦ pulse in δ for t ∈ 〈1, 6〉 (b) side gust-wind, vwind = 24 m/s

Figure 7.7: Performance of the lateral controller under disturbances

cross-covariance. The purpose of the simple noise model is to validate the controller
with degraded state information to avoid overtuning the controller with the perfect
knowledge of all states.

Fig. 7.6 repeats the experiment of a step increase in curvature from Fig. 7.4a for
two noise settings, five and ten times the nominal standard deviations of the noise
model. The controller response is not tuned too aggressively, but with an increasing
noise level, the steering rate and lateral jerk increases. The crosstrack error exhibits
a random walk behavior and the precision of tracking with noise becomes limited,
in Fig. 7.6b case to |ed| ≤ 10 cm with σx = 20 cm.

The response of the lateral motion controller to unmeasured disturbances was
analyzed on a straight path segment using two experiments shown in Fig. 7.7. In
both cases the open-loop response would result in an unbounded crosstrack error.
The first case in Fig. 7.7a models a defect of the steering mechanism, a step increase
of the steering angle by 1◦. The controller adjusts the steering angle back to zero
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7.5 Lateral Controller Constraints

so that the crosstrack error remains bounded, but the crosstrack error is not fully
suppressed. When the δ disturbance is removed, the controller readjusts the steering
angle to zero and suppresses the crosstrack error completely.

The second case in Fig. 7.7b models a side-wind gust. The wind is modelled as a
step side force calculated using the aerodynamic parameters of the vehicle model and
corresponds to a side wind speed of vwind = 24 m/s. The vehicle is pushed sideways
in the wind, causing a sideslip angle. The controller counter steers, stabilizing the
crosstrack error.

In both cases, the disturbance is unknown to the controller. The output of the
system is stabilized, but the persistent disturbance is not fully suppressed as the
controller does not contain its model. To achieve a zero crosstrack error under step
disturbance, the model would have to be augmented with an additional integrator,
representing the step disturbance itself or the integral of crosstrack error.

7.5 Lateral Controller Constraints

This section discusses the constraints imposed in the lateral motion controller.
In Fig. 7.3 a large initial peak occurred in response to the initial conditions. Steering
rate is directly related to the lateral jerk, which shall be limited for ride comfort and
safety. Moreover, rate constraints ensure that the control action is feasible given the
slew rate of the steering servomotor. Input box constraints are simple to include in
both of the presented MPC problem formulations and most QP solvers support box
constraints with no noticeable increase of the computational time.

State constraints in the primal dense formulation are polytopic in the control
input and the increase in computational time with the active set solver qpOASES is
noticeable, especially when the active set changes significantly. Moreover, infeasibil-
ity may result from too restrictive state constraints. Therefore, this section presents
the possible uses of state constraint and discusses their applicability to achieve the
desired behavior. The steps of implementing the constraints are formally identical as
in Section 6.5, using outputs Eq. (7.11) and Eq. (7.12) with the model of Eq. (7.9).

Steering angle δ is mostly determined by curvature of the reference trajectory.
While a small steering angle may cause a large lateral acceleration at high speeds,
a larger steering angle is required to negotiate sharp turns at low speeds, making
the steering angle bounds velocity dependent. Along the trajectory, only small
corrections from the steady-state steering angle are required to compensate the
system dynamics and disturbances. Violation of the physical range of the steering
angle is unlikely as only small angles are typically commanded at high speeds.

The ultimate goal is to command the steering angle such that the tires do not
lose adhesion, respectively the lateral acceleration limit must not be exceeded. Lat-
eral acceleration constraints indirectly limit the steering angle amplitude and the
bounds can be formulated independent of the velocity. Constraints of ay cannot be
formulated as hard, because the response of ay cannot be always controlled into the
feasible space in a single control step. Therefore, ay constraints are softened over
the first ns steps of the prediction horizon, limiting the additional complexity and
the number of slack variables. The purpose of ay constraints is to prevent steering
too sharply and sliding in response to disturbances. However, when the velocity tra-
jectory is not planned consistently, a larger turning radius is executed, which may
lead to exiting the track. Therefore, the bounds on ay shall be higher in the lateral
motion controller than in the trajectory generation to allow a safety margin. On the
contrary, ay predictions based on the linear model tend to overestimate the actual
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7. Lateral Controller

(a) ed, 1× σ of RT3002 (b) ed, 10× σ of RT3002

(c) ay, 1× σ of RT3002 (d) ay, 10× σ of RT3002

Figure 7.8: Impact of noise in the estimated state on the controller predic-
tions during the step increase of reference curvature

(a) lateral acceleration ay (b) crosstrack error ed

Figure 7.9: Impact of an unknown side force disturbance on the predictions

lateral acceleration, as was analyzed in Fig. 2.9a, the bounds may be too restrictive,
and therefore, must be set experimentally.

The crosstrack error ed can be constrained to prevent large deviations from the
nominal path to stay within the road boundaries or to avoid obstacles as described
in [17, 86]. Since ed cannot be controlled instantaneously, its constraints must be
softened to ensure problem feasibility. Increased state estimator noise causes an over-
estimated prediction of ed as shown in Fig. 7.8b, making the predicted constraint
violations too pessimistic. Comparing Fig. 7.8c and Fig. 7.8d, the predictions of ay
are not affected as much by the measurement noise. At the limits of vehicle han-
dling, predicted ed is inaccurate as the model uncertainty is integrated. The actual
crosstrack error is higher than the prediction when sliding occurs. Experimental
results at the handling limits in Chapter 8 are similar to those of an unknown side
force disturbance in Fig. 7.9. Predicted ed is below the actual and predicted ay
becomes offset from zero. Therefore, constraints of ed were not implemented and
only the criterion weight is used to keep ed low.

70



8 | Experiments

This chapter presents closed-loop test results of the lateral and longitudinal motion
controllers implemented in Simulink and integrated with the vehicle model of IPG
Carmaker. The test consists of simulated driving on the Nardo handling track.

The experiment was motivated by the possible application of the controllers
in automated vehicle dynamics testing in collaboration with Porsche Engineering
Services, Prague. Other applications of the experiment are to provide a vehicle
motion control for the eForce Prague Formula [91] for possible participation in the
emerging Formula Student Driverless competition [1], and for the downscaled F1/10
competition [2]. The goal of the experiment is to track the minimum-time trajectory,
pushing the vehicle to the handling limits to determine controller limitations when
the simplifying assumptions become violated. The experiment was simulated with
four times the typical noise power of RT3002, described in Section 7.4, to benchmark
the controller in a more realistic setup with degraded state information.

8.1 Trajectory Generation

The shape of the Nardo handling track is shown in Fig. 8.1a. The track contains
several straight segments, a chicane, and two hairpin turns, indicated by high curva-
ture. The simulated track is not entirely flat, its profile varies both in elevation and
road bank angle. For the trajectory generation, the height profile was neglected.
The input path was assumed fixed. The reference curve was reconstructed using
spline interpolation of positions measured during simulated execution of the track
by IPG Driver. The velocity trajectory was generated using steps described in Chap-
ter 3 with the parameters of Appendix B. The track was traversed in the counter-
clockwise direction, starting at the origin. The velocity map is shown in Fig. 8.1b,
with a checkpoint indicated every 10 s for reference with the time responses.

(a) track curvature (b) velocity trajectory

Figure 8.1: Nardo handling track: Reference curve reconstructed using
spline interpolation and velocity trajectory mapped to the track segments.
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Figure 8.2: Planned acceleration and velocity trajectory

The reference values planned for the longitudinal controller are shown in Fig. 8.2.
The upper plot depicts the desired longitudinal accelerations and the limits based
on the vehicle powertrain and tire adhesion. The maximum available longitudinal
acceleration is applied, limited by either the powertrain torque limit or lateral accel-
eration in turns. For simplicity, the friction coefficient µ was assumed constant along
the track. The resulting velocity trajectory is shown in the lower plot of Fig. 8.2,
together with the braking and the maximum speed profile.

8.2 Longitudinal Tracking

This section documents the performance of the longitudinal velocity controller com-
manding the desired acceleration of the full vehicle model. While the vehicle com-
pleted successfully multiple laps, with the first lap time of 178 s, only the first 100 s
is depicted for clarity. A video of the full experiment is posted online [92, 93], several
pictures of the experiment are attached in Fig. A.1 of Appendix A.

The uppermost plot of Fig. 8.3 shows the longitudinal acceleration commanded
to the underlying powertrain controller. The command was constrained by the limits
precalculated together with the trajectory in Fig. 8.2. The second plot of Fig. 8.3
captures the velocity tracking performance achieved on the time-varying reference,
with the speed difference magnified in the third plot. The desired speed was tracked
closely while satisfying the acceleration limits, using limited longitudinal jerk and
accounting for the response time of the lower-level powertrain controller. The veloc-
ity controller achieved a robust performance in the presence of measurements noise
(in vx and ax) and disturbances, such as road bumps.

A large error occurred at time t = 60 s, due to a sudden change of the road
grade, resulting in a jump over a track horizon, with all four wheels leaving the
road surface temporarily. The relative elevation of the road is shown in Fig. 8.4a.
Just before t = 60 s, a negative error developed as the vehicle was at the limit
of commanded acceleration while going uphill. The jump occurred at t = 60 s,
a positive error developed because the vehicle was unable to brake in mid-air and
the braking capability was reduced as the vehicle suspension oscillated after landing.
The height of the vehicle’s center of mass above the road surface is shown in Fig. 8.4b.
Nonetheless, the controller stabilized the vehicle and recovered successfully after the
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Figure 8.3: Longitudinal velocity tracking performance during simulated
driving on the Nardo handling track

(a) relative elevation of the road (b) height above the road surface

Figure 8.4: A sudden change in the road grade causing a jump

disturbance. In the flat segments of the track, close tracking of the velocity was
achieved, with the error within ±0.5 m/s.

8.3 Lateral Tracking

This section analyzes the lateral controller performance on the selected part of the
Nardo handling track. The controller was formulated using the linearized dynamic
bicycle model and used from the standstill, with the parameter vx ≥ 1 m/s lower-
bounded to avoid the model singularity. The results are shown in Fig. 8.5. Along
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Figure 8.5: Performance of the lateral motion controller in simulated driv-
ing on the Nardo handling track

the first straight segment, a small chatter in steering occurred due to measurement
noise in the crosstrack and heading errors. The first three turns (peaks in ay) were
executed at the planned level of lateral acceleration, with the crosstrack error be-
low 50 cm. The largest error occurred after the jump at t = 60 s, the planned
speed was exceeded and the lateral acceleration constraint prevented the controller
from increasing the steering angle. Possible sliding from a more aggressive response
was prevented, at the expense of a larger crosstrack error. At high levels of lateral
acceleration |ay| ≥ 5 m/s2, the vehicle exhibited a larger side slip angle β than mod-
eled using the linear dynamic bicycle model, as predicted by the results of Fig. 2.9
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(a) planned (b) actual

Figure 8.6: Performance of the controller expressed using the gg diagram.

in Chapter 2. The controller attempted to prevent a further increase of β by gentle
counter-steering and compensated the β response based on the linear model. The
controller achieved a tracking performance with |eψ| ≤ 2.5◦ and |ed| ≤ 0.5 m during
t ∈ 〈0, 50〉 or t ∈ 〈70, 80〉 when the motion was not disturbed significantly due to
the road unevenness, and when longitudinal velocity was not exceeded.

8.4 Total Acceleration Analysis

This section analyzes the utilization of the vehicle handling limits in terms of gg di-
agrams, described in Section 3.1, indicating the total acceleration. Fig. 8.6a shows
the desired gg diagram resulting from the trajectory generation. The interior of
the circle contains fewer points as instantaneous transitions between braking and
acceleration were assumed. The upper part of the diagram boundary contains no
points because of the powertrain limitation. The highest positive longitudinal accel-
eration ax is obtained at the start, where the peak motor torque is available. The
points extend slightly outside the dashed boundary for negative ax as the tire adhe-
sion is increased by aerodynamic downforce at high speeds when braking is started.
The planned diagram is limited to |ax| ≤ 7 m/s2, to provide a safety margin for
emergency braking during control.

The ability of the controller in terms of handling the vehicle at the limits is
shown in Fig. 8.6b. The diagram interior contains more points due to the limited
transition rates. Most of the points are scattered around the boundary as both con-
trollers compensated model uncertainty and disturbances. The largest transgression
of the boundary occurred after the jump at t = 60 s, dotted in light green. To reduce
the speed, ax ≤ 7 m/s2 was required, utilizing the safety margin. In the emergency
situation at t = 60 s, the boundary had to be exceeded. The controllers stabilized
the system, but the response could have been improved if motion coupling outside
the approximately linear range of tire operation was modeled. A controller based on
the nonlinear single-track model with combined tire force generation would perform
better in control of emergency maneuvers in the frictional region of tire operation,
such as during sliding or on road surfaces with low friction coefficient. Total accel-
eration time responses are compared in Fig. 8.7, indicating that the vehicle is kept
successfully at the acceleration limits most of the time during the experiment.
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Figure 8.7: Utilization of the vehicle’s total acceleration envelope

8.5 Predictions and Constraint Satisfaction

This section summarizes the accuracy of state response predictions and the use of
state constraints during the validation test with the high-fidelity vehicle model.

The longitudinal controller was implemented with hard constraints of the lon-
gitudinal acceleration command. Combining a sufficient length of the prediction
horizon and sufficiently large bounds on the longitudinal jerk (optimized variable),
infeasibility did not occur in the simulated experiments, and the controller was al-
ways able to adjust its command ahead of the constraint. Using the constraint
helped to satisfy the total acceleration limit, the boundary of the gg diagram, and
the assumption of decoupling from the lateral controller. When implementing the
constrained controller on a real vehicle, the constraint shall be softened or at least
a backup routine has to be included to guarantee the problem infeasibility.

Secondly, an upper velocity limit was implemented as a soft constraint. However,
the velocity constraint was not found to be practical. The upper bound was set
to evx ≤ 0.5 m/s to keep some tolerance around the reference. The constraint
comes into play only occasionally, resulting in short peaks of the commanded jerk
in response to disturbances. In case of a large disturbance, the constraint must be
temporarily relaxed. Without disturbances, the reference velocity is followed closely
in predictions and the constraint is unnecessary. A similar performance is achieved
by using a larger velocity error penalization q alone. Contrary to the longitudinal
acceleration constraint, constraining the velocity error did not bring any benefits
and increased the controller complexity. Thus, it may be removed in the future.

Lateral state predictions are shown in Fig. 8.8. The error accumulates by in-
tegration and is most noticeable in ed of Fig. 8.8a. The predictions underestimate
the future error, similar as in the case of an unmeasured side force disturbance
in Fig. 7.9b. Soft constraints of ed were used in [17] to offset the vehicle from
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(a) error outputs (b) steering and lateral acceleration

Figure 8.8: Model-based predictions used in the lateral controller

the reference to avoid an obstacle. However, penalization of ed is sufficient for the
track driving application as the predictions underestimate the actual error under
the model mismatch. Constraining the error would increase the controller complex-
ity and softening would be necessary. The constraints would not prevent the error
as the error is the result of model uncertainty and not of the controller deliberate
action.

Predictions of the controller’s intended action, the steering angle and yaw rate
responses in Fig. 8.8b, are more accurate than the predictions of the control ac-
tion outcome in Fig. 8.8a. Soft constraints of the lateral acceleration are shown
in Fig. 8.8b, preventing the vehicle from steering too sharply and possibly from
sliding. The lateral acceleration constraints must be implemented as soft to avoid
infeasibility under disturbances. The peak predictions based on the linear model
overestimate the actual values, as was analyzed in Fig. 2.9a. Therefore, the upper
bound was set experimentally to 9 m/s2, strictly higher then the limit used in the
trajectory generation for consistency.

In conclusion, both of the acceleration constraints help to keep the vehicle at the
handling limits and to satisfy the assumptions used for decoupling of the controllers.
On the contrary, constraints of the longitudinal velocity and crosstrack error increase
the controller complexity and no benefits were found for the presented application
over using the error penalization alone.

8.6 Solve Time

Solve times and especially the guaranteed worst-case runtime are an important as-
pect for the real-time application of the controller. The active-set solver qpOASES
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(a) longitudinal controller (b) lateral controller

Figure 8.9: Time required to solve the quadratic program to obtain the
control input

exhibited fast solve times when the working set of constraints was not changing sig-
nificantly. When some of the constraints had become active, the number of working
set recalculations increased. A limit on the number of iterations is used to fulfill the
real-time requirements. If exceeded, a backup procedure shall be used. The proce-
dure can be a simpler constant-gain controller or the MPC problems with some of
the constraints relaxed. However, no more than 40 iterations out of the limit of 100
was required in our experiments. The times required to solve the QP on a desktop
PC with i5-6200 CPU running at 2400 MHz are shown in Fig. 8.9, with an aver-
age of 878 µs for the lateral controller with time-varying matrices and problem size
nz = 60, and 289 µs for the longitudinal controller with fixed matrices and problem
size nz = 40. The solve times alone fall well within the sampling time of 50 ms.

However, a significant amount of time was spent formulating the time-varying
longitudinal acceleration bounds (0.4 ms) and reformulating the dense LPV MPC
problem (5 ms) at each iteration, taking roughly 25% of the total computational time
and limiting the simulation execution to a real-time factor of 2.4. Both routines were
implemented as a Level-2 Matlab S-Function and further optimizations are possible
by reimplementing the routines in C/C++. Another option to speed-up the LPV
problem formulation is to use a QP solver optimized for the sparse formulation,
such as HPMPC, to avoid the multiplications associated with the formulation of the
prediction matrices and the condensation of the Hessian.

While the move-blocking of Section 5.6 was implemented in the controllers and
tested, we did not invest the time into the heuristic tuning of the control horizon
as the possible reduction of the QP solve times was negligible compared to the
time required for the LPV MPC problem formulation. Therefore, no move-blocking
was utilized in the final experiments and optimizing the problem formulation is the
primary focus for possible computational performance improvement.
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The three main goals of the thesis were to develop a vehicle dynamics model, to
design a trajectory tracking controller and to verify the closed-loop tracking perfor-
mance. All the three goals were fulfilled and the achieved results uncovered possible
future research directions for further improvements.

9.1 Achieved Results

In Chapter 2, we developed models for description of vehicle motion dynamics and
performed experiments for model identification and validation using standardized
maneuvers and a vehicle dynamics simulator. Variation of lateral dynamics with
speed was analyzed and pitfalls of model discretization were highlighted. Mismatch
of the linear model under high lateral acceleration was analyzed, indicating the
limited range of linear operation.

Chapter 3 presented a trajectory generation algorithm, based on representing
the reference path using a spline curve and applying a forward-backward iterative
integration scheme for minimum-time trajectory generation. Other implementation
aspects, such as an approximate calculation of path tracking errors and a look-up
scheme to preview the trajectory, were covered in preparation of the closed-loop
control experiment.

In Chapter 4, we prepared a state-space formulation of the tracking problem
using the servomechanism problem structure and in Chapter 5 we formulated the
model-predictive control problem. Selected formulation allowed to analyze the feed-
back structure resulting from the unconstrained MPC, making the results of opti-
mization-based control more accessible to practitioners.

The two major contributions of the thesis are found in the chapters on controller
design. In Chapter 6, the longitudinal velocity controller was designed and used
to illustrate the benefits of predictive control in contrast to reactive state feedback.
In Chapter 7, the lateral motion control was formulated as a model-matching prob-
lem in the servomechanism structure. The state-space model of [14] was formalized
and extended for the dynamic bicycle model. Feedback structure resulting from
an unconstrained MPC controller was compared with the previous works based on
classical control theory [5, 15], creating an important link with the recent work [14].
Controller robustness in the presence of noise and disturbances was analyzed. In
both chapters, the use of constraints was discussed to enable control of the vehicle
at the limits of handling using linear models and decoupled controllers.

Chapter 8 is the culmination of the development, integrating the trajectory gen-
eration, longitudinal and lateral controllers, and the vehicle dynamics simulator in
a closed-loop experiment. Simulated driving on a handling track was demonstrated,
with an acceleration envelope of 8 m/s2, close to the handling limits of the vehicle
model used in the simulation.
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9.2 Future Work

9.2.1 Nonlinear motion control
The linear dynamic bicycle model becomes inaccurate for manuevers with lateral
acceleration |ay| ≥ 4 m/s2 due to the nonlinearity of the cornering force character-
istic. Moreover, the coupling of the cornering and tractive tire force in not covered
in the linear models. For improved tracking performance at |ay| ≥ 4 m/s2 and sys-
tematic handling of the nonlinear operation at |ay| ≥ 8 m/s2, controller based on a
model with nonlinear combined tire force generation shall be used. Further resources
about advanced tire models are found in [26]. In electric vehicles with individual-
wheel drive, the tracking problem may include traction control and torque vectoring
to achieve even higher performance. Twin-track models for the task are developed
in [20, 19]. However, model identification will become more challenging and the
control design would call for the use of nonlinear methods, such as Nonlinear MPC.

9.2.2 Hardware Implementation
Another step is the implementation of the controllers on a hardware platform. On
top of porting the controller code, implementing a vehicle state estimator and repeat-
ing model identification is necessary. The timing performance of the controller may
be improved by using a solver such as HPMPC, optimized for embedded platforms
and the sparse formulation of the MPC problem.

9.2.3 Vehicle State Estimation
As stated in the introductory outline, vehicle state estimation was not covered in the
thesis scope, although full state information is necessary for hardware implementa-
tion. While commercial off-the-shelf solutions for vehicle state estimation exist, such
as the RT3002 [89], these may be unavailable in prototype projects with a restricted
budget or for use in series production.

The conditions imposed by racing call for the use of a nonlinear state estimator.
Preliminary experiments were carried out during the thesis. An unscented Kalman
filter was implemented using the nonlinear bicycle model of Eq. (2.5) with an option
to select either the linear or Fiala tire model. As measurements, a single-antenna
GPS and an IMU were modeled. The nonlinear tire model improved estimator
performance, especially in terms of sideslip and lateral acceleration. However, the
solution was incomplete for use in the closed-loop experiment, in particular the
initialization of the estimator during drive-off from stand-still.

An adequate treatment of the topic was outside the available time scope. Design
of a nonlinear state estimator for racing applications is a prospective thesis topic.
The estimator shall include a nonlinear tire model and the utilized sensory informa-
tion shall be extended from the GPS/IMU combination to include wheel odometry
and possibly visual sensors. A systematic treatment of sensor faults, such as wheel
spin, GPS dropout, and GPS multipath error detection, is necessary.

9.2.4 Automated Path Planning
Another area for improvement is the integration of the controllers with an automated
path planner, either with the presented trajectory generation algorithm or with
simultaneous optimization of both the path and the velocity profile.
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Appendix A

Vehicle Dynamics Simulators

A part of the assignment was to perform a survey of vehicle dynamics simulators.
Notes on the simulator selection are summarized in this section to keep modeling
in Chapter 2 compact and applicable in general. The simulators for autonomous
driving can be split into two main categories.

The first category focuses on vehicle dynamics modeling and vehicle handling.
With the development of advanced driver assistance system, sensors models are
included, but the focus of the simulation remains on the dynamic response of the
vehicle, respectively the control action and its results, not the sensing. A wide range
of commercial products exists in the first category, some of the most frequently used
are CarSim, dSPACE ASM, Tesis Dynaware veDYNA, Elektrobit ADTF, Cruden
Panthera, Vires VDT, and IPG Carmaker

The second category emerged recently with the development of deep neural net-
works, focusing mainly on generating realistic exteroceptive sensory data (such as
from lidars, depth and color cameras) for training of classifiers for applications such
as pedestrian, road marking, or road signs detection or deep end-to-end learning of
automated driving. Examples of the second category are Deepdrive, Microsoft Air-
Sim, and recently even GTA V. Environments adopted from mobile robotics, such
as ROS and Gazebo, may be included under this category.

The scope of this work is suited for the first category, to test the model-based
controllers with a high-fidelity model of vehicle dynamics, including tires, suspen-
sion, aerodynamics, powertrain and other vehicle components. Out of the available
vehicle dynamics simulators, we selected IPG Carmaker, as it is widely used1 in
the automotive industry by brands such as Audi, BMW, Ferrari, Porsche, Rimac
or Volkswagen. Using a standardized simulator enables the vehicle manufacturers
to take over the controllers developed in this work, reparametrize them accordingly
and simulate their operation with proprietary validated high-fidelity models. An
academic license was granted for the duration of the thesis by IPG Automotive.

We used IPG Carmaker with the Simulink interface, which allowed faster vali-
dation and prototyping of the control algorithms. Although every model is only an
approximation, using the vehicle dynamics simulator offered a better insight in the
dynamics phenomena which are otherwise difficult or expensive measure (tire forces,
wheel slip angles, vehicle slip angle). Using model-in-the-loop validation allowed to
formulate repeatable tests in a controlled environment, without the need of prepar-
ing the vehicle platform and securing the proving ground, and without the risk of
property damage or injuries. A use case of the simulator is depicted in Fig. A.1.

1Companies using IPG Carmaker: https://ipg-automotive.com/company/references/
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Appendix A: Vehicle Dynamics Simulators

(a) t = 51 s (b) t = 62 s (c) t = 65 s

(d) t = 51 s (e) t = 62 s (f) t = 65 s

(g) t = 51 s (h) t = 62 s (i) t = 65 s

(j) t = 60 s (k) t = 60 s (l) t = 60 s

Figure A.1: IPG Carmaker, the vehicle dynamics simulator used for model-
in-the-loop validation of the designed controllers. Pictures of the experi-
ment described in Chapter 8, simulated driving on the Nardo handling
track with Tesla Model S vehicle model supplied with the software.
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Appendix B

Parameters

This section summarizes the parametrization of the vehicle model and algorithms
used throughout the thesis. The reference vehicle model is Tesla Model S, as provided
in IPG Carmaker for reproducibility of the experiments.

Table B.1: Vehicle model parameters

Description Notation Value

Vehicle mass m 2108 kg
Vehicle moment of inertia with respect to
its vertical principal axis

Iz 3960.8 kgm2

Distance of the front axle from the table
of mass along the longitudinal axis

lf 1.516 m

Distance of the rear axle from the table of
mass along the longitudinal axis

lr 1.484 m

Front axle effective cornering stiffness Cαf 98 kN/rad
Rear axle effective cornering stiffness Cαr 230 kN/rad

Table B.2: Lateral controller parameters

Description Notation Value

Sampling time Ts 50 ms
Prediction time Tp 3 s
Preview time Tw 2 s
Prediction horizon length Np 60
Number of control moves Nc 60
Steering rate box constraints |δ̇cmd| 10◦/s
Weight of the crosstrack error squared e2

d Qe(1, 1) 0.025
Weight of the heading error squared e2

ψ Qe(2, 2) 2.5
Weight of the yaw rate error squared e2

ψ̇
Qe(3, 3) 0.4

Weight of the accel. error squared e2
ay Qe(4, 4) 0.001

Weight of the steering rate squared R 1
Maximum lateral acceleration ay,max 9.0 m/s2
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Appendix B: Parameters

Table B.3: Trajectory generation parameters

Description Notation Value

Gravitational acceleration g 9.8137 m/s2

Air density ρ 1.225 kg/m3

Friction coefficient µ 0.80
Maximum speed vlim 200 km/h
Sampling step in distance ∆s 1 m
Tire rolling radius r 0.346 m
Transmission ratio ktrans 9.73
Transmission efficiency keff 1
Maximum torque τmax 600 Nm
Maximum power Rmax 250 kW
Maximum speed ωmax 16, 000 RPM
Maximum longitudinal acceleration amax,ub 7 m/s2

Minimum longitudinal acceleration amin,lb −7 m/s2

Vehicle frontal reference area A 2.408 m2

Vehicle drag coefficient cD 0.280
Vehicle downforce coefficient cL 0.149
Vehicle rolling resistance coefficient b 0

Table B.4: Longitudinal controller parameters

Description Notation Value

Sampling time Ts 50 ms
Prediction time Tp 2 s
Preview time Tw 2 s
Prediction horizon length Np 40
Number of control moves Nc 40
Weight of the speed error squared q 1000
Weight of the longitudinal jerk squared r 1
Longitudinal jerk box constraints |ȧcmd| 20 m/s3

Table B.5: State estimator noise model parameters

Description Notation Value

Position σx, σy 4 cm
Heading σψ 0.2◦
Velocity σvx , σvy 0.1 km/h
Yaw rate σψ̇ 0.15◦/s
Acceleration σax 0.1 m/s2
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Appendix C

Content of the attached CD

File Content description

dipl_filipj12.pdf Text of the thesis in .pdf format.
video_nooverlay.avi Full video of the simulated experiment from Ch. 8, no

overlay.
video_lat_trk.avi Video of the first 100 s of the experiment from Ch. 8

with an overlay plot of lateral tracking errors.
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