
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Software tool for a configuration of a
radiation detector for space applications

Natálie Vítová

Supervisor: Ing. Pavel Brož
Field of study: Cybernetics and Robotics
Subfield: Cybernetics and Robotics
August 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

501209Personal ID number:Vítová NatálieStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Software tool for a configuration of a radiation detector for space applications

Master’s thesis title in Czech:

Softwarový nástroj pro konfiguraci radiačního detektoru pro kosmické aplikace

Guidelines:

Design and implement a software tool which allows configuring SXRM radiation detector (SpacePix Radiation Monitor) in
2SD instrument for Cubesats.
Briefly describe the instrument and radiation detector which you will work with. Describe the configuration of the detector
and configuration subsystem of the instrument.
Prepare a SW design document which will describe the tool (static structure and dynamic behavior).
Test the developed tool with engineering model of the 2SD instrument.
The SW tool shall comply with the following requirements:
• To be based on GUI (Graphical User Interface)
• To allow to set full configuration (global + local) of each radiation sensor
• To allow to read and set configuration of the instrument
• To start & stop data acquisition of the detector
• To display acquired data
The SW tool shall be implemented in Python and the graphical interface shall be based on Tkinter. Reasonable
documentation such as design and interface descriptions shall be provided.

Bibliography / sources:

[1] Moore A. D., Python GUI Programming with Tkinter, Packt Publishing, 2018, ISBN 978-1788835886
[2] Zaccone G., Python Parallel Programming Cookbook, Packt Publishing, 2015, ISBN 978-1785289583
[3] Cox T., Fernandes S. L., Yamanoor Say, Yamanoor Srihari, Vaish D., Getting Started with Python for the Internet of
Things, Packt Publishing, 2019, ISBN 978-1838555795

Name and workplace of master’s thesis supervisor:

Ing. Pavel Brož esc Aerospace s.r.o., Čs. armády 14, 160 00 Praha 6

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 15.08.2022Date of master’s thesis assignment: 22.11.2021

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Brož

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Pavel Brož, for his guidance and assis-
tance with my thesis. I am especially
grateful for his enthusiasm when it comes
to explaining anything about work in the
space industry.

I would like to thank my parents for
their continuous support not just in my
studies but in my whole life, my grand-
parents and my brother for believing in
me, and my boyfriend for his patience.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 15 August 2022

v

Abstract
The thesis deals with design of config-

uration software, ConfPix, for radiation
detecting sensor - SpacePix2. It describes
design and implementation, as well as the
testing procedure. The software is imple-
mented in Python, with Graphical User
Interface created using the Tkinter mod-
ule for Python. The application is de-
signed as versatile and can be used in fu-
ture missions requiring the configuration
of pixel radiation detectors from SpacePix
family.

The SpacePix2 sensor is a new tech-
nology developed at the Faculty of Nu-
clear Sciences and Physical Engineering
at Czech Technical University in Prague
and will be tested in orbit as a part of the
Space Dosimetry System Demonstrator in-
strument developed by the esc Aerospace
s.r.o. company.

Cosmic radiation sources and radia-
tion detectors are described in the the-
oretical part of the thesis. The Space
Dosimetry System Demonstrator instru-
ment, SpacePix Radiation Monitor de-
tector and the SpacePix2 sensor are de-
scribed as well.

Keywords: radiation detection, sensor
configuration, Space Dosimetry System
Demonstrator, SpacePix Radiation
Monitor, SpacePix-2-Lin-S

Supervisor: Ing. Pavel Brož

Abstrakt
Tato práce se zabývá návrhem konfigu-

račního softwaru ConfPix pro konfiguraci
senzoru detekujícího záření (SpacePix2).
Práce popisuje návrh a implementaci,
stejně jako postup testování. Software je
napsán v programovacím jazyce Python, s
grafickým uživatelským prostředím (GUI),
vytvořeným pomocí modulu Tkinter pro
Python. Software je navržen tak, aby byl
univerzální a mohl být použit v budou-
cích misích, vyžadujících konfiguraci radi-
ačních senzorů řady SpacePix.

Senzor SpacePix2 je nová technologie,
vyvinutá na Fakultě jaderné a fyzikálně
inženýrské na ČVUT v Praze a bude tes-
tována na oběžné dráze jako součást ná-
stroje Space Dosimetry System Demon-
strator vyvinutého společností esc Ae-
rospace s.r.o.

Zdroje vesmírného záření a typy detek-
torů záření jsou popsány v teoretické části
práce. Detailně jsou popsány i zařízení
Space Dosimetry System Demonstrator,
detektor SpacePix Radiation Monitor a
senzor SpacePix2.

Klíčová slova: detekce radiace,
konfigurace senzoru, Space Dosimetry
System Demonstrator, SpacePix
Radiation Monitor, SpacePix-2-Lin-S

Překlad názvu: Softwarový nástroj pro
konfiguraci radiačního detektoru pro
kosmické aplikace

vi

Contents
Introduction 1

Part I
Theoretical part

1 State of the art 5
1.1 Radiation detectors 5

1.1.1 Radiation 5
1.1.2 Measuring X-ray and γ-ray

photons . 6
1.1.3 Measuring GCR 6

1.2 Orbits and satellites 7
1.2.1 Types of orbits 8

1.3 Satellite communication 9
1.4 Used tools 10

1.4.1 Python 10
1.4.2 Tkinter 10

2 Space Dosimetry System
Demonstrator 13
2.1 Introduction 13
2.2 SXRM detector 14
2.3 SpacePix-2-Lin-S ASIC 14

2.3.1 Sensor configuration 15
2.3.2 Measurement and Data

Readout . 16

Part II
Software design and implementation

3 Design and architecture 19
3.1 Requirements 19
3.2 GUI design 19
3.3 Static architecture 23
3.4 Modules’ description 24

3.4.1 IOV modules 30
3.4.2 UART modules 33
3.4.3 View modules 34

4 Tests 41

Conclusion 43

Appendices
A Bibliography 47
B Acronyms 49
C Software requirements
specifications 51

D Requirements mapped to test
cases 65
E Test cases mapped to
requirements 71
F Test cases 77

vii

Figures
1 Keplerian elements. [6] 8

2 A 3D model of the 2SD instrument.
Yellow - SXRM detector, blue - SXM
detector, magenta - sensor board,
green - motherboard. [18] 13

3 The qualification model. 14

4 GUI design of ConfPix after
startup. 20

5 GUI design when local configuration
is chosen. 21

6 Data acquisition window after
starting data acquisition (taken on
qualification model of the 2SD).
(Sensor #0 is there just to fill space,
it does not represent an actual sensor.
Sensor #1 was mechanically
damaged, otherwise would also show
acquired data. 22

7 Individual parts of the MVC pattern,
including their relations and their
main functions. [20] 23

8 Static architecture of ConfPix. . . . 24
9 Class diagram of ConfPix. 25
10 Class diagram of Controller. 26
11 Class diagram of Local

Configuration. 27
12 Class diagram of DAQ Window. . 28
13 Comparison of global configuration

GUI layout before and after setting
row and column preferences for
adc_pin_en and vthr parameters. 36

Tables
1 Keplerian elements. (RAAN .. Right

Ascension of the Ascending Node)
[6]–[8] . 8

2 List of local configuration
parameters. The parameters can
differ for each pixel. The default
values are in binary. [19] 15

3 List of global configuration
parameters. The default values are in
binary. [19] . 16

4 Test results. 41

5 Software requirements specifications.
(VM = Verification Method; T =
test, R = review, I = inspection, A =
analysis) . 51

6 Requirements to test cases mapping
matrix. 65

7 Test cases to requirements mapping
matrix. 71

viii

Introduction

Esc Aerospace s.r.o. is a small company focusing mainly on mission-critical
systems such as qualified flight software, On-Board Computer (OBC) and
radiation monitor and sensor systems. One of their products is a Space
Dosimetry System Demonstrator (2SD) instrument, which will be flown on
the CubeSatCarrier 2 satellite, one of two 6-Unit CubeSats. The satellites
are developed as a platform for the validation and demonstration of new
technologies in the EU Horizon 2020 Programme frame. The satellite platform
development and integration are provided by the Innovative Solutions In Space
(ISISpace) company. The same company will also ensure later operations in
orbit. [1] The CubeSats will be launched to the Low Earth Orbit (LEO) where
the 2SD instrument shall operate, thereby verifying the new technology it
contains - the pixel radiation sensor SpacePix-2-Lin-S (SpacePix2). The sensor
was designed at the Faculty of Nuclear Sciences and Physical Engineering
(FNSPE) at the Czech Technical University (CTU) in Prague. The five
SpacePix2 sensors embedded in the 2SD instrument must be configured prior
to measurement in order to operate correctly.

This work aimed to design and implement software for managing a SpacePix2
configuration loaded in 2SD instrument with the capability to configure all
five sensors independently of each other. The proposed software shall work
with the engineering and qualification model on the ground and later with
the flight model in orbit. Except for direct connection with engineering
or qualification model on the ground, the software shall allow generating
commands to upload the configuration via a communication link to the device
in orbit. Making the configuration automatic saves time and makes it easier
for users to navigate themselves in setting individual parameters.

The thesis is divided into two parts which are further divided into chapters.
Chapters one and two belong to the first - theoretical part, while chapters
three and four belong to the second - design and implementation part. The
first chapter briefly introduces state of the art, while the second chapter
focuses on the 2SD instrument, SpacePix Radiation Monitor detector and
SpacePix2 sensors. In chapter three, the design of the software is described.
That includes Graphical User Interface (GUI) design, static architecture, class
diagrams and description of software modules. Chapter four covers software
validation and results and is followed by the conclusion.

1

2

Part I

Theoretical part

3

4

Chapter 1
State of the art

In this chapter, the theoretical background is presented.

1.1 Radiation detectors

Radiation measuring instruments for space applications are usually designed
specifically for a particular mission and depend on the species and energy
levels which need to be observed. The instruments are limited in several areas,
such as weight, dimensions and power consumption. In order to measure
a radiation field, they use either direct or indirect approaches. The direct
methods detect high-energy photons and particles ranging from 100 to 1015 eV.
This range can be extended using indirect measurements up to above 1020 eV.
In the following subsections, radiation, its sources and types will be described,
followed by techniques used to measure radiation in space. [2]

1.1.1 Radiation

Radiation in space occurs in two forms - corpuscular and electromagnetic
(photons). Corpuscular radiation is represented by charged particles - protons,
electrons, heavy ions, and neutrons. Rays in the X-ray and gamma spectrum
represent electromagnetic radiation. The radiation sources in space are
radiation belts (so-called Van Allen belts), Solar Particle Events (SPE) (or
coronal mass ejections) such as solar wind or solar flare and lastly, Galactic
Cosmic Rays (GCR). GCR do not come from the solar system, but their
primal sources are within the Milky Way galaxy. [3], [4]

The Van Allen belts are the closest radiation source to Earth and are formed
by the inner and outer belts. In the inner belt, called the proton belt, there
are trapped high energetic protons (around 100 MeV) and trapped electrons
(around 30 MeV). In the outer one, there are mainly trapped electrons (around
7 MeV); thus, it is called an electron belt. The GCR are mainly formed by
interplanetary high energetic protons and from around 10% by heavy ionized
nuclei - alpha particles (helium nuclei) and heavy nuclei ions with high charge
and energy. The solar wind consists of a large part of protons, and the rest is
electrons. [3], [4]

5

1. State of the art....................................
Radiation from space has nearly no effects on humans on Earth but can

have even deadly effects on them in space. Cancer or degenerative diseases
can be caused by excessive exposure to GCR or SPE. For more extended
stays in orbit, on the surface of the moon or interplanetary travels, it is
essential to understand how radiation affects the human body. This is one of
the main reasons why it is necessary to send as many radiation detectors as
possible to space. Humans are not the only ones that are affected by space
radiation. Materials like solar cells or spacecraft (S/C)’s shielding degrade,
and electronics are highly influenced too. [3], [4]

1.1.2 Measuring X-ray and γ-ray photons

The direct approach is used when measuring X-ray and γ-ray photons with
energies from ∼ 0.1 keV to ∼ 300 GeV. Many instruments were designed for
this purpose using different techniques. These include collimation (restricting
X-ray to a given area), grazing-incidence optics, coded aperture mask and
pair-production tracking. [2]

The collimation methods use gaseous detectors or phoswich detectors and
do not provide imaging of X-ray sources. Grazing-incidence optics technique
is based on the reflectivity of mirror surfaces. The X-rays can be reflected as
long as the critical angle is higher than the glancing angle and the incident
angle is shallow. Both the mirror material and the X-ray energy influence
the critical angle. The technique covers energies up to ∼ 10 keV and has high
angular resolution and a Field Of View (FOV) of about 1°. To accomplish
imaging above ∼ 10 keV, a coded aperture masks method can be used. The
technique uses a position-sensitive photosensor placed under a coded aperture
mask, which places a unique pattern for different source directions on the
photosensor. This technique can cover large collection areas and achieve a
good angular resolution. After applying deconvolution to the detected photons
on the photosensor, the image of the radiation source can be obtained. [2]

To observe high-energy γ-rays, a pair conversion is used. This phenomenon
dawns above an energy threshold, which differs for each environment but
generally is around a few MeV. The γ-rays can be observed by following the
momentum vectors of the e+ e− pairs and measuring their energy together.
[2]

1.1.3 Measuring GCR

As indicated above, the GCR are formed by high-energetic (even energies ex-
ceeding 1020 eV) particles that almost reach light speed. Different approaches
have to be used to measure these than X-rays and γ-rays. These include
Time-Of-Flight (TOF) measurements, dE/dx−E technique, magnetic rigidity
spectrometers, ionisation calorimeters or indirect methods. [2]

Ions with energies lower than several MeV per nucleon can be measured
using a TOF mass spectrometer. This technique uses a series of thin metal
foils, MicroChannel Plates (MCPs) and electrostatic mirrors. The mass of a

6

................................. 1.2. Orbits and satellites

particle can be calculated using the total kinetic energy of the particle and its
measured velocity. This method cannot measure the charge of a particle. [2]

To measure energies below several hundreds of MeV per nucleon, a dE/dx−
E technique is used. It is one of the most common methods used to measure
the radiation of GCR. The dE/dx indicates energy loss, while the E indicates
total kinetic energy. Each of these requires a separate detector. Silicon diodes
are usually used. The first detector shall be as thin as possible, while the
second must be thick enough to stop particles with energies in the required
range. This technique can detect all the particles’ charge, mass and energy.
Several methods to accomplish maximum resolution include position-sensitive
solid-state-detector hodoscope or drift chambers and scintillating-optical-fibre
hodoscopes. [2]

Another technique to measure GCR is using magnetic rigidity spectrom-
eters. They aim to measure curved trajectories of charged particles in a
powerful magnetic field. This method can estimate charge, charge sign,
magnetic rigidity and velocity. From this information, momentum, mass
and kinetic energy can be derived. The magnetic rigidity spectrometers
can measure energies up to approximately 1 TeV. To reach higher orders
of energy, ionisation calorimeters are utilised. This technique is commonly
used to measure the energies of electrons and hadrons at accelerators, but
unique requirements for space instruments do not allow using these accelerator
calorimeters. The space calorimeters need to be thin, which supports higher
resolution for electrons and photons but limits resolution for hadrons. [2]

Lastly, an indirect approach must be used to measure the extremely high
energies of some cosmic particles. That is because the detectors are too
large for direct techniques. Indirect measurements include, for example,
using a radio signal, detecting X-ray synchrotron photons or the fluorescence
technique, which uses excited atmospheric nitrogen. [2]

1.2 Orbits and satellites

Both natural and artificial objects move around other objects in space along
a curved path called an orbit. The curvature of the path is caused by gravity
and momentum. Objects are attracted to each other due to gravity, and they
can begin to orbit each other when they have enough momentum. Objects
orbiting other objects are called satellites and are divided into natural ones
(such as moons and planets) and artificial ones, which are manufactured.
Artificial satellites orbiting Earth are used mainly for telecommunication,
astronomy observation, weather forecast and navigation. Satellites orbiting
other celestial bodies serve mainly as scientific experiments, gathering essential
data. [5]

An orbit, its orientation around the central body and the position of a
satellite in orbit are given by satellite orbital elements or Keplerian elements
(see Figure 1 and Table 1).

7

1. State of the art....................................

Figure 1: Keplerian elements. [6]

symbol name meaning
a semi-major axis the semi-major axis of the ellipse which

defines the orbit
e eccentricity shape of the orbit; a circular orbit has

eccentricity of zero
i inclination angle angle between the orbital plane and the

central body’s equator
Ω RAAN rotation of the orbital plane and refer-

ence axis
ω argument of

perigee
angle between the ascending nodes and
the perigee point, measured along the
orbit in the direction of the satellite’s
motion

ν true anomaly location of the satellite on the orbit

Table 1: Keplerian elements. (RAAN .. Right Ascension of the Ascending Node)
[6]–[8]

1.2.1 Types of orbits

Each mission has different objectives and thus needs a specific orbit. There
are several commonly used orbits around Earth with specified parameters.
Apart from the orbits mentioned below, there are several others like polar
orbit, Sun-Synchronous Orbit (SSO), Geostationary Transfer Orbit (GTO)
or Lagrange points..Geostationary Orbit/ Geosynchronous Equatorial Orbit (GEO)

A geosynchronous orbit is a circular orbit with an altitude of 35 786 kilo-
metres, allowing satellites to synchronise with Earth’s rotation. Moving
with a speed of around 3 kilometres per second, a satellite will finish

8

................................1.3. Satellite communication

one circle around Earth in 23 hours, 56 minutes and 4 seconds ([5]). A
geostationary orbit is a geosynchronous orbit with zero eccentricity and
low enough (ideally right on the equator) inclination that the satellite
seems to stay above a certain Earth point. Using the feature of staying
above one precise point on Earth all the time, this orbit is mainly used
by telecommunication and weather monitoring satellites. Antennas on
Earth can easily target telecommunication satellites without changing
direction. Weather monitoring satellites can monitor weather trends in
specific areas. [5], [7]. Low Earth Orbit

LEO is the closest possible Earth orbit with an altitude lower than
1000 kilometres, with the lower boundary being around 160 kilometres.
Travelling at a speed of around 7.8 kilometres per second, it takes
a satellite to orbit Earth in approximately 90 minutes. Due to no
requirement on the inclination of LEO, many possible ways around the
Earth can be used. This is one of the features that make LEO a frequently
used orbit. LEO is used mainly for imaging, International Space Station
(ISS) or even telecommunication. When used for telecommunication,
satellites usually cooperate, creating a constellation constantly covering
required areas. [5].Medium Earth Orbit (MEO)

MEO altitude is limited by GEO from above and by LEO from below.
Similarly to LEO, MEO is not restricted to a specific inclination. The
orbit is used by satellites for many different purposes, one of them
generally navigation. [5]

1.3 Satellite communication

When communicating with satellites in orbit, data is sent in packets. Packets
sent to the S/C are called telecommands, and packets received from the S/C
telemetries. Each packet has a header consisting of service type and subservice
type numbers. A service is a group of telecommands and telemetries with a
common targeting field, e.g. memory, housekeeping, specific sensor settings
or measurements. Some service numbers are generally reserved for specific
groups, and some are free to be defined according to a particular project.
Individual packets in a particular service are subservices. In the headers of
responses, there is a status byte which indicates if the command execution
went as expected or if there occurred an error - the status can describe the
type of the error. [9]

The Cyclic Redundancy Check (CRC) error-detecting method checks if
any error occurred during data transfer. The CRC alone is a natural number
calculated from message data using a given polynomial. It is then appended
to the message and sent. At the receiving end, the CRC is acquired similarly,

9

1. State of the art....................................
and if it matches the sent CRC, the message is considered error-free. CRC is
usually attached to the end of each packet. [10]

To encode and decode packets, their format needs to be defined. A formal
notation Abstract Syntax Notation One (ASN.1) was created to this purpose.
It is not dependent on language implementation or the physical represen-
tation of the data. It provides several predefined basic types and several
constructed types. It only serves to define the structures of packets but does
not provide any tools to process the data. The ASN.1 is connected with
several standardized ways of encoding the values specified in the ASN.1. [11]
To give a user more ways to structure the memory layout of data structures
in ASN.1, the ASN.1 companion language was created. [12]

To make the development of embedded real-time systems easier, European
Space Agency (ESA), in collaboration with several participants from the
space industry, developed a set of tools called TASTE. One of the supported
technologies is above mentioned ASN.1 standard. In general, the goal of
TASTE is to use automation to improve the software development life cycle.
Among other things, it allows users to generate low-level error-prone code for
micro-controllers. [13] To handle all data modelling for space applications,
the ASN1SCC compiler for ASN.1 was explicitly developed for ESA. [14]

1.4 Used tools

The tools used for software development were chosen according to the system
requirements (see section 3.1). As a programming language, Python 3.8 was
chosen; for GUI design, the Tkinter module for Python was selected.

1.4.1 Python

The choice of Python as a programming language for the proposed software is
mainly because of its portability. At esc Aerospace, the computers run on both
Linux and Windows, so it is convenient to use a portable language. Because
it is an object-oriented programming language, it allows high modularity.
That is useful mainly for future uses as the 2SD instrument is already part
of two projects with different communication protocols. Python also has an
extensive standard library and supports many third-party modules. Moreover,
Python does not have to be compiled to machine code ahead of time as some
other languages. [15]

1.4.2 Tkinter

As a part of the Python standard library, Tkinter is one of the possible
frameworks for GUI development. It is an interface to the Tk GUI library,
which originated from the Tool Command Language (TCL). Compared
to other frameworks like PyQt5, Tkinter is relatively simple and fast. Its
development is slow and stable; thus, applications using Tkinter will have a
lower probability of complication occurrence after new Tkinter releases. It is

10

......................................1.4. Used tools

not overly complex, does not require installation of other modules and does
not need much memory space. Since it is simple and uses basic widgets and
their configuration, it can be used effectively and quickly. Only the knowledge
of Python as a programming language is required. [16]

The proposed software shall be as minimalistic as possible, using just a
few libraries. Therefore using Tkinter for creating its GUI is very practical.
Another possible option could be Qt since it is widely supported, but the high
complexity of this framework would not be a benefit in this case. Qt alone is
a set of many libraries, requires an installation and has many unnecessary
features to create a basic GUI. [17]

11

12

Chapter 2
Space Dosimetry System Demonstrator

2.1 Introduction

The 2SD instrument is an ionising particle monitor for space applications
developed as a technology demonstrator. The instrument consists of two
radiation detectors - SpacePix Radiation Monitor (SXRM) and Soft X-ray
Monitor (SXM). The mission’s primary focus is put on the SXRM detector
containing five SpacePix2 sensors. Details will be discussed in section 2.2.
The SXM detector containing an X-CHIP-03-SXR sensor is embedded to
validate a different development branch of monolithic pixel detectors. This
detector specialises in flux and spectrum measurements of soft X-ray photons
emitted during transient events in the magnetosphere, such as X-ray flares
during magnetic reconnection. The SXM detector is not part of this thesis,
so it is not described, and the software will not consider it. The placement
of individual detectors within the instrument is visualised in Figure 2. The
qualification model is shown in Figure 3. [18]

Figure 2: A 3D model of the 2SD instrument. Yellow - SXRM detector, blue -
SXM detector, magenta - sensor board, green - motherboard. [18]

13

2. Space Dosimetry System Demonstrator

(a) : The 2SD instrument. (b) : The SXRM detector.

Figure 3: The qualification model.

The 2SD device has already been launched in the frame of the VZLUSAT-2
project. It was embedded in the project’s satellite and is currently orbiting
the Earth on LEO. Its purpose is to test the previous versions of both sensors
and thus detectors in orbit. The new version of the 2SD device contains
improved sensors. It is planned to be launched in the autumn of 2022 within
the In Orbit Validation (IOV) project. [18]

2.2 SXRM detector

The SXRM radiation detector was constructed for a wide range of applications.
As the device can monitor the radiation component of space weather, it can
be considered for different types of satellites as (part of) a space environment
awareness monitor. The most important part of this detector is an SpacePix2
sensor which is closely described in section 2.3. [18]

The principle of the SXRM lies in using the pattern recognition technique.
The detector comprises five detection layers containing the SpacePix2 sensors
interleaved with energy-absorbers. The layers are arranged into a telescopic
configuration. This design allows the device to cover an extensive particle
energy range. Thus it is sensitive to individual particles ranging from electrons
and protons trapped in the van Allen belts to heavy ions from the GCR.
The monitor can operate in a variable range of solar particle events with
fluxes of up to 106 protonscm−2s−1. Designed to last up to 15 years, the
radiation monitor is considered for long-term orbital (LEO, MEO, GEO) and
interplanetary missions. [18]

2.3 SpacePix-2-Lin-S ASIC

The SXRM detector is based on radiation-resistant, monolithic pixel detector
called SpacePix2. The sensing elements are represented by 4096 pixels ar-
ranged in a grid of 64×64 pixels. Each pixel has the size of 60×60 µm, which
forms a sensitive area of 3840 × 3840 µm on an approximately 4 × 5.5 mm
large detection chip. It was developed using the Silicon on Insulator (SoI)

14

................................ 2.3. SpacePix-2-Lin-S ASIC

Complementary Metal-Oxide-Semiconductor (CMOS) technology for space
dosimetry and charged particle detection, with a 180 nm technology. [18], [19]

The purpose of the chip is to measure and visualise radiation and its
interaction. That can be achieved by measuring the energy deposited in every
single pixel in the pixel grid. The range of five orders of magnitude allows
the sensor to distinguish particles from low-energy electrons to high-energy
heavy ions. [19]

The operation cycle of SpacePix2 is divided into several phases, starting
with Power-On, following with Readout Mode Selection, Configuration, Mea-
surement and ending with Data Readout. In the two first phases, as their
names suggest, the chip is powered on, and readout mode is selected. There
are two possible readout modes, SPI mode and LVDS mode, the first designed
to be used with a microcontroller while the second for high-speed operation
controlled by Field Programmable Gate Array (FPGA). The most crucial
phase of this work is the Configuration phase which is discussed in more
detail in subsection 2.3.1. The phase is explained from the software point
of view rather than the hardware one. Lastly, the Measurement and Data
Readout phases are summed in subsection 2.3.2. [19]

2.3.1 Sensor configuration

Configuration of the SpacePix2 chip is essential, considering it affects the
measurements and thus the acquired data. The sensor requires two types
of configuration - pixel matrix configuration (later referred to as a local
configuration) and global chip configuration (hereafter global configuration).
It is important to remember that there are five sensors in the SXRM detector,
so these configurations shall be set for all of them, whether the same or
different. In order to accommodate more configurations for multiple sensors
the Configuration groups have been implemented. A configuration group
groups multiple sensor configurations (global and local) for all sensors of the
detector.

The parameters for both types of configuration are listed in Table 2 and
Table 3. [19]

parameter name default value
TDAC[3:0] 1000
INJECT_EN 0
HIT_GLOBAL_EN 0

Table 2: List of local configuration parameters. The parameters can differ for
each pixel. The default values are in binary. [19]

15

2. Space Dosimetry System Demonstrator
parameter name default value parameter name default value
VBP_CSA 1000 0000 F_SEL_0 0
VBN_CSA 1000 0000 F_SEL_1 1
VFB_CSA 1000 0000 F_SEL_2 0
VBN_PDH 1000 0000 BACKSIDE_DEBUG_EN 0
VBP_HYST 1000 0000 VREF_EN 1
VBP_COMP 1000 0000 BACKSIDE_LOW_LEAK_EN 0
VBN_TDAC 1000 0000 BECKSIDE_INJECT_EN 0
VBP_LCC 1000 0000 ANALOG_OUT_0_EN 0
VTHR 10 0000 0000 ANALOG_OUT_1_EN 0
VBN_ADC 1000 0000 ANALOG_OUT_2_EN 0
LVDS_CM 1000 0000 ANALOG_OUT_3_EN 0
LVDS_STRENGTH 1000 0000 BACKSIDE_EN 0
SF 1000 0000 TEMP_SENS_EN 0
TAIL 1000 0000 ADC_PIN_EN 0
TEST 1000 0000

Table 3: List of global configuration parameters. The default values are in
binary. [19]

2.3.2 Measurement and Data Readout

The measurements phase starts with the the activation of the shutter signal.
After the measurement phase is finished, it is followed by the data readout
phase, in which the acquired events are digitized and read out. The shutter
period parameter gives the length of exposition. This parameter should be at
least 100 µs because it takes approximately 10 µs to recover from reset at the
beginning of the shutter period. The maximum useful shutter period has to
be detected experimentally, but a reasonable estimate is 100−200 ms. During
the exposition, each pixel activates its Peak Detector Hold (PDH) circuit.
The circuit enables them to record the peak voltage of a Charge Sensitive
Amplifier (CSA), which amplifies the signal coming from the sensitive diode.
When the exposition ends, peak voltages from the PDH circuit are transferred
to Analog to Digital Converters (ADCs), where they are digitized row by
row. The resolution of each ADCs is 10 bit and ranges from 0 to 1023 mV,
with each code value approximately corresponding to the voltage in millivolts.
After digitization, data are loaded to the Row Shift Register (RSR) and
transmitted out. [19]

16

Part II

Software design and implementation

17

18

Chapter 3
Design and architecture

To fulfil the aim of this work, the ConfPix software (later referred to only
as ConfPix) was designed. This chapter presents both system and software
requirements on ConfPix. It then describes the design of ConfPix from
graphical and software points of view.

3.1 Requirements

The system requirements on ConfPix are listed below.
Software shall:. be implemented in Python and be compatible with Python 3.8 and newer. be based on GUI using Tkinter for Python. allow to set full configuration (global and local) of each radiation sensor. allow to read and set configuration of the instrument. allow to start and stop data acquisition of the detector. display acquired data

The software requirements specification derived from the system require-
ments, including verification methods can be found in Appendix C.

3.2 GUI design

The GUI of the application (see Figure 4) is based on the software require-
ments. It was created using the Tkinter module for Python. The main
window is divided into multiple areas which are connection, configuration,
configuration parameters, data acquisition and logging.

The connection part currently supports only connection via Universal
Asynchronous Receiver-Transmitter (UART), but the design can be easily
modified for additional communication interfaces such as Ethernet. The
configuration and configuration parameters parts are part of a SpacePix tab.
The choice of tabs is a preparation for a possible upgrade of the application

19

3. Design and architecture
for configuration of another type of detector such as the SXM (the secondary
radiation detector of the 2SD instrument). The configuration parameters
part changes according to the selected configuration type (global/local).

Figure 4: GUI design of ConfPix after startup.

The global parameters’ layout is shown in Figure 4. It allows the user to set
all of the global configuration parameters. The parameters with the boolean
data type have the Combobox widget to choose from true-1 and false-0.
The value is displayed in human-readable form (true/false) but also in the
form of actual numerical value in order to avoid doubts in case of the use of
inverse logic (for future parameter updates). For the other parameters, the
Spinbox widget is used with set limits.

The local configuration layout is shown in Figure 5. The user can select one
pixel, a range of pixels or all pixels from the pixel grid. The local configuration
parameters will be changed only for the selected pixels. The configuration
section also contains buttons to read and send configurations for the selected
group and only the selected type of configuration. The Generate commands
button generates commands for the selected group and both configuration

20

..................................... 3.2. GUI design

types regardless of the selected type. The Default config button sets the
configuration parameters for the selected sensor to default values, and the
Def config group button sets the configuration parameters for all sensors
in the selected configuration group to default values.

In the data acquisition part, both parameters needed for data acquisition -
the shutter duration and the sampling period - can be set. If the instrument is
connected, the Start DAQ button starts data acquisition using the currently
selected configuration group, opens the data acquisition window and changes
its own name to Stop DAQ. The Stop DAQ button closes the data acquisition
window, stops data acquisition, and changes the button’s name to Start DAQ.
In the logging part, the logged messages are shown to the user. The state of
sending/reading is shown when sending and reading configurations.

Figure 5: GUI design when local configuration is chosen.

The design of the data acquisition window is shown in Figure 6. There are
currently five sensors in the detector, so there are five sensors in the window.

21

3. Design and architecture

Figure
6:

D
ata

acquisition
w

indow
after

starting
data

acquisition
(taken

on
qualification

m
odelofthe

2SD
).

(Sensor
#

0
is

there
just

to
fill

space,it
does

not
represent

an
actualsensor.

Sensor
#

1
was

m
echanically

dam
aged,otherw

ise
would

also
show

acquired
data.

22

.................................. 3.3. Static architecture

This can be easily changed if more sensors were added.

3.3 Static architecture

The software’s architecture is based on a variant of the Model-View-Controller
(MVC) pattern. The functionality of one of MVC’s variations is shown in
Figure 7. The model serves as the data part in the pattern and does not
deal with GUI widgets, data presentation, or data processing. The view
shows data and control widgets to the user, practically comprising the GUI.
Generally, the view does not have to have access to the model, and if it does,
it is usually read-only. Lastly, the controller’s job is to take care of the user’s
requests and data flow between the model and the view.

Figure 7: Individual parts of the MVC pattern, including their relations and
their main functions. [20]

The ConfPix’s structure differs from the one in Figure 7 in two main
aspects. First, the view does not have access to data via model but only
via the controller. Second, the data between view and controller goes both
ways, as well as the data between model and controller. The MVC pattern
only shows the main blocks of the design, while individual modules and their
relations are shown in Figure 8.

Classes, their attributes and methods are presented in the UML diagram in
Figure 9. The controller class is specified in Figure 10, the local configuration
and its parts in Figure 11, and finally, the data acquisition class and its parts
in Figure 12. The functionality of individual modules is further described in
section 3.4.

23

3. Design and architecture

pySerial

Configuration
Window

DaqWindow

ControllerCommandInterface

ASN

Responses Commands

Client

Accessed by:
Controller

Commands
Responses

CustomTypes

Accessed by:
Client

CRC16ccitt

Accessed by:
DaqWindow

CRC16

Accessed by:
Controller

Configuration-
Window

GlobalConfiguration
LocalConfiguration

Configuration

Accessed by:
Controller

Commands
Generator

Accessed by:
Configuration-

Window

TextHandler

Accessed by:
Controller

LocalConfiguration

Accessed by:
Controller

GlobalConfiguration

Accessed by:
DaqWindow

CustomTypes
Daq

Accessed by:
Configuration

CustomConstants

CustomTypes
Configuration

Accessed by:
Controller

Configuration-
Window

Configuration
GlobalConfiguration
LocalConfiguration

CustomConstants

ConfPix

Figure 8: Static architecture of ConfPix.

3.4 Modules’ description

This section describes individual modules of the ConfPix software. Most of
the modules are grouped into three groups - IOV, UART and View. Main
modules stand alone.

Some of the modules were automatically generated from an Interface Control
Document represented in the form of a structured text file in YAML format.
A unique pair of a service number and a subservice number describes each
packet - service numbers group packets with the same coverage. Additionally,
one whole module was entirely generated from ASN and ACN files. These
files contain almost the same data as the YAML file but in different format.
The corresponding part describes further details.. ConfPix

The confpix module is the main module and serves to run the program.. Controller
An instance of the Controller class manages all events triggered in the
GUI. It takes care of buttons’ behaviour by getting the data from the
user and relaying them into an instance of Command Interface. It then
reacts to the response from Command Interface and, if required, passes
data back to the GUI. It controls the validity of input data, such as its
data type or being within the required interval.

24

................................. 3.4. Modules’ description

R
es

p
o

n
se

+
 e

xi
st

s:
bo

ol
+

 is
_v

al
id

:b
oo

l
+

 d
at

a:
Ty

pe
V

ar
('T

')

C
o

n
fP

ix

<
<

in
te

rf
ac

e>
>

C
o

m
m

an
d

In
te

rf
ac

e

+
 r

eq
ue

st
(p

ar
am

s)
:R

es
po

ns
e

-
__

in
it_

_(
cl

ie
nt

)

C
o

m
m

an
d

s

+
 c

lie
nt

:C
lie

nt
In

te
rf

ac
e

+
 r

eq
ue

st
(p

ar
am

s)
:R

es
po

ns
e

-
__

cr
ea

te
_t

c(
ki

nd
):

T
_T

C
-

__
in

it_
_(

cl
ie

nt
)

C
lie

n
t

+
 p

or
t:s

tr
+

 b
au

dr
at

e:
in

t

+
 c

om
m

un
ic

at
io

n_
is

_r
un

ni
ng

()
:

bo
ol

+
 c

om
m

an
d(

re
qu

es
t,

ge
t_

re
sp

on
se

, r
es

po
ns

e_
le

ng
th

):
O

pt
io

na
l[T

_T
M

]
+

 c
on

ne
ct

()
+

 d
is

co
nn

ec
t(

)
- _

_i
ni

t_
_(

po
rt

, b
uf

fe
r,

ba
ud

ra
te

, t
im

eo
ut

)
- _

_s
en

d_
re

qu
es

t(
re

qu
es

t)
:b

oo
l

- _
_e

nc
od

e_
re

qu
es

t(
tc

):
by

te
s

- _
_g

et
_r

es
po

ns
e(

ge
t_

re
sp

on
se

, r
es

po
ns

e_
le

ng
th

):
O

pt
io

na
l[T

_T
M

]
- _

_d
ec

od
e_

re
sp

on
se

(r
ec

ei
ve

d_
tm

):
T

_T
M

<
<

in
te

rf
ac

e>
>

C
lie

n
tI

n
te

rf
ac

e

+
 c

om
m

un
ic

at
io

n_
is

_r
un

ni
ng

()
:

bo
ol

+
 c

on
ne

ct
()

+
 d

is
co

nn
ec

t(
)

+
 c

om
m

an
d(

re
qu

es
t,

ge
t_

re
sp

on
se

, r
es

po
ns

e_
le

ng
th

)

A
S

N
re

sp
on

se
s_

ua
rt

C
o

n
fi

g
u

ra
ti

o
n

W
in

d
o

w

+
 v

ar
_p

or
t:S

tr
in

gV
ar

+
 c

b_
po

rt
:tt

k.
C

om
bo

bo
x

+
 v

ar
_b

au
dr

at
e:

S
tr

in
gV

ar
+

 s
pi

nb
ox

_b
au

dr
at

e:
ttk

.S
pi

nb
ox

+
 r

ef
re

sh
_b

ut
to

n:
ttk

.B
ut

to
n

+
 c

on
ne

ct
_b

ut
to

n:
ttk

.B
ut

to
n

+
 p

in
g_

bu
tto

n:
ttk

.B
ut

to
n

+
 c

on
fig

_g
ro

up
_v

ar
:S

tr
in

gV
ar

+
 c

b_
co

nf
ig

_g
ro

up
:tt

k.
C

om
bo

bo
x

+
 s

en
so

r_
id

_v
ar

:S
tr

in
gV

ar
+

 c
b_

se
ns

or
_i

d:
ttk

.C
om

bo
bo

x
+

 s
el

ec
te

d_
co

nf
ig

ur
at

io
n:

S
tr

in
gV

ar
+

 r
b_

lo
ca

l:t
tk

.R
ad

io
bu

tto
n

+
 r

b_
gl

ob
al

:tt
k.

R
ad

io
bu

tto
n

+
 c

on
fig

ur
at

io
n:

ttk
.F

ra
m

e
+

 r
ea

d_
co

nf
ig

_b
ut

to
n:

ttk
.B

ut
to

n
+

 s
en

d_
co

nf
ig

_b
ut

to
n:

ttk
.B

ut
to

n
+

 g
en

er
at

e_
te

xt
fil

e_
bu

tto
n:

ttk
.B

ut
to

n
+

 d
ef

au
lt_

co
nf

ig
_b

ut
to

n:
ttk

.B
ut

to
n

+
 d

ef
au

lt_
co

nf
ig

_g
ro

up
_b

ut
to

n:
ttk

.B
ut

to
n

+
 v

ar
_s

hu
tte

r:
In

tV
ar

+
 v

ar
_p

er
io

d:
In

tV
ar

+
 d

aq
_b

ut
to

n:
ttk

.B
ut

to
n

+
 s

t:t
ki

nt
er

.s
cr

ol
le

dt
ex

t.S
cr

ol
le

dT
ex

t
-

__
ro

ot
:T

k
-

__
fil

te
r_

in
t:s

tr
-

__
fil

te
r_

in
t_

lim
ite

d:
st

r

-
__

in
it_

_(
ro

ot
)

-
__

fo
cu

s(
ev

en
t)

-
__

on
ly

_i
nt

_l
im

ite
d_

in
te

rv
al

(in
pu

t,
w

, m
ax

_v
al

ue
, m

in
_v

al
ue

):
bo

ol
-

__
cr

ea
te

_c
on

ne
ct

io
n_

fr
am

e(
m

as
te

r,
ro

w
, c

ol
um

n,
 s

tic
ky

, p
ad

x,
 p

ad
y)

-
__

cr
ea

te
_t

ab
s(

m
as

te
r,

ro
w

, c
ol

um
n,

 s
tic

ky
, p

ad
x,

 p
ad

y)
-

__
cr

ea
te

_c
on

fig
ur

at
io

n_
fr

am
e(

m
as

te
r,

ro
w

, c
ol

um
n,

 s
tic

ky
, p

ad
x,

 p
ad

y)
-

__
cr

ea
te

_d
aq

_f
ra

m
e(

m
as

te
r,

ro
w

, c
ol

um
n,

 s
tic

ky
, p

ad
x,

 p
ad

y)
-

__
cr

ea
te

_l
og

gi
ng

_f
ra

m
e(

m
as

te
r,

ro
w

, c
ol

um
n,

 s
tic

ky
, p

ad
x,

 p
ad

y)
-

__
de

fin
e_

st
yl

es
()

G
lo

b
al

C
o

n
fi

g
u

ra
ti

o
n

F
ra

m
e

+
 v

ar
ia

bl
es

:d
ic

t
+

 s
ha

do
w

_c
op

y_
gl

ob
al

:L
is

t[L
is

t[s
ha

do
w

_c
op

y_
gl

ob
al

_d
ic

t]]
 =

 []
+

 s
av

ed
_v

al
ue

s_
gl

ob
al

:L
is

t[L
is

t[s
ha

do
w

_c
op

y_
gl

ob
al

_d
ic

t]]
 =

 []
+

 d
ic

tio
na

rie
s_

sa
ve

d:
Li

st
[L

is
t[D

ic
t[s

tr,
 b

oo
l]]

] =
 []

+
 v

ar
ia

bl
es

_s
av

ed
:L

is
t[L

is
t[b

oo
l]]

 =
 []

+
 p

ar
am

_w
id

ge
ts

:D
ic

t[s
tr,

 L
is

t[t
tk

.W
id

ge
t]]

- _
_r

oo
t:T

k
- _

_r
eg

s:
di

ct
- _

_g
ro

up
:in

t
- _

_s
en

so
r_

id
:in

t

+
 s

ha
do

w
_c

op
y_

ch
an

ge
(g

ro
up

, s
en

so
r_

id
)

+
 u

pd
at

e_
gu

i()
+

 c
he

ck
_i

f_
ch

an
ge

d(
gr

ou
p,

 s
en

so
r_

id
)

+
 g

ro
up

_s
et

(g
ro

up
)

+
 s

en
so

r_
id

_s
et

(s
en

so
r_

id
)

+
 tr

ac
e_

va
lu

e(
*a

rg
s)

+
 g

et
_k

ey
_v

al
ue

(v
ar

_n
am

e)
:li

st
- _

_i
ni

t_
_(

pa
re

nt
, r

oo
t)

- _
_o

nl
y_

in
t_

lim
ite

d_
in

te
rv

al
(in

pu
t,

w
, m

ax
_v

al
ue

):
bo

ol
- _

_c
re

at
e_

co
nf

ig
_p

ar
am

s_
gr

id
(m

as
te

r)
- _

_w
rit

e_
se

ns
or

_s
av

ed
_i

nf
o(

gr
ou

p,
 s

en
so

r_
id

)
- _

_c
ha

ng
e_

w
id

ge
ts

_s
ta

te
(s

ta
te

)

D
aq

W
in

d
o

w

L
o

ca
lC

o
n

fi
g

u
ra

ti
o

n
F

ra
m

e

Te
xt

H
an

d
le

r

-
__

te
xt

:R
ec

tT
ra

ck
er

+
 e

m
it(

re
co

rd
)

-
__

in
it_

_(
te

xt
_f

ie
ld

)

lo
gg

in
g.

H
an

dl
er

C
o

m
m

an
d

sF
ile

G
en

er
at

o
r

+
 s

xr
m

_g
lo

ba
l_

co
nf

ig
_t

o_
st

rin
g(

u4
_c

on
fig

_g
ro

up
,

u4
_s

px
_n

um
be

r,
t_

sp
x_

gl
ob

al
_c

on
fig

)
+

 s
xr

m
_p

ix
el

_c
on

fig
_c

hu
nk

_t
o_

st
rin

g(
u4

_c
on

fig
_g

ro
up

,
u4

_s
px

_n
um

be
r,

u8
_c

hu
nk

_n
um

be
r,

au
8_

pi
xe

l_
co

nf
ig

_c
hu

nk
)

+
 m

em
_s

et
_t

o_
st

rin
g(

u3
2_

de
st

_a
dd

r,
u8

_v
al

ue
,

u3
2_

le
ng

th
)

+
 w

rit
e_

fil
e(

fil
e_

bo
dy

, c
on

fig
_g

ro
up

)
-

__
in

it_
_(

)

C
o

n
tr

o
lle

r

1

1

1

1

1

1

1

1

<
<

us
es

>
>

<
<

cr
ea

te
s>

>
<

<
us

es
>

>

G
en

er
ic

[T
]

ttk
.F

ra
m

e

Fi
gu

re
9:

C
la

ss
di

ag
ra

m
of

C
on

fP
ix

.

25

3. Design and architecture

Controller

+ root:Tk
+ client:ClientInterface = None
+ daq_window:DaqWindow = None
- __commands:CommandInterface = None
- __cw:ConfigurationWindow
- __configurations:Dict[str, ttk.Frame] = {}

+ on_closing()
+ close_all()
+ init_parameters()
+ refresh()
+ connect_device_uart(event)
+ disconnect_device_uart(event)
+ change_buttons_state(state)
+ change_connection_buttons_state(state)
+ get_baudrate():Optional[int]
+ ping_device()
+ show_configuration_frame()
+ change_shadow_copy(event, config)
+ change_buttons_state_read_only_group(state)
+ send_configuration()
+ send_local_configuration()
+ send_global_configuration()
+ read_configuration()
+ read_local_configuration()
+ read_global_configuration()
+ generate_commands()
+ generate_global_configuration(fg, group, sensor_id):str
+ generate_local_configuration(fg, group, sensor_id):str
+ load_default_configuration()
+ load_default_configuration_group()
+ load_local_default_configuration(whole_group)
+ load_global_default_configuration(whole_group)
+ start_data_acquisition()
+ close_data_acquisition_window()
+ stop_data_acquisition(event)
+ stop_measurements()
+ change_buttons_state_daq(state)
- __init__()
- __delete_last_line_scrolledtext()
- __trace_value_saved_global(*args)
- __trace_value_saved_local(*args)
- __config_group_mark(group, new_group)
- __check_all_if_unsaved(config)
- __sensor_id_check_all_if_unsaved(saved_configurations, group, current_sensor)
- __bell()
- __connection_established():bool
- __serial_ports():list
- __get_config_group()
- __get_sensor_id()

Figure 10: Class diagram of Controller.

26

................................. 3.4. Modules’ description
L

o
ca

l C
o

n
fi

g
u

ra
ti

o
n

L
o

ca
lC

o
n

fi
g

u
ra

ti
o

n
F

ra
m

e

+
 v

ar
ia

bl
es

:d
ic

t
+

 s
ha

do
w

_c
op

y_
lo

ca
l:L

is
t[L

is
t[s

ha
do

w
_c

op
y_

lo
ca

l_
pi

xe
lg

rid
]]

+
 s

av
ed

_v
al

ue
s_

lo
ca

l:L
is

t[L
is

t[s
ha

do
w

_c
op

y_
lo

ca
l_

pi
xe

lg
rid

]]
+

 m
at

ric
es

_s
av

ed
:L

is
t[L

is
t[L

is
t[L

is
t[D

ic
t[s

tr,
 b

oo
l]]

]]]
+

 v
ar

ia
bl

es
_s

av
ed

:L
is

t[L
is

t[D
ic

t[s
tr,

 b
oo

l]]
]

+
 s

el
ec

te
d_

pi
xe

ls
_v

ar
:S

tr
in

gV
ar

+
 s

el
ec

te
d_

pi
xe

ls
:L

is
t

-
__

gr
ou

p:
in

t =
 1

-
__

se
ns

or
_i

d:
in

t =
 0

-
__

re
ct

:R
ec

tT
ra

ck
er

+
 g

et
_c

oo
rd

in
at

es
(it

em
):

Li
st

[in
t]

+
 s

ha
do

w
_c

op
y_

ch
an

ge
(g

ro
up

, s
en

so
r_

id
)

+
 u

pd
at

e_
ca

nv
as

()
+

 c
he

ck
_i

f_
ch

an
ge

d(
gr

ou
p,

 s
en

so
r_

id
)

+
 g

ro
up

_s
et

(g
ro

up
)

+
 s

en
so

r_
id

_s
et

(s
en

so
r_

id
)

+
 tr

ac
e_

va
lu

e(
*a

rg
s)

+
 g

et
_k

ey
_v

al
ue

(v
ar

_n
am

e)
:li

st
-

__
in

it_
_(

pa
re

nt
, r

oo
t)

-
__

on
_d

ra
g(

st
ar

t,
en

d)
-

__
ch

an
ge

_t
ex

t(
)

-
__

w
rit

e_
se

ns
or

_s
av

ed
_i

nf
o(

gr
ou

p,
 s

en
so

r_
id

)
-

__
ch

an
ge

_w
id

ge
ts

_s
ta

te
(s

ta
te

)

R
ec

tT
ra

ck
er

+
 it

em
s:

Li
st

+
 o

ffs
et

:in
t

-
__

ca
nv

as
:C

an
va

s
-

__
ite

m
:O

pt
io

na
l[A

ny
]

-
__

st
ar

t:O
pt

io
na

l[L
is

t]
-

__
co

m
m

an
d:

C
al

la
bl

e
-

__
re

ct
op

ts
:D

ic
t[s

tr,
 A

ny
]

+
 a

ut
od

ra
w

(*
*o

pt
s)

+
 h

it_
te

st
(s

ta
rt

, e
nd

):
Li

st
-

__
in

it_
_(

ca
nv

as
)

-
__

dr
aw

(s
ta

rt
, e

nd
, *

*o
pt

s)
:A

ny
-

__
up

da
te

_o
ne

_p
ix

el
(e

ve
nt

)
-

__
up

da
te

(e
ve

nt
)

-
__

st
op

(e
ve

nt
)

-
__

se
le

ct
_c

an
va

s(
ev

en
t)

-
__

gr
ou

ps
(g

lis
t,

nu
m

_p
er

_g
ro

up
):

lis
t

S
en

so
rL

o
ca

lC
o

n
fi

g
u

ra
ti

o
n

F
ra

m
e

+
 v

ar
ia

bl
es

:d
ic

t
+

 c
an

va
s:

P
ix

el
C

an
va

s
+

 s
el

ec
te

d_
pi

xe
ls

_v
ar

:S
tr

in
gV

ar
+

 p
ar

am
_w

id
ge

ts
:D

ic
t[s

tr,
 L

is
t[t

tk
.W

id
ge

t]]
-

__
ro

ot
:T

k
-

__
re

gs
:d

ic
t

-
__

se
le

ct
ed

_p
ix

el
s_

la
be

l:t
tk

.L
ab

el
-

__
se

le
ct

ed
_p

ix
el

s:
ttk

.L
ab

el
-

__
cu

rr
en

t_
pi

xe
l_

la
be

l:t
tk

.L
ab

el
-

__
cu

rr
en

t_
pi

xe
l:t

tk
.L

ab
el

-
__

cu
rr

en
t_

pi
xe

l_
va

r:
S

tr
in

gV
ar

+
 m

ov
e_

se
ns

or
_f

ra
m

e(
ev

en
t)

-
__

in
it_

_(
pa

re
nt

, r
oo

t)
-

__
on

ly
_n

um
be

r_
lim

ite
d_

in
te

rv
al

(in
pu

t,
w

, m
ax

_v
al

ue
, m

in
_v

al
ue

):
bo

ol
-

__
in

se
rt

_t
ex

t(
te

xt
)

-
__

de
le

te
_t

ex
t(

)
-

__
m

an
ag

e_
te

xt
(s

ha
re

d_
va

l)

P
ix

el
C

an
va

s

+
 c

on
fig

s:
Li

st
[L

is
t[P

ix
el

C
on

fig
]]

+
 c

on
fig

s_
sa

ve
d:

Li
st

[L
is

t[D
ic

t[s
tr,

bo
ol

]]]
-

__
pi

xe
l_

si
ze

:in
t =

 0
-

__
la

st
_t

as
k_

id
:O

pt
io

na
l[s

tr
] =

 N
on

e
-

__
ca

nv
_i

ds
:L

is
t[L

is
t[i

nt
]]

+
 g

et
_c

oo
rd

in
at

es
(p

ox
_x

, p
os

_y
):

Li
st

[in
t]

-
__

in
it_

_(
pa

re
nt

)
-

__
m

ot
io

n(
ev

en
t)

-
__

up
da

te
_p

ix
el

_c
on

fig
_s

tr
(x

, y
, i

s_
no

ne
):

st
r

-
__

sc
he

du
le

_s
iz

e_
up

da
te

(e
ve

nt
)

-
__

up
da

te
_c

an
va

s_
si

ze
()

-
__

cr
ea

te
_c

an
va

s_
pi

xe
ls

(h
ei

gh
t,

w
id

th
)

1

1
tk

in
te

r.C
an

va
s

tk
in

te
r.t

tk
.F

ra
m

e

1

1

Fi
gu

re
11

:
C

la
ss

di
ag

ra
m

of
Lo

ca
lC

on
fig

ur
at

io
n.

27

3. Design and architecture

D
ataM

sg

+
 tag:Literal[W

orkerM
sgType.D

A
TA

]
+

 pixels:Tuple[Tuple[int, ...]]
+

 dev_id:int
+

 tim
estam

p:int

E
rro

rM
sg

+
 tag:Literal[W

orkerM
sgType.E

R
R

O
R

]

F
ram

eS
tats

+
 pixel_m

in:int
+

 pixel_m
ax:int

+
 fram

e_m
ean:float

W
o

rkerH
an

d
le

+
 process:P

rocess
+

 q:'Q
ueue[W

orkerM
sg]'

+
 proc_end:'sharedctypes._V

alue'

D
A

Q
 W

in
d

o
w

D
aq

W
in

d
o

w

+
 root:T

k
+

 port:str
+

 baudrate:int
+

 w
indow

: Toplevel =
 N

one

+
 open()

+
 close()

+
 connect()

+
 disconnect()

+
 update_canvasii(canvasii, pixel_tip)

+
 build_and_run_gui()

- __init__(root, port, baudrate)

P
ixelT

ip

+
 tooltip:Toplevel

+
 tooltip_w

idth:int
+

 tooltip_height:int
+

 screen_w
idth:int

+
 screen_height:int

+
 text:Text

+
 get_tooltip():Toplevel

+
 insert_text(in_m

ousepos)
+

 delete_text()
+

 m
anage_text(shared_val)

+
 adapt_display(x_c, y_c)

+
 m

ove_w
indow

(event)
+

 update_tooltip()
- __init__(m

aster, root)

W
o

rker

- __q:'Q
ueue[W

orkerM
sg]'

- __is_end:'sharedctypes._V
alue'

- __port:str
- __baudrate:int

+
 run()

- __init__(q, is_end, port, baudrate)
- __get_fram

e_data(parsed_fram
e):D

ataM
sg

N
am

edTuple

P
rocess

S
en

so
rF

ram
e

+
 fram

ecnt:int
+

 canvas:P
ixelC

anvas
- __tim

estam
p_label:ttk.Label

- __fram
ecnt_label:ttk.Label

- __fram
em

ean_label:ttk.Label
- __fram

em
in_label:ttk.Label

- __fram
em

ax_label:ttk.Label
- __tim

estam
p_var:S

tringV
ar

- __tim
estam

p:ttk.Label
- __fram

ecnt_var:S
tringV

ar
- __fram

ecnt:ttk.Label
- __fram

em
ean_var:S

tringV
ar

- __fram
em

ean:ttk.Label
- __fram

em
in_var:S

tringV
ar

- __fram
em

in:ttk.Label
- __fram

em
ax_var:S

tringV
ar

- __fram
em

ax:ttk.Label

+
 fram

e_stat(pixels):F
ram

eS
tats

+
 update_pixels(dev_id, pixels, tim

estam
p, fram

ecnt, pixel_tip):F
ram

eS
tats

- __init__(parent, id)

tkinter.C
anvas

ttk.LabelF
ram

e

P
ixelC

an
vas

+
 int_str:str =

 ''
+

 x_m
in:int =

 0
+

 x_m
ax:int =

 0
+

 y_m
in:int =

 0
+

 y_m
ax:int =

 0
+

 x_cond:bool =
 F

alse
+

 y_cond:bool =
 F

alse
+

 tooltip:Toplevel
- __pixel_size:int =

 0
- __last_task_id:O

ptional[str] =
 N

one
- __canv_ids:List[List[int]]
- __pixels_cpy:Tuple[Tuple[int, ...]]
- __m

otion_coord:TypedD
ict()

+
 update_pixels(pixels, pixel_tip)

- __init__(parent)
- __m

otion(event)
- __selection_on(event)
- __selection_off(event)
- __handle_static_tooltip(pixel_tip, pixels)
- __get_rgb(norm

_lum
):List[int]

- __get_color(norm
_lum

, val):int
- __schedule_size_update(event)
- __update_canvas_size()
- __create_canvas_pixels()
- __get_coordinates(pox_x, pos_y):List[int]

1

1

1

1

1

0..*

1

1

<
<

creates>
>

<
<

creates>
>

<
<

creates>
>

1

1

Figure
12:

C
lass

diagram
ofD

A
Q

W
indow

.

28

................................. 3.4. Modules’ description

Opening and closing GUI window also fall within its function’s scope.
Lastly, the controller logs events in the application, displays them in the
GUI and saves in a LOG file.. Client Interface
The ClientInterface provides a protocol-independent interface that allows
communication link establishment and performing data transfers. The
methods which the interface provides are listed below.. connect(). disconnect(). communication_is_running(). command(self, request, get_response: bool = True,

response_length: Optional[int] = None)

The connect() and disconnect() methods start and stop communica-
tion. They do not take any arguments since the type of communication
is unknown, and the arguments might differ for each type. The commu-
nication_is_running() method is used to check if communication was
established. It returns true if the communication is open and false if
it is closed. Method command() handles sending the command requests
to the instrument and optionally getting a response if requested. The
method accepts three arguments - one compulsory and two optional. A
command request object is compulsory, and its data type depends on
the type of communication. Argument get_response is optional and
provides information about whether a response is expected or not. For
most of the commands, a response is required. That is why the flag is set
to true by default. Lastly, argument response_length, which is also op-
tional, serves for possible faster data exchange. The length is considered
unknown if it is set to None, which is by default. The implementation of
this interface for UART is described below in subsection 3.4.2 - Client
UART.. Commands Generator
After creating a required configuration on the spare instrument, the
configuration needs to be sent to the device in orbit. For that, a file con-
taining commands following the control software’s command-line interface
format is needed. To generate such a file, the CommandsFileGenerator
class is used.
The CubeSatCarrier2 communicates with the ground via ground station
terminal software which is emulated for development by Satellite Interface
Simulator (SIS) commanding interface. The generator produces a file
with commands to set global and local configurations for the chosen
configuration group in the SIS commanding interface format. For this
purpose, the class provides several methods listed below.

29

3. Design and architecture
. sxrm_global_config_to_string(self, u4_config_group: int,

u4_spx_number: int, t_spx_global_config: List[str]). sxrm_pixel_config_chunk_to_string(self, u4_config_group:
int, u4_spx_number: int, u8_chunk_number: int,
au8_pixel_config_chunk: List[int]). mem_set(self, u32_dest_addr: int, u8_value: int,
u32_length: int). write_file(self, file_body, config_group)

The first three methods generate strings from inserted parameters in
the required format. The mem_set() method can be used instead of
the sxrm_pixel_config_chunk_to_string() method if all pixels for
one sensor and configuration group have the same configuration value.
The benefit of this switch is a faster data exchange. The write_file()
method creates a unique file name and produces a new file with this name.
The file includes commands passed on to this method as an argument.

3.4.1 IOV modules. Command Interface
CommandInterface interface provides methods to command the 2SD
instrument. It was automatically generated from the YAML file already
mentioned above. The interface does not depend on the type of commu-
nication used; the classes implementing this interface do. Each method
corresponds to one subservice, taking all parameters of this subservice
as the method’s arguments. The methods return an instance of the
Response class. The class has three attributes - exists, is_valid and
data. If response was created, the exists parameter is set to True. If
data received are valid, the is_valid parameter is set to True. Even if
data are not valid, the data received are stored in the data parameter.
The interface requires one attribute, which is the client, a ClientInterface
instance.. Commands UART
The Commands UART module includes the class Commands which
inherits from the CommandInterface interface (see section 3.4 - Command
Interface). This class is designed for communication via UART; thus, its
attribute client is an instance of the Client class, described later. The
class was automatically generated from the YAML file.
Nearly every method returns an instance of the Response class. As an
argument, each instance of the Response class is given a data type of
the response. Module Responses UART (see below) contains all possible
responses, each being a single class. Some subservices and thus methods
in the Commands class do not have a response. That information is
passed on as a parameter to the command() method of the client attribute.
The method then does not expect any response.

30

................................. 3.4. Modules’ description

If the response cannot be read or does not correspond to the expected
format, the response is not created, and the attribute exists is set to
False. If a response exists, but the status returned is not 0 (meaning
some error occurred), or the CRC returned is equal to 0 (meaning some
error might have occurred), the is_valid attribute is False.
An example of a command method is shown in Listing 1.. Responses UART
As already indicated above, module Responses UART consists of many
classes. Each serves as a response to only one request. Every time
a request is sent, a new instance of the particular response class is
created. Each class only requires one argument, a decoded response with
a T_TM data type. When a new instance is created, all class attributes
are extracted from this argument. The T_TM data type is described
below in the ASN paragraph (subsection 3.4.2) and can be used only
for communication via UART. A new Responses module would have
to be created for a different type of communication. Since this is an
automatically generated module from the YAML file, it would only
require changing the rules for creating a single class, and a new module
could be generated.
An example of a response class is shown in Listing 2.. Custom Types
Custom Types is a module which supports both Commands UART
and Responses UART modules. It consists of enum classes and classes
simulating structures. These classes were generated from the YAML file.
Their purpose is to make the file more readable, avoid duplicates, and
restrict parameters to only used values. The classes are designed in a
way that helps to create more object-oriented responses.

31

3. Design and architecture
def power_data_request(self, u8_pwr_rail_id: int) ->

Response[responses.power_data_response]:↪→

"""(3, 138) Gets full power data from selected power rail
"""
tc = self.__create_tc(DV.tc_3_138_PowerDataRequest_PRESENT)
tc.sentData.tc_3_138_PowerDataRequest.u8PwrRailId.Set(u8_p ⌋

wr_rail_id)↪→

UART_response: T_TM = self.client.command(tc)
response = responses.power_data_response(UART_response)
exists = response.response_created
is_valid = None
if exists:

is_valid = (response.crc != 0 and response.status == 0)

return Response(exists, is_valid, response)

Listing 1: Example of a command method.

class power_data_response:
"""(3, 139) Gets full power data from selected power rail
"""
def __init__(self, tm:T_TM):

try:
self.crc = tm.crc.Get()
self.status = tm.status.Get()
self.u8_pwr_rail_id = tm.replyData.tm_3_139_PowerD ⌋

ataResponse.u8PwrRailId.Get()↪→

self.b_power_rail_status = bool(tm.replyData.tm_3_ ⌋

139_PowerDataResponse.bPowerRailStatus.Get())↪→

self.b_readout_validity = bool(tm.replyData.tm_3_1 ⌋

39_PowerDataResponse.bReadoutValidity.Get())↪→

self.u6_reserved = tm.replyData.tm_3_139_PowerData ⌋

Response.u6Reserved.Get()↪→

self.u16_current_ua = tm.replyData.tm_3_139_PowerD ⌋

ataResponse.u16CurrentUa.Get()↪→

self.u16_voltage_mv = tm.replyData.tm_3_139_PowerD ⌋

ataResponse.u16VoltageMv.Get()↪→

self.response_created = True

except:
self.response_created = False
logger.error(f'Creating response failed.')

Listing 2: Example of a response class.

32

................................. 3.4. Modules’ description

3.4.2 UART modules. Client UART
The client UART module contains one class - Client, which implements
the ClientInterface interface (see section - Client Interface). It provides
a connection with the device via a serial link. In addition to those
methods inherited from the interface, the class has several other methods
to handle the requests and responses. One pair of methods serves to
encode and send a request to the device. The other pair serves to receive
and decode a response from the device.
The request parameter in method command() has a T_TC data type, and
the method returns a response with a T_TM or None data type. To process
the request it calls __send_request() and __get_response() methods
and returns response built by the latter. The __get_response() tries
to read the answer from the device and decode it. If an error occurs in
any process step, it returns None to signalize that fact.. ASN
The ASN module includes the following files: DV_Types.py, DV.py, iov_-
asn.py, Stubs.py, iov_getset.so and winasn_64b.dll. All these files were
generated from iov.asn and iov.acn files using the ASN1SCC compiler.
In the ASN and ACN files, all packets are described with all their
parameters. The ACN file specifies individual memory sizes, especially
for enums, which take less than one byte. It also connects service and
subservice numbers with corresponding telecommands and telemetries.
PY files and the SO file can be generated using a script (not part of this
thesis) which first generates C files and, from those, the PY files and SO
file. The DLL library can be generated using a different script (not part
of this thesis). The script also generates HTML and CSS files, which
serve as documentation.. CRC 16 ccitt
This module serves for CRC calculation when sending packets to the
device. The CRC is two bytes of information appended at the end of a
packet, calculated from the data sent. It is used only by the Client class
(see subsection 3.4.2 - Client UART).. CRC 16
This module serves for CRC calculation when reading frames from the
device after data acquisition is started. It is calculated to verify that no
data were lost or changed during the transmission. It is used only by
the Worker class (see subsection 3.4.3 - DAQ Window).
The difference between CRC 16 and CRC 16 ccitt modules is in the
parameters used. All parameters used for CRC calculation - Polynomial,
Initial Value and Final XOR Value - differ for both modules. While
the CRC 16 ccitt module uses a 0x1021 polynomial, a 0x1D0F initial

33

3. Design and architecture
value and a 0x0000 final XOR value, the CRC 16 module uses a 0xD175
polynomial, a 0xFFFF initial value and a 0xFFFF final XOR value.

3.4.3 View modules. Configuration Window

The Configuration Window module contains a ConfigurationWindow
class. The class inherits from the ttk.Frame class and takes one param-
eter - the root. The root has the Tk data type and is used as the master
when initialising the frame. ConfigurationWindow is the primary GUI
handler which means it builds the main window and all the widgets
it contains. The placement of individual widgets is described in more
detail in section 3.2. This module only handles the visual side; it does
not manage any data. The only action which could be considered data
handling is limiting inputs of several widgets to integers only. With the
command from the controller, it can also set the maximum value and
will not allow the user to set higher values into the specified widgets.
This feature shall limit the values in case of user’s error.. Custom Types Configuration

Both local and global configurations have several parameters to set (see
Table 2 and Table 3). Custom Types Configuration module contains one
class - Parameter - to make handling configuration parameters easier.
The class inherits from the NamedTuple class from typing module.

The Parameter class was designed to make configuration parameters
easier to edit and prepare for prospective future changes in design and
thus in parameters. It has the following attributes: name, type, de-
fault_value, max_value, row and column. The name of a parameter
has to be unique because later, it serves as a key in many dictionaries.
The parameter type is a string and currently supports ’int’, ’bool’ and
other types, meaning any other string will be handled uniformly. The
default value is a string because that is the value which will be shown
to the user. For example, instead of 1, which represents true, showing a
’true-1’ string would be easier for the user to read. On the other hand,
the max value is an integer because that is the maximum value which can
be sent to the device. Attributes row and column can be either integers
or None. If set to None, this attribute is ignored; if set to an integer,
the software will try to organize the parameters grid in GUI accordingly.
This feature serves users who could find out that some parameters need
to be changed more often than others and would want to have them next
to each other or, for example, in a particular column. For example if
no parameter has preferences set (see Listing 3) the GUI layout would
look like the one in Figure 13a. If the user would set the parameters
as in Listing 4 (the rest of the parameters would stay the same), the
GUI layout would look like the one in Figure 13b). Users can change the

34

................................. 3.4. Modules’ description

number of columns for global configuration too. It can be changed in
the Global Configuration module (see below).

Parameter('backside_en', 'bool', 0b0, 0b1, None, None),
Parameter('temp_sens_en', 'bool', 0b0, 0b1, None, None),
Parameter('adc_pin_en', 'bool', 0b0, 0b1, None, None),
Parameter('vthr', 'int', 0x200, 0b1111111111, None, None)

Listing 3: Example of parameters with no preference of row and column.

Parameter('backside_en', 'bool', 0b0, 0b1, None, None),
Parameter('temp_sens_en', 'bool', 0b0, 0b1, None, None),
Parameter('adc_pin_en', 'bool', 0b0, 0b1, 1, 0),
Parameter('vthr', 'int', 0x200, 0b1111111111, 0, 0)

Listing 4: Example of parameters with chosen preferences of row and column.
Parameter adc_pin_en will be in row 1 in column 0 and parameter vthr will be
in row 0 in column 0.

. Configuration
The Configuration module provides several methods to make handling
configuration parameters partly automatic. These functions are described
below. It also provides a method which limits widgets’ inputs on integers
and a method which does the same but also sets the upper limit to
the given value. The methods are used in the Controller, Configuration
Window, Local Configuration and Global Configuration modules.. create_variables(parameters: List[Parameter]). get_default_config(parameters: List[Parameter],

zeros: bool = False). get_bool_parameters_dic(parameters: List[Parameter],
value: bool = True). get_bool_str(val: int). get_int_from_str(val: str). grid_parameter(master: Misc, parameter: Parameter,
row: int, variables: dict, reg,
add_space_label: bool = False)

The methods create_variables, get_default_config and get_bool_-
parameters_dic all take a parameter ’parameters’ which is a list of Pa-
rameter instances and return a dictionary with the names of parameters
as keys. For the first mentioned, the values are corresponding Tkinter
variables - IntVar or StringVar depending on the parameters’ types.
These are connected to parameter widgets and allow tracing variable
changes caused by the user. For the second mentioned, the values are the

35

3. Design and architecture

(a)
:

G
lobalconfiguration

G
U

I
layout

w
ithout

any
row

and
colum

n
preference.

(b)
:

G
lobalconfiguration

G
U

I
layout

w
ith

param
eter

adc_pin_en
in

row
1

in
colum

n
0

and
param

eter
vthr

in
row

0
in

colum
n

0.

Figure
13:

C
om

parison
ofglobalconfiguration

G
U

I
layout

before
and

after
setting

row
and

colum
n

preferences
for

adc_pin_en
and

vthr
param

eters.

36

................................. 3.4. Modules’ description

parameters’ default values or zeros (or string equivalent) if parameter
zeros is set to True. For the last function, the values are set to True or
False depending on the parameter value. The parameter is set to True
by default.
Methods get_bool_str and get_int_from_str convert integers (0, 1)
into string representations of booleans (currently ’false - 0’ and ’true
- 1’ are used) and string representations of booleans back to integers.
The last method is the grid_paramter method. It creates a label and a
corresponding widget for the given parameter. It connects the widget
with a matching variable from the variables dictionary, configures widgets’
styles and sets the master of both widgets to the master, which was
passed on as a parameter. It finally grids both widgets into the given
row and columns 0 and 1, the label being in column 0.. Local Configuration
The local Configuration module consists of the following classes:. PixelCanvas(Canvas). RectTracker. SensorLocalConfigurationFrame(ttk.Frame). LocalConfigurationFrame(SensorLocalConfigurationFrame)

The PixelCanvas class inherits from Tkinter’s Canvas class and is re-
sponsible for creating the pixel grid for local configuration. It keeps
current and saved configurations for all pixels in the grid. It does not
have information about the sensor and the configuration group. The
class defines a method bound to the cursor’s movement and updates the
coordinates and configuration of the pixel to which the cursor currently
points.
The RectTracker class defines methods allowing users to select a rect-
angle, set of rectangles or all rectangles from a canvas. When combined
with the PixelCanvas, the RectTracker highlights currently selected
pixels by changing their colour. In this way, the user may select pixels
which shall be configured.
The SensorLocalConfigurationFrame class has a PixelCavas object as
an attribute. It also has other attributes - widgets to show configuration
parameters, information about selected pixels, and the pixel to which
the cursor is pointing.
The LocalConfigurationFrame inherits from the SensorFrame class
and adds dynamical behaviour to it. First, it binds the selection of pixels
using a RectTracker’s instance to the PixelCanvas instance. Secondly,
it binds updating the cursor position in the PixelCanvas to the cursor’s
motion. It keeps the shadow copy of the pixels’ configuration and saved
values for all pixels, sensors and configuration groups. The controller

37

3. Design and architecture
works with an instance of the LocalConfigurationFrame class and the
layout when the user chooses the local configuration type..Global Configuration
The Global Configuration module, unlike the Local Configuration one,
consists only of one class, GlobalConfigurationFrame, which inherits
from the ttk.Frame class. Since global and local configurations inherit
from the ttk.Frame class, it is easy to switch them in the main window.
The GlobalConfigurationFrame class, similarly to the LocalConfig-
urationFrame one, keeps the shadow copy of configuration values and
saved values for all sensors and configuration groups. The module also
defines several constants to arrange the global configuration’s parameters
into columns.. Custom Types DAQ
Custom Types DAQ module contains four classes, all inheriting from the
NamedTuple class from typing module, and one enum class to support
handling serial communication and measured data during data acquisition.
These classes are:. WorkerMsgType(Enum). DataMsg(NamedTuple). ErrorMsg(NamedTuple). WorkerHandle(NamedTuple). FrameStats(NamedTuple)

The WorkerMsgType is an enum with two values - DATA and ERROR.
It serves to distinguish between valid frames and invalid frames. The
ErrorMsg has only one attribute - a tag set to WorkerMsgType.ERROR.
DataMsg, on the other hand, except for a tag attribute set to WorkerMsg-
Type.DATA has also attributes pixels, dev_id and timestamp. FrameS-
tats class has three attributes - pixel_min, pixel_max and frame_mean
- and serves to keep statistics about data frames. The WorkerHandle
class helps to access serial communication better. It has three attributes
- process, q (Queue[WorkerMsg] data type), and proc_end.. DAQ Window
The DAQ Window module consists of the following classes:. PixelTip(). PixelCanvas(Canvas). SensorFrame(ttk.LabelFrame). Worker(Process). DaqWindow()

38

................................. 3.4. Modules’ description

PixelTip class represents a small window appended to the cursor when
the cursor is above a PixelCanvas. The window contains essential
information about a particular pixel, like the configuration value and
pixel coordinates. The window is hidden when the cursor is not above a
PixelCanvas instance.
The PixelCanvas class is similar to the one in the local configuration
module. It does not keep shadow copies or saved values. It calculates
the colour of each pixel according to its value.
The SensorFrame class represents data received from one sensor. Except
for the pixel canvas, it also has several variables to keep frame statistics.
The Worker class inherits from the Process class and represents serial
communication. It takes q, is_end, port and baudrate as parameters
and starts new serial communication with the instrument. An instance
of serial communication cannot be shared between classes, so the old
connection needs to be stopped, and this new one started. If any error
occurs when the serial communication is started, an instance of ErrorMsg
class is put to the Queue. If the communication is started, the Worker
will read and process the data received and put an instance of DataMsg
into the Queue.
The DaqWindow class builds a data acquisition window representing all
the instrument’s sensors in the selected configuration group. It opens
a serial communication via a Worker instance, processes the data from
the Queue and shows them to the user. When the window is closed
or when the STOP DAQ button is pressed, the DaqWindow stops the
communication and closes the window. New serial communication is
started from the controller.. Text Handler
The TextHandler class inherits from the logging.Handler class. It
overrides the __init__() method and sets its attribute __text_field
to the passed parameter. The only other method - emit - append a
logged message to the __text_field widget.. Custom Constants In the Custom Constants module, the given informa-
tion is set in the form of constants. The information includes parameters’
limits, ranges, widgets’ sizes, and parameters for global and local configu-
rations. The parameters are set as an array of instances of the Parameter
class.

39

40

Chapter 4
Tests

To test the ConfPix, several Test Cases were designed. Since the software
has a GUI, manual testing was proposed. Individual test cases are listed
in Appendix F. Firstly the engineering model was used for testing. The
qualification model was used for the final verifications. For each test, the
prerequisites had to be met, and the required tools had to be prepared. After
that, the test case’s scenario was followed one step at a time. The scenarios
need to be strictly followed so the test is repeatable and its results from
several runs are comparable.

The mapping of software requirements to test cases and of test cases to
software requirements is illustrated in tables in Appendix D and Appendix E,
respectively. Results of individual test cases are shown in Table 4.

Test case ID result
TC-CP-001 PASSED
TC-CP-002 PASSED
TC-CP-003 PASSED
TC-CP-004 PASSED
TC-CP-005 PASSED
TC-CP-006 PASSED
TC-CP-007 PASSED
TC-CP-008 PASSED
TC-CP-009 PASSED
TC-CP-010 PASSED
TC-CP-011 PASSED

Table 4: Test results.

The Test Cases only include software requirements with the test verification
method. The requirements with the review verification method were verified
by reading relevant parts of the documentation. The requirements with the
inspection verifying method were verified visually in the code.

Since all tests passed and all the system requirements were covered during
the testing, the software can be considered functional.

41

42

Conclusion

The aim of the thesis - developing software for the configuration of the
SpacePix sensor - as well as the esc Aerospace company and its 2SD instrument
are introduced at the beginning of this thesis. The software was designed
according to the system and software requirements. Several requirements were
added during the development, mainly to make the GUI more intuitive. While
working on the project, continual cooperation with the 2SD instrument’s
developers was maintained.

The software allows the user to set and read local and global configura-
tions. Its design makes it more straightforward for users to orient in the
parameters. It is also easier to change individual parameters. The user can
start data acquisition to check the impact of the current configuration on the
measurements. It aims to save time and allow configuring of the sensors also
for non-expert users. The software is versatile, so it can be used for future
projects with minimum changes. After several minor changes, the software
can be used for the 2SD instrument on the VZLUSAT-2 satellite, which is
currently in orbit.

To create ConfPix, several supporting codes and documents had to be
written. This includes the ASN and ACN files from which the ASN module
is generated. Other supporting codes are the scripts which generate the
command interface, commands UART, responses UART and custom types
modules. These scripts parse the YAML file, which defines all telecommands
and telemetries which can be exchanged with the instrument. This thesis
also serves as documentation and a software design document.

Although the software meets all the requirements, several possible new
features were discovered during the development. One of them is adding a
second tab to configure the SXM sensor. Since the main window is more
compact than expected, having both global and local configurations shown
simultaneously could make navigation in the window faster. Reading local
configuration is currently slower than the sending. This is because the instru-
ment has no function implemented to read a series of pixels simultaneously,
but it has such a function for sending configuration. This can be solved using
its mem_dump function, which returns a certain number of bytes from a given
address. After the software is tested in practice, several other extensions can
be found.

43

44

Appendices

45

46

Appendix A
Bibliography

[1] A. Gantea, Isispace selected by esa to provide iod/iov service using
cubesats, in the frame of eu horizon 2020 programme, May 2020. [Online].
Available: https://www.isispace.nl/news/isispace-selected-
by-esa-to-provide-iod-iov-service-using-cubesats-in-the-
frame-of-european-union-horizon-2020-programme/ (visited on
Jul. 15, 2022).

[2] C. Grupen and I. Buvat, Handbook of particle detection and imaging.
Springer Science & Business Media, 2012, isbn: 978-3-642-13270-4.

[3] J. Ejemalm, Radiation environment 1, 2, 3, lecture, 2021.
[4] J. Perez, Why space radiation matters, Oct. 2019. [Online]. Available:

https://www.nasa.gov/analogs/nsrl/why- space- radiation-
matters (visited on Jul. 18, 2022).

[5] Types of orbits, Mar. 2020. [Online]. Available: https://www.esa.
int/Enabling_Support/Space_Transportation/Types_of_orbits
(visited on Jul. 15, 2022).

[6] Orbital and technical parameters. [Online]. Available: https://www.
gsc-europa.eu/system-service-status/orbital-and-technical-
parameters (visited on Jul. 15, 2022).

[7] Basics of space flight - solar system exploration: Nasa science. [Online].
Available: https://solarsystem.nasa.gov/basics/chapter5-1/
(visited on Jul. 15, 2022).

[8] Glossary - k. [Online]. Available: https://www.grc.nasa.gov/www/k-
12 / TRC / laefs / laefs _ k . html # keplerian _ elements (visited on
Jul. 15, 2022).

[9] P. Brož, On satellites’ communication, 2022.
[10] J. S. Sobolewski, “Cyclic redundancy check”, in Encyclopedia of Com-

puter Science, 2003, pp. 476–479.
[11] ITU, Introduction to asn.1, 2022. [Online]. Available: https://www.

itu.int/en/ITU- T/asn1/Pages/introduction.aspx (visited on
Jul. 16, 2022).

47

https://www.isispace.nl/news/isispace-selected-by-esa-to-provide-iod-iov-service-using-cubesats-in-the-frame-of-european-union-horizon-2020-programme/
https://www.isispace.nl/news/isispace-selected-by-esa-to-provide-iod-iov-service-using-cubesats-in-the-frame-of-european-union-horizon-2020-programme/
https://www.isispace.nl/news/isispace-selected-by-esa-to-provide-iod-iov-service-using-cubesats-in-the-frame-of-european-union-horizon-2020-programme/
https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
https://www.gsc-europa.eu/system-service-status/orbital-and-technical-parameters
https://solarsystem.nasa.gov/basics/chapter5-1/
https://www.grc.nasa.gov/www/k-12/TRC/laefs/laefs_k.html#keplerian_elements
https://www.grc.nasa.gov/www/k-12/TRC/laefs/laefs_k.html#keplerian_elements
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

A. Bibliography.....................................
[12] Technical topic: Asn.1 - an introduction to acn, Mar. 2022. [Online].

Available: https://taste.tuxfamily.org/wiki/index.php?title=
Technical_topic%5C%3A_ASN.1_-_An_introduction_to_ACN (vis-
ited on Jul. 16, 2022).

[13] Taste, Jun. 2022. [Online]. Available: https://taste.tuxfamily.org/
wiki/index.php?title=Main_Page (visited on Jul. 16, 2022).

[14] E. S. Agency, Asn1scc - asn.1 space certifiable compiler, May 2018.
[Online]. Available: https://essr.esa.int/project/asn1scc-asn-
1-space-certifiable-compiler (visited on Jul. 16, 2022).

[15] P. S. Foundation, General python faq, 2022. [Online]. Available: https:
//docs.python.org/3/faq/general.html#id4 (visited on Jul. 16,
2022).

[16] D. Amos, “Python gui programming with tkinter”, Tersedia: https://realpython.
com/python-gui-tkinter, 2020.

[17] Pyqt5, Jun. 2022. [Online]. Available: https://pypi.org/project/
PyQt5/ (visited on Jul. 16, 2022).

[18] P. Brož. 2021.
[19] M. Havránek. 2021, pp. 1–31.
[20] A. D. Moore, Python GUI Programming with Tkinter: Develop respon-

sive and powerful GUI applications with Tkinter. Packt Publishing Ltd,
2018.

48

https://taste.tuxfamily.org/wiki/index.php?title=Technical_topic%5C%3A_ASN.1_-_An_introduction_to_ACN
https://taste.tuxfamily.org/wiki/index.php?title=Technical_topic%5C%3A_ASN.1_-_An_introduction_to_ACN
https://taste.tuxfamily.org/wiki/index.php?title=Main_Page
https://taste.tuxfamily.org/wiki/index.php?title=Main_Page
https://essr.esa.int/project/asn1scc-asn-1-space-certifiable-compiler
https://essr.esa.int/project/asn1scc-asn-1-space-certifiable-compiler
https://docs.python.org/3/faq/general.html#id4
https://docs.python.org/3/faq/general.html#id4
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

Appendix B
Acronyms

2SD Space Dosimetry System Demonstrator
ADC Analog to Digital Converter
ASIC Application-Specific Integrated Circuit
ASN.1 Abstract Syntax Notation One
CMOS Complementary Metal-Oxide-Semiconductor
CRC Cyclic Redundancy Check
CSA Charge Sensitive Amplifier
CTU Czech Technical University
DAQ data acquisition
ESA European Space Agency
FOV Field Of View
FNSPE Faculty of Nuclear Sciences and Physical Engineering
FPGA Field Programmable Gate Array
GEO Geostationary Orbit/ Geosynchronous Equatorial Orbit
GCR Galactic Cosmic Rays
GTO Geostationary Transfer Orbit
GUI Graphical User Interface
IOV In Orbit Validation
ISISpace Innovative Solutions In Space
ISS International Space Station
LEO Low Earth Orbit
MCP MicroChannel Plate
MEO Medium Earth Orbit
MVC Model-View-Controller
OBC On-Board Computer
PDH Peak Detector Hold

49

B. Acronyms
RAAN Right Ascension of the Ascending Node
RSR Row Shift Register
S/C spacecraft
SIS Satellite Interface Simulator
SoI Silicon on Insulator
SPE Solar Particle Events
SpacePix2 SpacePix-2-Lin-S
SSO Sun-Synchronous Orbit
SXM Soft X-ray Monitor
SXRM SpacePix Radiation Monitor
TCL Tool Command Language
TOF Time-Of-Flight
UART Universal Asynchronous Receiver-Transmitter

50

Appendix C
Software requirements specifications

Table 5: Software requirements specifications.
(VM = Verification Method; T = test, R = review, I = inspection, A = analysis)

ID Requirement description Category VM
SRS-001 SW shall allow user to config-

ure SpacePix Radiation Monitor
(SXRM) detector in 2SD instru-
ment.

- R

SRS-002 SW shall implement configuration
for SpacePix-2-Lin-S ASIC.

- R

SRS-003 SW shall be implemented in
Python.
Note: Compatibility with Python
3.8 and newer shall be ensured.

- R

SRS-004 SW shall implement a GUI using
Tkinter for Python.

- R

SRS-005 SW shall communicate with 2SD
via UART.

Communication T

SRS-006 SW shall allow to set port for
UART communication.
Note: Only when the communica-
tion is not open.

Communication T

SRS-007 SW shall allow to set speed of
UART communication.
Note: Only when the communica-
tion is not open.

Communication T

SRS-008 SW shall inform user about the
UART connection status.

Communication T

SRS-009 SW shall check if communication
with the device was established be-
fore any attempt to exchange data
with the device.

Communication T

Continued on next page

51

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-010 GUI shall contain an UI widget

which allows user to enter the
name of the port for UART com-
munication.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Communication T

SRS-078 SW shall check that the selected
port is valid (in the COM# form)
and is available.

Communication T

SRS-079 The UART selection widget shall,
when initialized, list all available
serial ports.

Communication T

SRS-080 The port selection witdget shall
lists available ports in descending
order.

Communication T

SRS-081 GUI shall contain a refresh button
widget which, after being clicked
on, emits an event that checks all
available ports and shows them to
the user (in the corresponding wid-
get).
Note: Widget shall be described
by text written on itself.

Communication T

SRS-082 The refresh button shall be en-
abled after start of application.

Communication T

SRS-083 The refresh button shall be dis-
abled when a connection with the
device is established.

Communication T

SRS-084 The refresh button shall be en-
abled when a connection with the
device is closed.

Communication T

SRS-085 The refresh button shall be dis-
abled when DAQ is started.

Communication T

SRS-086 The refresh button shall be en-
abled when DAQ is stopped.

Communication T

SRS-011 GUI shall contain an UI widget
which allows user to enter the baud
rate for UART communication.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Communication T

Continued on next page

52

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-087 UART communication speed shall
be set to 500000 baud by default.

Communication T

SRS-088 SW shall check that the baud
rate is valid and in range (9600-
5000000).

Communication T

SRS-012 GUI shall contain a button widget
to connect and disconnect the de-
vice to/from UART.
Note: Widget shall be described by
text written on itself. The button
can be in the state ’CONNECT’ or
’DISCONNECT’.

Communication T

SRS-089 If in the ’CONNECT’ state, the
communication button, after being
clicked on, shall emit an event that
attempts to start communication
with the device.
Note: If successful, it shall change
the button’s state to ’DISCON-
NECT’.

Communication T

SRS-090 If in the ’DISCONNECT’ state,
the communication button, after
being clicked on, shall emit an
event that attempts to stop com-
munication with the device.
Note: If successful, it shall change
the button’s state to ’CONNECT’.

Communication T

SRS-091 The result of each connection/dis-
connection attempt shall be
logged.

Communication T

SRS-092 The connection button shall be dis-
abled when DAQ is started.

Communication T

SRS-093 The connection button shall be en-
abled when DAQ is stopped.

Communication T

SRS-094 The connection button shall be in
the state ’CONNECT’ by default.

Communication T

SRS-013 GUI shall contain a button widget
which, after being clicked on, emits
an event that attempts to ping the
device.
Note: Widget shall be described
by text written on itself.

Communication T

Continued on next page

53

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-095 The ping button shall be disabled

by default.
Communication T

SRS-096 The ping button shall be enabled
when communication with the de-
vice is successfully established.

Communication T

SRS-097 The ping button shall be disabled
when communication with the de-
vice is closed.

Communication T

SRS-098 The result of ping attempt shall be
logged.

Communication T

SRS-099 The ping button shall be disabled
when DAQ is started.

Communication T

SRS-100 The ping button shall be enabled
when DAQ is stopped.

Communication T

SRS-014 SW shall allow to set global and
local configuration.

Configuration T

SRS-015 SW shall allow to read and display
any selected configuration.

Configuration T

SRS-016 SW shall allow to write/modify se-
lected configuration if the configu-
ration is not read only.

Configuration T

SRS-017 SW shall allow user to choose be-
tween global and local (pixel) con-
figuration.

Configuration T

SRS-023 GUI shall contain an UI widget
which allows user to choose be-
tween global and local configura-
tion.
Note: Only one option can be se-
lected at a time. Widget shall be
described either by text written on
itself or by a corresponding label
widget.

Configuration T

SRS-024 Global configuration shall be se-
lected by default.

Configuration T

Continued on next page

54

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-025 GUI shall change layout if global
configuration is selected - GUI
shall contain an UI widget/s which
allows user to enter each of the
global configuration parameters.
Note: Each widget shall be de-
scribed (name of the parameter)
either by text written on itself or
by a corresponding label widget.

Configuration T

SRS-026 GUI shall change layout if local
configuration is selected - GUI
shall contain an UI widget showing
a matrix representing the sensor
pixel array and an UI widget/s to
enter configuration values.
Note: Each widget shall be de-
scribed either by text written on
itself or by a corresponding label
widget.

Configuration T

SRS-027 GUI shall contain a button widget
which, after being clicked on, emits
an event that sends configuration
(either global or local) for all sen-
sors in the selected group to the
device.
Note: Only if the selected group is
not read-only.

Configuration T

SRS-105 The send button shall be disabled
by default.

Configuration T

SRS-106 The send button shall be enabled
when communication with the de-
vice is successfully established.
Note: Only if the selected group is
not read-only.

Configuration T

SRS-107 The send button shall be disabled
when communication with the de-
vice is closed.

Configuration T

SRS-108 The result of sending configuration
shall be logged for each sensor in
the group.

Configuration T

SRS-109 The send button shall be disabled
when DAQ is started.

Configuration T

Continued on next page

55

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-110 The send button shall be enabled

when DAQ is stopped.
Configuration T

SRS-028 GUI shall contain a button widget
which, after being clicked on, emits
an event that gets (reads) the cur-
rent configuration (either global or
local) for all sensors in the selected
group from the device.

Configuration T

SRS-111 The read button shall be disabled
by default.

Configuration T

SRS-112 The read button shall be enabled
when communication with the de-
vice is successfully established.

Configuration T

SRS-113 The read button shall be disabled
when communication with the de-
vice is closed.

Configuration T

SRS-114 The result of reading configuration
shall be logged for each sensor in
the group.

Configuration T

SRS-115 The read button shall be disabled
when DAQ is started.

Configuration T

SRS-116 The read button shall be enabled
when DAQ is stopped.

Configuration T

SRS-029 GUI shall display current configur-
tion (read or set by user) in corre-
sponding widget/s.

Configuration T

SRS-030 SW shall check that all parameters
are set and in range.
Note: Range for each parameter
shall be provided in code, accessi-
ble by an advanced user who can
change it there.

Configuration T

SRS-076 GUI shall contain a button wid-
get which, after being clicked on,
emits an event that sets configu-
ration (either global or local) to
the default values for the selected
configuration group and sensor.
Note: Default values shall be set in
code and accessible by an advanced
user who can change it there. Con-
figuration group #0 shall not sup-
port this feature.

Configuration T

Continued on next page

56

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-117 The default configuration button
shall be enabled by default.

Configuration T

SRS-118 The default configuration button
shall be disabled when a read-only
configuration group is selected.

Configuration T

SRS-119 The default configuration button
shall be enabled when a rewritable
configuration group is selected.

Configuration T

SRS-120 The default configuration button
shall be disabled when DAQ is
started.

Configuration T

SRS-121 The default configuration button
shall be enabled when DAQ is
stopped.

Configuration T

SRS-077 GUI shall contain a button wid-
get which, after being clicked on,
emits an event that sets configura-
tion (either global or local) to the
default values for all sensors in the
selected configuration group.
Note: Default configuration shall
be set in code and accessible by
an advanced user who can change
it there. Configuration group #0
shall not support this feature.

Configuration T

SRS-122 The group default configuration
button shall be enabled by default.

Configuration T

SRS-123 The group default configuration
button shall be disabled when a
read-only group is selected.

Configuration T

SRS-124 The group default configuration
button shall be enabled when a
rewritable group is selected.

Configuration T

SRS-125 The group default configuration
button shall be disabled when
DAQ is started.

Configuration T

SRS-126 The group default configuration
button shall be enabled when DAQ
is stopped.

Configuration T

Continued on next page

57

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-018 SW shall allow user to set all pa-

rameters for global configuration
of SpacePix ASIC.
Note: Only if global configuration
option is chosen. The selected
group shall not be read-only.

Global
configuration

T

SRS-019 SW shall allow user to read all pa-
rameters for global configuration
of SpacePix ASIC.
Note: Only if global configuration
option is chosen.

Global
configuration

T

SRS-020 SW shall allow the user to select
one or more pixels to be configured
from a matrix representing the sen-
sor pixel array.
Note: Only if the local configura-
tion option is chosen.

Local
configuration

T

SRS-101 SW shall allow user to select all
pixels by pressing Ctr+A combina-
tion.

Local
configuration

T

SRS-102 The pixel selection widget shall
permanently display coordinates
of corner pixels.
Note: The coordinates shall help
the operator to select the correct
pixels.

Local
configuration

T

SRS-103 SW shall show selected range of
pixel in text form.

Local
configuration

T

SRS-104 SW shall show configuration of
pixel above which is currently cur-
sor.
Note: If cursor is not above pixel
grid, information will not be up-
dated or ’n/a’ may be shown.

Local
configuration

T

SRS-021 SW shall allow to set configuration
for selected pixel or pixels.
Note: Only if local configuration
option is chosen. Pixel or pixels
shall be selected first. Only when
the selected group is not read-only.

Local
configuration

T

Continued on next page

58

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-022 SW shall allow to read configura-
tion of all pixels.
Note: Only if local configuration
option is chosen.

Local
configuration

T

SRS-032 SW shall allow to configure up to
5 SpacePix radiation sensors.

Sensors T

SRS-033 Sensors shall be internally indexed
by positive integer from 0 to 4 (in-
clusive).

Sensors I

SRS-034 Sensors shall be indexed for user
by positive integer from 1 to 5 (in-
clusive).

Sensors T

SRS-035 SW shall allow user to select the
sensor (1-5) to be configured.

Sensors T

SRS-036 GUI shall contain an UI widget
which allows user to select ID of
sensor to be configured.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Sensors T

SRS-037 Sensor number 1 shall be selected
by default.

Sensors T

SRS-038 Configurations (global + local) for
each of 5 SpacePix sensors shall be
grouped into Configuration group.

Configuration
group

T

SRS-039 SW shall support up to 6 configu-
ration groups.
Note: 6 config. groups * 5 sensors
= 30 unique configurations.

Configuration
group

T

SRS-040 Configuration group shall be in-
dexed by positive integer from 0 to
5 (inclusive).

Configuration
group

T

SRS-041 Configuration group number 0
shall be read only.
Note: No configuration can be
written to config. group #0 but
it can be read.

Configuration
group

T

SRS-042 SW shall allow user to select con-
figuration group number (0-5).

Configuration
group

T

Continued on next page

59

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-043 GUI shall contain an UI widget

which allows user to select config-
uration group number.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Configuration
group

T

SRS-044 Configuration group number 1
shall be selected by default.

Configuration
group

T

SRS-045 SW shall allow to set shutter du-
ration.

Data acquisition T

SRS-046 100 ms shutter duration shall be
set by default.

Data acquisition T

SRS-047 SW shall allow to set sampling pe-
riod.

Data acquisition T

SRS-048 2 s sampling period shall be set by
default.

Data acquisition T

SRS-049 Measuring mode FRAMES shall
be set.
Note: User shall not be allowed to
change this mode.

Data acquisition I

SRS-050 Test mode shall be set internally
to send the measured frames via
UART.

Data acquisition I

SRS-051 After setting test mode, the device
shall be reset.

Data acquisition I

SRS-052 GUI shall contain an UI widget
which allows user to enter shutter
duration.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Data acquisition T

SRS-053 GUI shall contain an UI widget
which allows user to enter sampling
period.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Data acquisition T

SRS-055 SW shall check that both shutter
duration and sampling period are
set and in range.
Note: Shutter duration range:
1-65536, sampling period range:
1000-65536.

Data acquisition T

Continued on next page

60

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-056 SW shall allow to start and stop
data acquisition.

Data acquisition T

SRS-057 SW shall display acquired data. Data acquisition T
SRS-058 When starting data acquisition SW

shall simultaneously open a new
window showing data acquired by
SpacePix ASIC.

Data acquisition T

SRS-059 When stopping data acquisition
SW shall simultaneously close the
window showing acquired data.

Data acquisition T

SRS-060 GUI shall contain a button widget
to start/stop data acquisition.
Note: The button can be in the
state ’START’ or ’STOP’.

Data acquisition T

SRS-127 The data acquisition button shall
be disabled by default.

Data acquisition T

SRS-128 The data acquisition button shall
be enabled when communication
with the device is successfully es-
tablished.

Data acquisition T

SRS-129 The data acquisition button shall
be disabled when communication
with the device is closed.

Data acquisition T

SRS-062 The action of the data acquisition
button shall start data acquisition
when the button is in the ’START’
state. Then switch the state.

Data acquisition T

SRS-130 The data acquisition button shall
be in the state ’START’ by default.

Data acquisition T

SRS-063 The data acquisition button shall
stop data acquisition when the but-
ton is in the ’STOP’ state. Then
switch the state.

Data acquisition T

SRS-131 After stopping data acquisition
SW shall close the window show-
ing acquired data.

Data acquisition T

SRS-132 After stopping data acquisition
test mode shall be changed back
to standard mode.

Data acquisition I

SRS-133 After changing mode to standard,
device shall be reset.

Data acquisition I

Continued on next page

61

C. Software requirements specifications...........................
Table 5 – continued from previous page

ID Requirement description Category VM
SRS-065 SW shall allow the user to generate

a text file containing commands to
load the selected configuration into
the instrument.
Note: Format of the commands
shall follow command-line interface
format of control software.

File generating T

SRS-066 GUI shall contain a button widget
which, after being clicked on, emits
an event that creates a text file
containing commands needed to
achieve selected configuration.
Note: Widget shall be described
by text written on itself.

File generating T

SRS-134 The generate commands button
shall be enabled by default.

File generating T

SRS-135 Configuration commands shall be
generated for all pixels in the se-
lected group.
Note: Not only the modified/con-
figured pixels.

File generating T

SRS-136 The generate commands button
shall be disabled when DAQ is
started.

File generating T

SRS-137 The generate commands button
shall be enabled when DAQ is
stopped.

File generating T

SRS-067 Command text file shall contain
both configurations (local and
global).

File generating T

SRS-138 The sequence of commands in the
command text file shall be as fol-
lows: 1. global configuration for
all sensors in ascending order 2. lo-
cal configuration for all sensors in
ascending order

File generating T

SRS-068 GUI shall contain a UI widget to
show logged messages to the user.
Note: Widget shall be described
either by text written on itself or
by a corresponding label widget.

Logging T

SRS-069 All logged messages shall be saved
in a text file.

Logging T

Continued on next page

62

........................... C. Software requirements specifications

Table 5 – continued from previous page
ID Requirement description Category VM

SRS-070 SW shall hold a shadow copy of
each configuration pair.
Note: For each group and sensor
pair.

Shadow copy T

SRS-071 Value modifications in GUI wid-
gets shall be updated in shadow
copy.

Shadow copy T

SRS-072 A configuration (local/global) read
from the device shall be updated
in shadow copy.

Shadow copy T

SRS-073 SW shall highlight configuration
widgets with modified values which
are not saved.
Note: Saved values are values
which were sent to the device.
Right after the SW is run, values
set by default are consider saved
values.

Shadow copy T

SRS-074 SW shall highlight a particular sen-
sor ID in the sensor ID selection
widget if there is any unsaved con-
figuration value for the correspond-
ing sensor.
Note: Local and global configura-
tions are evaluated separately for
this purpose.

Shadow copy T

SRS-075 SW shall highlight a particular con-
figuration group number in the con-
figuration group selection widget if
there is any unsaved configuration
in any sensor of the configuration
group.
Note: Local and global configura-
tions are evaluated separately for
this purpose.

Shadow copy T

63

64

Appendix D
Requirements mapped to test cases

Table 6: Requirements to test cases mapping matrix.
Requirement ID Test cases IDs
SRS-001 -
SRS-002 -
SRS-003 -
SRS-004 -
SRS-005 TC-CP-002
SRS-006 TC-CP-002
SRS-007 TC-CP-002
SRS-008 TC-CP-002
SRS-009 TC-CP-003
SRS-010 TC-CP-001
SRS-011 TC-CP-001
SRS-012 TC-CP-001
SRS-013 TC-CP-001

TC-CP-003
SRS-014 TC-CP-006

TC-CP-007
SRS-015 TC-CP-006

TC-CP-007
SRS-016 TC-CP-005

TC-CP-006
TC-CP-007

SRS-017 TC-CP-004
SRS-018 TC-CP-005

TC-CP-006
SRS-019 TC-CP-006
SRS-020 TC-CP-004
SRS-021 TC-CP-005

TC-CP-007
SRS-022 TC-CP-007

Continued on next page

65

D. Requirements mapped to test cases...........................
Table 6 – continued from previous page
Requirement ID Test cases IDs
SRS-023 TC-CP-004
SRS-024 TC-CP-004
SRS-025 TC-CP-004
SRS-026 TC-CP-004
SRS-027 TC-CP-004

TC-CP-006
TC-CP-007

SRS-028 TC-CP-004
TC-CP-006
TC-CP-007

SRS-029 TC-CP-006
TC-CP-007

SRS-030 TC-CP-006
TC-CP-007

SRS-032 TC-CP-005
TC-CP-006
TC-CP-007

SRS-033 -
SRS-034 TC-CP-005
SRS-035 TC-CP-005
SRS-036 TC-CP-005
SRS-037 TC-CP-005
SRS-038 TC-CP-005

TC-CP-006
TC-CP-007

SRS-039 TC-CP-005
TC-CP-006
TC-CP-007

SRS-040 TC-CP-005
SRS-041 TC-CP-005

TC-CP-006
TC-CP-007

SRS-042 TC-CP-005
SRS-043 TC-CP-005
SRS-044 TC-CP-005
SRS-045 TC-CP-008
SRS-046 TC-CP-008
SRS-047 TC-CP-008
SRS-048 TC-CP-008
SRS-049 -
SRS-050 -
SRS-051 -
SRS-052 TC-CP-008

Continued on next page

66

........................... D. Requirements mapped to test cases

Table 6 – continued from previous page
Requirement ID Test cases IDs
SRS-053 TC-CP-008
SRS-055 TC-CP-008
SRS-056 TC-CP-009
SRS-057 TC-CP-009
SRS-058 TC-CP-009
SRS-059 TC-CP-009
SRS-060 TC-CP-008

TC-CP-009
SRS-062 TC-CP-009
SRS-063 TC-CP-009
SRS-065 TC-CP-010
SRS-066 TC-CP-010
SRS-067 TC-CP-010
SRS-068 TC-CP-011
SRS-069 TC-CP-011
SRS-070 TC-CP-006

TC-CP-007
SRS-071 TC-CP-006

TC-CP-007
SRS-072 TC-CP-006

TC-CP-007
SRS-073 TC-CP-006

TC-CP-007
SRS-074 TC-CP-006

TC-CP-007
SRS-075 TC-CP-006

TC-CP-007
SRS-076 TC-CP-004

TC-CP-006
TC-CP-007

SRS-077 TC-CP-004
TC-CP-006
TC-CP-007

SRS-078 TC-CP-002
SRS-079 TC-CP-001
SRS-080 TC-CP-001

TC-CP-002
SRS-081 TC-CP-001

TC-CP-002
SRS-082 TC-CP-001
SRS-083 TC-CP-002
SRS-084 TC-CP-002

Continued on next page

67

D. Requirements mapped to test cases...........................
Table 6 – continued from previous page
Requirement ID Test cases IDs
SRS-085 TC-CP-009
SRS-086 TC-CP-009
SRS-087 TC-CP-001
SRS-088 TC-CP-002
SRS-089 TC-CP-002
SRS-090 TC-CP-002
SRS-091 TC-CP-002
SRS-092 TC-CP-009
SRS-093 TC-CP-009
SRS-094 TC-CP-001
SRS-095 TC-CP-001
SRS-096 TC-CP-003
SRS-097 TC-CP-003
SRS-098 TC-CP-003
SRS-099 TC-CP-009
SRS-100 TC-CP-009
SRS-101 TC-CP-004
SRS-102 TC-CP-004
SRS-103 TC-CP-004
SRS-104 TC-CP-004
SRS-105 TC-CP-004
SRS-106 TC-CP-004
SRS-107 TC-CP-004
SRS-108 TC-CP-006

TC-CP-007
SRS-109 TC-CP-009
SRS-110 TC-CP-009
SRS-111 TC-CP-004
SRS-112 TC-CP-004
SRS-113 TC-CP-004
SRS-114 TC-CP-006

TC-CP-007
SRS-115 TC-CP-009
SRS-116 TC-CP-009
SRS-117 TC-CP-004
SRS-118 TC-CP-005
SRS-119 TC-CP-005
SRS-120 TC-CP-009
SRS-121 TC-CP-009
SRS-122 TC-CP-004
SRS-123 TC-CP-005
SRS-124 TC-CP-005

Continued on next page

68

........................... D. Requirements mapped to test cases

Table 6 – continued from previous page
Requirement ID Test cases IDs
SRS-125 TC-CP-009
SRS-126 TC-CP-009
SRS-127 TC-CP-008
SRS-128 TC-CP-008
SRS-129 TC-CP-008
SRS-130 TC-CP-008
SRS-131 TC-CP-009
SRS-132 -
SRS-133 -
SRS-134 TC-CP-010
SRS-135 TC-CP-010
SRS-136 TC-CP-009
SRS-137 TC-CP-009
SRS-138 TC-CP-010

69

70

Appendix E
Test cases mapped to requirements

Table 7: Test cases to requirements mapping matrix.
Test case ID Requirements IDs
TC-CP-001 SRS-010

SRS-011
SRS-012
SRS-013
SRS-079
SRS-080
SRS-081
SRS-082
SRS-087
SRS-094
SRS-095

TC-CP-002 SRS-005
SRS-006
SRS-007
SRS-008
SRS-078
SRS-080
SRS-081
SRS-083
SRS-084
SRS-088
SRS-089
SRS-090
SRS-091

TC-CP-003 SRS-009
SRS-013
SRS-096
SRS-097
SRS-098

Continued on next page

71

E. Test cases mapped to requirements
Table 7 – continued from previous page
Test case ID Requirements IDs
TC-CP-004 SRS-017

SRS-020
SRS-023
SRS-024
SRS-025
SRS-026
SRS-027
SRS-028
SRS-076
SRS-077
SRS-101
SRS-102
SRS-103
SRS-104
SRS-105
SRS-106
SRS-107
SRS-111
SRS-112
SRS-113
SRS-117
SRS-122

TC-CP-005 SRS-016
SRS-018
SRS-021
SRS-032
SRS-034
SRS-035
SRS-036
SRS-037
SRS-038
SRS-039
SRS-040
SRS-041
SRS-042
SRS-043
SRS-044
SRS-118
SRS-119
SRS-123
SRS-124

Continued on next page

72

........................... E. Test cases mapped to requirements

Table 7 – continued from previous page
Test case ID Requirements IDs
TC-CP-006 SRS-014

SRS-015
SRS-016
SRS-018
SRS-019
SRS-027
SRS-028
SRS-029
SRS-030
SRS-032
SRS-038
SRS-039
SRS-041
SRS-070
SRS-071
SRS-072
SRS-073
SRS-074
SRS-075
SRS-076
SRS-077
SRS-108
SRS-114

Continued on next page

73

E. Test cases mapped to requirements
Table 7 – continued from previous page
Test case ID Requirements IDs
TC-CP-007 SRS-014

SRS-015
SRS-016
SRS-021
SRS-022
SRS-027
SRS-028
SRS-029
SRS-030
SRS-032
SRS-038
SRS-039
SRS-041
SRS-070
SRS-071
SRS-072
SRS-073
SRS-074
SRS-075
SRS-076
SRS-077
SRS-108
SRS-114

TC-CP-008 SRS-045
SRS-046
SRS-047
SRS-048
SRS-052
SRS-053
SRS-055
SRS-060
SRS-127
SRS-128
SRS-129
SRS-130

Continued on next page

74

........................... E. Test cases mapped to requirements

Table 7 – continued from previous page
Test case ID Requirements IDs
TC-CP-009 SRS-056

SRS-057
SRS-058
SRS-059
SRS-060
SRS-062
SRS-063
SRS-085
SRS-086
SRS-092
SRS-093
SRS-099
SRS-100
SRS-109
SRS-110
SRS-115
SRS-116
SRS-120
SRS-121
SRS-125
SRS-126
SRS-131
SRS-136
SRS-137

TC-CP-010 SRS-065
SRS-066
SRS-067
SRS-134
SRS-135
SRS-138

TC-CP-011 SRS-068
SRS-069

75

76

Appendix F
Test cases

77

1 TC-CP-001 - Connection GUI

1.1 Requirements covered

SRS-010
SRS-011
SRS-012
SRS-013
SRS-079
SRS-080
SRS-081
SRS-082
SRS-087
SRS-094
SRS-095

1.2 Purpose

This test verifies that the connection part of GUI and its initial state are
according to the requirements.

1.3 Description

This test checks that the GUI contains all widgets required for connection to
the instrument. It also checks that initial values are as expected in two possible
cases - the instrument is connected, and the instrument is not connected.

1.4 Resources and Tools. 2SD device. data cable. power cable

1.5 Prerequisites

No serial devices shall be connected to the testing computer.

1.6 Scenario..1. Start the application...2. Verify that there is a widget to enter a port...3. Verify that the port widget is empty.

F. Test cases

78

..4. Verify that there is a widget to enter a baud rate...5. Verify that the baud rate widget is set to 500000...6. Verify that there is a connection button...7. Verify that the connection button is enabled...8. Verify that the connection button is in a CONNECT state...9. Verify that there is a button to ping the instrument....10. Verify that the ping button is disabled....11. Verify that there is a button to refresh ports in the port widget....12. Close the application window....13. Connect the instrument to the testing computer....14. Start the application....15. Verify that the port widget contains a string in the COM# form.

...................................... F. Test cases

79

2 TC-CP-002 - Connection and disconnection

2.1 Requirements covered

SRS-005
SRS-006
SRS-007
SRS-008
SRS-078
SRS-080
SRS-081
SRS-083
SRS-084
SRS-088
SRS-089
SRS-090
SRS-091

2.2 Purpose

This test shall verify starting and closing communication with the instrument.

2.3 Description

The test checks that the SW reacts as expected when setting an invalid port
or baud rate (or both). It verifies that when connected or disconnected, the
GUI reacts as expected. It also verifies its behaviour when 0 to 2 devices are
connected to the testing computer.

2.4 Resources and Tools. 2SD device. data cable. power cable. USB to serial converter

2.5 Prerequisites

No serial devices shall be connected to the testing computer.

2.6 Scenario..1. Start the application.

F. Test cases

80

..2. Press the connection button...3. Verify that no device was connected...4. Verify that the information was logged in a logging widget...5. Insert a string in a COM# form into the port widget...6. Press the connection button...7. Verify that no device was connected...8. Verify that the information was logged in a logging widget...9. Connect the instrument to the testing computer....10. Press the refresh button....11. Verify that the port widget lists a port in the COM# form....12. Insert a string into the port widget (’port’). (invalid port)...13. Try to set the baud rate to 500001. (baud rate out of range)...14. Verify that it is not possible....15. Set the baud rate to 5000. (baud rate out of range)...16. Press the connection button....17. Verify that no device was connected....18. Verify that the information was logged in a logging widget....19. Insert a string into the port widget (’port’). (invalid port)...20. Set the baud rate to 10000. (valid baud rate)...21. Press the connection button....22. Verify that no device was connected....23. Verify that the information was logged in a logging widget....24. Set the port to the one to which the instrument is connected. (valid
port)...25. Set the baud rate to 5000. (baud rate out of range)...26. Press the connection button.

...................................... F. Test cases

81

...27. Verify that no device was connected....28. Verify that the information was logged in a logging widget....29. Set the port to the one to which the instrument is connected. (valid
port)...30. Set the baud rate to 10000. (valid baud rate)...31. Press the connection button....32. Verify that the instrument was connected....33. Verify that the information was logged in a logging widget....34. Verify that the connection button is in a DISCONNECT state....35. Verify that the refresh button was disabled....36. Verify that the port cannot be changed....37. Verify that the baud rate cannot be changed....38. Press the connection button....39. Verify that the instrument was disconnected....40. Verify that the information was logged in a logging widget....41. Verify that the connection button is in a CONNECT state....42. Verify that the refresh button was enabled....43. Verify that the port can be changed....44. Verify that the baud rate can be changed....45. Connect the USB to serial converter....46. Press the refresh button....47. Verify that two ports are listed in the port widget....48. Verify that the ports are ordered in descending order.

F. Test cases

82

3 TC-CP-003 - Ping

3.1 Requirements covered

SRS-009
SRS-013
SRS-096
SRS-097
SRS-098

3.2 Purpose

This test shall verify that the instrument can be pinged and is answering.

3.3 Description

This test checks that the ping button reacts as expected. The test also
introduces an unexpected behaviour - disconnecting the instrument while
communication is running - and verifies that the SW reacts as expected.

3.4 Resources and Tools. 2SD device. data cable. power cable

3.5 Prerequisites

No serial devices shall be connected to the testing computer.

3.6 Scenario..1. Start the application...2. Select the port to which the instrument is connected...3. Press the connection button...4. Verify that the ping button was enabled...5. Press the ping button...6. Verify that the instrument was pinged...7. Verify that the information was logged in a logging widget...8. Disconnect the instrument from the testing computer.

...................................... F. Test cases

83

..9. Press the ping button....10. Verify that no device answered....11. Verify that the information was logged in a logging widget....12. Press the button to disconnect from the instrument....13. Verify that the ping button was disabled.

F. Test cases

84

4 TC-CP-004 - Configuration GUI

4.1 Requirements covered

SRS-017
SRS-020
SRS-023
SRS-024
SRS-025
SRS-026
SRS-027
SRS-028
SRS-076
SRS-077
SRS-101
SRS-102
SRS-103
SRS-104
SRS-105
SRS-106
SRS-107
SRS-111
SRS-112
SRS-113
SRS-117
SRS-122

4.2 Purpose

This test shall verify that the configuration part of the GUI works as expected.

4.3 Description

This test checks that buttons react to connection and disconnection to/from
the instrument. It also checks that switching between local and global
configurations works.

4.4 Resources and Tools. 2SD device. data cable. power cable

...................................... F. Test cases

85

4.5 Prerequisites

The instrument is connected to the testing computer.

4.6 Scenario..1. Start the application...2. Verify that there is a send button and it is disabled...3. Verify that there is a read button and it is disabled...4. Verify that there is a default configuration button...5. Verify that the default configuration button is enabled...6. Verify that there is a group default configuration button...7. Verify that the group default configuration button is enabled...8. Verify that there is a widget to select between global and local configu-
rations...9. Verify that global configuration is selected....10. Verify that there are widgets to enter individual global configuration
parameters....11. Select local configuration....12. Verify that GUI changed the layout to a pixel grid and widgets to enter
individual local configuration parameters....13. Verify that the coordinates of the pixel grid’s corners are described....14. Move the cursor over the grid....15. Verify that there is a message stating the coordinates of the current pixel
and its configuration....16. Click inside the grid....17. Verify that a pixel was selected....18. Verify that there is a message stating the coordinates of the selected
pixel....19. Click inside the grid, hold and move....20. Verify that a range of pixels was selected....21. Verify that this range is stated in the message about selected pixel/s....22. Click inside the grid.

F. Test cases

86

...23. Press Ctrl+A....24. Verify that all pixels were selected....25. Select global configuration....26. Verify that GUI changed the layout to widgets to enter individual global
configuration parameters....27. Select the port to which the instrument is connected....28. Press the connection button....29. Verify that the send button was enabled....30. Verify that the read button was enabled....31. Press the button to disconnect from the instrument....32. Verify that the send button was disabled....33. Verify that the read button was disabled.

...................................... F. Test cases

87

5 TC-CP-005 - Configuration group and sensor ID

5.1 Requirements covered

SRS-016
SRS-018
SRS-021
SRS-032
SRS-034
SRS-035
SRS-036
SRS-037
SRS-038
SRS-039
SRS-040
SRS-041
SRS-042
SRS-043
SRS-044
SRS-118
SRS-119
SRS-123
SRS-124

5.2 Purpose

This test shall verify that when choosing a read-only configuration group, the
SW reacts as expected.

5.3 Description

This test checks that there are widgets to select configuration group and
sensor id. It then checks that if and only if selecting a read-only group, several
features are blocked.

5.4 Resources and Tools. 2SD device. data cable. power cable

5.5 Prerequisites

The instrument is connected to the testing computer.

F. Test cases

88

5.6 Scenario..1. Start the application...2. Verify that there is a widget which allows the selection of configuration
group...3. Verify that the configuration group is set to 1...4. Verify that configuration groups 0-5 can be selected...5. Verify that there is a widget which allows the selection of sensor ID...6. Verify that the sensor ID is set to 1...7. Verify that sensor ID 1-5 can be selected...8. Select the port to which the instrument is connected...9. Press the connection button....10. Select configuration group 0....11. Verify that configuration cannot be changed....12. Verify that configuration cannot be sent....13. Verify that the default configuration button is disabled....14. Verify that the group default configuration button is disabled....15. Step by step, select a configuration group (starting with 1 and finishing
with 5) and every time, verify that:. Configuration can be changed.. Configuration can be sent.. The default configuration button is enabled.. The group default configuration button is enabled....16. Select local configuration....17. Select configuration group 0....18. Verify that configuration cannot be changed....19. Verify that configuration cannot be sent....20. Verify that the default configuration button is disabled....21. Verify that the group default configuration button is disabled.

...................................... F. Test cases

89

...22. Step by step, select a configuration group (starting with 1 and finishing
with 5) and every time, verify that:. Configuration can be changed.. Configuration can be sent.. The default configuration button is enabled.. The group default configuration button is enabled.

F. Test cases

90

6 TC-CP-006 - Send and read global configuration

6.1 Requirements covered

SRS-014
SRS-015
SRS-016
SRS-018
SRS-019
SRS-027
SRS-028
SRS-029
SRS-030
SRS-032
SRS-038
SRS-039
SRS-041
SRS-070
SRS-071
SRS-072
SRS-073
SRS-074
SRS-075
SRS-076
SRS-077
SRS-108
SRS-114

6.2 Purpose

This test shall verify that sending and reading global configuration works. It
shall verify that marking parameters, sensors and groups as changed works.

6.3 Description

This test verifies that global configuration parameters cannot be set to invalid
values or values outside of the supported range. It verifies that setting one
sensor in a group or the whole group to default configuration works. It checks
that sending and reading of the global configuration works. It verifies that
the parameter, sensor and group are marked as changed when a parameter is
changed.

6.4 Resources and Tools. 2SD device

...................................... F. Test cases

91

. data cable. power cable

6.5 Prerequisites

The instrument is connected to the testing computer.

6.6 Scenario..1. Start the application...2. Select the port to which the instrument is connected...3. Press the connection button...4. Try to enter a string (’value’) to all of the configuration widgets. (invalid
value)..5. Verify that it is not possible...6. Try to enter 1024 to all of the configuration widgets. (value not in range)..7. Verify that it is not possible...8. Try to enter -1 to all of the configuration widgets. (value not in range)..9. Verify that it is not possible....10. Delete some of the configuration values, so the widgets are empty....11. Press the send button....12. Verify that the configurations were not sent....13. Verify that the error was logged....14. For each configuration group in range 1-5:. Select configuration group.. Verify that no sensor is marked as changed.. Select sensor with the same number as the configuration group.. Press the default configuration button.. Verify that (at least some of) the values in widgets were changed.. Verify that the changed values are marked as changed.. Verify that the selected sensor is marked as changed.. Verify that the selected configuration group is marked as changed.. Verify that other sensors in the selected configuration group are not

marked as changed.

F. Test cases

92

. Verify that configuration groups with a higher number than the
selected group are not marked as changed....15. Select the configuration group number 5....16. Select sensor number 1....17. Set parameters to the following values: vbp_csa to 255, vbn_csa to 254,

vfb_csa to 253, vbn_pdh to 252, vbp_hyst to 251, vbp_comp to 250,
vbn_tdac to 1, vbp_lcc to 2, vbn_adc to 3, lvds_cm to 4, lvds_strength
to 5, sf to 6, tail to 7, test to 8, fsel0 to 1, fsel1 to 0, fsel2 to 1,
backside_debug_en to true-1, vref_en to false-0, backside_low_leak_en
to true-1, backside_inject_en to true-1, analog_out0_en to true-1,
analog_out1_en to true-1, analog_out2_en to true-1, analog_out3_en
to true-1, backside_en to true-1, temp_sens_en to true-1, adc_pin_en
to true-1, vthr to 1023....18. Verify that changed values were marked as changed....19. For each configuration group in range 1-5:. Press the send button.. Verify that the result of sending the configurations was logged.. Verify that no value is marked as changed.. Verify that no sensor in the selected configuration group is marked

as changed.. Verify that the selected group is not marked as changed....20. For each configuration group in range 1-5:. Press the group default configuration button.. Verify that all sensors except the one with the same number as the
selected configuration group are marked as changed.. Select the sensor with the same number as the selected configuration
group.. Set all configuration values to 0 or false-0 depending on their type.. Verify that changed values were marked as changed.. Verify that the selected sensor was marked as changed....21. For each configuration group in range 0-5:. Press the read button.. Verify that the result of reading the configurations was logged.. Verify that the configuration values have changed for each sensor
as expected.. Verify that no value is marked as changed.

...................................... F. Test cases

93

. Verify that no sensor in the selected configuration group is marked
as changed.. Verify that the selected group is not marked as changed....22. Select the configuration group number 5....23. Select sensor number 1....24. Verify that parameters are set to the following values: vbp_csa to

255, vbn_csa to 254, vfb_csa to 253, vbn_pdh to 252, vbp_hyst to
251, vbp_comp to 250, vbn_tdac to 1, vbp_lcc to 2, vbn_adc to 3,
lvds_cm to 4, lvds_strength to 5, sf to 6, tail to 7, test to 8, fsel0 to 1,
fsel1 to 0, fsel2 to 1, backside_debug_en to true-1, vref_en to false-0,
backside_low_leak_en to true-1, backside_inject_en to true-1, ana-
log_out0_en to true-1, analog_out1_en to true-1, analog_out2_en to
true-1, analog_out3_en to true-1, backside_en to true-1, temp_sens_en
to true-1, adc_pin_en to true-1, vthr to 1023.

F. Test cases

94

7 TC-CP-007 - Send and read local configuration

7.1 Requirements covered

SRS-014
SRS-015
SRS-016
SRS-021
SRS-022
SRS-027
SRS-028
SRS-029
SRS-030
SRS-032
SRS-038
SRS-039
SRS-041
SRS-070
SRS-071
SRS-072
SRS-073
SRS-074
SRS-075
SRS-076
SRS-077
SRS-108
SRS-114

7.2 Purpose

This test shall verify that sending and reading local configuration works. It
shall verify that marking parameters, sensors and groups as changed works.

7.3 Description

This test verifies that local configuration parameters cannot be set to invalid
values or values outside of the supported range. It verifies that setting one
sensor in a group or the whole group to default configuration works. It checks
that sending and reading of the local configuration works. It verifies that the
parameter, sensor and group are marked as changed when a parameter is
changed.

7.4 Resources and Tools. 2SD device

...................................... F. Test cases

95

. data cable. power cable

7.5 Prerequisites

The instrument is connected to the testing computer.

7.6 Scenario..1. Start the application...2. Select the port to which the instrument is connected...3. Press the connection button...4. Select local configuration...5. Try to enter a string (’value’) to all of the configuration widgets. (invalid
value)..6. Verify that it is not possible...7. Try to enter 16 to all of the configuration widgets. (value not in range)..8. Verify that it is not possible...9. Try to enter -1 to all of the configuration widgets. (value not in range)...10. Verify that it is not possible....11. Select a [20,50] pixel....12. Delete a parameter, so the widget is empty....13. Press the send button....14. Verify that the configuration was not sent....15. Verify that the error was logged....16. For each configuration group in range 1-5:. Select configuration group.. Verify that no sensor is marked as changed.. Select sensor with the same number as the configuration group.. Press the default configuration button.. Verify that the configuration values were changed.. Verify that the changed values were marked as changed.. Verify that the selected sensor was marked as changed.

F. Test cases

96

. Verify that the selected configuration group was marked as changed.. Verify that other sensors in the selected configuration group are not
marked as changed.. Verify that configuration groups with a higher number than the
selected group are not marked as changed....17. Select configuration group number 5....18. Select sensor number 1....19. Set pixels’ parameters in the following way: for pixels [0,0]-[0,63] tdac to

1, for pixels [1,0]-[1,63] tdac to 2, for pixels [63,0]-[63,63] inject_en to
true-1, for pixels [62,0]-[62,63] hit_global_en to true-1....20. Verify that changed values were marked as changed....21. For each configuration group in range 1-5:. Press the send button.. Verify that the result of sending the configurations was logged.. Verify that no value is marked as changed.. Verify that no sensor in the selected configuration group is marked

as changed.. Verify that the selected group is not marked as changed....22. For each configuration group in range 1-5:. Press the group default configuration button.. Verify that all sensors except the one with the same number as the
selected configuration group are marked as changed.. Select the sensor with the same number as the selected configuration
group.. Select all pixels and set all configuration values to 0 or false-0
depending on their type.. Verify that changed values were marked as changed.. Verify that the selected sensor was marked as changed....23. For each configuration group in range 0-5:. Press the read button.. Verify that the result of reading the configurations was logged.. Verify that the configuration values have changed for each sensor
as expected.. Verify that no value is marked as changed.. Verify that no sensor in the selected configuration group is marked
as changed.

...................................... F. Test cases

97

. Verify that the selected group is not marked as changed....24. Select configuration group number 5....25. Select sensor number 1....26. Verify that pixels’ parameters are set in the following way: for pixels
[0,0]-[0,63] tdac to 1, for pixels [1,0]-[1,63] tdac to 2, for pixels [63,0]-
[63,63] inject_en to true-1, for pixels [62,0]-[62,63] hit_global_en to
true-1.

F. Test cases

98

8 TC-CP-008 - Data acquisition GUI

8.1 Requirements covered

SRS-045
SRS-046
SRS-047
SRS-048
SRS-052
SRS-053
SRS-055
SRS-060
SRS-127
SRS-128
SRS-129
SRS-130

8.2 Purpose

This test shall verify that the data acquisition part of GUI and its initial
state are according to the requirements.

8.3 Description

This test checks that the GUI contains all widgets required for data acquisition.
It also checks that initial values are as expected and that the widgets react
to connecting and disconnecting to/from the instrument. It verifies that
parameters cannot be set to invalid values or values outside of the supported
range.

8.4 Resources and Tools. 2SD device. data cable. power cable

8.5 Prerequisites

The instrument is connected to the testing computer.

8.6 Scenario..1. Start the application.

...................................... F. Test cases

99

..2. Verify that there is a widget to enter a shutter duration...3. Verify that the shutter duration widget is set to 100ms...4. Verify that there is a widget to enter a sampling period...5. Verify that the sampling period widget is set to 2s...6. Verify that there is a button to start data acquisition...7. Verify that the data acquisition button is disabled...8. Select the port to which the instrument is connected...9. Press the connection button....10. Verify that the data acquisition button was enabled....11. Try to enter a string (’value’) to the shutter widget. (invalid value)...12. Try to enter a string (’value’) to the sampling period widget. (invalid
value)...13. Verify that it is not possible....14. Try to enter 66000 to the shutter widget. (value not in range)...15. Try to enter 66000 to the sampling period widget. (value not in range)...16. Verify that it is not possible....17. Try to enter 0 to the shutter widget.(value not in range)...18. Try to enter 1 to the sampling period widget. (value not in range)...19. Verify that it is not possible....20. Delete shutter value, so the widget is empty....21. Press the data acquisition button....22. Verify that the data acquisition was not started...23. Verify that the error was logged....24. Delete sampling period value, so the widget is empty....25. Press the data acquisition button....26. Verify that the data acquisition was not started...27. Verify that the error was logged....28. Press the button to disconnect from the instrument....29. Verify that the data acquisition button was disabled.

F. Test cases

100

9 TC-CP-009 - Data acquisition

9.1 Requirements covered

SRS-056
SRS-057
SRS-058
SRS-059
SRS-060
SRS-062
SRS-063
SRS-085
SRS-086
SRS-092
SRS-093
SRS-099
SRS-100
SRS-109
SRS-110
SRS-115
SRS-116
SRS-120
SRS-121
SRS-125
SRS-126
SRS-131
SRS-136
SRS-137

9.2 Purpose

This test shall verify that starting and stopping data acquisition works.

9.3 Description

This test verifies that when starting data acquisition, the buttons in the main
window behave as expected. It verifies that a new window opens showing the
acquired data. It also checks that when stopping data acquisition, the data
acquisition window closes, and the buttons in the main window behave as
expected.

9.4 Resources and Tools. 2SD device. data cable

...................................... F. Test cases

101

. power cable

9.5 Prerequisites

The instrument is connected to the testing computer.

9.6 Scenario..1. Start the application...2. Select the port to which the instrument is connected...3. Press the connection button...4. Press the data acquisition button...5. Verify that a (data acquisition) window has opened...6. Verify that the data acquisition window shows acquired data...7. Verify that the data acquisition button is in a STOP state...8. Verify that the refresh button was disabled...9. Verify that the connection button was disabled....10. Verify that the ping button was disabled....11. Verify that the send button was disabled....12. Verify that the read button was disabled....13. Verify that the default configuration button was disabled....14. Verify that the group default configuration button was disabled....15. Verify that the generate commands button was disabled....16. Press the data acquisition button....17. Verify that the data acquisition window has closed....18. Verify that the data acquisition button is in a START state....19. Verify that the refresh button was enabled....20. Verify that the connection button was enabled....21. Verify that the ping button was enabled....22. Verify that the send button was enabled....23. Verify that the read button was enabled.

F. Test cases

102

...24. Verify that the default configuration button was enabled....25. Verify that the group default configuration button was enabled....26. Verify that the generate commands button was enabled.

...................................... F. Test cases

103

10 TC-CP-010 - File generating

10.1 Requirements covered

SRS-065
SRS-066
SRS-067
SRS-134
SRS-135
SRS-138

10.2 Purpose

This test shall verify that generating commands for the selected configuration
group works.

10.3 Description

This test verifies that commands are generated in the required order for the
selected configuration group.

10.4 Resources and Tools

No tools.

10.5 Prerequisites

No prerequisites.

10.6 Scenario..1. Start the application...2. Verify that there is a generate commands button...3. Verify that the generate commands button is enabled...4. Press the generate commands button...5. Go to the generated_files folder...6. Verify that there is a new file...7. Verify that the file contains commands corresponding to the communica-
tion with CubeSatCarrier 2...8. Verify that the file begins with global configuration for all sensors in the
configuration group 1.

F. Test cases

104

..9. Verify that after the global configuration commands, there are local
configuration commands for all sensors and pixels in the configuration
group number 1....10. Select configuration group number 3....11. Select sensor number 5....12. Press the generate commands button....13. Go to the generated_files folder....14. Verify that there is a new file....15. Verify that the file contains commands corresponding to the communica-
tion with CubeSatCarrier 2....16. Verify that the file begins with global configuration for all sensors in the
configuration group 3....17. Verify that after the global configuration commands, there are local
configuration commands for all sensors and pixels in the configuration
group number 3.

...................................... F. Test cases

105

11 TC-CP-011 - Logging

11.1 Requirements covered

SRS-068
SRS-069

11.2 Purpose

This test shall verify that logging works.

11.3 Description

This test verifies that there is a logging widget and that a log file is created.

11.4 Resources and Tools. 2SD device. data cable. power cable

11.5 Prerequisites

The instrument is connected to the testing computer.

11.6 Scenario..1. Start the application...2. Verify that there is a logging widget...3. Select the port to which the instrument is connected...4. Press the connection button...5. Press the connection button...6. Close the main window...7. Go to the folder with the software...8. Verify that there is a confpix.log file...9. Verify that the file contains logged messages.

F. Test cases

106

	Introduction
	Theoretical part
	State of the art
	Radiation detectors
	Radiation
	Measuring X-ray and -ray photons
	Measuring GCR

	Orbits and satellites
	Types of orbits

	Satellite communication
	Used tools
	Python
	Tkinter

	Space Dosimetry System Demonstrator
	Introduction
	SXRM detector
	SpacePix-2-Lin-S ASIC
	Sensor configuration
	Measurement and Data Readout

	Software design and implementation
	Design and architecture
	Requirements
	GUI design
	Static architecture
	Modules' description
	IOV modules
	UART modules
	View modules

	Tests

	Conclusion
	Appendices
	Bibliography
	Acronyms
	Software requirements specifications
	Requirements mapped to test cases
	Test cases mapped to requirements
	Test cases

