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Abstract

The Center for Applied Cybernetics, Faculty of Electrical Engineering, Czech Techni-

cal University in Prague, solves the project of the stabilized camera platform in contract

for Czech Airforce Technological Institute as a part of the project of Czech unmanned

aerial vehicle Manta. In order to solve the problem of tracking an inertially moving object,

the translational velocity of the platform carrier has to be known. For this purpose, the

inertial navigation unit is being developed. It contains three-axis gyroscopes, accelerom-

eters and magnetometers as well as a GPS module. This thesis solves the problem of

velocity estimation using the data of the given sensors. To do this the inertial navigation

unit simulator is first developed to provide the expected output sensor data as well as

the data of all known true state signals. They are used for an extended Kalman filter

design that estimates the actual state of the system. The estimated translational velocity

is then included in the calculated state. At the end of the paper, the C-code for the used

MCU LPC2119 is made and some hardware problems are being discussed.
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Anotace

Projekt stabilizované základny pro kamerový systém je zpracováván týmem Centra

pro aplikovanou kybernetiku, Fakulty elektrotechnické, Českého vysokého učeńı tech-

nického v Praze. Projekt byl zadán Vojenským technologickým ústavem letectva a je

součást́ı projektu vývoje českého bezpilotńıho letounu Manta. Aktuálńım úkolem je

vyvinout ř́ızeńı směru osy kamery tak, aby bylo možné sledovat objekt, který se v̊uči

vztažné soustavě kamerového systému nějak pohybuje. K tomuto účelu je nutné znát

aktuálńı translačńı rychlost nosiče kamerového systému v prostoru. Proto je vyv́ıjena

inerciálńı navigačńı jednotka obsahuj́ıćı tř́ıosé akcelerometry, gyroskopy, magnetometry a

GPS modul. Tato diplomová práce popisuje řešeńı odhadu translačńı rychlosti odhadem

stavu systému pomoćı dat zmiňovaných senzor̊u. Nejprve je vyvinut simulátor inerciálńı

navigačńı jednotky, který poskytuje jak očekávaná data výstup̊u senzor̊u tak i data všech

známých stav̊u. Ty jsou použity při návrhu rozš́ı̌reného Kalmanova filtru, který odhaduje

aktuálńı stav systému, kdy odhadovaná translačńı rychlost je jeho součást́ı. Na konci

práce je vyvinut C-kód pro použité MCU LPC2119 a jsou diskutovány některé problémy

s hardwarem, které se objevily během návrhu.
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Chapter 1

Introduction

Figure 1.1: UAV Manta. (http://dce.felk.cvut.cz/mamok)

Manta (see fig. 1.1) is an unmanned aerial vehicle (UAV ) being developed by

Czech Air Force Technological Institute as a substitute for an older UAV Sojka which is

bigger and weightier and hence less practical. The inertially stabilized camera platform

is the component of UAV Manta. It is being developed by Czech Technical University

in Prague in cooperation with Czech company ESSA in contract for Czech Air Force

Technological Institute. The platform will be attached to UAV Manta and will have to

stabilize the line of sight of its camera in needed direction. That is, no disturbance (wind,

aircraft manoeuvring) would affect the line of sight of the camera, except the reference

disturbance.
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1.1 Recent state of project

Figure 1.2: Camera platform. (http://dce.felk.cvut.cz/mamok)

The actual state of the project of stabilized platform (see fig. 1.2) in the beginning

of this work is following:

• The mechanical part of platform is double gimbal Azimuth-Elevation (Az-El)

system with two direct drive DC motors (developed by ESSA company). That is,

the platform is two-axes rotational system sparing some space. There is, however,

a singularity that must be counted with (solved by a restriction of usage ).

• The electronical system (HW, basic SW) was completed within the thesis of

Martin Řezáč and Jaroslav Žoha (Řezáč, M., 2008; Žoha, J., 2008b). Hardware

is based on microprocessor LPC2119 processing the data of four gyroscopes. Note

that the angular rates of the platform and a plane it is attached to may differ

because the platform can rotate independently of the plane. Software processes

an LQG controller compensating the effects of undesired disturbances mentioned

above.

2
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• The basic hardware for inertial navigation unit (INU) has been realized

by Martin Řezáč and Jaroslav Žoha. The unit includes three-axes accelerometers,

gyroscopes, magnetometers, attached to the plane axes in plane coordinate system

(described below), and GPS. It is meant to give some other information for further

design procedure.

• C code functions to obtain data from gyroscopes and accelerometers using MCU

LPC2119 as well as the functions for matrix operations such as matrix mutiplication,

transposition etc.

1.2 Motivation

As was written the camera platform is recently able to compensate the disturbances

and hold the line of sight of the camera in constant direction thanks to the gyroscopes

giving the angular rates information of camera platform. However, if the goal is to track

some static or moving object, the gyros alone are not sufficient. Just imagine the situation

when the UAV moves a specific velocity. The camera platform tries to track some object

(no matter if it is a static or a moving one) and keep its image in the middle of the

screen in headquarters. We can suppose the object image to move out of the screen as

the aircraft moves along the real object. At this point we need to decide whether the

image movement is caused by the different velocities of the aircraft and the tracked object

or by rotations caused by some disturbances such as wind or by combination of the two

mentioned causes. However, we have only gyroscopes giving us information about the

rotations of camera platform but no information about the velocity of the plane. It is

clear that we simply cannot decide the type of ”image movement” based only on the

gyros. There is a significant need of obtaining the translational velocities of the aircraft

itself.

For this purpose the INU mentioned above has been designed. It contains ac-

celerometers, gyroscopes, magnetometers and GPS. The real velocity of the plane is

supposed to be estimated by modern methods. It is because the signal of accelerometers

contains some undesired subsignals (e.g. the acceleration of gravity) as well as the true

translational acceleration of the aircraft. Offsets of some sensors have to be taken into an

account too. A quality estimation design has to be made to acquire the real translational

velocity.
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Why three more gyroscopes?

As has been noted the existing gyros are attached to the camera platform which

is able to rotate independently of the platform. It would be much more difficult to count

the angular rates of the aircraft from the gyros of the platform and so the processing

time of MCU is supposed to be much longer. The second argument is that the INU with

its own gyroscopes will be more autonomous and hence we can use it in some another

application.

1.3 The goals of thesis

The main goal of the thesis is to design adequate estimator of the translational velocity

using a given INU. This task could be decomposed into a couple of subtasks:

• To model an expectable behavior of given sensors.

• To make a simulator giving data we can expect in the output of the sensors as well

as the true data of the simulated motion.

• To design an estimator using simulated data.

• To obtain proper data through some real measurements.

• To adapt the estimator for the real data.

• To make some real navigation experiment using the designed INU.

4



Chapter 2

Inertial navigation unit

It is mentioned in section 1.1 that the hardware of the inertial navigation unit (INU)

includes three-axis accelerometer, gyroscope and magnetometer as well as a GPS unit.

The data from the output of those sensors are brought to pins of microprocessor LPC2119.

In this section there is an overview of important electronics and used sensors as well as the

description of their parameters especially of the important ones that have to be considered

during the design of the velocity estimation. The complete information about the INU

including a wiring diagram is in (Žoha, J., 2008a). The wiring diagram is also to be

found in app. A.

2.1 LPC2119

LPC2119 is a 32-bit microcontroller unit (MCU) based on ARM core. The distributor

of this MCU is Phillips company. It is a multifunctional control unit with loads of options.

The main features that are important for this project are:

• Although the logic is based on 3.3V, there are up to forty-five 5V tolerant input

pins.

• Two serial interfaces UART0 and UART1 and two SPIs.

• 128 kB on-chip Flash memory as well as 16 kB on-chip static RAM

• A maximum CPU clock frequency of 60 MHz.

• Two interconnected CAN interfaces
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• Four channel 10-bit A/D converter with conversion time as low as 2.44 µs.

• Vectored Interrupt Controller with configurable priorities and vector addresses.

• Two 32-bit timers with prescale options and PWM unit with six outputs

For more information about LPC2119 see its manual (Phi, 2004).

2.2 ADIS16350

The ADIS16350 is a complete three-axis gyroscope and three-axis accelerometer sys-

tem inertial sensing system. It provides the X-, Y- and Z-axis angular rate, the X-, Y-

and Z-axis linear acceleration. All these data are accessible via the SPI port. The main

features are:

• gyroscope digital range scaling ±75 o/s , ±150 o/s and ±300 o/s settings with

14-bit resolution.

• accelerometer with ±10g range and 14-bit resolution

• SPI-compatible serial interface

• supply voltage 4.75V to 5.25V

The important characteristics of embedded sensors are shown in tables 2.1 and 2.2.

For more detailed information see (Ana, 2007-2008).

Parameter Conditions Typical Unit

Initial sensitivity 25oC, dynamic range = ±300 o/s 0.07326 o/s/LSB

25oC, dynamic range = ±150 o/s 0.03663 o/s/LSB

25oC, dynamic range = ±75 o/s 0.01832 o/s/LSB

Output noise 25oC, = ±300 o/s range, 2-tap filter setting 0.60 o/s/ rms

25oC, = ±150 o/s range, 8-tap filter setting 0.35 o/s/ rms

25oC, = ±75 o/s range, 32-tap filter setting 0.17 o/s/ rms

3dB Bandwidth 350 Hz

Sensor Resonant Frequency 14 kHz

Table 2.1: Main gyroscope characteristics
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Parameter Conditions Typical Unit

Dynamic range ±10 g

Initial sensitivity 25oC 2.522 mg/LSB

Output noise 25oC, no filtering 35 mg rms

3dB Bandwidth 350 Hz

Sensor Resonant Frequency 10 kHz

Table 2.2: Main accelerometer characteristics

2.3 HMC2003

HMC2003 is a high-sensitivity, three-axis magnetic sensor being distributed by Honey-

well company. It is used to measure low magnetic field strengths. The main applications

it may be used for are

• Precision compassing

• Navigation systems

• Attitude reference

• Traffic detection

• Proximity detection

• Medical devices

The tab. 2.3 contains the most important characteristics of HMC2003. For more

details see (Hon, 2007). The outputs (the X-, Y- and Z-axis geomagnetic field strength)

of the sensor is brought to A/D inputs of LPC2119 to be used for further processing.

Parameter Conditions Min Typ Max Unit

Sensitivity 0.98 1 1.02 V/gauss

Null field output 2.3 2.5 2.7 V

Resolution 40 µgauss

Field range Maximum magnetic flux density -2 2 gauss

Output voltage Each magnetometer axis output 0.5 4.5 V

Bandwidth 1 kHz

Table 2.3: Important HMC2003 characteristics

7



2.4 NL-504ETTL

NL-504ETTL is a complete GPS smart antenna receiver of NAVILOCK company. It

consists of GPS receiver circuits and an antenna. The antenna is capable of tracking up

to 32 satellites and provides

• fast time-to-first-fix

• default one-second navigation update

• low power consumption

• rapid satellite acquisition thanks to build-in micro battery and keeping reserve

system data

This unit can be used for personal, automotive and marine positioning and navigation.

The main characteristics of GPS receiver are summarized in the tab. 2.4. The output

GPS data are in NMEA protocol form. The NMEA protocol consists of GGA, GLL,

GSA, GSV, RMC and VTG ”subprotocols”. The complete NMEA protocol can be found

in App. B. The output signal of NL-504ETTL is on TTL level and proceeds to UART1

RX/TX pins of LPC2119. The setting of the UART1 is 9600 bps, 8 data-bits, no parity,

1 stop-bit. For more details of NL-504ETTL see (Nav, 2007).

Frequency L1 1575.42 MHz, C/A code

Channels Support 32 channels

Update rate 1 Hz default, up to 5Hz

Acquisition time Hot start (open sky) - 2s (typical)

Cold start (open sky) - 36s (typical)

Position accuracy Autonomous - 3m (2D RMS)

SBAS - 2.5m (depends on accuracy of correction data)

Max. Altitude < 18,000 m

Max. Velocity < 515 m/s

Protocol support NMEA 0183 ver 3.01

Table 2.4: Important NL-504ETTL characteristics
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Chapter 3

Mathematical modelling

In this chapter, we discuss a mathematical preface of this thesis. We first establish

coordinate frames and sensor models, then we make a brief introduction into extended

Kalman filter and Cholesky decomposition. Finally, the state space model is being set.

3.1 Coordinate frames

There are several coordinate frames that are considered throughout the whole project

(e.g. (Řezáč, M., 2008; Žoha, J., 2008b; Hanǐs, T., 2008)). For this part of the project

it is not necessary to consider all of them. There are the ground and the plane coordinate

frames being introduced in this section.

Figure 3.1: Plane coordinate frame.

The coordination frames are set according to the ISO norm (see fig. 3.1). All
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frames are completely described by their origin and three orthogonal vectors. A compact

description is set as oxyz. For the positive angle of rotation applies the law of the right

hand. That is, being shown in fig. 3.1), when the thumb points in the positive direction

of the axis, the flexed fingers show the positive rotation around that axis.

3.1.1 The ground coordinate frame

There are several ways to interpret the ground coordinate frame ogxgygzg. In this case,

as it is supposed to use the GPS measurements, the xg and yg axes are identical to the

ones used by GPS. Hence we use the frame that has its xg and yg axes oriented according

to compass while satisfying the ISO norm. That is, the positive xg axis points in the

north direction, the positive yg axis leads in the east direction and zg axis is orthogonal

to both of them and its positive direction points down into the middle of the Earth. The

longitude, latitude and altitude of the origin og is 0.

3.1.2 The plane coordinate frame

The origin of the plane coordinate frame oxyz is laid in the center of gravity (CG)

of the plane. The positive direct axis x leads through the nose of the plane, the positive

cross axis y leads in the right wing direction and the third axis z is orthogonal to both

x and y axes and its positive direction leads ”down” through the belly of the plane. We

will assume quietly throughout the whole thesis that the CG of INU and all its axes are

the same as the plane ones.

3.1.3 Transformation of coordinate frames

At the beginning it must be said that by the term ”Coordinate frames transformation”

we mean the transformation of some vector ag known in the ground coordinate frame into

a vector a in the plane coordinate frame and vice versa. That is, as we need to transform

a vector, we can assume o = og
1.

1Note that if we want to transform a position of some point in the plane frame (e.g. the position of

target we observe) into the ground frame, we would have to assume the offset between these two frames

|o−og|. Whenever we need only vector transformation (e.g. the velocity of the plane), the offset between

frames is not needed to be assumed.
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Figure 3.2: Transformation of the ground coordinate frame into the plane

coordinate frame. Source: (Pech, Z. and Věk, V., 2003)

For the purpose of transformation itself we will use the concept of Euler angles

(see fig. 3.2). We will first rotate the ground coordinate frame G = oxgygzg around its

zg axis into a plane of symmetry2 of an aircraft to obtain the yaw angle ψ and the new

coordinate frame A = ox1y1zg. We will now rotate the frame A around its y1 axis into the

direct axis of the aircraft. We have just got the pitch angle θ. The last step is to rotate

given frame B = oxy1z2 around its x axis into the plane coordinate frame P = oxyz to

obtain the roll angle φ.

We need now to represent some ground coordinate frame vector ag = [x, y, z]T in

the coordinates of the plane frame while we know the Euler angles φ, θ and ψ. According

to (Hurák, Z., 2008) we can use rotational matrix

RA
G =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (3.1)

which can be expressed as ”the rotational matrix expressing the coordinates of some

vector in ground frame within A frame”. To complete the transformation we use yet

2The plane of symmetry of an aircraft is the plane given by x and z axes in the plane coordinate

frame.
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following two matrices:

RB
A =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (3.2)

RP
B =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (3.3)

Let’s make following substitutions:

cψ = cos(ψ), sψ = sin(ψ),

cφ = cos(φ), sφ = sin(φ),

cθ = cos(θ), sθ = sin(θ),

(3.4)

the expression of the given ground frame vector within the plane frame is then

a = RP
G · ag = RP

B ·RB
A ·RA

G · ag (3.5)

RP
G =


cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 (3.6)

As this rotation and its inversion are the only rotations we will use, let’s simplify the

notation: RP
G = R.

According to (www.mathpages.com, 2008) an interesting property of rotation

matrix is R−1 = RT. That is why we will use

a = R · ag
ag = RT · a.

(3.7)

3.1.4 The dynamics of Euler angles

Assume now, that we have got rotation rates of the aircraft (e.g. an output of ideal

gyroscopes). The rotation rates are the roll rate p, the pitch rate q and the yaw rate r.

According to (Beard, R. W., 2007) the computation of Euler angles (depending on

rotation rates) leads to three differential equations

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ)

θ̇ = q cos(φ)− r sin(φ)

ψ̇ = q sin(φ)
cos(θ)

+ r cos(φ)
cos(θ)

(3.8)
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3.1.5 The restrictions on usage of Euler angles

Looking at eq. (3.8) it is obvious that there are some singularities due to some cosines

of pitch angle θ3 in denominators of some fractions. This singularity applies whenever

the x axis is oriented vertically. That is, the nose of aircraft points into the center of the

Earth or contrariwise.

We can solve this problem by setting the restriction on the pitch angle near ±π.

As the UAV Manta is supposed to fly mainly in some horizontal flight with seldom

manoeuvres, the restriction should not be difficult to fulfil.

The advantage of Euler angles is definitely an easy imagination of the real aircraft

angular position. Thanks to that, the Euler angles are often used as the basic interpreta-

tion of the angular position of an observed object. The disadvantage, the singularity, was

mentioned above. To solve the singularity problem, the solution may be to use quater-

nions. The quaternions are insensitive to singularities and allow us to observe the full

scale of manoeuvring but the imagination of the angular position is much more difficult.

For the purposes of this thesis, the Euler angles will be sufficient.

3.2 Sensor models

This section defines mathematical models of all sensors that are mounted and used

within the INU. It is important to do this definition at this point because the sensor

models will be mainly used in following chapters. The first great usage is in abstract

simulation unit to produce data for further estimator design (see chapter 4). The second

purpose of sensor models usage is their use in the state estimator design itself (see sec. 3.5).

The sensor models come mainly from (Beard, R. W., 2007) although they may be a

little modified to suit the current problem.

3.2.1 Rate gyros

A gyroscope angular rate sensor contains a small vibrating lever. When the lever

undergoes an angular rotation, the frequency of vibrations changes due to the Coriolis

force. Thanks to this effect, the rotation is detected. Generally the output of a rate gyro

3Note that tan θ = sin(θ)
cos(θ) .
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is:

ygyro = kgyroω + βgyro(T ) + ηgyro, (3.9)

where ygyro is the signal that we measure at the output of gyro sensor in Volts, kgyro is a

gain, ω is the true angular rate, βgyro is a component that depends on temperature and

acts as some kind of offset in the output signal, and ηgyro is a zero mean Gaussian process

with known variance.

There are three rate gyros being used in this application. They are aligned along

the x, y and z axes and support us with the roll, pitch and yaw rate data p, q and r.

Assuming eq. (3.9) we have

ygyro,x = kgyro,xp+ βgyro,x(T ) + ηgyro,x

ygyro,y = kgyro,yq + βgyro,y(T ) + ηgyro,y

ygyro,z = kgyro,zr + βgyro,z(T ) + ηgyro,z.

(3.10)

3.2.2 Accelerometers

The principle of an accelerometer lies in a small plate that is flexibly attached to

the body of the sensor. When the whole system accelerates or decelerates the inertial

properties of the system forces the small plate to change the position against the body

of the sensor. The capacitance between the plate and the body is then changed and this

change can be detected. The output of an accelerometer is:

yacc = kacca+ βacc(T ) + ηacc, (3.11)

where yacc is in [V ], kacc is a gain, a is an acceleration in [m/s2], βacc is a component that

depends on temperature and ηacc is a zero mean Gaussian process with known variance.

However, the acceleration a in (3.11) still consists of more components such is the

gravity acceleration and centrifugal acceleration. These two more components have also

to be considered to acquire the pure translational acceleration. In the three-dimensional

system we have 
ax

ay

az

 =
1

m
(F − F gravity) = v̇ + ω × v − 1

m
F gravity, (3.12)

while the last component of (3.12) is actually the fixed gravitation vector gg = [0, 0, g]T in

ground coordinate frame expressed within the coordinates of the plane coordinate frame.
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Using the (3.7) and (3.6) we can write

1

m
F gravity = g = Rgg =


−g sin θ

g cos θ sinφ

g cos θ cosφ

 . (3.13)

Then, from (3.12) and (3.13), we have the component form of the accelerometer model:

ax = u̇+ qw − rv + g sin θ

ay = v̇ + ru− pw − g cos θ sinφ

az = ẇ + pv − qu− g cos θ cosφ,

(3.14)

where the u, v and w components are the true translational velocities along the x, y and

z axes and u̇, v̇ and ẇ are the appropriate true accelerations. From (3.11) the output of

the three axes accelerometer is

yacc,x = u̇+ qw − rv + g sin θ + βacc,x(T ) + ηacc,x

yacc,y = v̇ + ru− pw − g cos θ sinφ+ βacc,y(T ) + ηacc,y

yacc,z = ẇ + pv − qu− g cos θ cosφ+ βacc,z(T ) + ηacc,z.

(3.15)

3.2.3 GPS

There is a set of GPS signal errors in (Beard, R. W., 2007) being described in

detail. These errors are caused by atmosphere conditions, changing satellite geometry,

clock drift, multipath signals and measurement error. For this application we will assume

a combined measurement zero mean error ηgps instead of the mentioned ones. The output

of the GPS will then be
ygps,n = pn + ηgps,n

ygps,e = pe + ηgps,e

ygps,h = h+ ηgps,h,

(3.16)

where pn, pe and h are the actual earth coordinates and altitude above sea level respec-

tively. In the further design we will also take into an account, that the altitude error

ηgps,h is much greater than position errors ηgps,n and ηgps,e.

We can also obtain GPS data per degree/minute/second in meters by assuming

that 1 latitudinal degree is about 110.9km, one latitudinal minute is about 1849m and

one latitudinal second measures 31.82m. The latitude-meters transfer relation is constant.

The longitude-meters relation depends on the actual latitude position. That is

pe,const = cos(α)pn,const (3.17)
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where pe,const is the longitude-meters transfer constant for a given latitude position, α is

the actual latitude position and pn,const is the latitude-meters transfer constant. As it is

known that the UAV, given by its flight range, will be used more or less on the constant

latitude, from now on, we will assume that the data of GPS are acquired in meters.

3.2.4 Magnetometer compass

A sensitive magnetometer can measure the earth’s magnetic field intensity. The

earth’s magnetic field intensity can be represented by three-axes vector H = [Hx, Hy, Hz]
T

in ground coordinate frame. The intensity may be predicted from the actual position on

the earth, but it can be affected, for example, by earth’s geological characteristics, e.g.

by iron deposits. However, it is almost constant for a given area (tens of kilometers).

For a larger area (more than hundreds of kilometers), the current intensity vector should

be updated. For this purpose, for example, the magnetic intensity map could be used.

As the magnetometer measuring the earth’s magnetic field is very sensitive, it should be

avoided to use any magnetic field disturbing objects, such as screwdrivers and so on, in

magnetometer’s surroundings during the precise measurements.

The magnetic intensity vector in Prague on 1st May 2009 was

Hg0 =


Hg0,x

Hg0,y

Hg0,z

 =


19, 882.1

976.4

44, 602.2

 [nT ] =


0.198821

0.009764

0.446022

 [gauss] (3.18)

To get magnetic vector expressed in the plane coordinate frame we simply use the

rotation matrix from (3.7). Hence the output of the magnetometer is expected in the

following form:

ymag,x = Hg0,xcψcθ +Hg0,ysψcθ −Hg0,zsθ + βmag,x(T ) + ηmag,x

ymag,y = Hg0,x(cψsθsφ − sψcφ) +Hg0,y(sψsθsφ + cψcφ)−Hg0,z(cθsφ) + βmag,y(T ) + ηmag,y

ymag,y = Hg0,x(cψsθcφ + sψsφ) +Hg0,y(sψsθcφ − cψsφ)−Hg0,z(cθcφ) + βmag,z(T ) + ηmag,z
(3.19)

where ymag,. is in [V ], βmag,. is a component that depends on temperature and ηmag,. is a

zero mean Gaussian process with known variance.
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3.3 Extended Kalman filter

State estimation using Kalman filter is a complex problem. A lot about Kalman

filter can be found in literature. In this section, there is a very brief description of the

most important part of extended Kalman filter (EKF) that is being used by this project.

The main idea to use the EKF in this application comes from (Beard, R. W., 2007),

although in this case the EKF estimates all mentioned states of current system.

Extended Kalman filter is a method of state estimation of nonlinear stochastic

systems described by

ẋ(t) = f(x, u, t) + ξ(t)

y(t) = g(x, u, t) + η(t).
(3.20)

We can obtain state space matrices A and C, required for an update of the covari-

ance matrix P, by computing Jacobians of f(x, u, t) and g(x, u, t):

A(x) = ∂f(x,u,t)
∂x

C(x) = ∂g(x,u,t)
∂x

(3.21)

Before the algorithm starts, the initialization of state estimate x̂(t) and symmet-

ric covariance matrices P,Q and R has to be made. The algorithm itself can then be

divided into two processes. The data (filtration) step is done each time the data come

from sensors. This process contains following operations

Ci = ∂gi
∂x

(x̂) −− Jacobian

Li = PCT
i (CiPC

T
i +R)−1 −−Kalman’s gain

ei = yi − g(x̂, u, t) −− estimation error

x̂ = x̂+ Liei −− update state estimate

P = P − PCT
i (CiPC

T
i +R)−1CP = P − LiCiP −− update covariance matrix P

(3.22)

That is, we first compute Jacobian C, Kalman’s gain L and state estimate error e. Then

we do the state estimate computation and finish by updating covariance matrix P .

The time (prediction) step is done continuously and depends on the sample

period Tsam. Hence the system must be discretized for example by

x(t+ T ) = Tsamẋ+ x(t) (3.23)
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The operations that are included within an iteration of prediction process are

Ai = ∂fi
∂x

(x̂) −− Jacobian

x̂ = x̂+ Tsamf(x̂, u, t) −− update state estimate

P = AiPA
T
i +Q −− update covariance matrix P

(3.24)

That is, we first compute the Jacobian A and state estimate x̂ and then we update

covariance matrix P .

3.4 Cholesky decomposition

Cholesky decomposition allows us to express some symmetric matrix M as a product

M = LLT , (3.25)

where L is a lower triangular matrix. If matrix A is positive-definite, the Cholesky

decomposition is unique.

While i ≥ j, the elements of M matrix are

Li,i =
√
Mi,i −

∑i−1
k=1L

2
i,k

Li,j = 1
Lj,j

(Mi,j −
∑j−1

k=1 Li,kLj,k)
(3.26)

There may be a problem when any of the diagonal elements of L are zero. We will

solve this problem by setting whole appropriate column to zero. That is,

If Lj,j == 0 than Li,j = 0, ∀i > j.

Cholesky decomposition can be used to solve

xA = B (3.27)

for x while A = LLT is a symmetric matrix. Using Cholesky decomposition we have

xLLT = B

yLT = B

xL = y

(3.28)

where we first compute elements of y

yi,j =
1

Lj,j
(bi,j −

j−1∑
k=1

yi,kLj,k) (3.29)
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and finally we obtain x by

xi,j =
1

Lj,j
(yi,j −

n∑
k=1

xi,kLk,j). (3.30)

3.5 State space model

In this section, there is whole state model for EKF being described. We first describe

state variables, then we set the model in the (3.20) form, i.e. we will describe the state and

output equations. Note that in this section described model has got no inputs because we

do not have either any direct information about thrust, ailerons, elevators and rudders

of UAV or their models. The following estimation is whole based on the observations of

the sensor outputs. Both complete state space model and the appropriate Jacobians can

be found in app. C.

3.5.1 State variables

As has been described in chapter 2, the INU includes three-axis accelerometer, three-

axis gyroscope and three-axis magnetometer as well as a GPS unit. That is, we are able

to obtain data of translational accelerations, rotation rates and the vector of Earth’s mag-

netic intensity in the aircraft coordinate frame as well as the actual position in ground

coordinate frame thanks to GPS. We can also assume that accelerometer, gyroscope and

magnetometer data includes some offset that is mentioned in section 3.2 as β(T ) compo-

nent of equations (3.9), (3.11) and (3.19) describing general sensor models. Through this

information we are able to derive state variables that are listed below:

φ = the roll Euler angle [rad],

θ = the pitch Euler angle [rad],,

ψ = the yaw Euler angle [rad],,

u = the x-axis translational velocity [m/s],

v = the y-axis translational velocity [m/s],

w = the z-axis translational velocity [m/s],

pn = the inertial north position of the UAV [m],

pe = the inertial east position of the UAV [m],

h = the altitude of the UAV [m],
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pest = the estimation of the true roll rate [rad/s],

qest = the estimation of the true pitch rate [rad/s],

rest = the estimation of the true yaw rate [rad/s],

poff = the estimation of the x-axis gyroscope offset [rad/s],

qoff = the estimation of the y-axis gyroscope offset [rad/s],

roff = the estimation of the z-axis gyroscope offset [rad/s],

ax,off = the estimation of the x-axis accelerometer offset [m/s2],

ay,off = the estimation of the y-axis accelerometer offset [m/s2],

az,off = the estimation of the z-axis accelerometer offset [m/s2],

hx,off = the estimation of the x-axis magnetometer offset [gauss],

hy,off = the estimation of the y-axis magnetometer offset [gauss],

hz,off = the estimation of the z-axis magnetometer offset [gauss],

ax,est = the estimation of the true x-axis translational acceleration [m/s2],

ay,est = the estimation of the true y-axis translational acceleration [m/s2],

az,est = the estimation of the true z-axis translational acceleration [m/s2].

In fig. 3.3 we depict some UAV state variables for a better conception of what axis

do the state variables belong to.

Figure 3.3: State variables.

3.5.2 State equations

We will now assemble the state space model. The basics have been set in section 3.2.

We are going to extend those terms, make some modifications and complete the state

space model that will be used for Kalman filter design. Let’s start with Euler angles
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dynamics. Assuming the eq. (3.8) we have

φ̇ = pest + qest sin(φ) tan(θ) + rest cos(φ) tan(θ)

θ̇ = qest cos(φ)− rest sin(φ)

ψ̇ = qest
sin(φ)
cos(θ)

+ rest
cos(φ)
cos(θ)

.

(3.31)

The dynamics of translational velocities u, v, and w can be derived from (3.15)

by expressing u̇, v̇ and ẇ:

u̇ = −qestw + restv − g sin θ + ax,est

v̇ = −restu+ pestw + g cos θ sinφ+ ay,est

ẇ = −pestv + qestu+ g cos θ cosφ+ az,est.

(3.32)

As we have the equations for Euler angles and translational velocities, it is straight-

forward to obtain also the differential equations describing the position of INU in

ground coordinate frame. 
ṗn

ṗe

ḣ

 = RT


u

v

w

 (3.33)

where R is the rotation matrix from 3.6. Hence the differential equations for position of

INU are
ṗn = u(cψcθ) + c(cψsθsφ − sψcφ) + w(cψsθcφ + sψsφ)

ṗe = u(sψcθ) + v(sψsθsφ + cψcφ) + w(sψsθcφ − cψsφ)

ḣ = −u(sθ) + v(cθsφ) + w(cθcφ).

(3.34)

The remaining state variables, that we have to set differential equations for, are

the estimates of true accelerations and angular rates data as well as offsets

of accelerometers, gyroscopes and magnetometers. The basic idea, allowing us to

obtain the true signal and to filter offsets consists in presumption that an output signal

of sensor consists of the true and the offset signal, i.e. their sum respectively

ysens = ytrue + yoff . (3.35)

The motivation for the decomposition of the sensor signal is that we need to

obtain the estimation of the true signal ytrue = xest and thus to eliminate the error of the

estimation produced by the offset yoff = xoff . We do not know anything about those

two decomposed signals except their sum, but, fortunately, we can presume variances of

their noises ξest and ξoff . Hence the differential equations for xest and xoff are

ẋest = ξest

ẋoff = ξoff
(3.36)
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As we know that offset signal either changes very slowly or does not change at all,

we can set ξest >> ξoff or ξest → 0 respectively. That is, we can set the offset noise signal

ξoff to zero and assume the variance of the estimate signal xest (at the very beginning of

the estimator design) to be the same as the variance of sensor output signal ysens. Note

that the sensor signal variance could be obtained from the sensor datasheet list.

3.5.3 Output equations

The output of state space model contains all signals, or their combination respectively,

that can be measured by INU sensors. As we actually estimate the GPS data directly,

the output of GPS estimate is

ypn = pn

ype = pe

yh = h

(3.37)

The output of gyroscopes and accelerometers consists of two signals as is explained

in subsection 3.5.2. The appropriate outputs are then

yp = pest + poff

yr = qest + qoff

yq = rest + roff

yax = ax,est + ax,off

yay = ay,est + ay,off

yaz = az,est + az,off

(3.38)

And finally the outputs that correspond to the magnetometers are obtained by

rotation of the known vector Hg0 from 3.18 using the R matrix from 3.6

yhx = hx(cψcθ) + hy(sψcθ)− hz(sθ) + hx,off

yhy = hx(cψsθsφ − sψcφ) + hy(sψsθsφ + cψcφ) + hz(cθsφ) + hy,off

yhz = hx(cψsθcφ + sψsφ) + hy(sψsθcφ − cψsφ) + hz(cθcφ) + hz,off .

(3.39)
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Chapter 4

Simulation

The simulator of the inertial navigation unit (INU), i.e. the simulator that provides

assumed data of the INU depending on the chosen true forces affecting the INU, had to

be built in order to speed up whole following design. This chapter provides information

about INU simulator design as well as settings of its parameters and choice of assumed

true forces for further use in extended Kalman filter design (EKF).

4.1 INU simulator

INU simulator is made using the MATLAB/Simulink interface. The system is made

of the basic Simulink blocks. The mathematical model comes from sec. 3.2.

The Simulink scheme of the simulator can be found in fig. 4.1. The green blocks

present the system inputs. They are true accelerations and angular rates in plane co-

ordinate frame as well as the geomagnetic intensity1 in ground coordinate frame. It is

possible to shape signal true acceleration and angular rate data in the appropriate input

blocks.

The light blue blocks represents subsystems that are to be described later in this

chapter. The orange, noise, and red, offset, blocks represent the additive error of the

sensor outputs. Their sum with the true simulated sensor data produces the simulated

sensor output signal.

1Note that there is Mx,My,Mz. notation in the scheme being used to represent the magnetic intensity.

This notation survived from the earlier versions of the simulator. Let’s assume Mx = Hx,My = Hy,Mz =

Hz
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Figure 4.1: INU Simulator
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Signal type True Output Workspace Description

Gyroscopes p−roll−rate−pravy p−roll−rateData−pravy true roll angular rate

q−pitch−rate−pravy q−pitch−rateData−pravy true pitch angular rate

r−yaw−rate−pravy r−yaw−rateData−pravy true yaw angular rate

p−roll−rate p−roll−rateData simulated gyro roll output

q−pitch−rate q−pitch−rateData simulated gyro pitch output

r−yaw−rate r−yaw−rateData simulated gyro yaw output

fi-roll fi−rollData roll angle φ

theta-pitch theta−pitchData pitch angle θ

psi-yaw psi−yawData yaw angle ψ

Accelerometers y−acc−x−pravy y−acc−xData−pravy true x-axis trans. acceleration

y−acc−y−pravy y−acc−yData−pravy true y-axis trans. acceleration

y−acc−z−pravy y−acc−zData−pravy true z-axis trans. acceleration

y−acc−x y−acc−xData simul. x-axis output acc.

y−acc−y y−acc−yData simul. y-axis output acc.

y−acc−z y−acc−zData simul. z-axis output acc.

u uData trans. x-axis velocity

v vData trans. y-axis velocity

w wData trans. z-axis velocity

gx gxData x-axis gravity

gy gyData y-axis gravity

gz gzData z-axis gravity

GPS pn−pravy pnData−pravy true north position, ground frame

pe−pravy peData−pravy true east position, ground frame

h−pravy hData−pravy true altitude, ground frame

pn pnData simul. north position, ground frame

pe peData simul. east position, ground frame

h hData simul. altitude, ground frame

Magnetometers Mx-air−pravy Mx−airData−pravy true magneto. x

My-air−pravy My−airData−pravy true magneto. y

Mz-air−pravy Mz−airData−pravy true magneto. z

Mx-air Mx−airData simul. magneto. x

My-air My−airData simul. magneto. y

Mz-air Mz−airData simul. magneto. z

Table 4.1: Acquisition blocks summary
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The yellow blocks are the data acquisition ones. I chose standard scope blocks

to be able to observe the simulation easily when debugging the simulator or generating

new data. Scope includes a function of transfering acquired data to workspace which is

the most welcome feature. The table 4.1 summarizes all output blocks. In the ”True”

column, there are names of blocks that collect data in their true shape. That is, the

collected data depend only on the true input signal of the green blocks. The ”Output”

column includes names of blocks colleting the data that are expected at the output of the

real system. These data include the true signal as well as a noise and/or an offset. The

”workspace” column shows names of the data structures that can be found in MATLAB

workspace after the simulation has been performed.

There are several parameters, such as sample period or offset values, that have

to be set before the simulation is started. These parameters can easily be set using

init.m file situated in the Simulation directory as well as the simulator Simulink model

file simulace−8−sum−offsetAll−1Hz−GPS−GPSinit.mdl. Table 4.2 lists all parameters of

INU simulator.

T−vystupu = sample period of sensor data acquisition

T−gps = sample period of sensor data acquisition

g = gravity constant

Mx0−ground = x-axis component of the geomagnetic intensity in ground

coordinate frame, [gauss]

My0−ground = y-axis component of the geomagnetic intensity in ground

coordinate frame, [gauss]

Mz0−ground = z-axis component of the geomagnetic intensity in ground

coordinate frame, [gauss]

acc−sum = noise variance of accelerometers [m/s2]

gyro−sum = noise variance of gyroscopes [rad/s]

gps−sum = noise variance of GPS [m]

magneto−sum = noise variance of magnetometers [gauss]

p−offset = roll gyro offset

q−offset = pitch gyro offset

r−offset = yaw gyro offset

ax−offset = x accelerometer offset

ay−offset = y accelerometer offset

az−offset = z accelerometer offset

26



mx−offset = x magnetometer offset

my−offset = y magnetometer offset

mz−offset = z magnetometer offset

pn−init = initial position in +north-south axis direction [m]

pe−init = initial position in +east-west axis direction [m]

h−init = initial position in +down-up axis direction [m]

Table 4.2: Simulator parameters

4.2 Subsystems

As has been mentioned in sec. 4.1, there are some subsystems in the Simulink scheme

of the simulator in fig. 4.1. This section describes their function.

The block in fig. 4.2 represents the Euler angles dynamics. That is, it realizes

eq. (3.8). The inputs of the system are actual angular rates; the outputs are Euler

angles. Whole Simulink scheme can be found in D.

Figure 4.2: Block of Euler angles dynamics

In figure 4.3, there is the accelerometer block . Its task is to count the true

translational velocities and true accelerometer data depending on the Euler angles and

true translational accelerations that are brought to the inputs. The block also provides

gravitation vector in the plane coordinate frame. Actually, the Accelerometers block

realizes eq. (3.12). The inside of the block is shown in app. D.
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Figure 4.3: Accelerometers subsystem block

Figure 4.4 contains both ground-plain (4.4a) and plain-ground (4.4b) coordinate

transformation blocks. The inputs are actual Euler angles and the vector we need to

transform. On the output is then the transformed vector in new coordinate frame. In

fact, these blocks realize transformation matrix (3.6) and its inverse respectively. Simulink

schemes of both blocks can be seen in app. D.

a) b)

Figure 4.4: Transformation blocks. a) Transformation from the ground

coordinate frame to plane one. b) Inverse transformation

4.3 Simulation data

Several different simulations were done through the project. I have chosen one that is

in my opinion sufficiently illustrative for the purposes of this thesis. This section describes
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the details of the simulation.

First of all we set the parameters of INU simulator up. The table 4.3 shows the

setting.

parameter value unit

g 9.81 [m/s2]

Mx0−ground 0.198821 [gauss]

My0−ground 0.009764 [gauss]

Mz0−ground 0.446022 [gauss]

acc−sum 0.15 [m/s2]

gyro−sum 0.033 [rad/s]

gps−sum 2.5 [m]

magneto−sum 0.002 [gauss]

p−offset 0.01 [rad/s]

q−offset -0.02 [rad/s]

r−offset 0.015 [rad/s]

parameter value unit

T−vystupu 0.1 [s]

T−gps 1 [s]

ax−offset 0.2 [m/s2]

ay−offset -0.3 [m/s2]

az−offset 0.1 [m/s2]

mx−offset 0.01 [gauss]

my−offset -0.025 [gauss]

mz−offset -0.01 [gauss]

pn−init 0 [m]

pe−init 0 [m]

h−init 0 [m]

Table 4.3: Settings of simulator parameters.

To shape the simulation data according to our needs, we need to set appropriate

input data. That is, we shape the true acceleration u̇, v̇ and ẇ and angular rates p, q and

r data by using six ”signal builder” blocks at the input of the simulator. The detailed

description of the chosen signals is following:

0s - start of the simulation

0-21s - hold all input signals at zero

21-22s - linear growth of the true x-axis translational acceleration towards

15[m/s2]

22-27s - hold all signals at their levels

27-28s - linear growth of the pitch angular rate towards 0.6[rad/s]

28-30s - linear fall of the pitch angular rate towards 0[rad/s]

- linear fall of the true x-axis translational acceleration towards

0[m/s2]

30s - from now on the signals of the true y-axis and z-axis trans. accel-

erations are completely random simulating the effects of the sur-

rounding environment such as the wind and so on
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37-38s - linear fall of the pitch angular rate towards -0.6[rad/s]

38-39s - linear growth of the roll angular rate towards 0.2[rad/s]

39-40s - linear fall of the roll angular rate towards 0[rad/s]

38-40s - linear growth of the pitch angular rate towards 0[rad/s]

40-43s - linear growth of the pitch angular rate towards 0.06[rad/s]

- linear growth of the yaw angular rate towards 0.1[rad/s]

128-130s - linear fall of the pitch angular rate towards 0[rad/s]

- linear fall of the yaw angular rate towards 0[rad/s]

150s - end of the simulation

That is, the aircraft first accelerates in the straightforward direction. Then it

raises its nose and flies up under the constant angle. Then it stops accelerating and

levels the flight level. During this manoeuvre the environment starts to affect the aircraft

that starts to move randomly in the left, right, up and down directions. After the flight

level has been leveled, the aircraft rotates a little positively around the x axis and then

it remains in the circles, thanks to a rotating around both the z and y axes, until the

rotations are stopped a while before the simulation ends.

The described set of moves can be found in fig. 4.5. The appropriate simulated

sensor outputs are shown in fig. 4.6. These outputs are used in the next chapter as the

data that are to be compared with EKF output.

a) b)

Figure 4.5: Input data of the simulation: a) true translational accelera-

tions, b) true angular rates
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a) b)

c) d)

Figure 4.6: Output data of the simulation: a) accelerometers, b) gyro-

scopes, c) magnetometers, d) GPS
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Chapter 5

EKF design

Till now, this thesis has introduced all theory and presumptions we need to design

an extended Kalman filter (EKF) for this application. This chapter describes the EKF

design while using both the methods and state space model of chapter 3 and the simulated

data of chapter 4.

5.1 EKF M-file

The design is being made for the real hardware with the real microprocessor unit

LPC2119 (chapter 2). It has been found that we can not use the double precision floating-

point variables type for this algorithm simply because the memory capacity of MCU is

unsufficient. That is, we must use the single precision float type. In order to simulate

this condition, I have decided to use single precision variables in MATLAB too. This can

be done by simply retyping all variables in the design M-file by1

x = single(x) (5.1)

Before the estimation starts, we need to set constants up. They are the data

acquisition period of GPS TGPS = 1, the data acquisition period of the other sensors

Tsens = 0.1, the gravitation constant g = 9.81 and the geomagnetic intensity vector in

the ground coordinate frame Hg0 that depends on the actual position in the Earth. As

the data simulation has been done with Prague magnetic intensity values, we set intensity

1The standard type in MATLAB is double and all variables that are not retyped are automaticly

double.

32



components according to (3.18). Also the covariance matrices P , Q and R have to be

initialized at this point. The P matrix initiates as an identity matrix, the other two

matrices are diagonal and their settings will be discussed later.

The EKF algorithm itself is well described in sec. 3.3. We could end here with the

desription of EKF structure, however, the mentioned algorithm is ”only” a backbone of

the used procedure. There are some aspects that have to be yet introduced.

Figure 5.1: Progress chart of EKF algorithm

First of all, we have to deal with the difference between the GPS and the other

sensors data acquisition rates. Figure 5.1 shows the progress chart of the used algorithm

that solves this problem. At the beginning the initialization is performed. Then the algo-

rithm loop begins. Each time the data from the sensors (accelerometers, magnetometers

and gyroscopes) are acquired, the sensor filtration step is made except the situation when

the data from GPS are acquired. In that case the GPS filtration step is being performed
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and then the algorithm returns to the sensor data waiting loop. The prediction step is

made always after the sensor filtration step computation.

To obtain Kalman’s gain in (3.22), i.e. to solve

Li = PCT
i (CiPC

T
i +R)−1, (5.2)

we need to find an inverse of (CiPC
T
i +R) which is not easily done when we want to use

the MCU. Fortunately, we can take into an account that this matrix is symmetric and so

we can solve

Li(CiPC
T
i +R) = PCT

i , (5.3)

for Li using Cholesky decomposition explained in sec. 3.4. This fact is also remembered

in the EKF design M-file by using functions

[L−chol, diag−chol] = Cholesky−decomp−single(C ∗ p ∗ C ′ +R);

L = Cholesky−solut−single(L−chol, diag−chol, p ∗ C ′);
(5.4)

instead of standard

L = p ∗ C ′ ∗ inv(C ∗ p ∗ C ′ +R); (5.5)

The functions (5.4) performe the Cholesky method exactly by using single preci-

sion arithmetics. While this method has been already detailed in sec. 3.4, the further

discussing of this problem is not necessary. The appropriate M-files can be found on the

enclosed CD.

It has also been found that, due to the ”unprecise” CPU/MCU arithmetics, there

may rise an error of the P matrix symmetry. This error grows with the number of per-

formed iterations and the estimation becomes very unpredictable. Some of the elements

of P matrix may rise towards infinity. Hence the normalization procedure is being per-

formed each time the P matrix is modified. This procedure symmetrizes P matrix simply

by

Pi,j = 1
2
P(i, j)P(j, i)

Pj,i = Pi,j
(5.6)

∀i < j. This simple algorithm is written in the ”normalize−p.m” M-file and is located

on the enclosed CD.

Whole algorithm is transformed into the MATLAB code in thesis−EKF−simulation.m

that can be found on the enclosed CD.
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5.2 EKF tuning and results

The EKF tuning consists in the Q and R covariance matrix choice. The initiate

settings came from the sensors and GPS datasheets (Ana, 2007-2008), (Hon, 2007)

and (Nav, 2007). The further design was made ad hoc thanks to the simulations in

MATLAB that are much more effective than using INU hardware directly. The resulting

setting for Q, Rsens and RGPS covariance matrices are in a diagonal form. The appropriate

diagonals of the covariance matrices are

Qdiag = ξξT = [.052, .052, .052, .052, .052, .052, 22, 22, 22, 12, 12, 12,

02, 02, 02, 02, 02, 02, 02, 02, 02, 12, 12, 12]Tsens

RGPS,diag = (ηGPS)(ηGPS)T = [302, 302, 302]TGPS

Rsens,diag = (ηsens)(ηsens)
T = [.052, .052, .052, 12, 12, 12, 12, 12, 12]Tsens

(5.7)

The Q matrix represents the state signal noises ξ while R matrices represent the

output signal noises η. Actually, we can say that the model being used by EKF is

complete now. Note that there is also the period of data acquisition being taken into an

account in (5.7).

All results of the designed Kalman filter are in app. E. The main result that we

had to obtain is the estimate of the translational velocity. Figure 5.2 depicts the velocity

estimation of the extended INU simulation data2. In that figure we can see that the

estimation goes well for the signal of x-axis translational velocity u̇ while the results of

the other two velocity estimations are not so good. In addition no estimate, including

that of u̇, is good until the estimated system makes some movement.

The explanation lies in the GPS properties. According to the simulation settings

we made in sec. 4.3, the GPS signal varies ±3m in each axis and is acquired only once

per second. This choice was made with respect to (Nav, 2007). The velocity signal is

affected by both the GPS filtration step and the sensor filtration step using the data of

accelerometers. However, there is an integral relation between acceleration and velocity.

From the improper integral definition the solution is not unique and depends on the

initial conditions of the system. That is why we can filter the velocity signal relevantly

only by using the position data of GPS where the derivative unique relation is. If the

system makes some movement in any direction, it is obvious that, assuming the variance

2The extended in this case means that first 150 seconds of the simulation are the same as those

described in sec. 4.3. Then the simulation remains in the state when both translational accelerations

and angular rates are zero, until the simulation stops at 500 seconds.
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properties of GPS, the relative error will be much lower than in the case the system does

not move at all. For an illustartion, the difference between moving the speed3 of 10m/s

and 1m/s is that in former case the relative position after 1 second returned by GPS is

10 ± 3m and in the second case the position is 1 ± 3m. That is, the maximum relative

error of the position is in the former case ±30% while in the second one it is ±300%. The

quality of the estimation depends on the right choice of RGPS but the properties of GPS

signal limit it if the system moves either too slowly or not at all.

The conclusion is that this velocity estimation system is recommended to be used

for systems which translational velocities are not presumed to be near zero. The estima-

tion of the velocities near zeros using this system is very untrustful.

Figure 5.2: EKF velocity estimation (extended INU data)

3We assume the one dimensional movement
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Chapter 6

Hardware

This chapter discusses hardware programming and some hardware bugs, that have

been found during the project, as well as some suggestions of their solution.

6.1 Hardware programming

The backbone of the code comes from Martin Řezáč and implements the accelerom-

eter/gyroscope data collecting using SPI interface, the functions for matrix operations

such as matrix multiplication, Cholesky decomposition etc. and the basic template for

the extended Kalman filter algorithm. However, this code has to be added and modified

a little to suit the current problem. Note that whole code is located in inerce.c file on

the enclosed CD as well as its manual. It includes all necessary comments and hence this

section only introduces either the aspects that are needed to give them a closer look or

the interesting ones.

6.1.1 GPS data acquisition

As is written in sec. 2.4, the GPS receiver proceeds its data to the serial port UART1

of LPC2119. The serial link parameters are 9600 bps, 8 data-bits, no parity, 1 stop-bit.

To set these parameters for LPC2119 we can include a prepared header file uartzen.h

and then use function

UART−init((uint8−t)1, (uint32−t)1600, 11); (6.1)
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where the first argument specifies the UART channel, the second argument sets the baud

rate and the third argument is the interrupt priority. Note that the basic LPC2119 clock

frequency of 10MHz has been multiplied by six using an in-built Current Controlled

Oscillator (see (Phi, 2004)). The real baud rate is then actually six times greater than

the one that has been specified as the UARTinit argument. That is, the function 6.1

specifies the baud rate of 9600bps.

The GPS data are transferred in NMEA protocol form (see app. B). However, we

need to obtain the GPS position and altitude only; may be yet the actual time. This

information is located in GGA (Global positioning system fixed data) subprotocol. The

interesting part for us is

$GPGGA, time, latitude,N/S indicator, longitude, E/W indic., . . . , altitude, . . . ∗
(6.2)

The algorithm for GGA recognition runs in the UART1 interrupt routine. This al-

gorithm only runs some counters that are very quick and hence the usage of this algorithm

in interrupt routine is relevant. The algorithm is:

1. initialize a global variable char RXGPGGA[100] = ”$GPGGA ∗ \0;

2. wait for ”$” symbol

3. next five characters count the number of received ”G”, ”P” and ”A” symbols

4. if
∑
G = 3,

∑
P = 1 and

∑
A = 1, go to 5.; else return to 2.

5. fill any received character in the RXGPGGA until the ∗ symbol is received;

6. put 0x0D and 0x0A at the end of RXGPGGA. GPS data are ready now.

7. return to 2.

Note that the algorithm is prepared in the manner to be able to obtain the other

subprotocols of NMEA too. The appropriate parts of the code are currently commented

but if the need rises, a simple modification will allow us to gain those subprotocols.

We have just obtained a string RXGPGGA that contains the GGA subprotocol.

We need now to obtain the data we need from it. This problem is solved by the function

voidparse−GPGGA(void). This function parses the GGA protocol while knowing its

structure. That is, it parses the GGA protocol according to the commas it includes

and saves the appropriate data into separate string variables. After this procedure, the

38



obtained strings are converted to float type while the ”N/S” and E/W indicators affect

the positivity/negativity of the latitude and longitude.

6.1.2 Code optimization

The hardware version of the algorithm is actually similar to that being explain in

sec. 5.1. Hence I decided not to describe it in this chapter again. However, there is a big

difference in the calculation itself. Here comes its description.

The EKF algorithm 3.22 and 3.24 forces us to performe matrix multiplications.

As we have the A and P matrices of the order 24 (see C.2), only the A ·P multiplication

means, using a simple mathematics, 13, 824 float type multiplications and the whole

equation P = APAT + Q means 27, 648 float type multiplications. That is, the matrix

multiplications weight on MCU a lot and really slow down the whole calculation process.

If we take a closer look at the A matrix, however, we realize that so many multi-

plications are not necessary because the A matrix contains many spaces that are zero all

the time and hence the multiplications using those elements are always zero. Moreover

from the 10th to 24th row there are elements of ones only on the diagonal of A and hence

no multiplication is needed too. That is why the new multiplication algorithms have been

developed. They are

function multiplication count operation

ApAtQ 3,312 APAT +Q

pCt−gps 0 PCT
GPS

pCt−sens 216 PCT
sens

CpCtR−gps 0 CGPSPC
T
GPS +R

CpCtR−sens 216 CsensPC
T
sens +R∑

3,744

All functions are to be found both in C-code version in inerce.c and MATLAB-code

version in an appropriate m-file on the enclosed CD. Note that these code modifications

are very specific for the current state space model. If the model changes, these functions

will be useless.
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Figure 6.1: Magnetometer signal processing

6.2 Magnetometer data acquisition

According to sec. 2.3 the used magnetometer HMC2003 generates analog signal 0.5-

4.5V. The signal processing circuits changes the signal to fit the 3.3V A/D input of

LPC2119. To do this, the operational amplifiers are used (see fig. 6.1). I counted the

input-output voltage relation as

uo = 3.026ui − 6.029 (6.3)

where ui is the magnetometer signal and uo is the processed signal that is brought to the

LPC2119 A/D input. The experiment, when the known voltage was brought to the input

of amplifier and the output voltage was measured, confirmed the result (6.3). However,

applying this relation to the signals that were transformed by A/D converters brought

different results then I expected. That is, the size of measured magnetic intensity vector

was too different from the size of vector (3.18). Unfortunately, I was not able to solve

this problem within the thesis project due to the shortage of time.

6.3 Known hardware problems

Throughout whole project, it is quietly assumed that altitude data are obtained using

GPS measurements. It is true that the used GPS receiver provides this information but,

generally, it is very untrustworthy. The design counts with GPS altitude measures simply

because there is no other altitude source for the algorithm within the inertial navigation

unit (INU).

40



The solution for this problem is already in progress now but, most likely, will not

be completed before the end of this thesis. The solution consists in use of the barometric

altitude sensor. The concrete model of the barometric module that has been chosen is

MS5534B of the Intersema company which there is some experience with. The main

features are

• 10-1100mbar absolute pressure range

• Piezosensitive silicon micromachined sensor

• 15Bit ADC

• 3-wire serial interface

• low power and low voltage consumption

Complete information may be seen in (Int, 2005).
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Chapter 7

Conclusion

Within the project of the Stabilized camera platform for UAV Manta, the inertial

navigation unit (INU) is being developed. Although the camera platform is recently able

to compensate rotation impacts and keep the line of sight of the camera in constant

direction, the observation of some concrete stationary or moving object is rather different

and more difficult task. Generally, if the picture of an object that we observe in the

headquarters moves out of the screen, we do not know whether it is caused due to the

rotations of the camera carrier or due to the tranlational movement of the carrier alongside

the observed object. This fact forces us to develop navigation system that provides

translational velocity of the carrier.

The hardware for INU was developed by Jaroslav Žoha and Martin Řezáč. It

contains three-axis gyroscope, three-axis accelerometer, three-axis magnetometer as well

as a GPS module. None of these sensors provides the velocity data either directly or in

a sufficient period. That is why the three-axis velocity has to be estimated. This thesis

solves the problem of the velocity estimation using a given inertial navigation unit.

As the system is nonlinear, the extended Kalman filter method (EKF) has been

chosen. The thesis derives the solution, using this method, step by step. First, the math-

ematical background is provided. It contains basic information on the used coordinate

frames, EKF method, Cholesky decomposition and the mathematical models of the used

sensors. To use the EKF properly, we need to set a quality state space model for INU.

The INU model is derived from the sensor models. To allow the EKF to filter the offsets

of the accelerometers, gyroscopes and magnetometers, the model contains separate state

variables for them. The INU model order is 24.

The INU simulator has been developed in order to ensure the most effective EKF

design. The simulator uses MATLAB/Simulink interface and provides expected sensor
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output data as well as the true state data to observe the designed EKF properly. Sim-

ulated data are saved into the MATLAB workspace where they are prepared for further

EKF design.

The EKF design is made with respect to MCU abilities. That is, the Cholesky

decomposition is used instead of matrix inverse, the expected sample periods are applied,

the single precision floating point arithmetics are used etc. The designed EKF algorithm

also solves the problem of the different GPS sample time. The resulting estimation of

the velocity is compared to the true one produced by the simulator and discussed. The

estimates of the other state variables are also included in an appropriate appendix.

The last chapter discusses the hardware programming and some problems that ap-

peared during it. The hardware algorithm is actually the C-code version of the MATLAB

EKF design code. The C-code has been optimized using the exact knowledge of the state

matrices A and C. These matrices contain many zero elements all the time and hence

it is not necessary to compute whole matrix multiplication according to the definition.

For example, the optimization reduces the number of floating point multiplications of

the term APAT , where A and P are square matrices of order 24, from previous 27,648

to optimized 3,312. However, this optimization is very specific for the used state space

model. If another model is used, the optimization must be rebuilt.

Unfortunately, I was not able to obtain the proper data of the magnetometers

within the thesis project due to the time press. Also, it has been realized that the

altitude data provided by the GPS module are too untrustworthy. The solution has been

suggested in the last chapter. It consists in the use of a barometric module. The solution

is in progress and will not be completed within the thesis project.

Considering the mentioned sensor problems, it is useless to perform any experi-

ments using the programmed hardware. Before the sensors work properly, the computed

data are not relevant to make any conclusions.

I presume to go on with the project after the thesis has been finished.
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Appendix B

NMEA Protocol
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Appendix C

State space summary and Jacobians
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C.1 Nonlinear state space model

State equations in ẋ(t) = f(x, u, t) + ξ(t) form:

φ̇ = pest + qest sin(φ) tan(θ) + rest cos(φ) tan(θ) + ξφ

θ̇ = qest cos(φ)− rest sin(φ) + ξθ

ψ̇ = qest
sin(φ)
cos(θ)

+ rest
cos(φ)
cos(θ)

+ ξψ

u̇ = −qestw + restv − g sin θ + ax,est + ξu

v̇ = −restu+ pestw + g cos θ sinφ+ ay,est + ξv

ẇ = −pestv + qestu+ g cos θ cosφ+ az,est + ξw

ṗn = u(cψcθ) + c(cψsθsφ − sψcφ) + w(cψsθcφ + sψsφ) + ξpn

ṗe = u(sψcθ) + v(sψsθsφ + cψcφ) + w(sψsθcφ − cψsφ) + ξpe

ḣ = −u(sθ) + v(cθsφ) + w(cθcφ) + ξh

ṗest = 0 + ξpest

q̇est = 0 + ξqest

ṙest = 0 + ξrest

ṗoff = 0

q̇off = 0

ṙoff = 0

ȧx,off = 0

ȧy,off = 0

ȧz,off = 0

ḣx,off = 0

ḣy,off = 0

ḣz,off = 0

ȧx,est = 0 + ξax,est

ȧy,est = 0 + ξay,est

ȧz,est = 0 + ξaz,est
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However, we need a disceretized model. Hence we use 3.23 to obtain

φ(t+ T ) = T (pest + qest sin(φ) tan(θ) + rest cos(φ) tan(θ) + ξφ) + φ

θ(t+ T ) = T (qest cos(φ)− rest sin(φ) + ξθ) + θ

ψ(t+ T ) = T (qest
sin(φ)
cos(θ)

+ rest
cos(φ)
cos(θ)

+ ξψ) + ψ

u(t+ T ) = T (−qestw + restv − g sin θ + ax,est + ξu) + u

v(t+ T ) = T (−restu+ pestw + g cos θ sinφ+ ay,est + ξv) + v

w(t+ T ) = T (−pestv + qestu+ g cos θ cosφ+ az,est + ξw) + w

pn(t+ T ) = T (u(cψcθ) + c(cψsθsφ − sψcφ) + w(cψsθcφ + sψsφ) + ξpn) + pn

pe(t+ T ) = T (u(sψcθ) + v(sψsθsφ + cψcφ) + w(sψsθcφ − cψsφ) + ξpe) + pe

h(t+ T ) = T (−u(sθ) + v(cθsφ) + w(cθcφ) + ξh) + h

pest(t+ T ) = T (ξpest) + pest

qest(t+ T ) = T (ξqest) + qest

rest(t+ T ) = T (ξrest) + rest

poff (t+ T ) = poff

qoff (t+ T ) = qoff

roff (t+ T ) = roff

ax,off (t+ T ) = ax,off

ay,off (t+ T ) = ay,off

az,off (t+ T ) = az,off

hx,off (t+ T ) = hx,off

hy,off (t+ T ) = hy,off

hz,off (t+ T ) = hz,off

ax,est(t+ T ) = T (ξax,est) + ax,est

ay,est(t+ T ) = T (ξay,est) + ay,est

az,est(t+ T ) = T (ξaz,est) + az,est

(C.1)

where T is a sample period.

As the GPS output data are acquired less frequently than the output data of the

other sensors, we will express the GPS outputs separately. GPS output equations in

y(t) = g(x, u, t) + η(t) are

ypn = pn + ηygps,n

ype = pe + ηygps,e

yh = h+ ηygps,h
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and the output equations of the other sensors are

yhx = hx(cψcθ) + hy(sψcθ)− hz(sθ) + hx,off + ηymag,x

yhy = hx(cψsθsφ − sψcφ) + hy(sψsθsφ + cψcφ) + hz(cθsφ) + hy,off + ηymag,y

yhz = hx(cψsθcφ + sψsφ) + hy(sψsθcφ − cψsφ) + hz(cθcφ) + hz,off + ηymag,z

yp = pest + poff + ηygyro,p

yr = qest + qoff + ηygyro,q

yq = rest + roff + ηygyro,r

yax = ax,est + ax,off + ηyacc,x

yay = ay,est + ay,off + ηyacc,y

yaz = az,est + az,off + ηyacc,z

C.2 Jacobians

The size of state matrix A is [24, 24] and we express it as

∂f(x, u, t)

∂x
= A(x) =


A1,1 A1,2 · · · A1,24

A2,1 A2,2 · · · A2,24

...
...

. . .
...

A24,1 A24,2 · · · A24,24

 (C.2)

We assume now the substitutions (3.4) and also set

tθ = tan(θ),

We also assume the discretized state space model (C.1). The elements of A in (C.2)

are
A1,1 = T (qest(tθcφ)− rest(tθsφ)) + 1

A1,2 = T
qest(sφ)+rest(cφ

θ2
)

A1,10 = T

A1,11 = T (sφtθ)

A1,12 = T (cφtθ)

A2,1 = T (−qestsφ − restcφ)

A4,2 = T (−qestcθ)
A4,5 = T (rest)

A4,6 = T (−qest)
A4,11 = T (−w)

A4,12 = T (v)

A4,22 = T
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A2,11 = T (cφ)

A2,12 = T (−sφ)

A3,1 = T
qestcφ−restsφ

cθ

A3,2 = T
(qestsφ+restcφ)sθ

c2θ

A3,11 = T
sφ
cθ

A3,12 = T
cφ
cθ

A2,1 = T (−qestsφ − restcφ)

A2,11 = T (cφ)

A2,12 = T (−sφ)

A3,1 = T
qestcφ−restsφ

cθ

A3,2 = T
(qestsφ+restcφ)sθ

c2θ

A3,11 = T
sφ
cθ

A3,12 = T
cφ
cθ

A5,1 = T (gcθcφ)

A5,2 = T (−gsθsφ)

A5,4 = T (−rest)
A5,6 = T (pest)

A5,10 = T (w)

A5,12 = T (−u)

A5,23 = T

A6,1 = T (−gcθsφ)

A6,2 = T (−gsθcφ)

A6,4 = T (qest)

A6,5 = T (−pest)
A6,10 = T (−v)

A6,11 = T (u)

A6,24 = T

A7,1 = T (v(sψsφ + cψsθcφ) + w(sψcφ − cψsθsφ))

A7,2 = T (−ucψsθ + vcψcθsφ + wcψcθcφ)

A7,3 = T (−usψcθ + v(−sψsθsφ − cψcφ) + w(cψsφ − sψsθcφ))

A7,4 = T (cψcθ)

A7,5 = T (cψsθsφ − sψcφ)

A7,6 = T (sψsφ + cψsθcφ)

A8,1 = T (v(sψsθcφ − cψsφ) + w(−sψsθsφ − cψcφ))

A8,2 = T (−usψsθ + vsψcθsφ + wsψcθcφ)

A8,3 = T (ucψcθ + v(cψsθsφ − sψcφ) + w(sψsφ + cψsθcφ))

A8,4 = T (sψcθ)

A8,5 = T (cψcφ + sψsθsφ)

A8,6 = T (sψsθcφ − cψsφ)

A9,1 = T (vcθcφ − wcθsφ)

A9,2 = T (−ucθ − vsθsφ − wsθcφ)

A9,4 = T (−sθ)
A9,5 = T (cθsφ)

A9,6 = T (cθcφ)

A2,2 = A3,3 = . . . = A24,24 = 1

The remaining components of A that are not in the list above are equal to zero.
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We will now express matrix CGPS for GPS data, which size is [3, 24], and matrix

Csens, which size is [9, 24], in the same way as (C.2)

∂gGPS(x, u, t)

∂x
= CGPS(x) =


CGPS,1,1 CGPS,1,2 · · · CGPS,1,24

CGPS,2,1 CGPS,2,2 · · · CGPS,2,24

CGPS,3,1 CGPS,3,2 · · · CGPS,3,24

 (C.3)

∂gsens(x, u, t)

∂x
= Csens(x) =


Csens,1,1 Csens,1,2 · · · Csens,1,24

Csens,2,1 Csens,2,2 · · · Csens,2,24

...
...

. . .
...

Csens,9,1 Csens,9,2 · · · Csens,9,24

 (C.4)

The elements of CGPS corresponding to GPS outpus in (C.3) are

CGPS,1,7 = 1, CGPS,2,8 = 1, CGPS,3,9 = 1

All other elements of CGPS are equal to zero. Finally, the elements of Csens are

Csens,1,2 = −hg0,xcψsθ − hg0,ysψsθ − hg0,zcθ
Csens,1,3 = −hg0,xsψcθ + hg0,ycψcθ

Csens,1,19 = 1

Csens,2,1 = hg0,x(sψsφ + cψsθcφ) + hg0,y(sψsθcφ − cψsφ) + hg0,zcθcφ

Csens,2,2 = hg0,xcψcθsφ + hg0,ysψcθsφ − hg0,zsθsφ
Csens,2,3 = hg0,x(−sψsθsφ − cψcφ) + hg0,y(−cψsθsφ − sψcφ)

Csens,2,20 = 1

Csens,3,1 = hg0,x(spscfi − cψsθsφ) + hg0,y(−sψsθsφ − cψcφ)− hg0,zcθsφ
Csens,3,2 = hg0,xcψcθcφ + hg0,ysψcθcφ − hg0,zsθcφ
Csens,3,3 = hg0,x(cψsφ − sψsθcφ) + hg0,y(sψsφ + cψsθcφ)

Csens,3,21 = 1

Csens,4,10 = 1, Csens,4,13 = 1

Csens,5,11 = 1, Csens,5,14 = 1

Csens,6,12 = 1, Csens,6,15 = 1

Csens,7,16 = 1, Csens,7,22 = 1

Csens,8,17 = 1, Csens,8,23 = 1

Csens,9,18 = 1, Csens,9,24 = 1

The elements of Csens that have not been mentioned are equal to zero.
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Appendix D

Simulator subsystems
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Euler transform ground-air
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Appendix E

EKF and INU simulation results

E.1 INU simulation outputs

Figure E.1: Accelerometers and gyros outputs of the INU simulator to the

left and the detail to the right
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Figure E.2: Magnetometers and GPS outputs of the INU simulator to the

left and the detail to the right
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E.2 EKF simulation results

Figure E.3: EKF results: Euler angles, trans. velocities and gravity vector
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Figure E.4: EKF results: GPS, mag. intensity and angular rates
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Figure E.5: EKF results: acceleration and offset estimates
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Appendix F

CD contents

• this text in PDF format

• datasheets of the used sensors and MCU

• MATLAB/Simulink

– INU simulator Simulink file as well as the simulator ini-

tialization m-file

– simulated data in workspace form

– EKF design code

– the MATLAB code containing the algorithm for MCU

code optimization

• C-code for MCU and its manual
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