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Abstract

This thesis describes the design, implementation and evaluation of a software frame-
work that facilitates development of real-time, possibly distributed, applications.
The basic idea of the framework is to let the application developer specify the
temporal (and resource) requirements of his/her application and the framework
guarantees keeping of these requirements, provided that there are enough resources
in the system. In the case of insufficient resources, the framework does not
let the application run. Application requirements are specified in the so called
service contract that the application negotiates with the framework. A successfully
negotiated contract results in creation of a virtual resource, which represents “a part”
of the real resource reserved for the use by the application. To not over-reserve the
available resources, the framework employs on-line admission tests that are based
on state-of-the-art schedulability analysis. One of the main strengths of presented
framework is its modularity with respect to support of additional resources, which
is shown by integration of six different resources (CPU, network, etc.) into the
framework. The prototype implementation of the framework was developed under
Linux operating system and it was extensively evaluated on both synthetic tests and
real-world multimedia application.

Keywords: real-time, middleware, schedulability analysis
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Goals and Objectives

The main goals of this work have been set as follows.

1. Design and implement a modular software framework supporting resource
reservations on heterogeneous resources for distributed real-time applications.
The framework should be easily extensible with support for new resources and
should allow task migration between resources.

2. Evaluate the framework on a real multimedia application.

3. Develop and evaluate an admission test for wireless network (Wi-Fi) to be used
in the framework.

4. Formulate schedulability analysis for tasks with offsets as an integer linear pro-
gramming problem and evaluate the performance on analyzing multiprocessor
and distributed systems.
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1
Introduction

Approximately 90% of all microprocessors is now used in embedded systems and
their number is still rapidly increasing. Many of embedded systems are real-time
systems, which means that they must react to various events within precise temporal
constraints. As the embedded system platforms grow and becomes more and more
complex, it is more difficult to develop software satisfying the required temporal
constraints. Furthermore, industry is seeking for cost effective development process
and short time-to-market, which is traditionally achieved by allowing the designers
to work at higher levels at which the design is abstracted from unnecessary details.
The details are encapsulated in independently developed components, which provide
the desired functionality and the goal is to reuse as most components as possible
among projects.

In the context of real-time systems, the major concern is how to ensure
satisfaction of temporal constraints. When the system is simple, there exist
many well known methods for checking that the system satisfies the required
temporal constraints. However, todays systems are not simple, they are often
distributed, composed from heterogeneous hardware, the requirements on those
system dynamically change in the course of system run-time, the software which
is run on these systems is complex and so on. For these reasons, ensuring temporal
correctness of such systems is a very complex and expensive process. Component
middleware platforms used in other areas of software industry usually deal only
with functional properties and lack the support for temporal (also called non-
functional) properties. When such a middleware platform is used to develop a real-
time application, the violation of temporal constraints is often detected at the very
last development stage. It is clear that such a finding prolongs the development
schedule and increases development costs.

Although the real-time system research community developed many techniques
for analyzing temporal properties of complex real-time systems, these techniques are
not widely used in industry for several reasons. The use of the methods is often too
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2 Chapter 1 Introduction

complicated, the methods expect unrealistic conditions such as task independence,
or the methods are tailored to only one part of the real-time system, leaving other
parts unanalyzed. Another big problem of real-time analysis techniques is that
they expect the Worst-Case Execution Time (WCET) to be known. With modern
hardware, this is almost impossible [McGuire et al., 2009] and overestimating WCET
leads to pessimism in the results of analysis and increases the cost of the system.

As can be seen from the previous paragraphs, the current development method-
ologies targeting real-time systems have many limitations. Therefore, the following
is a set of challenges for future design methodologies.

Cost-effective development of real-time systems. It is agreed that a way
to lowering the development costs is to facilitate software reuse and to decrease
the need for extensive testing at the last stages of the development process.
The use of upcoming “resource-aware” component middleware platforms providing
temporal isolation of components and the use of model-driven engineering approaches
[Schmidt, 2006] will allow reaching these goals.

Dynamically changing resource requirements and availability. In todays
real-time systems, the resource demands often change dynamically over time and
are not known a priori. Also the resource availability may change over time, e.g.
because of the need to save power. For these reasons real-time applications need
a capability to adapt to changing conditions in a way that does not violate their
temporal requirements in an uncontrollable manner.

Integration of design optimization and schedulability analysis into devel-
opment process. In dynamic systems described in the previous paragraphs, it is
quite complicated to assure the optimal use of available resources on one side and
satisfying the temporal constraints of such systems on the other side. The future
real-time systems will utilize on-line admission tests and optimization procedures to
achieve both these properties.

1.1 Contribution

This thesis presents a framework which addresses certain aspects of the above
mentioned challenges. In its essence, the framework provides temporal isolation
of tasks running on various resources and facilitates the resource management in
dynamic and distributed real-time applications. Due to these properties, it could be
used as a run-time platform of a component-based middleware. Depending on the
properties of the underlying platform, the framework could support both hard and
soft real-time applications, but this thesis focuses more on soft real-time applications
as the underlying platform is Linux.

In particular, the contributions of this thesis are the following.

Highly modular resource reservation framework supporting heteroge-
neous resources. The set of resources which are utilized in real-time systems
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(CPUs, networks, etc.) differs from project to project. The framework presented in
this thesis enables easy extension of the resources it supports. This is demonstrated
by integration of a wide range of resources used in real-time systems into the
framework. Currently integrated resources are: CPU (various schedulers), hard disk,
various wired and wireless networks and Field Programmable Gate Arrays (FPGAs).

Evaluation of the framework on the real multimedia application. The
framework was used to develop a distributed multimedia application resembling a
video surveillance system. Based on the experience with this application we report
on the practical usability strengths and weaknesses of the framework

Wireless network support in resource reservation framework. Wireless
networks represent a challenge for real-time systems since the temporal guarantees
provided by the underlying network layers are very limited. In this thesis, we describe
how wireless Local Area Networks (LANs) based on IEEE 802.11e (QoS enabled
Wi-Fi) standard can be integrated into a resource reservation framework and we
evaluate the presented approach. We also describe the integration of wireless sensor
networks into the framework.

Integer programming-based conditions for schedulability of fixed-priority
tasks with offsets. Schedulability analysis approaches based on mathematical
programming are gaining popularity among real-time researches because they
allow direct integration of schedulability analysis into general design optimization
processes. In this thesis we derive conditions for schedulability analysis of tasks with
offsets and show their applicability to the schedulability analysis of multiprocessor
and distributed systems. This kind of advanced schedulability analysis could
be possibly integrated into the resource reservation framework to make it easily
applicable in the industry.

1.2 Structure of the Thesis

This thesis is structured as follows: Chapter 2 introduces the basic terms and
concepts that are used throughout this thesis. In Section 2.1 we mention the basics
of real-time computing i.e. common scheduling algorithms, analysis techniques etc.
Then we discuss distributed real-time systems and their challenges in Section 2.2
and conclude with Section 2.3 covering high-level approaches to real-time application
development such as component-based development and model-driven engineering.

Chapter 3 describes the architecture and general principles of the developed
resource reservation framework. In Section 3.1 we give our motivation for designing
our framework. Then, the basic architecture of the framework is presented in
Section 3.2. We follow with Section 3.3 describing the advanced concepts and
important internal details of the framework. This chapter is concluded by the
mathematical formalism used to formulate optimization problems to be solved by
the framework.
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Chapter 4 describes the resources supported by the framework. We start
in Section 4.1 by CPU resource which is supported by integration of AQuoSA
architecture [Palopoli et al., 2009] and continue with description of disk resource
in Section 4.2. Both these resources were contributed by researches from Scuola
Superiore Sant’Anna, Italy. In Section 4.3 we describe how wireless LANs are
supported and the experiments, which lead to the current design of this support.
Integration of wireless sensor networks is shown in Section 4.5 and we close this
chapter by describing the support for coprocessors in FPGA.

The evaluation of the performance, properties and usability of the framework is
provided in Chapter 5 . First, the overhead of the negotiation process is evaluated in
Section 5.1, then we evaluate the Wi-Fi resource support in Section 5.2. This section
is completed by Section 5.3 where we present an integrated case-study comprising
of a multimedia application utilizing three different resources simultaneously.

Chapter 6 deals with Integer Linear Programming (ILP) formulation of schedu-
lability analysis for tasks with offsets. Section 6.1 introduces the computational
model and Section 6.2 recapitulate existing formulation published in [Palencia and
González Harbour, 1998]. The ILP problem is formulated Section 6.3 and its
performance is evaluated on experiments in Section 6.4.

Finally, the thesis ends with a conclusion in Chapter 7 summarizing the main
contributions of the presented work.



2
Basic Concepts and

State-of-the-Art

This chapter introduces the concepts on which the work in this thesis is based. The
main topic in this thesis is real-time systems so this chapter starts with a brief
overview of real-time systems theory in Section 2.1. Since the framework presented
in this thesis is intended to be used in distributed real-time systems, Section 2.2
describes the advantages of distributed real-time systems as well as the challenges
it imposes on real-time software. Finally, Section 2.3 provides an overview of
model-driven engineering and component based development methodologies, which
are promising approaches to development of real-time systems that reduce the
development complexity and cost on one side and increase the reliability of the
resulting systems on the other side.

2.1 Real-Time Computing

Real-Time (RT) systems are computing systems that must react within precise time
constraints (deadlines) to events in the environment. As a consequence, the correct
behavior of these systems depends not only on the results of the computations but
also on the time at which the results are produced [Stankovic and Ramamritham,
1989]. Examples of applications that require real-time computing include:

– chemical and nuclear plant control,

– automotive applications,

– flight control systems,

– multimedia and virtual-reality systems,

– telecommunication systems,

5



6 Chapter 2 Basic Concepts and State-of-the-Art

– robotics and

– industrial automation.

There are two basic categories of real-time systems – hard real-time systems and
soft real-time systems. Deadline miss in a hard real-time system has catastrophic
consequences so such systems must be designed to always meet their deadlines.
In soft real-time systems a certain amount of deadline misses can be tolerated
although they are not desirable. Typical example of a soft real-time are multimedia
applications.

Since real-time systems are often used in critical applications, where a failure of
the system is very dangerous, it is necessary to verify the system before it is run for
the first time in the target environment. For the real-time systems it is important to
analyze whether the scheduling of activities in the system satisfies all required timing
constraints. The analyzed system has to be modelled and then an schedulability
analysis technique is used to analyze the properties of the model. Section 2.1.1 deals
with models of real-time systems and some approaches to schedulability analysis are
covered in Section 2.1.2.

2.1.1 A Model of Real-Time System

The definition of a real-time system model can be very complicated if we want the
model to describe all possible real-time systems. Such a model can be found in [Liu,
2000]. For the purpose of this chapter I will introduce a basic model covering the
most typical real-time systems and refine the model in the subsequent chapters where
it is necessary.

In general, the model of a real-time system consists of tasks, resources and
algorithms that determine how the resources are managed. Resources can be of
two major types: active resources (processors) and passive resources.

Active Resources

Active Resources can execute tasks and each task, in order to be executed, needs at
least one processor. Typical examples or processors are CPUs, networks, disks or
databases. Some systems consist of only one processor (mono-processor systems)
whereas others contain more processors, possibly of different type. If all the
processors are of the same type, the system is called Symmetrical Multiprocessor
(SMP). An example of a system with different types of processors is a distributed
control system where there are CPUs executing computation tasks and network(s)
“executing” communications tasks.

Passive Resources

Passive resources are additional resources in the system that cannot directly execute
tasks, but a task may require such resource in addition to the processor in order
to make progress. Typical examples of passive resources are memory, shared data
accessed in mutually-exclusive manner or sequence numbers (in networks).
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Figure 2.1: Parameters of a task; a) a non-periodic task, b) a periodic task

Tasks

Tasks in the system represent the workload that needs to be done by the system in
order to perform its desired functionality. Various tasks will be denoted by Greek
letter τ . Temporal properties of tasks are characterized by various parameters. The
most typically used parameters are:

Release time r is the time at which the task enters the system (is activated) and
is ready to be executed. Release time can be fixed or varying. In the latter
case it is usually given by lower and upper bounds and the difference between
these two values is called release-time jitter.

Execution time C (also know as computation time) is the amount of time required
to complete the task when it executes alone and has all the resources it needs.
In this thesis, it is assumed that this parameter has the meaning of the Worst-
Case Execution Time (WCET), i.e. the actual execution time can be less than
the value of this parameter.

Deadline D of a task is an instant in time by which the execution of the task is
required complete. The deadline can be relative or absolute. Relative deadline
is defined as the difference between the absolute deadline and some other point
in time (usually release time).

Response time R is the length of time interval from release of the task to the
instant when it completes.

Graphical representation of task parameters is shown in Figure 2.1a. The task
in the figure has release time r and release jitter J so the actual release time occurs
always between r and r + J . C is the execution (computation) time and R is the
response time. If the task completes its execution before its deadline D (i.e. R ≤ D)
it is said to be schedulable. The whole system is schedulable if and only if all tasks
in the system are schedulable.

For the purpose of this thesis the concept of a periodic task is very important.
Periodic tasks are tasks activated periodically with a fixed period T as depicted in
Figure 2.1b. Each activation of the task releases the execution of one instance of that
task, which is called a job. All parameters of jobs are the same as of its associated
task but some of them such as release time or deadline are treated as being relative
to the beginning of the period.
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Algorithms

Algorithms in the context of the real-time system can be divided into two classes.
The first class comprises scheduling algorithms, whose purpose is to assign tasks

to active resources for execution. These algorithms are typically executed on-line,
while the system is running. This is different from so called off-line (clock-driven
or time-triggered) scheduling where the schedule is computed in advance and during
run-time the tasks are executed according to the pre-computed schedule . Scheduling
algorithms can be either preemptive or non-preemptive. Preemptive means that
the currently executing task on a processor can be preempted in the course of its
execution if the scheduler decides to execute another task on that processor. Tasks
scheduled in non-preemptive manner cannot be preempted; as long as a task is
being executed it always completes before another task has a chance to run. The
most common scheduling algorithms are described in Section 2.1.1.

Algorithms in the other class control how the tasks access the passive resources.
This class include algorithms like memory allocators or concurrency control algo-
rithms. While memory allocators are out of the scope of this thesis, some of the
most common concurrency control algorithms are described in Section 2.1.1.

The selection of algorithms for use in a real-time system has significant influence
to temporal properties of the system.

Scheduling Algorithms

The most common scheduling algorithm for CPU in todays Real-Time Operating
Systems (RTOSs) is Fixed Priority Scheduling (FPS) algorithm. Under this
algorithm each task is assigned a unique fixed priority. The scheduler always chooses
to execute the task with the highest priority among all tasks that are ready to be
run.

In the system scheduled by a fixed priority scheduler it is very important how
are the priorities assigned to the tasks. There exist several priority assignment
algorithms which are optimal in some sense:

The Rate-Monotonic (RM) priority assignment algorithm assigns priorities to
the tasks according to their periods: the shorter period, the higher priority. For
a set of independent tasks with deadlines equal to their respective periods, where
task priorities are assigned in rate-monotonic manner, the fixed priority scheduler
produces optimal schedule in the sense that if the system is schedulable under some
priority assignment, it is also schedulable under rate-monotonic priority assignment
[Liu, 2000].

The Deadline-Monotonic (DM) priority assignment assigns priorities to the tasks
according to their deadlines: the shorter deadline, the higher priority. This priority
assignment is optimal in the same sense as the RM assignment even if deadlines are
shorter the respective periods.

When the FPS algorithm is used together with RM priority assignment, it is
sometimes referred to as RM algorithm for short. In the same way, FPS together
with DM assignment is referred to as DM algorithm.

Another, quite often used, on-line real-time scheduling algorithm is Earliest
Deadline First (EDF). This algorithm is sometimes referred to as one of the dynamic
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Figure 2.2: An example of priority inversion; dark color means that the task is in the critical
section.

priority algorithms because it can be implemented on top of the fixed (static) priority
scheduler by changing the priorities dynamically at run-time. This algorithm chooses
the task to be executed as the one with the earliest deadline.

EDF has many advantages over FPS [Buttazzo, 2005] but as opposed to FPS, it
is not widely used in industrial real-time operating system.

Concurrency Control Algorithms

This section deals with algorithms that determine how the concurrently tasks can
access passive resources in a mutually exclusive way. In the case of shared data the
access is typically guarded by a semaphore (mutex), which ensures mutual exclusion.
When a task wants to access the shared data guarded by a semaphore, it must first
lock the semaphore. Then it enters the critical section of the code where it can
access the shared data. The critical section ends when the semaphore is unlocked.
Concurrency control algorithms are typically defined as a resource access-control
protocol, which is a set of rules that govern (1) when and under which conditions
each request for resource is granted and (2) how tasks requiring these resources
are scheduled. The reason for having such protocols is that these protocols make
the execution of concurrently running tasks more deterministic by e.g. preventing
priority inversion. Some of these protocols are capable of preventing deadlocks [Liu,
2000].

Priority inversion occurs when two tasks share a mutually exclusive accessed
resource. In the example from Figure 2.2 a low priority task τ3 starts accessing a
resource at time 1 (dark rectangle). At time 2, it is preempted by high priority task
τ1. That task needs to access the resource at time 3 but as the resource is now
accessed by τ3, τ1 is blocked and τ3 continues execution. Unfortunately, at time 4,
τ3 is interrupted by middle priority task τ2, which now blocks not only the lower
priority task τ3 but also the high priority task τ1, because it is blocked by τ3. Task τ2
finishes its execution at time 6 and task τ3 continues and releases the resource at time
7. Then the high priority task τ1 can finally continue its execution by acquiring the
access to the resource. The problem with priority inversion is that the high priority
task can suffer unbounded blocking by lower priority tasks even if those tasks do not
access the shared resource.

A basic protocol for avoiding the priority inversion problem is called Priority
Inheritance Protocol (PIP). The protocol is described by a simple rule: If a lower
priority task τl is blocking a higher priority task τh, then τl is executed with the
priority of τh. It is said that τl “inherits” the priority of τh. The priority inheritance
protocol prevents unbounded blocking.
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Another protocol is called Priority Ceiling Protocol (PCP) and offers some
advantages with respect to PIP. It prevents deadlocks and the worst-case blocking
time is smaller then for PIP. One disadvantage is that a system designer has to
assign every resource a ceiling value (see bellow). The PCP rules are as follows:

– Each task has a static default priority assigned (perhaps by the rate monotonic
algorithm).

– Each resource has a static ceiling value defined. This is the maximum priority
of the tasks that use it.

– A task has dynamic priority that is the maximum of its own static priority and
any it inherits due to its blocking higher-priority tasks.

– A task can only lock a resource if its dynamic priority is higher than the
ceiling of any currently locked resource (excluding any that it has already
locked itself).

The important property of these resource access protocols is that the maximum
time a task is blocked due to accessing a passive resource is bounded and can be
simply calculated. This is different from the case when no resource access protocol
is used, in which case the maximum blocking is potentially infinite.

The maximum time a task τi is blocked by another task due to accessing a shared
resource is called blocking term Bi. For PIP the blocking term can be calculated
according to

Bi =
∑

r∈used(i)

C(r), (2.1)

where used(i) is the set of shared resources accessed by task τi and C(r) is the
worst-case execution time of the critical section of resource r.

For PCP, the blocking term is calculated as follows:

Bi = max
r∈used(i)

C(r). (2.2)

As can be seen from comparison of (2.1) and (2.2) PCP can offer smaller blocking
term.

2.1.2 Schedulability Analysis Techniques

The purpose of schedulability analysis is to determine whether the model of a real-
time system is schedulable i.e. whether the temporal constraints are always satisfied.

One of the simplest schedulability analysis techniques is utilization-based analysis.
Utilization of a periodic task is the number u = C

T (the ratio of computation time
and period) and system utilization is the sum of the utilizations of all tasks in
the system. If the system of independent tasks with deadlines equal to periods is
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scheduled by rate-monotonic algorithm and satisfies inequality (2.3), then the system
is schedulable [Liu, 2000].

U =

N∑
i=1

Ci
Ti
≤ N(21/N − 1) (2.3)

In this equation N is the total number of tasks in the system and Ci and Ti are
computation times and periods of individual tasks. The right side of the inequality is
called utilization bound and for N →∞ it is approximately equal to 0.693. Condition
(2.3) is sufficient but not necessary so if the utilization of the model is greater than
this bound, the system might or might not be schedulable.

This limitation of this method can be overcame by response-time analysis, which
computes worst-case response times of tasks in the system and compare them with
task deadlines. If all deadlines are met, the system is schedulable. Various response
time analysis methods differ in the complexity of the model they are able to analyze.
Often the model of the system is not precise enough and response-time analysis of
the model gives too pessimistic results. In that case when, according to this method,
the model is not schedulable the real system may or may not be schedulable and
another technique must be used to obtain a less pessimistic answer.

One of the response-time analysis techniques is described in the following
subsection and another – more advanced – is described in chapter 6.

Rate-Monotonic Analysis

As was written above, the Rate-Monotonic Analysis (RMA) technique calculates
task worst-case response time. It assumes a system of independent tasks scheduled
by RM algorithm.

Definition 1 A task τ busy period is an interval during which the processor is busy
processing task τ or higher priority tasks.

If there is another job of either task τ or another higher priority task activated at
the same time as the busy period would have ended if that job had not been there,
then the busy period ends at the completion time of the previous job and another
busy period begins at that same time.

Worst-Case busy period is the longest possible busy period. 2

Definition 2 Critical instant of a task τ is an instant at which the worst-case busy
period of task τ starts. 2

Theorem 1 (from [Liu, 2000]) In a fixed-priority system where every job com-
pletes before the next job of the same task is released, a critical instant of any task τ
occurs when a job of this task is released at the same time as jobs of all higher-priority
tasks. 2

When the critical instant of task τi is known the worst-case response time of that
task Ri can be computed as

Ri = Ci + Ii, (2.4)
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where Ii is the interference from all higher priority tasks. To determine the value of
Ii the number of activations of each of higher priority tasks during the task τi busy
period have to be calculated. The number of activations of higher priority task τh
is calculated as

ni,h =

⌈
Ri
Th

⌉
(2.5)

where half square brackets represent ceiling operation. The total interference from
that task is

Ii,h = ni,hCh =

⌈
Ri
Th

⌉
Ch (2.6)

Substituting (2.6) in (2.4) we get the following equation for response time Ri:

Ri = Ci +
∑

h∈hp(i)

⌈
Ri
Th

⌉
Ch, (2.7)

where hp(i) is the set of tasks with priority higher than task τi.
This equation has the unknown variable Ri at booth sides and the right-hand

side is a non-linear expression thanks to the ceiling operation. The equation can be
solved by using the following recurrence formula:

wn+1
i = Ci +

∑
h∈hp(i)

⌈
wni
Th

⌉
Ch (2.8)

The sequence w0
i , w

1
i , . . . , w

n
i , . . . is monotonically non-decreasing. When wn+1

i = wni
the solution to equation (2.7) has been found: Ri = wni [Burns and Wellings, 2001].

Response Time and Blocking

When tasks in the system are not independent and need to synchronize their access
to shared passive resources in mutually exclusive manner, equation (2.7) no longer
holds because tasks may suffer blocking from a lower-priority tasks as described
in Section 2.1.1. In that case it is possible to calculate blocking term Bi, which
represents the longest possible blocking time of the task and the equation (2.7)
turns into

Ri = Ci +Bi +
∑

h∈hp(i)

⌈
Ri
Th

⌉
Ch (2.9)

and can be solved the same way as equation (2.7).

Timed Automata-Based Response-Time Analysis

Another approach to response-time analysis is the approach based on timed
automata. Time automaton is an extension to deterministic finite automaton, which
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can evolve not only depending on its inputs but also on the time [Alur and Dill, 1994].
Using timed automata, it is possible to model the scheduler of an operating system,
task executed in it as well as the environment [Waszinowski and Hanzálek, 2003].
As the time automaton can model the internal structure of the task, e.g. conditional
branches, the response-time analysis based on the theory of timed automata can be
very exact. The drawback is that the analysis suffer from combinatorial explosion
and thus can only be used to analyze small systems.

2.1.3 Server-Based Scheduling

For real-time systems composed only of periodic activities, it is usually sufficient
to use the scheduling algorithms described in Section 2.1.1. However, many system
must deal with soft real-time activities whose temporal parameters are not known
in advance. It might be that the rate of invocation changes between invocations
(aperiodic/sporadic tasks) or the Worst-Case Execution Time (WCET) is not known
exactly. One possibility of dealing with such activities is to execute them as tasks
with low priority (under FPS) or with infinite deadline (under EDF) so that these
activities cannot “steal” the processing resource from the hard real-time activities.
However, if some guarantees are required even for such tasks (e.g. “when the
aperiodic task arrives not faster than once per second, it will be completed by
deadline of 10 milliseconds”), such approach may not work and one has to use
something different. And this is what server-based scheduling offers.

Scheduling servers protect the processing resources needed by hard real-time
tasks, but otherwise allow aperiodic/sporadic tasks to run as soon as possible. There
exist many types of servers. All servers limit the capacity of the resource available
to the tasks and differ in a way how this capacity is consumed and replenished.

Scheduling server are used in the framework described in the next chapter as a
mean for providing temporal isolation between tasks. A buggy task running under
the server cannot influence timing properties of another tasks in an uncontrollable
way.

Deferrable Server

Deferrable server [Lehoczky et al., 1987] is designed for fixed-priority systems and is
defined by two parameters: period Ts and execution budget Bs.

Consumption rule: The budget is consumed at the rate of one unit time
whenever the server executes.

Replenishment rule: The execution budget is set to Bs at time instants kTs
for k = 1, 2, . . ..

From the rules, it can be seen that if there was a non-zero budget before
replenishment, that budget is lost, i.e. the unused budget doesn’t cumulate from
period to period.

From the schedulability analysis point of view, response-time analysis of systems
using deferrable servers can accomplished similarly as shown in Section 2.1.2. The
response time equation (2.4) has to be extended to count with the interference Is



14 Chapter 2 Basic Concepts and State-of-the-Art

caused by the server:

Ri = Ci + Ii + Is. (2.10)

When the server is executed at the highest priority,

Is = Bs +

⌈
Ri −Bs
Ts

⌉
Bs. (2.11)

By comparing this expression with (2.6), it can be seen that the interference caused
by a deferrable server is higher then the interference caused by a periodic task with
execution time Bs and period Ts. This complicates the use of deferrable servers in
cases when another schedulability analysis developed for periodic tasks needs to be
employed.

Sporadic Server

Sporadic server [Sprunt et al., 1989] was designed with the goal of having the same
properties as a periodic task with parameters corresponding to the server parameters,
which are execution budget Bs and period Ts. The rules of sporadic server allow the
budget to be consumed and replenished in chunks rather than as a whole as in the
case of deferrable server. The sporadic server is defined by the following rules [Liu,
2000]:

Notation. The rules bellow use this notation: tr denotes the latest (actual)
replenishment time. tf denotes the first instant after tr at which the server begins
to execute. te denotes the latest effective replenishment time. At any time t,
BEGIN is the beginning instant of the earliest busy interval among the latest
contiguous sequence of busy intervals of the tasks with higher-priority than the
server that started before t. (Two busy intervals are contiguous if the later one
begins immediately after the earlier one ends.) END is the end of the latest busy
interval in the above defined sequence if this interval ends before t and equal to
infinity if the interval ends after t.

Breaking of execution budget into chunks:

1. Initially, the budget = Bs and tr = 0.

2. Whenever the server is suspended, the last chunk of budget being consumed
just before suspension, if not exhausted, is broken up into two chunks: The rst
chunk is the portion that was consumed during the last server busy interval,
and the second chunk is the remaining portion. The rst chunk inherits the
next replenishment time of the original chunk. The second chunk inherits the
last replenishment time of the original chunk.

Consumption rules:

1. The server consumes the chunks of budget in order of their last replenishment
times.
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2. The server consumes its budget only when it executes.

Replenishment rules:

1. At time tf , if END = tf , te = max(tr,BEGIN). If END < tf , te = tf . The
next replenishment time is set at te + Ts.

2. The next replenishment occurs at the next replenishment time, except under
the following conditions. Under these conditions, replenishment is done at
times stated below.

(a) If the next replenishment time te + Ts is earlier than tf , the budget is
replenished as soon as it is exhausted.

(b) If the system becomes idle before the next replenishment time te+Ts and
becomes busy again at tb, the budget is replenished at min(te + Ts, tb).

3. The chunks are consolidated into one whenever they are replenished at the
same time.

The sporadic server scheduling policy is included in Portable Operating System
Interface [for Unix] (POSIX) standard under the name SCHED SPORADIC. The
rules of POSIX sporadic server were modified to lower the algorithmic complexity
of the implementation, however, recently it turned out, that the POSIX sporadic
server does not have the always the same effect as a simple period task [Stanovich
et al., 2010].

Constant Bandwidth Server

It is possible to implement sporadic server even in systems scheduled by EDF, but
for such systems there exist servers which are much simpler. A very popular server is
the Constant Bandwidth Server (CBS) [Abeni and Buttazzo, 1998], which guarantees
that the server does not contribute to the resource utilization more than by a defined
fraction, even in the case that the real WCET of jobs executed by the server is greater
than declared. The authors of CBS define it by the following rules:

1. A CBS is characterized by a budget cs and an ordered pair (Qs, Ts), where Qs is
the maximum budget and Ts is the period of the server. The ratio Us = Qs/Ts
is denoted as the server bandwidth. At each instant, a fixed deadline ds,k is
associated with the server. At the beginning ds,k = 0.

2. Each served job Ji,j is assigned a dynamic deadline di,j equal to the current
server deadline ds,k.

3. Whenever a served job executes, the budget cs is decreased by the same
amount.

4. When the budget cs = 0, the server budget is recharged to the maximum value
Qs and a new server deadline is generated as ds,k+1 = ds,k + Ts.

5. When a job Ji,j arrives and the server is busy processing another jobs, the
request is enqueued in a queue of pending jobs.
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6. When a job Ji,j arrives and the server is not busy, if cs ≥ (ds,k − ri,j)Us the
server generates a new deadline ds,k+1 = ri,j + Ts and cs is replenished to the
maximum value Qs, otherwise the job is served with the last server deadline
ds,k using the current budget.

7. When a job finishes, the next pending job, if any, is served using the current
budget and deadline.

8. At any instant, a job is assigned the last deadline generated by the server.

2.2 Distributed Real-Time Systems

Modern real-time systems are often distributed across multiple processing nodes
which are interconnected by a network. The reasons in favor of distribution of real-
time systems include the following [Burns and Wellings, 2001]:

– improved performance through the exploitation of parallelism,

– increased availability and reliability through the exploitation of redundancy,

– dispersion of computing power to the locations in which it is used.

– the facility for incremental growth through the addition or enhancement of
processors and communication links.

One of the main issues, when it comes to distributed real-time systems, is how to
ensure meeting of timing constraints in activities executed across multiple resources.
Such activities are called transactions. An example of a transaction in a distributed
system is a distributed feedback controller. A sensor node measures data from the
plant and sends them across the network to the node running the control algorithm.
Based on the measured data, the control algorithm calculates an action, which is
sent to the actuator node. The actuator (e.g. motor) performs the desired action
with the physical plant. In this kind of system, designers are usually interested in
ensuring the properties of the system as a whole (end-to-end properties) rather than
in the properties within the scope of a single resource (e.g. CPU of a single node).
Continuing with the example of the distributed controller, an end-to-end deadline is
the time from the measurement of the sensor by which the action must be applied.
The difficulty of meeting such a deadline lies in the fact that the end-to-end response
time time is influenced by scheduling policies of all involved resources, i.e. all CPUs
and networks.

2.3 Component-Based Development of Real-Time
Systems

Over the last few years, system design complexity increased to levels that cannot
be managed by traditional software design methodologies, especially when there
is demand for reduced development cost and short time-to-market. Big effort is



2.3 Component-Based Development of Real-Time Systems 17

therefore put into methodologies which enable software reuse in multiple projects.
In the component-based development methodology the applications are developed by
combining appropriately predesigned and preverified components [Pinto et al., 2006].
Typically, a component is a software package that encapsulates certain functionality
and has associated metadata, which allows automatic generation of the glue code
between components.

The key problem of using component-based development methodologies in real-
time system designs is the fact, that temporal properties (also called non-functional
properties), that are verified for the individual components may not hold after
multiple components are integrated in an application where they share system
resources.

For that reason it is desired that run-time environment for component-based
real-time systems provides temporal isolation of individual components. This means
that the temporal properties of one component cannot be jeopardized by other
components. One way of providing temporal isolation is the use of server-based
scheduling described in Section 2.1.3.

2.3.1 Model-Driven Engineering

Component-Based development methodologies are often combined with Model
Driven Engeneering (MDE). As the name suggests the MDE methodology focuses on
the models as the primary means for software construction. In MDE, designers use a
number of distinct model spaces which allow them to perform software specification
at multiple levels of abstraction. In addition to plain component-based design
methodologies, MDE introduces a new level of abstraction, called metamodel, which
is used to specify the form of model elements and the relationships that can exist
between them [Cancila et al., 2010]. The metamodel is typically composed from
elements such as classes, interfaces and components. The MDE technologies employ
transformation engines and generators that analyze certain aspects of models (e.g.
temporal aspects) and synthesize various types of artifacts such as source code,
simulation inputs etc. This automated transformation process is often referred to
as “correct-by-construction” as opposed to conventional “construct-by-correction”
development process [Schmidt, 2006].

2.3.2 Real-Time Component-Based Middleware Platforms

Given the facts above, component-based real-time middleware is a hot research topic
of the last decade. Up to now, there is no universally accepted solution used by big
industry players. There are, however, several efforts that head towards that goal.

[Bordin et al., 2008] discuss how to combine model-driven engineering with
automated schedulability analysis. Their RCM modeling infrastructure allows for
modeling of real-time system in a graphical way similar to UML2, all information
needed for schedulability analysis is extracted from the model and it is automatically
fed into analysis tools. Further, the source code is automatically generated from the
model. The computational model of their run-time environment is equivalent to
Ada Ravenscar Profile [Burns et al., 2003] and offers spacial and temporal isolation
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of running activities. Temporal isolation is provided by employing hierarchical
scheduling and priority band architecture together with enforcement of minimum
inter-arrival times of sporadic tasks and monitoring of overruns against WCET
budget specified in the model. In [Cancila et al., 2010] it is described how the
methodology “correct by design” is used to address temporal correctness of the
developed software. Although the RCM infrastructure targets distributed systems, in
schedulability analysis the authors focus primarily on CPU and leave other resources
like networks, disks, etc. unmanaged during runtime. Since the scheduling of these
devices influences timing of CPU tasks, an integrated view of all resources, which is
presented in this thesis can increase the predictability of system behavior.

[Deng et al., 2008] work on QoS-enabled component middleware called CIAO
(Component-Integrated ACE ORB) and DAnCE (Deployment And Configuration
Engine). CIAO is built on top of Real-Time CORBA [Object Management
Group, 2008] implementation called TAO (The ACE ORB). In CIAO, components
can declaratively specify their desired quality-of-service (QoS) such as rates of
invocations. In deployment phase, DAnCE is used to deploy the components onto
platforms, that are capable of supporting the specified real-time requirements. There
is no direct support for schedulability analysis as this middleware targets soft real-
time systems. DAnCE configures the underlying resources to enforce real-time
QoS requirements by preparing thread pools and setting thread priorities, intra-
process mutexes, a global scheduling service, communication protocol properties and
memory buffers for requests. Besides run-time configuration, DAnCE supports also
static (off-line) configuration to support systems with less resources. To further
simplify development of real-time component based applications, MDE (Model
Driven Engendering) tool chain called CoSMIC can be used to support deployment,
configuration and validation of such applications. The main difference between
these technologies and the framework presented in this thesis is that our framework
provides schedulability analysis techniques that fit exactly the underlying resources
and their schedulers. This tight coupling between analysis and run-time support can
leads to less pessimistic analysis of the system.

The SPEEDS project [Döhmen et al., 2008] aims at defining a new methodology
for model-driven systems engineering targeting embedded systems. It defines
Heterogeneous Rich Components (HRC), which are characterized by formal contracts
allowing various analysis techniques to validate a design already in the early design
stages. Unlike the contracts described later in this thesis, HRC contracts define
not only temporal properties but also functional and safety ones and represent
assumption-promise pairs. The framework presented in this thesis could be used
as an underlying run-time environment guaranteeing assumptions on the resources
such as CPUs, networks etc.

The most similar work to the framework presented in this thesis is the FRSH
(pronounced as fresh) framework [Telleria de Esteban, 2008], which was developed
within FRESCOR project and therefore tries to solve very similar problems as our
framework. It is based on the previous work in FIRST project, which supported only
CPU resource. Since then, the FRSH framework was largely reworked and enhanced
by support for networks etc. There are many similarities in architectures of FRSH
framework and this thesis, however we have tried to design our architecture as a
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superset of FRSH architecture with the aim to better abstract various resources to
provide higher modularity of the framework, as detailed in the next chapter.
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3
Contract-Based Resource

Reservation Framework

This chapter describes the design and implementation of contract-based resource
reservation software framework called FRSH/FORB.

The basic idea of the framework is to let the application developer specify the
temporal (and resource) requirements of his/her application and if there is enough
resources in the system to satisfy them, the framework reserves the resources for the
use by the application. In the case of insufficient resources, the framework does not
let the application run. Application requirements are specified in the so called service
contract (contracts in short) that the application negotiates with the framework.
A successfully negotiated contract results in creation of a virtual resource, which
represents “a part” of the real resource reserved for the use by the application. To
not over-reserve the available resources, the framework employs on-line admission
tests that are based on state-of-the-art schedulability analysis.

In general, the contracts allow interchanging of arbitrary information between ap-
plications and resource management entities in the underlying, possibly distributed,
system. This information is used by the system to manage the resources in an efficient
way and allows the applications to get the guarantee on the services provided to them
by the system. An example of the efficient use of the resources is the framework’s
ability to distribute spare resource capacity among applications that specified in the
contract they can make use of it.

The FRSH/FORB framework can be used as a run-time environment for
a component-based real-time middleware. It is suitable especially for dynamic
application in open environments. Dynamic applications are those that change their
resource requirements over the course of their run-time, and open environment means
that it is not known in advance which application will run in the system and what
will be their resource requirements.

The development of the framework started in FRESCOR project [FRESCOR,

21
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2009] and it then continued as a stand-alone open-source project [FRSH/FORB,
2010].

The rest of this chapter is structured as follows: The motivation for development
of FRSH/FORB framework is given in Section 3.1. Then, Section 3.2 describes the
general framework architecture and the subsequent Section 3.3 provide details of the
individual framework modules and some used algorithms. Finally, Section 3.4 intro-
duces mathematical formalism used to describe the framework and its applications.

3.1 Motivation

The most important reason for designing a new framework instead of using an
existing one (e.g. FRSH described in Section 2.3.2) was the requirement to support
Wireless Sensor Networks (WSNs) and FPGAs. These resources are quite different
from the resources typically considered by similar frameworks (CPUs and wired
networks) that a more general approach was necessary for these resources to be
supported by the framework. The following goals were set for the design of the
FRSH/FORB framework:

High modularity. Adding the support for a new resource in original FRSH
framework was a complicated process which required significant amount of
development effort. If was necessary to duplicate common functionality
for every resource. The FRSH/FORB framework eliminates duplicated
functionality whenever possible by modularizing the framework in a way that
the functionality of the individual modules may be reused by other of that is
required.

Resources with varying capacity. Wireless LAN is a resource which gives very
little guarantees. It is typically operated in environments where administrators
cannot control the level of electromagnetic disturbances and therefore the
Wi-Fi hardware and drivers are designed to adapt to changing environment
by changing transmission rate. For some devices, it would be possible to
disable this adaptive mechanisms but it would lead to performance degradation
either because of low throughput or because of high packet loss. Instead it is
better to let applications adapt to the actual environment conditions. FRSH
already supported adaptive applications by means of spare capacity module
(see Section 3.3.3) but the adaptation could be triggered only by negotiation
requests from other applications and not by the resources themselves, for
example when Wi-Fi transmission bit-rate changes.

Task migration between resources. FPGAs are typically used as coprocessors
to the main CPU. When FRSH/FORB is used to manage FPGA resource, its
goal is to decide whether a software only variant of a task is to be run on
the CPU or whether the FPGA is used to accelerate the task and therefore
the budget for the CPU task can be decreased. For this to be supported, the
applications need some way to specify, that there are two variants of one task
and that each variant uses different resource (CPU and FPGA). See Section
4.5 for details.
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Consistent allocation of spare capacity in transactions. If contracts in the
transactions specify application’s ability to use available spare capacity,
depending on the application it might or might not have sense to allocate
spare capacity independently for the resources in the transaction. As it is
shown in Section 4.5, for transactions comprising FPGA resource it is necessary
to ensure that the spare capacity is allocated consistently across all resources
participating in the transaction.

Wireless sensor networks are a special kind of resource in the sense that the
FRSH/FORB is not running on every node of ZigBee network but the network
is attached to only one node of the distributed FRSH/FORB system. Therefore
this resource can be treated as any other non-network resource (e.g. CPU)
which is local to the node attached to the ZigBee network. The only
complication is that multiple applications may want to receive different data
from the network and the implementation must provide a mean for distributing
data received from the network to the applications which requested the data.
This could be achieved even in the FRSH implementation, but in FRSH/FORB
we efficiently reuse FORB middleware to distribute the data between multiple
applications.

3.2 Architecture

This section describes the internal software architecture of the FRSH/FORB
framework. The framework can be divided into three levels (see Figure 3.1) –
Application Programming Interface (API), resource-independent level and resource-
specific level.

The API is used by the applications to interact with the framework. The FRSH
API was developed in the context of the FRESCOR project as a portable and
generic interface to provide resource reservation services to hard and soft real-time
applications. The main service provided by the API is contract negotiation: the
application specifies its resource requirements in the form of a contract, and submits
it for negotiation with the framework. If the negotiation succeeds, the framework
provides the application with a so called virtual resource (VRES), which is a generic
name for resource reservation. The application then uses FRSH API services to bind
its entities (threads, communication endpoints) to the VRESes in order to use the
reserved resources.

The resource-independent level is represented by the contract broker and is
intended to implement algorithms for spare capacity distribution, multi-resource
transactions and global Quality of Service (QoS) optimization. The contract broker
interacts with the resource managers through abstract interfaces. The framework is
implemented on top of a lightweight CORBA-like communication middleware called
FRSH Object Request Broker (FORB) [Sojka et al., 2008]. This middleware hides
the complexity and different nature of inter-process and inter-node communication
and provides method-call semantics for remote application objects.

The resource-specific level consists of modules called resource managers and
resource allocators, which are in charge of managing the individual resources (e.g.
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Figure 3.1: Block diagram of FRSH/FORB framework.

CPU, network, disk). Their goal is to implement resource reservation policies and
management supporting real-time execution and temporal isolation for tasks running
on the associated resource. One key feature of our architecture is that the modules
in this level can be easily plugged in and out, allowing the framework to be used on
various platforms which exploit different resource reservation mechanisms.

The whole framework is built on top of operating system abstraction libraries,
which facilitates portability across multiple hardware/software platforms. It consists
of the FRSH Operating-System Abstraction (FOSA) layer [Gonzáles Harbour and
Telleŕıa de Esteban, 2006], which implements the FOSA API. This is a cross-
platform API designed within the FRESCOR project for the purpose of abstracting
Operating System (OS) services related to the management of time, posting of timers,
management of threads and synchronization primitives (e.g., signals and mutexes).
The use of FOSA simplifies porting of the FRSH/FORB framework on different
operating systems. Indeed, FOSA has been implemented in a straightforward way
on Linux by means of the POSIX API for the just mentioned services, with a
few Linux-specific extensions which have been leveraged for performance reasons.
Also, FOSA has been implemented on MarteOS1 [Rivas and Harbour, 2000, Rivas
and Harbour, 2001], Partikle2 [Peiro et al., 2007] and Enea’s OSE3. Note that the
implementation of FRSH/FORB requires usually extensions at the kernel resource
scheduling level. Such extensions are forcibly OS specific and each has to be

1http://marte.unican.es/
2http://www.e-rtl.org/partikle/
3http://www.enea.com/Templates/Product____27035.aspx

http://marte.unican.es/
http://www.e-rtl.org/partikle/
http://www.enea.com/Templates/Product____27035.aspx
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interfaced separately in the resource-specific level. However, the presence of FOSA
allows for the straightforward porting of all the contract management part of the
framework.

The following sections describe the individual modules in more detail as well as
their interactions.

3.2.1 Application Model and API

The model of FRSH/FORB applications was defined within the FRESCOR project
in [Gonzáles Harbour and Telleŕıa de Esteban, 2008]. The document defines a so
called FRSH Application Programming Interface (API) for applications to interact
with the framework. The API aims at providing resource reservation services
independently of the underlying schedulers and operating systems and is divided into
several modules offering different functionality (e.g. core, shared objects, networks
and distribution, energy management etc.). Each module defines attributes that can
be set in the contract. Whenever possible, the attributes are defined in resource
independent way. The example of an attribute (defined by core module) is resource,
budget, period or deadline (see section 3.3.1 for more details).

To summarize the API, the provided services (functions) can be divided into
several categories:

Contract manipulation services There are functions to manipulate contract
data structures. As an example function frsh contract set timing reqs() can
be used to specify time-related requirements (e.g. deadline) requested by
application.

Negotiation services When a contract is prepared with all attributes filled in
a negotiation function like frsh contract negotiate() is called to negotiate the
contract with the framework. Successful negotiation results in creation of a
Virtual Resource (VRES), which is the runtime representation of the contract.
It is also possible to cancel and renegotiate existing contracts.

VRES binding services Applications can use functions like frsh thread bind() to
bind their entities (threads, communication endpoints, etc.) to the virtual
resource to make use of the guaranteed service.

VRES manipulation services These functions can be used to manipulate VRES-
es at run-time. An example is frsh vres get remaining budget() function, which
returns the currently remaining budget available reserved to the application.

The key term in the presented application model is the VRES, which represents
a particular resource reservation requested via contract negotiation. Every VRES
should, independently of resource, provide the following two basic properties:

Service guarantee The application that use the physical resource through the
VRES and FRSH API has a guarantee of resource availability as specified
in the contract, i.e. deadlines will be met etc.
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Overrun protection/detection In order to guarantee the service of other VRES-
es, the VRES implementation typically detects the attempts to overrun the
budget and prevents the use of the resource beyond what was negotiated.

Although the API was carefully designed and serves very well for its purpose,
during the development of the FRSH/FORB framework several deficiencies were
identified. They are summarized in Appendix A and should serve as guidelines for
future development of resource reservation frameworks.

3.2.2 Resource Managers

There are two kinds of modules in the resource-specific part of the framework.
The first of them is FRSH Resource Manager (FRM), whose role is to provide an
admission test for the given resource. The test is usually based on some kind of
schedulability analysis, and its objectives are the following:

1. To check whether the new contract(s) representing application resource require-
ments can be accepted without violating the already negotiated contracts.

2. In the case of a mode-change [Real and Crespo, 2004], i.e. when an application
changes its operating mode, and needs to renegotiate its contracts), the module
is also able to test the feasibility of the mode change, because the manages has
access to contracts of both old and new mode. Note that the work in this
thesis does not utilize this possibility.

3. Based on the analysis, the resource manager may add a piece of information
to the contract, which can be later utilized by the allocator or scheduler.

A simple example might be a resource with a fixed-priority scheduler, which
schedules tasks according to the priority calculated by deadline-monotonic
algorithm. In the contract, the application specifies only the deadline and
the manager calculates the priorities using the deadline-monotonic algorithm.
The resulting priority is added to the contract by FRM and the used later by
the scheduler.

3.2.3 Resource Allocators

The second module is FRSH Resource Allocator (FRA) which always accompanies
the corresponding resource manager. There can be multiple allocators for a single
resource, e.g. in case of a network, there is typically one allocator for every network
node. The purpose of the resource allocator is:

1. to interact with the resource scheduler, i.e. to create, change or cancel
virtual resources according to the “instructions” from the resource manager
and contract broker;

2. to implement a generic API for VRES binding and manipulation (see Sec-
tion 3.2.1).
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3.2.4 Contract Broker

The FRSH Contract Broker (FCB) acts as a mediator between applications and
individual resources. Contract broker is a distributed application with an agent
running in every node. Agents collaborate on distribution of information about
resources and contracts in the whole distributed system. In the simplest case,
the FCB agent only resends the contracts received in negotiation requests to the
appropriate resource manager and then, if the admission test succeeds, to the
resource allocator and back to the application. FCB is also responsible for high-
level tasks described in Sections 3.3.3 and 3.3.4.

3.2.5 Examples

Figure 3.1 shows two nodes running the FRSH/FORB framework and connected
by a network. Every node runs two (arbitrary) FRSH/FORB applications and a
contract broker agent. Furthermore, node 1 runs two resource managers: one for
the local CPU and one for the network. Node 2 runs only the resource manager for
its local CPU. The network resource uses a centralized manager, which means that
the manager runs only in one node. The figure also contains blocks representing
the allocators. Note that the network resource has an allocator in every node even
if the manager is located in a single node. The reason is that the virtual resource
implementation must enforce the application not to use the network bandwidth
beyond what was negotiated and for most networks this can be only implemented
at sending side.

To illustrate the interaction of these modules we present two example scenarios
of the contract negotiation (a more detailed description is provided in section 3.3.2).

Example 1. Consider the case in which application 1 wants to use the local CPU
for a periodic task, and requires a guarantee for meeting all deadlines. It prepares the
contract with appropriate attributes (period, budget, deadline and resource). Then
it sends the contract to the local contract broker agent. The agent finds out that
the contract refers to the local CPU resource and resends the contract to the local
CPU resource manager. The manager executes an admission test and returns the
result (accepted/rejected) to the broker. If the contract is accepted the broker asks
the resource allocator to create the virtual CPU resource according to the attributes
specified in the contract.

Example 2. Application 3 wants to periodically communicate over the network
with a guarantee of meeting all deadlines. Negotiation will be accomplished as
follows: The application prepares a contract and sends it to the contract broker
agent in node 2. The FCB agent issues a reservation request to the network resource
manager running in node 1. If the contract is accepted, the FCB agent in node 2
requests the local network resource allocator to create the network virtual resource.
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Figure 3.2: A contract and its attributes.

3.3 Advanced Concepts and Internals

3.3.1 Representation of Contracts and Virtual Resources

In order for the framework to be modular enough to support different resources, a
dynamic data structure is used to represent contracts. We use the term “dynamic” to
express that the number of attributes stored in the contract and their type can vary
depending on the resource and the state of the negotiation process. The graphical
representation of the contract data structure is depicted in Figure 3.2. Every contract
is identified by a dynamically generated ID which is unique in the whole distributed
system.

The contract attributes are grouped into so-called blocks and every contract
contains one or more these blocks. The block is a set of attributes which are used
together. Typically, most resources define an additional block with resource specific
attributes.

The most common contract attributes are budget, period, deadline and workload
type. Budget corresponds to the amount of service (execution time resp. the
size of the data) which the application needs to execute resp. process in every
period. If the contract specifies the deadline, the framework guarantees that the
service is completed within the deadline. The workload type attribute describes the
application workload model, which can be either bounded or indeterminate. Bounded
workload means that the application has a bounded amount of work (called job) that
to do during each virtual resource period, and it notifies the framework whenever
the job is done. As a consequence, the framework can notify the application about
overrunning its budget or about a deadline miss. Indeterminate workload model is
used when there is no concept of jobs in the application.

The attributes of a contract can be set and modified not only by applications, but
also by the contract broker and by resource managers. This makes the framework
very flexible – for example, an application can specify only platform independent
attributes in the contract. The contract broker may exploit knowledge of the
underlying platform to add the platform-dependent attributes, and finally the
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resource manager may also add additional “instructions” for the allocator/scheduler.
To simplify the explanation of the negotiation process in FRSH/FORB, we define

three different forms of contracts. Every form is represented by the same data type
but the difference is in the contained information. The three forms are the following
(see Figure 3.3 for the example of different contract forms and their role in negotiation
process):

User contract contains attributes requested by a user (application). This form of
the contract can represent many possible reservations (variants) through the
use of the spare capacity block.

Reservation contract contains specific attributes needed for resource reservation.
Contract broker produces it from the user contract by selecting one concrete
reservation (variant) from spare capacity block if that one is present.

The spare capacity block is kept in the contract as it can be used by the
resource scheduler to support dynamic reclamation [Gonzáles Harbour and
Telleŕıa de Esteban, 2008]. Manager can also use this information to check
that it can always satisfy minimal application requirements (see section 3.6.2
in [Sojka et al., 2008]).

Schedulable contract is a reservation contract extended by data needed for the
allocator to create the VRES (e.g. priority for a fixed priority scheduler). This
form is produced by resource managers.

Virtual Resource

A virtual resource is represented in an application by a data structure containing
the negotiated schedulable contract together with any data needed by a particular
resource allocator implementation to manipulate the reservation and to communicate
with the scheduler.

3.3.2 Contract Negotiation Process

This section contains a detailed description of the negotiation process. For simplicity,
the algorithm for distribution of spare capacity is not described here but in separate
section 3.3.3. A collaboration diagram of the negotiation process is depicted in
Figure 3.3. The description follows and the numbers corresponds to the edges in the
figure:

1. The negotiation starts in an application by preparation of a contract and
filling its attributes. Then the application calls a negotiation service such
as frsh contract negotiate().

2. This function uses FORB to call negotiate contract() method of the local
contract broker agent and to pass it the user contract.

3. Contract broker agent carries out the following operations:

(a) Assigns the contract a global ID (see above).
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(b) If the contract contains spare capacity block, some variant is selected as
determined by the spare capacity distribution algorithm and a reservation
contract is created by putting all blocks from the selected variant directly
to the contract.

(c) Then, resource block in the contract is consulted to find the appropriate
resource manager.

(d) Finally, the reservation contract is passed as a parameter to reserve contracts()
method of the resource manager. The resource manager executes an
admission test. Should the contract not be accepted, the resource manager
reverts its actual state to the one before reservation and the agent reports
reject to the application.

In the case of accepted contract, the agent invokes manager’s com-
mit contracts() method and the manager returns one or more schedulable
contracts.

For certain resources, it might be possible, that a negotiation of a
single contract causes changes of several previously accepted contracts.
An example can be again a fixed priority scheduler with DM priority
assignment. Consider existing tasks τa and τb with deadlines Da = 1 and
Db = 3. The corresponding DM priorities are Pa = 1 and Pb = 2. When
a new task τc with deadline Dc = 2 arrives, the priority Pb needs to be
changed from 2 to 3 and Pc = 2.

4. The contract broker agent takes the returned schedulable contracts and calls
change vreses() method of the resource allocator. The allocator applies the
changes requested by the broker, i.e. it creates virtual resources or changes
their parameters. This operation is accomplished by some interaction with
the resource scheduler, which is typically done by using a system call interface
to the kernel, but in principle, it might be implemented by any other type of
communication.

5. If the changes to VRESes were successfully applied, the broker agent returns
to the application the ID of the negotiated contract.

6. Application can use the returned ID to access the allocated VRES. Since
applications usually need to interact with the VRES quickly (e.g. anytime
algorithms need to repeatedly determine the remaining budget), instead of
using the contract ID to identify the VRES and searching the VRES “registry”
every time the access to the VRES is needed, this search is performed only once
by calling fra get vres().

7. This function returns a pointer to the VRES data structure.

8. Finally, the application may start using the VRES by binding its entity with
the VRES. For example the Central Processing Unit (CPU) VRES is bound
by calling frsh thread bind() function.



32 Chapter 3 Contract-Based Resource Reservation Framework

3.3.3 Distribution of Spare Capacity

An application can specify in the contract that it is able to make use of additional
(spare) resource capacity if that is available. When the contract broker is requested
to negotiate such a contract, it tries to reserve the maximum capacity requested.
If that is not possible, the contract broker finds an optimal distribution of spare
capacity among applications and reallocates the resources according to the result.

From the application perspective it means, that the application utilizing spare
capacity must be written in such a way that enables it to adapt to the changes in
VRES allocation. The changes may happen asynchronously to application execution
and there exists an API allowing the application to determine the current allocation.

As it was mentioned in Section 3.1, FRSH/FORB framework allows that the
reallocation of the spare capacity is triggered not only by applications but also
by individual resources, when the resource manager or allocator decide. For
example, when wireless network allocator, which is also responsible for monitoring
transmission bitrate, determines that the bitrate was changed, it sends a request to
the contract broker to run spare capacity reallocation algorithm.

As the contracts are represented by the dynamic data structure, applications
have great flexibility in specifying all possible uses of spare capacity. For example, an
application can specify two different budgets in the contract and the contract broker
ensures that the highest possible budget is reserved/allocated at all times. Note
that resource managers and allocators always receive a simple contract, representing
a single reservation. This way the problem of spare capacity is only dealt with at the
resource-independent level in the contract broker and the low-level resource support
is not aware of it. This makes the support for new resources easier to develop.

3.3.4 Negotiation of Multi-Resource Transactions

Many applications operate on multiple resources. The typical example is a
distributed systems with several computing nodes interconnected with a network
where some part of the application is responsible for gathering data and sending them
via the network to other nodes for processing by another part of the application. A
part of an application consisting of activities on multiple resources and synchronizing
these activities by some means is called multi-resource transaction. In the contract
framework, the application needs to negotiate the contracts for all the activities
in the transaction. In many cases it has no sense to negotiate a contract for one
resource if the negotiation of another contract for another resource fails because the
transaction could not run.

In the context of the FRSH/FORB framework, the transaction is simply a set of
contracts with the following properties:

Atomicity – either all contract in the transaction are successfully negotiated and
the respective virtual resources allocated or no resource is reserved and no
virtual resources is allocated.

Consistency – when the transactions runs, it is required to be always in a consistent
state. This means, for example, that all VRESes run with the same period.



3.3 Advanced Concepts and Internals 33

The consistency is important especially when the individual contracts specify
the use of the spare capacity.

Transactions are negotiated similarly to what is described in section 3.3.2, except
that contract broker completes resource reservations (calls to resource managers)
for all resources in the transaction before any resource is allocated by its resource
allocator. The reservation phase of the transaction negotiation utilizes so called
“two-phase commit protocol” to achieve the atomicity property.

Currently, only contracts without spare capacity can be negotiated in transac-
tions. In future, we plan to remove this limitation by using global optimization
techniques to find optimal distribution of spare capacity across multiple resources.
A formal description of this goal is provided in Section 3.4.

3.3.5 Transaction API

Support for transactions in the original FRSH framework was implemented as an
extension to the framework in a module called distributed transaction manager.
The API was unnecessarily complicated and tied closely to the implementation. For
that reason we developed a new API for FRSH/FORB framework, which is described
in this section.

Transaction Object Manipulation

The following services are provided for manipulating of the transaction object:

frsh transaction init – initializes the transaction object in the application.

frsh transaction destroy – deallocates memory associated to the transaction
object. Note that this service does not change any VRES.

frsh transaction add contract – adds a contract to the transaction.

Transaction Negotiation

frsh transaction negotiate – reserves the resources for the transaction. Either all
resources are reserved or none of them, depending on the results of admission
tests in resource managers.

frsh transaction cancel – cancels (deallocates) all VRESes allocated for the given
transaction.

frsh transaction wait for name – waits for a transaction with a given name to be
reserved. Typically, only one part of the application negotiates the transaction
and the other parts of the application wait for it by exploiting this service and
use the VRESes reserved by the negotiation.

frsh transaction alloc vres – Allocates the VRES reserved previously by trans-
action negotiation and makes the VRES available for use by the application
calling this service.
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3.4 Mathematical Model of the Framework

This section defines notation used to model the contracts and transactions of the
framework in order to describe various analysis and optimization methods used in
the framework. In particular, this notation is used later in Section 6.2.3 to show how
one particular schedulability analysis method for distributed systems can be applied
to the framework.

We model the our framework as a tuple S of the set T of n multi-resource
transactions Γ and the set R of r resources ρ:

S = (T,R)

T = {Γ1, . . . ,Γn}
R = {ρ1, . . . , ρr}

Transaction Γi is a tuple of mi contracts c

Γi = (ci1, ci2, . . . , cimi).

At run-time, every contract cij has its corresponding task τij associated through the
bind operation, but since the task is only allowed use the resource in a way described
in the contract, the parameters of the tasks are not important and it is sufficient to
deal with contracts in the following.

Contract cij has ni different variants cvij which represent different possible
allocations of spare capacity:

cij ∈ {c1ij , c2ij , . . . , c
ni
ij }.

At any time instant, only one variant cviij can be reserved. All contracts in the
transaction must reserve the same numbered variant and hence we denote the
reserved variant of the transaction Γi as Γvii = (cvii1 , c

vi
i2 , . . . , c

vi
imi

), vi = 1, . . . , ni.
Every variant cviij has its weight w(cviij ), period T (cviij ), worst-case execution time
C(cviij ) and deadline D(cviij ). All contracts in the transaction are supposed to have
the same period T (Γvii ) = T (cviij ), j = 1, . . . ,mi, vi = 1, . . . , ni. Further, for every
contract variant cviij , there is a contracted resource ρ(cviij ). The set of resources
contracted by a single contract it is denoted as ρ(cij). Note that for most contracts,
this set has only one element. Only when task migrations are considered, as in the
case of FPGAs, there is more resources in this set. The set of resources reserved by
transaction Γi is denoted as ρ(Γi) =

⋃mi

j=1 ρ(cij).
The set of contracts on resource ρk is c(ρk) = {cij : ∃vi : ρ(cviij ) = ρk}. The

set of reserved contracts on resource ρk is cv(ρk) = {cviij : ρ(cviij ) = ρk}, where
v = (v1, . . . , vni) is a tuple of reserved variants for every transaction. The set of
transactions on resource ρk is Γ(ρk) = {Γi : ρk ∈ ρ(Γi)}.

The problem of optimal distribution of spare capacity across multiple resources
is defined as

maximize

n∑
i=1

mi∑
j=1

w(cviij ), (3.1)

subject to cv(ρk) is schedulable, k = 1, . . . , r (3.2)

R(Γi) ≤ D(Γi), i = 1, . . . ni (3.3)
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where R(Γi) and D(Γi) are end-to-end response time and end-to-end deadline of
transaction Γi respectively. The term “is schedulable” means that the resource
manager for the particular resource evaluates the set of contracts cv(ρk) as
schedulable.

Example 1 Consider a distributed system consisting of three resources: two CPUs
ρcpu1 and ρcpu2 and a network ρn. There are two applications in the system. One
sends data from CPU1 to CPU2 so it negotiates transaction Γ1 = {c11, c12, c13}.
There is one contract for every resource in the transaction: ρ(c11) = {ρcpu1}, ρ(c12) =
{ρn}, ρ(c13) = {ρcpu2} i.e. ρ(Γi) = {ρcpu1, ρn, ρcpu2}. And all contracts have only
one variant, i.e. c11 = (c111), etc.

The second application utilizes only CPU1 so its transaction reduces to single
contract Γ2 = {c21}. However, this application is designed to use spare capacity and
its contact has two variants: c21 = (c121, c

2
21). These variants differ in the period of

the associated task, i.e. T (c121) = 20 ms and T (c221) = 100 ms. The first variant is
preferred so w(c121) = 2 and w(c221) = 1.

Optimal distribution of spare capacity is in this example defined as:

maximize w(cv221),

subject to c111 and cv221 is schedulable on ρcpu1,

c112 is schedulable on ρn,

c113 is schedulable on ρcpu2,

R(Γ1) ≤ D(Γ1). 2
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4
Resources Supported by the

Framework

The following sections describe how are specific resources supported by the frame-
work. The support was either developed from scratch or a 3rd party technology
was integrated into the framework. Namely, the resources described in sections
4.1 (CPU) and 4.2 (Disk) was integrated into the framework by our partners and
represent the work of co-authors of [Sojka et al., 2010]. Section 4.3 describes the
support for wireless LANs developed mostly by the author of this thesis and sections
4.4 and 4.5 describe the resources developed by other co-workers and were integrated
into the framework by the author. All the 3rd party resources are mentioned in this
thesis to emphasize the modularity and universality of the described framework.
Furthermore, the framework evaluation in Chapter 5 uses the 3rd party resources
and hence the basic information needed for understanding that chapter is provided
here.

4.1 CPU

Currently, the framework supports two resource reservation mechanisms for CPU –
AQuoSA and Linux Cgroups. A brief description of AQuoSA from [Sojka et al., 2010]
is provided in this section. Cgroups are not detailed here. The difference between
Cgroups and AQuoSA is that the former is available in the vanilla Linux kernel and
supports multiprocessor system while the latter operates only on a single-processor
machines but has the advantage that the applications can specify arbitrary periods
in their contracts.

37
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Figure 4.1: Integration of the AQuoSA scheduler within the FRSH/FORB architecture.
Source: [Sojka et al., 2010].

4.1.1 The AQuoSA Architecture

The Adaptive Quality of Service Architecture for the Linux kernel (AQuoSA)
is an open-source architecture enriching Linux with soft real-time capabilities,
comprising: EDF-based scheduling, temporal encapsulation and enforcement of
timing constraints, limited support for hierarchical scheduling, admission control,
controllable and secure exposure of real-time capabilities to unprivileged processes,
and feedback-based scheduling.

The components of AQuoSA which are relevant for this thesis are the following
(the reader is referred to [Palopoli et al., 2009] for a more comprehensive description):

– the Generic Scheduler Patch (GSP), a small patch to the kernel which allows
to extend the Linux scheduler by intercepting scheduling events and executing
external code in a kernel module;

– the AQuoSA real-time scheduler, a dynamically loadable kernel module which,
exploiting the GSP patch, enhances the Linux CPU scheduling with an EDF-
based scheduling policy, and precisely a hard-reservation version of the CBS
algorithm (see Section 2.1.3 and [Abeni and Buttazzo, 1998]).

– the AQuoSA Resource Reservation Library, which allows applications to
request real-time scheduling services through a properly designed API, and
forwards requests to the real-time scheduler via ioctl() system calls operated
on a special virtual device.
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4.1.2 Integration of AQuoSA in FRSH/FORB

Figure 4.1 shows how the AQuoSA scheduler is plugged within the FRSH/FORB
framework, where the grayed blocks identify software components implementing
the CPU-related parts of the framework presented in this thesis. The application
uses the FRSH Core API, available by linking a library. When an application
negotiates a new contract, the library performs admission-control via the Contract
Broker Common Object Request Broker Architecture (CORBA) object (FCB Server),
which in turn contacts the AQuoSA-specific Resource Manager. The latter performs
the admission-test based on the currently admitted contracts, and the parameters
provided by the application. This admission test may be potentially more complex
then the simple utilization-one as currently implemented. Once the new contract
has been admitted, the FRSH Core library performs the actual allocation via the
FRSH Resource Allocator (FRA) library for the CPU, which has a proper plug-in
for communicating with the AQuoSA scheduler via the AQuoSA user-space API.

When the FRA allocates resources corresponding to a contract within AQuoSA,
it sets the budget to the values indicated in the FRSH contract, or to ones scaled-up
by the spare-capacity capability of the contract broker.

It must be noted that (see Figure 4.1), in the FRSH/FORB over AQuoSA
scheme, the CORBA interactions occur only for those actions that do not have strict
real-time requirements, and not for monitoring actions typically required during a
real-time task activation. For example, a new contract set-up involves the FCB,
FRM and FRA components, whilst reading the current budget (e.g., as needed
for implementing anytime computing algorithms) or the server deadline are actions
managed quickly through a set of function calls to the FRA library. On a related
note, if configured properly, the FCB and FRM CORBA objects may be given precise
scheduling guarantees within the framework, in order to provide minimum guarantees
on the contract set-up time, if needed.

Note that, in the just described architecture, Linux tasks that do not use resource
reservations via the FRSH API are still managed by the default Linux scheduler.

4.2 Disk (BFQ scheduler)

To provide individual applications with timing guarantees on disk access we [Sojka
et al., 2010] have to consider that requests response time is something highly variable
and dependant on physical disk parameters. Moreover, many applications (e.g., video
streaming) only issue synchronous requests to the disk, i.e., they send the request
and then block waiting for it to complete. Therefore, work conserving approaches
tend to introduce a lot of seeks, as they see only one request per application, and
delaying the dispatch of a request (which is done by some classes of disk schedulers)
is does not help either, since it actually prevents the application to issue its next
ones.

The Budget Fair Queuing (BFQ [Valente and Checconi, 2010]) algorithm is a
timestamp-based proportional-share disk scheduler designed to provide strong guar-
antees on disk bandwidth distribution even in presence of synchronous workloads.
Bandwidth distribution guarantees can be turned into soft timeliness guarantees,
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based on the mere knowledge of the aggregate throughput in the context of some
workload scenario.

The algorithm maintains a per-application queue, and a B-WF2Q+ (a slightly
modified version of the Worst-case Fair Weighted Fair Queueing Plus algorithm)
scheduler selects the queue to be dispatched to the disk device. Each application is
also assigned a budget, representing the numbers of sectors to which it is entitled
after being selected, and the scheduler involves some idling (usually referred to as
anticipation) in case an application has no pending request but it still has some
budget left.

The interested reader can find an overview of traditional elevator algorithms
in [Silberschatz et al., 2008], while BFQ is detailed in [Valente and Checconi, 2010].

4.2.1 Integration of BFQ in FRSH/FORB

As any other resource, BFQ has been integrated within FRSH/FORB by implement-
ing a BFQ Resource Manager and a BFQ Resource Allocator.

The BFQ Resource Manager (FRM) performs admission-test for disk contracts
and lets a new one enter the system only if the service time over the period it is asking
can be guaranteed. It is possible to ask for a background contract, which results in no
service guarantees, i.e., the requests will be served when all the reserved applications
are “idle”. This can be used for the applications that do not need specific disk access
guarantees, to avoid wasting reserved bandwidth for them.

The BFQ Resource Allocator (FRA) calculates the actual BFQ weight φi of a
request associated to a contract by a bind operation based on budget and period
contract attributes. The worst-case aggregate throughput figures of the disk device
are required, both in the admission test (FRM) and allocation phases (FRA). For
that reason, it can be either specified manually at FRM starting time (if known
in advance), or it is automatically calculated by the FRM with a benchmarking
procedure.

New contract negotiation and the first bind of an application to the VRES require
CORBA interactions between the framework modules, and therefore should be done
before starting the actual processing of the application. The runtime usage of the
disk – i.e., issuing read and write requests – is not affected by the overhead of
contacting different components neither locally nor on remote machines.

4.3 Wireless LAN

FRSH/FORB framework supports communication over Wi-Fi network (also called
Wireless LAN (WLAN)). The part of the framework responsible for Wi-Fi resource
is called FRSH WLAN Protocol (FWP). This protocol takes advantage of IEEE
802.11e standard [IEEE, 2005]. More specifically it uses medium access technique
called Enhanced Distributed Channel Access (EDCA) which provides differentiated
access to medium by means of four access categories called (in decreasing “priorities”)
voice, video, best effort and background. Within these categories, the classical
exponential back-off algorithm is used to lower the probability of collision. Note
that although EDCA improves communication capabilities for real-time applications,
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Figure 4.2: Principles of EDCA MAC algorithm (source: [Mangold et al., 2002]).

it still uses a probabilistic approach in the medium access algorithm and the
guarantees provided by this algorithm are not “hard”. FWP provides FRSH API
for creating communication endpoints, binding them to virtual resources (VRES)
and sending/receiving messages over them. Internally, FWP uses User Datagram
Protocol (UDP) protocol for sending the messages.

4.3.1 Enhanced Distributed Channel Access (EDCA)

Wireless networks based on IEEE 802.11 [IEEE, 1999] WLANs became extremely
popular over the last decade. Similarly as for wired network, it turned out early
that QoS provided by these networks is not sufficient [Ni et al., 2004]. At that time
there were several proposals for how to add QoS to WLANs. In 2005 some of these
proposal were standardized in a new standard IEEE 802.11e [IEEE, 2005]. One
of the standardized extensions was EDCA medium access method, which provides
class-based differentiated QoS for IEEE 802.11 WLANs.

The EDCA is an extended version of legacy Carrier Sense Multiple Ac-
cess/Collision Avoidance (CSMA/CA) and defines four Access Categories ACs
named AC VO (voice), AC VI (video), AC BE (best effort) and AC BK (back-
ground). Each category provides different QoS and the difference is based on the
values of parameters used by Medium Access Control (MAC) algorithm.

EDCA Medium Access Control Algorithm

The basis of EDCA algorithm can be described as follows (see also Figure 4.2): if
a station has something to transmit, it has to wait for an Arbitration Interframe
Space (AIFS) since the time it detects idle medium. After the end of AIFS starts
an Contention Window (CW). The station is supposed to start transmitting after
a contention window timer, which is used to count backoff slots, reaches zero value.
The contention window timer is initialized to a uniformly distributed random value
between zero and CW and is decreased on every backoff slot boundary when the
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AC CWmin CWmax AIFSN TXOP limit

AC VO (aCWmin + 1/4) − 1 (aCWmin + 1)/2 − 1 2 1.504 ms
AC VI (aCWmin + 1/2) − 1 aCWmin 2 3.008 ms
AC BE aCWmin aCWmax 3 0
AC BK aCWmin aCWmax 7 0

Table 4.1: Default EDCA parameters for IEEE 802.11g PHY. The aCWmin value is defined
as 31 for rates 1, 2, 5.5 and 11 Mbps and 15 for other rates offered by 802.11g. The value
of aCWmax is 1023.

medium is idle. After a successful transmission the value CW is set to CWmin,
unsuccessful transmission causes the CW value to double unless it reaches CWmax.
Another principle used to lower the probability of collision and to circumvent the
hidden node problem is RTS/CTS mechanism (see Figure 4.2). Instead of sending
directly a long data packet a station first sends a short Request to Send (RTS) packet.
Upon successful reception of RTS by Access Point (AP) it responds with Clear to
Send (CTS) packet. The advantage here is that the probability of colliding short
packets as CTS or RTS is lower than for long data packets. Also CTS packet is
typically received by other stations even if they did not receive the corresponding
RTS packets (the sender was hidden for them).

The access categories differs in the values of these AC specific parameters:

– Arbitration Interframe Space Number (AIFSN) determines the length
of AIFS, i.e. the interval during that medium is idle before backoff algorithm
is started. The length of AIFS is computed as follows:

AIFS[AC] = AIFSN[AC] ∗ slot time+ SIFS [µs] (4.1)

Values of slot time and Short Inter-Frame Space (SIFS) depend on physical
layer. For IEEE 802.11a slot time = 9µs and SIFS = 16µs, IEEE 802.11g has
slot time = 20µs and SIFS = 10µs.

The minimal value of AIFSN is 2 (in which case the length of AIFS equals
to Distributed (Coordination Function) Interframe Space (DIFS) used in IEEE
802.11) for non-AP station and the maximal value is 15. For AP station the
minimal value is 1.

– Minimum and maximum values of contention window (CW): CWmin

and CWmax. See above the brief description of these parameters. Both values
are power of two.

– TXOP limit determines the duration of permission to transmit. During this
interval, the station uses only SIFSs to delimit individual frames and hence
the other stations has no chance to decrement their contention window timers
and transmit another packets.

The table 4.1 shows default settings of AC parameters. A TXOP limit value of
0 indicates that only single data frame (in addition to RTS/CTS exchange) can be
transmitted at any rate for each TXOP.
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Figure 4.3: Our testbed setup

EDCA parameters are stored locally at the QSTA and can be dynamically
updated by the QoS access point (QAP) that distributes them to STAs in the
management frames (the beacon, and in probe and re-association response frames).
This adjustment allows the stations in the network to adjust to changing conditions,
and gives the QAP the ability to manage overall QoS performance.

Contention-based medium access is susceptible to severe performance degradation
due to the overload and noise on medium especially. In overload conditions, the
contention windows become large, and more and more time is spent in backoff delays
rather than by sending data. Admission control is needed to regulate the amount of
data contending for the medium.

4.3.2 Testbed setup

Before developing the admission control algorithm for FRSH Resource Manager
(FRM) we wanted to evaluate the properties of real IEEE 802.11e hardware to check
that its behavior corresponds to the theoretical results presented in many theoretical
papers such as [Xiao, 2004, Vittorio and Lo Bello, 2007]. The experiments were
conducted on a testbed (see Figure 4.3) where one station was a laptop running Linux
2.6.24 with Ovislink WMM-3000PCM Cardbus adapter containing Ralink RT2600
chip (rt61pci driver). The station was associated to an AP Linksys WRT54G ver.
7, which was connected by 100 Mbps Ethernet to a PC running Linux 2.6.22. This
way we had two stations (Laptop and AP) competing for the wireless medium.

It is clear that with this setup the probability of collision is quite low and the
measured results can be different if there are more stations.

There are two testing applications. The test server serves as a loopback i.e. it
listens for incoming UDP packets and sends them back to whoever who sent them,
using the same Type of Service (TOS) flags. The test client produces data streams
of desired average bandwidth, packet size and access category, sends them to the test
server and processes the responses. Both server and client add time-stamps to every
packet payload so that the client can measure round-trip time and (if time in the
server and client stations is synchronized) one-way delays. The scheduling policy of
both test client and test server sending/receiving threads is set to SCHED FIFO to
minimize the influence of CPU scheduler to measured times. It was not necessary to
use any real-time extensions to Linux kernel as we have used low baud rates and the
latencies caused by the OS scheduler was several orders of magnitude below network
latencies.

The parameters of EDCA queues were set to the default values defined in [IEEE,
2005] , which are mentioned in Table 4.2. Transmission bit-rate was fixed to 1 Mbit/s
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AC AIFSN CWmin CWmax Burst

AC VO 2 3 7 15
AC VI 2 7 15 30
AC BE 3 15 1023 0
AC BK 7 15 1023 0

Table 4.2: EDCA parameters for experiments.

on both sides to eliminate automatic rate control algorithms.

Since it was not possible to synchronize the clocks of the two computers with
precision of a few hundred microseconds using Network Time Protocol (NTP) and
we didn’t want to use a more complicated synchronization techniques [Guo, 2006],for
some experiments the setup was different: Both test server and test client were
running in the same machine but the communication between WLAN and Ethernet
interfaces were handled externally thanks to the send-to-self patch1 for Linux kernel
(see dashed line in Figure 4.3).

4.3.3 Experiments

The results of our experiments are presented in the graphs below in the form of
cumulative histogram of delay. The horizontal axis represents the measured time
(divided by two in the case of round-trip time) and the vertical axis represents the
percentage of received packets with delay less or equal to the value on the horizontal
axis. The exact parameters of streams generated by test client application are shown
above every plot. The packet size values don’t include any headers (UDP, IP, MAC).
As the measured time includes the transmission time of the packet, we keep the
packet size of all streams the same to eliminate the influence of different transmission
time. Also, to excite all possible behavior of the stochastic system represented by
IEEE 802.11 MAC layer, the delay between send attempts is an evenly distributed
random number with mean value of desired period and maximal deviation equal to
50% of period. All experiments ran for 60 seconds.

Basic Experiments

The experiment in Fig. 4.4 shows the delays of all access categories (voice, video,
best-effort, background) under non-saturation condition. The worst-case delay of
AC VO was around 70 ms and the one of AC BK was 240 ms.

In the second experiment (see Figure 4.5), we have slightly increased the
bandwidth of all streams and AC BK queue got into saturation. We can see that we
have received only 10 packets per second instead of requested 17 and the worst-case
delay increased to 5.4 seconds. As we show below, the major part of this delay is
caused by waiting in transmission queues.
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Figure 4.4: Delay of all access categories under non-saturation condition.
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Figure 4.5: Delay of all access categories where AC BK is under saturation.
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Figure 4.6: Influence of AC BE at 20 kbps on AC VO and AC VI.
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Figure 4.7: Influence of AC BE at 200 kbps on AC VO and AC VI.
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Figure 4.8: Influence of AC BE at 220 kbps on AC VO and AC VI.
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Figure 4.9: Influence of fully saturated AC BE to AC VO and AC VI.
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Access Category Interdependencies

In these experiments we have measured the influence of “low-priority” AC BE stream
of different bandwidths to the delays of AC VO and AC VI streams. The bandwidth
of AC VO and AC VI was fixed to 100 kbit/s and the bandwidth of AC BE was
changed from zero to 340 kbit/s.

Figure 4.6 shows a non-saturated case with 20 kbps AC BE stream. All
subsequent AC BE bandwidths produced similar results until 200 kbps (Figure
4.7), where AC BE bandwidth reached the saturation boundary and the worst-case
delay increased to 210 ms. If AC BE bandwidth is slightly increased to 220 kbps
(Figure 4.8), the worst-case delay increases rapidly to 2 seconds and remains that
high even for higher requested bandwidths. In the saturated case, the real AC BE
bandwidth did not exceed 200 kbps as can be seen from the rates of received packets
(31 pkt/s = 31×800×8 bps

.
= 198 kbps). The worst-case delay of AC VO and AC VI

ranges from 30 ms in the non-saturated case, to 100 ms in all saturated cases. This
means that the influence of a “low-priority” stream to the delay of “high-priority”
streams is limited and therefore this communication is suitable for soft real-time
applications.

The ramp between 50 and 1550 ms on the saturated (AC BK) graph in Fig. 4.8
corresponds to the state where OS/HW queues are being filled. In the beginning,
the queues are empty so that packets don’t wait in queues and the delay is short. As
the queues are filled more and more the time spent in queues becomes longer. Then
there is notable turn at 1550 ms, which corresponds to the state where the queues
are fully filled and packets starts to be dropped. The shape of the curve between
1450 and 2000 ms is similar to the one from Figure 4.9. It means, that when the test
from Fig. 4.9 started, the queues were already filled from the previous experiment
and the experienced delay is the longest possible one.

Influence of the Queue Size

When we decreased the maximum size of socket buffers (with setsockopt and
SO SNDBUF), we were able to decrease the maximum delay (see Figure 4.10). With
zero byte buffers (the top graph), the lowest delay was achieved, but obviously when
multiple threads use the same socket (in non-blocking mode) then the packet loss
was higher (not depicted in Figure 4.10).

Differences Between Access Point and Station

Since the AIFSN, CWmin and CWmax parameters can have different values for AP
and non-AP Stations (STAs) in the same network [IEEE, 2005], it was also evaluated
how one-way communication delay depends on the direction (non-AP to AP and vice
versa). This experiment used the testbed setup with both test client and test server
in one station (dashed lines in Fig. 4.3), which enables precise measurement of one-
way delays. The results can be seen in Figure 4.11. The top figure shows that
the delays are shorter when the AP is the sender. This is obvious because the AP
must have precedence over non-AP stations or otherwise it would be overloaded by

1http://www.ssi.bg/~{}ja/#loop

http://www.ssi.bg/~{}ja/#loop
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Results of: wclient -Q 0 -q -B 100 -b VO,VI,BE:240 -j 50 -s 800 -c 60  
Stream 0: AC_VO 100 kbps (800 bytes per 64.0 ms +-32.0 ms, 15 packets/s); real: 97.6 kbps sent 917 (15/s), received 916 (15/s)
Stream 1: AC_VI 100 kbps (800 bytes per 64.0 ms +-32.0 ms, 15 packets/s); real: 99.8 kbps sent 936 (15/s), received 934 (15/s)
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AC_VO no queue
AC_VI no queue

AC_BE no queue
AC_VO with queue
AC_VI with queue

AC_BE with queue

Figure 4.10: Influence of socket send queue size to delays. Two scenarios with SO SNDBUF
set to 0 and 3000.

packets coming from other stations. The bottom figure is provided for completeness
and shows the data from the experiment in the same form as in the previous figures,
i.e. the sum of two one-way delays divided by two.

The difference between AP and non-AP STA is problematic as we do not know
the exact settings of AP’s EDCA parameters and hence it is impossible to incorporate
the AP behavior in an exact analysis.

Summary

From the results presented in this section we conclude that, in order to use IEEE
802.11e networks for real-time communication:

1. Saturation must be avoided for high priority ACs (VO, VI).

2. If saturation is not avoided for non-real-time (background) access categories,
communication delay of real-time traffic increases (approximately by 100%).

3. Decreasing the number of socket buffers lowers delays but degrades perfor-
mance and increases packet loss.
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Figure 4.11: Difference in communication delays between AP and non-AP transmitters.

4.3.4 Simple Admission Test

With respect to the summary in the previous section and before implementing
quite difficult and computation demanding admission test based on [Engelstad and
Østerbø, 2006], we have decided to start with a very simple and not much universal
utilization based admission test whose goal is only to avoid saturation. Later, it
turned out that such a test is sufficient for the use in FRSH/FORB framework (see
section 5.2).

For each contract (stream) we determine how many UDP packets may be sent
according to the negotiated budget B (bytes per period) and Maximum Transmission
Unit (MTU). For each packet we calculate its transmission time including all possible
overheads:

– lower layer headers (UDP, Internet Protocol (IP), Logical Link Control (LLC),
MAC),

– Acknowledge (ACK) packet and SIFS,

– Physical Layer Convergence Protocol (PLCP) preamble and PLCP header
(and signal extension for Extended Rate PHYs (ERP) rates defined by IEEE
802.11g) for both data and ACK packets,

– AIFS and

– estimation of backoff time (see below).
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AC value
CVI 6
CVO 5
CBE 2
CBK 2

Table 4.3: Values of the constants used in the estimation of the backoff times.

The following equations provide the details of calculations in the admission test.

tframe(bytes) = tplcp + 8 · bytes/bitrate (4.2)

b(payload) = payload+ ludp,ip,llc,mac,fcs (4.3)

ttx(p) = tbkoff + tframe(b(p)) + tsifs + tframe(ack) (4.4)

tB = bB/MTUc ttx(MTU) + ttx(B mod MTU) (4.5)

These expressions are the same for all access categories, with the only exception
which is the backoff time tbkoff . Its calculation depend on AC as detailed in the next
paragraph.

The estimation of the backoff time is based on AC parameters. First, average
backoff time is calculated for free medium (i.e. when there is only one transmitting
station) and the result is then multiplied by an empirical constant Ci, which is
different for each AC. The intention of the multiplication is to roughly represent the
influence of collisions. The backoff time calculated according to the is given by the
following equation:

tbkoff,i = Ci · tslot · (AIFSN[i] + CWmin[i]/2). (4.6)

The values of Ci are given in Table 4.3. The tslot equals to 20µs as defined in [IEEE,
1999].

Because of this simple estimation, this test is not very precise in the general case,
because the relationships between the traffic and the number of collisions are more
complex and retransmission time is not counted. On the other hand, the purpose of
the admission test is to avoid saturation and therefore keep the number of collisions
low. For that reason, we do not need complicated models to estimate EDCA back-off
time and we can use constant values for this delay, one for each access category.

For each of the already accepted and new contracts, the admission test calculates
the length of bus occupancy tBk

and divides it by the contract period Tk to get so
called partial utilization value. These numbers are then summed to form the total
utilization U :

U =
∑
∀k

tBk

Tk
(4.7)

If the total utilization U is less than 96% (empirically determined value) the new
contract is accepted, otherwise it is rejected.

To illustrate the properties of this test three experiments have been performed to
measure the throughput of the WLAN channel. The results were compared with the
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Figure 4.12: Comparison of the utilization based test with measured results for three
different experiments.

results given by the utilization based test. After tuning the empirical constants, the
results matched quite well. Of course, the situation might be different for another
experiments but given the typical properties of the wireless networks (packet loss,
sensitivity to external disturbances etc.) and the results from section 5.2, even such
a simple test is sufficient for most real-world soft real-time applications.

In the experiments, we have measured the saturation bandwidth of AC BE as
a function of the size of packets in AC VO, AC VI and AC BE respectively (see
Fig. 4.12). In each of the three tests, the following streams were generated: AC VO
– 100 kbps, AC VI – 100 kbps and AC BE – 500 kbps. Since the Wi-Fi bandwidth
was set to 1 Mbps and every packet is transmitted two times (once from source station
to AP and once from AP to destination station), the network was fully saturated by
these streams and the delays are similar as in Figure 4.9. The difference from the
previous experiments is that the size of packets in one stream was being changed
while the other two streams were formed by packets with 800 bytes of UDP data
payload. By changing the size of the packets, we try to determine whether the
overhead calculation used in the admission tests holds for various sizes of packets.
Under these conditions the real (saturation) bandwidth of AC BE was measured by
observing the number of successfully received AC BE packets during a time interval.

Figure 4.12 shows the measured saturation bandwidth together with the theoret-
ical available bandwidth derived by the admission test algorithm. The theoretical
bandwidth was achieved by binary chopping algorithm, which finds the maximum
bandwidth of AC BE stream which is admitted by the test. The solid lines
correspond to the theoretical AC BE bandwidth allowed by the admission test and
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the points represent the measured saturation bandwidth for a particular experiment.
The step at packet size of 1472 bytes is caused by IP protocol fragmentation (at MTU
size) – at this point the UDP datagram was split into two packets and therefore the
overhead doubles.

4.3.5 Integration of FWP in FRSH/FORB

As for any other resource, FWP implements resource manager and resource allocator
components. FWP resource manager is responsible for two things:

1. It assigns the stream to the one of the four EDCA access categories according
to the deadline specified by the application in the contract.

2. It checks that the overall bandwidth requested by all applications is lower
than the bandwidth available. Currently, the available bandwidth is specified
manually when the manager is started. The check is performed as described
in the previous section.

Currently, FWP works only when transmission bitrate is fixed. Since Wi-Fi
network interface cards (NIC) normally change bitrate dynamically to cope
with changing channel conditions, this constraint is quite limiting. In [Sojka
et al., 2008], section 3.6.2, we describe, how FRSH/FRSH framework could
support dynamically changing bitrate.

FWP resource allocator creates FWP virtual resources and configures their
internally used sockets in such a way that the messages are sent through the EDCA
access category specified by the manager. Every FWP VRES employs a traffic
limiter to ensure that applications do not send more data within a period than they
requested in the contract. If the application exhausts its budget, it is either blocked
until the next replenishment time (in case of synchronous send) or the message is
queued and sent by VRES at the next replenishment time (asynchronous send).

4.4 Wireless Sensor Networks

FRSH/FORB framework has also been integrated with Wireless Sensor Networks
(WSNs). As opposed to distributed systems connected by a conventional network,
WSNs are based on nodes with limited computational power. Their purpose is
usually to collect some data measured in the nodes and to transport the data to a
central point. The WSN nodes cannot run the full FRSH/FORB framework and
hence the framework does not have control over the node’s resources. Instead, the
whole WSN is treated as a single resource which is used by FRSH/FORB applications
as a data source.

There are two types of WSN integrated in FRSH/FORB. Both have different
architecture and provide different guarantees. The following sections describe the
integration of these two WSNs to FRSH/FORB. The complete description of the
involved protocols and admission tests is provided in [Sojka et al., 2008].
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Figure 4.13: Integration of ITEM protocol with FRSH/FORB.

4.4.1 ITEM Network

Integrated TDMA and E-ASAP (ITEM) was developed by J. Trdlička and is
described in-depth by [Sigh et al., 2008]. It is an implementation of adaptive Time
Division Multiple Access (TDMA) protocol for use in WSN. The network operates
in cycles and the length of the cycle depends on the number of nodes the data is
gathered from. The more nodes, to longer cycle. The ITEM-based network allows
the FRSH/FORB application to specify in the contract from which nodes it wants
to receive data and what should be their maximal age (deadline). The contract
is accepted if the network can fulfill the request and it is rejected when there are
requests to gather data from too many nodes with respect to the lowest deadline
specified in any contract. As an example consider a case where one application wants
to receive data frequently from a single node. The network is therefore configured to
short TDMA cycle to fulfill that request. Later, If another application requests data
reception from, let say, 32 nodes with sufficiently long deadline, this request cannot
be fulfilled with the short TDMA cycle, which is needed for the first application.

The modules of ITEM resource and their interaction during contract negotiation
are shown in Figure 4.13, which is a simplified version of Figure 3.3 from page 30.
The support of ITEM resource consists of the following modules:

ITEM resource manager provides the admission test to check whether the
deadlines requested by applications can be met, given the number of nodes
which are requested to send data.

ITEM scheduler is a module responsible for configuring the wireless sensor
network according to the application requests (contracts) and for distribution
the received data to applications. Technically, to simplify the framework setup
this module is implemented in the same process as ITEM resource manager,
but logically, these modules are completely independent.
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Figure 4.14: Demonstration of ITEM wireless sensor network with FRSH/FORB
(FRESCOR project).

ITEM allocator is a lightweight module whose purpose is only to redirect VRES
manipulation and data reception requests to the ITEM scheduler.

The contract negotiation process corresponds to the one described in Sec-
tion 3.3.2. After a contract for the ITEM resource is negotiated, the application
can use fra item receive() function to gather sensory data from the network. FORB
is used to retrieve the data from the ITEM scheduler.

4.4.2 Cluster-Tree Network Supporting Variable Data Flows

Supporting time-sensitive WSN applications implies to predict and guarantee
bounded end-to-end communication delays. Thus, the FRSH/FORB framework
provides the worst-case analysis using the Network Calculus framework [Boudec and
Thiran, 2004] to ensure that data traffic generated by accepted contracts does not
exceed any user-defined deadlines. Similarly to ITEM resource, each FRSH/FORB
contract specifies the sensory data flows generated by a given set of sensor nodes. The
difference from ITEM is in the underlying network protocol (IEEE 802.15.4/ZigBee)
and network topology (Cluster-Tree). Detailed description of the used analysis
method can be found in [Jurč́ık et al., 2008], additional implementation details are
provided in [Sojka et al., 2008].

In this kind of WSN, each data flow is defined by the following parameters and
hence these parameters have to be specified in the contracts for this resource:

– node id is the address of the data flow’s source (16-bit address in case of IEEE
802.15.4/ZigBee protocols),

– budget is the size of the generated packet’s payload [bits] and
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– period is the time between two consecutive packets [sec].

FRSH Resource Manager (FRM) uses this information to calculate the burst
size b and arrival rate r, which are the parameters needed by the (Network Calculus
based) analytical framework [Jurč́ık et al., 2008].

4.5 FPGA

From the FRSH/FORB framework point of view, FPGA is an additional computing
resource. The FPGA is able to constitute one or more FPGA cores. Each core can
substitute a part of software for a particular task, lowering overall CPU load. Within
the frame of resource reservation, the goal of the framework is to decide, whether
to execute a task entirely in software, or whether to utilize the FPGA and use an
FPGA core to accelerate the task.

This section describes the integration of FPGAs resource into the FRSH/FORB
framework. It is based on [Peca et al., 2009] which also contains additional
information and case studies.

4.5.1 FPGA reconfiguration capabilities

One or more FPGA cores can occupy the FPGA at once. In dynamic environments
i.e. in application domain of FRSH/FORB framework, where application needs
change over time, it may be desirable to reconfigure the FPGA during run-time,
i.e. to interchange currently used FPGA core set by a different one. There are two
possible reconfiguration paradigms: dynamic and static.

Dynamic reconfiguration

With dynamic (often called partial) reconfiguration, content of the FPGA is changed
only partially during the reconfiguration. Individual FPGA cores can be loaded into
free FPGA areas, preserving other cores, already present in the FPGA.

The main advantage of the dynamic reconfiguration is its flexibility in that
FPGA cores can be loaded independently up to available capacity. The run-time
reconfiguration can proceed during uninterrupted operation of running FPGA cores.
There are several disadvantages of dynamic reconfiguration [Peca et al., 2009]. The
main disadvantage is difficult design. Also, a resulting FPGA implementation of
cores is slightly suboptimal due to design constraints, in comparison with the static
reconfiguration.

The dynamic reconfiguration is a promising paradigm, however, it still is not
a mature technology in industrial practice. Although FPGA manufacturers offer
tools and application notes for implementation of dynamic reconfiguration [Xilinx,
2004], and a research has been done [Kohout, 2007,Donato et al., 2005], it is still a
very difficult way. For the integration with FRSH/FORB framework, the dynamic
reconfiguration was not employed.
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Static reconfiguration

For every desirable set of FPGA cores, an FPGA bitstream2 is created (compiled)
offline. Then, it is possible to replace whole core set by another one.

There are no reconfiguration specific design constraints imposed. Every desirable
core set is compiled as a whole, as one large hardware, containing all the selected
FPGA cores. If there are N FPGA cores present in the system, there are up to 2N

core sets. However, substiantially smaller number has to be actually compiled. Some
of combinations can be impractical or useless in an application. Also, there is no
need to compile a set, if its superset already fits into the FPGA (unless we concern
about power consumption). Again, if a set cannot fit into the FPGA as a whole, it
will not be compiled, as well as all of its supersets. The limit case of this paradigm
is that only each one of the FPGA cores itself is compiled, and only one of the cores
at a time can be loaded into the FPGA.

The following difficulties are encountered even in simple case of static reconfigu-
ration:

– HW/HW state transition In contrary to dynamic reconfiguration, whole
content of the FPGA is replaced during each reonfiguration. Thus, if a task,
running on an FPGA core, has to continue after the reconfiguration, it should
be interrupted and its state must be transferred to new incarnation of the
same FPGA core. However, the same core in a new bitstream may be placed
in a different location, moreover, it may use slightly different logic building
blocks (due to optimizations during compilation). Solution of such a general
transition is a very difficult task. If the state transition is not implemented,
the reconfiguration can proceed only when all FPGA cores are inactive.

– HW/SW state transition The issue of HW/SW transition is the very same
as in case of the dynamic reconfiguration, see [Peca et al., 2009].

– Real-time loading The FPGA is loaded whole at once, without preservation
of any running cores or content. Thus, it is possible to use common software
tools. If a real-time operation is required, a loading time should be taken into
account. Also, an interface which assure deterministic timing should be used
on a CPU side. On the FPGA side, e.g. a Joint Test Action Group (JTAG)
boundary-scan interface may be used.

The static reconfiguration is simple to use, a design is not specifically constrained.
However, the HW/HW state transition is very difficult. The other big disadvantage
is that every desirable combination of FPGA cores must be precompiled and stored
somewhere in a memory. With growing number of the FPGA cores, there is a
combinatoric explosion of possible core sets. Selecting only few of them results in a
waste of possibly utilizable FPGA capacity. Static reconfiguration is considered for
integration with FRSH/FORB framework.

2Bitstream is a serialized representation (block of data), desribing an FPGA content on the
lowest possible level.
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User contract

Variant A

Budget: 20 ms, Period: 42.3 ms

Spare capacity params
discrete

Variant B

Budget: 0.1 ms, Period: 42.3 ms

Resource: CPU

User contract

Variant A

Cores: NONE

Spare capacity params
discrete

Variant B

Cores: CORRELATOR

Resource: FPGA

Transaction
Consistent spare capacity: true

Figure 4.15: Example of data structures describing the transaction involving CPU and
FPGA in the contract framework. There are two variants of possible task execution: A –
software only and B – FPGA accelerated.

4.5.2 FRSH/FORB contracts for FPGA resources

To support FPGAs in the contract framework a way for applications to specify their
requirements in contracts has to be defined. In the context of FRSH/FORB, FPGA
cannot work as stand-alone computing entity; it is used as a coprocessor which means
it is always accompanied by CPU. Therefore, the contract for FPGA resource has
always to be accompanied by a CPU contract forming a transaction (see Section
3.3.4).

The responsibilities of the contract framework with respect to the FPGAs are
the following:

1. Decide which cores should be loaded to the FPGA depending on application
requirements.

2. For applications that can run their tasks either entirely in software or
accelerated by an FPGA core, decide which application will run which variant.

For the framework to provide this functionality, applications must specify which
FPGA cores they need as well as their CPU requirements for accelerated and software
only (if available) variants.

As was mentioned above, for proper functionality, contracts for FPGA and for
CPU have to be specified in a transaction. An example of such a transaction is
depicted in Figure 4.15. It shows a real transaction used in the case study from [Peca
et al., 2009]. The software only variant (denoted as A) needs to utilize the CPU for
20 ms every 42.3 ms, while the FPGA accelerated variant (B) needs only 0.1 ms on
CPU and an FPGA core called CORRELATOR. The transaction requests consistent
allocation of spare capacity, which means that the framework must allocate the same-
named variants for both contracts, i.e. it has no sense to use simultaneously variant
B for CPU and variant A for FPGA.



5
Framework Evaluation

In this section experimental results of the validation of the proposed framework
are presented. The experimental validation aims to gather overhead figures for the
contract negotiations in the framework (Section 5.1), and to highlight its capabilities
in the provisioning of guarantees to individual applications. In Section 5.2, we show
the capability of the Wi-Fi resource to temporally isolate applications from each
other. Readers interested in temporal isolation capabilities of CPU and disk resource
are kindly referred to [Sojka et al., 2010], where co-authors evaluated these resources.
Finally, we present the experimental results gathered on the integrated case-study
presented in Section 5.3, where contracts for the three types of resources (CPU,
network and disk) are all used at the same time.

All experimental results have been gathered on a Pentium 4 at 2.4 GHz with
2 GB of RAM, running a Linux OS with a 2.6.29.1 kernel patched with BFQ and
AQuoSA.

5.1 Negotiation Overhead

First, we measured the overhead of the negotiation procedure. To measure only the
overhead of the framework and not the computation times of schedulability analysis
and of VRES creation for a particular resource, we created a dummy resource, whose
manager and allocator did nothing. In the experiment, we successively negotiated
ten thousand contracts and measured the time of every single contract negotiation.
The results are shown in Figure 5.1, with the lines labeled as “Negotiation”. In
case of local negotiation, both contract broker, resource manager and allocator were
running on the same node. For remote negotiation, the manager was running on the
second computer connected by a 100 Mbps Ethernet. The result is that the remote
negotiation has a slightly higher overhead (as expected) and that in both cases the
negotiation time is almost linearly dependent on the number of contracts in the
system.

59
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Figure 5.1: Contract negotiation time as a function of the number of negotiated contracts.

Then, we evaluated the overhead involved in renegotiation of existing contracts.
This evaluation was done similarly to the previous experiment: we had several
contracts in the system and we measured the time needed to renegotiate a single
contract. The result is depicted again in Figure 5.1, with the line labeled as
“Renegotiation”. It can be seen that renegotiation takes, in average, slightly less
time than the initial negotiation. The reason is that renegotiation involves less work
to be done.

5.2 FRSH WLAN Protocol (FWP)

To evaluate the FWP protocol we mounted four Wi-Fi network interface cards (NICs)
on our testbed PC, and an EDCA enabled Wi-Fi access point. The transmission
bitrate was fixed to 12 Mbit/s. The Linux kernel was patched with send-to-self
patch1 which allows the messages addressed to the same computer to be sent over
the external network. The messages were sent through one NIC and received through
another NIC. Therefore, we did not need synchronized clocks on multiple computers
to measure the communication delay.

Our testing application generated multiple data streams composed of messages
with a 1024 bytes size, sent every 20 ms. The streams were received by the same
application in different threads and the communication delays were measured. The
messages of the ith stream were sent from the (i mod 4)-th NIC to the ((i + 1)
mod 4)-th NIC. Every test was run for 20 seconds so that every stream transmitted
one thousand messages. We compared the results with FWP and without it.

The first experiment shows the consequence of limiting the total used bandwidth
in the resource manager. The results can be seen in Figure 5.2. The horizontal axis
shows the number of simultaneously generated streams and the vertical axis shows
the maximal measured communication delay, its 95th percentile and the packet loss.
From the figure, it can be seen that the communication delay increases when the
utilization grows. The highest bandwidth allowed by the FWP resource manager
corresponds to eight streams. When the same experiment is repeated without FWP

1More information is available at http://www.ssi.bg/~ja/#loop.

http://www.ssi.bg/~ja/#loop
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Figure 5.2: Illustration of how FWP resource manager maintains feasible bandwidth
allocation.

(dashed lines), both communication delays and packet loss rise dramatically (note
the logarithmic scale used for the delay axis) for nine simultaneous streams and
beyond. By limiting the total bandwidth (here at eight streams), FWP is able
to keep delays and packet loss low. Also note that the maximal delay is strongly
influenced by the non-determinism of the EDCA medium access algorithm and by
external disturbances. This explains why the maximal delay curve relative to FWP
was occasionally higher than the one without it (for five streams).

In the second experiment we highlight the influence of the traffic limiter in FWP
virtual resources (see the last paragraph of Section 4.3.5). The previous experiment
was modified so that the delay between sending of messages in one stream was not
fixed to 20 ms, but was a random variable uniformly distributed between 0 and 40 ms.
The results can be seen in Figure 5.3. In order to see the difference, we had to bypass
the FWP resource manager in all experiments, because the differences showed up
only when the medium was saturated which is what the manager tries to prevent (see
the limit of 8 streams in Figure 5.2). However, such situation may happen even when
the manager is in use with disturbances which lower the link quality and decrease the
available bandwidth. The results show that the maximum experienced delay (lines
labeled as +) is approximately the same with and without the traffic limiter. The
difference can be found in the 95th percentile (lines labeled as ∗). For low utilization
values, when the traffic limiter is active, the maximal delay is obviously close to the
VRES period because some packets are delayed by the limiter. Without the limiter
the delay is lower. However, the limiter helps when the medium is more saturated.
For ten or more streams, the packet loss (lines labeled as 2) is lower with FWP than
without it. Furthermore, for seven and more streams, the delay rises slower with the
limiter than without it.
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Figure 5.3: Demonstration of how traffic limiter in FWP VRES helps when Wi-Fi channel
gets saturated.

A careful reader may wonder why there is “non-zero” packet loss for nine and
more streams in Figure 5.2 and in Figure 5.3 only for twelve and more streams (the
non-dashed line in the latter figure should roughly correspond to the dashed line
in the former figure). The reason is the difference in channel conditions caused by
external disturbances. When the experiment was run during working hours (the
first one), other Wi-Fi networks on close channels disturbed us, while the second
experiment was run in the evening when other wireless traffic was lower.

5.3 Integrated Case-Study

The proposed framework has been evaluated from the perspective of usability and
achievable experimental results by realizing a concrete case-study application. It
is constituted by a video-surveillance system with multiple cameras deployed in
a building. Cameras are physically connected to the camera controller which
communicates via Wi-Fi with the video server recording the video on a hard disk.
The video is on-line and off-line surveyed by the operator, who dynamically decides
upon the cameras to be recorded and the required quality of the video. Given the
limited resources (CPU, WiFi and disk) the system presented in this paper allows
the operator to dynamically (on-line) add/remove cameras and to change the video
quality as long as the resource capacity is not exceeded (demonstrated in Figure 5.8).

The main components of the applications are the following (see Figure 5.4):

Camera Controller grabs videos from multiple connected video cameras, encodes
them for transmission and sends them over the Wi-Fi network to the video
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Figure 5.4: Case study block diagram.

server;

Video Server embeds two distinct components: the Video Recorders receive the
video streams from the camera controller, re-encode them to an on-disk format
and store them on a local hard drive; the Video Streamer reads back the stored
videos and streams them over the network for being visualized by the video
client(s);

Video Clients decode and visualize video streams, transmitted by the video
streamer, on a local display.

In the following, we consider a concrete set-up of the general structure presented
in Figure 5.4: one instance of the Camera Controller acquiring videos from up to
three connected cameras and a single video client. This setup is depicted in Figure 5.5
together with resources involved in individual components.

The application has been realized by exploiting the open-source multimedia
library FFMPEG2, and the FRSH API described previously. The Video Client has
been realized by using the VLC media player3.

The video grabbing rate was selected to be 30 frames per second (fps) and the size
of one frame was 320×240 pixels. The acquired video was encoded to an MPEG-4
stream with an h263 codec and a bitrate of 1 Mbit/s. The stream was transmitted
to the recording server using the Real-Time Transport Protocol (RTP)4 which is
based on the non-reliable UDP protocol. The recording server decoded each received
stream, re-encoded it and stored it in MPEG-4 format onto the local disk. The video
streamer is capable of streaming the recorded video either at full quality (same as
used by the camera controller) or at lower quality 15 fps, 160×120, 100 kbit/s. Due
to the environmental set-up and the distance between the Camera Controller and
the Video Server, the wireless link between the Camera Controller and the Video
Server was operating at a fixed bitrate of 12 Mbit/s.

2More information is available at: http://ffmpeg.org/.
3More information is available at: http://www.videolan.org/vlc.
4More information is available at: ftp://ftp.isi.edu/in-notes/rfc3550.txt.

http://ffmpeg.org/
http://www.videolan.org/vlc
ftp://ftp.isi.edu/in-notes/rfc3550.txt
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Planned parameters
Video rate 30 fps
Video resolution 320x240
Maximal video bandwidth 1 Mbit/s

Measured parameters
Average frame size 3192 B
Avg video bandwidth 3192*30*8 = 751 kbit/s
I-frame every 12 frames = 0.4 s
Avg (max) I-frame size 8377 (8825)
Avg (max) P-frame size 2697 (5990)
CPU load of video encoding 15 %
CPU load of video recording 6 %

Table 5.1: Application parameters.

5.3.1 Parameter Tuning

The biggest difference between developing an application with and without the
FRSH/FORB framework is that the developers need to provide contract parameters
to the framework. It should be easy for strictly periodic applications with constant
workload but it is more difficult for an application involving video compression where
the workload differers every period (every processed video frame). This section
summarizes our experience with determining proper contract parameters.

To properly setup contract parameters for a video processing application, some
knowledge of video encoding and processing is required: The video stream is
composed of different types of frames (I-frame, P-frame) and each type requires
different CPU processing time, network and disk bandwidth. I-frames represent the
full video frames while P-frames contain only differences from the previous frame(s).
In our experiments, the size of encoded I-frames was, in average, three times bigger
than the size of P-frames.

A correct set-up of the contract parameters is obviously determined by the
application parameters. The parameters affecting resources requirements have been
identified and measured. They are summarized in Table 5.1.

A correct set-up of the contract parameters has been fine-tuned based on a
benchmarking phase. It was sufficient to benchmark the individual components
separately because, as can be seen from the results in Section 5.3, the framework
guarantees that after integration the negotiated parameters are reserved for the
components in the same way as when the components were benchmarked in isolation.

Wi-Fi contract With the setting given in Table 5.1, the Wi-Fi network becomes
the most limiting resource. It allows for transmission of approximately four streams,
but due to a small “safety margin” the FWP manager admits only three streams.
Although the maximal video bandwidth is 1 Mbit/s, the FWP manager needs to
account for the real communication overhead (packet fragmentation, UDP and IP
headers, MAC/LLC overhead – inter-frame spaces, contention window size etc.),
which is in this case 47 %. Also note that every packet is transmitted two times
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FWP Video streamerFWP
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Figure 5.5: Detailed case study block diagram.

– once from the source station to the access point (AP) and once from the AP to
the destination station. Therefore we get the total used Wi-Fi bandwidth as 3 ×
1 Mbit/s × 1.47 × 2 = 8.82 Mbit/s.

As a consequence of different sizes of I-frames and P-frames, if the contract
period is set to match the video frame rate, and the budget is set to be big enough
for processing every I-frame, then approximately 64% (1−3192/8825) of the reserved
bandwidth would be wasted due to the low resource utilization by P-frames. Since
the Wi-Fi network is the bottleneck in our scenario, it was decided to set the period
in the Wi-Fi contracts to 1 second and the budget to 125 KB, which corresponds
to the maximum stream bandwidth. Deadline was set to 1/30 seconds so that
the proper EDCA access category was used by FWP. The exact values of Wi-Fi
contract attributes can be seen in the screen shot of a simple framework monitoring
application in Figure 5.6. The list on the left side of the figure shows negotiated
Wi-Fi contracts. For every video transmission there are two contracts: one for RTP
protocol itself and one for accompanying RTCP protocol. The right side of the screen
shot shows the attributes of the highlighted RTP contract.

CPU contract The CPU capacity on both the camera controller and the recording
server was sufficient (one stream needs on average 15% of CPU on the camera
controller and 6% on the recording server). Given the maximum of three streams,
we can waste some CPU bandwidth by reserving more CPU than is actually needed.
The period was set to match the frame rate and the budget was set to 25% of
the period on the sender side, and to 10% of the period on the receiver side. It
was experimentally checked that these values are sufficient even for processing the
biggest I-frames.

Disk contract The disk throughput was measured to be 22 MB/s. Therefore,
storing 125 KB/s video streams represented very low load for the disk. However,
disk performance depends not only on bandwidth but also on seek patterns and
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Figure 5.6: Screen shot of the graphical application for inspecting negotiated contracts in
resource managers.

therefore it was very important to setup the contracts correctly. It can be seen in
Figure 5.7 d) that the additional disk load has significant performance impact even
on such low-bandwidth streams. It must be noted that in the current version of
the framework, there is no special API for accessing the disk and in order to get
the benefit from using disk reservations, applications must use “direct I/O” services
instead of classical “buffered I/O” services when accessing the disk. In our case
it was not straightforward to convert FFMPEG libraries to use direct I/O and it
prolonged the case-study development time a lot. For future versions it would be
beneficial if this limitation is removed.

The disk contract period was chosen to match the frame rate and the budget was
set to 5 kB.

Summary Summarizing, the parameters for the various contracts in the FRSH
API have been set-up as in Table 5.2. The results of experimental case study are
presented in Section 5.3.

5.3.2 Experience Report

In this section we report on our experience with the framework which we gained
during development of the case-study application.

– It was very helpful to have a central view of the state of the framework. We had
a real-time monitoring application (see Figure 5.6) and the log of all framework
operations (the excerpt is shown in Figure 5.8). It helped us to find quickly
the reasons for reservation failures. We were able to generate the log because
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Camera Controller
Grabber/encoder budget 9 ms
Grabber/encoder period = deadline 1/30 s
FWP Budget 125 kB
FWP Period 1 s
FWP Deadline 1/30 s
Recording Server
Writer CPU budget 5 ms
Writer CPU period = deadline 1/30 s
Writer Disk budget 5 kB
Writer Disk period 1/30 s
Streamer Disk budget 5 kB
Streamer Disk period 1/30 s
Streamer FWP Budget 12 (125) kB
Streamer FWP Period 1 s
Streamer FWP Deadline 1/15 (1/30) s
Video Client
CPU budget 5 ms
CPU period = deadline 1/30 s

Table 5.2: Parameter values set in the FRSH contracts. The two values for Streamer
correspond to the low and full video quality.

we setup the framework in a way that all contract negotiations went through
the contract broker agent running in the recording server.

– Resource reservation helped us in discovering certain errors earlier than during
integration phase. It happened when the actually used video stream bandwidth
was higher (by mistake) than it was allowed by the negotiated network contract.
This mistake was noticed due to jerky video on the video client. It would not
be noticed without the framework because the available network bandwidth
was sufficient for that single video stream.

– Determining the contract parameters often requires a benchmarking phase.
In our case study, this benchmarking was done manually, which is a time
consuming and error prone process. It would be much easier if the framework
provided resource usage statistics such as the minimum/maximum/average
consumed budget, deadline miss and budget overrun counts etc. Therefore, we
plan to add such functionality to the framework in the future.

5.3.3 Experimental Results

In the case study, we ran the involved applications with and without the FRSH
framework and under different loads. Every experiment lasted for 500 frames (cca
16 seconds). During those experiments several timing metrics were measured. The
first metric was the average number of frames per second processed by the video
recorder application. The second metric was the standard deviation of the time



68 Chapter 5 Framework Evaluation

 10

 15

 20

 25

 30

 35

 40

 1  2  3

F
ra

m
es

 p
er

 s
ec

o
n
d

Number of video streams

a) No load

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1  2  3

 

b) Wi-Fi loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1  2  3

 

c) CPU loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1  2  3

 

d) Disk loaded

FRSH
No FRSH

 10

 15

 20

 25

 30

 35

 40

 1  2  3

 

e) All 3 resources loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n
 o

f
in

te
r-

fr
am

e 
ti

m
e 

[s
]

Number of video streams

f) No load

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3

 

g) Wi-Fi loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3

 

h) CPU loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3

 

i) Disk loaded

FRSH
No FRSH

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3

 

j) All 3 resources loaded

FRSH
No FRSH

Figure 5.7: Results of the case study.

interval between the end of processing of two consecutive frames. The results can
be seen on the graphs in Figure 5.7. Graphs a) and f) represent the case when
all resources were loaded only by the applications of our case study. There are no
significant differences in the measured frame rates, and the standard deviations show
that the execution with FRSH is only slightly more regular than the one without
FRSH. The reason why the measured frame rate is greater than 30 is that our
cameras supplied approximately 31 frames per second even if we requested only 30
frames per second.

Graphs b) and g) show the metrics when the Wi-Fi network was loaded by
a concurrently running communication. We connected two additional computers
to the Wi-Fi network and let them interchange some data (all zeros) as fast as
possible using the netcat5 program. These communications were not under control
of the FRSH framework (it can be considered and disturbances) and we setup two
simultaneous streams running in opposite directions.

It can be seen that the load on the Wi-Fi channel influences the achieved frame
rate. Clearly the impact increases with the number of transmitted streams but
it is smaller when the FRSH framework is employed. The explanation of why
the framework cannot guarantee a constant frame rate is that EDCA is not a
deterministic medium access protocol and changing the EDCA access category
can only increase the probability of faster medium access. On the other hand,
one may wonder why the impact on the frame rate is not higher when running
without FRSH. This can be explained by the netcat use of the Transmission Control
Protocol (TCP) protocol, which automatically adapts its bandwidth according to
the detected channel capacity. We tried to generate a more aggressive load (UDP
floods) on the Wi-Fi link, but the camera controller started disconnecting from the
network and the experiment could not be finished. We blame the used network
adapter and/or its Linux driver for this problematic behavior.

Graphs c) and g) represent the case where the CPU on the video server was
loaded by 20 additional CPU intensive non-FRSH applications. Here we can see

5http://netcat.sourceforge.net/

http://netcat.sourceforge.net/
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Time[s] Message

-------------------------------

0.004: Waiting for requests

0.111: Registering manager "AQuoSA" (0.0)

0.115: Registering manager "AQuoSA" (0.1)

0.121: Registering manager "AQuoSA" (0.2)

0.125: Registering manager "WLAN" (1.3)

5.219: Registering manager "Disk BFQ" (3.0)

5.389: Negotiation request: NET.3 RTP

5.391: Negotiation request: NET.3 RTCP

5.396: Negotiation request: CPU.1 camera_ctrl

5.402: Negotiation request: NET.3 RTP

5.462: Negotiation request: NET.3 RTP

5.463: Negotiation request: NET.3 RTCP

5.465: Negotiation request: NET.3 RTCP

5.468: Negotiation request: CPU.1 camera_ctrl

5.469: Negotiation request: CPU.1 camera_ctrl

9.259: Negotiation request: CPU.0 recorder

9.261: Negotiation request: DISK.0 stream0.mp4

9.565: Negotiation request: CPU.0 recorder

9.606: Negotiation request: DISK.0 stream2.mp4

9.622: Negotiation request: CPU.0 recorder

9.663: Negotiation request: DISK.0 stream1.mp4

10.502: Negotiation request: CPU.2 client

10.519: Negotiation request: NET.3 RTP

10.521: Negotiation request: NET.3 RTCP

10.523: Negotiation request: CPU.0 client_streamer

10.559: Negotiation request: DISK.0 stream.mp4

13.931: Renegotiation request: CPU.0 client_streamer

13.933: Renegotiation request: NET.3 RTP

13.942: Contract(s) was/were rejected

17.235: Cancelation request: CPU.0 client_streamer

17.235: Cancelation request: DISK.0 stream.mp4

17.236: Cancelation request: NET.3 RTP

17.237: Cancelation request: NET.3 RTCP

17.240: Cancelation request: CPU.2 client

29.477: Cancelation request: CPU.0 recorder

29.477: Cancelation request: DISK.0 stream2.mp4

29.548: Cancelation request: CPU.0 recorder

29.548: Cancelation request: DISK.0 stream1.mp4

29.574: Cancelation request: CPU.0 recorder

29.575: Cancelation request: DISK.0 stream0.mp4

Figure 5.8: Log of the contract broker running in the video server.
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that AQuoSA is highly successful in keeping the requested frame rate and regular
execution (low variance of inter-frame times).

Similarly the disk scheduler (Budget Fair Queuing (BFQ)) achieves constant
frame rate — see graphs d) and i)) — when the disk was loaded by two processes
which read from two different places on the disk as fast as possible.

Finally, we ran all the three above mentioned loads simultaneously. The results
are presented in graphs e) and j). The framework was able to keep the resources
available for the applications in a way that no significant loss of quality was detected.
The small decrease of quality can be attributed to the Wi-Fi network, which, in this
case, constitutes the actual bottleneck. When the same experiment was run without
the FRSH framework, the results are, as expected, very bad—only approximately 12
frames per seconds were successfully transported. Given the fact that in such a case
it is very likely that the I-frames are lost, the recorded video is almost useless. With
the FRSH framework, the recorded video is of good quality with only occasional
small disturbances caused by dropped frames.

To highlight the dynamic nature of our framework, in Figure 5.8 we provide
the timed log of important operations executed by the contract broker agent in
the recording server, which has “connected” all resource managers needed for the
case study. Shortly after the contract broker was started, five resource managers
registered to it. According to Figure 5.4 there were three CPUs (CPU.0 – video
server, CPU.1 – camera controller, and CPU.2 – video client), one disk and one Wi-
Fi network. The disk resource manager probes for available disk throughput for five
seconds after start and registers itself after the probe is finished. Then, at 5.38, three
video steaming applications were started in the camera controller. Approximately
four seconds later, three recording applications were started in the video server and
they negotiated their CPU and disk contracts. A second later (10 seconds after start),
the video client started on the 3rd computer to play back a formerly recorded stream.
Initially, the stream was played back at low quality, but at time 13, the operator
decided to increase the quality. The renegotiation happened while the old reservation
was still in effect, so the video playback was not interrupted. Unfortunately, the Wi-
Fi bandwidth was not available to satisfy that request so the quality remained the
same until time 17 when the video client was terminated. Finally, approximately
25 seconds after the start, all the recorder applications were terminated and their
reservations were canceled.



6
Integer Programming-Based
Approach to Schedulability

Analysis for Tasks with Offsets

Embedded systems are often characterized by the existence of various constraints
which must be respected during the design of the system. For example their
computation power is low, size of the memory is limited, systems are battery powered,
etc. Significant number of embedded systems are also real-time systems, which
means that their behavior is constrained in time. For checking whether the timing
constraints are satisfied, there exist many schedulability tests, one of them being
the rate-monotonic analysis presented in Section 2.1.2. The other constraints, such
as memory requirements, can also be checked after the system is designed, but it
is better to consider the constraints already during the design phase. Moreover,
the designed system is often required to be optimal in some sense, e.g. we want to
minimize its price or energy consumption. These requirements lead to the fact that
various optimization techniques are used during the design phase of embedded real-
time systems [Baruah and Fisher, 2005]. It is natural that we want the optimization
technique to respect all constraints of the system – either time related or not.

The optimization techniques (also called Mathematical Programming (MP))
require the system to be represented with parameters, decision variables, and
constraints over the parameters and decision variables. The goal of optimization is
described with an objective function, which is defined over the same set of variables.
Generic solvers can be utilized to nd the optimal solution [Davare et al., 2007].

One widely used optimization technique is Linear Programming (LP). This
technique can be used when both constraints and objective function are linear
expressions. Linear programming is a polynomial problem. Some problems, however,
cannot be solved by linear programming even if their constraints and are linear
expressions but some (or all) decision variables are restricted to have integer values.

71



72 Integer Programming-Based Approach to Schedulability Analysis

Such problems are known as Integer Linear Programming (ILP) problems and are
NP-hard.

This chapter describes an attempt to formulate the problem of response-time
analysis for tasks with offsets as an ILP problem. The advantage of using MP for
schedulability analysis is that the problem can by customized by system-specific
issues by simply adding additional constraints [Davare et al., 2007]. The initial idea
was to combine the design optimization process and schedulability analysis into one
step, similarly as described e.g. in [Zheng et al., 2007].

In the context of contract-based resource reservation framework presented in
Chapter 3, the goal is to optimize the distribution of spare capacity as described in
Section 3.4. It would be nice to have a fast and efficient optimization technique,
which can simultaneously take into an account the optimization goal and the
schedulability of the system. The work in this chapter is the first step in this
direction.

Schedulability analysis for task with offsets is a generic name for response-
time analysis techniques, which take into account task offsets. The offsets brings
additional information to the analysis process and allows it to give less pessimistic
results. Moreover, these techniques are capable of analyzing tasks with self-
suspensions and, to some extent, distributed systems. The concept of such an
analysis was introduced in [Tindell and Clark, 1994] under the name “Holistic
schedulability analysis”. This technique was later generalized and formalized in
[Palencia and González Harbour, 1998] and is commonly called offset-based response-
time analysis. The authors derive an exact algorithm for solving the NP-hard
[Ridouard et al., 2004] problem as well as polynomial-time algorithm for upper-bound
approximate analysis. The approximate analysis was later improved in [Mäki-Turja
and Nolin, 2008]. The exact algorithm has exponential complexity and as such it is
not applicable to industrial-size problems.

The goal of this chapter was to formulate the schedulability analysis for tasks
with offset as an ILP problem and compare the time needed to solve the problem
by the solver with the time needed by the original exact algorithm. The expectation
was the the branch-and-bound algorithm inside ILP solvers could solve the problem
faster than the original algorithm, which performs exhaustive search. It turned out,
that the size of our ILP formulation is generally the same as the number of steps
in the original algorithm and therefore even generation of the ILP program has big
complexity. Despite of that we present our results as it may serve as a basis for
future research.

The outline of this chapter is as follows: For the sake of completeness sections 6.1
and 6.2 cite [Palencia and González Harbour, 1998] to give an overview of the original
exact analysis algorithm and to introduce notation and expressions which are referred
from the later sections. The cited text was extended with several figures with the aim
of making the problem easier to understand. Section 6.2.1 summarizes the original
exact algorithm and Section 6.2.2 shows how can be the original algorithm applied to
the analysis of distributed and multi-processor systems. Then, in Section 6.2.3, we
show how such algorithm could be applied to the resource reservation framework
described earlier in this thesis. The ILP formulation is derived in Section 6.3,
where we simplified the computational model to tasks with deadlines shorter than
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periods. Finally we present experimental results in Section 6.4 and give conclusions
in Section 6.5.

6.1 Computational Model

The real-time system considered for analysis is composed of tasks executing in the
same processor (the extension for distributed systems is provided in Section 6.2.2),
which are grouped to transactions. Each transaction Γi is activated by a periodic
sequence of external events with period Ti and contains a set ofmi tasks. The relative
phasing between the different external events is arbitrary. Each task is activated
(released) when a relative time—called the offset—elapses after the arrival of the
external event. We can assume this offset to be static, i.e., it does not change from
one activation to the next. This restriction can be eliminated as is shown [Palencia
and González Harbour, 1998]. Each activation of a task releases the execution of
one instance of that task, which is called a job.

It is assumed that each task has its unique priority and that the task set is
scheduled using a preemptive fixed priority scheduler. Notice that although offsets
represent a kind of precedence constraints, in offset-based analysis tasks are activated
at a time equal to the arrival of the external event plus the offset, and they execute
at their assigned priority regardless of whether tasks of the same transaction and
smaller offsets have finished or not.

Each task will be identified with two subscripts: the first one identifies the
transaction to which it belongs and the second one the position that the task occupies
within the tasks in its transactions, when they are ordered by increasing offsets. In
this way, τij will be the j-th task of transaction Γi. With an offset Φij and worst-case
execution time of Cij . In addition, each task is allowed to have its activation time
delayed by an arbitrary amount of time between 0 and the maximum jitter for that
task which is called Jij . This means that the activation time of task τij may occur
at any time between t0 + Φij and t0 + Φij + Jij , where t0 is the instant at which the
external event arrived.

Figure 6.1 shows an example of such system. The horizontal axis represents
time. Down-pointing arrows represent periodic external events, gray boxes represent
task execution. Up-pointing arrows represent task activation times and dashed lines
under each transaction axis represent task jitter values.

As deadlines are allowed to be larger than one period, at each time there may be
several activations of the same task pending. Both the offset Φij and the jitter Jij
are allowed to be larger than the period of its transaction Ti. The response time of
each task τij is defined as the difference between its completion time and the instant
at which the associated external event arrived. The worst-case response time will be
called Rij . Each task may have associated global deadline Dij , which is also relative
to the arrival of the external event.

It is assumed that if tasks synchronize for using shared resources in a mutually
exclusive way they will be using a hard real-time synchronization protocol such as
the priority ceiling protocol (see section 2.1.1). Under this assumption, the effects of
lower priority tasks on a task under analysis τab are bounded by an amount called
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Figure 6.1: Computational model of a system composed of transactions with static offsets

the blocking term Bab calculated as maximum of all the critical sections of lower
priority tasks that have a priority ceiling higher than or equal to the priority of τab.

6.2 Original Exact Response-Time Analysis

In this section, the algorithm which computes exact values of task’s response times
will be described. As this is NP-hard problem [Ridouard et al., 2004], the complexity
of this algorithm is exponential with respect to the number of tasks in the system.

The rest of this section deals with the analysis of response time of one task τab.
To analyze the whole system, it is necessary to execute the described algorithm for
each task in the system.

To find the worst-case response time of a task τab under analysis, it is necessary
to build the worst-case scenario for this task. Finding this scenario rests in finding
such a combination of higher priority tasks having the highest contribution to τab
response time. The time when this combination occurs is called the critical instant.
Recall that in the case where all tasks are independent and deadlines are less or equal
to periods, it is the time when all the tasks with the higher priority are activated
simultaneously with τab. This no longer holds for tasks with offsets, as it might be
impossible for some sets of task to be activated at the same time. The conditions
under which task τij has the worst-case contribution to the response time of the task
under analysis, τab, are formulated in two theorems later in this section.

When the response time of a particular task is analyzed, the offset of a higher
priority task may be changed by adding or subtracting whole periods of that later
task, without any effect on the response time of the lower priority task, since one
instance of a task is indistinguishable from another instance. Therefore, in order to
simplify the analysis, a reduced task offset, φij , is considered and it’s value is always
within 0 and Ti.

φij = Φij mod Ti (6.1)

In order to calculate the worst-case contribution of task τij to the response time
of lower priority tasks, each job (activation) of task τij must be categorized into one
of the following sets:



6.2 Original Exact Response-Time Analysis 75

Set 0

0

τij
tc

φ

Set 1

0

tc
φ

Set 2

0

tcφ

Figure 6.2: Contribution of a task τij to the response time of lower priority task τab (not
depicted), whose critical instant occurs at tc

Set 0: Activations that occur before the critical instant and that cannot occur inside
the busy period even with the maximum jitter delay.

Set 1: Activations that occur before or at the critical instant and that can be
delayed by an amount of jitter that causes them to coincide with the critical
instant.

Set 2: Activations that occur after the critical instant.

This categorization can be accomplished only if the phase relation between the
task activation pattern and the critical instant is known. As this phase relation is
not known now, we will mark it as φ and later it will be shown how to compute it
based on Theorem 3.

Phase relation between the transaction arrival and the critical instant, φ, is the
time interval between activation of transaction Γi that occurred immediately before
or at critical instant and that critical instant.

Notice that 0 ≤ φ < Ti. Examples of tasks from each set as well as the values
of φ are shown in Fig. 6.2. The task from Set 1 is depicted as being delayed to the
critical instant tc.

Theorem 2 (from [Palencia and González Harbour, 1998]) Given a task τab
critical instant, tc, and a phase relation φ between the arrival pattern of transaction
Γi and the critical instant, the worst case contribution of task τij to the response
time of τab occurs when the activations in Set 1 have an amount of jitter such that
they all occur exactly at the critical instant and when the activations in Set 2 have
amount of jitter equal to zero. 2

The original paper contains the full proof. Here, in the following two paragraphs,
only a proof sketch is provided.

Figure 6.3 shows possible scenarios for calculating the contribution of task τij to
the response time of lower priority tasks. On the top level axis a) there is depicted a
job of task τij , its offset φij and its jitter (dashed line). Axis b) shows the scenario
where the critical instant occurs after where the third activation of the task would
occur if it had no jitter. According to Theorem 2, the worst-case contribution of
task τij happens when all the tasks that could be activated before critical instant are
delayed to the critical instant tc if that is possible. On the axis b), jobs belonging
to Set 1 are τ−2

ij through τ0
ij so they produce the wost-case contribution if their
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Figure 6.3: Scenarios for calculating the contribution of task τij to the response time of
lower priority tasks.

activations are delayed as it is shown in the figure by the solid lines under the axis.
There is also job τ1

ij , which is activated at t3 +φij , which is after the critical instant.
Therefore this job is categorized to Set 2 and according to theorem 2, this activation
has to occur without any jitter. If it has jitter greater than zero the job execution
might fall after the end of the busy period and the contribution of τij would not be
the worst.

Axis c) shows another scenario in which the critical instant occurs between the
activation of the transaction at time t2 and the activation of the job τ1

ij . Here,

there are two jobs τ−1
ij and τ0

ij in Set 1 and job τ1
ij in Set 2. Axis d) shows the

same scenario but adds job τ−2
ij , which belongs to Set 0 because its execution cannot

interfere with the examined busy period even when the task is released at the latest
possible time (as shown in the Figure). Note that if the execution of τ−2

ij could have
interfered with the busy period, the critical instant would had occurred at the time
of activation of this job.

Based on Theorem 2, the number of activations in each set can be calculated.
The activations from Set 1 will accumulate at critical instant and the number of
these activations will be called nij . Axis b) in Figure 6.3 has nij = 3 whereas axes
c) and d) have nij = 2.

To calculate nij , auxiliary symbol ∆ has to be defined as the difference in time
between the time at which last activation in Set 1 would occur if it had no jitter
delay, and the critical instant. In the example in Figure 6.3, ∆ = tc − t2 + φij for
axis b) and ∆ = tc − t1 + φij for axis c).

It can be seen that:

∆(φ) =

{
φ− φij if φ ≥ φij
Ti + φ− φij if φ < φij

(6.2)

or equivalently:

∆(φ) = (φ− φij) mod Ti (6.3)
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Please note that in this and all the following equations the result of modulo
operation is always greater than or equal to zero. Usually modulo operation is
defined such that its result is negative if the first operand is negative.

The first activation of τij in Set 1 corresponds to the event arriving at t0, which
is the first one whose activation may occur at or after the critical instant. Therefore,
this is the first activation that simultaneously verifies:

t0 + φij + Jij ≥ tc (6.4)

and:

t0 − Ti + φij + Jij < tc (6.5)

By looking at Figure 6.3 it can be seen that:

tc = t0 + (nij − 1)Ti + φij + ∆(φ) (6.6)

and replacing it in the two previous equations gives:

t0 + φij + Jij ≥ t0 + (nij − 1)Ti + φij + ∆(φ) (6.7)

t0 − Ti + φij + Jij < t0 + (nij − 1)Ti + φij + ∆(φ) (6.8)

from which is derived:

nij − 1 ≤ Jij −∆(φ)

Ti
and nij − 1 >

Jij −∆(φ)

Ti
− 1 (6.9)

Given that nij is an integer number, the solution to the above expressions is:

nij(φ) =

⌊
Jij −∆(φ)

Ti

⌋
+ 1, (6.10)

where half square brackets represent the floor operation.
In order to determine the effect of activations belonging to Set 2, the time at

which the first of them occurs has to be known; the others will occur at periodic
intervals after the initial one. Let’s call the time difference between the critical
instant and that first activation in Set 2 as ϕ. Given the definition of ∆ we have:

ϕ(φ) = Ti −∆(φ) = Ti −
(

(φ− φij) mod Ti

)
(6.11)

Substituting ∆ with ϕ in equation (6.10) we get:

nij(φ) =

⌊
Jij + ϕ(φ)

Ti

⌋
(6.12)

According to Theorem 2, the worst-case contribution of τij to the busy period
of a lower priority task is equivalent to nij activation at the critical instant, plus
a sequence of periodic activation starting at ϕ time units after the critical instant.
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Without loss of generality, let’s set the origin of time at the critical instant. Then,
the number of activations in Set 2 until time t is

nS2
ij (φ, t) =

⌈
t− ϕ(φ)

Ti

⌉
(6.13)

and the worst-case contribution a task τij to the response time of τab at time t is
determined by:

W (τij , φ, t) = nij(φ)Cij + nS2
ij (φ, t)Cij =

=

(⌊
Jij + ϕ(φ)

Ti

⌋
+

⌈
t− ϕ(φ)

Ti

⌉)
Cij

(6.14)

The total interference of the tasks of transaction Γi on the execution of τab is
obtained by taking into account the contributions of all higher priority tasks:

W (Γi, φ, t) =
∑

∀j∈hpi(τab)

W (τij , φ, t), (6.15)

where hpi is defined as a set of tasks belonging to transaction Γi with the priority
greater to the priority of τab.

Now, it must be determined how to calculate φ, the phase between the arrival
pattern of Γi and the critical instant. The calculation is based on the following
theorem:

Theorem 3 (from [Palencia and González Harbour, 1998]) The worst-case
contribution of transaction Γi to a task τab critical instant is obtained when the first
activation of some task τik in hpi(τab) that occurs within the busy period coincides
with the critical instant, after having experienced the maximum possible delay, i.e.,
the maximum jitter, Jij. 2

Proof By definition of the busy period (Definition 1 at page 11), right before the
critical instant there are no pending tasks of priority higher than the priority of
τab. Now suppose that we choose a critical instant that does not coincide with the
activation of some task in hpi(τab) (see task τik in Fig. 6.4 a). Let us focus on the
first activation of a task belonging to hpi(τab) that occurs within busy period, τik.
If we cause the arrival of the events of Γi to occur earlier while keeping the same
activation pattern for all its tasks, until task τik coincides with the critical instant
(Fig. 6.4 b) all the jobs of tasks belonging to hpi(τab) that were in the busy period
continue to be in that same busy period, but we have brought more jobs of those
tasks, and perhaps other additional tasks, closer to the busy period, thus increasing
the chance of additional interference on task τab. Thus by making the first job of τik
coincide with the critical instant we can only make the contribution worse.

Now it is necessary to check that the worst-case contribution of transaction Γi
is obtained when a job of a task τik that initiates the busy period has experienced
the worst-case delay, equal to Jik. Figure 6.5 contains a helpful example to the
following explanation. There are depicted jobs of τik and their actual jitter values
jik. Upper indices of jobs and their associated parameters are numbered by the
number of period they come from, i.e. τ0

ik corresponds to the period starting at t0.
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a)
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τik τik τik

b)
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Figure 6.4: Calculation of critical instant phase – part 1. The lighter box represents a lower
priority task τab from another transaction than Γi.

Let us call I the set of such jobs of tasks belonging to hpi(τab) that initiate busy
period, and let us suppose that each of these jobs has a jitter value jik less than the
maximum for its associated task, Jik. On axis A) I = {τ0

ik, τ
1
ik}. Now let us move

back (i.e., earlier in time) the event arrivals of transaction Γi, and simultaneously,
increase the jitter delay of all the jobs in I by the same amount of time, so that all
these jobs continue to be activated at the same time as before; jitter delays for all
other jobs not being in I remain unchanged (and thus they are activated earlier).
Under these conditions we will move back the event arrivals until we reach the point
when either: a) one of the jobs in I reaches its maximum jitter; or b) when a job in
the busy period that did not belong to I gets aligned with the critical instant (because
it is activated earlier). In case b) (see axis B), we insert the new job (τ2

ik) to set
I and continue the process of moving back the event arrivals of Γi in an iterative
manner, until we reach condition a), under which one or more of the activations that
start the busy period have experienced their maximum jitter. This is what axis C)
shows: the job τ0

ik reaches its maximum jitter.

Notice that during this process, none of the activations that belonged to the busy
period has been moved to a point before critical instant, and thus all the jobs that
belonged to the busy period remain in it. However, because the event arrivals of Γi
occur earlier, it is possible that jobs which previously occurred after the end of busy
period (e.g. τ3

ik on axis A) are now activated inside the busy period (axis B), thus
making it longer and increasing the response times for the task under analysis, τab.
Therefore the theorem follows. �

By applying Theorem 3, and supposing that we know that task τik is one that
originates the busy period, we can determine the phase between the event arrivals
and the critical instant:

φ = (φik + Jik) mod Ti (6.16)

Substituting this expression in equation (6.11) we obtain the phase ϕijk between
any task τij and the critical instant created by τik:

ϕijk = ϕ(φ)|φ=(φik+Jik) mod Ti
=

= Ti −
((

(φik + Jik) mod Ti − φij
)

mod Ti

) (6.17)
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Figure 6.5: Calculation of critical instant phase – part 2

and applying the properties of the modulus function,

ϕijk = Ti −
(
(φik + Jik − φij) mod Ti

)
(6.18)

Using this value, we can now obtain the expression of the worst-case contribution
of transaction Γi when the critical instant is created with τik. This function will be
called Wik(τab, t), and is obtained by replacing (6.18) in equations (6.14) and (6.15).

Wik(τab, t) = W (Γi, φ, t)|φ=(φik+Jik) mod Ti
=

=
∑

∀j∈hpi(τab)

(⌊
Jij + ϕijk

Ti

⌋
︸ ︷︷ ︸

nijk

+

⌈
t− ϕijk
Ti

⌉
︸ ︷︷ ︸

nS2
ijk

)
Cij (6.19)

In order to obtain the worst-case response time of task τab the above equation
needs to be applied for all transaction in the system. The main problem now is that
for each transaction Γi we need to find the task τik with which the critical instant
will be created. In order to perform the exact analysis, it is necessary to check all
possible variations of one task out of every transaction and choose the variation that
leads to the worst case response time for the task under analysis.

The number of variations, and thus of different critical instant possibilities that
need to be checked, is determined by the number of tasks of priority higher than
that of the task under analysis that exist in each transaction in the system. We
also have to take into account that the task under analysis itself may originate the
critical instant for its transaction. Thus the total number of variations is:

Nv(τab) = (Na(τab) + 1) ·N1(τab) · · · =

= (Na(τab) + 1) ·
∏
∀i6=a

Ni(τab)
(6.20)
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where Ni(τab) is the number of tasks belonging to hpi(τab). Each of Nv(τab)
variations is characterized by a tuple v indexes, one for each transaction. Each index
vi identifies the task of transaction Γi that initiates the critical instant, i.e. v ∈ V,

V = {(v1, v2, . . .) : vi ∈ hei(τab)}, where hei(τab) =

{
hpi(τab) ∪ {τab} if i = a

hpi(τab) otherwise.

For convenience, the jobs of the task under analysis will be numbered using
letter p, with consecutive numbers ordered according to the activation time that
they would have had if they had no jitter. In addition, the value of p = 1 will be
assigned to the activation of τab that occurs in the interval (0, Ta]. This means that
the activation that occurred in (Ta, 2Ta] gets the value p = 2, etc. Similarly, the
activation that would have occurred in the interval (−Ta, 0] but that was delayed to
the critical instant corresponds to p = 0, the one in (−2Ta,−Ta) to p = −1, etc.
Notice that activations that occurred after the critical instant are numbered with
positive numbers while previous activations have p ≤ 0. The jobs in Figure 6.3 are
numbered according to this numbering scheme whereas the jobs in Figure 6.5 are
not.

For each variation v the completion time of each of the jobs of τab in the busy
period will be obtained. This time wvab(p) is obtained by considering the execution
of τab together with the interference from all other tasks in the system:

wvab(p) = Bab + (p− pv0,ab + 1)Cab +
∑
∀i
Wivi

(
τab, w

v
ab(p)

)
(6.21)

where pv0,ab corresponds to the lowest-numbered job in the busy period, and is equal
to:

pv0,ab = −
⌊
Jab + ϕabva

Ta

⌋
+ 1 (6.22)

The solution to equation (6.21) is obtained as in the normal rate monotonic
equation (2.8) by starting from a value of wvab(p) = 0, and iterating until two
consecutive iterations produce the same value. This analysis has to be repeated
for all the jobs present in the busy period. The length of the busy period, which will
be called Lvab, may be obtained with the following equation:

Lvab = Bab +

(⌈
Lvab − ϕabva

Ta

⌉
− pv0,ab + 1

)
︸ ︷︷ ︸

n′
ab

Cab +
∑
∀i
Wivi

(
τab, L

v
ab

)
︸ ︷︷ ︸

interference

(6.23)

where the content of the first parentheses (n′ab) represents the number of jobs of
task τab participating in the busy period and the sum represents interference from
all higher priority tasks. Lvab represents the first instant after the critical instant at
which all jobs of τab and of all higher priority tasks have been completed.

With the length of busy period, the maximum value of p that needs to be checked
can be calculated:

pvL,ab =

⌈
Lvab − ϕabva

Ta

⌉
(6.24)
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The global response time is obtained by subtracting from the obtained completion
time the instant at which the external event that activated the transaction arrived.
According to our numbering scheme, the first activation of τab after the critical
instant corresponds to the value p = 1 and, by definition it corresponds to instant
ϕabva . Consequently the p-th activation occurs at ϕabva + (p− 1)Ta. Since the task
is activated Φab time units after the event arrival, the event arrival for each job
p occurs at time t(p) = ϕabva + (p − 1)Ta − Φab. Therefore the global worst-case
response time for job p is:

Rvab(p) = wvab(p)− t(p) =

= wvab(p)− ϕabva − (p− 1)Ta + Φab
(6.25)

Notice that in the above equation is used the real offset Φab instead of the reduced
offset φab, which was used when calculating interference of higher priority tasks on
task under analysis. To calculate the global worst-case response time for task τab
the maximum for among all potential critical instant must be determined:

Rab = max
v∈V

(
pvL,ab

max
p=pv0,ab

(
Rvab(p)

))
(6.26)

By applying the described analysis to each task in the system, the global worst-
case response times can be obtained and, by comparing them with deadlines, it can
be determined whether the system meets its timing requirements. However, although
the analysis the analysis technique is exact, it represents an NP-hard algorithm in
which the number of cases to check grows exponentially with the number of tasks.

6.2.1 Summary

As the above described algorithm is quite complex for the first-time reader this
section provides a short summary of how to use this algorithm to calculate the
worst-case response time of one particular task τab. In order to compute response
times of all tasks the algorithm must be repeated for all the tasks.

1. For each variation vector v ∈ V, i.e. for all possible combinations of tasks from
each transaction that initiate τab busy period, do:

(a) Calculate pv0,ab according to (6.22).

(b) Calculate Lvab by iteratively solving (6.23).

(c) Calculate pvL,ab according to (6.24).

(d) For each p satisfying pv0,ab ≤ p ≤ pvL,ab do:

i. Solve equation (6.21) iteratively to obtain wvab(p). This computation
will use (6.19) to compute the worst-case interference from transac-
tion Γi.

ii. Calculate Rvab(p) according to (6.25)

(e) Store the maximum value of Rvab(p) to Rvab∗

2. Rab, the worst-case response time of task τab, is equal to the maximum of all
Rvab∗.
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6.2.2 Analysis of Multiprocessor and Distributed Systems

In multiprocessor or distributed systems it is usual that the system can be modelled
with “transactions” composed of several tasks, like in the computational model
described in Section 6.1. For example in the distributed system where a task on
the first node produces some data and then sends them to the second node in which
these data are processed can be modelled as transaction of three tasks. The first task
represents the production of the data on the first node, the second task is the message
transmitted on the bus and the last task is the data processing on the second node.
If a real-time communication bus based on fixed priorities, such as CAN bus, is used
it can be directly modelled as another processor, accounting the non-preemptability
of message packets as additional blocking time.

When calculating the worst-case response time of a task on one processor,
evidently it cannot be preempted by a task on another processor. Hence the
definition of hpi(τab) must be refined to contain only tasks that belong to the same
processor as τab:

hpi(τab)
def
= {j ∈ Γi : priority(τij) > priority(τab) ∧

processor(τij) = processor(τab)}
(6.27)

In multiprocessor and distributed systems, usually only the first task in the
transaction has known offset and jitter. Offset is zero and jitter is the same as
the jitter of the external event – often zero as in the case of hardware timer. Offsets
and jitters of subsequent tasks in the transaction depend on response times of the
preceding tasks. As an example, consider a CPU task that is activated by reception
of a message from network. Its activation happens somewhere between the best-case
and worst-case response time of the message. Since the worst-case response time
of the preceding task in not known until the response-time analysis is computed, it
is not possible to set the exact offset and jitter of the task. This problem can be
solved by running the response-time analysis in iterations. For the first iteration,
tasks offsets are set to the lower bound on the best-case response-times of preceding
tasks and jitters are set to zero. Then, worst-case response times are calculated and
jitters are increased according to the just computed response times. This is repeated
until we get the same results in the two subsequent iterations.

By increasing the task jitter in the above iterative process, the effect of the
task on the response-time of lower priority tasks worser and therefore the calculated
response times cannot decrease from iteration to iteration.

For example, suppose that computation times Cij are exact computation times,
i.e. the execution of task τij always takes Cij units. Offset and jitters for the first
iteration are set as

Φi1 = 0,

Φij = Φij−1 + Cij−1, j = 2, . . . ,mi (6.28)

Jij = 0, j = 1, . . . ,mi

After each iteration, jitters are updated according to:

Jij = Rij−1 − φij , j = 2, . . . ,mi. (6.29)
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Section 3.4 Section 6.1 Note
Γvi Γi v corresponds to a transaction variant selected by the

spare capacity distribution algorithm.
cvij τij Task τij is executed by the VRES resulting from

negotiation of cvij .
T (Γvi ) Ti
C(cvij) Cij
D(cvij) Dij

D(Γi) Dimi

Φij , Jij Calculated according to (6.28) and (6.29).

Table 6.1: Notation mapping

6.2.3 Applicability to the Resource Reservation Framework

This section shows, how could be the analysis for multiprocessor and distributed
systems applied to the system represented by resource reservation framework from
Chapter 3. This can only be done when all involved resources are scheduled by fixed-
priority schedulers, which is for example when a distributed system uses Controller
Area Network (CAN) [CiA, 2001] for communication between nodes. CAN bus uses a
medium access protocol, which schedules messages strictly by their priority and non-
preemptability of the message transmission can be modelled as additional blocking
time.

Due to high complexity of the exact analysis, its use as on-line admission test is
limited to small systems only. However, for certain class of systems [Traore et al.,
2006] derive an exact analysis with pseudo-polynomial complexity. Additionally
[Mäki-Turja and Nolin, 2008] present pseudo-polynomial approximate analysis of
generic systems. Mapping of the resource reservation framework model to the model
expected by these faster algorithms is analogous to what follows in this section.

Since the analysis involves all resources in the system, it should be implemented
in the resource independent level i.e. in the contract broker. Table 6.1 shows the
mapping between symbols used in this chapter and symbols introduced in Section 3.4
to describe the applications running under the FRSH/FORB framework. Basically,
the information needed for the analysis is contained in the contract so with this
mapping, the implementation of the analysis is straightforward.

6.3 ILP Formulation

As was shown in Section 6.2.2, response-time analysis of multiprocessor and
distributed systems involves several iterations of the response-time calculation since
the response times are dependent on task jitters and task jitters are dependent again
on response times. In this section we formulate the schedulability analysis for tasks
with offsets as an ILP problem, where both response-times and jitters are variables
of a system of inequalities and are therefore calculated at once by an ILP solver.

In [Sojka, 2006] we tried to formulate the ILP problem directly as equations
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from Section 6.2 with the aim of finding the variation vector v, which leads to the
worst-case response-time, by the ILP solver, rather than iterating over all possible
variants. That approach did not give correct results because we were searching for
maximum response-time and equation (6.21) resp. (6.23) can have multiple solutions
and only the smallest one represents the correct completion time resp. the length
of the busy period. Traditionally, that equations are solved by fixed point iteration,
where the iteration starts from zero and the value increases until a fixed point is
found. Such fixed point solution is the smallest solution of the equation. The ILP
solver, however, can find any solution, not only the smallest one.

More formally, we have been finding the maximal response time of task τab as a
maximum given by expression (6.26). The response time Rab can be also written as
a function of its parameters over which we perform the maximization:

maximize Rab (v, p, L′ab, w
′
ab) , (6.30)

where L′ab = min
{
Lab(v, p)

}
and w′ab = min

{
wab(v, p)

}
.

The problem is that parameters L′ab and w′ab are not independent variables
but instead they are another functions of variables v and p and involve non-linear
minimum operator. For that reason (6.30) cannot be used as an objective in ILP
formulation.

In the following, another formulation is derived, which does not suffer from
the above mentioned problem. In Section 6.3.1 we recall common approaches to
formulating response-time analysis for tasks without offsets as an ILP problem. In
Section 6.3.2 we return back to tasks with offsets and restricted the computational
model introduced above to deadlines to be less than or equal to transaction periods.
Then, Section 6.3.3 presents schedulability conditions with integer variables for
schedulability of a single task and finally, in Section 6.3.4, we derive conditions
for schedulability of the whole system where jitters depends on response-times and
vice versa.

6.3.1 ILP Approaches to Schedulability Analysis

This section recalls two basic approaches to formulation of schedulability analysis
for fixed priority tasks as ILP problem. In this section, we consider a system with N
independent tasks (without offsets) with deadlines less or equal to the task periods.
Without the loss of generality we assume that task indices are ordered according to
decreasing task priority, i.e. the set of indices of tasks having higher priority than
i-th task is hp(i) = {1, . . . , i− 1}.

Response Time-Based Formulations

The response time Ri of i-th task can be calculated as a solution to equation (2.7),
which can be then written as

Ri = Ci +

i−1∑
j=1

⌈
Ri
Tj

⌉
Cj . (6.31)
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This equation can be formulated as an ILP problem and solved by an ILP solver:

minimize Ri (6.32)

subject to Ri = Ci +

i−1∑
j=1

njCj , nj ∈ {0, 1, 2, . . .} (6.33)

Ri
Tk
≤ nk <

Ri
Tk

+ 1, k = 1, . . . , i− 1 (6.34)

Equation (6.31) can have several solutions and only the smallest one represents the
actual response time. Therefore, we must search for the minimum response time in
objective function (6.32).

Often, we are not interested in exact response times but only whether the given
real-time system is schedulable or not. A task is schedulable whenever its response-
time is less than or equal to its deadline and the system is schedulable whenever all
tasks are schedulable. This is expressed by the following conditions:

Ri ≤ Di, i = 1, . . . , N (6.35)

In [Seto et al., 1998], it has been shown that a sufficient and necessary
schedulability condition for i-th task can be expressed by the following conditions
on a set of integers [n1, . . . , ni] with ni = 1:

i∑
j=1

njCj ≤ Di, (6.36)

i∑
j=1

njCj ≤ nkTk, k = 1, . . . i− 1 (6.37)

where nj ∈ Z. These conditions can be also derived by substituting (6.33) in (6.34).
Since these conditions are proven to be sufficient and necessary, the sharp inequality
in (6.34) is redundant as also follows from objective function (6.32).

For the same reason that (6.31) can have more than one solution, there might
be more than one set of integers satisfying the above inequalities. It means that the
real response time might be less than the value of the left-hand side of (6.36), i.e.

Ri ≤
i∑

j=1

njCj ≤ Di, (6.38)

but the schedulability is still guaranteed even without specifying an objective
function.

This formulation is the basis for the schedulability analysis of tasks with offsets
presented in Section 6.3.3.
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Request Bound Function-Based Formulation

An alternative formulation of schedulability condition was found by [Lehoczky et al.,
1989] and it can be expressed for i-th task as follows:

∨
t∈Si

i∑
j=1

⌈
t

Tj

⌉
Cj ≤ t, where (6.39)

Si = {kTj : j = 1, . . . , i− 1, k = 1, . . . bDi/Tjc} ∪ {Di}. (6.40)

Here ∨ stands for logical OR operation and ∪ represents the union of sets. Such
formulation can be used in different scenarios, e.g. when computation times are not
known and are represented as variables in the ILP program. This is not possible in
(6.36) since multiplication of two variables (n and C) is not a linear expression. This
formulation was used e.g. by [Zeng and Natale, 2010].

6.3.2 Restricted Computational Model

To derive the ILP formulation of schedulability analysis for tasks with offsets, we
restrict the computational model presented in Section 6.1 so that task deadlines
must be less then or equal to the respective transaction periods, i.e. Dij ≤ Ti. This
simplifies some expressions and makes the ILP formulation easier to derive. We will
attempt to remove this restriction in our future work.

Now, we will show how this restriction changes the individual expressions derived
in Section 6.2. Expression (6.1) can be simplified to φij = Φij . Further, every
schedulable task τij must satisfy φij + Jij + Cij ≤ Dij . Therefore, assuming that
tasks have non-zero execution time, we get:

φij + Jij < Ti. (6.41)

From this condition, it can be seen that the number of activations of task τij from
Set 1, nijk, introduced in expression (6.12) can get only values zero or one, but
the expression itself remains unchanged. Also all expressions (6.13) through (6.20)
remain unchanged.

Now, we update the expression for completion time of task τab. The completion
time (6.21) depends on the number of the job, p. In our restricted model we do
not have to investigate all values of p = pv0,ab, . . . , p

v
L,ab because either p = pv0,ab or

pv0,ab > pvL,ab. In the first case (6.21) can be rewritten as

wvab = Bab + Cab +
∑

∀i∈HP(τab)

Wivi(τab, w
v
ab) =

= Bab + Cab +
∑

∀i∈HP(τab)
∀j∈hpi(τab)

(⌊
Jij + ϕijvi

Ti

⌋
︸ ︷︷ ︸

nijvi

+

⌈
wvab − ϕijvi

Ti

⌉
︸ ︷︷ ︸

nS2
ijvi

)
Cij ,

(6.42)

where HP(τab) is a set of indices of all transactions containing at least one task with
priority higher than the priority of τab.
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Γ1

0 1 2 3 4 5

τ11 τ12

Figure 6.6: Example system of non-interfering tasks.

In the second case (pv0,ab > pvL,ab) this expression does not give correct result.
This happens when there are tasks in a transaction which cannot interfere due to
their offsets. As an example, consider the system from Figure 6.6 where the tasks
have offsets φ11 = 0 and φ12 = 3, and zero jitters. When (6.42) is used to calculate
the completion time of τ12 in the case of the critical instant created with τ11, we get

w
(1)
12 = C12 + 1 ·C11 = 3 which is not true. In this case τ12 does not complete within

the busy period created with τ11 and therefore w
(1)
12 does not exist.

The response time calculated according to (6.25) is derived from the completion
time wvab(p) by subtracting from it the activation time t(p) of p-th job. Using an
equivalent expression with wvab in our ILP formulation is problematic, because the
ILP problem would have no solution. For this reason, we look for another expression
to calculate the response time from. Such an expression is the length of busy period
(6.23). For our restricted model, this expression can be rewritten as

Lvab =
∑

∀i∈HE(τab)
∀j∈hei(τab)

(⌊
Jij + ϕijvi

Ti

⌋
︸ ︷︷ ︸

nijvi

+

⌈
Lvab − ϕijvi

Ti

⌉
︸ ︷︷ ︸

nS2
ijvi

)
Cabij , (6.43)

where Cabij =

{
Cij if ij 6= ab

Bab + Cab if ij = ab
,

hei(τab) is a set of tasks from i-th transaction with priority higher than or equal to
τab and HE(τab) = {i : hei(τab) 6= ∅}.

Note that if wvab exists, Lvab = wvab. If we now use Lvab in (6.25) instead of wvab,
we get:

Rvab = Lvab − t = Lvab − ϕabva +

⌊
Jab + ϕabva

Ta

⌋
︸ ︷︷ ︸

nabva

Ta + Φab, (6.44)

where we substituted the value p for pv0,ab. The activation time t depends on whether
task τab is activated after the critical instant (in Set 2), in which case nabva = 0 or
at the critical instant (in Set 1) with nabva = 1. If wvab does not exist, Rvab ≤ 0.

Since wvab must exist for at least one v, the worst-case response time is, similarly
as in (6.26), given by

Rab = max
v∈V

Rvab. (6.45)
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6.3.3 Linear Schedulability Conditions

In the following we derive conditions that are equivalent to schedulability condition
Rab ≤ Dab. We can rewrite this condition as

max
v∈V

Rvab ≤ Dab ⇒
∧
v∈V

Rvab ≤ Dab, (6.46)

where ∧ represents logical AND.

Lemma 1 The value of ϕijk from (6.43) can be expressed as ϕijk = n′ijkTi− (φik +
Jik − φij), where n′ijk is an integer variable satisfying:

0 ≤ φik + Jik − φij − (n′ijk − 1)Ti < Ti. 2

Proof The lemma follows from (6.18) and from properties of modulo operator, i.e.
a mod b = a− nb|0≤a−nb<b, n∈Z. �

Lemma 2 The number of activations, nijk, of task τij that can be delayed to the
critical instant created with τik, satisfies:

0 < (nijk + 1)Ti − Jij − ϕijk ≤ Ti. 2

Proof This lemma follows from (6.43) and from a property of the floor function:
bxc = n|x−1<n≤x, n∈Z. �

Theorem 4 In the system of tasks with offsets, where task deadlines are less then or
equal to transaction periods, task τab is schedulable if and only if there exist integers
nijk, n

′
ijk, n

S2
ijk, i ∈ HE(τab), j, k ∈ hei(τab) satisfying:∑

i∈HE(τab)
j∈hei(τab)

(nijvi+n
S2
ijvi)C

ab
ij −ϕabva+nabvaTa+Φab ≤ Dab,

∀v ∈ V
(6.47)

∑
i∈HE(τab)
j∈hei(τab)

(nijvi+n
S2
ijvi)C

ab
ij ≤ nS2

lmvl
Tl+ϕlmvl ,

∀v ∈ V∀l ∈ HE(τab)∀m ∈ hel(τab)

(6.48)

ϕijk = φij − φik − Jik + n′ijkTi, ∀i ∈ HE(τab)∀j, k ∈ hei(τab) (6.49)

0 ≤ φik + Jik − φij − (n′ijk − 1)Ti < Ti, ∀i ∈ HE(τab)∀j, k ∈ hei(τab) (6.50)

0 < (nijk + 1)Ti − Jij − ϕijk ≤ Ti, ∀i ∈ HE(τab)∀j, k ∈ hei(τab). (6.51)

2

Proof First we show that if task τab is schedulable, the above conditions hold. Since
task τab is schedulable the condition (6.46) holds. By substituting this condition
from (6.44) and (6.43) we get (6.47), where nijvi and nabva are expressed by (6.51)
according to Lemma 2 and ϕijvi and ϕabva are expressed by (6.49) and (6.50)
according to Lemma 1. Now, it remains to show that nS2

ijvi
(the number of activations
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Γ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ11 τ12

Γ2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ21

Figure 6.7: Example system of tasks with offsets.

of task τij from Set 2) satisfies (6.48). The length of τab busy period initiated with
tasks τivi is according to (6.43) Lvab =

∑
i,j(nijvi + nS2

ijvi
)Cabij . During that time

task τij executed nijvi times due to activations from Set 1 and nS2
ijvi

time due to
activations from Set 2. Therefore the end of the busy period must be less or equal
to the (nS2

ijvi
+ 1)-th activation of τij in Set 2, which happens at nijviTi + ϕijvi , i.e.

Lvab ≤ nijviTi + ϕijvi , which is exactly (6.48).

Now, we show the second implication, i.e. if the above conditions hold, the task
τab is schedulable. The first condition (6.47) says that response time of task τab
is less or equal to its deadline so it follows that τab is schedulable if the numbers
nijk and nS2

ijk represent the correct number of executions of task τij during τab busy
period. From Lemma 2 we see that nijk is correct. The second condition (6.48)
ensures that nS2

ijk is so high that (nS2
ijk + 1)-th activation that occurs at or after the

end of τab busy period. Therefore nS2
ijk represents the correct number of executions

of τij in (6.47) and the task τab is schedulable. �

Example 2 We demonstrate how to apply Theorem 4 on an example from
Figure 6.7. There are two transactions with periods T1 = 7 and T2 = 15 and
three independent tasks i.e. Bab = 0. Task parameters are: C11 = 1, φ11 = 0,
J11 = 2 C12 = 3, φ12 = 3, J12 = 0, C21 = 5, φ21 = 0, J21 = 0 and D21 = 15. Task
τ21 has the lowest priority and the conditions for its schedulability are shown below.

n111 + nS2
111 + 3n121 + 3nS2

121 + 4n211 + 4nS2
211 + ϕ211 − 15n211 ≤ 15 (6.52)

n112 + nS2
112 + 3n122 + 3nS2

122 + 4n211 + 4nS2
211 + ϕ211 − 15n211 ≤ 15 (6.53)

n111 + nS2
111 + 3n121 + 3nS2

121 + 4n211 + 4nS2
211 ≤ ϕ111 + 7nS2

111

n111 + nS2
111 + 3n121 + 3nS2

121 + 4n211 + 4nS2
211 ≤ ϕ121 + 7nS2

121

n111 + nS2
111 + 3n121 + 3nS2

121 + 4n211 + 4nS2
211 ≤ ϕ211 + 15nS2

211

n112 + nS2
112 + 3n122 + 3nS2

122 + 4n211 + 4nS2
211 ≤ ϕ112 + 7nS2

112

n112 + nS2
112 + 3n122 + 3nS2

122 + 4n211 + 4nS2
211 ≤ ϕ122 + 7nS2

122

n112 + nS2
112 + 3n122 + 3nS2

122 + 4n211 + 4nS2
211 ≤ ϕ211 + 15nS2

211
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ϕ111 = −2 + 7n′111

ϕ112 = −3 + 7n′112

ϕ121 = 1 + 7n′121

ϕ122 = 7n′122

ϕ211 = 15n′211

0 ≤ 9− 7n′111 < 7

0 ≤ 10− 7n′112 < 7

0 ≤ 6− 7n′121 < 7

0 ≤ 7− 7n′122 < 7

0 ≤ 15− 15n′211 < 15

0 < 5− ϕ111 + 7n111 ≤ 7

0 < 5− ϕ112 + 7n112 ≤ 7

0 < 7− ϕ121 + 7n121 ≤ 7

0 < 7− ϕ122 + 7n122 ≤ 7

0 < 15− ϕ211 + 15n211 ≤ 15

The above conditions are satisfied by the following values of integer variables:

n111 = 1 nS2
111 ∈ {1, 2} n′111 = 1

n112 = 0 nS2
112 ∈ {1, 2} n′112 = 1

n121 = 0 nS2
121 = 2 n′121 = 0

n122 = 1 nS2
122 = 1 n′122 = 1

n211 = 1 nS2
211 = 0 n′211 = 1

Note that nS2
111 and nS2

111 can take two different values. Similarly to what was
explained around (6.38) for tasks without offsets, here the response time R21 is
equal to the bigger value of left-hand sides of (6.52) and (6.53) when all nS2 have
the lowest possible value. If their values are higher, the left-hand sides of (6.52) and
(6.53) are greater than the real response time. 2

6.3.4 Schedulability of Multiprocessor and Distributed Sys-
tems

Now, with Theorem 4, it is easy to formulate the schedulability conditions for
multiprocessor and distributed systems where jitters depends on response times and
response times depend on jitters. Response time Rab of the task under analysis must
satisfy:

Rab ≥
∑

i∈HE(τab)
j∈hei(τab)

(nijvi + nS2
ijvi)C

ab
ij − ϕabva + nabvaTa + Φab, ∀v ∈ V (6.54)

and the jitter of the subsequent task in the transaction, τab+1, can be then calculated
according to (6.29) as

Jab+1 = Rab − Φab+1. (6.55)

By putting together conditions (6.47) – (6.51) for each task in the system with
conditions (6.54) and (6.55) for all but the last task in every transaction and
setting Ji0 = 0, and tasks offsets according to (6.28) we obtain an ILP program
for Schedulability Analysis of Tasks with Offsets in Multiprocessor or distributed
Systems, which we call SATOMS in the following. Besides integer variables from
Theorem 4, this program contains additional variables Jij ∈ R, j > 1 which represent
task jitters.
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Complexity of the ILP Program

The time needed by ILP solvers to solve the problem depends mostly on the number
of integer variables. The number of integer variables used in SATOMS formulation
can be calculated as follows.

We start with determining the number of variables needed for deciding the
schedulability of one task according to Theorem 4. We denote the number of tasks
in the i-th transaction with priority higher than or equal to the priority of τab as
N̄i(τab) and

∑
i N̄i as N̄ . For every transaction in the system, we need 3N̄2

i (τab)
variables and for the whole system we need 3

∑
i N̄

2
i (τab) variables. In order to relate

this number to the total number of involved tasks N̄(τab), we can sum inequality
N̄i(τab) ≤ N̄2

i (τab) over all transactions and we get

N̄(τab) =
∑
i

N̄i(τab) ≤
∑
i

N̄2
i (τab) ≤

(∑
i

N̄i(τab)

)2

= N̄2(τab), (6.56)

which means that the number of integer variables V (τab) = 3
∑
i N̄

2
i (τab) lays

between three times the number of involved tasks and three times the square of
the number of involved tasks, i.e.

3N̄(τab) ≤ V (τab) ≤ 3N̄2(τab). (6.57)

Now, the SATOMS formulation includes schedulability conditions for each of M
tasks in the system, so the total number of variables V is

V = 3

M∑
m=1

∑
i

N̄2
i (τm) (6.58)

In fact, this number can be made a little bit lower because variables n and n′ depend
only on task parameters and can be shared between schedulability conditions for each
task. On the other hand, values of nS2 depend on the task being analyzed and cannot
be shared.

From (6.58) and (6.57) we get the following bounds for the number of integer
variables V :

1.5M2 ≤ V ≤ 3M3. (6.59)

The upper bound represents the case where there is only one transaction in the
system whereas the lower bound is the case when there is only one task in every
transaction, which is equivalent to tasks without offsets.

6.4 Experimental Results

We implemented SATOMS algorithm described in the previous section and the
iterative algorithm described in Section 6.2.2. Implementation of SATOMS
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Figure 6.8: Comparison of average computation times of different implementations. System
utilization is 50% in (a) and 70% in (b).

algorithm uses Python (PuLP1 library) to generate the ILP program which is then
solved by CPLEX solver. The iterative algorithm was implemented solely in Python.

We compared time complexity of the two algorithms on randomly generated
task sets. Each task set comprised m = 1, . . . , 19 tasks grouped into 1 + bm/5c
transactions and the utilization of the whole system was 0.5 and 0.7 respectively.
This total utilization was randomly (uniformly) distributed among transactions and
the partial utilization assigned to each transaction was also randomly distributed
among tasks in the transaction. Transaction periods were randomly chosen between
20 and 1000.

For each number of tasks we generated 20 different systems, analyzed them and
plot the average of these 20 runs in Figure 6.8. The graphs show the total time of
SATOMS algorithm, which includes preparation of the ILP formulation and solving
the ILP problem. Since in most cases the preparation took longer time than actual
solving, we plot the time needed by the solver separately (dashed line). For the
iterative algorithm, we plot the total time and the number of iterations (dotted line)
needed to find the result.

From the graphs can be seen that SATOMS algorithm is approximately 8 times
slower than the iterative algorithm but the time needed by the ILP solver is in most
cases smaller than the time of the iterative algorithm.

It must be noted that our earlier experiments show that our prototype imple-
mentation of the original exact response-time analysis in Python is approximately
10 to 50 times slower than the implementation in MAST [MAST, 2010] tool, which
is written in compiled language Ada. We also did not measure the overhead of PuLP
library which calls the solver so it might be that actual time needed by the solver is
even less than presented in the graphs.

1http://code.google.com/p/pulp-or/

http://code.google.com/p/pulp-or/
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6.5 Conclusion

We derived a formulation of schedulability analysis for tasks with offsets in the form
of linear inequalities with integer variables suitable for solving by ILP solvers. We
used this formulation as the basis for schedulability analysis of multiprocessor and
distributed systems where tasks jitters depend on response times and vice versa
(SATOMS). Experimental results show that such a formulation is not suitable for
solving of industrial-size problems. The contribution of this method is that it may
serve as a basis of a special-purpose branch-and-bound algorithm which will use
heuristics that can speedup the computation.



7
Conclusions

7.1 Summary

This thesis presented FRSH/FORB framework for the management of multiple
heterogeneous resources shared across a set of distributed real-time applications.
The framework exposes to the application developers the FRSH API, which has
been designed to allow access to real-time scheduling services resources, such as
CPU, disk and network, in a way that is as uniform as possible. This way, users
do not need to deal with different APIs for reserving resources on the underlying
OS, but they can declare the application requirements using natural attributes
such as deadlines or throughput figures, instead of priorities. The framework uses
the application provided information to effectively schedule the workload. This
allows for an easier deployment of real-time applications over a distributed system,
especially in those cases in which the system is open and dynamic. One of the main
strengths of FRSH/FORB framework is its modularity with respect to support of
additional resources, which was shown by integration of six different resources into
the framework.

The evaluated resources provide a great level of temporal isolation for distributed
soft real-time applications. This was shown by the presented experimental results,
gathered on a real implementation of the framework on the Linux OS. Specifically we
evaluated and stress tested resource reservation technique for wireless LAN, which
was developed in this thesis. More importantly, we reported results from a real case-
study application, developed around the theme of video recording, showing the main
benefits of adopting the framework. Also, we reported about our experience in how
the proposed framework was used, and specifically how the resource requirements of
the case-study application were determined. This constitutes a valuable experience
that can be leveraged by future researchers/developers who may want to make use
of it. We also identified areas where the framework could be improved to bring a
greater value for its users.
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Finally, the last chapter presented a novel approach to schedulability analysis
for tasks with offsets where the analysis was formulated as a set of linear conditions
with integer variables. It was shown how this formulation can be used to analyze
multiprocessor and distributed systems and we compared the performance of our
technique with the previously known iterative technique. Our method is not directly
usable for bigger systems but we believe that it can serve as a basis for future, more
efficient, techniques.

7.2 Goals

The goals set at the beginning of this thesis were successfully completed as detailed
below.

1. The resource reservation framework was designed and implemented as de-
scribed in Chapter 3. Support for new resources can be easily added as we
demonstrate in Chapter 4 where six different resources were integrated into
the framework. The integration of FPGA resource in Section 4.5 demonstrates
the support for task migration between resources.

2. The framework was extensively evaluated and the results are provided in
Chapter 5.

3. An admission test for Wi-Fi networks was developed and it is described in
Section 4.3.4. Wi-Fi networks were integrated into the framework and the
admission test was evaluated in Section 5.2.

4. Schedulability analysis for tasks with offsets was formulated as an integer linear
programming problem in Section 6.3 and the performance of this approach was
evaluated in Section 6.4.



A
FRSH API Change Proposal

A.1 Introduction

In this document we are trying to summarize our experience with FRSH API defined
in [Gonzáles Harbour and Telleŕıa de Esteban, 2008]. Our experience is based on
development of an alternative FRSH implementation, where we aimed at better
abstraction of the API from the underlying implementation. With such an experience
we propose some changes to the API.

It should be noted that this version of the document represents my personal
view of the situation. But, on the other hand, many of the presented opinions were
influenced by discussions in our group here at CTU.

The problems of the current API [Gonzáles Harbour and Telleŕıa de Esteban,
2008] can be classified into several groups:

A Negotiation time vs. run-time services. We think, that it is important
to clearly say whether an service is meant to be used during negotiation time
or during run-time. There are a few cases in the current API, where these
use-cases are intermixed. Negotiation services should only be used to specify
information needed for admission test (i.e. application requirements). Once the
negotiation was successful, run-time services (bind, get remaining budget, ...)
are used by applications. This division is essential to support applications with
admission test computed off-line, so that the developers know which functions
may be used in the “off-line” mode. This division should make clear which
services (the negotiation-time ones) can take long time to complete due to
possible (remote communication, redistribution of spare capacity etc.) and
which should be fast (run-time services).

B Resource dependent services. Since FRSH framework aims at being multi-
resource framework, it must be clear which functions apply to which resource.
The current API seems to be heavily influenced by CPU-centric thinking.
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Every resource type must provide at least different “bind” function. For CPU
we bind threads to VRESes, for networks communication endpoints, for disk
probably file descriptors, etc.

C Fundamental, internal and helper functions. There is no clear boundary
between helper and internal functions and the functions which are really needed
by applications. This makes the API very huge and hard to learn.

It might be useful to define minimal FRSH API and to introduce a helper
library which will provide additional services built on top of the minimal API.
This will make porting FRSH framework to other platforms easier.

D Problems in dynamic/open environments running multiple indepen-
dent applications. Some parts of the API suppose that the developer has full
control of all applications running in the system. This was probably caused by
the fact that the first implementations were done on simple real-time executive
(MarteOS) and not on systems with full memory protection like Linux.

E Attempt to define OS compatibility layer. Replacement of native
OS services with FRSH services is a questionable thing. On one side it
makes the FRSH applications portable between different platforms and FRSH
implementations, on the other side it probably limits the services provided by
the native platform and makes porting legacy application more difficult. While
limiting the functionality of the underlying platform is in line with the goal
of achieving higher predictability, increasing complexity of porting existing
applications might be a problem.

A possible solution might be a dual approach, where a simple compatibility
layer is provided by FRSH together with an implementation specific interface
which allows to manage native OS entities by FRSH.

A.2 Specific problems in the current API

A.2.1 frsh contract * resource and label()

I do not see any reason why to put manipulation of resource and label into a single
function. Labels are mainly used for debugging and distributed negotiations, whereas
resource must be set in all cases in the contract. So I’d introduce two separate
functions for this.

A.2.2 frsh contract set timing reqs() A B

This function contains parameters which determine signals used by the framework
to notify the application about events like deadline-miss or budget overrun. In our
opinion this should be better specified as parameter to frsh thread bind() as this
information is not needed by the admission test and in case of remote negotiation the
application preparing the contract might not have enough knowledge of the remote
application to specify the signals correctly.
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Moreover an implementation of the framework might use different means of
communications to inform the application about the occurred events. This is also
the case with non-CPU contracts, e.g. for networks, budget overrun can be usually
determined at queueing/sending time.

A.2.3 Group contract negotiation C

Group contracts represents a strange concept. On one side it is only an optimization
to save several runs of the admission test, on the other side it has many in common
with (distributed) transactions. The only difference from transactions is that a
transaction can comprise of contracts for different resources which are “balanced”
so that they have the same period.

We propose the group contract negotiation to be the basic service in FRSH API
and the other functions like frsh contract negotiate(), frsh contract cancel()

etc. will be provided in the helper library by building on top of group contract
negotiation.

A.2.4 frsh vres get *() B

Some of these functions are only useful for CPU. For example frsh vres get job -

usage() has little sense for networks, where the application probably knows how
many bytes it has already sent.

A.2.5 frsh service thread * C D

B
These functions should not be part of the public API since they are too

implementation specific. The budget and period would be better specified only
as some configuration parameters. Moreover it has no sense if multiple applications
try to change these values simultaneously. The service thread only deals with CPU
contracts. There is no similar function for other resources.

A.2.6 frsh resource get vres from label() B D

This function was probably meant only for CPU contracts, it is not clearly defined for
networks, because it is not clear what it means “negotiated in the same processing
node”. Also its applicability is questionable in systems with memory protection,
where it is not desirable for one application to access resources of another application.

A.2.7 Shared objects

I didn’t follow this area much, but I’m embarrassed about this whole thing. It’s clear
that we need to manage critical sections in order to calculate blocking time, but if
I am new to FRSH, I’d not use this API because of its complexity and overhead.
The other problems I can see is the lack of support for nested critical sections and
inability to specify different WCETs for different spare capacity allocations.
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So, I do not have here a specific proposal for change, but only a notion that there
must be a better abstraction for shared objects.

Also, if we keep the API, it should be split to internal and external part as
some functions (frsh csect get blocking time()) are only needed by admission

test code. C .

A.2.8 Spare capacity

The distribution of spare capacity is supposed to be based on importance and
weight parameters and it is only considered within boundary of a single resource.
If multiple contracts are bound by a transaction, it is often necessary to allocate
the spare capacity to the transaction as a whole and not to the separate contracts
independently.

frsh resource get capacity() should probably be an internal function C not
exposed to applications. I cannot see any reason why it is useful for application to
know this information since the available capacity returned by this function may
already be outdated when the application processes it.

frsh vres set stability time() suffers from B . It has probably only sense
for “local” resources such as CPU and disk. For networks it might involve remote
communication, which is probably not acceptable. Therefore, this function also falls

to category A .
See also transaction support in A.2.13.

A.2.9 Networking API E

FRSH framework uses FNA API [Vila Carbó et al., 2007]. Using a special purpose
API for network communication makes porting legacy applications to FRSH hard.
It would be useful if FRSH can provide BSD Sockets API, which is the most used
networking API. There are two possible approaches how to provide this API:

A . Provide BSD sockets layer on top of FNA API.

B . BSD sockets API will be provided natively by FRSH implementation.

These two possibilities are discussed in the following sections.

BSD sockets on top of FNA API

This is possible without changing current FNA API, but it also has limitations in
that there can be a conflict between FRSH sockets layer and native BSD sockets API
of the OS. It will be probably possible to solve this conflict by some C preprocessor
macro tricks.

Native BSD sockets

For operating systems without this BSD sockets API, it is just a matter of renaming
FNA functions and their parameters.
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frsh_contract_negotiate(contract, &vres);

s = frsh_get_vres_socket(vres)

/* use the socket as the application wants */

Figure A.1: Usage of native BSD sockets in FRSH applications

For systems with BSD sockets API (e.g. Linux, RTEMS) FNA functionality
must be inserted in BSD sockets API implementation. In case of Linux it means,
that virtual resources must be implemented in the kernel. We think this is the
right approach since it allows to run non-FRSH applications and the kernel assures,
that these applications will not use the network bandwidth reserved by FRSH
applications.

The application will use the functions like send() and recv() to exchange the
messages and FRSH/FNA functions (e.g. frsh vres get remaining budget()) to
operate on VRES. Under Linux, these FRSH/FNA functions will be implemented
using IOCTL mechanism on sockets to communicate with VRES implementation in
kernel.

Therefore, this implementation would not provide functions like frsh send -

endpoint create() and all the information like destination and stream id will be
provided in contract. It has another advantage, because for some network (e.g.
WiFi), this information has influence on bandwidth usage and is therefore necessary
for admission test.

If it is not desirable, to specify all socket parameters in contracts, other possibility
is to have API where the sockets are created in a normal way and then binded to
VRES similarly as in the CPU case (see Fig. A.2).

frsh_contract_negotiate(contract, &vres);

s = socket(AF_INET, SOCK_DGRAM, 0);

frsh_bind_socket(vres, s);

/* use the socket as the application wants */

Figure A.2: Alternative possibility of using native BSD sockets in FRSH applications

A.2.10 Two-step negotiation C

Two-step negotiation should be an internal API. For application developers it only
adds complexity.

A.2.11 frsh network get * E

This kind of information should be provided by a protocol specific mean. It is not
possible to write application independently on used network protocol (e.g. transfer
video over CAN-bus).
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A.2.12 FRESCOR Network Adaptation (FNA)

The main problems of FNA are:

– There are services, that apply to all resource and not only to networks (e.g.

fna contract negotiate(), . . . ) B . There should be a generic interface
for implementations to implement these services. Such “virtualization” (in the
Object Oriented Programming (OOP)-sense) would be beneficial for all resource
types.

– Missing bind callback called when frsh send endpoint bind() is called by an
application.

A.2.13 Distributed (multi-resource) transactions

In FRSH, the way how distributed transactions are implemented builds on the
fact, that there exist support for reserving individual resources and transactions
are implemented as higher level layer on top of this “resource reservation” layer.
This is IMHO correct approach, but I think that its implementation in FRSH has
some problems because the reservation layer is not as simple as it should be. I
believe that the approach taken in FRSH/FORB implementation is more useful. The
fundamental difference is that in FRSH/FORB spare capacity is not redistributed
in reservation layer (as in the case of FRSH) but in the higher layer – the same one
which handles transactions.

I can also see that the problem of distributed transactions is very difficult but
everybody want a solution for it. Therefore I believe that this “higher layer” should
be an integral part of the framework as it could represent big added value of the
framework. This is how FRSH/FORB was designed.

A.3 Conclusion

From the above text, one can conclude that the whole FRSH API is wrong and it
is not useful in its current form. That’s not true – the API is already useful for the
prototyping work and it can serve well to many existing applications. This document
only tries to find places where the API could be improved in order to be accepted
by a more wide development community.
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