
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Dynamic obstacle avoidance
for autonomous F1/10 car

Bc. Jaroslav Klapálek

Supervisor: Ing. Michal Sojka, Ph.D.
Field of study: Cybernetics and Robotics
May 2019

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434668Personal ID number:Klapálek JaroslavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Dynamic obstacle avoidance for autonomous F1/10 car

Master’s thesis title in Czech:

Vyhýbání se dynamickým překážkám s autonomním autem F1/10

Guidelines:
1. Make yourself familiar with F1/10 competition, ROS project and software that was used in previous competitions.
2. Review dynamic obstacles avoidance algorithms. Consider situations like overtaking of different car or crossing an
intersection.
3. Design and implement an algorithm for path planning with dynamic obstacle avoidance. Prove its functionality in simulation
where the location of all cars (dynamic obstacles) is known.
4. Test the algorithm with F1/10 models. Perform experiments that demonstrate algorithm behaviour in various situations.
5. Document everything thoroughly.

Bibliography / sources:
[1] F1/10 – The Rules version 1.0, http://f1tenth.org/misc-docs/rules.pdf
[2] Urmson, C. , Anhalt, J. , Bagnell, D. et al. (2008), Autonomous driving in urban environments: Boss and the Urban
Challenge. J. Field Robotics, 25: 425-466. doi:10.1002/rob.20255

Name and workplace of master’s thesis supervisor:

Ing. Michal Sojka, Ph.D., Embedded Systems, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 29.01.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Michal Sojka, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to express my deep grati-
tude to my supervisor, Ing. Michal So-
jka, Ph.D., for his guidance and valu-
able advice regarding this thesis. Also,
I would like to offer my special thanks
to Ing. Jiří Vlasák for his insights into
the autonomous driving and his support
within the F1/10 project. Finally, I would
also like to extend my thanks to my par-
ents, siblings, beloved ones, friends, and
colleagues for their support throughout
my study.

Declaration
I declare that the submitted thesis was de-
veloped individually and that I listed all
used information sources in accordance
with Methodical Guideline on Ethical
Principles for College Final Work Prepa-
ration.

In Prague, 24. May 2019

v

Abstract
This thesis focuses on the problem of

controlling intersections with autonomous
cars. Upon reviewing control methods,
distributed intersection control was se-
lected. An algorithm for solving these traf-
fic situations is described, implemented,
tested in simulation, and evaluated on
F1/10 platform. F1/10 platform is an RC-
based car model, that is used for compe-
titions. Also, it is used as an autonomous
vehicle model for testing the algorithms.

Keywords: intersection control,
intersection, mixed traffic, traffic
situation, autonomous car, F1/10, Stage,
ROS

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Tato diplomová práce je zaměřena na

problematiku průjezdu křižovatek ve spo-
jení se samoříditelnými automobily. Za
pomocí rešerše literatury bylo vybráno dis-
tribuované řízení křižovatek. Algoritmus
pro řešení průjezdu automobilu křižovat-
kou je popsán, implementován a otestován
na simulátoru a na platformě F1/10. Tato
platforma je model auta, sestavená pro
účast na soutěži autonomních modelů a
která je dále využívána jako model sku-
tečného autonomního automobilu pro tes-
tování algoritmů.

Klíčová slova: řešení křižovatek,
křižovatka, kombinovaná doprava,
dopravní situace, samořiditelný
automobil, F1/10, Stage, ROS

Překlad názvu: Vyhýbání se
dynamickým překážkám s autonomním
autem F1/10

vi

Contents
1 Introduction 1
2 Literature review 3
2.1 Centralized intersection control . . 3
2.2 Decentralized intersection control 3
2.2.1 Active decentralized control . . 4
2.2.2 Passive decentralized control . 4

3 Control design 5
3.1 Scenario definition 5
3.2 Marking convention 6
3.3 Algorithm description 8
3.3.1 Input . 8
3.3.2 Detection of situation 8
3.3.3 Collision detection in space . . . 9
3.3.4 Collision detection in time . . 12
3.3.5 Trajectory planning 12

3.4 Localization 13
3.4.1 Particle filter 13
3.4.2 Intervehicle communication . 14
3.4.3 Object detection 14
3.4.4 Wheel odometry 14

4 Platform 15
4.1 F1/10 competition 15
4.1.1 Past assignments 16

4.2 Hardware . 17
4.2.1 Camera 18
4.2.2 LiDAR 18
4.2.3 Teensy board 18

4.3 Software . 19
4.3.1 Robot Operating System 19
4.3.2 Functional architecture 20

5 Implementation 23
5.1 Intersection solver 23
5.1.1 Inputs . 24
5.1.2 Outputs 24

5.2 Localization methods 25
5.2.1 Particle filter 25
5.2.2 Intervehicle communication . 25
5.2.3 Object detection 26
5.2.4 Wheel odometry 27

5.3 Traffic signs 27
6 Simulation 29
6.1 Simulator overview 29
6.1.1 Gazebo 29
6.1.2 STDR Simulator 29
6.1.3 Stage . 30

6.1.4 Simulator selection 30
6.2 Configuration reference 30
6.2.1 Model . 31
6.2.2 Position model 31
6.2.3 Block model 32
6.2.4 Ranger model 33
6.2.5 Sensor model 33
6.2.6 Camera model 34

6.3 Vehicle model 34
6.4 Environment model 35
6.5 Implementation adjustments . . . 36
6.5.1 Perception 36
6.5.2 Decision and Control 36
6.5.3 Vehicle platform 37

6.6 Testing . 37
6.6.1 Running the simulation 37
6.6.2 Testing scenarios 38

7 Experiments 43
7.1 Scenario description 43
7.2 Adjustments 43
7.2.1 Vehicle configuration 44
7.2.2 Hardware limitation 44

7.3 Testing . 44
8 Future work 47
9 Conclusion 49
A Bibliography 51

vii

Figures
3.1 Car A shown in a global coordinate
frame . 7

3.2 Visualization of Equation 3.3a . . 10
3.3 Two cars approaching the
intersection . 11

4.1 Our fleet of F1/10 cars 17
4.2 Selected components from the
newest model 18

4.3 Functional architecture of the
platform . 20

5.1 Examples of AprilTags from 36h11
family . 27

6.1 Comparison of vehicle models . . 34
6.2 Comparison of maps 35
6.3 Simulation for Scenario 1 – apply
the right-side rule 39

6.4 Simulation for Scenario 2 – apply
the right-side rule on a slower car . 40

6.5 Simulation for Scenario 3 – faster
car does not have to apply the
right-side rule 40

6.6 Simulation for Scenario 4 –
intersection modified by AprilTags 41

6.7 Simulation for Scenario 5 – skewed
intersection . 42

7.1 Track used for experiments 43
7.2 Experiment for Scenario 1 45

Tables
3.1 Used symbols 8

4.1 Hardware list of the car 17

viii

Chapter 1
Introduction

In the age of rising automatization, autonomous cars are slowly driving their
way into our lives. With developing systems for autonomous vehicles, many
problems come up. Research teams across the world try to find solutions to
them. One of these problems is related to solving intersections.

The goal of this thesis is to design, implement, and verify an algorithm for
intersection control.

Reviewing the problem in the literature, three possible ways for control
design come up. The solution that does not require additional devices is
selected and closely described.

Implementation of the algorithm is leaning towards ROS framework, that
is used on robots. One of these robots is also a scaled-down autonomous
vehicle, RC-based car model that is participating in F1/10 Autonomous
Racing Competition. As an autonomous car, it is equipped with an onboard
computer, camera, and LiDAR.

Verification of the implemented algorithm is not done only using the
simulator, but it is also deployed on the model car, and, therefore, tested on
the target platform.

The outcome of this thesis could be used for upcoming rounds of mentioned
F1/10 Autonomous Racing Competition.

1

2

Chapter 2
Literature review

The problem of intersection control in relation to autonomous cars is quite
discussed in recent years. Creating a reliable solution for navigating through
the intersections is necessary for broad deployment of driver-less vehicles.
However, focusing on the safety of traffic participants is not the only topic.

Intersections represent a part of the traffic infrastructure that induces
delays to the overall transportation. Efficient navigation through these zones
would reduce travelling times.

Considering the traffic full of autonomous cars lead to solutions which are,
however, not usable at this moment. Therefore it is required to deal with
mixed traffic which contains both autonomous and manually driven vehicles.

While focusing on mixed traffic, two terms are tightly connected with solving
of intersections: centralized and decentralized (also distributed) control.

2.1 Centralized intersection control

Centralized intersection control is done by a server, framework, or intersec-
tion manager. These terms describe a device that is communicating with
vehicles within a specific range from the intersection and assigns them specific
instructions, e.g., path (which way to drive), and trajectory (how fast to
drive). This approach was suggested as a reservation-based system in [11]
and improved later in [12], [13] and [14].

The main challenges with this kind of control strategy “are associated
with the heavy communication requirements and the possible occurrence of
deadlocks” [54]. One has to consider security and privacy issues as well as high
infrastructure costs [23]. As another noticeable drawback, only intersections
with the overwatch system can be used for this strategy.

On the other hand, centralized control is mixed-traffic friendly as instruc-
tions for manually-driven vehicles can be sent via traffic lights [33].

2.2 Decentralized intersection control

In contrast to the previous method, decentralized (or distributed) control does
not require any additional infrastructure device. Therefore the problem with

3

2. Literature review
higher cost is eliminated here [70]. Distributed control can be divided into
two groups – active control and passive control. Both are designed to be used
specifically for intersections with low traffic density since the peer-to-peer
approach is not suited for a large number of vehicles.

2.2.1 Active decentralized control

Active decentralized control depends on V2V (vehicle to vehicle) communi-
cation to actively negotiate on intersection reservation between cars. This
method was described in [70] along with the proposal of communication
protocol. Messages can be one of two types – CLAIM and CANCEL. The first
one is continually published to notify other vehicles of car’s intentions and
to “make a reservation” (which is the same technique as the one used for
centralized control). Message CANCEL is used to cancel a reservation, e.g.,
when negotiated terms cannot be met.

2.2.2 Passive decentralized control

To avoid the requirement for V2V communication, passive decentralized
control is suggested in [23]. This method relays on sensing (data from
sensors) with the possibility to receive data from the intersection (one-way
transmission). A signal from the intersection contains information about
vehicles within certain zones as well as synchronization timestamp. In case
this information is not used, cars ought to synchronize their clocks from GPS.
This feature is along with known durations of traffic lights states used to
predict them.

4

Chapter 3
Control design

To design an intersection control algorithm, several choices have to be made.
As stated in the literature review (Chapter 2), there are three main routes:
centralized, decentralized active, and decentralized passive. Each of these
strategies has its benefits and drawbacks. Since we are not dealing with
complex intersections and adding an intersection server is not the desired
step (as it would make all experiments location dependent), decentralized
control was selected.

Among the main reasons for this decision are:. location independent solution (no additional device required),. the number of cars on the track is low, therefore, centralized control is
not necessary.

3.1 Scenario definition

Since designing intersection control for the real world is a difficult problem,
let us narrow the problem by specifying which scenarios are the target. From
these scenarios, we derive requirements for control design and upcoming
implementation. These rules take into account the platform (see Chapter 4)...1. The scenario is a track (road limited by tall borders/walls) placed on a

flat surface...2. The testing track is closed and fully controlled environment (only selected
objects are allowed to enter)...3. Only two cars are allowed on the track at once...4. Each car has to broadcast its position and velocity with minimal frequency
10Hz...5. Both cars have to obey traffic rules (explained below)...6. Only 4-way cross-shaped intersections are allowed...7. When driving through the intersection, cars are not allowed to turn.

5

3. Control design
Traffic signs. We consider the following two traffic signs. They are com-
plementary – if one of them is used, the other one has to be placed on the
perpendicular road.. YIELD sign, which forces the car to yield and let the other car pass.. PRIORITY sign, which gives the car priority and, therefore, allows it to

pass the intersection as first.

Traffic rules. Taking the traffic signs into account, all cars that are in
the scenario have to obey the following rules. When applying the rules, we
proceed from the top. When a condition is met, the corresponding rule is
applied. Otherwise, we continue to the next one..When no other car is detected, the car can pass the intersection..When both cars are driving through the intersection from the opposite

directions (they do not intersect each other paths); the car can cross the
intersection..When YIELD traffic sign is detected in front of the intersection; the car
has to let the other one pass..When PRIORITY traffic sign is detected in front of the intersection; the
car can pass the intersection..When the other car is approaching from the right side; the car has to let
the other one pass..When no rule is used; the car can pass the intersection.

3.2 Marking convention

Before the algorithm description let us explain used terms and notation.
Marking is noted in Table 3.1. All used angles are represented by numbers in
an interval 〈−180◦; 180◦).

Car A, B. Letter A denotes the car currently running the algorithm. Letter
B denotes the other car on the track. Each car is represented as a circle
with a defined radius. For some computations, we consider only its origin,
therefore, it is the same as representing the car with a mass point.

Car coordinate frame. Each car has its coordinate frame: the y-axis corre-
sponds to the axis of steering wheels, and it points to the left; the x-axis is
placed along the longer side of the car, and it is pointing forward. Frames
are labeled with the same letter as the car which it belongs to. For the
global coordinate frame, letter O is used. When a variable is expressed with
relation to a selected coordinate frame, its marking is used as a top index.
For variables without the top index, the global coordinate frame is assumed.

6

..................................3.2. Marking convention

Figure 3.1: Car A shown in a global coordinate frame

Path p. The path is a line created by connecting past, present, and future
positions of a car. However, when referring to this term later, only future
positions are meant.

Trajectory. By a term trajectory control action for reaching the next point
in a path is meant. This applies for reactive (i.e., without knowledge of past
action) planners.

Collision point C. Collision point is an intersection of paths of both cars.
Therefore, it is a point where the two cars would collide if each one of them
were represented by a mass point (their radius is zero).

Collision area C+. Collision area is a zone where the two cars might collide
if they continue in their directions. It is defined as a common space for two
“inflated” paths – the inflated path is created by applying the car’s radius in
each point of a path. Therefore it is defined as a Minkowski sum of a path
and car’s radius. Collision area has a center (collision point), size and with
relation to the cars, entry and exit points are used. The entry point is the
first position on a car’s path that belongs to the collision area; the exit point
is the last.

Heading φ. Heading is an angle between x-axis of one coordinate frame and
x-axis of another coordinate frame, e.g., φB

A stands for heading of car A in
the coordinate frame of car B. Therefore, φA

A is zero.

Collision angle. When two cars are about to collide, the angle between their
headings is called collision angle. When referring to the collision angle with
respect to the car A, it is the heading of the car B in car A coordinate frame
(i.e. φA

B) and vice versa.

Orientation θ. Term orientation is used for the angle between x-axis of one
coordinate frame and a segment from the origin of this frame to the origin
of another coordinate frame – θB

A stands for orientation of the car A with
respect to the car B.

7

3. Control design
Term Description

O Origin of the used map; Global coordinate frame
A, B Cars; Coordinate frames of the cars
x, y Coordinates
v Velocity
r Radius
φ Heading
θ Orientation
p Path
V B

A Variable of car A in coordinate frame of car B
dAB Distance between cars A and B

Table 3.1: Used symbols

3.3 Algorithm description

In [42] design called hierarchical Fuzzy Rule-Based System was presented.
This strategy is used as a reference for our algorithm. This particular decision
system was selected because it is straightforward, and it does not require a
map. However, our design is stripped of fuzzy sets [80] that are in the paper
used for optimization (which is outside the scope of this thesis).

3.3.1 Input

At first, the algorithm receives information about both cars. These data
contain their poses and velocities. Poses are referred to the origin of the map
O and contain the position of the cars and their headings. Velocities consist
of two parts – longitudinal speed (forward/backward) and lateral steering
(right/left).

It means that the algorithm requires multiple information about each car.
However, it is possible to work only with the position – heading and velocities
might be computed from two consecutive locations.

As mentioned in Section 3.1, traffic signs are also considered in the scenario
specification. Therefore the last input of the algorithm contains detected
traffic signs. However, this input is optional.

3.3.2 Detection of situation

Data about car B are transformed into the reference frame of car A:

xA
B = dAB · cos θA

B,

yA
B = dAB · sin θA

B,

φA
B = φO

B − φO
A,

(3.1)

where coordinates of car B are expressed with respect to the car A – xA
B is

an x-axis position, yA
B is a y-axis position, and φA

B is a heading. Variables φO
A,

8

................................. 3.3. Algorithm description

and φO
B are, respectively, headings of car A and car B in the global reference

frame. dAB is the distance between cars; θA
B is the orientation of car B from

the reference frame of car A. These last two variables are computed using
equations:

dAB =
√

(xB − xA)2 + (yB − yA)2,

θA
B = 180 · atan2(yB − yA, xB − xA)

π
− φO

A,
(3.2)

where xA, yA are x, y positions of car A and xB, yB are x, y positions of car
B.

Transformation of coordinates allows us to describe the current situation
(with respect to the car A) using this method:. xA

B > 0 means that car B is ahead of car A,. xA
B < 0 means that car B is behind car A,. xA
B = 0 means that car B is on the side of car A,. yA
B > 0 means that car B is on the left from car A,. yA
B < 0 means that car B is on the right from car A,. yA
B = 0 means that car B is in front of/behind the car A.

Let us note that using strict equality is not mandatory – for real-world
usage, an interval would be used instead. On the other hand, for (at least) the
simulation, these two conditions may be completely omitted as they describe
only four corner cases.

Using combinations of relations above lead to eight possible situations.
This number can be increased to a higher one by adding extra conditions
(e.g., far ahead).

Collision angle may be used to discard certain situations. If this angle is
low (close to the x-axis, in other words, close to integer multiples of 180◦)
intersection is not being solved, and therefore algorithm can stop.

3.3.3 Collision detection in space

Collision detection is a term that covers methods for predicting collisions.
Collision is a situation in which both vehicles touch/crash into each other.

For collision detection, we assume that both cars will continue in driving
with the same heading and speed. This assumption allows us to predict their
paths and find possible collision point.

In [42], the differentiation of more situations is done. However only cases
with collision angle close to ±90◦ are considered there. Let us loosen this
constraint and check for possible collisions in an unlimited angular area.

At first, collision points are used for this. Collision point approach is not
able to detect certain collision situations. Considering the cars as mass points

9

3. Control design
makes it fail in predicting collisions caused by their size. However, these
collisions are not intersection related, as the cars are not both driving towards
the collision point. This is also shown in Figure 3.2.

The collision of two cars is possible (in space) if and only if:

φA
B < 0 =⇒ θ̂A

B < φA
B < 0, (3.3a)

φA
B > 0 =⇒ θ̂A

B > φA
B > 0, (3.3b)

where φA
B is heading of car B with respect to car A and θ̂A

B can be described as
“inverse orientation” – orientation from car B to car A but in the coordinate
frame of car A. This situation is also shown in Figure 3.2. If conditions are
not met, the algorithm can end.

Figure 3.2: Visualization of Equation 3.3a. Orange area corresponds to possible
collisions that are detected, red area contains possible collisions that are not
intersection related, and, therefore, not detected.

Since the collision between the cars is now marked as “possible”, the
location of the collision point can be computed. For future calculations, the
point is expressed using polar coordinates. The phase of the collision point is
already known (it equals to car’s heading) and, therefore, only the magnitude
is missing. However, magnitude equals to the distance, which is computed by
these equations:

dBC = − yA
B

sinφA
B

,

dAC = xA
B + dBC · cosφA

B,

(3.4)

where dBC is the distance between the car B and the collision point C, dAC

is the distance between the car A and the collision point C, xA
B, yA

B and φA
B

are, respectively, x, y, and heading of car B in the coordinate frame of car A.
In case that computed distance would be negative, the car is heading away
from the collision point, and, therefore, no collision may occur.

10

................................. 3.3. Algorithm description

However, to address one particular corner case (from a planner’s point of
view), we continue with the algorithm if the distance between the cars is
less then the sum of their sizes. By this, behaviour during waiting on the
intersection is resolved.

Since collision points do not take vehicle dimensions into account, a collision
area is used from now on. Size of this zone guarantees that the car inside the
area is not endangered by any vehicle waiting outside. As mentioned before,
the center of the zone is the collision point.

Figure 3.3: Two cars approaching the intersection. Circle sectors in the middle
illustrate the smallest distance between the cars, thus, the reason for computing
rC+ with collision angle.

The size of the collision area is defined by sizes of the cars and the collision
angle. Using only dimensions of the cars lead to detecting certain collisions
too late, as they would be caused by sharing part of the path when driving
through the area. Adding collision angle into the equation solves this issue,
as shown in Figure 3.3. The approximate radius of the collision area can be
computed using this equation:

rC+ = rA

sin |φA
B|

+ rB

sin |φA
B|
, (3.5)

where rC+ is a radius of collision area, rA and rB are radiuses of cars A and
B, φA

B is heading of car B with respect to car A (also collision angle). By
combining this value and the collision point, distances to the entry and exit
points of the collision area may be computed:

din
AC+ = dAC − rC+ , dout

AC+ = dAC + rC+ ,

din
BC+ = dBC − rC+ , dout

BC+ = dBC + rC+ ,
(3.6)

where distances marked with in are distances between cars and points where
they would enter the collision area, distances marked with out are distances

11

3. Control design
between cars and points where they would exit the collision area, therefore
freeing up the intersection.

3.3.4 Collision detection in time

Variables computed in Equation 3.6 can be used for checking whether the
collision can happen. Until now, only headings and relative positions were
considered. By adding velocities collision can be confirmed or discarded.

Let us calculate times for entry/exit points of the collision area using these
equations:

tinAC+ =
din

AC+

vA
, tout

AC+ =
dout

AC+

vA
, tinBC+ =

din
BC+

vB
, tout

BC+ =
dout

BC+

vB
, (3.7)

where t denotes times until the cars arrive at the entry/exit points of the colli-
sion area, vA and vB are, respectively, velocities of cars A and B. Combining
in and out times for a car creates an interval in which the car is occupying the
collision area. Using just the raw times can be used to distinguish between
these situations:

. tinAC+ > 0⇐⇒ car A is driving towards the collision area,. tout
AC+ < 0⇐⇒ car A is past the collision area,. tinAC+ < 0 & tout

AC+ > 0⇐⇒ car A is within the area,. tinAC+ < tinBC+ ⇐⇒ car A arrives in the area before car B,. tout
AC+ < tout

BC+ ⇐⇒ car A leaves the area before car B,. tout
AC+ < tinBC+ ⇐⇒ car A leaves the area before car B arrives,

while this last one means that the cars are not sharing time inside the area,
and, therefore, the collision does not occur.

3.3.5 Trajectory planning

As a matter of trajectory planning, this algorithm relies on using an external
planner. Trajectory generated by this planner is modified by intersection
control. In case the car is going to yield, there are three possible ways how
to resolve ongoing collision:

Stop before the area. As a first and basic strategy, stopping the car is used.
It is also used later within the implementation part. If the car is about to
yield to the other car, it will stop at the entry point of the collision area.

12

..................................... 3.4. Localization

Speed up the car. Another strategy is to speed up the car to pass the
collision area before the other vehicle. In this case, target velocity is set to:

vA ≥
dout

AC+

tinBC+
. (3.8)

Slow down the car. In contrast to the previous strategy, the car can be
slowed down to arrive at the collision area after the other vehicle leaves. In
this case, target velocity is set to:

vA ≤
din

AC+

tout
BC+

. (3.9)

3.4 Localization

As mentioned in the algorithm description (Section 3.3), positions, headings,
and velocities of both vehicles are required. In this section, a quick review of
methods for obtaining this information is provided. Only solutions that are
considered for the implementation are mentioned.

3.4.1 Particle filter

As a source of self-localization, a particle filter [9] can be used. It is a Monte
Carlo class algorithm that is used to localize robot – estimate its pose (i.e.,
position and heading) – in a predefined map.

Particle filter works with particles (also pose hypotheses) that are randomly
spread across the map of the environment. The method is split into three
parts (which are repeated in the same order):. Prediction phase uses a motion model of the car and detected movement

to change position and orientation of the particles.. Update phase uses a measurement model of the sensors and received
readings to update belief in the individual particles. Each measurement
is compared to its counterpart generated by the particle. The basic
method for this generation is called ray casting.. Last part resamples particles (generates a new set of particles) according
to updated beliefs.

As the algorithm proceeds, the particles are gradually gathering around
the real position of the vehicle. Only requirements on the used method are
(besides the best possible accuracy): common origin and map rotation for all
traffic participants.

For outdoor usage, the particle filter would be replaced by absolute position
received from, e.g., GPS.

13

3. Control design
3.4.2 Intervehicle communication

Since the particle filter (Subsection 3.4.1) can only estimate the position of
one car, another solution needs to be deployed to retrieve data about the
other vehicle.

If the particle filter is used on both cars, estimated poses may be shared
between them. As mentioned in the literature review (Chapter 2), intervehicle
communication can be used to receive/send instructions (then we are dealing
with an intersection manager) or to exchange car information with other
vehicles.

Also, terms V2V and vehicle-to-vehicle communication are used when
referring to this.

3.4.3 Object detection

As an alternative for retrieving data about the other car, object detection
approach can be used. Described algorithm (Section 3.3) relies only on relative
coordinates between the cars. Therefore, there is no need for the vehicle to
self-localize, since it does not affect the detection of the other car.

For object detection various sensors can be used, e.g., monocular camera
[79], LiDAR [52], RaDAR, SoNAR, infrared camera [10].

3.4.4 Wheel odometry

Movement estimation of a vehicle is called odometry. By measuring the
rotation of wheels, velocity, and relative position can be retrieved. Even
though this method is not very accurate (as there are papers that solve this
problem [5]), it can be still used for quite an accurate velocity estimation and
particle filter correction [37].

Since the position of the cars is estimated by particle filter, wheel odometry
is used for estimating the velocity on the platform.

14

Chapter 4
Platform

Intersection control strategy described in Chapter 3 is designed for imple-
mentation and verification on F1/10 platform. Vehicles F1/10 are RC-based
models in ratio 1:10 with regular cars.

The project of F1/10 cars was started to compete in F1/10 Autonomous
Racing Competition – an international event which encourages student teams
across the world to pursue autonomous driving. This contest is being held on
conferences (namely CPSWeek and ESWeek) twice a year.

Attending the racing competition is not the only usage for these models.
Thanks to their real autonomous car-like design, they can be used for imple-
menting, verifying, and testing of algorithms that can be later ported to a
full-scale autonomous car.

Advantage of using a model car instead of a real one is not just its price.
All tested scenarios are much more controllable as they can be created on a
1/10 scale. Also, all crashes with a model car are much less severe.

4.1 F1/10 competition

F1/10 Autonomous Racing Competition that was already mentioned earlier, is
an international competition, where teams of students complete a predefined
task. At first, this task was only related to building a car and driving it
through the track as fast as possible. Latest competition added also racing of
two cars.

Even though the assignment of each competition may be a little bit dif-
ferent, the goal stays the same – challenge the student teams appropriately
according to the overall level of all contestants. This means that over time, the
competition may evolve to include also some traffic situations like intersection
solving.

We have attended the 2nd and 3rd F1/10 Autonomous Racing Competitions
that were held, respectively, in Porto (April 2018) and Torino (October 2018).
Our team was called “Řeřicha”. We have won the Porto race and later we
were third in Torino.

15

4. Platform.......................................
4.1.1 Past assignments

As said, assignments of the competition are evolving. To show the challenges
that had to be met over time, a list of them follows.

Building the car. At first, each student team has to build their car. To
create a competition approved model, several conditions have to be met (the
list is updated to the current version [17]):. A 1/10 scale rally car chassis equivalent to the Traxxas model 74054

type is allowed.. Only the use of stock tires, or equivalent - in size and profile, is allowed.. NVidia Jetson TX2 or an equivalent capability processor or anything of
a lower spec is allowed.. Hokuyo UST-10LX or an equivalent LiDAR range sensor or anything
with a lower spec is allowed..Multiple LiDARs are allowed, as long as they are all equivalent to, or
lower spec than, the Hokuyo UST-10LX.. No restrictions on the use of cameras, encoders, or custom electronic
speed controllers.. Brushless DC motor equivalent to Velineon 3500 or anything of a lower
spec is allowed.

On the other hand, since the last competition, even the cars that do not
follow these rules are able to compete in a so-called Open Class. Cars that
compete in the main part (called Restricted Class) may attend this as well.
This side-competition can be used for testing better equipment or other not
allowed methods.

Algorithm implementation. Along with running the car, installing required
packages, etc., the selected algorithm has to be implemented to be eligible
to participate. For this, lectures [18] from the organizers can be used. As
early competitions were only about driving through the track, implementing
a simple reactive algorithm was enough. This part of the contest is still a
part of the event named as a Time Trial Race.

Time Trial Race. The goal of the first racing task is to complete as many
laps as possible within a specified time. In case that two teams get the same
number of laps, time of the fastest lap determines the winner. During this
race, only one car is allowed on the track.

Obstacle avoidance. Avoiding the obstacles was not a rated part of the
competition, but it served more like a preparation for the next task. We
were the first to demonstrate quite reliable static obstacle avoidance during
the competition in Porto. Dynamic obstacles were avoided as well, but the
success rate was lower.

16

...................................... 4.2. Hardware

(a) : First model (b) : Second model (c) : Fourth model

Figure 4.1: Our fleet of F1/10 cars

Head to Head Race. After the 3rd competition, a new racing task was
revealed. Since multiple teams were able to demonstrate obstacle avoidance
racing of multiple cars on the track became possible. Head to Head Race is a
modification of Time Trial Race with an exception that two cars are racing
at once.

4.2 Hardware

Currently, we have three cars built (see Figure 4.1), and the fourth is being
created. The first model (Figure 4.1a) was created as a part of a master’s
thesis in 2017 [69]. The second model (Figure 4.1b) was created a year later
to attend the competition in Porto. The third model was created as a part
of thesis [16] this year. The fourth model (Figure 4.1c) is based upon the
third model, and it was created at the beginning of this year. Therefore we
are able to do experiments with multiple vehicles on the track. Since the
essential components of all cars are quite similar, only the latest model is
closely described. Its hardware list is in Table 4.1.

Part Model

CPU nVidia Jetson TX2 on Orbitty Carrier
CPU for engine Teensy 3.1

Chassis Traxxas Slash 1:10 4WD VXL TQi TSM OBA RTR
Engine Velineon 3500
Batteries 2S LiPo (for engine only), 3S LiPo
Controller FOCBOX VESC (Electric speed controller)
Transceiver Traxxas TQi 5CH TSM (manual)
LiDAR Hokuyo UST-10LX
Camera Intel RealSense D435

Table 4.1: Hardware list of the car

Chassis selected for this model does not satisfy the requirement from
organizers (Subsection 4.1.1). However, this was discussed with them, and
they allowed it to attend the competition.

17

4. Platform.......................................

(a) : Hokuyo
UST-10LX

(b) : Intel RealSense D435 (c) : Teensy

Figure 4.2: Selected components from the newest model

4.2.1 Camera

Currently, we are using RealSense D435 (Figure 4.2b) manufactured by
company Intel. Its additional features can be useful when solving future
assignments.

Along with color camera with a wide field of view and global shutter, a
depth camera is provided. It can be used as another measurement device
than relying only on LiDAR. To improve depth perception, active infrared
projectors are used to illuminate objects in the environment.

4.2.2 LiDAR

LiDAR is an abbreviation for Light Detection and Ranging. It is a device
that is able to measure distances to nearby obstacles using laser rays that
are reflected to the environment by a rotating mirror.

We are currently using Hokuyo UST-10LX (Figure 4.2a). It is a two-
dimensional LiDAR (it can measure in only one plane) with a field of view
270◦. Its frequency is 40Hz, which means that it can measure distances to
all surrounding obstacles every 25ms.

On large-scale autonomous cars, LiDARs are used as well. However, in
that case, it is mostly a three-dimensional one.

4.2.3 Teensy board

The Teensy board (Figure 4.2c) is a microcontroller that is used for controlling
the engine and servo of the car by PWM-modulated signal. Separation of
this functionality provides certain reliability that it is done in time.

Using the Teensy board also comes with another benefit – the car can be
remotely stopped by triggering the transmitter (manual control). This can
be useful when testing new algorithms as it limits the damage caused by a
crash.

18

...................................... 4.3. Software

4.3 Software

The main computer on the car – nVidia Jetson TX2 – is running Ubuntu
16.04 as an operating system. Therefore, all packages compiled for an arm
version of this distribution can be used during the development.

Selection of Ubuntu 16.04 is not a random choice. This version is supported
by nVidia company, and, moreover, supported by Robot Operating System,
which is a main requirement for the platform. Also, using ROS is encouraged
by competition organizers [18].

4.3.1 Robot Operating System

Robot Operating System (or ROS) is “an open-source, meta-operating system”
[63] which contains “collection of tools, libraries, and conventions” [45]. It
can also be described as a distributed framework.

Master. The heart of the ROS is called ROS Master [59] or ROSCore. It is
used to register other nodes in the system, to track their subscriptions and
publications. Role of the Master is to provide a way for the nodes to locate
one another. After this, they can communicate outside the Master. It is also
responsible for providing a Parameter Server which stores parameters for the
nodes.

Node. The main building component of ROS is called node. Node is any
application which can be run under ROS. Nodes can be designed, implemented
and tested individually. Grouping them, to complete complex tasks, is done
at runtime.

Package. Packages are containers that gather up nodes. They were created
for easier distribution of code [63]. Each package has its name, list of
dependencies, and other required files. Packages are organized in workspaces
(folders).

Message. Messages are simple data structures composed of primitive types
(e.g., strings, integers) and arrays of these types [60]. These messages are
used to communicate between nodes.

Topic. Topics are named buses for exchanging messages. Each topic has
specified one type of message that is used there. Nodes subscribe to topics
(receive messages from them), publish to them (send messages), or both [64].

Launch file. Special status has a command roslaunch that works with
launch files [7]. These files contain instructions which nodes to run and what
are their parameters and arguments.

19

4. Platform.......................................
4.3.2 Functional architecture

As a part of building third car functional architecture for the platform was
designed and created. It is based on architecture proposed in [1]. Project is
split into three main parts as shown in Figure 4.3. Each part can be designed
and implemented on its own. Therefore each member of the team can create a
new package that is only limited by constraints on its input/output. Putting
parts together creates a control chain for the vehicle.

Since this is still a work in progress, it is possible that the architecture will
be changed over time as more experience with the platform is gained.

Figure 4.3: Functional architecture of the platform

Perception

The first part of the architecture is called Perception. It is responsible for
observing and understanding the environment using sensors. Perception is
split into three blocks. Even though our models are quite similar, differences
in their equipment can be found. Design of the Perception takes this into
account. Therefore it is possible to substitute a certain model of a sensor
with a different one of the same type.

Sensors. The first block is responsible for retrieving information from the
environment and other vehicles. Packages within the Sensors block are
mostly establishing a connection with the sensors, reading data from them,
and converting these data to ROS compatible messages. All packages are
organized in folders by the type of the sensor they are communicating with –
e.g., LiDAR, camera. Output messages are standardized for each sensor type.

Preprocessing. The second block is used for converting, editing, precomput-
ing, cleaning, of data received from the sensors. Packages from Preprocessing
should help maintain certain compatibility between various sensors of the
same type and recognition algorithms. Also, using these packages should ease
up the implementation of other nodes since some of the required operations
may be already solved here.

Recognition. Third block of the Perception contain packages that are used,
e.g., processing received data, detecting obstacles, understanding environ-
ment, estimating location. Results of these algorithms are stored inside
several messages which describe estimated position (geometry_msgs/Point
[56]), estimated pose along with the velocity (nav_msgs/Odometry [62]) and

20

...................................... 4.3. Software

detected obstacles (obstacle_msgs/Obstacles). Last message is a custom
one (it is not a part of standardized messages) and it is defined as follows:

Obstacle message
obstacle_msgs/SegmentObstacle[] segments

geometry_msgs/Point[2] points
obstacle_msgs/TriangleObstacle[] triangles

geometry_msgs/Point edge_a
geometry_msgs/Point edge_b
geometry_msgs/Point edge_c
geometry_msgs/Vector3 velocity

obstacle_msgs/CircleObstacle[] circles
geometry_msgs/Point center
float64 radius
geometry_msgs/Vector3 velocity

where triangles and circles also contain estimated velocity of the obstacle
(geometry_msgs/Vector3 [58]) which consists of speeds along three axes.
This velocity is applied to the center of the object.

Decision and Control

Decision and Control is the name of the second part of the architecture. It
is responsible for trajectory planning using data received from Perception.
Packages inside can be theoretically chained or put in parallel to create more
complex behaviours. In fact, behaviour trees [6] along with the state machines
are planned to be here in the future.

Created plans are published using custom command messages that are
being caught by Drive-API, which is described later.

Vehicle Platform

Differences in the equipment of the models were already solved in Perception.
However, as stated in Subsection 4.2.3 engine and servo are controlled via
PWM signals. Parameters of these signals differ between the cars. To
overcome this issue, the third part called Vehicle Platform was designed to
be hardware independent (from a software point of view).

Both parts of Vehicle Platform are subscribed to topic /eStop (boolean
messages). This topic is used as an emergency stop which forces the car to
stop immediately.

Drive-API. The first part of Vehicle Platform is Drive-API. It is a framework
that is used to make planners hardware independent. Drive-API can be
launched as a ROS node or imported as a Python module to allow controlling
the car outside of ROS. Hardware related constants are stored inside ROS
Parameter Server, and they are used by Drive-API to convert received values
to duty cycles.

21

4. Platform.......................................
Currently, custom drive_api/drive_api_values messages are used to

send commands to this application. This message type is defined as follows:

Values for drive_api
float64 velocity
bool forward
float64 steering
bool right

where velocity and steering are allowed to contain only values from interval
〈0; 1〉.

This message design allows selecting precisely the lowest speed possible
by setting velocity to 0. Stopping and resetting the steering is done by
sending a negative number. However, this approach is subject to change when
PWM-to-speed identification is made, which allows specifying required speed
in SI units.

Teensy. The second part of Vehicle Platform, and, also, the last part of
the whole control chain is Teensy. It is a package with only one node that
communicates with the Teensy board that is attached to the cars. As said in
Subsection 4.2.3, this board is responsible for generating PWM signals to the
engine and servo. Duty cycles of the signals are sent from the Drive-API via
teensy/drive_values custom message which is defined as follows:

int16 pwm_drive
int16 pwm_angle

where pwm_drive is used for controlling the engine and pwm_angle is used
for controlling the servo. Their values from 〈0; 65535〉 interval correspond to
〈0%; 100%〉 of the duty cycle.

The Teensy board itself is strongly hardware dependent as it is flashed
with parameters of the car. However, this could be resolved in the same way
like Drive-API – receive these values from the Parameter Server.

22

Chapter 5
Implementation

Having designed an algorithm for solving the intersections (Section 3.3) and
having introduced the target platform (Chapter 4), implementation can be
done.

As a programming language Python 2 was selected. Its alternative –
Python 3 – is not officially supported by ROS. Using rospy module’s API,
one can easily interface with ROS Topics, Services, and Parameters (see
Subsection 4.3.1). Also, using Python/rospy combination is well suited
for quick prototyping and testing within ROS [8] since compilation is not
required. On the other hand, using Python has lower performance than
the same algorithm written in C++/roscpp, which is designed to be a
high-performance library [53].

5.1 Intersection solver

Implementation of the algorithm from Section 3.3 is provided as a single
package placed within Decision and Control (see Subsection 4.3.2). It is
designed to run in series with another trajectory planner. If a planner
manager (node that decides between multiple plans) were available, these
two planners would be running in parallel instead. This approach is also
suggested in Subsection 4.3.2 and associated paper [1].

Standing as another planner within the ROS chain allows reusing the plan
created by its predecessor. Therefore, the created package serves more like
a plan modifier. However, it is still categorized as a trajectory planner as it
outputs a trajectory.

This design comes with a huge benefit. Planning a whole new trajectory
(thus ignoring the other planner) could be counterproductive to the global
plan. Even though modifying the speed affects the plan, the other planner
does not lose (in a specific way) its control of the vehicle. Also, this makes the
planner responsible for navigating through the intersection as the algorithm
does not influence the steering. However, this could be also considered as a
drawback.

23

5. Implementation....................................
5.1.1 Inputs

The algorithm description (Section 3.3) starts with specifying the input
variables. Their adaption to ROS framework is explained in the following
lines.

Car A. Position, heading, and velocity of car A is provided via /odom1 topic
which uses Odometry messages defined by nav_msgs/Odometry [62]. This
type contains all the required information. The velocity of the vehicle is
specified in a “car-like style” – its longitudinal speed (forward/backward) and
its lateral (angular/steering) speed.

Car B. Data about the other car are received on topic /odom2. The message
type is identical to car A.

Traffic signs. As later explained in Section 5.3, AprilTags are used instead
of traffic signs. Detected tags are received from /tag_detections topic
(message apriltags2_ros/AprilTagDetectionArray [36]).

Planner. Trajectory planned by the other planner is obtained using a
remapped /drive_api/command topic, which is used for communicating with
the Vehicle Platform (Subsection 4.3.2). It means that the output of the
other planner is redirected to the intersection controller, which sends modified
instructions to the Drive-API.

5.1.2 Outputs

The output of the algorithm can be one of two types – the first one is
standardized and used as a default method. The other one is left as a
compatibility layer and as a backup solution in case that Drive-API is not an
option (i.e. it is not available).

Drive-API command. The first type of output is created for ROS chain
described in the functional architecture (Subsection 4.3.2). It is triggered
by messages received from the other planner. An obtained trajectory is
appropriately modified and published to a topic for Drive-API. This method
supports all three strategies described in Section 3.3 – stopping, speeding up
and slowing down.

eStop command. The second type is created for older planners that were
designed before the introduction of the Drive-API. These planners are feeding
instructions directly to the Teensy board. Since using /eStop can only stop
the car, this method supports only one strategy – stopping the vehicle before
the collision area.

24

................................. 5.2. Localization methods

5.2 Localization methods

In Section 3.4, several ways of obtaining poses and velocities of both vehicles
were introduced. Following subsections change the focus on their platform
integration.

5.2.1 Particle filter

As mentioned in Subsection 3.4.1 particle filter is an algorithm used for
self-localization in a known map. This method can be used for estimat-
ing position, and heading.This estimate is published together with velocity
from wheel odometry (Subsection 5.2.4) published as an Odometry message
(nav_msgs/Odometry [62]).

Particle filter implementation that is used for autolocalization is based
upon Compressed Directional Distance Transform (CDDT) [76]. In contrast
to the ordinary ray casting method, this novel approach significantly lowers
the computation time with an only minor increase in memory usage.

This solution was designed for MIT RACECAR [39], autonomous car
platform that is very similar to ours. Implementation of this particle filter
localization algorithm is ROS compatible and freely available on GitHub [38].
Integration to F1/10 platform is closely described in [32].

Mapping the environment. Since using the particle filter requires knowledge
of the environment, a map has to be created. Package hector_mapping [30]
is used for this task. It requires a stream of measurements from LiDAR.
These data are processed by scan matching – a function which aligns laser
scans with an already existing map and stores new data into it [31].

5.2.2 Intervehicle communication

Particle filter from the previous subsection estimates the position of only one
vehicle. As proposed in Subsection 3.4.2 intervehicle communication can be
used to exchange estimated data between two (or generally multiple) cars.

Full-scale autonomous cars would be using specialized V2V-enabled devices.
Because our platform is not equipped with such hardware, this functionality
has to be solved differently.

As a way of communicating between cars, TCP/IP packets over WiFi
were selected. Each car launches its server for incoming transmissions and
one client for sending the messages to the other car. Even though this
solution may not be ideal for large-scale scenarios, its simplicity, and hardware
undemandingness (as it does not require additional components) overcome
its drawbacks.

For this purpose, two nodes were created – server node and client node.
Each one of them requires several arguments:. target IP address,

25

5. Implementation....................................
. target port,. name of topic – server for publishing, client for subscribing,. type of message on this topic,. (server only) size of the buffer for received data,

where the type of the message is not required if the topic is already running.
In that case, nodes inherit used message.

5.2.3 Object detection

For certain scenarios usage of V2V might be problematic (e.g., long distances,
jammed environment). In that situation, method of detecting the other car
would be handy. For this, obstacle detection using LiDAR data can be used.
Even though the object detection package is imported to the platform, this
part is more theoretic as this behaviour is not implemented, yet.

Object detector algorithm, which is described in [52], takes measurements
from LiDAR as its input. Distance readings are subject to these procedures:..1. Grouping – at first points are split into groups according to the distance

between two consecutive measurements; if it is too large (which is defined
by a variable) new group is started,..2. Splitting (recursive) – groups larger then defined value are examined for
possible splitting, which occurs if a point is too far away from a line,
that is fitted through extrema of the group,..3. Segmentation – modified groups are approximated with a segment, pa-
rameters are computed via least squares regression,..4. Segments merging – extracted segments are tested for possible merging,
segments close to each other are temporarily merged and if this merged
segment is collinear to extrema fitted line (same technique as for splitting)
new segment is created,..5. Circles extraction – each segment is converted to triangle (one side is
the segment, rest of the triangle is placed away from the origin) and
a circumscribed circle is created, which is not discarded if its radius is
within a specified interval.

ROS compatible implementation of this algorithm is publicly available on
GitHub [51]. The published message obstacle_detector/Obstacles [50]
contains lists of circles and segments. They are later converted to our message
type that is described in Subsection 4.3.2. This particular implementation
also features obstacle tracking – a method which assigns velocity to the circle
obstacles.

26

..................................... 5.3. Traffic signs

5.2.4 Wheel odometry

Wheel odometry (mentioned in Subsection 3.4.4) can be used for estimating
the velocity of the vehicle. This is also used within the platform.

The platform is using VESC (Electric speed controller) which can be
connected to the computer via USB. This connection is made by vesc_driver
[3] package which receives various data from VESC internal sensors. This
information is stored within vesc_msgs/VescStateStamped [4] messages.

Since raw data cannot be directly merged with the estimated position from
particle filter (Subsection 5.2.1), they are converted to Odometry message
using vesc_ackermann [2] package.

5.3 Traffic signs

Scenario definition from Section 3.1 takes into account the possibility of traffic
signs on the track.

In real life scenarios, traffic signs are used to alter priority on the inter-
sections. However, traffic sign recognition is prone to many difficulties, e.g.,
quality of image sensor, lighting conditions, color fading, scene complexity,
similarity, and so forth, as described in [65]. Even though our scenario is
limited, and, therefore, almost fully controllable (so problems with the sign
recognition may be avoided or at least limited), using fiducial markers seems
like a better choice.

Fiducial markers are objects placed within predefined area, designed to be
easily recognized and distinguished from one another [41]. These markers are
commonly used for localization [49], object tracking [77], or passing commands
to the robot [15].

Let us note that this traffic sign substitution does not affect the designed
algorithm. In case that real signs are required only relevant parts of the
implementation have to be adjusted (e.g., used message type).

(a) : AprilTag with ID 27 (b) : Detected IDs 2 and 3

Figure 5.1: Examples of AprilTags from 36h11 family. It means that it is using
36-bit encoding with a minimum Hamming distance of 11.

27

5. Implementation....................................
Proposed solution utilizes AprilTags [41], monochrome markers that are

designed to have large minimum Hamming distance (the difference between
two tags) which allows to detect and correct possible bit errors. Example of
an AprilTag is in Figure 5.1a.

The procedure of reading the AprilTags is as follows (described in [35]):..1. Grayscaling – high contrast parts of the image are binarized into black
and white regions while the rest of the image is discarded,..2. Segmentation – union-find algorithm produces white and black segments,..3. Boundary detection – every black/white edge is recorded,..4. Quad detection – recorded boundaries (segments) are processed to find
every four-sided shape,..5. Payload decoding – each detected quad is tested for a possible payload –
quad is split into white and black parts (using adaptive threshold), while
both parts are processed individually.

For detecting and reading AprilTags, AprilTags 2 algorithm was used. This
algorithm is open-source, ROS compatible, and available on GitHub [34].
Example of an output from this algorithm is in Figure 5.1b.

28

Chapter 6
Simulation

This chapter describes the simulation of the implemented algorithm. At first,
the selection of simulator application is discussed in Section 6.1, followed
by an explanation of its usage and configuration. Further sections describe
the creation of vehicle (Section 6.3) and environments models (Section 6.4).
Adjustments that had to be done to make the functional architecture (Sub-
section 4.3.2) able to work with the simulator are described in Section 6.5.
In the end (Section 6.6), scenarios are introduced and solved in simulation.

6.1 Simulator overview

This section is focused on the short review of existing simulators. Good
selection of used simulator is important – dealing with unnecessary features
can be counterproductive, and having interface incompatible with current
design might require excessive adjustments. To at least avoid the latter one
as much as possible, only ROS-compatible simulators were considered.

6.1.1 Gazebo

Gazebo [43] is a 3D dynamic simulator for populations of robots which can be
accurately and efficiently simulated. It supports complex indoor and outdoor
environments as well as precise physics simulation. As also written in [44],
key features include “multiple physics engines, a rich library of robot models
and environments, a wide variety of sensors and convenient programmatic
and graphical interfaces”.

6.1.2 STDR Simulator

STDR Simulator [66] (which is an abbreviation for Simple Two Dimensional
Robot Simulator) is a simple 2D simulator with an intention to make the
simulation of single robots or a robot swarm as simple as possible. On the
other hand, it is not aimed to be the most realistic simulator, nor to have
many features. STDR (also sometimes mentioned as S2DR) is created to be
a total ROS compliant [67].

29

6. Simulation......................................
6.1.3 Stage

Stage simulator is a 2D simulator with support for a third dimension. As
said on their website [48], Stage is an application capable of simulating
multiple robots along with their sensors. The simulation takes place within
2D bit-mapped environment. This “world” is occupied by simulated robots
as well as other custom objects. The goal of Stage is to support research into
multi-agent systems.

Stage itself supports communication with real robots. Connecting with the
server side, which is known as Player [47], allows interacting between real
and simulated robots.

ROS package stage_ros [21] enables to use Stage with ROS framework.

6.1.4 Simulator selection

In the end, Stage simulator described in Subsection 6.1.3 was selected as a
simulator application for the implemented algorithm. In upcoming paragraphs
reasons for this choice are explained.

Gazebo simulator was rejected because of its overall complexity. Also, it is
mostly focused on the modelling of simulated robots, which is not the main
focus of this thesis. Therefore, a more straightforward solution is appreciated.

STDR Simulator does fulfill requirements on the complexity. The two-
dimensional world is much more suited for the topic of this thesis because
the car’s movement is limited to one plane. On the other side, it does not
allow to change the appearance of simulated robots and, more importantly,
according to the ROS website [68], STDR is not able to provide detection of
other robots during the simulation. Having the latter in mind, this simulator
was rejected as well.

Since the other two simulators were dismissed, Stage simulator that does not
suffer from the shortcoming of the other simulators was selected. Its simplicity
and reliable two dimensional (with partial third dimension) simulation makes
it a good choice. However, as explained later, even this simulator has its
downsides.

6.2 Configuration reference

As mentioned in Subsection 6.1.4, even selected Stage simulator has its
drawbacks. They are mostly related to insufficiently documented creation
of configuration files. This section covers the basics of creating vehicle and
world models for Stage.

Stage for ROS requires only one configuration file called world. Information
about the simulation is stored inside. As a reference unofficial How to use
Player/Stage documentation [40] is used within this whole section.

30

................................ 6.2. Configuration reference

6.2.1 Model

Model [72] is a basic building block for all other model types. It simulates an
object with basic properties, e.g., position, size, and color. These properties
can be used for derived models as well. Only those that were used during the
thesis are mentioned here.

Size. Parameter size is used for specifying the dimensions of the created
model along all three axis – [x, y, z]. All variables are in meters.

Position. Parameter pose is used for placing the robot at the desired position
during startup of the simulation. It is specified by four numbers – position
in 3D space and heading. Both parts are relative to the parent coordinate
system. The position is specified in meters like size; the heading is in degrees.

Color. Color of the created shape can be adjusted using the color parameter.
Passed string parameters refer to the colors defined by X11 [19].

Name. Each model can be assigned a label to make it easily distinguishable.
Parameter name has only one string argument which contains this marking.

Bitmap. When using a complex shape for a model bitmap parameter can
be used. Through its only parameter path to a bitmap file can be specified.
This is commonly used for loading a map.

Collidability. Ability to collide with other models is defined by parameter
obstacle_return. If set to 1, this model can collide with other models with
this property.

Reflectance. The ability of a model to reflect incoming rays from the
simulated sensor is controlled by the parameter ranger_return. Setting
this value to a negative number makes the model invisible to ranger sensors.
Otherwise, it is detected.

Model stacking. When a model is attaching other models on itself, they
are stacked on the top of the parent model. This can be turned off by setting
stack_children parameter to zero, which sets the origin of each child model
to the origin of the parent model.

6.2.2 Position model

Position model (object position) simulates a mobile robot base [73]. Since
position has many parameters, only those that are relevant to our scenario
are mentioned.

Steering model. Parameter drive defines model type used for the simulation.
Possible models are: diff – differential-steer model (two wheels), omni –
omnidirectional model, or car – which means that model is using forward
velocity and steering angle.

31

6. Simulation......................................
Localization type. Parameter localization defines a model for reporting
the position of the robot. Possible options are: gps – which means perfect
accuracy, or odom – which adds overtime drift to the position (that is defined
by odom_error).

Localization origin. Parameter localization_origin sets an origin for
localization coordinate frame. It is specified by four numbers – [x, y, z, θ]
where first three are translations in meters along one of three axes; fourth
is used for ground rotation and it is specified in degrees. When left at zeros
and gps model is selected, a perfect global position is returned for the robot.

Distance between wheels. Parameter wheelbase is used only for car
steering model. It defines the distance between wheels (center to center on
one side) in meters. This value is used to determine turning for the whole
model.

6.2.3 Block model

Block model (object block) defines a form of a robot or obstacle using 2D
shapes with a constant third dimension. Therefore, required design has to be
split into basic 2D shapes which are then formed together in Stage.

Since blocks are mostly used within position, used coordinates are not
specified in meters. Instead, they are rescaled to fit into the size of their
parent.

Points array definition. Using the parameter points, an array of points
is defined. The only passed argument is a number that specifies size of the
array (i.e., number of points).

Points definition. Using parameters point[X] (where X is an index of a
single point), points are filled into 2D space. Each point is specified by two
numbers – [x, y] coordinates along two axes.

Third dimension. Parameter z is used to add z coordinate to created
shape. Two numbers are passed with this parameter – starting and ending z
coordinate.

For an easier understanding of this part, a code snippet is added:

block
(

number of points
points 4

coordinates of all points
point[0] [0 0]
point[1] [0 1]
point[2] [1 1]

32

................................ 6.2. Configuration reference

point[3] [1 0]

third dimension of the block
z [0 1]

optional color
color "black"

)

This code creates a black cube with dimensions 1× 1× 1 (meters in this
case), starting in the origin of coordinates and spreading along all axes.

6.2.4 Ranger model

Ranger model (object ranger) simulates an array of sonar and infrared range
sensors [74]. Because in our case, only one sensor is used, ranger has a single
parameter – model sensor which is described in the next subsection.

6.2.5 Sensor model

Sensor model (object sensor) simulates sonar and infrared range sensors
[74]. Besides pose and size parameters that are very important here, the
following parameters can be used.

Field of view. Using the parameter fov field of view is specified. It expects
a single argument which sets the angle span – minimal and maximal detection
angle. This area is centered on the pose of the sensor.

Sensor range. Parameter range defines minimal and maximal detection
range for the sensor.

Number of samples. The angular resolution of the sensor is determined by
samples parameter. Its only argument corresponds to the number of samples
that sensor measures during one sweep. This parameter is not officially
documented but it can be found within the implementation [75]. It is also
mentioned in the unofficial guide [40].

Fully specified sensor might look like this:

ranger
(

sensor
(

pose [-0.12 0 -0.0175 0]
size [0.05 0.05 0.035]
range [0.0 10.0]
fov 270.0
samples 3243

33

6. Simulation......................................
)
color "orange"

)

6.2.6 Camera model

Stage can even simulate an image stream from the camera. Therefore AprilT-
ags can be used even in this scenario. Camera model (object camera) is used
for this purpose [71].

Camera resolution. Resolution of a generated stream is specified via pa-
rameter resolution. Its arguments are image width and image height.

Camera range. Parameter range can be used to specify a minimal and
maximal distance (in meters) of detectable obstacles – for this, two arguments
are used.

Field of view. Similarly to the sensor model, a field of view can be set via
fov parameter. In this case two parameters are used – one for horizontal and
the other one for vertical field of view.

Camera tilt. Because camera does not need to be attached parallel to the
ground, pantilt parameter is used to express this. The first argument sets
an angle of left-right rotation while the second one up-down rotation.

6.3 Vehicle model

This section describes the modelling of the vehicle and its sensors. Parameters
and their arguments are explained in Section 6.2.

(a) : Real model (b) : Stage model

Figure 6.1: Comparison of vehicle models

Due to the complexity of the real model, only significant features are
considered for designing the Stage model. As a minimal model bounding box
would be enough. However, to make the simulation a little bit more realistic,

34

..................................6.4. Environment model

these parts were created: front bouncer, back bouncer, chassis, and wheels.
All parts were created using block models from Subsection 6.2.3.

From the devices mounted on the vehicle, only LiDAR (along with its base)
and camera were created. Their parameters match with the devices used on
the F1/10 car.

Comparison of the real model and its Stage counterpart is in Figure 6.1.

6.4 Environment model

This section briefly explains how are the maps represented in ROS. Then a
simple walkthrough for creating the map for the simulator is provided.

Basic ROS map is a 2D array that holds integer values in interval 〈0; 255〉.
This structure is called occupancy grid, and it is also a part of a ROS message
of the same name [61]. The number within each cell determines the probability
of an obstacle in that cell. For this only values in interval 〈0; 100〉 are used.
Other numbers are not used – except 255 which stands for unknown.

Nevertheless, the interpretation of the map as an image is different. It is
using a grayscale palette. Usually, black color is used to represent obstacles,
and the white color is used to represent free spaces. A configuration yaml
[20] file is associated with this image. It holds information like thresholds for
contrast intensity of free and occupied spaces, resolution of the map and the
location of the origin.

Since the map can be drawn, it only takes a simple paint application for
modelling the environment. Comparison of a drawn map and its simulated
counterpart is in the Figure 6.2.

The downside of this map representation lies in the raster graphics. Using
an occupancy grid reduces the accuracy of a modelled environment to the
resolution of the original image.

(a) : Original map (b) : Simulated map (with a
zoomed part)

Figure 6.2: Comparison of maps

35

6. Simulation......................................
6.5 Implementation adjustments

When modelling of all required parts is finished, we can proceed to run the
algorithm with the simulator. This section covers all adjustments that had
to be made to simulate the environment for the algorithm. It is organized
from the perspective of functional architecture.

6.5.1 Perception

As for the first part of the architecture, no changes were required. In fact,
most of the packages from Perception are not used with the simulation.

Stage publishes simulated sensor data (LiDAR sweeps, camera images);
therefore, connecting to these devices is not necessary. Also, these data
are not preprocessed in any way which leaves only with the packages from
Recognition. Packages from this part are used only for processing data
for planners and for reading the AprilTags – no localization or intervehicle
communication is done because this information is already generated by the
simulator.

As mentioned in Subsection 4.3.2, planners should be subscribed to the
topic with detected obstacles. Unfortunately, at this moment, there is not a
planner that supports planning with obstacles. To at least follow the rules
given by the architecture, “obstacle substitution” is done. It simply converts
each LiDAR measurement into a small circle obstacle.

6.5.2 Decision and Control

Packages within Decision and Control are also not required to be internally
modified in any way. On the other hand, a slight external touch is necessary.
Basically, the planners are not prepared to be chained with some other
package. Therefore topic remapping is a mandatory adjustment.

Planners are usually subscribed to /obstacles topic with message type
obstacle_msgs/Obstacles, and they are sending commands to Drive-API
via /drive_api/command topic (drive_api/drive_api_values). Since we
need to redirect published messages to the intersection solver, remapping of
the topic has to be done. This can be specified when starting the node:

rosrun [PACKAGE_NAME] [NODE_NAME] \
/original_topic_name:=/new_topic_name

To avoid remembering names of all nodes throughout the workspace, each
package has its own start.launch launch file. This file is specifically written
to support topic remapping in the same way, as running a node. Therefore,
this is an identical way of launching the node:

roslaunch [PACKAGE_NAME] start.launch \
remap:=true \
/original_topic_name:=/new_topic_name

36

....................................... 6.6. Testing

Additional argument remap is used to ensure that remapping will be done
only when explicitly required.

During the simulations, only one reactive planner was used. It is placed
within scan_regression package. This planner is using first order polynomial
curve fitting (polyfit) – it intersects a straight line through all detected
obstacles (measured points). The slope of this line is used as a target steering
angle for the Drive-API.

6.5.3 Vehicle platform

The physical platform is using Teensy board (Subsection 4.2.3) to control
the vehicle. However, this is not possible to use with the simulator. Also,
as stated in Subsection 4.3.2, the second part of the Vehicle platform is
Drive-API, which is platform dependent. Since simulated cars do not have
any control-related parameters and the Teensy is not available for simulation,
there are two possible ways of resolving this: either create a new package
for compatibility between platform interface and the simulator or modify
Drive-API to support simulated environments. The latter approach was
selected as it requires only minor modification to the existing ROS node.

Stage is using for controlling the robots standardized message (as it is used
on many robots – e.g., [46] or [78]) on the topic /cmd_vel with message type
geometry_msgs/Twist [57]. Publishing of these messages was added to the
Drive-API.

6.6 Testing

This section concludes the simulation chapter. It starts with a list of com-
mands that are necessary for running the simulation. Then particular testing
scenarios are described.

6.6.1 Running the simulation

To run all the packages that are used within the simulation of a car, the
following commands have to be used:

roslaunch obstacle_substitution start.launch \
remap:=true \
/scan:=/robot_0/base_scan \
/obstacles:=/robot_0/obstacles \
anonymous:=true

roslaunch scan_regression start.launch \
remap:=true \
/obstacles:=/robot_0/obstacles \
/drive_api/command:=/robot_0/command \
anonymous:=true

37

6. Simulation......................................
roslaunch intersection_solver start.launch \

remap:=true \
/odom1:=/robot_0/odom /odom2:=/robot_1/odom \
/eStop:=/robot_0/eStop /command:=/robot_0/command \
/drive_api/command:=/robot_0/drive_api/command

roslaunch drive_api start.launch \
remap:=true \
/drive_api/command:=/robot_0/drive_api/command \
/cmd_vel:=/robot_0/cmd_vel /eStop:=/robot_0/eStop \
anonymous:=true

These commands are similar for the other car; only robot_0 is replaced
by robot_1 and vice versa. Besides this, certain nodes require additional
argument anonymous. These nodes are usually running in a one instance mode
which ensures that specific functions are not handled by multiple instances of
the same node. This behaviour is favourable when using the real platform to
avoid unexpected reactions. However, it is not desirable during the simulation.
Therefore by setting the argument anonymous, multiple instances become
allowed.

To start the simulation itself, the following command needs to be run:

rosrun stage_ros stageros [WORLD_FILE]

Running this command opens Stage GUI, which shows the environment
along with simulated cars. However, to make the things a little bit easier,
special launch file for running the nodes with proper remapping was created.
It also opens rViz application [22], which visualizes all simulated data. Thus
rviz package is required. Also for making the rViz able to display a map of
the environment, map_server [20] package is necessary as well.

However, during the testing phase, it was discovered that running the
simulator along with all required nodes by one launch file sometimes leads to
the failing of simulator start. Therefore it is split into two files which can be
launched via the following commands:

roslaunch launchers stage_sample_intersection.launch \
map:=true rviz:=true \
map_name:=[NAME_OF_MAP_FILE]

roslaunch launchers stage.launch \
world:=[NAME_OF_WORLD_FILE]

Since the folder for keeping the world/map files is explicitly defined in the
launch files, only names of these files are required.

6.6.2 Testing scenarios

For testing the algorithm in the simulator map shown in the Figure 6.2
was used. This map was designed to make the cars drive without human

38

....................................... 6.6. Testing

interaction (e.g., to reset their position) and to be able to test multiple
intersection layouts at once. Images included in each scenario are focused on
the area of interest.

Scenario 1

In the first scenario, cars are driving towards the intersection that is not
modified by any traffic signs. Therefore right-side rule should be applied
here. Their starting position is in the same distance from the center of the
intersection, and their speeds are equal as well. Simulation of this scenario
is shown in Figure 6.3. A recording of the simulation is available on server
Youtube [25].

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Simulation for Scenario 1 – apply the right-side rule. Image (a)
shows the situation before the intersection; in (b) green car yields to the blue
car; in (c) blue car is inside the intersection collision area; in (d) blue car leaves
the intersection; in (e) green car is inside the intersection collision area; and in
(f) green car leaves the intersection.

Scenario 2

In the second scenario, the intersection does not contain any traffic signs as
well. The distance of the green car to the intersection center is twice the
distance of the blue car. On the other hand, green car is twice as fast as blue
car. Simulation of this scenario is shown in Figure 6.4. A recording of the
simulation is available on server Youtube [26].

39

6. Simulation......................................

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Simulation for Scenario 2 – apply the right-side rule on a slower car.
In (a) the situation before the intersection is shown; in (b) green car yields to
blue car; in (c) blue car is inside the intersection collision area; in (d) blue car
leaves the intersection; in (e) green car is inside the intersection collision area;
and in (f) green car leaves the intersection.

(a) (b) (c)

(d) (e) (f)

Figure 6.5: Simulation for Scenario 3 – faster car does not have to apply the
right-side rule. In (a) the situation before the intersection is shown; in (b)
green car enters the collision area; in (c) green car is inside the intersection
collision area; in (d) green car leaves the intersection; in (e) blue car is inside
the intersection collision area; and in (f) blue car leaves the intersection.

40

....................................... 6.6. Testing

Scenario 3

The third scenario is very similar to Scenario 2; as an only difference, green
car is a little bit closer to the intersection center. Therefore, it can drive
through without stopping and without endangering blue car. Simulation of
this scenario is shown in Figure 6.5. A recording of the simulation is available
on server Youtube [27].

Scenario 4

The fourth scenario introduces AprilTags (see Subsection 5.3). Because of
the modification of the intersection, blue car has to yield this time. Distances
from the intersection and speeds of the cars are equal. Simulation of this
scenario is shown in Figure 6.6. A recording of the simulation is available on
server Youtube [28].

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Simulation for Scenario 4 – intersection modified by AprilTags.
AprilTags are colored to make them easily recognizable – red AprilTag imitates
YIELD sign, yellow AprilTag imitates PRIORITY sign. In (a) the situation
before the intersection is shown; in (b) traffic signs are detected by both cars;
in (c) blue car yields to green car; in (d) green car is inside the intersection; in
(e) blue car enters the intersection collision area; and in (f) blue car leaves the
intersection.

Scenario 5

The fifth scenario shows the ability to solve a skewed intersection. Both
cars are driving at the same speed, and their distance from the intersection
center is approximately identical. The right-side rule is applied in this

41

6. Simulation......................................

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Simulation for Scenario 5 – skewed intersection. In (a) the situation
before the intersection is shown; in (b) green car yields to blue car; in (c) blue
car leaves the intersection collision area; in (d) green car approaches blue car; in
(e) green car is inside the intersection collision area; and in (f) green car leaves
the intersection.

case. Simulation of this scenario is shown in Figure 6.7. A recording of the
simulation is available on server Youtube [29].

Let us note that this scenario was simulated without the reactive planner.
Unlike previous scenarios, reactive action does not secure driving straight
through the intersection. Instead of planner, static steering and velocity data
were published.

The proximity of both cars in Figure 6.7d does not lead to the collision.
This situation is not prohibited by the algorithm (Section 3.3) because it
expects that both vehicles will continue in their way using the same heading
and speed. Cases which include changing of one (or both) of these variables
within the intersection would be solved by the underlying planner.

42

Chapter 7
Experiments

This chapter describes experiments performed on the F1/10 platform (Section
4.2). At first, a testing environment is introduced in Section 7.1. Then,
in Section 7.2, the required adjustments between the simulation and the
experiments are written down. The last section describes field testing.

7.1 Scenario description

Testing track was built in an office that is located on the ground floor of
the building A of Czech Institute of Informatics, Robotics, and Cybernet-
ics (CIIRC). Photo of the environment is in Figure 7.1a. Map created by
hector_mapping (see Subsection 5.2.1) is shown in Figure 7.1b.

Unfortunately because of the limited environment, larger testing track
could not be built. However this scenario is sufficient for testing.

(a) : Photo of the real track (b) : Map of the track

Figure 7.1: Track used for experiments

7.2 Adjustments

Even though the algorithm was implemented with the real platform taken
into account, during the experiments certain problems were discovered. This
section describes these issues.

43

7. Experiments
7.2.1 Vehicle configuration

Preparing the experiments, one of the testing cars was not responding properly
to the used scan_regression planner (see Subsection 6.5.2). Therefore older
Follow the Gap planner had to be used instead. Follow the Gap is a method
of reactive planning which detects obstacles ahead of the vehicle, finds the
largest gap between obstacles available, and computes action towards its
center. Referring to this as an “older” planner means that it is not compatible
with Drive-API, therefore, this car could be only stopped.

7.2.2 Hardware limitation

During performing the experiments hardware related problem was found.
Used TX2 board (Section 4.2) is not powerful enough to run all required
nodes reliably – i.e. localization, intersection control, AprilTags detection,
intervehicle communication and platform control (via Teensy board). Turning
all of these nodes led to slowing down the commands from the planner to
the Teensy board, which means that the car started to crash into the walls.
This was partially solved by adjusting the priorities of the processes (lowering
priority of AprilTags reader) and by lowering the camera frame rate. Even
though the commands were sent in time, AprilTags were most of the time
missed. Because of that, AprilTags reading was disabled for the experiments.

This issue is closely related to the problem of real-time computing. Having
a real-time operating system (and support of real-time within the ROS
framework), one could ensure that certain processes are done in time and,
therefore, theoretically make it possible to do the experiments. However ROS
does not support that. Support of real-time programming is planned for ROS
2 [55].

7.3 Testing

Due to real-time computing related problem described in Subsection 7.2.2
only the first simulated scenario (Subsection 6.6.2) was tested on the real
platform.

In this scenario, intersection is not modified by any traffic signs. Therefore,
the right-side rule should be applied. Both cars are in an approximately
equal distance from the intersection center and their speeds are also similar.
Pictures from the experiment are in Figure 7.2. A recording of the experiment
is available on server Youtube [24].

44

....................................... 7.3. Testing

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Experiment for Scenario 1. In (a), both cars are approaching the
intersection. The car that starts on the left side of the picture is referred to as
“First”, the other one is referred to as “Second”. In (b), Second car applies the
right-side rule. In (c), First car is inside the collision area. In (d), First car
leaves the intersection. In (e), Second car is inside the collision area. In (f),
Second car leaves the intersection.

45

46

Chapter 8
Future work

Throughout the thesis, certain directions for future work were suggested. In
this chapter, these ideas are put together.

Object detection

One of the possible improvements was suggested in Subsection 5.2.3. Some-
times it may happen that the intervehicle communication is not available
(e.g., not supported on target vehicle, car in failure state). To avoid relying
on the V2V, one could detect other vehicles using LiDAR, camera, or both.

Data from these sensors will be processed by an object detection algorithm
to find other vehicles in their field of view, and also, to assign them an
estimation of their velocity. Therefore, the requirement for the intervehicle
communication (Section 3.1, rule 4) will not be necessary, since the required
data can be obtained through object detection.

Behaviour reliability

The topic of reliability is quite tightly connected to the previous paragraph.
Having multiple sources of the same data can be used for detecting faults in
the sensors, which can contribute to implementing sensor redundancy.

Trajectory planning

Another possible improvement comes up from the algorithm description
(Subsection 3.3.5). This algorithm does not implement its trajectory planning.
Adding a custom planner could lead to more complex solutions of intersection
control since instead of just heading, the whole path will be returned.

However, to make this work, an interface between the planners have to be
created. This interface could allow the nodes to exchange information (e.g.,
goals, constraints).

Behaviour tree

As a part of the group of traffic rules, intersection control could be implemented
as a part of a behaviour tree [6], which allows having all the rules at one

47

8. Future work
place, along with resolving other scenarios (e.g., parking).

Hardware improvements

Another possible direction for future work comes up from the experiments
(Subsection 7.2.2). During the experiments, it was found out that the hardware
of the platform is not powerful enough to run all necessary nodes.

Therefore, a new platform design could be created in a way to boost
performance. There are at least two ways how to do it: either buy a more
powerful CPU or move some nodes (e.g., AprilTags detection) to a dedicated
board to free up the computation time on the main computer.

48

Chapter 9
Conclusion

In this thesis, the algorithm for intersection control was designed, implemented,
simulated, and tested on F1/10 platform.

The design is based on passive intersection control that allows solving the
intersections without the need to develop a dedicated device. This solution is
suited for low traffic intersection control.

F1/10 platform, RC-based autonomous car model, was introduced and
described.

Upon reviewing the available simulators, Stage simulator was selected for
algorithm verification. Model of the platform was created in this simulator,
for use in multiple scenarios that were designed for evaluation. One of these
scenarios was also tested on the F1/10 car.

Ideas for the improvements, based on encountered issues, were suggested
in the last chapter.

49

50

Appendix A
Bibliography

[1] S. Behere and M. Törngren. A functional architecture for autonomous
driving. In Proceedings of the First International Workshop on Automo-
tive Software Architecture, WASA ’15, pages 3–10, New York, NY, USA,
2015. ACM.

[2] M. T. Boulet. vesc/vesc_ackermann – mit-racecar/vesc – GitHub. https:
//github.com/mit-racecar/vesc/tree/master/vesc_ackermann.

[3] M. T. Boulet. vesc/vesc_driver – mit-racecar/vesc – GitHub. https:
//github.com/mit-racecar/vesc/tree/master/vesc_driver.

[4] M. T. Boulet. vesc/VescStateStamped.msg – mit-racecar/vesc
– GitHub. https://github.com/mit-racecar/vesc/blob/master/
vesc_msgs/msg/VescStateStamped.msg.

[5] M. Brossard and S. Bonnabel. Learning Wheel Odometry and IMU
Errors for Localization. In International Conference on Robotics and
Automation (ICRA), Montreal, Canada, May 2019.

[6] M. Colledanchise and P. Ogren. Behavior Trees in Robotics and AI: An
Introduction, July 2018.

[7] K. Conley. roslaunch/XML – ROS Wiki. http://wiki.ros.org/
roslaunch/XML.

[8] K. Conley. rospy – ROS Wiki. http://wiki.ros.org/rospy.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No.99CH36288C), volume 2, pages
1322–1328 vol.2, May 1999.

[10] A. Discant, A. Rogozan, C. Rusu, and A. Bensrhair. Sensors for obstacle
detection - a survey. In 2007 30th International Spring Seminar on
Electronics Technology (ISSE), pages 100–105, May 2007.

[11] K. Dresner and P. Stone. Multiagent traffic management: a reservation-
based intersection control mechanism. In Proceedings of the Third

51

https://github.com/mit-racecar/vesc/tree/master/vesc_ackermann
https://github.com/mit-racecar/vesc/tree/master/vesc_ackermann
https://github.com/mit-racecar/vesc/tree/master/vesc_driver
https://github.com/mit-racecar/vesc/tree/master/vesc_driver
https://github.com/mit-racecar/vesc/blob/master/vesc_msgs/msg/VescStateStamped.msg
https://github.com/mit-racecar/vesc/blob/master/vesc_msgs/msg/VescStateStamped.msg
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/rospy

A. Bibliography.....................................
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2004. AAMAS 2004., pages 530–537, July 2004.

[12] K. Dresner and P. Stone. Multiagent traffic management: An improved
intersection control mechanism. In Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’05, pages 471–477, New York, NY, USA, 2005. ACM.

[13] K. Dresner and P. Stone. Turning the corner: improved intersection con-
trol for autonomous vehicles. In IEEE Proceedings. Intelligent Vehicles
Symposium, 2005., pages 423–428, June 2005.

[14] K. Dresner and P. Stone. A multiagent approach to autonomous in-
tersection management. J. Artif. Intell. Res. (JAIR), 31:591–656, 01
2008.

[15] G. Dudek, P. Giguère, and J. Sattar. Sensor-Based Behavior Control
for an Autonomous Underwater Vehicle, pages 267–276. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[16] J. Dusil. Slip detection for F1/10 model car. Bachelor thesis, Czech
Technical University in Prague, May 2019.

[17] F1tenth organizers. F1/10 Competition Rules. http://f1tenth.org/
race/rules-v2.pdf.

[18] F1tenth organizers. F1/10 Lectures. http://f1tenth.org/lectures.

[19] J. Fulton. X colorname to RGB mapping database. https://cgit.
freedesktop.org/xorg/app/rgb/tree/rgb.txt.

[20] B. Gerkey, T. Pratkanis, et al. map_server – ROS Wiki. http://wiki.
ros.org/map_server.

[21] B. Gerky. ros-simulation/stage_ros: Package which contains ROS
specific hooks and tools for the Stage simulator. https://github.com/
ros-simulation/stage_ros.

[22] D. Hershberger, D. Gossow, and J. Faust. rviz – ROS Wiki. http:
//wiki.ros.org/rviz.

[23] J. Khoury and J. Khoury. Passive, decentralized, and fully autonomous
intersection access control. In 17th International IEEE Conference on
Intelligent Transportation Systems (ITSC), pages 3028–3033, Oct 2014.

[24] J. Klapálek. Intersection control experiment – Scenario 1. https:
//www.youtube.com/watch?v=3BN59KcW-mA.

[25] J. Klapálek. Intersection control simulation – Scenario 1. https://www.
youtube.com/watch?v=bp_URoOO_Ac.

52

http://f1tenth.org/race/rules-v2.pdf
http://f1tenth.org/race/rules-v2.pdf
http://f1tenth.org/lectures
https://cgit.freedesktop.org/xorg/app/rgb/tree/rgb.txt
https://cgit.freedesktop.org/xorg/app/rgb/tree/rgb.txt
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server
https://github.com/ros-simulation/stage_ros
https://github.com/ros-simulation/stage_ros
http://wiki.ros.org/rviz
http://wiki.ros.org/rviz
https://www.youtube.com/watch?v=3BN59KcW-mA
https://www.youtube.com/watch?v=3BN59KcW-mA
https://www.youtube.com/watch?v=bp_URoOO_Ac
https://www.youtube.com/watch?v=bp_URoOO_Ac

..................................... A. Bibliography

[26] J. Klapálek. Intersection control simulation – Scenario 2. https://www.
youtube.com/watch?v=uEyJQk4jui4.

[27] J. Klapálek. Intersection control simulation – Scenario 3. https://www.
youtube.com/watch?v=P2OTDXbW3jM.

[28] J. Klapálek. Intersection control simulation – Scenario 4. https://www.
youtube.com/watch?v=_pU0--7Pm7Q.

[29] J. Klapálek. Intersection control simulation – Scenario 5. https://www.
youtube.com/watch?v=FyH31lA6MJs.

[30] S. Kohlbrecher. hector_mapping – ROS Wiki. http://wiki.ros.org/
hector_mapping.

[31] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf. A flexible
and scalable slam system with full 3d motion estimation. In 2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics, pages
155–160, Nov 2011.

[32] D. Kopecký. Localization and advance control for autonomous model
cars. Master thesis, Czech Technical University in Prague, June 2019.

[33] P. Lin, J. Liu, P. J. Jin, and B. Ran. Autonomous vehicle-intersection co-
ordination method in a connected vehicle environment. IEEE Intelligent
Transportation Systems Magazine, 9(4):37–47, winter 2017.

[34] D. Malyuta. AprilRobotics/apriltag_ros: A ROS wrapper of the April-
Tags 2 visual fiducial detector. https://github.com/AprilRobotics/
apriltag_ros.

[35] D. Malyuta. Guidance, Navigation, Control and Mission Logic for
Quadrotor Full-cycle Autonomy. Master thesis, Jet Propulsion Labo-
ratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA, December
2017.

[36] D. Malyuta and W. Merkt. apriltags2_ros/AprilTagDetectionArray Doc-
umentation. http://docs.ros.org/kinetic/api/apriltags2_ros/
html/msg/AprilTagDetectionArray.html.

[37] P. Merriaux, Y. Dupuis, P. Vasseur, and X. Savatier. Wheel odometry-
based car localization and tracking on vectorial map. 2014 17th IEEE
International Conference on Intelligent Transportation Systems, ITSC
2014, pages 1890–1891, 10 2014.

[38] MIT RACECAR team. mit-racecar/particle_filter: A fast particle fil-
ter localization algorithm for the MIT Racecar. https://github.com/
mit-racecar/particle_filter.

[39] MIT RACECAR team. RACECAR – A Powerful Platform for Robotics
Research and Teaching. https://mit-racecar.github.io/.

53

https://www.youtube.com/watch?v=uEyJQk4jui4
https://www.youtube.com/watch?v=uEyJQk4jui4
https://www.youtube.com/watch?v=P2OTDXbW3jM
https://www.youtube.com/watch?v=P2OTDXbW3jM
https://www.youtube.com/watch?v=_pU0--7Pm7Q
https://www.youtube.com/watch?v=_pU0--7Pm7Q
https://www.youtube.com/watch?v=FyH31lA6MJs
https://www.youtube.com/watch?v=FyH31lA6MJs
http://wiki.ros.org/hector_mapping
http://wiki.ros.org/hector_mapping
https://github.com/AprilRobotics/apriltag_ros
https://github.com/AprilRobotics/apriltag_ros
http://docs.ros.org/kinetic/api/apriltags2_ros/html/msg/AprilTagDetectionArray.html
http://docs.ros.org/kinetic/api/apriltags2_ros/html/msg/AprilTagDetectionArray.html
https://github.com/mit-racecar/particle_filter
https://github.com/mit-racecar/particle_filter
https://mit-racecar.github.io/

A. Bibliography.....................................
[40] K. Nickels and J. Owen. Ch3 – Building a World – How to use

Player/Stage. https://player-stage-manual.readthedocs.io/en/
latest/WORLDFILES/.

[41] E. Olson. Apriltag: A robust and flexible visual fiducial system. In
2011 IEEE International Conference on Robotics and Automation, pages
3400–3407, May 2011.

[42] E. Onieva, V. Milanés, J. Villagrá, J. Pérez, and J. Godoy. Genetic
optimization of a vehicle fuzzy decision system for intersections. Expert
Systems with Applications, 39(18):13148 – 13157, 2012.

[43] Open Source Robotics Foundation. Gazebo. http://gazebosim.org/.

[44] Open Source Robotics Foundation. Gazebo: Tutorial: Beginner:
Overview. http://gazebosim.org/tutorials?cat=guided_b&tut=
guided_b1.

[45] Open Source Robotics Foundation. ROS.org | About ROS. http://www.
ros.org/about-ros/.

[46] J. Pages. Robots/TIAGo/Tutorials/motions/cmd_vel – ROS Wiki. http:
//wiki.ros.org/Robots/TIAGo/Tutorials/motions/cmd_vel.

[47] Player Project contributors. Player Project – Player cross-platform
robot device interface & server. http://playerstage.sourceforge.
net/index.php?src=player.

[48] Player Project contributors. Player Project – Stage 2D multiple-robot
simulator. http://playerstage.sourceforge.net/index.php?src=
stage.

[49] C. Potena, D. Nardi, and A. Pretto. Effective target aware visual
navigation for uavs. In 2017 European Conference on Mobile Robots
(ECMR), pages 1–7, Sep. 2017.

[50] M. Przybyła. obstacle_detector/Obstacles.msg – tysik/obstacle_detector
– GitHub. https://github.com/tysik/obstacle_detector/blob/
master/msg/Obstacles.msg.

[51] M. Przybyła. tysik/obstacle_detector: A ROS package for 2D obsta-
cle detection based on laser range data. https://github.com/tysik/
obstacle_detector.

[52] M. Przybyła. Detection and tracking of 2d geometric obstacles from
lrf data. In 2017 11th International Workshop on Robot Motion and
Control (RoMoCo), pages 135–141, July 2017.

[53] M. Quigley, J. Faust, B. Gerkey, and T. Straszheim. roscpp – ROS Wiki.
http://wiki.ros.org/roscpp.

54

https://player-stage-manual.readthedocs.io/en/latest/WORLDFILES/
https://player-stage-manual.readthedocs.io/en/latest/WORLDFILES/
http://gazebosim.org/
http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
http://www.ros.org/about-ros/
http://www.ros.org/about-ros/
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/cmd_vel
http://wiki.ros.org/Robots/TIAGo/Tutorials/motions/cmd_vel
http://playerstage.sourceforge.net/index.php?src=player
http://playerstage.sourceforge.net/index.php?src=player
http://playerstage.sourceforge.net/index.php?src=stage
http://playerstage.sourceforge.net/index.php?src=stage
https://github.com/tysik/obstacle_detector/blob/master/msg/Obstacles.msg
https://github.com/tysik/obstacle_detector/blob/master/msg/Obstacles.msg
https://github.com/tysik/obstacle_detector
https://github.com/tysik/obstacle_detector
http://wiki.ros.org/roscpp

..................................... A. Bibliography

[54] J. Rios-Torres and A. A. Malikopoulos. A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps. IEEE Transactions on Intelligent Transportation
Systems, 18(5):1066–1077, May 2017.

[55] ROS 2 Community. Real-Time Programming in ROS 2. https://index.
ros.org//doc/ros2/Tutorials/Real-Time-Programming/.

[56] ROS Community. geometry_msgs/Point Documentation. http://docs.
ros.org/kinetic/api/geometry_msgs/html/msg/Point.html.

[57] ROS Community. geometry_msgs/Twist Documentation. http://docs.
ros.org/kinetic/api/geometry_msgs/html/msg/Twist.html.

[58] ROS Community. geometry_msgs/Vector3 Documentation.
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/
Vector3.html.

[59] ROS Community. Master – ROS Wiki. http://wiki.ros.org/Master.

[60] ROS Community. Messages – ROS Wiki. http://wiki.ros.org/
Messages.

[61] ROS Community. nav_msgs/OccupancyGrid Documenta-
tion. http://docs.ros.org/kinetic/api/nav_msgs/html/msg/
OccupancyGrid.html.

[62] ROS Community. nav_msgs/Odometry Documentation. http://docs.
ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html.

[63] ROS Community. ROS/Introduction – ROS Wiki. http://wiki.ros.
org/ROS/Introduction.

[64] ROS Community. Topics – ROS Wiki. http://wiki.ros.org/Topics.

[65] Š. Toth. Difficulties of traffic sign recognition. MICT 2012, 7-th Winter
School of Mathematics Applied to ICT, pages 6–11, February 2012.

[66] M. Tsardoulias, C. Zalidis, and A. Thallas. STDR Simulator. http:
//stdr-simulator-ros-pkg.github.io/.

[67] M. Tsardoulias, C. Zalidis, and A. Thallas. STDR Simula-
tor – ROS robotics news. http://www.ros.org/news/2014/02/
stdr-simulator-simple-two-dimensional-robot-simulator.html.

[68] M. Tsardoulias, C. Zalidis, and A. Thallas. stdr_simulator – ROS Wiki.
http://wiki.ros.org/stdr_simulator.

[69] M. Vajnar. Model car for the F1/10 autonomous car racing competition.
Master thesis, Czech Technical University in Prague, June 2017.

55

https://index.ros.org//doc/ros2/Tutorials/Real-Time-Programming/
https://index.ros.org//doc/ros2/Tutorials/Real-Time-Programming/
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Vector3.html
http://docs.ros.org/kinetic/api/geometry_msgs/html/msg/Vector3.html
http://wiki.ros.org/Master
http://wiki.ros.org/Messages
http://wiki.ros.org/Messages
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/OccupancyGrid.html
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/OccupancyGrid.html
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html
http://docs.ros.org/kinetic/api/nav_msgs/html/msg/Odometry.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Topics
http://stdr-simulator-ros-pkg.github.io/
http://stdr-simulator-ros-pkg.github.io/
http://www.ros.org/news/2014/02/stdr-simulator-simple-two-dimensional-robot-simulator.html
http://www.ros.org/news/2014/02/stdr-simulator-simple-two-dimensional-robot-simulator.html
http://wiki.ros.org/stdr_simulator

A. Bibliography.....................................
[70] M. Van Middlesworth, K. Dresner, and P. Stone. Replacing the stop

sign: unmanaged intersection control for autonomous vehicles. In Lin
Padgham, David C. Parkes, Jörg P. Müller, and Simon Parsons, edi-
tors, 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008,
Volume 3, pages 1413–1416. IFAAMAS, 2008.

[71] R. Vaughan et al. Stage Manual: Camera model. http://rtv.github.
io/Stage/group__model__camera.html.

[72] R. Vaughan et al. Stage Manual: Model. http://rtv.github.io/
Stage/group__model.html.

[73] R. Vaughan et al. Stage Manual: Position model. http://rtv.github.
io/Stage/group__model__position.html.

[74] R. Vaughan et al. Stage Manual: Ranger model. http://rtv.github.
io/Stage/group__model__ranger.html.

[75] R. Vaughan et al. Stage/model_ranger.cc – rtv/Stage. https://github.
com/rtv/Stage/blob/master/libstage/model_ranger.cc.

[76] C. H. Walsh and S. Karaman. Cddt: Fast approximate 2d ray casting
for accelerated localization. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–8, May 2018.

[77] J. Wang, C. Sadler, C. F. Montoya, and J. C. L. Liu. Optimizing ground
vehicle tracking using unmanned aerial vehicle and embedded apriltag
design. In 2016 International Conference on Computational Science and
Computational Intelligence (CSCI), pages 739–744, Dec 2016.

[78] M. Wise and D. Lim. turtlebot3_teleop – ROS Wiki. http://wiki.ros.
org/turtlebot3_teleop.

[79] K. Yamaguchi, T. Kato, and Y. Ninomiya. Vehicle ego-motion estima-
tion and moving object detection using a monocular camera. In 18th
International Conference on Pattern Recognition (ICPR’06), volume 4,
pages 610–613, Aug 2006.

[80] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353, 1965.

56

http://rtv.github.io/Stage/group__model__camera.html
http://rtv.github.io/Stage/group__model__camera.html
http://rtv.github.io/Stage/group__model.html
http://rtv.github.io/Stage/group__model.html
http://rtv.github.io/Stage/group__model__position.html
http://rtv.github.io/Stage/group__model__position.html
http://rtv.github.io/Stage/group__model__ranger.html
http://rtv.github.io/Stage/group__model__ranger.html
https://github.com/rtv/Stage/blob/master/libstage/model_ranger.cc
https://github.com/rtv/Stage/blob/master/libstage/model_ranger.cc
http://wiki.ros.org/turtlebot3_teleop
http://wiki.ros.org/turtlebot3_teleop

	Introduction
	Literature review
	Centralized intersection control
	Decentralized intersection control
	Active decentralized control
	Passive decentralized control

	Control design
	Scenario definition
	Marking convention
	Algorithm description
	Input
	Detection of situation
	Collision detection in space
	Collision detection in time
	Trajectory planning

	Localization
	Particle filter
	Intervehicle communication
	Object detection
	Wheel odometry

	Platform
	F1/10 competition
	Past assignments

	Hardware
	Camera
	LiDAR
	Teensy board

	Software
	Robot Operating System
	Functional architecture

	Implementation
	Intersection solver
	Inputs
	Outputs

	Localization methods
	Particle filter
	Intervehicle communication
	Object detection
	Wheel odometry

	Traffic signs

	Simulation
	Simulator overview
	Gazebo
	STDR Simulator
	Stage
	Simulator selection

	Configuration reference
	Model
	Position model
	Block model
	Ranger model
	Sensor model
	Camera model

	Vehicle model
	Environment model
	Implementation adjustments
	Perception
	Decision and Control
	Vehicle platform

	Testing
	Running the simulation
	Testing scenarios

	Experiments
	Scenario description
	Adjustments
	Vehicle configuration
	Hardware limitation

	Testing

	Future work
	Conclusion
	Bibliography

