
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Collision detection and avoidance during
trajectory tracking for F1/10 autonomous
car model

Tomáš Nagy

Supervisor: Ing. Jaroslav Klapálek
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483574Personal ID number:Nagy TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Collision detection and avoidance during trajectory tracking for F1/10 autonomous car model

Bachelor’s thesis title in Czech:

Detekce a předcházení kolizím při sledování trajektorie pro model autonomního auta F1/10

Guidelines:
1. Get familiar with Robot Operating System (ROS) and project F1/10.
2. Perform an analysis of car trajectory tracking algorithms.
3. Implement at least three different trajectory tracking approaches and compare their performance on the F1/10 platform.
Focus your comparison on an evaluation of tracking error.
4. Extend the functionality of the F1/10 model by detection of obstacles on a tracked trajectory.
5. Implement a program for collision avoidance. This program should support there two modes:
6. Switching to reactive control (e.g., Follow The Gap). When the program detects that it is safe to continue with the
trajectory tracking, reactive control is turned off.
a. Local replanning of the trajectory (i.e., temporary substitution of a part of the trajectory that leads to the collision).
b. Extend the algorithm comparison (from point 3) with situations when the implemented program is active. Focus on
tracking error evaluation when the mode switching occurs.
7. Evaluate your results and document everything thoroughly.

Bibliography / sources:
[1] M. Quigley et al., ‘ROS: an open-source Robot Operating System’, presented at the ICRA Workshop on Open Source
Software, 2009, vol. 3.
[2]S. Dominguez, A. Ali, G. Garcia and P. Martinet, "Comparison of lateral controllers for autonomous vehicle: Experimental
results," 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 2016,
pp. 1418-1423, doi: 10.1109/ITSC.2016.7795743.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jaroslav Klapálek, Department of Control Engineering, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Ing. Michal Sojka, Ph.D., Embedded Systems, CIIRC

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 26.01.2021

Assignment valid until:
by the end of summer semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Jaroslav Klapálek

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my gratitude to
my supervisor Ing. Jaroslav Klapálek, for
his valuable advice during the writing of
this thesis. I would like to also thank my
family, friends, and colleagues for their
support during my studies.

Declaration
I hereby declare that I worked on this the-
sis individually and listed all of the used
information sources according to Method-
ical Guideline on Ethical Principles for
College Final Work Preparation.

In Prague, 21st May, 2021.

v

Abstract
This bachelor thesis is devoted to the prob-
lem of trajectory tracking, obstacle de-
tection, and obstacle avoidance. In the
first section of this thesis, an analysis of
obstacle avoidance algorithms was per-
formed. In the next part, three trajectory
tracking algorithms, an obstacle detection
algorithm, and two obstacle avoidance al-
gorithms were theoretically discussed and
implemented. In the last section, all tra-
jectory tracking algorithms, as well as
all of the possible combinations of tra-
jectory tracking and obstacle avoidance
algorithm, were tested and compared.

Keywords: F1/10 car model, ROS,
obstacle detection, obstacle avoidance

Supervisor: Ing. Jaroslav Klapálek

Abstrakt
Táto bakalárska práca sa zaoberá problé-
mom sledovania trajektórie, detekcie pre-
kážok na trajektórií a predchádzaniu kolí-
ziam pre model autonomného auta F1/10.
V prvej časti tejto práce bola vypracovaná
analýza algoritmov sledovania trajektórie.
V ďalšej časti boli teoreticky popísané a
implementované algoritmy Pure Pursuit,
Stanley and Lateral speed controller na
sledovanie trajektórie, algoritmus detek-
cie prekážok na trajektórií a dva rôzne
algoritmy na vyhýbanie sa prekážkam. V
poslednej časti boli otestované a porov-
nané všetky sledovacie algoritmy ako aj
všetky možné kombinácie sledovacieho a
vyhýbacieho algoritmu.

Kľúčové slová: F1/10 model auta,
ROS, detekcia prekážok, vyhýbanie sa
prekážkam

Preklad názvu: Detekcia a
predchádzanie kolíziam pri sledovaní
trajektórie pre model autonomného auta
F1/10

vi

Contents
1 Introduction 1
2 Literature review 3
2.1 Algorithms for trajectory tracking 3
2.2 Algorithms for obstacle avoidance 4
2.2.1 Switching to reactive algorithm 4
2.2.2 Trajectory planning algorithms 5

3 Theoretical background 7
3.1 Definitions . 7
3.2 Kinematic vehicle model 8
3.3 Trajectory following 9
3.3.1 Pure Pursuit 9
3.3.2 Stanley method 11
3.3.3 Lateral speed controller 12

3.4 Obstacle avoidance 13
3.4.1 Switching to reactive algorithm 13
3.4.2 Planning new path 13
3.4.3 Rapidly exploring random trees
- RRT* . 13

3.5 Bezier curves 15
4 F1/10 platform 19
4.1 Hardware . 19
4.1.1 Lidar . 19
4.1.2 VESC . 20

4.2 Software . 20
4.2.1 ROS . 20

5 Implementation 21
5.1 Longitudinal control 21
5.1.1 Trajectory representation in
trajectory tracking algorithms . . . 22

5.1.2 Pure pursuit 23
5.1.3 Stanley 23

5.2 Obstacle detection 23
5.3 Obstacle avoidance 24
5.3.1 Switcher to FTG 24
5.3.2 RRT* planner 25

6 Experiments 31
6.1 Scenarios description 31
6.1.1 Trajectory tracking scenarios 31
6.1.2 Obstacle avoidance scenarios 32

6.2 Longitudinal control results 34
6.3 Trajectory following 34
6.4 Obstacle avoidance 37

7 Future work 43
8 Conclusion 45
Bibliography 47

vii

Figures
3.1 Kinematic bicycle model 8
3.2 Pure Pursuit 10
3.3 Stanley method 11
3.4 Lateral velocity controller 12
3.5 Comparison of RRT and RRT*
path creation 15

3.6 Comparison of a cubic and a
two-segment quadratic Bezier curve 16

3.7 Creation of the path between two
poses using two quadratic Bezier
curves . 16

4.1 F1/10 platform 20

5.1 Bisection method used on
trajectory . 22

5.2 Example of the occupancy grid . 24
5.3 Simplified switcher ROS node
diagram . 25

5.4 Example of creating a return path
by FTG switcher 25

6.1 Photos of the track used for
trajectory tracking experiments . . . 31

6.2 Scenario A 32
6.3 Scenario B 32
6.4 Photo of the track used for
obstacle avoidance scenarios 33

6.5 Simple obstacle on trajectory . . . 33
6.6 Simple obstacle on trajectory . . . 33
6.7 Speed tracking results 34
6.8 Trajectory tracking results of the
experiment A 35

6.9 Trajectory tracking results of the
experiment B 36

6.10 Velocity tracking results of the
experiment B 37

6.11 Result of obstacle avoidance on
Scenario C using Pure Pursuit and
RRT* planner 38

6.12 Result of obstacle avoidance on
Scenario C using Stanley method and
RRT* planner 38

6.13 Result of obstacle avoidance on
Scenario C using LSC and RRT*
planner . 39

6.14 Result of obstacle avoidance on
Scenario C using Pure Pursuit and
FTG switcher 39

6.15 Result of obstacle avoidance on
Scenario C using Stanley method and
FTG switcher 39

6.16 Result of obstacle avoidance on
Scenario C using LSC and FTG
switcher . 39

6.17 Result of obstacle avoidance on
Scenario D using Pure Pursuit and
RRT* planner 40

6.18 Result of obstacle avoidance on
Scenario D using Stanley method and
RRT* planner 40

6.19 Result of obstacle avoidance on
Scenario D using Pure Pursuit and
FTG switcher 41

6.20 Result of obstacle avoidance on
Scenario D using Stanley method and
FTG switcher 41

6.21 Result of obstacle avoidance on
Scenario D using LSC and FTG
switcher . 41

viii

Tables
3.1 Parameters used in kinematic
bicycle model 8

4.1 F1/10 car component list 19
4.2 Parameters of lidar Hokuyo
UST-10LX . 20

5.1 Parameters of used occupancy
grid . 24

ix

Chapter 1
Introduction

As the popularity of self-driving cars is slowly on the rise over the past
few years, this area of study is becoming more and more critical. Even
competitions with full-scale autonomous cars are starting to emerge like Indy
autonomous challenge [1] and Roborace [2].

There are also competitions that are using a scaled model of the autonomous
car. The advantages of the scaled car are cheaper parts, easier algorithm
testing with the possibility to scale algorithms for a full-size car, and crashes
are less problematic, etc.

Our school has a team that competes in one of the autonomous racing com-
petitions with a scaled model. This competition is called F1/10 Autonomous
Racing Competition [3]. The F1/10 competition is a worldwide competition
mainly between university students. It is based upon four pillars: build, learn,
race, research. It was originally founded at the University of Pennsylvania
in 2016. In the beginning, there was only one race category, in which the
competitors have to build an autonomous F1/10 car that should complete
a simple course without obstacles in the best time possible. Our team was
successful in this competition with the reactive Follow The Gap method. But
the goals and rules of the competitions are constantly changing, and new
types of categories were introduced in the last few years. One of which is a
course with static obstacles, to which this thesis is dedicated to.

We assume that we have an available reference trajectory on the course. In
order for F1/10 platform to complete the course without crashing, we need
to follow reference trajectory with good precision, detect obstacles on the
trajectory and avoid them. Therefore the goal of this thesis was to develop a
trajectory following and obstacle avoidance algorithm to have the chance to
finish in the best place possible in the competition.

1

2

Chapter 2
Literature review

In this section we review state of the art approaches and different methods
for problems of trajectory tracking and obstacle avoidance.

2.1 Algorithms for trajectory tracking

Since trajectory tracking is base for many ground robotic systems, a lot of
research has been already done in the area.

Firstly. we mention the Pure Pursuit algorithm [4]. The first application
of this method came with the Terragator, a six-wheeled skid-steered robot
that was used for outdoor vision experimentation in the early ’80s. As stated
in [5], Pure Pursuit is a geometric algorithm that calculates the arc that will
move a vehicle from its current position to some goal position. The position
of the goal point is in some distance on the trajectory in front of the car. This
distance is usually chosen proportional to the current speed. The name Pure
Pursuit comes from the analogy that we use to describe the method. We
tend to think that the vehicle is chasing a point on the path some distance
ahead of it. That analogy is often used to compare this method to the way
humans drive. The Pure Pursuit works well and is robust to large errors
and discontinuous paths. However, at higher speeds, it starts to cut corners
because of a big look-forward distance [6].

Another algorithm we can use is called Vector Pursuit [7]. This algorithm
is based on the theory of screws [8], which was developed by Sir Robert
Ball in 1876. The Vector Pursuit is very similar to the Pure Pursuit. The
difference being that the Vector Pursuit also uses desired orientation of the
vehicle in the goal position. The advantage of this algorithm with respect to
the Pure Pursuit is that it is more robust with respect to the sensitivity of
the look-ahead distance, and the ability to handle sudden large position and
heading errors, but when the Pure Pursuit is tuned correctly, it can track
trajectory with slightly better precision [7].

Stanley method was developed by Stanford University to compete in the
DARPA Grand Challenge in 2005 [9]. The name Stanley comes from the
name of their Volkswagen Touareg, which they entered the competition with.
The Stanley method is also a nonlinear proportional controller like the Pure
Pursuit but works on a different principle. This method chooses the goal

3

2. Literature review
point as the closest point on the trajectory to the center of the front axle
of the car. Then, it calculates the distance between those points, compares
the orientation of the car to the desired orientation in the goal point, and
determines the control output accordingly. As stated in [6], Even with this
simple approach, Stanley can perform well. In contrast to the Pure Pursuit, a
well-tuned Stanley tracker will not ”cut corners”, but rather overshoot turns
because it does not have a look-ahead distance. The Stanley method is not
very robust to large errors and non-smooth paths.

The Kinematic Lateral Speed Controller, further denoted as LSC, was
developed to control the rear lateral distance and the orientation error by
controlling the lateral speed, which is in turn controlled by the angular speed
of the car through the steering angle [10]. The reason to develop the control
method based on this principle was to maximize the comfort of passengers
while still keeping reasonable precision and good stability. With lateral speed
under control, this controller is able to turn smoother. In [10], LSC was
this tracking method compared to the Pure Pursuit and Stanley method.
Experiments were performed on the real car on the same track. Pure Pursuit
had maximum error of 36 cm with 75% of error measurements under 11 cm,
Stanley method had maximum error of 40 cm with 75% of error measurements
under 9 cm, and finally lateral velocity controller had maximum error of 30 cm
with 75% of error measurements under 7 cm. In their testing, LSC performed
well with reasonable tracking error and without sudden lateral movements,
therefore producing a feeling of safety.

Model Predictive Control (MPC) is a large group of controllers based on
the same principle [11]. MPC algorithms use kinematics and dynamics of
the vehicle. Using these models and a few previous measured vehicle states,
MPC tries to calculate optimal steering angle. One of the algorithms used
by this group is the Linear Quadratic Regulator (LQR). This method was
compared to the Pure Pursuit and Stanley method in the following study [6].
Algorithms in this paper were compared only in the simulation. The result
was that LQR does not perform considerably better than kinematic methods.
It had the smallest steady-state error but had poor robustness to disturbances.
Also, the most significant disadvantage with respect to kinematic methods is
that LQR is hard to tune properly.

2.2 Algorithms for obstacle avoidance

After detecting some obstacles on the trajectory, we have two possible methods
of approaching this problem.

The first method is to switch to some reactive algorithm. The second one
is to calculate a new trajectory.

2.2.1 Switching to reactive algorithm

This approach is one of the more straightforward methods to avoid obstacles.
When there is some obstacle detected on a trajectory, the method switches

4

........................... 2.2. Algorithms for obstacle avoidance

to reactive control and checks if the path back to the original trajectory is
available. There are few reactive algorithms we can use.

The first reactive algorithm we can use is a simple following of the left or
the right wall. This method can be used in a simple environment, but it has
a problem with more complex obstacles.

Next algorithm is called Follow the Gap [12] (FTG). It tries to find a
sudden rise of the distance between neighboring angles in the lidar scan,
which can indicate the start or the end of a gap between obstacles. Then it
tries to find a gap based on parameters like width or depth of it. Based on
this, it calculates the steering angle to navigate the vehicle to that area.

2.2.2 Trajectory planning algorithms

One of the methods we can use to solve this problem is the potential field
method [13]. In this algorithm, we create a potential function in which the
start point is in an area of higher potential than a goal point, and also
obstacles are in areas with a higher potential. After determining the potential
function, we use the gradient descent method to find the goal point. This
method can always find a solution if some exist, but it is computationally
costly.

Next method is called RRT [14]. This method belongs to the category of
sampling graph-based methods. It is an iterative algorithm where we create
a random node somewhere in space and then connect it to the closest node
in a tree structure. This method can always find a solution, but an optimal
solution is almost never achieved. Its biggest advantage is that it can explore
areas quickly, and after the tree is created, we follow parent nodes from goal
to find a solution.

RRT* [15] is based on previous method. In this algorithm, we also optimize
existing paths in the tree with newly created nodes to achieve asymptotic
optimality.

Another sampling graph-based method we can use is the probabilistic
roadmap method [16]. This algorithm firstly generates a number of random
nodes in the environment. Then, it tries to connect them while avoiding
obstacles. The advantage of this algorithm is that we can run it once, and
we obtain a path from every point to every point in the environment. This
method can achieve the optimal solution as the number of nodes approaches
infinity is computationally expensive. We still need to find a path within the
created graph, unlike in RRT.

To find the path in a discretized environment, we can also use search
graph-based methods. To this group belongs algorithms like Dijkstra [17]
and A* [18]. Dijkstra algorithm was created by Dijkstra (1959). It finds
the shortest path to a goal and the shortest paths from a start to all other
vertices of graph [19] using the cost function. A* algorithm is based on the
Dijkstra algorithm, and apart from cost between different nodes, it also uses
some heuristic function, usually Euclidean distance to the goal. This helps to
A* to reach the goal in less time.

5

6

Chapter 3
Theoretical background

In this section we discuss chosen methods for the trajectory tracking, obstacle
detection, and obstacle avoidance. We also discuss reasons why a specific
methods were chosen and their mathematical principles.

3.1 Definitions

State of the robot. State of the robot is a tuple (x, y, ϕ, a, v, φ), where x
and y is the current position, ϕ is and orientation in the environment, a is an
acceleration, v is a velocity, and φ is a steer angle.

Pose. Pose of the robot is a tuple (x, y, ϕ), where x and y is the current
position, and ϕ is and orientation in the environment.

Path. Path is an array of path poses.

Path pose. Path pose is the pose that the robot should have at a particular
point on the path.

Trajectory. The trajectory is array of trajectory poses.

Trajectory pose. The trajectory pose is the state that the robot should
have at a particular point on the trajectory. The state of the robot on the
trajectory is a tuple (x, y, ϕ, a, v, κ), where x and y is the position, ϕ is the
orientation, a in the acceleration, v is the velocity, and κ is the trajectory
curvature.

Curvilinear coordinate system. This thesis will refer to this as a coordinate
system where one axis is defined by the reference path and the second axis is
defined by the norm to every point on the path.

Cross track error. Cross track error is a trajectory tracking error defined
as a distance from the car position to the closest point on the trajectory.

Frame. Frame defines a coordinate system. It is defined by a tuple [O, X,
Y], where O is an origin, X is first axis, and Y is a second axis.

7

3. Theoretical background
Path resolution. Path resolution defines how dense are path poses sampled.

3.2 Kinematic vehicle model

As a model of the car is used a simple kinematic bicycle model [10]. This
model is accurate only in lower speeds on non-slippery road [6], but the
biggest advantage of this model is simpler computation. This played a major
role in choosing this algorithm because we have computation power limited
by competition rules as described in Chapter 4.

Figure 3.1: Kinematic bicycle model. Parameters are defined in Table 3.1.

Parameter Explanation
[O,X, Y] map frame
[Oc, xc, yc] car frame

P reference path
M point on the reference path P closest to the center of the rear axle
so origin of the curvilinear coordinate system defined by P
s curvilinear abscissa which defines point M in sO
dr distance between M and the center of the rear wheel
L length of the wheelbase
θp angle between the orientation of the P in M and the map frame
θC angle between the orientation of the car and P in M
θ angle between the orientation of the car and the map frame
vc speed of the car
φ steering angle

Table 3.1: Parameters used in kinematic bicycle model

This system can be mathematically written with respect to the trajectory
[10] as

8

..................................3.3. Trajectory following

ṡ = cos(θc)
1− c(s)dr

‖~vc‖

ḋr = sin(θc)‖~vc‖

θ̇c =
(tan(φ)

L
− c(s) cos(θc)

1− c(s)dr

)
‖~vc‖

, (3.1)

where c(s) is curvature of P in M and vu, φ are inputs into the system.
To get steering angle φ from Eq. (3.1), the model is linearized using exact

linearization method [20], by defining a new input W1 to solve Eq. (3.1).
Finally the steering angle can be computed as

φ = arctan
(
L

(
W1
‖~vc‖

+ c(s) cos(θp)
1− c(s)dr

))
‖~vc‖ 6= 0,

, (3.2)

where W1 is the new linearized input to the system, where

W1 = θ̇c, (3.3)

where θ̇c is an angular velocity.

3.3 Trajectory following

From review Section 2.1, we selected three different algorithms, which we
theoretically discuss in this section.

3.3.1 Pure Pursuit

The Pure Pursuit [21] is one of the most common trajectory following al-
gorithms [6]. The advantage of this algorithm is that it does not need a
high resolution path. But this also means that it is stable during trajectory
change.

As shown in Fig. 3.2, this algorithm finds a point, also called the goal point
G, on a reference path, which

d(G, cr) = ld, (3.4)

where d(a, b) is distance between a and b and cr is a center of the rear axle.
Then it tries to steer towards that point, using the path defined as a circular
arc with the radius R, calculated by Eq. (3.6), between the centre of the rear
axle and the goal point.

Therefore firstly, we need to find the radius of this circular arc. We begin
with the equation

ld
sin(2α) = R

sin(π2 − α) , (3.5)

9

3. Theoretical background

Figure 3.2: Pure Pursuit

which we can easily obtain from Fig. 3.2 using the law of sines. Then, we
derive R, which gives us

R = ld
2 sin(α) . (3.6)

Then, we can write the steering angle from Fig. 3.2 as

φ = arctan
(
L

R

)
. (3.7)

Finally, combining Eq. (3.6) and Eq. (3.7) gives us the Pure Pursuit control
law as

φ(t) = arctan
(2L sin(α(t))

ld

)
, (3.8)

where the look ahead distance which is usually proportional to the vehicle
speed, therefore we can write

ld = k ‖~vc(t)‖, (3.9)

where k is gain of the look-ahead distance.

10

..................................3.3. Trajectory following

3.3.2 Stanley method

The basic Stanley control law consists of two parts

φ(t) = P1(t) + P2(t), (3.10)
P1(t) = ψ(t), (3.11)

P2(t) = arctan
(
k er(t)
‖~vc(t)‖

)
(3.12)

where φ is the steering angle, ψ is the angle between the orientation of the
car and the path P at the point that is closest to the center of the front axle,
er is the distance between the center of the front axle and the closest point on
the path P , vc is the speed of the car, and k is the control constant. The first
part P1 only aligns the orientation of the front wheels with the orientation of
the path and the second part P2 steer towards the path.

Figure 3.3: Stanley method

Disadvantage of this algorithm is that it needs a high resolution reference
path, unlike the Pure Pursuit.

11

3. Theoretical background
3.3.3 Lateral speed controller

Figure 3.4: Lateral velocity controller

As mentioned in Section 2.1, LSC works by controlling the lateral velocity
of the vehicle. To reduce the lateral error, the controller must steer the car
towards the direction of the vector v̂ as shown in Fig. 3.4.

When car is far from path, we want it to approach path more quickly then
when it is close. So we can define desired lateral velocity proportional to
distance from center of rear axle to closest point on path. Therefore

ḋr_des = −klatdr, (3.13)

where dr is the distance from the center of the rear axle to the closest point
on a trajectory to the rear axle and klat is a constant defining how quickly
should the car approach the path. From Eq. (3.1) we get the real lateral
velocity of the car.

ḋr = sin(θc)‖~vc‖ (3.14)

So we can write the lateral speed error ḋerr as

ḋerr = ḋr − ḋr_des, (3.15)
ḋerr = sin(θc)‖~vc‖+ klatdr. (3.16)

The control variable in Eq. (3.2) is proportional to the lateral error, so we
can write

W1 = Kθ(sin(θc)‖~vc‖+ klatdr), (3.17)

where Kθ is the control gain. Finally, we get the lateral speed control law as

12

.................................. 3.4. Obstacle avoidance

φ = arctan
(
L

(
Kθ(sin(θc)) + Kθ(klatdr)

‖~vc(t)‖
+ c(s) cos(θp)

1− c(s)dr

))
‖~vc(t)‖ 6= 0.

(3.18)

3.4 Obstacle avoidance

Based on the assignment, we have to choose two obstacle avoidance algorithms.
The first algorithm is based on switching to some reactive algorithm; the
second algorithm is based on computing a new path.

3.4.1 Switching to reactive algorithm

From reactive algorithms described in Section 2.2.1 we have chosen FTG
because it is a nice compromise between the complexity of the algorithm and
its ability to avoid obstacles. This algorithm was also already implemented
in our F1/10 car.

3.4.2 Planning new path

In this thesis, we discuss path planning as we use an algorithm called trajectory
profiler, which computes states for the path, connecting it into Trajectory.
This algorithm is described in [22].

Based on the literature review, we have selected RRT* because of its ability
to explore large areas and narrow, curved corridors very fast. Its description
is in the next section.

3.4.3 Rapidly exploring random trees - RRT*

This algorithm starts with the start point and endpoint, and it tries to plan a
path between these two points while avoiding obstacles. At first, we describe
RRT [14] algorithm, which is the base of RRT* [15].

Pseudocode to RRT algorithm is shown in Algorithm 1. Inputs to this
algorithm are: start point pstart, endpoint pend, and the number of algorithm
cycles k. Output is the path to the goal point. N is an array of nodes, where
every node n has position, reference to a parent, reference to children nodes,

13

3. Theoretical background
the cost to the parent, and cost to the root node.
Algorithm 1: RRT
Input : pstart, pend, k
Output : path

1 nstart ← init(pstart) . Create start node from start pose
2 N ← nstart . Init the tree N with start node
3 i← 0
4 for i < k do
5 prand ← samplePoint()
6 npar, prand ← chooseParent(prand)
7 if isFree(npar.point, prand) then
8 N, nrand ← addToTree(N, prand, npar)
9 N ← rewire(N, nrand) . RRT* only

10 end
11 i← i+ 1
12 end
13 path← findPath(N , pend)

samplePoint(). The function samplePoint() creates a random point some-
where in the environment. With defined probability, it samples point precisely
in the goal position. Therefore the tree is biased toward the goal.

chooseParent(prand). The function chooseParent(prand) finds the closest
node in the tree to a randomly sampled point, which is chosen to be the
parent node. If the randomly sampled point is closer to the parent node than
the step distance, it does not change the position of the random point. If the
random point is further away from the parent node, it changes the position of
this random point to be in the same direction but in the step distance from
the parent node. This functions returns corrected position of the randomly
sampled point prand and chosen parent node npar.

isFree(p1, p2). The function isFree(p1, p2) checks if there is an obstacle on
the straight line between points p1 and p2.

addToTree(N , p, npar). The function addToTree(N , p, npar) creates a new
node n with position p and adds it into the tree N with npar as the parent
node. This function returns created node n and updated tree N .

findPath(N , pend). The function find path(N , pend) finds node in the tree
N that is in the position pend. If such a node does not exist, the function
returns an empty path. If the node is found, the function creates a path using
all parent nodes up to the start node.

The algorithm RRT* works on the same principle as the RRT. The only
difference is that function rewire() is added. This function tries to optimize
the tree with a newly created node in order to create more optimal paths, as
we can see in Fig. 3.5. Pseudocode to RRT* is shown in Algorithm 1.

14

.................................... 3.5. Bezier curves

Figure 3.5: Comparison of RRT and RRT* path creation [23]. In both scenarios
4999 nodes are created.

3.5 Bezier curves

As discussed in Section 3.4.3, basic RRT* implementation checks for an
obstacle between two nodes using a straight line. However, it is impossible
for the car to follow the path created using straight lines correctly; therefore,
we need to connect two nodes in the RRT* tree using a curve. We chose the
Bezier curve because it has an easy mathematical representation and good
differentiability [24]. The following theory is needed to understand our RRT*
implementation in Section 5.3.2.

Calculation of the path from a pose to a point

To calculate a path from a start pose q with position pq and orientation ϕq
to an end point pe, we use the quadratic Bezier curve with the following
equation

B(t) = (1− t)2p1 + 2(1− t)tp2 + t2p3, 0 ≤ t ≤ 1, (3.19)

where p1, p2, and p3 are control points that define the curve. Variation of the
parameter t over the interval is used to calculate points of the curve. Control
point p1 defines start of the curve, therefore p1 = pq. Control point p3 defines
the end of the curve, so p3 = pe. Finally we calculate control point p2 as:

p2 =
[
x
y

]
= pq + dk

[
cos(ϕq)
sin(ϕq)

]
, (3.20)

where dk is proportional to the distance between points pq and pe, so

dk = kd||pqpe||, (3.21)

where kd is a control constant. Constant kd was experimentally set to kd = 0.5
in order to create paths with an acceptable curvature gradient.

15

3. Theoretical background
Calculation of the path from a pose to a pose

To create a path between a start pose and an end pose, we use two quadratic
Bezier curves. It is also possible to use a cubic Bezier curve, but as we can
see in Fig. 3.6, the path that was created using two quadratic curves has a
smoother curvature gradient than the one that was created by a cubic Bezier
curve using the same control points.

0 0.5 1 1.5 2

x[m]

-0.5

0

0.5

1

y
[m

]

quadratic

cubic

CP1

CP2

CP3

CP4

CP5

Figure 3.6: Comparison of a path created by a cubic Bezier curve and a path
created using two quadratic Bezier curves. For a cubic bezier curve are used
control points (CP) CP1, CP2, CP4, and CP5. For the first quadratic bezier
curve are used control points CP1, CP2, and CP3 and for the second quadratic
bezier curve are used control points CP3, CP4, and CP5.

Figure 3.7: Creation of the path between two poses using two quadratic Bezier
curves

As shown in Fig. 3.7, in order to create a path between two poses using
two quadratic Bezier curves we need five control points. The first quadratic
Bezier curve (Eq. (3.19)) consists of control points p1, p2, p3 and the second
quadratic Bezier curve is defined by control points p3, p4, and p5. Point p1 is
a start point and p5 is an end point. To achieve a path that has acceptable
curvature gradient; control point p2 is chosen in the direction of the start pose
at a distance of ld/3 and control point p4 is chosen in the opposite direction

16

.................................... 3.5. Bezier curves

of the end pose at the distance of ld/3. Finally the control point p3 is created
in the middle between points p2 and p4.

Calculation of the maximum curvature of a quadratic Bezier curve

When a path is created using a quadratic Bezier curves, we need to make sure
that the car is able to follow it, because the car has limited turning radius.
Therefore we need to find the maximum curvature of the quadratic Bezier
curve. To achieve this we use following theorem[25].
Theorem 1. We have quadratic Bezier curve B(t) = (1− t)2p1 + 2(1− t)tp2 +
t2p3. Let A be the area of the triangle p1p2p3 and m be the midpoint of the
segment p0p2. The maximum curvature of B is either equal to ||p2m||3

A2 if p2
lies strictly outside the two disks of diameter p1m and mp3, or is equal to
max(κ0, κ1) where κ0 = A

||p1p2||3 and κ1 = A
||p2p3||3 are the curvature of B(t)

at the endpoints B(0) and B(1).

17

18

Chapter 4
F1/10 platform

F1/10 car is a scaled-down model of a real car in the scale of 1:10. F1/10
cars are mainly developed for the F1/10 Autonomous Racing Competition
[3], therefore they are built according to the F1/10 Autonomous Racing
Competition. F1/10 competition forbids the use of any external computation
and localization, so all sensors and a computer must be on the F1/10 car.

However, attending the competition is not the only purpose of this platform.
This platform is also useful for the testing of algorithms that are developed
for full-scale cars. The main advantages of testing the algorithms on a scaled
model are: much safer environment, a controllable environment, and lower
cost.

4.1 Hardware

The car is built upon Traxxas Slash 1:10 4WD, RC car chassis mainly used
in RC hobby in scale 1:10 to a normal car. Rest of components are listed in
Table 4.1.

Onboard computer NVidia Jetson TX2
Lidar Hokuyo UST-10LX
Engine Velineon 3500

Engine controller VESC
Servo Traxxas 2075R
IMU SparkFun 9DoF Razor IMU

Table 4.1: F1/10 car component list

4.1.1 Lidar

Lidar is one of the basic sensors which can detect the environment around
the car. We use Hokuyo UST-10LX, which is a lightweight 2D LiDAR sensor.
It is equipped with an Ethernet for high-speed measurement data. It also has
low power consumption [26], therefore it is ideal for battery-powered robots.
Parameters are shown in Table 4.2.

19

4. F1/10 platform....................................
Horizonal angle 270°

Scanning frequency 40Hz
Angular resolution 0.25°
Working range 0.06m - 10m
Scanning range 0.6m - 4m
Connection Ethernet

Table 4.2: Parameters of lidar Hokuyo UST-10LX

4.1.2 VESC

The VESC, Vedder Electronic Speed Controller[27], is named after its cre-
ator Benjamin Vedder. It is mainly used in electronic skateboards. The
VESC is a speed controller for BLDC motors that has a build-in close-loop
RPM regulator based on measuring the back EMF [28] of the BLDC motor.
VESC also includes motor and battery protection, regenerative braking, and
programming options, e.g., acceleration and deceleration curves.

4.2 Software

Software architecture is based on ROS1 Kinetic, which runs on Ubuntu 16.
For localization and mapping, we use the algorithm Cartographer SLAM [29]
which uses sensor fusion of different sources (IMU, lidar) to compute the
probability of obstacles in the environment and position and orientation of
the car within.

4.2.1 ROS

ROS, Robot Operating System, provides open-source libraries and tools to
help software developers create robot applications [30]. Different processes
(programs) in the ROS are called nodes. Nodes communicate through different
topics via messages. Nodes can be written in Python or C++.

Figure 4.1: F1/10 platform

20

Chapter 5
Implementation

In this chapter we discuss implementation of the algorithms described in
Chapter 3.

5.1 Longitudinal control

In order to achieve good lateral control over the vehicle, we need to have
good longitudinal control. We have an available reference speed curve on the
track from trajectory profiler (Section 3.4.2), and VESC can already keep it
even with disturbances, as stated in Section 4.1.2. Therefore we implemented
a simple integration ramp based on maximum acceleration and deceleration
mainly to have better control over the vehicle during start. We control the
car with velocities from the reference trajectory only if the car is closer than
40 cm to the reference trajectory. If the car is further away, it starts to slow
proportionally to the distance, therefore

vdes(t) =

vref (t) if ce(t) < 0.4m
vref (t)

max(min(1+0.1(ce(t)−0.4)),1.1) if ce(t) ≥ 0.4m
(5.1)

where vref is reference velocity, vdes is desired velocity, and ce is a cross track
error. Function in Eq. (5.1) was designed in order for F1/10 platform to slow
down when ce is too high to regain control over the car. This works as a
fail-save if the car happens to be unstable during testing.

Integration ramp is implemented as follows. First we calculate velocity
error verr = vdes − vact, where vdes is desired velocity and vact is current set
speed. Then acceleration is calculated as aact = vdiff/tcycle, where tcycle is
time from last program cycle. Then we check saturation of accelerating to max
and min value. Finally we calculate change of velocity and add it to current
set speed as vact = vact + aacttcycle. The F1/10 platform has maximum speed
set to 4.5m/s, maximum acceleration to 0.9m/s2 and maximum deceleration
to 4.5m/s2.

In FTG mode F1/10 platform has three available speeds based on steer

21

5. Implementation....................................
angle Θ, therfore

vact =

2.3 if |Θ| ≤ 3 deg
1.9 if |Θ| ≤ 10 deg
1.5 otherwise

(5.2)

.

5.1.1 Trajectory representation in trajectory tracking
algorithms

Trajectory poses are sampled 5 cm apart because if poses were sampled denser,
e.g., 1mm, it would be a problem on bigger maps because it would take longer
to compute closest trajectory point to a car and also it would take longer
to transfer bigger message between ROS nodes [31]. The 5 cm gap between
trajectory poses is not an issue for the Pure Pursuit because it does not need
a high-resolution trajectory; however, it poses a big problem for the Stanley
method and LSC. To obtain intermediate points, we linearly interpolate three
closest points on the reference trajectory and find the closest point using the
bisection method. We also interpolate velocities, accelerations, curvatures,
and orientations.

Bisection method

Figure 5.1: Bisection method used on trajectory

The bisection method works as follows. First, we find the closest point
pc on the reference trajectory. As shown in Fig. 5.1 pb is the previous point
to pc on the reference trajectory, and pa is the next point of the reference
trajectory. This gives us the starting interval defined by points pb, pc, and pa.
Because pc is the closest point, we can reduce this interval by creating two
new points. We create a point pd in the middle between pb and pc and the
second point pe in the middle between points pc and pa. Now we have five
points. We find the closest point to the car from these five points and repeat
this algorithm until we have reasonable precision. We are using five iterations
of this method, because it is able to reduce error from 5 cm to approximately
0.15 cm.

22

.................................. 5.2. Obstacle detection

5.1.2 Pure pursuit

Since Pure Pursuit oscillates at low speeds and cuts corners for higher speeds,
we have constrained the look-ahead distance by minimal and maximal value.
Therefore Pure Pursuit is more stable. These limits were set by experimental
method to 0.4m for a minimal look-ahead distance and 2.2m for maximal.

5.1.3 Stanley

As mentioned in Section 3.3.2, the basic Stanley control law is defined as

φ(t) = ψ(t) + arctan
(
k er(t)
‖~vc(t)‖

)
. (5.3)

Basic Stanley control law is defined by equation Eq. (3.12). However, the
part ψ(t) of this equation which should keep wheels parallel with trajectory,
suffered from great oscillations. Therefore we added a parameter to this term
to lower its influence on the steering angle, so it does not keep wheels parallel
with trajectory anymore but only helps to steer towards it. To have even
better performance, we added another term, which is a feed-forward based
on curvature. Finally new control law is defined as

φ(t) = k1ψ(t) + arctan
(
k er(t)
‖~vc(t)‖

)
+ k2 arctan(Lκ(t)), (5.4)

where L is is length of wheelbase, κ is curvature of the nearest trajectory point,
and k1, k2 are control constants. These constants were set experimentally to
k1 = 0.42 and k2 = 0.61.

5.2 Obstacle detection

Obstacle detection is implemented in C++. In this thesis, our goal is to
avoid static obstacles on the reference trajectory with the F1/10 platform.
To process the obstacles, we discretize the environment into an occupancy
grid. The occupancy grid is a 2d binary map of the environment where the
value indicates the presence of an obstacle in a grid cell. This grid is created
in the car frame (Fig. 5.2), because it is computationally less expensive to
convert few trajectory points from the map frame to the car frame.

To reduce the computation time required to detect if the F1/10 platform
can be in some position, we inflate obstacles in the occupancy grid by half of
the car’s width. Therefore the F1/10 platform can be represented as a single
cell in the occupancy grid. In our implementation the occupancy grid has
parameters shown in Table 5.1.

23

5. Implementation....................................
Dimension of one grid cell 3× 3 cm

Number of cells in X direction 180
Number of cells in Y direction 135

Distance in X 5.4m
Distance in Y 4.05m

Obstacle inflation 19.5 cm

Table 5.1: Parameters of used occupancy grid. In summary the car can see
5.4m forward and 2.025m to sides.

Figure 5.2: Example of the occupancy grid. [O,X, Y] is a map frame, [oc, xc, yc]
is a car frame and [om, xm, ym] is an occupancy grid frame. White grid cells
are free, and black cells are occupied. The red dot is a representation of some
obstacle found by lidar. As we can see none of the occupied cells are on path,
therefore obstacle is far enough from path and car can stay on the path.

5.3 Obstacle avoidance

Trajectory avoidance algorithms described in this section are implemented in
C++ for the best performance.

5.3.1 Switcher to FTG

As was already mentioned in Section 2.2.1, when an obstacle is detected on
the path, the program FTG switcher switches to the FTG algorithm.

The problem of this method is getting the car back on the reference
trajectory after avoiding an obstacle. We solved this by creating a new path
while in FTG until some path is free of obstacles. Then the path is sent
through trajectory profiler (Section 3.4.2) to the trajectory follower algorithm,
and FTG is turned off, as shown in Fig. 5.3. After the FTG switcher detected
that the car is close enough to the reference trajectory, it sends the reference
trajectory to the trajectory follower algorithm, and finally, the car is back on
the reference trajectory.

24

.................................. 5.3. Obstacle avoidance

Figure 5.3: Simplified switcher ROS node diagram

Figure 5.4: Example of creating a return path. The reference path is red, and
the newly created path is green. To plan a return path, we first find a pose s(1)
on the reference path that is closest to the car. Then we find second pose s(2)
on the reference path that is 3m forward from the closest pose in curvilinear
coordinates, therefore ∆s = 3m. The s(2) is our return pose. Next, we plan
the path from the car pose to the return pose using the method described in
Section 3.5. Finally, to have a smooth connection to the original path, we append
the following 4m of the reference path to our new path.

The path is sometimes created with high curvature, so the car is not able
to follow it. We check this using method described in Section 3.5. If the car
is not able to follow it, the path is thrown away and created again in the next
program cycle.

5.3.2 RRT* planner

After an is detected on the trajectory, this method creates a new trajectory
using the RRT* method. In this section, we describe issues encountered
during the implementation and provide ways of solving them.

Path generation between nodes in the RRT*. The biggest problem of the
RRT* algorithm (as described in 3.4.3) is that it creates paths that consist
only of points and straight lines. In order for the car to be able to follow
the path, we need to create the path using curves. Therefore we use Bezier
curves described in Section 3.5. This way, our RRT* implementation does
not work with positions but with path poses.

Step of the RRT*. In RRT* implementation (as described in 3.4.3) is
defined maximum distance between a child node and a parent node by a step
size. In our implementation of RRT*, we define two step constants. The first

25

5. Implementation....................................
constant is called step size. It is similar to the original RRT* implementation
and is used to limit the maximum distance between the new node and closest
node in the RRT* tree. The second constant is called neighborhood size and
is used to define an area from which RRT* chooses a parent node for the
new node and also to define an area that is optimized by a new node in the
rewire() function. By defining two constants with different sizes, the RRT*
has more parent options for a new node, and the area of the function rewire()
can be different from the step size.

Sampling area. Another problem we encountered was when an obstacle
was too big; it was impossible for the RRT* to find a path to the goal point.
Therefore we create the sampling environment of the RRT* slightly bigger
than the dimensions of the occupancy grid. This allows the RRT* to always
find the goal point even when it is behind a large obstacle.

Biased node generation toward the last created path. During the imple-
mentation on the F1/10 platform, we found out that it had a problem with
obstacles that were possible to avoid from both sides. The problem was
that in the one iteration of the algorithm, the path was created correctly on
the left side of an obstacle. But because the path was created close to the
obstacle and because of the noise in the lidar data, the path was in the next
program cycle evaluated as impassable. This time was a new path created
on the right side. This sometimes happened few times in a row, causing the
car to go straight and hitting the obstacle. We solved this by biasing node
creation towards the last created path. The RRT* algorithm always saves
the last created path, and during the creation of the next path, it samples
nodes more often into the area defined by an inflation of the first half of the
last created path and effectively stops the oscillation of the path.

Curved paths. One of the last problems of the RRT* algorithm is that
because it is using random trees, a path that it creates usually has a lot of
small curves. We tried to smooth them out by choosing few points on a new
path and interpolating them again using bezier curves. However, this almost
never succeeded because smoothed path usually passed through some obstacle
or had some part that was unfollowable by the car. Nevertheless, we found
a partial solution for paths that should bring the car back to the reference
trajectory. Before running an RRT*, we use path creation from FTG switcher
from Section 5.3.1. Then we run RRT* only if this path creation fails.

Failsave. When the car is in front of some obstacle close enough that the
car is not able to avoid it anymore, RRT* creates only a few nodes because
of the obstacle. Our program can detect this and stop the car, therefore
avoiding a collision.

Changes to the algorithm stated above are shown in the implementation
itself in the next section.

26

.................................. 5.3. Obstacle avoidance

Our RRT* implementation

This implementation is based on lightweight, optimized C++ implementation
from [32]. Its input arguments are: a start pose qs, an end pose qe, a run
time tend, and a last created path Plast. Output is a path Pout, as shown in
Algorithm 2.

samplePoint(N , Plast). Inputs to this function are: node tree N , and the
last created path Plast. Output of this function is a random pose qrand. This
function first generates random number m from a uniform distribution on
interval <0; 1>. This number m determines from which area we are going to
randomly choose points.. If m ∈<0; 0.1)

The goal pose qe is selected as a random pose qrand.. If m ∈<0.1; 0.2)
Random pose qrand is generated from second area. This area is defined
by an inflation of the last generated path Plast by 20 cm to the sides. In
this case the orientation of the random pose qrand is not fixed, so it is
set to None and determined later in the algorithm.. If m ∈<0.2; 1>
Apart from the RRT* implementation (as described in 3.4.3), this func-
tion also finds closest node in the tree N and changes the position of the
random point qrand to be in the step size distance from closest node.

isFree(q). The function isFree(q) checks whether the position of the pose q is
not in the obstacle. This function returns True/False based on the occupancy
of the position.

growTree(N , q). This function chooses a parent for a pose q from nodes in
the area defined by distance of neighborhood_size from the pose q and adds
in into the tree N , as shown in Algorithm 4. Function returns updated tree
N and node n created from the pose q. If the creation of the node n was not
successful the function returns an unchanged tree N and node n = None.

steer(q1, q2). The function steer(q1, q2) creates a curve from pose1 to
pose2 using bezier curve desribed in Section 3.5. It determines whether the
orientation in q2 is fixed and creates a curve between the pose q1 and a
position of the pose q2 (Section 3.5) or between poses q1 and q2 (Section 3.5).
It also determine if the car is able to follow the curve due to its limited turning
radius using method desribed in (Section 3.5) and checks for obstacles on the
curve. This function returns True if the curve creation was a success.

rewire(N , n). This function works on the same principle as the function
rewire() in Section 3.4.3. It tries to optimize the tree N using the node
n. The function rewire() finds all nodes in the tree in the distance called
neighborhood_size. This function rewires the path using steer() function

27

5. Implementation....................................
described above, as shown in Algorithm 3. Output of this function is updated
tree N .

updateCost(n, cost). This function updates costs in all children nodes of
the node n using the new cost of the node n.

findPath(N , qe). Because sometimes the RRT* is not able to find a path
to the goal pose qe exactly, this function finds the closes node to the qe, then
finds all parent nodes up to start node, and finally samples all points between
nodes using steer() function. It returns the created path Pout.

Algorithm 2: RRT*
Input : qs, qe, tend, Plast
Output :Pout

1 ns ← init(qs) . Create start node n from start pose qs
2 N ← ns . Init the tree N with the start node ns
3 while timeNow() < tend do
4 qrand ← samplePoint(N , Plast)
5 if isFree(qrand) then
6 N, nrand ← growTree(N, qrand)
7 if nrand != None then
8 N ← rewire(N, nrand)
9 end

10 end
11 end
12 Pout ← findPath(N , qe)

Algorithm 3: rewire()
input :N, nrand
output :N

1 . For every node n in the tree N
2 for n in N do
3 segment_cost← dist(nrand.pose, n.pose)
4 if segment_cost < neighborhood_size then
5 if steer(nrand.pose, n.pose) then
6 cost← n.root_cost+ segment_cost
7 if cost < cost_min then
8 n.parrent← nrand
9 updateCost(n, cost)

10 end
11 end
12 end
13 end

28

.................................. 5.3. Obstacle avoidance

Algorithm 4: growTree()
input :N, qrand
output :N, nrand

1 cost_min←∞
2 npar ← None
3 . For every node n in the tree N
4 for n in N do
5 segment_cost← dist(qrand, n.pose)
6 if segment_cost < neighborhood_size then
7 if steer(n.pose, qrand) then
8 cost← n.root_cost+ segment_cost
9 if cost < cost_min then

10 cost_min← cost
11 npar ← n

12 end
13 end
14 end
15 end
16 if npar != None then
17 N, nrand ← addToTree(N, prand, npar)
18 end

29

30

Chapter 6
Experiments

In this section, we discuss the design of the experiments and their results of
trajectory tracking and obstacle avoidance algorithms described in Chapters
Chapter 3 and 5. Algorithms are tested on the F1/10 platform (Chapter 4)
on various types of tracks and obstacles as described in Section 6.1.

To be able to compare fairly all of the algorithms, we have to note that
the localization method we used has a maximum error up to 10 cm during
fast driving and up to 3 cm during slow driving and stationary position [33].

6.1 Scenarios description

All testing tracks and scenarios described in this section were built in the
Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC) on the
ground floor of building A. These experiments are designed to simulate
possible scenarios during competition and to evaluate all algorithms fairly.

6.1.1 Trajectory tracking scenarios

Track shown in Fig. 6.1 is used for all trajectory tracking experiments. This
track has a cross-section in the middle that allows us to test multiple trajec-
tories without changing the whole track.

Figure 6.1: Photos of the track used for trajectory tracking experiments

31

6. Experiments
Scenario A

The first scenario is a track shown in Fig. 6.2 that is designed to test the
performance of tracking algorithms at high speeds.

Figure 6.2: Scenario A

Scenario B

The second scenario shown in Fig. 6.3 is a small circuit with two 180 degree
left-hand turns followed by a right-hand turn of small curvature. This track
with constantly changing curvature without straight sections is suitable for
stability testing of tracking algorithms.

Figure 6.3: Scenario B

6.1.2 Obstacle avoidance scenarios

Track shown in Fig. 6.4 is used for all obstacle avoidance experiments. It is a
track with a simple round reference trajectory, as shown in Fig. 6.4b.

32

................................. 6.1. Scenarios description

(a) : Photo of the track (b) : Reference path (c) : Photo of the track

Figure 6.4: Photo of the track used for obstacle avoidance scenarios

Scenario C

The first scenario is a simple obstacle with a 1.2m gap for maneuvers as
shown in Fig. 6.5. This obstacle should be easy to avoid for every obstacle
avoidance algorithm.

(a) : Map of the obstacle on a path (b) : Photo of the obstacle on a track

Figure 6.5: Simple obstacle on trajectory

Scenario D

The second scenario is a large obstacle that covers almost 7m of reference
trajectory as shown in Fig. 6.6. This is a challenging obstacle avoidance
problem because of the large obstacle; the trajectory for avoidance can not
be computed only once but needs to be constantly updated.

(a) : Map of the obstacle on a path (b) : Photo of the obstacle on a track

Figure 6.6: Simple obstacle on trajectory

33

6. Experiments
6.2 Longitudinal control results

This experiment was designed to show that longitudinal control works as
described in Section 5.1. We set the maximum acceleration of an F1/10
platform to 0.9m·s-2, although the acceleration limit of the reference trajectory
was set to 1m·s-2 to show that the acceleration limit works properly. Velocity
on the trajectory was set to be too high to make the F1/10 platform unstable
in turns, causing a cross track error to be higher than 0.4m.

(a) : Cross track error (b) : Speed tracking

Figure 6.7: Speed tracking results

As shown in Fig. 6.7b, in the parts with long acceleration, longitudinal
controller accelerates 0.1m·s-2 slower then reference acceleration. As shown
in Fig. 6.7a in the time of 6.5 s the F1/10 platform crosses cross track error
limit causing F1/10 platform to slow down as shown in Fig. 6.7b.

Therefore the results described in the previous paragraph show that the
longitudinal controller works as expected.

6.3 Trajectory following

In this section, we present experimental results of tracking algorithms on
scenarios described in Section 6.1.1. Trajectory tracking algorithms are
compared based on two metrics. The first metric is a maximum cross track
error. The second metric is a value defined by a maximum cross track error
of 75% of the lowest values. The second metric is used to show the precision
of algorithms without sudden big spikes.

Experiment A

Experiment was conducted on Scenario A Section 6.1.1. Reference speed and
curvature are shown in Fig. 6.8a.

In Fig. 6.8c is shown that the maximum tracking error of the Pure Pursuit
algorithm is 0.122m, with 75% of values under 0.072m. Stanley method has

34

..................................6.3. Trajectory following

maximum tracking error of 0.357m, with 75% of values under 0.151m. LSC
has maximum tracking error of 0.316m, with 75% of values under 0.138m.

From the results described above and shown in Fig. 6.8 we can see that the
Pure Pursuit has the best precision and the lowest value of the maximum cross
track error. In Fig. 6.8c in the first 2.4 s is shown that the Stanley method
is stable and has steady-state error of 0.09m. Therefore we can see that
the Pure Pursuit performed almost two times better than Stanley and LSC.
Results of Stanley and LSC were similar, with slightly better performance of
the LSC.

(a) : Reference curvature and velocity (b) : Visualization of the trajectory

(c) : Cross track error
(d) : Velocity tracking using Pure Pur-
suit

(e) : Velocity tracking using Stanley (f) : Velocity tracking using LSC

Figure 6.8: Trajectory tracking results of the experiment A

35

6. Experiments
Experiment B

Experiment was conducted on Scenario B Section 6.1.1. Reference velocity
and curvature are shown in Fig. 6.9a.

As shown in Fig. 6.9c the Pure Pursuit has maximum tracking error of
0.168m, with 75% of values under 0.062m. Stanley has maximum tracking
error of 0.201m, with 75% of values under 0.116m. LSC has the biggest
tracking error of 0.232m, with 75% of values under 0.121m.

From the results above and in Fig. 6.9c we can see that the Pure Pursuit
performed better than the Stanley method and LSC. The Stanley method
has the worst maximum tracking error and also the worst precision. Also, we
have to note that the maximum tracking error of the Pure Pursuit is caused
by a sudden jump in localization as shown in Fig. 6.9c in 3.3 s. The error
suddenly jumped from error value of 14 cm to 18 cm. The Pure Pursuit was
able to get back on the reference trajectory in 0.5 s an is an acceptable result.

(a) : Reference curvature and velocity
(b) : Visualization of the trajectory

(c) : Cross track error with reference speed (d) : Cross track error with speed of
1 ms−1

Figure 6.9: Trajectory tracking results of the experiment B

36

.................................. 6.4. Obstacle avoidance

(a) : Velocity tracking using Pure Pur-
suit

(b) : Velocity tracking using Stanley

(c) : Velocity tracking using LSC

Figure 6.10: Velocity tracking results of the experiment B

This experiment was also repeated with a constant speed of 1ms-1 to
compare cross track error of algorithms in respect to the speed of the F1/10
platform.

Results of this experiment are shown in Fig. 6.9d. Pure Pursuit has
maximum cross track error of 0.045m, with 75% of values under 0.027m.
Stanley method has maximum cross track error of 0.088m, with 75% of
values under 0.061m. And LSC has maximum cross track error of 0.058m,
with 75% of values under 0.029m.

From the results described above and shown in Fig. 6.9d we can see that
the cross track error of all algorithms has improved. This big difference
in precision is caused by latency in our system, which dramatically affects
performance at higher speeds, mainly in the Stanley method and LSC. In
this last experiment, we can also better see the noise caused by localization
which is ±3 cm in this speed, as shown in Fig. 6.9d.

6.4 Obstacle avoidance

In this section, we compare the performance of every combination of the
tracking and avoidance algorithms presented in this thesis on the scenarios
shown in Section 6.1.2.

37

6. Experiments
Experiment C

Experiment was conducted on Scenario C Section 6.1.2.
In every graph of the cross track error of FTG switcher (Fig. 6.14c, Fig. 6.15c

and Fig. 6.16c), we can see a gap in data. This gap is caused by switching
to the FTG algorithm because when F1/10 platform uses FTG, we can not
measure the distance from the reference trajectory.

All of the methods avoided this simple obstacle successfully, as we can see
on the graphs below. The least amount of cross track error has a combination
of FTG switcher and Pure Pursuit, as shown in Fig. 6.14c. We can see in
Fig. 6.13c in the travelled distance of 1.4m that RRT* plans a new trajectory
in order to reduce cross track error. This does not always work perfectly as
shown in Fig. 6.12c in travelled distance of 3.1m. The connection back to the
reference trajectory from the FTG algorithm is always smooth (Fig. 6.14c,
Fig. 6.15c, Fig. 6.16c).

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.11: Result of obstacle avoidance on Scenario C using Pure Pursuit and
RRT* planner

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.12: Result of obstacle avoidance on Scenario C using Stanley method
and RRT* planner

38

.................................. 6.4. Obstacle avoidance

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.13: Result of obstacle avoidance on Scenario C using LSC and RRT*
planner

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.14: Result of obstacle avoidance on Scenario C using Pure Pursuit and
FTG switcher

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.15: Result of obstacle avoidance on Scenario C using Stanley method
and FTG switcher

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.16: Result of obstacle avoidance on Scenario C using LSC and FTG
switcher

39

6. Experiments
Experiment D

Experiment was conducted on Scenario D Section 6.1.2.
In the experiment results below, we did not include a combination of

the RRT* planner and LSC because it collided with an obstacle. All other
combinations avoided the obstacle successfully. As shown in Fig. 6.17 and
Fig. 6.18 in this scenario RRT* algorithm replanned trajectory quite often.
As already mentioned in the results of the previous experiment, RRT* plans
trajectory in the best way possible to reduce tracking error. The reason this
does not always work is that RRT* has a runtime of 60ms. When RRT*
starts to compute a new trajectory, the position of the F1/10 platform differs
from the position that RRT* works with. This can sometimes cause instability
in trajectory tracking during trajectory switching. Another disadvantage
of the RRT* planner is that it plans trajectories that often have a sudden
change in curvature. All of the methods that use FTG switcher have a smooth
connection to the trajectory when switching back from the FTG (Fig. 6.19c,
Fig. 6.20c, Fig. 6.21c).

The combination that produced the least amount of tracking error is FTG
switcher and Pure Pursuit (Fig. 6.19). Second best is RRT* planner with
Pure Pursuit.

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.17: Result of obstacle avoidance on Scenario D using Pure Pursuit and
RRT* planner

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.18: Result of obstacle avoidance on Scenario D using Stanley method
and RRT* planner

40

.................................. 6.4. Obstacle avoidance

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.19: Result of obstacle avoidance on Scenario D using Pure Pursuit and
FTG switcher

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.20: Result of obstacle avoidance on Scenario D using Stanley method
and FTG switcher

(a) : Paths (b) : Speed (c) : Tracking error

Figure 6.21: Result of obstacle avoidance on Scenario D using LSC and FTG
switcher

41

42

Chapter 7
Future work

In this chapter, we present a possible solution to the problem found in the
algorithms.

C++ implementation of trajectory tracking algorithms

Trajectory tracking algorithms in this thesis are implemented in Python.
Python applications are generally slower compared to, e.g., C++. Therefore,
as a topic for future research, algorithms should be rewritten to C++ to
increase their performance and compare them to prior Python implementation.

Upgrade to ROS2

As already mentioned earlier (Section 4.2.1), the F1/10 platform currently
runs on ROS1. However, the team already conducted few experiments with
ROS2, which seems to have better performance. Therefore it would be
beneficial to port all of the algorithms to ROS2 and compare their differences
in performance between ROS1 and ROS2.

Implement different planner algorithm

As found out in the experiments, the 60ms runtime of computation of RRT*
planner is sometimes not fast enough, especially at higher speeds. Also,
another problem of the RRT* is that it often plans trajectories too curvy. It
would be interesting to implement another planner, this time based on some
graph search method like A*, because we expect it to plan more straight
paths. So it would be easier for trajectory tracking algorithms to follow it.

43

44

Chapter 8
Conclusion

In the first part of this thesis, we performed an analysis of trajectory tracking
and obstacle avoidance methods, from which we have chosen algorithms based
on expected performance based on other studies.

We have implemented, tested, and evaluated Pure Pursuit, Stanley method,
and Lateral velocity controller as algorithms for trajectory tracking on the
F1/10 platform. Based on the experiments, we have found out that the Pure
Pursuit is the most precise algorithm on our F1/10 platform, mainly because
of the latency in our system.

F1/10 platform functionality was successfully extended to find obstacles
on a tracked trajectory.

We have created two obstacle avoidance methods, switcher to the FTG
algorithm and RRT* based planner, tested them and evaluated them in
combination with every trajectory tracking algorithm described in the previous
paragraph.

Based on the experiments, we have found out that the best results were
achieved by a combination of FTG switcher and Pure Pursuit. However,
RRT* planer with Pure Pursuit tracking method worked almost as well. The
most significant advantage of the RRT* planner is that we have full control
over the trajectory at any time during the drive.

Ideas for future work were presented in the previous chapter.

45

46

Bibliography

[1] “Indy autonomous challenge.” https://www.indyautonomouschallenge.com.

[2] “World’s first extreme competition of teams developing self-driving AI.”
https://roborace.com.

[3] “F1tenth.” https://f1tenth.org/.

[4] O. Amidi and C. E. Thorpe, “Integrated mobile robot control,” in Mobile
Robots V, vol. 1388, pp. 504–523, International Society for Optics and
Photonics.

[5] C. R. Craig, “Implementation of the pure pursuit path tracking algo-
rithm,” 1992.

[6] J. Snider, “Automatic steering methods for autonomous automobile path
tracking,” 2011.

[7] J. Wit, C. D. Crane, and D. Armstrong, “Autonomous ground
vehicle path tracking,” vol. 21, no. 8, pp. 439–449. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20031.

[8] Robert Stawell Ball, The Theory of Screws: A Study in the Dynamics
of a Rigid Body. Hodges, Foster.

[9] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in 2007 American Control
Conference, pp. 2296–2301. ISSN: 2378-5861.

[10] S. Dominguez, A. Ali, G. Garcia, and P. Martinet, “Comparison of
lateral controllers for autonomous vehicle: Experimental results,” in
2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 1418–1423. ISSN: 2153-0017.

[11] C. E. García, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” vol. 25, no. 3, pp. 335–348.

[12] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: “follow
the gap method”,” vol. 60, no. 9, pp. 1123–1134.

47

https://f1tenth.org/

8. Conclusion......................................
[13] S. elia nadira, R. Omar, and C. K. N. Hailma, “Potential field methods

and their inherent approaches for path planning,” vol. 11, pp. 10801–
10805.

[14] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning.”

[15] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,”

[16] L. Kavraki, M. Kolountzakis, and J.-C. Latombe, “Analysis of probabilis-
tic roadmaps for path planning,” vol. 14, no. 1, pp. 166–171. Conference
Name: IEEE Transactions on Robotics and Automation.

[17] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
vol. 1, no. 1, pp. 269–271.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” vol. 4, no. 2, pp. 100–
107. Conference Name: IEEE Transactions on Systems Science and
Cybernetics.

[19] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications.
Elsevier Science Ltd/North-Holland.

[20] H. Nijmeijer and A. van der Schaft, “Feedback linearization of nonlinear
systems,” in Nonlinear Dynamical Control Systems (H. Nijmeijer and
A. van der Schaft, eds.), pp. 161–192, Springer.

[21] R. Wallace, A. T. Stentz, C. Thorpe, H. Moravec, W. R. L. Whittaker,
and T. Kanade, “First results in robot road-following,” in Proceedings
of 9th International Joint Conference on Artificial Intelligence (IJCAI
’85), vol. 2, pp. 1089 – 1095, August 1985.

[22] D. Kopecký, “Localization and advanced control for autonomous model
cars,” 2019.

[23] Yiqun Dong, “What’s the difference between RRT and RRT* and which
one should we use.”

[24] “Derivatives of a bézier curve.” https://pages.mtu.edu/~shene/
COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html.

[25] H. Deddi, H. Everett, and S. Lazard, “Interpolation problem with curva-
ture constraints,” Publisher: Vanderbilt University press.

[26] “Ust-10lx.” https://hokuyo-usa.com/products/lidar-obstacle-
detection/ust-10lx.

[27] V. Benjamin, “VESC – open source ESC | benjamin’s robotics.” http:
//vedder.se/2015/01/vesc-open-source-esc/.

48

https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html
http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/01/vesc-open-source-esc/

...................................... 8. Conclusion

[28] C. Kiree, D. Kumpanya, S. Tunyasrirut, and D. Puangdownreong, “PSO-
based optimal PI(d) controller design for brushless DC motor speed
control with back EMF detection,” vol. 11, no. 3, pp. 715–723. Publisher:
The Korean Institute of Electrical Engineers.

[29] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in
2d LIDAR SLAM,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1271–1278, IEEE.

[30] “kinetic - ROS wiki.” http://wiki.ros.org/kinetic.

[31] X. Hu, “shm_transport/latency vs message size.” https://github.com/
Jrdevil-Wang/shm_transport.

[32] T. Henderson, “sportdeath/motion_planning.” original-date: 2018-07-
19T00:12:12Z.

[33] D. Zahrádka, “Optimization-based control of the f1/10 autonomous
racing car.” Accepted: 2020-09-04T13:58:32Z Publisher: České vysoké
učení technické v Praze. Vypočetní a informační centrum.

[34] M. Samuel, M. Hussein, and M. B. Mohamad, “A review of some pure-
pursuit based path tracking techniques for control of autonomous vehicle,”
vol. 135, no. 1, pp. 35–38. Publisher: Foundation of Computer Science
(FCS), NY, USA.

[35] A. Patnaik, M. Patel, V. Mohta, H. Shah, S. Agrawal, A. Rathore, R. Ma-
lik, D. Chakravarty, and R. Bhattacharya, “Design and implementation
of path trackers for ackermann drive based vehicles,”

[36] L. L. Scharf, W. P. Harthill, and P. H. Moose, “A comparison of expected
flight times for intercept and pure pursuit missiles,” vol. AES-5, no. 4,
pp. 672–673. Conference Name: IEEE Transactions on Aerospace and
Electronic Systems.

[37] A. Krause, “First results in robot road-following,” in The Robotics
Institute Carnegie Mellon University.

[38] J. L. Blanco, M. Bellone, and A. Gimenez-Fernandez, “TP-space RRT –
kinematic path planning of non-holonomic any-shape vehicles,” vol. 12,
no. 5, p. 55. Publisher: SAGE Publications.

[39] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” pp. 1478–1483.

[40] Aaron Becker, “RRT, RRT* & random trees.”

[41] MATLAB, “Autonomous navigation, part 4: Path planning with a* and
RRT.”

[42] MATLAB, “Autonomous navigation, part 1: What is autonomous navi-
gation.”

49

http://wiki.ros.org/kinetic
https://github.com/Jrdevil-Wang/shm_transport
https://github.com/Jrdevil-Wang/shm_transport

8. Conclusion......................................
[43] Y. Kim and H. Bang, Introduction to Kalman Filter and Its Applications.

IntechOpen. Publication Title: Introduction and Implementations of
the Kalman Filter.

50

	Introduction
	Literature review
	Algorithms for trajectory tracking
	Algorithms for obstacle avoidance
	Switching to reactive algorithm
	Trajectory planning algorithms

	Theoretical background
	Definitions
	Kinematic vehicle model
	Trajectory following
	Pure Pursuit
	Stanley method
	Lateral speed controller

	Obstacle avoidance
	Switching to reactive algorithm
	Planning new path
	Rapidly exploring random trees - RRT*

	Bezier curves

	F1/10 platform
	Hardware
	Lidar
	VESC

	Software
	ROS

	Implementation
	Longitudinal control
	Trajectory representation in trajectory tracking algorithms
	Pure pursuit
	Stanley

	Obstacle detection
	Obstacle avoidance
	Switcher to FTG
	RRT* planner

	Experiments
	Scenarios description
	Trajectory tracking scenarios
	Obstacle avoidance scenarios

	Longitudinal control results
	Trajectory following
	Obstacle avoidance

	Future work
	Conclusion
	Bibliography

