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Abstract

Autonomous vehicles are expected to
shape the future of not only the daily
life traffic or transportation but also the
racing world as well. In recent years, the
various autonomous racing competitions
became widespread among university’s re-
search faculties. Therefore, the goal of the
thesis was to develop algorithms suitable
for determination of feasible trajectories
and tracking those trajectories for fast
dynamic autonomous driving. The moti-
vation came from the recent development
in the student formula competition and
CVUT FEL eForce Formula team’s efforts
towards autonomous racing involvement.

The main contribution of the thesis was
to estimate the deviation from track cen-
terline based on stereo-optic camera. In
that sense, in the first part of the thesis,
a novel algorithm was developed to detect
if vehicle deviates from track centerline.
Then, the algorithm was enhanced and ex-
tended such that it is able to estimate the
lateral deviation from track centerline.

In the second part, the control prob-
lem was introduced to track the centerline
of track with minimum error. The task
was decomposed into two sub-problems
which were vehicle dynamical modelling
and Model Predictive Control design. In
particular, the controller was formulated
as Lane Keeping Assist System such that
it would utilize the inputs from trajectory
determination.

In the last part, the simulations exper-
iments were presented and results were
discussed. The simulations were designed
using Driving Scenario Designer Apps in
MATLAB to create various driving scenar-
ios which remind the real racing scenarios
as in the competitions.

Keywords: centerline estimation,
crosstrack error,

vehicle modelling,

model predictive control,
MATLAB
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Abstrakt

Autonomni vozidla by méla utvaret bu-
doucnost nejen kazdodenniho provozu
nebo dopravy, ale také zdvodniho svéta. V
poslednich letech se mezi univerzitnimi vy-
zkumnymi fakultami rozsitily rtizné auto-
nomni zavodni soutéze. Cilem prace bylo
proto vyvinout algoritmy vhodné pro sta-
noveni proveditelnych trajektorii a sledo-
vani téchto trajektorii pro rychlé dyna-
mické autonomni Fizeni. Motivace vyply-
nula z nedavného vyvoje v soutézi student-
skych formuli a tusili tymu CVUT FEL
eForce Formula o autonomni zavodni za-
pojeni.

Hlavnim prinosem prace bylo odhad-
nout odchylku od osy traté na zakladé ste-
reooptické kamery. V tomto smyslu byl v
prvni ¢asti prace vyvinut novy algoritmus
pro detekci toho, zda se vozidlo odchyluje
od osy traté. Poté byl algoritmus vylepsen
a rozsiten tak, ze je schopen odhadnout
boéni odchylku od osy koleje.

Ve druhé c¢asti byl predstaven fidici al-
goritmus ke sledovani stredové linie stopy
s minimalni chybou. Ukol byl rozloZen na
dva dil¢i problémy, kterymi byly dyna-
mické modelovani vozidla a navrh predik-
tivniho fizeni modelu. Zejména byl regu-
lator formulovan jako asisten¢ni systém
jizdniho pruhu tak, ze by vyuzival vstupy
z urcovani trajektorie.

V posledni ¢asti byly prezentovany si-
mulacni experimenty za tcelem validace
navrzenych metod a byly diskutovany vy-
sledky. Simulace byly navrzeny s vyuzitim
aplikaci Driver Scenario Designer Apps
v MATLABu k vytvoreni ruznych jizd-
nich scénait, které pripominaji skutec¢né
zavodni scénére jako v soutézich.

Klicova slova: odhad stiedové linie,
chyba presmérovani,

modelovani vozidel,

prediktivni kontrola modelu,
MATLAB
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Chapter 1

Introduction

. 1.1 Introduction to Autonomous Vehicles

In recent years, there has been enormous improvements regarding autonomous
vehicles(AVs). AVs have a wide range of benefits compared to human drivers.
That’s why, it has great emphasize for research laboratories and university
faculties as well as vehicle manufacturers, such as Tesla.

LEFT REARWARD UEHICLE CAMERA

MEDIUM RANGE VEHICLE CAMERA

Figure 1.1: Interior view of Tesla’s Autonomous Vehicle [I]

Major benefit of AVs in daily life is that they can reduce traffic accidents
and prevent injuries and fatalities happened in those accidents. World Health
Organization(WHO) reported that every year, approximately 1.35 million
people die as a result of a road traffic crash. Between 20 and 50 million
more people suffer non-fatal injuries, with many incurring a disability as a
result of their injury [9]. Same report also indicates that the main factor of
those crashes is the failure of human driver. Therefore, safety is the biggest
design concern for researchers, AVs can be great solutions to traffic accidents.
Another advantage of using AVs is fuel consumption. Having more AVs in
daily traffic would result in reduction of carbon dioxide (CO2) emissions as
AVs cut emissions by 60 percent [I0]. On the other hand, AVs have some
positive effects on social life. AAA Foundation for Traffic Safety stated that
each drivers in U.S. spending 50.6 minutes on the the road everyday [I1]. By
assigning the driving task to an autonomous vehicle, the time spent for driving
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would be freed and can be spend for leisure activities. More comprehensive
information about AVs technology can be also found in [12] and [2].

On the other hand, the vehicle which performs fully autonomous in daily
traffic has not been realized yet. AVs have 5 different autonomy levels.
Stepping into higher level number means more advance features. Nowadays,
Vehicles with having partial autonomous features, like self-parking and lane
keeping assist, can be seen in daily life. This means to Level 2 autonomy.
Experts in the industry say that fully autonomous vehicle would be part of
daily life after 2030 [12]. Below figure shows the levels in AVs and description
of each level.

Level 0 (L0):
No automation

Level 2 (L2): Level 3 (L3): Level 4 (L4): Level 5 (L5):
Level 1 (L1): Now both steering and accelera Conditional automation: The sys These systems have high auto- Full automation,the vehicle can
Advanced Driver Assistance Sys- tion are simultaneously handled o ed mation em- dive wherever, whenever.
tems (ADAS) are introduced: fea- by the autonomous system. The
tures that either control seering human driver stillmonitors the
or speed to support the driver.For environment and supervises the
example,adaptive cruise control support functions
that automatically accelerates and
decelerates based on other vehi-
cles on the road.

conditions are met.

ol atall times

o A A A

0 1 2 3 g 5
NO AUTOMATION DRIVER ASSISTANCE PARTIAL AUTOMATION CONDITIONAL AUTOMATION HIGH AUTOMATION FULL AUTOMATION

are the driver

nen system requests,
you must take control. No requirement for you to take over control.

Systen

Steering OR speed
are automated. Steering AND speed are automated.

Figure 1.2: Level of Autonomous Vehicles [2]

. 1.2 Thesis Motivation

According to information given in previous section, AVs would shape the
future of world. However, it won’t only change the daily life traffic or the
transportation but also would change many other sectors. One of these sectors
in which autonomous vehicle development has major impact, is motorsport
industry. Recently, various new motorsport racing competitions began to
emerge at which no human sits behind the steering well. This is a clear indica-
tion that autonomous racing would become an inevitable part of motorsport
racing world in near future.

The first autonomous racing challenge was introduced in 2016, called
as Roborace. Roborace is a competition with autonomously driven and
electrically powered high performance racing cars. Fédération Internationale
de I’Automobile (FIA) announced that Roborace would be part of FIA
Formula E series soon [I3]. The detailed information about the competition
can be found in [I4] and [I5]. Fig. [1.3| represent first vehicle designed to
race in Roborace.

The other autonomous racing challenge is Formula 1/10 [4]. In this one,
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Figure 1.3: ROBOCAR, first autonomous racing car in Roborace [3]

teams try to implement best solution and get best results using an open
source, affordable, and high-performance 1/10 scaled autonomous vehicle.
Down-scaled vehicle carries a full suite of sensors, perception, planning and
controller which make it similar to full scale solutions. Each team uses
same hardware and software, such that competition becomes pure technical
challenge. As a result, it is quite attractive among research institutions and
faculties to compete with each other.

Figure 1.4: F1/10 Vehicle [4]

Apart from these two, another major competition for autonomous racing is
Formula Student Driverless(FSD) [16]. FSD is one of the three parts of For-
mula Student design challenges, in which students aim to design and develop
best autonomous formula vehicle solution to finish all laps in minimum time
and defeat the others. Therefore, it is by far the most popular autonomous
racing competition among universities. Czech Republic will be represented in
this competition first time with CVUT FEL eForce Formula Team [5]. There-
fore, the major motivation of this thesis is to provide practical algorithms for
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eForce Formula Team for trajectory determination and tracking control.

Figure 1.5: eForce Autonomous Formula Vehicle [5]

. 1.3 Problem Formulation

As described in previous section, the main aim of this work is to develop
trajectory determination and control algorithms for CVUT FEL eForce
Formula Team to be used in FSD. Therefore, the thesis consists of two major
tasks. The primary task is to propose and develop algorithms to check if
vehicle is moving on track centerline and estimate how much the vehicle
deviates from track centerline using stereo-optics camera mounted on vehicle
body. The estimation is heavily based on cones’ positions, road curvatures
and vehicle pose. The cones’ positions can be calculated with stereo-camera
using stereo triangulation. However, it is out of scope of this thesis. It is
assumed that they have been already calculated and known in advance.
After accurately estimating deviation from track centerline, the next step
is to design Model Predictive Control algorithms to track the reference path.
That is the secondary task of thesis. In this regard, control structure is
configured in such way that it would resemble Lane Keeping Assists in order
to travel track centerline with minimum error. In this work, only lateral
controller is introduced, the longitudinal speed is assumed as constant.
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B 1.4 Related Work

In literature, there are a wide range of research and applications regarding
autonomous racing, ranging from path planning and motion control design
to complete system architecture solutions.

AMZ Driverless Team in ETH Zurich, who are winner of FSD 2017 and
2018, introduces complete real-time system design solution for FSD [I7]. They
uses both Lidar and Camera to estimate the cones position and extract the
track map. Also, they propose sensor fusion algorithm to estimate velocity of
the vehicle precisely. Regarding motion control, they employs almost same
method present by Liniger.

Liniger in [I8] and [19] presents several optimal control strategies for au-
tonomous racing car. The first one is hierarchical control. In this one,
trajectory is planned first in such a way that it returns maximum progress
on the track at each time step. Then, planned trajectory is tracked using
MPC controller. The second method, on the other hand, tries to combine
planning and control problem in same convex optimization problem. This
method called as contouring problem.

Braghin [20] presents another approach for trajectory determination and
control for autonomous race car. It first calculates the shortest and mini-
mum curvature path for the given track and defines velocity profile using
forward-backward pass. Then, compare both method in terms of minimum lap
time. Finally, it describes a control method, which is based on feed-forward
compensation, to follow the determined trajectory. The paper in [21] employs
the same methodology as well.

Heilmeier [22] introduces also similar approach with Braghin for planning
of autonomous race car for Roborace Competition. That work generates min-
imum curvature path using quadratic optimization problem formulation. The
main difference is the improvement in accuracy of curvature approximation
by defining constraints for curvature and iterative invocation of quadratic
problem.

The autonomous racing problem is taken into consideration by Kapania
[23] as well. In contrast to previous two works, at first a velocity profile
is generated. Then, a convex path optimisation problem is solved which
minimises the resulting path curvature while taking the vehicle’s handling
limits into account. Similar work can be found also in [24].Additionally,
Kapania servers novel control strategy. It is called as iterative learning control
which enable autonomous vehicles to drive more effectively by learning from
previous driving maneuvers.
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. 1.5 Thesis Goals

The ultimate goal of this thesis is to determine trajectory for autonomous
racing car based on stereo-optic camera. In particular, the trajectory of inter-
est in this work is track centerline. In the first attempt, a novel algorithm is
presented to detect if vehicle deviates from centerline based cone positions on
the track. After that, the algorithms is enhanced and extended such that it
would estimate the amount of deviation from track centerline. The essential
input for the new algorithm is the road curvature along with vehicle orienta-
tion and speed. The output of this algorithm would also main input while
designing centerline tracking controller. On the other hand, the secondary
aim of the thesis to design model predictive controller to track the centerline
with minimum amount of error. To achieve this, linearized vehicle dynamical
model is introduced first. Then, model predictive control is formulated as
lane keeping assist system such that it can utilize the cross=track error as
internal plant model in the controller.

To overcome overall task, it is divided into sub-problems, so the rest of the
thesis is organized as follows:

® Chapter 2: Trajectory determination for centerline estimation and esti-
mating cross-track and heading error based on road curvature calculated
using stereo-optics camera.

8 Chapter 3: Kinematic and dynamical modelling of the vehicle to be used
in model predictive control design.

8 Chapter 4: General information and formulation of Model Predictive
Control

8 Chapter 5: Lateral MPC Design to track the path centerline using
estimated cross-track and heading error.

8 Chapter 6: Experiments with using different scenarios to validate pro-
posed methods.

8 Chapter 7: Conclusion of the work and suggested future works



Chapter 2

Trajectory Determination

As a primary objective of this thesis, this chapter introduces trajectory deter-
mination algorithms to be used in FSD competition, specifically for estimating
the deviation from track centerline based on stereo-optic camera. Section
gives brief information about track specifications in the competition. Then,
MATLAB?’s Driving Scenario Designer Apps is presented in Section This
toolbox is used to create sample tracks with respect to given specifications.
Section on the other hand, discusses how to ensure that the vehicle is
going on centerline of track. Finally, an algorithm developed for estimation
of deviation from centerline is proposed in Section

Figure 2.1: Centerline Driving in FSD Competition [6]

B 21 Track Specifications

In this section, the track specifications determined by FSD committee is
introduced. In order to develop sufficient algorithms for trajectory planning,
it crucial to have a track which has same properties with actual track used in
FSD competition. Otherwise, designed algorithms won’t be beneficial in real
race situations.
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| 8 ) i
big orange cone small orange cone small yellow cone small blue cone
two white stripes single white stripe single black stripe single white stripe
WEMAS WEMAS WEMAS WEMAS

307.610500.00.00 400.000013.00.00 400.000013.01.10 400.000043.00.00

285 mm x 285 mm x 505 mm 228 mm x 228 mm x 325 mm
1.05kg 0.45kg

Figure 2.2: Cone Specs [7]
Official FSD Handbook|[7] states that the tracks in the competition are
supposed to have following characteristics:

® The track layout is realized with cones. Size and properties of cones are
shown in Fig.

® The left lane of the track are marked with small blue cones.
® The right lane of the track are marked with small yellow cones.
® Exit and entry lanes are marked with small orange cones.

8 The maximum distance between two cones pairs in driving direction is
5 meters. However, in order to have better indication, this distance is
reduced in corners.

According to given track specification, the below figure visualize the track
layout description.

10 Laps b
o1y . T L
/ 6m ' Start !

Start / Finish Line

Figure 2.3: Example Track Visual [7]
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. 2.2 Simulation Framework Overview

As mentioned beginning of this chapter, it is essential to have a track con-
figured according to specifications in previous section. Therefore, one of the
sub-objectives of thesis is to design simulation framework for racing track
design. In that sense, this thesis employs Driving Scenario Designer Apps
(DSDA) [25] to create required simulation environment, and this section is
dedicated to basic explanation over how to use DSDA for the purpose of
track configuration. This application includes sufficient tools and features to
generate desired tracks in order to be used when developing algorithms.

X

Figure 2.4: Adding Road

To create desired by using Driving Scenario Apps, first thing is to determine
the track layout. It is done by clicking on the canvas throughout the desired
path as shown in Fig. [2.4. Followed by this, cones are added to left and
right lanes of the road. Since there is no specific Add Cone option in the
application, Add Barrier feature is used and the shape and size are adjusted
as defined in Section [2.1] Since there is no possibility to create all the barriers
in yellow and blue colors, the left and right cones are marked as odd index
and even index respectively.

20

| . I :

Figure 2.5: Detection of Cones with Camera
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After obtaining the desired sample track with cones, the vehicle is presented
into the simulation environment, and camera is placed on top the vehicle with
preferred orientation and camera settings. The camera is the crucial feature
of DSDA for this thesis. The major reason is that it returns the relative
distances of the detected objects with respect to camera coordinate frame.
Since the determining of cones position is not included in this work, that is
quite beneficial feature when developing algorithms. Camera also provides
feedback about vehicle position and velocity.

Figure 2.6: Running Simulation

As a final step, the reference path for the vehicle is defined. The path can
be drawn on the road through desired direction. After all, the simulation is
run and vehicle starts to move over reference path. Once finished, all the
data can be exported to work space to be used for developing centerline and
its deviations estimation algorithms.

10
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. 2.3 Centerline Estimation

This section focuses on developing algorithms to indicate whether or not
vehicle is going on centerline. In FSD competition, track map is not provided,
so there is pre-information for path planning. In this regard, in order to
obtain actual track map, going through track centerline in first or first two
laps has great importance. Also, as stated earlier, the estimation is mainly
depend on camera measurement.

Centerline Estimation

20

Lateral Axis(m)

10 1 1 1 L 1 I
2, 4 5] 8 10 12 14 16 18 20 22

Longitudinal Axis(m)
Figure 2.7: Centerline Driving Scenario

Using DSDA, a simple algorithm is proposed, first, to check the centrality
of vehicle. The idea is to compare the distance to left and right target cones
at each time instant. If the difference between is small enough, then it can be
said that the vehicle is travelling in centerline. Also, when distance between
vehicle and mid-points of target cone pairs is below certain threshold, it shifts
to next one. Fig. [2.7| represents the results of first test, where green circle
indicates that vehicle is in centerline at that current step. Blue and yellow
circles, also, symbolize cones. From the figure, it can be pointed out that the
simple algorithm works well when vehicle is moving on track centerline.

11



2.3. Centerline Estimation

After that, another simulation test is performed in which vehicle follows
wild motion path rather than centerline. Then, the resulting plot is obtained
as in shown Fig. 2.8/ In the plot, the black line going through mid-points of
the cone pairs represents the exact track centerline, and red circle refers that
vehicle deviates from centerline of track. Other symbols have same meanings.

20

15

or

Lateral Axis(m)

2 4 ] 8 10 12 14 16 18 20 22
Longitudinal Axis(m)

Figure 2.8: Wild Driving Scenario

From the plot, it is obvious that when vehicle is not on the black line,
the algorithm returns green circle as if vehicle is on centerline. This proves
that algorithms is not work well, so some adjustments have to be made to
correctly estimate centerline check. In that sense, the method was completely
changed and new method was developed. The main idea behind the new
method is to create a circular corridor through centerline of track and check
whether or not the vehicle crosses or inside that corridor. If the condition
is satisfied, this would imply that vehicle is at the centerline of track. In
order to implement the algorithm, first, the distance between mid-points of
past and target cone pairs are linearly interpolated, and circles are generated
centered at each of those points with same radius. Then, at each time step,
algorithm find the nearest circle with respect to vehicle position. However,
for crossing condition, not only the nearest circle is considered, the neighbour
circles at each sides are taken into account as well.By doing so, algorithm
becomes more robust. Fig. 2.9 represents the new method.

12



2.3. Centerline Estimation

y  —— Circlescentered at IP

— Nearest Circle

O — Circles of Interests

— Interpolated points (IP)

Figure 2.9: New Method

Apart from these, the new method has one controversial aspect. In this
method, it is essential that circles are generated such that there would be
no empty space between each other. In order to achieve this, there are two
options, increasing either radius or number of interpolating points. However,
increasing radius increase the threshold distance to check the centerline
condition, the second option was employed in this work. After careful tests,
it was realized that interpolating 10-15 points would return quite satisfied
results.

On the other hand, when analyzing the results, it was also realized that
condition for shifting to next cone pair shows undesired results at some
points and needs some improvements as well. To overcome this problem, the
condition was updated. The new idea is that instead of looking the distance
between vehicle position and middle of target cone pair, the rate of change
of that distance is considered. In this case, when vehicle is approaching to
the mid-point regardless of which direction, the rate would be negative sign.
Then, once the sign become positive, it would means that vehicle just crossed
the lane between target cone pair, and algorithms shifts to next cone pair.

I
25 3 35 4 a5 5 55 6 65
Longitudinal Axis(m)

Figure 2.10: Implementation of New Method

13



2.3. Centerline Estimation

After having necessary updates in the algorithm, it was tested by running
same simulation again. Fig. [2.10| visualize the plot which was obtained during
the test. As can be seen form the figure, algorithm seems working as desired.
It is capable of find circles of interest in each time step and check whether
vehicle cross or inside any of them. This is a clear confirmation that, on
contrast to the previous version, the updated algorithm is able to successfully
detect whether or not vehicle travels on centerline in more robust way. The
pseudo-code of the final version of the algorithm is shown below.

Algorithm 1: Centerline Estimation

Data: Vehicle Position and Cone Positions

Result: True if vehicle is on Centerline, False Otherwise

Initialization;

ConeNo +— Target Cone Pair Number;

r <— Radius of Circles;

n <— Interpolation Size;

interpolatedpoints «+— Interpolate points from start position to
middle of target cone pair;

middlepoint +— Calculate Middle Point of Target Cone Pair;

Then, at each step k;

(2 B N

while vehicle moves do

VehiclePosition «— Get Vehicle Position at time & ;

10 distance2mid <— Calculate Rate of Change of Distance to
middlepoint using VehiclePosition,;

11 if Sign(distance) == Positive then

© 0 N o

12 ConeNo +— ConeNo + 1;

13 interpolatedpoints «— Interpolate New Points from middle
of past cone pair to middle of new cones pair ;

14 middlepoint +— Calculate New Middle Point ;

15 else

16 Do Nothing

17 end

18 Center of Circles <— interpolatedpoints ;

19 C1 <— Find Closest Circle to Vehicle Position ;

20 C2 and C3 +— Find Neighbours Circles at both sides ;
21 CircleOfInterest «— C1, C2 and C3 ;

22 CrossCheck «+— CircleO fInterest, VehiclePosition, r ;
23 if CrossCheck == True then

24 ‘ return True;
25 else

26 ‘ return False;
27 end

28 end

14



2.4. Estimation of Deviation from Centerline

. 2.4 Estimation of Deviation from Centerline

As mentioned before, it is crucial to track centerline at the beginning of
the race in order to obtain the track map accurately. In the same sense,
estimation of how far the vehicle is deviating from centerline is also one of the
main considerations for this thesis. Previous section describes the method
to detect when vehicle deviates from centerline, but it does not calculate
the amount. Therefore, this section presents how to estimate deviation from
track centerline, known as cross-track error along with heading error. The
main idea behind estimating cross-track error is to formulate the problem
as lane keeping assist system. That would be also basis for lateral control
design. In this case, desired lane refers to centerline of the track. Fig.
depicts the cross-track error. The proposed method depends on [26] and [27].

Y Left Lane

Lane centerline

w e : Lateral deviation

e, : Relative yaw angle

»X

Figure 2.11: Deviation from Centerline
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2.4. Estimation of Deviation from Centerline

The cross-track is formulated as the projection of vehicle velocity in from
body coordinate frame into the radial direction y. which is perpendicular to
reference heading pf the curve v,.¢. Then, the equation which describe rate
of cross-track error is obtained as;

édev = l.'b Sin(d) - wref) + yb COS(¢ - wref) (2'1)

where ey, is crosstrack error, &, and g, represent vehicle velocities in body
frame, and 1) and v, are vehicle and reference curve heading respectively.
Since vehicle is assumed to travel along the reference curve closely, it can be
say that the difference between the heading of vehicle and reference would be
small enough such the differential formula in Eq. 2.1| can be linearized using
small angle theorem. Then, formula is linearized as follows

édev = ib Sin(d] - wref) + yb COS(¢ - ¢ref) (2'2)
= Iy (Y —Yreg) + U
—_~ L X~
Ve €yaw Vy
= Vxeyaw + Vy (24)

where eyq, refers to heading error between vehicle heading and reference
curve heading. As can be seen from Eq.2.4] the cross-track error is function
of heading error, eyq,. Therefore, heading error needs to be formalized as
well. From [27], the rate of reference heading t,.¢ is defined as

11&7"6_)0 =Vap (25)

where p is curvature of the desired curve. Then, differential equation for
heading error can be expressed as

byaw = U — Kzﬁ (2.6)
'LZ}ref

On the other hand, this thesis claims to estimate the deviation with using
stereo-optic camera. The inputs, vehicle velocities V,, and V,, in body frame,
and heading of vehicle ¢ can be provided by camera using visual odometry ,
as well as by other sensors like GPS or IMU. In that sense, particular role of
the camera to estimate the deviation is coming from estimation the curvature
of track centerline . As can be seen from Fig. 2.11], the reference curve is
approximated as circle which is tangent to and has same radius with the
curve. Then, the curvature of corresponding point can be found as

1

2.7
Rcircle ( )

R =
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2.5. Curvature Estimation

where k is curvature and R is radius of approximated circle. In that
sense, next section would introduce how to calculate curvature of desired
curve in order to estimate cross-track error accurately.

Algorithm 2: Estimation of Deviation from Centerline
Data: Yaw Rate, Vehicle Speeds at Body Frame, and Road Curvature
Result: Heading Error and Cross-track Error

1 initialization;

2 Same as in Algorithm |1];

3 Then, at each step k;

4 while vehicle moves do

5 CircleOfInterest «— Run Algorithm |1}

6 Estimate Road Curvature using C'ircleO f Interest points ;
7 Get Yaw Rate and Vehicle Speeds at Body Frame ;

8 Heading Error <— Solution of Eq. 2.6 ;

9 Cross-track Error <— Solution of Eq. 2.4/;
10 end

. 2.5 Curvature Estimation

Curvature estimation of curvy road is one of the main challenges in lane
keeping assist systems. As described in previous section, it is the key input to
calculate cross-track error. Therefore, this sections introduces two methods
regarding how to find curvature of the desired curve.In this case, instead
of approximating lane, the position of the cones are used to calculate the
curvature of the track centerline.

Yi

x¥

Figure 2.12: Curvature of Curve

B 2.5.1 Definition of Curvature of Curve

The definition of curvature is that it is a measure of how sharply a smooth
curve turn. More sharper turn yields to bigger curvature. If the curve is

17



2.5. Curvature Estimation

circle, it has constant. However, in order to find the curvature of curve in
general case, the curve is approximated as a circle at given point such that it
is tangent to and has same radius with the curve. As depicted in Fig. 2.12|
the approximated circle, known as also osculating circle, hugs the curve as
closely as possible since the 2 curves have the same tangent and radius at the
point where they meet. As a result, the curvature of curve at given point is
equal to curvature of approximated circle. In this regard, next two subsection
are dedicated to different methods of finding curvature.

B 2.5.2 Parabolic Approximation

This subsection focuses on first method to calculate curvature of curve. Since
vehicle is moving 2D plane, the curve is represented as y = f(x). If curve is
the graph of a function and both g and 4 exists, then the curvature at given
point can be calculated as [28][29]

3
2

d
1+ (dg)2]
| &2

However, the function which describe the curve is not known. A sufficient
way to find the curve formula is to curve fitting with parabola using 3
consecutive data point. These data points can be found by interpolating the
distance between mid-point of two cones pairs as described in Section [2.3|
In general, a parabola is described as

y=azr’+br+ec (2.9)

At each point (zp,y,), the point itself and the points on either side of it are
substituting into Eq. 2.9| gives a linear system consisting of 3 equations with
3 unknowns

r1? 21 1| |a yl
22 22 1| |b| = |y2 (2.10)
z3% 23 1| |c y3

Finally, solving this linear system, taking first and second derivative of
parabolic equation, curvature at the point (z,,y,) is computed as

N

ll + (2az, + b)?

R(zp) =

e (2.11)

(2.12)
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2.5. Curvature Estimation

B 2.5.3 Circle Approximation

Previous method finds the curvature with parabola approximation. As differ-
ent from that, this sections represents another method to calculate curvature
at each point on the path. This method is called as Circle Approximation
which is an exact method for finding the required radius of curvature. As in
previous method, the method needs 3 points to approximate circle which is
tangent to and has same radius with the path at given point. In literature,
there are various way to how to approximate the circle with given 3 points.
This work employs the method in [30]. Some other methods can be also found
n [31] and [32].

Rcircle

Rircle

My,

Figure 2.13: Approximated Circle through which the points pass

General form of circle equation is
22+ y? +2ax+2by +¢c=0 (2.13)

Plugging the three points into the equation

o} + i + 2ax1 + 2byy + ¢ =0 (2.14)
w} + 3 + 2azz + 2bys + ¢ =0 (2.15)
23 + Y3 + 2ax3 + 2byz +c =0 (2.16)

Then, these three equations are formulated as in Eq. [2.10| and solved for
unknowns, a, b and c¢. After obtaining unknown parameters, the radius of
circle and curvature are calculated as

Te=—a (2.17)

Yo = —b (2.18)

R.=\/22+y2—c (2.19)
1

R= (2.20)



2.5. Curvature Estimation

B 2.5.4 Comparison of Methods

Subsections [2.5.2| and [2.5.3| covers the description of two methods over cur-
vature estimation of path. To find which method is superior to the other

one, two test were performed. In the first one, elliptical circle was generated.
Corresponding result is shown in Fig.

Curvature

08

s

04

0z

Figure 2.14: Curvature Estimation from Elliptical Circle

Above figure indicates that circular approximation work dramatically better
than parabolic approximation. It returns almost same as actual values. How-
ever, one test is not enough to analyze the performance. Therefore, another
test were applied in which a random curve was created.

Curvature

Figure 2.15: Curvature Estimation from Random Curve

Fig. implies that circular method is still superior to parabolic method.
As a result, circular approximation was selected to be used in experiments
for curvature estimation.
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Chapter 3
Vehicle Modelling

This chapter focuses on mathematical model of vehicle motion which is one
of the core elements for model-based controller design using model predictive
control. Section [3.1]gives brief discussion about kinematic bicycle model which
purely refer to geometric motion of a vehicle. In Section |3.2, a simplified
single-track dynamic model is introduced. It consists of a rigid body of
mass m and inertia I,, along with a front and read wheels. The dynamics
is assumed to be planar thus all lifting, rolling and pitching motions are
neglected. The essential part of dynamic model is the interaction between
tires and road. Therefore, the brief overview of tire modelling and its effect
on vehicle dynamic motion can be found in Section [3.3

. 3.1 Kinematic Model

This section gives detailed explanations of kinematic model of the vehicle
which is commonly used at low speeds . Kinematic model focuses on geometric
properties of vehicle and does not consider dynamics of the vehicle, such
as tire forces, mass and inertia. The fundamental modelling assumption
is that the vehicle has perfect road handling and moves without slipping
sideways. This assumptions is valid as long as lateral acceleration is low
enough and lateral force exerted by each tire are negligible. Also, during
steady-state turning, the wheels are moving along concentric circular paths,
aligned with the circle tangents and with no lateral slip. Therefore, it is
possible to represent the two left and right wheels by a single wheel located
in the center of the axle [33].

For kinematic model, the equations of motion are based on [34], which also
compares kinematic and dynamic models in terms of control design, [35] and
[36]. The nonlinear equations that describe kinematic bicycle model in an
inertial frame are
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3.1. Kinematic Model

& =wvcos(¢ + P) (2.1)
y = vsin(y + 5) (2.2)
§ =1 sin(f) (2:3)
v=a (2.4)

B =tan~! ((lf:ilr) tan(5)> (2.5)

where x and y are the coordinates of the center of mass in an inertial frame.
1 is the inertial heading and v is the speed of the vehicle. Iy and [, represent
the distance from the center of the mass of the vehicle to the front and rear
axles, respectively. [ is the angle of the current velocity of the center of
mass with respect to the longitudinal axis of the car. a is the acceleration of
the center of mass in the same direction as the velocity. The control inputs
are the front and rear steering angles d; and acceleration a. Since in most
vehicles the rear wheels cannot be steered, ¢, is assumed to be zero.

Figure 3.1: Kinematic Model

The main advantage of kinematic model is that compared to higher fidelity
vehicle models, the system identification on the kinematic bicycle model is
easier because there are only two parameters to identify, [ and [,..This makes
it simpler to port the same controller or path planner to other vehicles with
differently sized wheelbases[34].
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3.2. Dynamical Model

3.2 Dynamical Model

Kinematic model in Section |3.1|is beneficial only if vehicle speed is low enough
and there is no slipping to sideways. However, it would be inefficient when
vehicle start to lose road handling between tires and road. Therefore, this
section introduces dynamical model of vehicle motion which is mainly depend
on forces exerted by each tire. The presented single-track model is based on
[18],[37], and [38].

A

Figure 3.2: Dynamic Model

As similar in kinematic model, the single-track dynamical model is valid
under following assumptions[39],[18];

All lifting, rolling, and pitching motion is neglected.
Vehicle mass is assumed to be concentrated at the center of gravity.

Front and rear tires are represented as one single tire on each axle.
Imaginary contact points of tires and surface are assumed to lie along
the center of axles.

Pneumatic trail and aligning torque resulting from a side-slip angle of a
tire are neglected.

Mass distribution on the axles is assumed to be constant.

As the used cars are rear wheel driven and do not have active brakes,
the longitudinal force on the front wheel is neglected
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3.3. Tire Model

The governing differential equations for dynamical model are

i = %(Fm — Fyysind) + g (2.6)
i = %(Fr,y + Fy,cosd) — i (2.7)
) = %(Ff,ylf cosd — Fryl;) (2.8)
X = i cos(tp) — ysin(v) (2.9)
Y = isin(t) + 5 cos(v) (2.10)

where 2" and 3" denote the longitudinal and lateral speeds in the body frame,
and "¢ denotes the yaw rate in inertial frame. While m and I, denote the
vehicle’s mass and yaw inertia respectively, Iy and [, represent the distance
from the center of the mass of the vehicle to the front and rear axles. F' terms
represents tire force exerted by each tire in tire coordinate frame. Therefore,
they have to be transformed to body-fixed coordinate frame by rotation of 4.
The tire forces will be handled more detailed in Section 13.3.

The main advantage of dynamical is that since it includes more sophisticated
dynamic and cover larger envelope in terms of speed and acceleration, it
reflects a realistic behaviour of vehicle better than kinematic model. This
would increase the accuracy of model predictive control design which will be
discussed later.

. 3.3 Tire Model

As can be seen from Section [3.2], the essential part of dynamical model of
vehicle depends on tire forces. In this regard, this section gives briefly overview
for tire modelling approach. Tire modelling , which represents interaction
between the tires and road surface, is the biggest challenge in modelling and
control design for vehicle. There are a lot of such model in nowadays, which
estimate longitudinal and lateral tire forces based on vehicle states. In this
work, only the most famous one which known as Pacejka’s Magic Tire model
is introduced in Section [3.3.1L The detailed information regarding the model
can be found in [40] and [4I]. The fine summary of the model is also in [42].
On the other hand, due to fact the model proposed by Pacejka is highly
non-linear, especially at cornering situations, the model has to be linearized
in order to be used in model-based control design. In that sense, Linear Tire
model is discussed in Section 13.3.2.

B 3.3.1 Pacejka’s Tire Model

This subsection gives description for Pacjecka’s tire model. It is a complex
semi-empirical model being able to describe the nonlinear behaviour of tire
forces under wide operation range. The original formula consists of more
than 20 coeffients. But, the model then is simplified and reduced to 4 main
parameters. The approximate value of these main parameters is estimated by
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3.3. Tire Model

fitting the formula to empirical measurements of the tire behavior. On the
other hand, the main inputs of model are of the tire normal force, slip ratio,
slip angle and surface friction coefficient. As a result, both longitudinal and
lateral tire forces can be computed in straightforward way. However, since
the longitudinal tire force is neglected with the assumption in Section [3.2)
only the lateral tire forces are calculated.

The analytical equations for the lateral tire forces are

ay = § — arctan M (2.11)
&

a, = —arctan <¢lr—y> (2.12)

x

Fyy = DF, ;sin(Carctan(Bay — E(Bay — arctan(Bay)))) (2.13)
F,, = DF, ,sin(C arctan(Ba, — E(Ba, — arctan(Ba,)))) (2.14)

where B,C,D and E are set of shaping coefficients, F, ; and F}, are the
wheel loads for both tires, and a; and a, are side-slip angles of front and rear
tire respectively.

The parameter D represents the peak value that a tire force can be. The
parameter C' determines the shape around the peak value. The B is the
stiffness factor of tire. Finally, the parameter E describes curve shape. Fig.
3.3 shows the magnitude of lateral tire force for front tire with respect to side
slip angle a, with varying wheel load F,.

5000 T

4000 —

3000 -

2000 -

1000 ~

Lateral Force {Newton)
=)
T

-1000

-2000

-3000 ~

7 = 1000 (Newton)
2 = 2000 (Newton)
-4000 Fz = 3000 (Newton)| 7|
——— Fz = 4000 (Newton)
——— Fz = 5000 (Newton)

-5000
-16 -10 -5

0
Slip Angle (deg)

Figure 3.3: Lateral Tire Forces
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3.3. Tire Model

B 3.3.2 Linear Tire Model

From Section [3.3.1], it is obvious that considering slip-angle phenomenon with
having realistic tire model is a key factor when the vehicle reached to its
limit at cornering situations. However, creating a realistic tire behavior for
model-based control design using nonlinear tire model is quite challenging and
complex. That’s why, in this section, the linearized tire model of Pacejka’s
Magic Formula is introduced to be used in control design later. The major
assumption behind the linearized model is that it is only valid if slip angle
has small value. Figure X also proves the assumption, From the graph, it is
seen that nonlinear model behaves linearly at small angles.

Using small angle approximation, the nonlinear equations regarding slip
angles become

y ) L
ay = § — arctan <W> ~ —M—i—é (2.15)

7 &

T 1
a, = —arctan <M> ~-4 L4 (2.16)

7 7

Then, the lateral tire forces are linearly approximated by following formula;
Ff’y ~ Cfaf (2.17)
Fr,y ~ Crar (218)

where a, and ay are linearized slip angles, and Cy and C, refers to cornering
stiffness factor of each tire which corresponds to coefficients in original Pacejka
model. The cornering stiffness factors can be found by taking partial derivative
of 2.13| and |2.14] with respect to corresponding slip angles, and evaluated at
zero angle. Figure [3.4] compares the linearized model with original and can
be seen that assumption is valid under small angles.

1400
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1000 -

Lateral Force (Newton)

o 0.5 1 15 2 25 3 35 4
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Figure 3.4: Linearized Tire Model
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Chapter 4
Model Predictive Control

Model Predictive Control(MPC) is one of the widely used control design
method in process industry. MPC utilizes the model of a system to predict
its future behavior, and it solves an online optimization algorithm to select
the best control action that drives the predicted output to the reference. In
this regard, this section is dedicated to comprehensive guide over MPC. More
detailed information can be found in [43] and [44]. [45], [44] and [33] provides
sufficient summaries and study materials. Fig. 77| represent basic workflow
of general MPC design.

High-fidelity simulation model

Control-oriented prediction model

(simplified) Performance index
- & constraints.

Closed-loop simulation

Physical modeling+

parameter estimation System Identification

A

Experiments

Physical process

Figure 4.1: MPC Design Flow
Section gives overview of working principles of MPC.Then, In Section

basic principles of the controller is presented. Finally, the detailed
formulation of MPC problem can be found in Section
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4.1. Working Principle of MPC

B a1 Working Principle of MPC

This section basically discuss the working principles of MPC. It is an optimal
control problem which tries to solve optimization problem shown in Figure
below at each time step. As each controller, the goal of MPC is to calculate
the input to the plant such that the plant output follows a desired reference.
To achieve this, the main strategy that MPC employs is to compute this
input which depends the prediction of the future system outputs.

Reference

3 Manipulated Variable | Plant Output
Ld

Ld

MPC Controller

~

Figure 4.2: MPC Structure

At the current time, the MPC controller uses plant model to simulate the
plant behaviour over the next N step. N is called as prediction horizon which
is a measure of how far ahead MPC looks into the future. The MPC needs
to find the best predicted output which has the lowest residual value over N.
It simulates multiple future scenarios like this in an systematic way. This
is the place where the optimizer comes into the problem. The key task of
optimizer is to minimize the cost function in such a way that it minimize
the error between output and reference and change in input increment while
satisfying limit conditions.

&) @) B B (@ o 1=50
//
> @ — & a5

model H"/

J=20

@) @ ) » ® |le— //"'

Figure 4.3: MPC Cost Function

The predicted output with the smallest J value gives the optimal solution
and therefore determines the optimal input sequence through prediction
horizon which will make the plant output as close as possible to desired value.
However, applying all sequence to the system would results in open-loop
control which makes system fragile to disturbance and model uncertainties.
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4.2. Properties of MPC

In order to overcome this, after finding the optimal sequence, MPC applies
only first step in the sequence and disregards the rest. By doing so, it turns
the control problem into closed loop feedback system. This would be covered
in more detail in next section. After that, in the next time step, the finite
horizon window is shifted and the optimization is repeated.

N-1

min Y [W¥(yk — r(£))llz + IW" (ur — e (t))]]3
k=0

s.t. xk4+1 = f(zk,uk) Frzdiction model
Y = 9(Tk, uk)
umin < Uk < Umax constraints
rg = x(t) skate »feedbacle

Figure 4.4: MPC Formulation [§]

On the other hand, as can be seen from figure above, the cost function J
involves weights which penalize both states and inputs. As a primary control
design objective, it is aimed to both track desired reference with a smallest
error possible with having smooth control moves. In order to balance between
these competing objectives, one can adjust the weights corresponding to
input rate with respect to output weights. If the ratio of input rate weights
over output weights is higher than 1, it results in more aggressive system
response. Otherwise, it means to put more emphasize on robustness of a
system. Additionally, weights of these two groups are not only adjusted
relative to each other, but adjust relative within the same groups as well,
For example, if a system has two states and it is more critical to perform
reference tracking of the first output than the second output, we assign a
larger weight to the first output and the ratio between the outputs is greater
than 1.

B a2 Properties of MPC

This section briefly introduces the the main properties of model predictive
control. Here are some reasons which clearly expresses why it is demanding
control system in the industry, especially in autonomous vehicle field.

First one is that MPC can handle multi-input multi-output(MIMO) systems
that have interactions between their inputs and outputs. Suppose a MIMO
system in which a change in first output also affect the second one. If PID
controller was chosen, it would quite challenging to tune the gains because
the two control loops would operate independent of each other as if there is
no relation between them. The difficulty would increase for bigger systems
as they would require too much controller gains to be tuned. In same sense,
the advantage of MPC is that the controller is structured in such a way that
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4.2. Properties of MPC

it can control the outputs simultaneously by taking into account of all the
interactions between system states.

Another feature of MPC is that it can handle constraints. Constraint issue
is one of the important design consideration in control system design, because
violating them can result in undesired outcomes. MPC takes the user-defined
constraints into consideration and returns controller output accordingly.
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Figure 4.5: Preview Capability

The other unique strenth of MPC is its preview capability. Thanks to this
feature, the controller can observe what will come in future and adjust its
output based on the previewed references. This will considerably enhance
both controller and system performance. To give an example, imagine that
an autonomous racing car travel on curvy track. If the controller doesn’t
know that corner is coming ahead, it would be only able to apply brakes
while its taking the corner. That would results in too much brake forces that
is not desired in racing. However, with utilizing preview capability, the car
controller would be informed about the corner. Then, it can brake early and
exit from the corner with higher speed.

MPC has all these benefits, but as a cost of all of them, it has one main
disadvantage.This is the one that it requires a powerful, fast processor with
large memory. The reason is that MPC solves an online optimization problem
at each step. However, thanks to increasing development in embedded design
field, this problem stands no longer as a huge barrier for implementation of
MPC as it was before.
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4.3. General MPC Formulation

. 4.3 General MPC Formulation

This section gives a detailed guide over formulation of MPC problem. The
presented methods are based on [46],[8] and [47]. The main aim is to formulate
the problem as convex optimization problem as in the below equations such
that it has only one global optimal point and does not generate any infeasible
solution. Also, since this thesis considers tracking, not regulation, only the
methodology regarding tracking is discussed.

1
minimize EXTHX + FTx (4.1)
X

subject to Ax <b (4.2)

B 4.3.1 Simultaneous(Sparse)

First method for MPC problem formulation is Simultaneous approach, known
as also Sparse. As may be understood from the name itself, it tries to optimize
both system states and control input at the same time. Formulation begins
with defining a linear state-space model which is represented as

Xk+1 = Axk + Bug (43)
Yk = CXk (4.4)

where A is state matrix, B is input matrix and C is output matrix. Since it
is assumed that there is no direct through, D term in Eq. |4.4] is neglected.

Given linear model, general MPC formulation over prediction horizon, N,
at discrete time is

N-1

1 ¢ 1 T T

minimize —XpNSX — X Qx u;, Ru 4.5

Ut Uy N—1,Xt+ 1, Xe4N 2 NOXN + 2 1; ( i Qxic + ug k (4.5)

subject to Xk+1 = Axk + Buy,
Xy = given

Xmin < Xk < Xmax-

~ o~~~
B
© o I O
— — ~— —

Umin < Uk < Umax.
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4.3. General MPC Formulation

For tracking, it is aimed to minimize error between reference and output
rather than states. That’s why, states variables in the formula are replaced
with error terms. Then, the cost function turns into following form,

N-1
J= %GEJFNSGHN + % (etT+ert+k + utTJrkRut-i-k) (4.10)
k=1
However, this leads to another problem. In steady state, error terms
would go to zeros, but in general, input term wont be zero. If input term is
minimized, that would make error term to increase. In order to solve this
problem, it is aimed to minimize the change in the input increment instead.
In this sense, input u first is defined in such way that it would sum of input
increment and input at previous time. By doing so, it becomes possible to

employ input at previous time, ug_1, as new state variable.

Auk = Uk — Uk-—1 (4.11)
ug = Uk_1 + Auy (4.12)
N—— N——

new extra state new control input

Then, original system is augmented with the new control state as follows

x11<1+1 _|A B xﬁ L B Auy (4.13)
X1 0 I |xy 1
—— ——
A % B
i =[C 0] lxﬁl (4.14)
~——— Xx
¢

Having augmented system and defining e = ref - output, the cost function
in Eq. 4.10]is rearranged

1 == ==
J= §(rt+N — C&e4n) TS (resn — CRern)
SN ) ) (4.15)
T3 > (regk — Cepa) TQ(reg — CRequ) + Aug RAU
k=0

Expanding the equation, eliminating constant terms and collecting the
same terms into matrices as in Eq. [4.17,

1 - 1op s
J = ir;ﬂNerN —r{f, NSC&eyN + 5x;ﬂNCT SCxiiN
1 (1 g T Oé< lor &aTaés
t3 kZ::o S TorkQresi — Tea QCK e + 5% O QCK e (4 1)

+ AuakRAqu)
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4.3. General MPC Formulation

rg Xt+1 Aug
Tyl _ Xt+2 Augiq
r= . X = . Au = . (4.17)
rn Xe4+N AugyN-1

Overall optimization problem would look like,

) CTQC QC )
minimize —XT x—rt %+ =Aut
%X,Au 2 ~ ~ ~ 2
CcTQC QC
Q T
(4.18)
0 - A
A o B 0
subject to X = o X+ Au+ | | Xo (4.19)
A o B 0
v f} \:,_/
A Aog

Additionally, the inequality condition in Eq. 4.19 is re-ordered again and
formed as

+ Ao (4.20)

Finally, MPC problem for Simultaneous form gets convex form to be solved
as optimization problem.

Xl

o M
Il Il

|—| >||
><l

an

+ A()XO (421)

T = —
L x[[Q o|| % —TT| | X
mlnlg_cmlze [Au] lO I:{] lAu + 0 1 [Au} (4.22)
—— —— —_——
X H FT
subject to 0=3ax+b (4.23)
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4.3. General MPC Formulation

B 4.3.2 Sequential(Dense)

As can be seen, Simultaneous MPC formulation tries to minimize both states
and control increment. However, this method is less efficient in terms of
complexity. In this regard, this section present another method, which is
called as Sequential or Dense. This method focuses only on minimizing input
increment. By doing so, the complexity of formulation would be reduced.
Therefore, this thesis considers only sequential method.

Sequential formulation starts with eliminating the state term by expressing it
as function of Au and x. In that sense, Eq. 4.19 is redefined as

B A
AB B A2
x=| A’B. AB B Au+ [A? | % (4.24)
AN-1B B AN
v SN——
C A

1 = 2 = = X 1 =
J = Z(CAu+ A%9)TQ(CAu + Axg) + ~AuTRAU
2 R 2 (4.25)
—rTT(CAu+ Axg)

Expanding and ignoring constant term as done previously, final form of
sequential, without constraints, would be;

e . 1 T :T:: = ~T T &Téé
minjmize EAu (C QC+R)Au+[X0 r} kY Au  (4.26)
A —_——
FT

On the other hand, solution to unconstrained formulation is as follows;

J= %AuTITIAu + [ig rT} FTAu (4.27)

VIpu=HAu+F h" =0 (4.28)

FO] (4.29)

-1

T
=51l

Au = —

r
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4.3. General MPC Formulation

B 4.3.3 Adding Constraints

Previous two subsections discusses the methods to formulate the general MPC
problem without considering constraints. However, as expressed in Section
4.2], constraints are key element of MPC. Therefore, this subsection introduces
how to define the constraints conditions into MPC problem. The ultimate
goal is to define the constraints, such that overall convex optimization problem
is formed as;

]_ = =
minimize —AuTHAuU + [ig rT} FTAu (4.30)
Au 2
subject to GAu < W + 8% (4.31)

In MPC problem, there are three terms that can be constrained, which are
input increment, input and output. Adding constraints to input increment is
pretty straightforward and shown in below equation

[T 0 ... 0] [ Aumax | [0 O 0]
o I ... 0 AUmax 00 0
0 O I AUmax 00 ... 0 Xk
< .
T oo ... ol®S | au|tlo o o o] [uey (4.32)
0o -I ... 0 —AUpnin 00 0| ——
Xo
0 0 .. I | —AUmin| [0 O ... O
GAu WAu SAu

As similar to input increment, constraints for input is also quite painless.
The input uy can be expressed trough horizon N in such a way

uk - uk*]ﬁl’Auk

up 1 = ug + Auggg = ug 1 + Aug + Augyg
U2 = Ug41 + Auk+2 =ux_q1 + Aug + Auk+1 + Auk+2 (433)

UgyN—1 = Uk—1 + Aug + - + Augin-1
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4.3. General MPC Formulation

Then, using the using this form, constraints equations for input term is
configured as

I O 0 Umax 00 ... -I -1
I I 0 0 Umax oo ... -I -1
0 .
I I I I Umax 00 -I -1 Xk
<
1 0 02" |SulTloo 1 1wy
-I -I O 0 —Umin 00 ... I I|—
X0
: : .. 0 : oo : : :
- -1 -I ... —Ij | —Umin | 0 0 ... I I
(4.34)

In contrast to input increment and input terms, adding constraints for
output is relatively more complex and tricky. In this sense, first define
the inequality conditions for general case at which optimization variable is
X. Then, convert it to desired case so that optimization variable would be Au.

General case is,

CB 0 .. 0 Ymax CA
CAB CB ce 0 Ymax CA?
: Clu < ) — i (4.35)
CAN-'B ... CAB CB Ymax CAN
———— N——
gymax Wymax §ymax

Then, using the same manner in Eq. [4.33 the Eq. in Eq. |4.35|is rewritten
Aug +ug 1
_ Auyyq + Aug +ug_q _
Symax . < Wymax — Symax (436)
Auk+N_1 +---+ Auk +uk_1

After that, in order to form it as in Eq. 4.31, u and uy.y are splinted

I 0 ... 0 I
i 11 0 1 i
Symax Au + . Uk-—1 < Wymax — Symax (437)
I 1 ... 1 I
-~

I,
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4.3. General MPC Formulation

Finally, overall form of upper bound inequality conditions for output
constraints becomes

I 0 ...0
I 1 ..0 .
(gymax . . . )Au < Wymax+ [_gymax (gymaqu):| [ k ]
: .o Uk-1
11 .. 1 Syman —
0
Gymax
(4.38)

The conditions regarding lower bound of output constraints can be found
by following same way. After defining constraints in each case, complete form
of MPC problem with having constraints is defined as

]_ — =
minimize “AuTHAu + [iOT rT} FTAu (4.39)
Au 2
Gy Wy Su
. GAu WAu SAu
subject to Au < + 4.40
J Gymax - Wymax Symax ( )
Gymin Wymin Symin
(G ——
G w S
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Chapter 5

Lateral Control Design

This section introduces design of MPC for lateral motion controller of vehicle.
It is based on lane keeping assist system as described in Chapter The
main purpose of lateral controller is to follow the centerline of the track with
minimum error. Fig. shows the model structure of lateral controller.
From dynamical motion of vehicle described in Section at Chapter [3, it
is seen that longitudinal and lateral motions are coupled with each other,
both of them are highly non-linear. Therefore, in order to design lateral
controller with using MPC, first lateral motion dynamics has to be decoupled
from longitudinal one and linearized. The linearized dynamics is then used as
internal model in the controller. This is covered in Section 5.1l Then, Section
introduces how to formulate lateral control problem as lane keeping assist
controller. Finally, presents the design of controller with new system
model. The overall structure of lateral controller is shown in below figure.

Reference Speed (Vx)

v

Estimation e,
Deviation

Camera Curvature from_
Estimate centerline e,

S

Vehicle

€1 : cross track error
€, : heading error
& : Steering Input System Feedbacks

Figure 5.1: Lateral Controller Block Diagram
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5.1. Linear Model for Lateral Motion

. 5.1 Linear Model for Lateral Motion

As described at the beginning of this chapter, lateral motion dynamics has to
be decoupled and linearized. It starts with linearization of lateral terms of
derived single-track dynamical model in Chapter 3. Also, longitudinal speed,
Z, is considered as another input to the system and represented as V,, in order
to decouple the longitudinal dynamics from lateral one.

Having linear tire model in chapter, rewriting Equations 2.7 and [2.8| with
the ones [2.15] 2.16], [2.17 and [2.1§|,

j = %(Cfaf cos(d) + Cray) — Vit (5.1)
1 )+ 1y ) — 1,9 .
= — [Cf (5 - y*’vxﬂ/’) cos(9) + Cr< - sz@bﬂ — Vo (5.2)
)= %(C’faflf cos(6) — Crayly) (5.3)
1 J+ Ly j— 1y
-7 [cf (5 _ W)zf cos(8) — c,( -1 ‘”)zrl (5.4)

Then, using small angle approximation and re-arranging the term in such
a way that system states and inputs are lateral velocity and rate of change in
heading,

j= ;lcfé - (i};y - Cﬁﬂ - (;wy + C’éf ) (5.5)
_ [_ C:rvff - [Crl%—vfflf “ V.l + %‘]5 (5.6)
J Ilzlcflf‘s - c{/ley - CJ;Z@L . Cvz,y B Cxiﬂ (5.7)
= [Crl};vf 14 ] j - V%CJ};?CT] b+ lcjlf] 5 (5.8)

Finally, State Space form of general lateral dynamics extended with states,
namely lateral position and heading angle in inertial frame;

s C7"+C Crlr—Cl . c
Y - szf 0 szff_Vx 0 Y Hf
yl _ 1 0 0 0l |y 0
b T ooy o _Bosies G| T o] 0 (5.9)
j I Ve I, Vy I,
¥ 0 0 1 0| L¥ 0
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5.2. Augmented Model for Lateral Motion

B 52 Augmented Model for Lateral Motion

In Section [5.1, the general linearized lateral model is presented. Taking
previously derived model as basis, this sections introduces the more enhanced
version of linearized lateral dynamics by formulating it as lane keeping problem
as described in Section [2.4 at Chapter 2. Lane keeping assist system is one of
famous ways to model the lateral motion dynamics of the vehicle to be used for
model-based lateral control strategy. Nowadays, it is commonly implemented
on-board in the autonomous vehicles to ensure that it is travelling in desired
path. In this sense, LKA would be formulated as lateral model for path
tracking. As stated before, the aim in this work is to follow the centerline
of track. The presented method is based on [4§]. The more comprehensive
derivation can be also found at [49]. The key idea behind LKA is that it
would augment the model in equation [5.9| with error dynamics composed of
lateral deviation from desired path, known also cross-track error, and heading
error.
From Section [2.4] the error dynamics is defined as follows,

€y = Vaeey + 7 (5.10)
€p =10 —Vip (5.11)

where e, and e, are lateral deviation and heading error respectively, V is
longitudinal velocity, ¢ and p is road curvature. p comes to the error dynamics
as measured disturbance(md) and will be handled in more detailed in next
section.

After having error dynamics, it is augmented with previously linearized
lateral dynamics. The final state space model is then formed as in equation
below

. [ Cr+C Crlr—Cyl - rCr _

Yy B szf 0 szf L — Vx 00 0 Y Wf 0

j 1 0 0 00 0]y 0 0

B Crly—Cyl GC+Cr ] Cylr

o I e e s =i SN B B I b R

¥ 00 1 00 of(? 0 0

€y 1 0 0 0 0 Vi |® 0 0

L€y ] 0 0 0 10 oflewl [0 L=V

! | —
Arka Brka Bma
(5.12)
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5.3. Control Design

B 5.3 Control Design

This section gives the overview of control design method for linear and aug-
mented lateral model in equation 5.12, The design method is purely based
on what is developed in Section [4.3]in Chapter [4. As can be seen from Eq.
5.12, the new system model employs the longitudinal velocity as internal
parameter in matrix B,,q. It means that the system dynamics would change
as the the longitudinal velocity of vehicle varies. Therefore, it is necessary to
update internal plant model in MPC in each time step. In this sense, Linear
Parameter Varying(LPV) method is employed in lateral controller design.
LPV model is a special case of a Linear Time Varying (LTV) model in which
the internal model parameters changes over time. [50], [51] and [51] cover it
in detail. Good summary can be also found in [47] and [52].

In traditional model predictive control, one linearizes the model at only
one operating point and use it all the time. However, outside of this region,
the approximated model won’t work as desired. To overcome this problem,
the nonlinear model is linearized at each operating point and internal plant
in controller is updated with newly computed linear model. Number of states,
prediction horizon and constraints, on the other hand, remain unchanged.
In same sense, LPV-MPC computes new internal plant model based on the
parameter value at each step, instead of linearizing the model. And, controller
uses this new plant as to predict best control input sequence. Also, it is
important to note that the new plant model stays same over prediction
horizon. But, if one can estimate how the internal parameter vary over time,
the controller uses the model that changes over the prediction horizon.

Reference
LPV-MPC

Reference
Linear MPC

25

Lateral Position (meter)
[~

Lateral Position (meter)
™

Time (sec) Time (sec)

Figure 5.2: Linear and LPV MPC Comparison for varying longitudinal speed
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5.3. Control Design

On the other hand, apart from steering input. §, the augmented system
includes another input which is road curvature, p. However, it is not obtained
through output feedback, so it is assumed as measured disturbance coming
into the system. Consequently, the controller form designed in Section |4.3|is
slightly changed in order to compensate new dynamics in augmented model
and the new structure of MPC problem for the model in Eq. [5.12] can be
designed as

_ 1T
minAimize %AuTH(p(k))Au + rO F(pk))TAu (5.13)
" md
subject to  G(p(k))Au < W(p(k)) + S(p(k)) [;‘1‘21] (5.14)

where p(k) is the parameter varying and md is the measured disturbances
over prediction horizon.

As a final comment, in this thesis, it is assumed that the longitudinal
velocity would be constant. In spite of this, LPV-MPC method is designed
and employed during the experiments in order to be used in further cases at
which the speed is not constant.
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Chapter 6

Simulations

This chapter presents the experiments and validation of proposed methods.
All experiments are designed using DSDA described in Chapter [2. Section
shows the experiments regarding Centerline Estimation. Validation of
estimation of deviation from centerline can be found in Section [6.2. Section
6.3| covers the experiments regarding lateral control for centerline tracking.
Finally, the overall review of results is discussed in Section 6.4

. 6.1 Centerline Estimation

B 6.1.1 Centerline Driving

In this simulation, the algorithm proposed in Section was tested. Vehicle
path was set such that it would perfectly travel along track centerline. That’s
why, it is expected that developed algorithm would confirm centerline driving
in each step.
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Figure 6.1: Result of Centerline Driving
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6.1. Centerline Estimation

Fig. [6.1] show the results of centerline driving simulation, where red stars
indicates that the vehicle is in centerline, and black line is exact centerline
of the track. From figure, it can be seen that the algorithm is sufficiently
working as desired.

B 6.1.2 Free Driving

After centerline driving, the next simulation experiment was designed in
which vehicle performs free driving, but it crosses the centerline a couple of
times. Therefore, the algorithm should detect when crossing happens.

Below figure presents the results obtained after free driving. Blue stars
means that the vehicle is not moving on track centerline. It clearly indicates

that the proposed algorithm is prefctly able to detect when vehicle cross
centerline.

151
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Lateral Axis(m)

5 r

2 4 6 8 10 12 14 16 18 20
Longitudinal Axis(m)

Figure 6.2: Result of Free Driving
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6.2. Estimation of Deviation from Centerline

. 6.2 Estimation of Deviation from Centerline

B 6.2.1 Free Driving

This simulation was performed to validate the method described in in
order to estimate the deviation from track centerline and heading error. The
prepared test case is shown in Fig.

10
¥ (m)

Figure 6.3: Test Case for Estimation of Deviation from Centerline

It was design such that the vehicle is first deviates 1.5 meters in positive
direction and then, go back to centerline. Finally, it finishes its motion by
deviating 1.5 meters in negative direction. Also, as can be seen from the
plot, the road consists of three segments, straight-curve-straight. The curved
segment was created in way that its centerline is the quarter of circle with
radius 10 meter. This means that the algorithm should find the curvature 0
for straight segments and 0.1 through curved segment.
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Figure 6.4: Centerline Curvature
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6.2. Estimation of Deviation from Centerline

Fig. refers to curvature of centerline that the algorithm found. It
indicates that the values are more or less same with the reference. On the
other hand, below figures represents the lateral deviation and heading error.
Figl6.5 shows that the proposed method accurately estimates the deviation
from track centerline. As result, it can be said that the algorithm is capable
of estimating deviation from centerline correctly.
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Figure 6.5: Lateral Deviation in Wild Driving
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Figure 6.6: Heading Error in Wild Driving
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6.2. Estimation of Deviation from Centerline

B 6.2.2 Centerline Driving

After estimating the cross-track error in free driving scenario, this simulation
was created to estimate same values when vehicle is moving on track centerline.
The track was as in the previous simulation, just the vehicle path shown in
Fig. was changed to centerline path. That’s why, it is expected that there
should be zero lateral deviation and heading angle. The result regarding the
lateral deviation can be found in below figure. It clearly expresses that the

08
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Estimated Deviation

Lateral Deviation (cm)
o o o o o o
N w = o > 3
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Figure 6.7: Lateral Deviation in Centerline Driving

the algorithm returned the values very close to zero as it is supposed to be.
Also, the heading errors presented in Fig. are small enough. Therefore, it
can be pointed out that the proposed method for estimating the deviation
from track centerline works efficiently as in the previous simulation.

Heading Error (rad)

0 0.5 1 15 2 25 3
Time (sec)

Figure 6.8: Heading Error in Centerline Driving
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6.3. Centerline Tracking

B 6.3 Centerline Tracking

After validating that the cross-track error can be estimated accurately using
proposed method, this section covers the simulation experiment for lateral
controller. As described in Chapter [6.8] lateral control problem is formulated
as Lane Keeping Assist System such that it utilize the lateral deviation and
heading error as internal plant model in the LPV-MPC controller. By doing
so, the controller aims to minimize those error in order to track reference
path as accurate as possible.
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Figure 6.9: Results of Lateral Control - 1

For simulation, the scenario case used in Section [6.2 was performed. Fig.
6.9 and Fig. 6.10| represents the results obtained after simulation. Fig. 6.9
indicates that errors for both lateral deviation and heading error are quite
small and Steering Input to system stayed inside the determined constraints,
which means that the lateral controller was able to make vehicle to follow
the desired path. It is also confirmed by Fig. |6.10| which shows that vehicle
perfectly traveled on reference line.
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6.4. Results
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Figure 6.10: Results of Lateral Control - 2

. 6.4 Results

This section discuss overall conclusion of performed simulations in previous
three sections. Fig. [6.1] and Fig. [6.2] proves that the method for detecting
if vehicle is on track centerline, described in Algorithm (1], sufficiently works
when vehicle performs free driving or moves on centerline of track. But, it is
important to note that the accuracy of the algorithms heavily depends on
the position of the cones, so it is essential to provide the accurate input as
much as possible in order to get sufficient results.

Simulation results in Section [2.4| validates the method to estimate how
much vehicle deviates from track centerline. From the corresponding figures,
it can be confirmed that the proposed method in |2, which is extended version
of [1l, returns results as expected. The crucial part of the algorithm is to
estimating of road curvature at each time instant. The algorithm is quite
sensitive to curvature input, so accuracy in estimating the curvature is directly
related to algorithm output.

On the other hand, the results in Section [6.3] indicates that lateral control
design given in Chapter 5| meets the expectations and works as desired. Since
it is formulated as lane keeping assist system, it needs lateral deviation and
heading error in each time instant in order to calculate input to the system
accurately.
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Chapter 7

Conclusion And Future Works

In this thesis, the two main goals have been explored. The ultimate goals
were to develop algorithm to detect if vehicle deviates from centerline of
track and estimate the amount of deviation based on stereo-optic camera.
After that, the secondary goal is to design model predictive control for lateral
vehicle dynamics to make the vehicle to follow track centerline with as close as
possible. All the two goals were fulfilled and the accomplished tasks uncovered
possible future research directions for further improvements.

B 71 Accomplished Tasks

In chapter [2| simulation framework, Driving Scenario Designer Apps in
MATLAB, was introduced first. It was necessary to create appropriate case
studies according to FSD competition rules. Then, a novel algorithm was
proposed to detect whether or not vehicle moves on track centerline. Then,
the algorithm is extended and enhanced such that it would estimate the
amount of deviation from centerline.

Chapter |3 presented vehicle modelling to be used in model predictive
control. In that sense, kinematic vehicle model was given first. After that,
dynamical modelling of vehicle with tire forces was developed. since it is not
useful and valid at higher speed, dynamical modelling of vehicle was employed
in this work.

Chapter 4| covered the comprehensive information and formulation of
model predictive control. In the first part, the basic working principles and
properties of the controller were presented. It was then followed by the
detailed formulation. Since the thesis only takes into account of tracking,
only formulation regarding tracking was discussed.

In Chapter [5], the lateral control design was introduced. It was heavily based
on given formulation in Chapter 4l The difference was that it was formulated
as Lane Keeping Assist System. In this regard, the dynamical model derived
in Chapter 3| was linearized and augmented with lateral deviation and heading
error estimated in |2, The augmented model was employed as internal plant
model in the controller. After that, linear-time varying MPC structure was
described in order to handle the conditions at which the longitudinal speed is
not constant.
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7.2. Suggested Future Works

Chapter [6| presented the simulation experiments in order to validate pro-
posed methods. The chapter was divided into three sections and each method
was tested and validated separately. The simulations were created using
DSDA explained in corresponding Section of Chapter 2l The results ob-
tained after simulation experiments showed that all proposed method worked
sufficiently as desired.

B2 Suggested Future Works

This thesis takes into account of only track centerline. However, major aim
in the FSD competition is to finish the described amount of lap in minimum
time possible. In that sense, the one of future works can be finding optimal
path for track using minimum curvature method. Then, optimal velocity
profile is found using backward-forward pass to have complete trajectory.
That would also result in the need of longitudinal control design, but its
design is relatively simple compared to lateral control design.

State Estimation using Kalman Filter can be thought as another future
work. In this thesis, there were no process or measurement noise in the
performed simulations. However, the noise is inevitable phenomenon in real-
time applications. That is why, the noise has to be add to the systems and
feedback coming from the sensors has to be regulated in Kalman Filter to
get noise-free feedback as much as possible.

On the other hand, the thesis includes only theoretical works. However,
the competition would be real-time challenge, so it is necessary to ensure
that the proposed algorithms sufficiently work in real-time scenarios. In that
sense, it would be highly beneficial to implement the algorithms on-board
to see if they are suitable for real racing conditions. This would realize the
theoretical work made in this thesis in reality.
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