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Abstract
The goal of this thesis is to automate
continuous latency testing on the CAN
bus for the purpose of ensuring reliabil-
ity of real-time applications. It is based
on the existing implementation of can-
latester software, which measures the time
required to forward a CAN frame by a
gateway. This thesis focuses on designing
and building a system to autonomously
perform this measurement on a gateway
running on a Linux system with and with-
out real-time patches and record the re-
sults.

The system is assembled in a 19" data
rack cabinet and runs daily tests on the
latest version of the Linux kernel. The
results of individual measurements and
long time trends are visualized in a web
interface. Everything is designed with the
intent to enable integration into a real-
time system QA farm.

Keywords: CAN bus, latency testing,
CTU CAN FD, Linux, automation,
continuous monitoring, real-time
processing

Supervisor: Ing. Pavel Píša, Ph.D.

Abstrakt
Cílem této práce je automatizovat prů-
běžné sledování latencí na sběrnici CAN
pro účely zajištění spolehlivosti v aplika-
cích reálného času. Vychází se z existující
implementace softwaru can-latester, který
měří dobu potřebnou pro zpracování a
přeposlání rámce CAN bránou. Obsahem
této práce je navrhnout a sestavit systém,
který bude samostatně provádět tato mě-
ření na bráně běžící na Linuxovém sys-
tému s real-time úpravami i bez nich a
zaznamenávat výsledky.

Výsledný systém je sestaven ve skříňce
19palcového datového rozvaděče, kde
každý den provádí testy na aktuální verzi
Linuxového jádra. Výsledky z jednotlivých
měření jsou spolu s dlouhodobými trendy
vizualizovány prostřednictvím webového
rozhraní. Vše je navrženo tak, aby sys-
tém bylo možné integrovat do QA farmy
systémů reálného času.

Klíčová slova: sběrnice CAN, testování
latencí, CTU CAN FD, Linux,
automatizace, průběžné sledování,
zpracování v reálném čase

Překlad názvu: Automatizace
průběžného testování latencí na sběrnici
CAN
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Chapter 1
Introduction

This thesis deals with software and setup for latency testing automation
on the CAN bus. The purpose is to provide quality assurance for real-time
applications on operating systems that go through continuous development.
This assurance is vital in applications that depend on consistent timing to
function correctly, and any regression in latency could lead to unpredictable
behavior. The system designed as part of this thesis will help spot such
regressions early and track latency performance over time. In this thesis, the
subject of testing is the Linux kernel.

The CAN bus is a dominant technology in the field of industrial networks,
automotive and embedded applications. In many of them, it is beneficial
to use systems based on the Linux kernel, which is very versatile and has
excellent support thanks to being widely used. To ensure reliability of using
CAN on Linux in time-sensitive applications, testing and monitoring of CAN
frame processing latencies is necessary throughout the development. An
ideal application to conduct this testing on is a CAN gateway, which simply
forwards frames between two buses. For more elaborate reasoning, see section
1.1.

The first part of the work focuses on designing a system that will facilitate
this testing. The software that is used for the measurement of a gateway’s
latency (can-latester) was the subject of previous works [1][2]. In this thesis,
these works are followed up on by setting up a server that is used to schedule
and automate continuous testing, as well as assembling and configuring a
physical testbed with the hardware necessary for the testing. The hardware
and principle of measurement are described in chapter 2.

The rest of the work is concerned with the software and setup for testing
automation. The configuration of the testbed devices, how they boot, and
how they are managed is all documented in the first two sections of chapter 3.
The later sections explain the testing process, the software written to conduct
it, and how it functions. In short, the final system runs daily tests on the
latest available version of the mainline Linux kernel as well as a version with
the newest batch of RT patches applied. Then it processes the results for
visualization.

The final chapter 4 describes how the data acquired during the testing are
presented via an interactive website.
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1. Introduction .....................................
1.1 CAN, Linux, and Latency Testing Motivation

The Control Area Network (CAN) bus is popular mainly in the automotive
industry, where it is used to facilitate communication between various sub-
systems of a vehicle, and in many industrial and embedded applications. The
specification covers the physical and link layer. The physical bus can be
as simple as a single twisted-pair cable terminated at both ends. Data are
transmitted as a differential signal, providing increased noise resistance. Bus
arbitration is based on the priority of frames being sent and collisions are
resolved in a non-destructive manner: the higher priority frame goes through
and the sender of the lower priority frame waits until the medium becomes
available again. The standard also covers error detection and recovery. All of
this makes CAN both highly flexible and reliable. An update to the CAN
standards introduces an extension, CAN FD, that allows a larger payload per
frame (64 bytes, up from 8 bytes) and a higher bitrate during data transfer
phase. Further information about CAN can be found at [3].

Linux is a general-purpose operating system kernel that is used in a variety
of applications spanning from high-performance servers, desktops, phones
(Android) to embedded applications in various industries, including automo-
tive. As such, it often needs to access the CAN bus to collect data or even
control other devices in real time. For this purpose, a CAN bus support
was implemented for the kernel. The LinCAN project was one of the first
solutions providing CAN bus interface drivers for the Linux kernel and al-
lowing them to be interacted with via a character device. It had been used
in industrial control applications for many years [4]. Later the SocketCAN
subsystem was developed in collaboration with Volkswagen and is now part
of the kernel. It uses the socket API similarly to how TCP/IP operating
system services are accessible to user-space applications (socket, send, recv,
close) [5]. An interface analogous to SocketCAN has even been adopted1

into the open-source real-time operating system NuttX.
An effort is being made to make Linux capable of handling real-time tasks,

originating over 20 years ago. A set of patches is being maintained (some of
which have now been merged into the mainline) that introduce preemptible
locking mechanisms to the kernel and strive to reduce the amount of non-
preemptible code as much as possible. These changes are often referred to
as PREEMPT_RT and are meant to make the maximum response time of
tasks with real-time priority more deterministic [6].

As stated at the beginning, latency and strict timing properties are crucial in
many applications. To ensure reliability of such applications, these properties
need to be monitored throughout the development process of all components.
One prominent example of this monitoring is the OSADL QA farm. They
run stress tests on the PREEMPT_RT-patched Linux kernel in an effort to
spot unsatisfying system latencies, crashes, and similar misbehavior early in
the development of the next kernel version.[7] The system developed as part

1see https://github.com/apache/nuttx/pull/1238
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.......................1.1. CAN, Linux, and Latency Testing Motivation

of this thesis aims to provide similar testing and QA for applications utilizing
CAN on Linux.

A CAN gateway is a ubiquitous device in CAN networks. It simply forwards
chosen frames from one bus to another, providing isolation of critical systems
and adding resilience in case of failure on one of them. It runs no complicated
control algorithms that would cause a variance in latencies; at most, it
performs some simple filtering. A gateway implementation is even a part of
the Linux CAN subsystem. As such, gateways are very suitable for having
their latencies tested.

3
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Chapter 2
Measurement Setup

This chapter describes the physical setup needed in order to measure latency
of a CAN gateway, as well as the measurement process itself.

A gateway is a simple device whose function is to forward CAN frames
from one bus to another. On Linux, there is a gateway implementation that
is part of the CAN subsystem in the kernel and can be controlled via the
cangw utility. To test what gateway performance can be achieved in user
space, a program called ugw can be used, which is part of the can-latester
project1.

To measure the performance of a gateway device, one has to use another
CAN-capable device connected to the same two buses as the gateway. This
device will then send a long sequence of frames to the gateway and measure
the time between when each frame is sent and when it appears on the second
bus to determine the typical performance of the gateway with some reasonable
certainty. One program that can be used to perform this measurement from
Linux is called the CAN Latency Tester (can-latester1). The principle of its
functioning is described in section 2.3.

2.1 Used Components

This proposed setup requires two devices equipped with at least two CAN
interfaces. The specified goal is testing of Linux system based gateway, so it is
natural to use the same system for frame generation and timestamp recording
as well. The devices chosen for this project are two Xilinx Zynq MicroZed
SBC-based educational kits called MicroZed APO (MZAPO for short), which
were available at the department. They come with programmable logic
(PL/FPGA) that can realize logic designs of choice, CAN FD controllers in
the described case. Two CAN buses are exposed via a DE-9 connector on
each board, which allows the boards to be connected with a regular serial
cable. [8]

The MZAPO boards are a combination of a MicroZed development board
and a custom IO expansion board. Their Xilinx Zynq-7000 SoCs are equipped
with two ARM Cortex A9 cores and Xilinx’s programmable logic [8]. The

1https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester
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2. Measurement Setup..................................
boards can run mainline Linux with just a few patches that add an appropriate
device tree2.

For the CAN controller, the CTU CAN FD was chosen. It is an open-source
soft core developed at CTU FEE and has driver support in the Linux kernel.
It also allows precise hardware timestamping, which is essential for this use
case [9]. The specific design3 used in the FPGA contains 4 CTU CAN FD
controllers and connects the 2 XCAN controllers available directly on the
SoC silicon into programmable logic. It also includes a crossbar switch, which
dynamically connects the controllers to internal lines and the lines to external
buses from within the operating system.

Only the CTU CAN FD controllers are used for the measurement. On the
measuring side, two controllers (can0 and can1) are connected to internal
line 1 and another one (can2) to line 2. Line 1 is connected to bus A, line 2
is connected to bus B. The need for two controllers on bus A comes from the
principle of the measurement (section 2.3). On the device under test, one
controller is connected to line 1 and another to line 2. The lines are in turn
connected to physical buses A and B, which connect both devices through a
cable. The connection of the boards is schematically depicted in figure 2.1.

server internet

Ethernet LAN

serial + power

can0 can1 can2 can3

MZAPO
Measuring device

MZAPO
DUT

CAN bus A CAN bus B TB

Figure 2.1: Diagram of the setup, adapted from [2]

The operation of both devices needs to be coordinated during measurement
and the results need to be stored and processed. For this purpose, a server
was added to the setup and is connected to the devices via Ethernet. The
advantage of using an additional device rather than doing these tasks from
the measuring device is that a server has way more CPU power and larger
storage, which is useful when building new versions of the Linux kernel. It

2https://github.com/ppisa/zynq-rt-utils-and-builds/tree/master/projects/
linux/patches

3https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/mz_
apo-2x-xcan-4x-ctu
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.................................... 2.2. Final assembly

can also directly host the root filesystem, which the MZAPO boards mount
over NFS, and provide them a TFTP server with kernel images, which are
loaded during boot up. This makes it easier to manage them – e.g., there is
no more need to take out the SD card to revert a new kernel build that no
longer boots.

The measuring device and the device under test (DUT) are stressed by
the measurement, which can lead to crashes and freezes when some problem
is uncovered. In order to recover from such a situation automatically, it is
helpful to have a serial (over USB) connection to the boards, as the MZAPO
has a feature that allows it to be reset by a 2 second long break signal on the
serial console port. The server, however, does not necessarily have to be in
the same location as the boards, making direct connection impractical. This
was solved by adding another testbed control device (TB) – a combination
of the ARM64 OrangePi Zero Plus board and an expansion board designed
for hardware testing by Ing. Petr Porazil of PiKRON. Beside a USB hub
for connecting to the MZAPO boards, it has power headers with the ability
to control power to them and turn the other two boards on or off remotely.
[10] It also means that all three devices can be powered from a single power
supply. The TB is connected to the same Ethernet LAN as the other devices.

2.2 Final assembly

The final setup was assembled into a 19" data rack cabinet, as seen in picture
2.2. The cabinet also hosts a network switch, which connects all devices into
one Ethernet LAN. One additional Ethernet cable connects to the server
running on central server virtualization technology elsewhere in the building.
A single power supply enters the cabinet and powers the Orange Pi testbed
control device, which in turn powers the two MZAPO boards. The boards
are connected via serial over USB to the TB and also via CAN over serial
cable to each other.

2.3 Principle of Measurement

The measurement itself is carried out by the can-latester software. The device
under test can be used in either regular gateway mode (retransmit on a
different bus) or single interface mode. The single interface mode is useful to
test CAN frame processing latencies of systems equipped with only one CAN
interface, like the ESP32. In this case, the DUT retransmits each frame onto
the same bus, just with a higher priority.

In gateway mode it works by sending a CAN frame on bus A from its
first CAN interface (can0). The frame is then received by can1 on the same
device, as well as by the second device, which is set up to operate as a
gateway. The gateway forwards the frame onto bus B, where it is received
by the can2 interface of the first device. The time it takes to forward the
frame is influenced by the operating system’s task scheduling and is the main

7



2. Measurement Setup..................................

Figure 2.2: The final assembly in a cabinet

source of variance in latencies that are being measured. The measuring device
reads the timestamps of when the frame was received by can1 and can2 from
the hardware and computes the latency. Using the timestamp from can1
ensures we know the precise time instant of when the frame actually appears
on DUT’s incoming bus. The computed latency is stored in a histogram
structure – an array of bins (for every 0.001 ms up to 5000 ms) containing
the number of frames whose latency falls into each bin. After a set number
of frames sent and received (typically 10,000), the histogram of measured
latencies is saved in a text file for later processing. [2]

It is possible to send the frames in multiple modes. Periodically (with a
fixed interval), one at a time (wait for the previous to return), or as fast as
possible (flood mode). The automated tests can be performed in any mode.

Single interface DUT is not suited to be used in flood mode since it has to
wait for the medium to become available (end of the current frame), which
affects the latency slightly. On the other hand, the measuring device cannot
send a frame while the DUT is transmitting, meaning that the DUT cannot be
fully saturated and the results are not representative of what the performance
would be under full load.

The timestamps returned by the two receiving interfaces (can1 and can2)
on the measuring device might not be consistent with one another because
the two controllers don’t have to start their time counters at the same
time. Therefore synchronization of timestamps must be performed before the
measurement. To do so, all interfaces are temporarily connected by the CAN
crossbar switch when a single frame is sent. The frame is received by can1
and can2 at exactly the same time, so the difference in timestamps can be
used to correct future measurements. More detailed documentation can be
found in [2].

8



Chapter 3
Automation of Testing

This chapter focuses on the device setup and software necessary to automate
latency testing of a Linux-based CAN gateway. As stated in previous chapters,
two MZAPO boards (measuring device and device under test) and a server
is used. The server needs to build the latest version of Linux, which will
be subject to the test. It currently builds two variants; one version is the
latest state of the master branch, the second one is the current development
version including PREEMPT_RT real-time modifications. The DUT then
boots each kernel build and runs a CAN gateway. The measuring device runs
tests on the gateway by generating CAN traffic and measuring the latency of
the gateway under various conditions. The server collects these results and
processes them for being displayed by the web interface described in chapter
4. The scripts that handle the automation and the website source code have
been published in a git repository1.

3.1 MZAPO Boards Setup

To simplify management of the boards, they have been set up to boot from
the network and have their filesystem hosted on the server. The boards use
the U-Boot bootloader, which can be controlled by the uEnv.txt file on the
boards’ boot partition of the SD card. The boot command (uenvcmd) variable
and other options can be configured to control the boot process. [11] The
following command can be used to acquire an IP address for the board as well
as the address of the server via DHCP, download a boot script (autoscr.scr)
from the server via TFTP (located by ${bootscript_path} variable) and
execute the boot script:

dhcp && tftpboot ${bootscript_addr} ${serverip}:${
↪→ bootscript_path} && source ${bootscript_addr}

The downloaded boot script then actually downloads the boot image and
loads the kernel. The startup commands sequence, kernel image used, and
root filesystem location can therefore be altered without touching the SD
card.

1https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester-automation
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3. Automation of Testing.................................
The measuring device needs to boot a different kernel than the DUT. This

is so that the kernel of the DUT is the main variable that influences the
results. The measuring device’s kernel also includes patches2 adding precise
timestamping support to the CTU CAN FD driver, while DUT’s kernel should
be unmodified. The measuring device therefore needs to download a different
boot image containing a version of the kernel that will not change every day.
This can be achieved by putting some logic into the boot script. Currently it
checks the MAC address of the device and based on that chooses which boot
image to download. IP address could also be used for this decision.

After the kernel is loaded, bootup continues by running the init pro-
cess as specified by kernel command line argument init=, in this case
/sbin/init-overlay3. This script mounts a read-only NFS share (which is
the same for both devices) and constructs a combined root filesystem with a
writable tmpfs overlay on top of it. After that it hands over to /sbin/init
and the boot process continues regularly.

The kernel command line arguments are passed to the kernel by U-
Boot, which reads them either from uEnv.txt or they are set by the the
autoscr.scr boot script as bootargs environment variable. The complete
list of parameters used is the following:

console=ttyPS0,115200 clocksource=ttc_clocksource ip
↪→ =192.168.0.10 root=/dev/nfs ro nfsroot=192.168.0.1:/srv
↪→ /nfs/debian-armhf init=/sbin/init-overlay

The console argument redirects serial output to a USB type B port on
the expansion board rather than using the default USB micro-B on the
MicroZed board. This port also supports resetting the system via break
signal on the serial line. [8] The clocksource argument is passed because
the default clocksource on older versions of Linux (like 4.19) does not support
frequency scaling. The remaining arguments are required to boot from an
NFS filesystem.

Some further initialization needs to happen before testing can begin. The
FPGA needs to be programmed with the correct design, the CAN crossbar
switch needs to be configured on each device, and the CAN interfaces need
to be brought up and have their txqueuelen increased (to prevent ENOBUF
errors which latester and ugw don’t handle). Additionally, the irq threads
of the measuring device’s receiving CAN interfaces need to have a higher
priority than the transmitting interface, otherwise the system sometimes was
not reading out frames quickly enough, which led to buffer overflows. This
all was automated in a script called init-device.sh, which is included in
the repository1. The script is registered as a systemd unit and runs as part
of the boot process once the multi-user.target is reached. The systemd
unit is located at /etc/systemd/system/init-device.service and looks
something like this:

2https://gitlab.fel.cvut.cz/vasilmat/linux-can-test/-/commits/net-next/
ctucanfd-timestamps-v5-with-config-pm-squashed/

3https://github.com/ppisa/rpi-utils
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................................ 3.1. MZAPO Boards Setup

[Unit]
Description=Device initializer
[Service]
ExecStart=/usr/src/can-automation/device-scripts/init-device.sh
[Install]
WantedBy=multi-user.target

It also needs to be enabled by systemctl enable init-device.service.
The process to update the FPGA is the following. We need a file containing

the synthesized FPGA design (firmware) and a device tree script that describes
the devices in the design to the operating system. The design file needs to
be put under /lib/firmware/. The device tree script is compiled into
a device tree overlay (dtbo) using the dtc tool (part of the Linux kernel
repository). The dtbo is then loaded using dtbocfg kernel module. The
module first needs to be loaded (modprobe dtbocfg), then we can create a
directory under /sys/kernel/config/device-tree/overlays, for example
my-overlay. Inside this new directory we copy the dtbo file named as dtbo
and activate the overlay by writing 1 into status file in the same directory.
The correct firmware is automatically loaded into the FPGA as specified in
the device tree script (e.g. firmware-name = "system.bit.bin";). [12]

3.1.1 CAN Crossbar Driver

The CAN crossbar switch is a part of the design used in the FPGA that allows
connecting the CAN controllers to external buses from within the operating
system. Without it the connections could only be changed by reprogramming
the FPGA. Up until now the switch had to be controlled by mapping and
reading/writing its memory in user-space. A simple driver that exposes
the register through the filesystem was written to avoid this. It registers
itself as a platform driver, so it gets loaded by the kernel automatically
whenever a design having the crossbar in its corresponding device tree overlay
is programmed into the FPGA. The source code of the driver is available in
a public repository4.

When loaded, the driver registers a misc device to create /dev/ctucancrossbar,
which allows reading and writing the entire 32-bit register as a hex number
(e.g., 0x01000000). The individual flags of the register are exposed as device
attributes in sysfs. The attributes are line1 to line4 (value 0 or 1 whether
to enable output from lineX to an external bus), bus1 to bus4 (values 0 to 3
to specify which of line1 to line4 is connected to busX) and ctrl1 to ctrl8
(values 0 to 3 to specify which line controller ctrlX should be connected to).
The layout of the register is depicted in figure 3.1; see page 45 of [13] for
more details on the values in the register.

4https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-crossbar-driver
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Figure 3.1: CAN crossbar switch register layout [13]

3.2 Server Setup

A server is used to coordinate the testing process. Currently it is an x86-64
virtual machine with 4 CPU cores running Debian as its operating system. It
provides the boards with a TFTP server containing boot files as well as an
NFS server that hosts their read-only root filesystem. This allows the server
to have complete control over the boards’ files as well as allowing the boards
to be reset without risking filesystem corruption.

To provide the TFPT server, a package like tftpd-hpa needs to be installed.
It serves the /srv/tftp/ directory by default. Support for an NFS server is
provided by the nfs-kernel-server package. It is configured to serve the
/srv/nfs/debian-armhf directory, which contains the root filesystem. The
boards’ operating system was installed into the NFS share with debootstrap.
This is described in more detail in [2].

Sometimes it might be needed to run programs from the target device’s
installation on the server as if they were run directly on the device – for
example to install packages. This is possible by "changing root" (chroot) to
the device’s filesystem. As the boards use the ARM architecture, we need an
x86-64 version of qemu-user-static in the chroot environment to be able to
execute ARM binaries. Ideally, the package would be extracted into the root
directory before installing the operating system.

To avoid having to hard-code the IP address of the TFTP sever on each
board individually, this information can be provided by the DHCP server. In
the configuration file for dnsmasq under /etc/dnsmasq.d/, the appropriate
lines look like this:

dhcp-host=00:0a:35:00:22:01,set:mach_mzapo,192.168.0.10,mzapo0
dhcp-host=00:0a:35:00:22:04,set:mach_mzapo,192.168.0.11,mzapo1
dhcp-boot=tag:mach_mzapo,/zynq/autoscr.scr,srvname,192.168.0.1

The first two lines assign a static IP address to the boards and tag them
as mach_mzapo. The third line says that the DHCP server should advertise
to mach_mzapo devices that they can boot from file /zynq/autoscr.scr on
192.168.0.1. The boards and server are the only members of their own
VLAN, therefore the server can run a DHCP server configured as needed.
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3.3 The Testing Process

A set of scripts was written to automate the testing process. They are
currently hosted in the repository1 mentioned at the beginning of the chapter.
That repository is cloned on the server and the scripts are run from there.
These scripts handle the tasks of compiling Linux, booting it on the DUT,
executing a range of tests, doing the same for RT patched Linux and finally
processing the results.

The main script is called run_daily_tests.py. It contains most of the
logic regarding which tests to run. The script takes several command line
arguments. --skip-build can be used to skip the compilation and rebooting
in case the DUT is already running the intended version. --branches specifies
which Linux kernel branches should be tested. Currently it accepts master
and rt, but more can be added through a config file. All branches are tested
when the argument is omitted. Finally --conf can instruct the script to use
a different config file than default and -q suppresses output from make to
decrease the size of the resulting log file.

Some tasks are delegated to utility scripts. build_linux.py is used to com-
pile the version of Linux needed at the moment. A script called run_test.py
executes a single test with selected configuration. It prepares the DUT as
specified by the configuration, runs latester and fetches the results. The
downloaded histogram file is converted to JSON using hist_to_json.py.
process_json_dir.py finally takes all the JSON files of past individual tests,
groups them by the test configuration and merges them into one large file
per group. These large files are then served together with the website. Most
of these utility scripts can also be run from the command line and used
independently, although the main script simply imports them as modules and
calls their functions. The option for manual running of scripts was useful
during development when some phase of the testing failed.

An additional script called build_web.py is part of the repository. It only
needs to be executed manually when some configuration changes. Its function
is described in chapter 4.

All scripts use the conf.json config file, which by default is located at
/var/lib/latester/conf.json. The file is used to parametrize some parts
of the process. For example, the directories where results are stored, where the
website root is located, IP addresses of the devices doing the testing, which
commands to run in certain situations, and more. The fields contained in the
file will be referenced further in the text, e.g., SOME_FIELD or {SOME_FIELD}
when part of a formatted string. The fields are listed and explained in
appendix A.

The testing begins every day at 4:00 AM when the server’s cron executes
run_daily_tests, a simple shell wrapper for run_daily_tests.py that
redirects its output to a log file and stores its return code. The following
subsections describe the process in detail.
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3.3.1 Building Linux

The first step of the process is to build the latest version of the Linux kernel
that will run on the DUT. The compilation and installation are delegated
to a utility script called build_linux.py, which can also be run manually
from the terminal to perform the build in the current working directory. The
remaining parameters are read from conf.json.

The server maintains a clone of the mainline Linux repository, pulls
the latest changes, checks out the required branch and builds it. This
happens two times in our case: for the master branch and for the lat-
est RT branch. Branches of Linux versions with RT patches are hosted
at the rt-devel repository5. This repository also contains a branch called
for-kbuild-bot/current-stable which conveniently tracks the latest changes
and is the one used by the script.

The build outputs are placed in a separate directory (BUILD_DIR field in
conf.json) to avoid cluttering the source tree (SOURCE_DIR). It is completely
deleted before every build since we switch between two significantly different
branches and incremental build brought no speed benefit in this case – it still
took about 20 minutes. The solution for optimal speed would be to have two
build directories, although at the cost of disk space. The build directory is
then recreated to contain only two files: a customized Makefile override based
on the one in MZAPO kernel config repository6 (named GNUmakefile, which
in GNU make takes precedence) and a .config appropriate for the branch
being built (RT config has PREEMPT_RT enabled). These files are stored in a
separate location known from the conf.json file and the script simply copies
them to BUILD_DIR.

The purpose of the Makefile override is to simplify the call to make by
injecting some constant parameters. It tells it where to put build outputs with
O= and that it is supposed to cross-compile with a specific toolchain using
ARCH=arm and CROSS_COMPILE=arm-linux-gnueabihf-. On top of that, we
add DTC_FLAGS=-@ to enable overlay support on all device tree blobs.

An alternative to having entirely different .config files for each branch
could be having a set of .config fragments that are applied over a base .config
file or even the default (defconfig) configuration. This is possible with the
merge_config.sh tool, which is part of the Linux kernel repository. The
current solution works well for the time being, but this should be considered
in the future for the sake of robustness of the system.

On kernel versions prior to 5.19, it was necessary to patch the kernel to
include the CTU CAN FD driver, but since it is now included in the mainline,
this is no longer the case. It however still needs to be enabled in the .config by
setting CONFIG_CAN_CTUCANFD=m and CONFIG_CAN_CTUCANFD_PLATFORM=m.

Before the build itself, the script calls make olddefconfig to update the
kernel .config with default values in case new options were added. Then it
executes make with the -j 4 parameter to parallelize the build onto the 4 CPU

5https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git/
6https://github.com/ppisa/zynq-rt-utils-and-builds/blob/master/projects/

linux/build/arm/zynq/GNUmakefile
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cores available on the server as well as with a specified LOCALVERSION. When
called from the main script, the LOCALVERSION is set as -dut to distinguish
daily builds from ones that were run manually. This is useful in the next
step, which is cleaning up old modules. The script lists the directories under
INSTALL_DIR/lib/modules and deletes all -dut versions that don’t match
the version that was just built and are older than 2 days.

The newly built modules are installed to the target filesystem by running
make INSTALL_MOD_PATH={INSTALL_DIR} modules_install. Files zImage
and zynq-microzed-uart0.dtb that were produced by the build are then
copied to BUILD_OUT_DIR to be archived (version suffix is appended to their
file name). The automated builds use constant autobuild suffix to avoid filling
up the disk. Subsequently, the kernel and device tree are packaged into an
image for U-Boot which is served by the TFTP server. Additionally, the
dtbocfg [12] module is built against the current kernel and installed. This
module is used to program the FPGA and update the device tree from user
space. Finally, the DUT is rebooted to load the new kernel by sending a 2.5
second long break signal to its serial port via the Orange Pi testbed control
and monitoring device.

The run_daily_tests.py script waits for the DUT to boot up by trying
to open a connection to port 22 (SSH). If a connection cannot be established
after 120 tries, it gives up and exits the scripts.

3.3.2 Running Tests

A series of tests is run for the master and RT branches of the Linux kernel.
The tests are run in multiple configurations to evaluate performance under
different conditions, such as DUT being under CPU and IO load, frames
being sent in flood mode, or using the ugw gateway as opposed to the kernel
gateway. One test corresponds to one run of latester, which measures the
gateway’s latency on 10,000 frames. The results are recorded in a histogram.

Each test is performed by run_test.py, which can again be called both as
a function and from the command line. The test configuration is determined
by a set of options that can be turned on or off. When testing a kernel from
the master branch, the options that make sense are flood, kern, stress and
fd. When testing an RT kernel, there is an additional rt option that does
nothing on master. These options are passed in a list as the args parameter
or on the command line. The meaning of these options is explained later in
this section. The last command line argument is the kernel version identifier
which should be used in the names of output files.

Once the DUT boots up, run_daily_tests sets its CPU frequency scaling
governor to performance so the CPU is not throttled during the test. Right
after that, run_test is called for every combination of test options appropriate
for the branch currently being tested.

run_test connects to the gateway and measuring device using Fabric7,

7https://www.fabfile.org/
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a higher level API to the Paramiko8 library, which implements SSH in Python.
Then it proceeds along these steps:. If the kern argument is specified, it configures the kernel-space gate-

way on DUT via the cangw utility from can-utils by running cangw
-A -s can3 -d can2 to forward frames from one interface to the other.
Otherwise it launches the user-space gateway (ugw), which is a part of
the latester project: ugw can3 can2. If fd is specified, it adds the -f
argument to ugw and -X argument to cangw to indicate the gateways
should expect CAN FD frames. The commands can be set using options
UGW_CMD and CGW_CMD in the conf file (or UGW_FD_CMD and CGW_FD_CMD
respectively). These configuration options can be used to customize
which interfaces are used, the path where to find the executables, and
the tx and rx method ugw should use, as this can also affect resulting
latencies. The performance of these methods (such as using read/write
system calls or send/recvmmsg) was evaluated in [14]. The user-space
gateway is always run with real-time priority: chrt -r {UGW_PRIO}
{UGW_CMD}.. If the rt argument is specified, it sets a higher real-time priority on
interrupt handlers for CAN by running chrt -f --pid {IRQ_PRIO}
{PID}, otherwise it sets it back to DEFAULT_PRIO (50).. If the stress argument is specified it launches a stress --cpu {STRESS_CPUS}
process to simulate load on the CPU of the gateway and starts scan-
ning the network-attached filesystem with find / -type f -exec cat
’{}’’;’. This stresses IO as well as generates network traffic. Before
doing that it also drops caches (echo 3 >/proc/sys/vm/drop_caches)
so that reads do not just retrieve data from RAM..After a second of delay it runs latester on the measuring device with
provided arguments (OPTS or OPTS_FLOOD if flood argument is specified).
Latester automatically sets its own scheduling policy to SCHED_FIFO and
priority to 40..When latester finishes, the script copies the results from the measuring
device over SFTP to the server and stores them under DEST_DIR/branch
(branch is either master or rt), where they will be picked up for
further processing. The result files being copied are auto-hist.txt,
auto-stat.txt and auto-msgs.txt. They are named to include the
time, kernel version and used options
(e.g., run-230504-094750-hist+6.3.0-g35ea14bea980+oaat-kern.txt).
The data from auto-hist.txt and auto-stat.txt are combined and
stored in a JSON file (described in 3.3.3). This is done by a function
from hist_to_json.py.

8https://www.paramiko.org/
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. Finally, it stops all previously started processes by sending them an
interrupt (same as Ctrl+C) and closing the SSH connection. The kernel
gateway is also deactivated if it was used (cangw -F).

After all tests are finished, the CPU frequency scaling governor is reverted
back to ondemand to save power.

3.3.3 Processing Results

The txt histogram files from latester are formatted as two columns separated
by a space. The first column contains the latency bin and the second one has
the cumulative frame count with this latency (that is, the number of frames
with a latency greater or equal to the bin). Bins with identical cumulative
value as the previous one are omitted. The step between bins is 0.001 ms. As
most ways we display the data are not cumulative, the values of individual
bins are computed by taking the difference of two adjacent cumulative bins.
Beside that a zero-value bin is added right next to every non-zero bin in
places where it was previously omitted. This makes the data less sparse, but
it is convenient when displaying it in a line plot so that the line makes a peak
rather than interpolating to the next non-zero bin. The bin and value series
are saved as x and y arrays in the resulting JSON. An additional stats object
is added that contains some values from the -stat.txt file. These values
include the number of lost frames, minimum, maximum, median, average,
5th and 95th percentile latency, and the number of frames with latency above
or below the range of the histogram (below 0 and above 5,000 ms).

After all tests are finished, the resulting JSON files from individual tests
are processed into a much smaller number of files that can be served together
with the web interface. The process_json_dir.py script is called for both
subdirectories under DEST_DIR, lists all contained files and groups them by
the configuration options used (part of the file name). Each of these groups
is merged into one large JSON by hist_cat.py. It merges the x bin arrays
from source files into one and pads the y arrays with zeros to align the values
with the new bins and have the same length. Then the y arrays can be put
into a 2D "array of arrays" that will be rectangular in shape. The final JSON
contains fields x, y, stats and labels, where y is the 2D array of histograms
stacked one behind another, x is an array of bin labels corresponding to
the second dimension of the 2D array, stats is an array of stats objects
corresponding to each histogram and labels is an array of identifiers (just
the file names of the individual results) containing information about kernel
version, date and time of the test, and test configuration.

An additional overview.json file is created to reduce the amount of data
that needs to be transferred just to show the main page of the web interface.
It only contains data about a limited number of test configurations (currently
4, but can be changed by modifying OVERVIEW_CONFIGS). The data consists
of a time series of daily maximum measured latencies of each configuration,
as well as the latest histogram. The fields included in the file are: xs (an
array of arrays of UNIX timestamps of the tests in each time series), ys
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(an array of arrays of maximum latencies), labels (the identifiers of each
configuration) and last_hists (an array of objects containing x and y data
for the histogram and a label).

3.4 Adding Test Configurations

The kernel branches that should be built are specified in the configuration file.
All that is needed to add a new branch is to add an object to KERNEL_VARIANTS
with the git branch and kernel .config file (see Appendix A for the format of
the object). Custom branches will likely need adding of their remote to the
local repository (SOURCE_DIR). run_daily_tests runs tests on all available
variants by default.

Adding test configurations is slightly less straightforward. It is difficult to
predict what kinds of actions need to be taken in order to achieve the desired
test conditions and how they should interact with the other options, hence
doing this through the conf file would be limiting.

First, the run_test.py must be modified to perform the desired actions
on the DUT when the new option is passed in the args list argument. Ideally,
this would be done by running commands through the gw SSH Connection
object. An identifier of the option also needs to be appended to the test name,
which should uniquely identify the set of options used. The option must also
be added to the opts array of run_tests function in run_daily_tests.py
so that test configurations that include this option are run automatically.
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Chapter 4
Web Presentation

The web interface was designed to be a statically hosted site, that is, all pages
are generated beforehand and can be served directly by a server like Apache
or NGINX without any processing. Dynamic elements can be achieved with
JavaScript on the client side.

The main benefit of the website being static is simplicity, greater loading
speed, and potentially better security thanks to a smaller attack surface
on the server. The downside is typically the need to move logic onto the
client, although in our case very, little logic could be done on the server to
begin with. [15] A benefit of a dynamic page specific to this use case would
be the possibility of transferring just the right amount of data in a single
request instead of downloading everything in one very large request or in
small units in many requests. This can be partially imitated in a static site
by choosing which sets of data are most commonly needed and precomputing
them, although with the downside of taking up more storage on the server.

The plots are drawn using a JavaScript library called plotly. It is a feature-
rich and easy to use graphing library with a comprehensive selection of
plot types. Using it requires little code and the result is a nicely polished
interactive graph, rendered as an SVG object inside HTML. 3D graphs are
drawn using WebGL. The graph can be panned, zoomed in, or hovered over
with mouse to display data point values in a tooltip. [16] It is a bit heavy at
3.4 MB of uncompressed minified JavaScript, although fortunately, there is an
option to create a custom bundle1 that only includes the required chart types,
which shrinks the size to about 1.5 MB. That might still be a bit much, but
the time saved by not having to replicate the same functionality and polish
with less sophisticated tools seems to have been worth it. Further removal of
the surface chart type could have reduced the size to just under 1 MB.

An alternative could have been generating static SVGs beforehand with
matplotlib. The obvious downside would be the absence of interactive features
(or the need for some complicated workarounds) and therefore some abnormal
histograms spanning a broad range of latencies would be hardly readable
without the ability to zoom in. There is a vast selection of alternative charting
libraries; the closest of which to achieving the same result is probably vis.js,
which has the benefit of being modularized by default, and Apexcharts. Many

1https://github.com/plotly/plotly.js/blob/master/CUSTOM_BUNDLE.md

19

https://github.com/plotly/plotly.js/blob/master/CUSTOM_BUNDLE.md


4. Web Presentation...................................
other plotting libraries either lack some useful chart types (like heatmap) or
are proprietary.

Plotly can be used in a website simply by including its script in the page’s
head tag. The page must also contain a div tag that should host the chart.
The chart is then drawn by calling Plotly.react(div_id, data, layout);
from JavaScript and passing it the id of the div and the data and layout
objects, constructed according to the documentation to display the loaded
data and configure desired functionality. Plotly also supports adding event
listeners to allow implementation of custom interactive features. [16]

4.1 Serving the Website

In the end, NGINX was chosen as the web server. The web directory of the
cloned repository is symlinked as latester under WWW Root (/var/www/html).
The result files that need to be served are put into the results subdirectory,
which is ignored by git. The server configuration described in the following
paragraphs was used during development. In later stages of the work, it
was decided to mirror the main presentation to a more permanent hosting
solution2, which is not managed by me. Therefore the configuration does not
apply there. It is, however, still described here for future reference.

Web browsers cache the downloaded data, so sometimes the visitor could
see outdated results. The caching means that the browser does not even
begin a request for the file. It is, however, possible to instruct the browser
to occasionally revalidate the file, for example, when it was last loaded more
than 10 minutes ago. The revalidation means that the browser makes a
request that specifies the last version of the file in the HTTP header, and
if the file has not since changed, the server responds with status 304 (not
modified) and no further data is transferred. This behavior is controlled by
the Cache-Control response header. To enable this, the line expires 10m;
is added to the NGINX site configuration under the /latester/results
location directive, so that it only applies to the changing result files. [17][18]

The single results files typically weigh anywhere from 500 B to 5 KiB,
average for the RT branch after running for two months being 1979 B.
These are not served, and the merged files that contain the whole series
have slightly lower overhead (JSON object keys). Even if they were merely
concatenated, that would make about 705 KiB for each test series after a
year of testing, 7 MiB in 10 years. With today’s internet speeds, this amount
of data is perfectly acceptable. This can be further reduced by utilizing gzip
compression during transfer. In NGINX, it can be enabled with gzip on; and
gzip_types application/json application/javascript;. Compressing
the result files reduces the transfer size by 12 times on average (ranging from 3
to 24, measured on a subset of 16 randomly picked files). It is also possible to
precompress the files on disk and then send those directly, decreasing storage
use and computational cost of serving them. NGINX allows this using the

2https://canbus.pages.fel.cvut.cz/can-latester/
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gzip_static module [17]. This option is not enabled at the moment as the
storage use is very marginal.

The structure of the website is as follows:
WWW Root
\- latester

|- results
| |- retcode (symlink)
| |- daily-log.txt (symlink)
| |- overview.json
| |- master-*.json
| \- rt-*.json
|- index.html
|- overview.js
|- inspect.html
|- inspect.js
|- compare.html
|- compare.js
\- style.css

4.2 Overview Page

The main page (index.html) of the web interface is an overview page that
displays the time series of worst latency measured in a subset of test config-
urations specified by OVERVIEW_CONFIGS. Below the main chart, there is an
appropriate number of smaller boxes containing the latest histogram of each
series. At the bottom, the page shows whether the last execution of daily
tests was successful and when it happened. It also links to the log file, which
can be viewed in the browser or downloaded.

Once the page loads, it downloads the overview.json file containing all
the required data and instructs plotly to draw it. The main chart is a simple
scatter plot containing multiple data series. The x-axis shows the date at
which the test was run and the y-axis shows the worst latency measured in
that day’s run on a logarithmic scale. Further, there is a range slider showing
an overview of the whole graph and the current location when zoomed in.
Each data series is automatically assigned a color and can be identified in
the legend in the top-right corner of the chart. When the mouse hovers over
a data point, a tooltip appears, showing the date and time of the test, the
value of the point, and the identifier of the test configuration.

The small histogram charts contain a bar plot that shows how many frames
fell into each latency bin during the last measurement (data from last_hists
array of the JSON file). There is a bar for every 0.001 ms and it can go up to
5000 ms (this is when the ability to zoom in proves very useful). The y-axis
is logarithmic here as well. This chart also shows a tooltip with the nearest
x and y data point when hovered over with mouse. Below the small charts
is a button allowing toggling cumulative display of the histogram. When
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Figure 4.1: Overview page

toggled, all small charts are switched to show a line plot instead of the bars.
The cumulative values are computed from the regular histogram before being
drawn.

To simplify the process of dynamically creating variable number of the
small histogram boxes, a script called build_web.py is used to generate the
HTML code. It needs to be manually called whenever OVERVIEW_CONFIGS
changes, so probably not very often. It works by formatting and concatenating
a predefined HTML string for each box, then replacing with it {hist-boxes}
in index.html.in and saving it as index.html. Manipulating DOM on an
already loaded page with JavaScript is possible (and used in compare.js).
However, it results in less readable code, and I prefer to have as little code
running in the browser as possible.

Another file downloaded upon page load is retcode (symlinked from its
actual location). It contains a single number, the return code of the last
execution of run_daily_tests.py as captured by its wrapper. A successful
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message is shown if the return code is 0; otherwise, an error is indicated. The
date and time of the last execution is determined from the "last modified"
timestamp of the file, accessible from the Last-Modified HTTP header.

4.3 Inspect Page

The inspect page allows viewing a single test series as a whole (in 3 different
ways – Line plot, Surface and Heatmap) and exploring individual histograms.
A test series is a set of tests run on the same kernel branch with the same test
configuration. Measurements with different kernel variants or test options
are not mixed because they cannot be used to observe a trend in latencies.

The main Line plot displays the trend in minimum, average and maximum
latency of each test in the selected series over time. An alternative option is
the Surface view, which shows each histogram stacked one behind another in
a 3D scene. In this case, the z-axis (up) is in logarithmic scale. The Heatmap
view is similar to the surface view – it shows histograms stacked one behind
another, except that it is in a top-down view and height of each bar is signified
by a color. The result is a grid of colored boxes, rows going upward with time
the same way as a spectrogram. The color scale is near-logarithmic (looks
better than precisely logarithmic). The darker the box, the more frames it
represents. Switching between these views is done by three buttons above
the chart. The line plot is depicted in Figure 4.2. The remaining modes can
be seen in Appendix B.

The configuration options are specified in the query (search parameters)
part of the URL and can also be toggled using buttons. These parameters are
only used by client-side JavaScript and do not necessarily need to be passed
to the server, but they are useful as the page can be refreshed without losing
the selected options and also can be used to link to a particular test series.

The top row of buttons selects one of the kernel branches (master or rt),
the second row allows selecting which options were used during the test (for
example, which gateway was used or whether the board was under synthetic
load). Buttons that are toggled on have a darker shade of blue and either a
checked box or filled circle Unicode character in front of the label. Toggling
of a button modifies the query parameters in the address bar by using the
history API without reloading the whole page. Subsequently, the correct
JSON file is downloaded based on these parameters. The path to the file is
easily determined since the file names contain used options in a fixed order.
The JSON file contains all the histograms from measurements matching the
selected configuration, each including its identifier (information on kernel
version and time of measurement) and stats object.

Hovering over the main chart shows the identifier of the specific test just
below the chart and also displays a tooltip showing the value of the data
point closest to the mouse pointer. In the line plot mode, it shows all three
values (min, max and average). "Brushing" (clicking and dragging) over the
chart in Line plot and Heatmap view zooms in on the selected range. The
surface view can be zoomed in by scrolling. Double-click resets the view to
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Figure 4.2: Inspect page – main chart and stats

default.
A small box below the main chart shows the minimum, maximum and

average latency over the whole test series. The box is collapsible by clicking
on its header so that both the main plot and individual histogram can be
visible at the same time without scrolling.

Clicking into any of the main plots shows a second plot below, which
displays the particular histogram for a more detailed view. The style is
the same as with the small charts in Overview and can also be switched to
cumulative view. The cumulative values are computed and saved when the
source JSON is loaded, so switching the chart back and forth does not incur
unnecessary computational cost.

The kernel branch buttons are generated automatically by build_web.py
according to the configuration file – it processes inspect.html.in the same
way as the Overview page. The test option buttons need to be added manually
to the HTML with the same style as the existing ones. The click event should
call toggleparam(’opt’) with the same parameter as the identifier used in
the test result file names. The option identifier also must be added as a
field to the opts object in inspect.js. The value of the field is a boolean
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Figure 4.3: Inspect page – individual histogram

specifying whether the option should be on by default when the page is first
loaded. The order of the fields must be the same as the order in which the
identifiers appear in the result file names.

4.4 Compare Page

The Compare page is meant to view an arbitrary number of test series together
for comparison. The main plot shows a line trace for each selected series. The
data shown can be switched between min, max and average latency of the
tests in the series. This is done by a simple dropdown above the main chart.
The test series are also added from a dropdown, and the number of them that
can be shown together is not limited. The currently selected series are visible
in the legend to the right of the chart, where they can be selectively hidden.
The series also appear as a list of buttons below the chart. The button has
two functions - the left part of the button with the series identifier can be
clicked to show it on the Inspect page. Clicking on the smaller right part
(with an ’X’) completely removes the series from the view and the legend.

Adding a series causes its appropriate JSON file to be downloaded. These
are the same files as used by Inspect page. The parsed JavaScript object is
then stored in a list, so when it is removed and re-added, it does not need to
be downloaded again (or even revalidated if the browser respects the cache
policy).
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Figure 4.4: Compare page

The list of available test series is embedded in HTML by build_web.py
that also generates the previous two pages. It must be run whenever a
new test configuration is added or some are removed. It simply takes the
compare.html.in and replaces {config-items} with a generated HTML
string containing the dropdown items.
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Chapter 5
Conclusion

The goals of this thesis were to automate latency testing on the CAN bus,
assemble the testbed setup, and build a website to present the results.

A testbed to perform the continuous testing was designed and assembled.
It consists of two SBCs with FPGA-based CTU CAN FD controllers, which
are used to perform the measurement, and a support testbed device that
controls their power supply and allows them to be interacted with via serial
connection. A server was set up to manage the devices and coordinate the
testing. The devices were configured to boot from the network and have
their filesystems hosted on the server, which simplifies their management and
recovery in case of software-related failure. On top of that, a small driver for
the crossbar switch was written, which could streamline interacting with it in
the future.

The process of latency testing was scripted and automated. The resulting
system measures latencies of a CAN gateway under various conditions and is
easily configurable and extensible. All important aspects were documented
to enable possible future inclusion in a QA farm. The testing has been
running on the assembled testbed every day since late March, although with
some changes in methodology making the old results inconsistent with those
recorded in May and onward.

Integration of the system with OSADL is being negotiated, a meeting is
likely to happen at the end of June. However, this time frame is past the
deadline for the completion of this thesis.

The testing system has already contributed to the stability of PRE-
EMPT_RT Linux. When tests that happen under synthetic load were
added, the DUT started experiencing lockups during the test, and warnings
from the kernel were printed to the console. The maintainers were notified and
it was discovered that there was an error in the logic for disabling preemption.
The error has since been fixed, in Linux RT versions 6.3.3-rt15 and 6.4-rc2-rt1
respectively.

Finally, a website was built to present the results from this system. The site
allows viewing the trends in latencies under the different test configurations,
and offers multiple display options, including examining individual histograms.
It also reports whether the last test run was successful and when it happened.
In case of problems, it is possible to view the log file.
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Appendix A
Configuration File

This is an overview of values in the conf.json file. An example can be also
found in the project repository.. IP_TS: IP address of the measuring device. IP_GW: IP address of the gateway (DUT). KEY_FILE: Path to the private key that is used to log in to the boards. UGW_CMD and UGW_FD_CMD: Command that starts the user gateway. CGW_CMD and CGW_FD_CMD: Command that configures the kernel gateway. STRESS_CPUS: How many threads of synthetic load to run. UGW_PRIO: Priority to set on the user gateway process (default 80). IRQ_PRIO: Priority to set on CAN interrupt handlers (default 90). OPTS and OPTS_FLOOD: Options for the latester command and options to

use during flood test. DEST_PATH: Path where the results of tests should be copied. PING_FLOOD_TARGET: Hostname (or IP) where to direct ping flood during
stress tests, can be ommited to disable. MAINLINE_DIR: Location of mainline Linux repository that is pulled
before everything else. SOURCE_DIR: Location of Linux source tree that should be built. BUILD_DIR: Location where make should put build outputs. BUILD_OUT_DIR: Location where to archive interesting build outputs
(zImage and device tree blob). INSTALL_DIR: Path to the root of the filesystem where to install kernel
modules
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A. Configuration File ..................................
. REBOOT_CMD: The command executed from the server that will reboot

the DUT. For example SSH onto the testbed device and send a break
signal to DUT’s serial port. KERNEL_VARIANTS: An object containing other objects with information
about the kernel branches to build. The names of the objects within
it are the identifiers that can be used with the --branches option of
run_daily_tests.py. Each inner object has the following fields:. NAME: The name of the branch how it should appear on the website. CONFIG_FILE: Location of .config file that should be used for the

build. GIT_BRANCH: Which git branch to checkout before building. DTBOCFG_DIR: Location of dtbocfg source code. WEB_DIR: Location of the web. OVERVIEW_CONFIGS: A list of test configurations to show in overview
(e.g.: master-oaat-kern)
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Appendix B
Additional Website Screenshots
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Figure B.1: Inspect page – heatmap view
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Figure B.2: Inspect page – surface view
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Appendix C
List of Related Software

. can-latester-automation - The main repository with code developed
as part of this thesis. It contains the scripts that perform the testing,
scripts that run on the target devices and the source code of the website.
Available at
https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester-automation.. can-crossbar-driver - The repository with the CAN crossbar switch
driver also developed as part of this thesis. Available at https://gitlab.
fel.cvut.cz/canbus/can-benchmark/can-crossbar-driver.. can-latester - The CAN latency measurement software by Michal
Sojka, Martin Jeřábek and Matěj Vasilevsky. Minor fixes were con-
tributed as part of this thesis. Available at https://gitlab.fel.cvut.
cz/canbus/can-benchmark/can-latester.
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