
Development of an attitude estimator for the

PEARL Cubesat

Alexander Nucera

June 11, 2008

Abstract

The object of this thesis is to illustrate the objectives, development method-

ology and results of xNooch, a software tool designed and developed by this

writer, to estimate the obtainable accuracy of the attitude determination of

PEARL, a project of the Space Dynamics Laboratory in Logan, Utah, in

collaboration with Utah State University. The software was later developed

into a more flexible tool, evolving to become a valid pre-mission simulator,

and both an on-board and post-mission estimator. PEARL is the proto-

type for a constellation of satellites, whose mission would be a more accurate

sounding of Earth’s time-varying magnetosphere, and Earth’s electric field.

xNooch will help determine if PEARL meets the minimum requirements for

its mission, with its current sensing equipment, or if any redesigning must

be applied; it will guide the designing of the communication protocol, and

more specifically the telemetry rates; it will provide accuracy information

on the collected data, after the flight is completed and the data is collected;

it might be utilized for guidance during the flight. This student explored

several techniques for accomplishing the development of such a tool, and

successfully implemented it after careful selection.

Contents

List of Figures . iii

List of Tables . iv

1 Introduction 1

2 The Framework 5

2.1 PEARL and its mission . 5

2.2 Sensors on board PEARL and the error model 8

2.3 The satellite model . 9

2.4 The development environment 9

3 Preliminary Approach 11

3.1 xNooch’s objective . 11

3.2 Techniques . 11

3.2.1 Monte Carlo analysis 12

3.2.2 Linear Covariance Analysis 14

3.2.3 The Kalman filter and the Kalman smoother 18

4 Implementation and results 22

4.1 Derivation of the Kalman Filter 22

4.1.1 Dealing with quaternions 23

4.1.2 Rate Sensor Model . 28

4.1.3 The measurement equation 31

i

4.1.4 Discrete time form . 34

4.1.5 Measurement updates 36

4.1.6 Propagation of the state covariance 37

4.1.7 Final EKF . 38

5 Results and discussions 40

5.1 General comments . 40

5.2 The graphs . 41

5.3 Conclusions and Further Work 51

ii

List of Figures

2.1 A drawing of the PEARL, with its booms deployed 6

2.2 A zoom into PEARL after removing one of the solar panel . . 7

5.1 The quaternion graphs of an 88 seconds simulation 42

5.2 A close up of the quaternion graphs 43

5.3 The Euler angles calculated from the simulated data 44

5.4 A closer look at the Euler angles graphs 45

5.5 The measured data versus the estimated prediction of the filter 46

5.6 The first three estimated states and their 3− σ values 47

5.7 The second three states, and the 3− σ values 48

5.8 The error in the angle α . 49

5.9 A close up of the Kalman gain matrix diagonal values 50

iii

List of Tables

3.1 Discrete-Time Linear Kalman Filter 19

3.2 Linear Kalman smoother . 21

iv

Chapter 1

Introduction

This document is a master level thesis in the framework of the Spacemaster

program, a joint European master in space science and technology. This

thesis shall be presented to a committee of faculty members of the Czech

University of Technology in Prague, and the Lule̊aUniversity of Technology.

It illustrates the objectives, methodology and results obtained in a project

which is being developed at Utah State University, one of the Spacemaster

partner universities. In detail, the project is a collaboration of USU and its

Space Dynamics Laboratory.

Background The student project, codename: ‘xNooch’, is being developed

for the Space Dynamics Laboratory’s PEARL cubesat in collaboration with

USU. USU, as a partnership university of the Spacemaster program, has

hosted this student and inserted him into this project on the account of the

Czech Technical University (CTU) in Prague, Czech Republic, and the Lule̊a

Technical University (LTU) in Lule̊a, Sweden.

The thesis work started on March 1st, 2008, and lasted until May 28th ,

2008, at USU, and while it is now completed it may be upgraded in CTU by

the end of June, 2008. This thesis is to be presented during the last week of

1

June, 2008.

Along with individual work, this student attended weekly meetings with

the PEARL development team at SDL, Attitude Determination lectures held

by Dr. Fullmer, Space Navigation lectures held by Dr. Geller, and Linear

Covariance meetings hosted by Dr. Geller.

Task The student’s project above mentioned is complementary to PEARL,

an SDL satellite scheduled for launch in 2009. In more detail, it entails the

implementation of a software called xNooch, which will be able to estimate

the attitude1 of PEARL and the accuracy of such estimation, based on the

measurements received from the sensors on board, and their relative expected

accuracy. Such a tool will be helpful in determining, in simulation, if PEARL

meets the minimum requirements for its mission, and if any modifications

need to be done, in meeting either sufficiency or optimality. As PEARL is

a work in progress, recent information dating the last week of May, 2008,

says there might be extra funds which would allow the installment of hard-

ware capable of supporting an on board Kalman filter. xNooch is clearly a

candidate for that role. Nevertheless, its original purpose is a post-mission

processing passage. Attitude estimation accuracy knowledge lends a hand to

the science group, in determining the quality of the data and, consequently,

of its scientific value.

The original problem that xNooch attempts to solve is essentially divided

into two parts, strongly interlaced. The determination of spacecraft attitude

is a problem treated widely [1]. For the specifics of PEARL, attitude will be

determined with a set of measurements that each carry a certain amount of

inaccuracy. The xNooch needs to cleverly collect that information, extract

the inaccuracies in it, estimate the resulting attitude; it then needs to deter-

1in quaternion form.

2

mine how inaccurate that value2 is, and what is the influence of each sensor

inaccuracy on that value. The most realistic influence xNooch can have, in

the design phase, is on the telemetry protocol, for most of the equipment has

been pre-selected and is being currently approved.

Techniques The post-processed attitude determination accuracy estima-

tion, which is the original task of xNooch and the focus of attention of this

project, is achievable in a number of ways. This student’s attention is focused

on a limited amount of possibilities, given the constraints of this project.

Techniques that are known to accomplish this task, and will be investigated,

are: the Monte Carlo simulation; the linear covariance analysis; the applica-

tion of a batch estimator (such as the Kalman smoothing filter).

Of the three techniques listed above, the Monte Carlo simulation [2] is

surely the simplest one. It consists of a brute force approach, for it simulates

the mission (with all of its modeled dynamics) a large amount of times,

varying the input variables (the errors on our sensors, and how they would

propagate). The results are therefore quite reliable, although this solution

is certainly inelegant and quite costly in terms of resources. It is essentially

useful in an a-priori simulation.

The strongest attention will be put on the attitude Kalman filter [3]. A

topic treated widely, the Kalman filter is a cleverly designed low-pass filter

which offers an optimal estimate, given the available data. In this paper an

extended form of it will be derived, equipping it to treat the highly non-linear

model we are confronted with. Further, the Kalman smoothing algorithm

will be investigated. It shall utilize the principles of a Kalman filter applied

to an entire batch of information, rather than on single incoming real time

measurements. The ready possession of the entire batch of measurements

provides better information on the true value of the stimuli on our sensors at

2which will take the form of a quaternion.

3

all considered time instants, or steps, diminishing the effect of measurement

noise.

The linear covariance approach, as devised by Geller [4], allows to obtain

Monte Carlo like results in a fraction of the time, by developing a linearized

model of the system being analyzed, and running a single simulation in which

the error covariances are determined by directly propagating, updating and

correcting an augmented state covariance matrix.

4

Chapter 2

The Framework

2.1 PEARL and its mission

As mentioned, xNooch is a tool complementary to the PEARL satellite.

The PEARL is just one of an endless list of projects that fall under the

CubeSat category. Such a trend in modern satellite design is easily traceable

to the relatively small costs involved with this class of satellites, designed to

be very small and more affordable to organizations such as universities, lack-

ing the extremely large funds required for larger, more complex spacecraft.

In particular, PEARL is a project of the Space Dynamics Laboratory based

in Logan, Utah, with the collaboration of Utah State University.

A space mission is indeed a mighty task. Any reader to whom this doc-

ument is directed might have a ballpark idea of what figures are required

when taking on such an endeavour1. Even where funds are prosperous, and

research support is generous, financial obstacles come in the way and obscure

regions of the planning process. So it comes that PEARL is currently under

design, and may or may not be equipped with hardware that may greatly in-

crease its maneuvering capability, through sensing, processing, or actuation.

1mica pizza e fichi, my former roman colleagues would say.

5

Figure 2.1: A drawing of the PEARL, with its booms deployed

The financial aspect, for the duration of this project, has been brought up

more than once. While it did not influence this writer’s work, it remains one

of the issues being dealt with (and may bring up setbacks).

PEARL is intended to be a prototype for a much larger mission, in-

volving approximately 100 satellites of identical design. The mission of this

constellation of satellites would be the sounding of the magnetosphere, with

the objective of creating a more detailed model of Earth’s electric field, rich

in irregularities which are nowadays often disconsidered2. The coordination

of such a large satellite fleet would allow the synchronous measurement of

several different points in space, which would be key in determining the time-

varying characteristic of this planet’s electric field.

While the large fleet mission is still in proposal phase, with SMEX as

its temporary name, PEARL is currently being designed, and the launch is

2which really means they are modeled as error, and dealt with that way.

6

Figure 2.2: A zoom into PEARL after removing one of the solar panel

hypothesized to be sometime in 2009. Thus the need for xNooch: it would

be an important tool in determining the effective capability of the satellite

to acquire data that is sufficiently reliable, in time for modifications in its

design and, more importantly, telemetry protocols. xNooch’s results are key

in the approval for SMEX.

The information contained in this chapter was collected by this student

while attending weekly meetings at SDL with the rest of the development

team of PEARL, lead by Dr. Chad Fish. The attitude determination sub-

team comprised, apart from myself, Dr. Rees Fullmer, Bryan Bingham, and

Anders Forslund, fellow Spacemaster student and dear friend3.

3and quite the guitar player and comedian as well.

7

2.2 Sensors on board PEARL and the error

model

PEARL, because of its limited resources, must and will be extremely light-

weight, and for that reason it will employ the highly passive spin stabilization

technique [5]. It will be also equipped with magnetic torquer coils, for atti-

tude control. For attitude determination, which is the main concern of this

writer, PEARL is currently expected to be equipped with 3 gyro rate sensors;

two quad-cell sun sensors; a global positioning system (GPS) receiver; two

infrared earth horizon crossing sensors; three magnetometers, which will be

also employed in the mission’s scientific measurements; various temperature

sensors4, attached onto most of the other sensors listed above.

All of these sensors provide measurements that inevitably carry a certain

unknown error. In the earlier stages of software development, simple random

computer generated white noise might be employed for testing of the software.

It will be developed following the incremental paradigm, therefore solving the

essential problem of attitude determination and consequently incrementing

the complexity in the problem. This choice is primarily due to the extremely

short time assigned to a project like this. It felt wise and recommendable

to develop working prototypes step by step, to make sure a minimum result

would be met in good time.

Other members of the team this writer is inserted in are developing accu-

rate noise models, which are created with in mind the inner dynamics of the

sensors immersed in the expected environment of the mission. A preliminary

analysis of the expected nature and sources of these errors has been done in

collaboration with, but mainly by, Dr. Rees Fullmer and Anders Forslund.

In particular, Anders’ thesis, currently in progress, documents that part of

4potentially useful for bias drift estimation, but disconsidered in our treatment due to
lack of specification.

8

the project quite well. That analysis did not involve much of this writer’s

participation.

To determine how much these errors influence the estimation of the space-

craft’s attitude is precisely the objective of xNooch.

2.3 The satellite model

Along with the error model, a satellite model is being prepared by this

writer’s team members. That model is actually broken up in three com-

plementary parts:

The physics model describes information about the universe and its laws,

as far as our simulation is concerned; it includes the truth values of time,

location and orientation of the satellite, in relation to earth and the sun;

The sensors and actuators model, which corroborate the simulation with

the inaccuracies brought in by the sensing of the devices on board, through

the use of the error model;

The attitude determination and control (ADC) model, which describes

the software being used on board the spacecraft computer.

Any deeper analysis of this model is not necessary for this report.

2.4 The development environment

This model is being developed in MatLab’s Simulink tool/interface. This

implementation choice is supported by the scalability and modularity of that

programming environment, which helps managing a team project like this

one. xNooch represents a portion of the simulation, and a tool, which in the

original conception works entirely off-line. That means that it was intended

to run after the satellite’s mission simulation. It originally appeared too

expensive in terms of processing resource to have a Kalman filter run on the

9

satellite, in real time. xNooch’s purpose, as a reminder, is not pure attitude

determination. For that reason, xNooch is not required to be implemented in

Simulink, and is in fact developed with pure MatLab code. The reason behind

this choice is the complexity of the algorithms xNooch will be implementing,

and the support offered by MatLab code will ease the programming burden.

The possibility of it being installed on the satellite is still very viable.

xNooch does not require large interfacing with the model that the ADC

team has developed, and therefore the choice of having it implemented in

Matlab remains adequate. The required translation to make it run on board

PEARL is out of this project’s scope.

10

Chapter 3

Preliminary Approach

3.1 xNooch’s objective

xNooch is a software tool developed onto the previously mentioned frame-

work. Its objective is to estimate the attitude of PEARL during the entire

course of its mission, after it being completely completed1. Thus, it was

designed as a post-processing tool. The attitude determination of the entire

flight time will be obtained by processing the data acquired by the sensing

instruments. Along with that information, xNooch is required to estimate

the relative error carried by that attitude estimate, at each time step, which

is a function of the error in the measurement (unknown), and the accuracy

of the sensors.

3.2 Techniques

As mentioned in the introduction, a few different ways will be examined for

the implementation of xNooch.

1or simulated.

11

3.2.1 Monte Carlo analysis

The Monte Carlo approach is by definition a brute force approach. In general

it is appropriate for problems where it is impossible or impractical to find

results using a deterministic algorithm. The method consists of defining a

set of variable inputs, for a certain problem. Subsequently, once a model is

prepared and data is collected, it is executed a large number of times, varying

the input errors. After hundreds or thousands of simulations, the results are

taken and analyzed, according to the problem.

A simpler problem than the PEARL’s mission will be illustrated. This

example is taken from [6]. Let’s assume a spacecraft equipped with an inertial

navigation system that includes accelerometers and gyros. The equations

that describe the motion or trajectory of this spacecraft, error free, are

ṙI = vII (3.1)

v̇II = TBI aBI,non−grav + gI(rI) (3.2)

ṪBI = TBI ΩB
B/I (3.3)

q̇IB =
1

2
qIB ⊗ ωBB/I (3.4)

where the accelerometer and gyro measurements, aBI,non−grav and ΩB
B/I , are

error free, the superscript indicates the coordinate frame, the subscript in-

dicates the observation frame, and the double subscript indicates the mea-

surement to one frame with respect to the other; r is the position vector, v

the velocity vector, g(r) the acceleration due to gravity in that position, a

is the accelerometer measurement and Ω the gyro measurement, and q the

quaternion describing the attitude.

Next, we introduce error sources. The initial position (δrI), velocity (δvII)

and attitude error (δθ) are such that

12

r̂I = rI + δr (3.5)

v̂I = vI + δv (3.6)

q̂IB = δq ⊗ qIB, where δq ≈

 δθB/2

1

 (3.7)

The gyro errors can be noise (νgyro), bias (bgyro), and scale factor (sgyro),

ω̂BB/I = [I +Diag(sgyro)ω
B
B/I + bgyro + νgyro (3.8)

= [I + Sgyro]ω
B
B/I + bgyro + νgyro (3.9)

The accelerometer errors may be due to noise (νaccel), bias (baccel), scale

factor (saccel), misalignment (ε), g2-sensitivity (kg2), and g3-sensitivity (kg3).

ãBI,non−grav = [I − (ε×)][I +Diag(saccel)]a
B
I,non−grav + baccel +

· · ·+ kg2
a2

ge
+ kg3

a3

g2
e

+ νaccel (3.10)

= [I + Eaccel][I + Saccel)]a
B
I,non−grav + baccel + kg2

a2

ge
+ kg3

a3

g2
e

+ νaccel (3.11)

where a =| aBI,non−grav | and ge = 9.81m/s2.

Proceeding with a Monte Carlo simulation, all these error sources can be

given random input values and the describing equations integrated each time,

and after a very large number of simulations (in the order of a thousand) the

variance of the result will be the propagated error covariance. This simulation

requires an enormous amount of processing, for the simulation needs to be

run thousands of times for the result to be reliable.

13

As previously stated, the Monte Carlo simulation represents a coarse ap-

proach to the solution of this problem. Moreover, the determination of the

error covariance associated with the estimation of the satellite at all times

requires an enormous amount of simulations. The inelegance of this tech-

nique and the high processing cost represented a strong motivation to defer

this simulation to a later part/phase of the project. Keeping in mind the

objectives of this thesis, the Monte Carlo simulation adds very little to the

quality of this document and of this student’s work in general, representing

de facto a large and costly waste of time. While it remains a useful tool,

this approach is of little academic value; perhaps just for comparison. As we

will see, the results obtained with the Kalman filter are of stunning quality,

thus not requiring the need for further investigation. Therefore, this stu-

dent preferred to concentrate his resources on the remaining options. The

Monte Carlo simulation was never attempted.

3.2.2 Linear Covariance Analysis

In contrast, Linear Covariance analysis guarantees the same result with

much less computational effort, and consequent time. Linear Covariance,

or LinCov, is a technique to specifically propagate the covariance of an in-

put to an output. In case of a linear function, such as y = a · x + b, it is

fairly intuitive that if x follows a distribution defined by a certain mean and

variance, then y will follow the same distribution, with mean and variance

proportional to x’s, according to that function. Though, if the equation is

not linear, then that is in general not valid.

Applied to our sample problem, the strategy is to linearize the equations

about the true trajectory, without any errors. Once they are linearized, sim-

ple stochastic linear system theory can be applied to determine the covariance

of the navigation error.

14

By selecting a state vector

x = (rI vII θB sgyro bgyro ε saccel baccel kg2 kg3)
T

the linearized equations of motion are

δṙI = δvII (3.12)

δv̇II =
∂gI

∂rI
|nomδrI + TBI [aBI,non−grav×]δθB +

+TBI

(
− [ε×]aBI,non−grav +Diag(saccel)a

B
I,non−grav +

+baccel + kg2
a2

ge
+ kg3

a3

ge2

)
+ νaccel (3.13)

δθ̇
B

= −ωBB/I × δθ̇
B

+Diag(sgyro)ω
B
B/I + bgyro + νgyro (3.14)

sgyro = 03×1 (3.15)

bgyro = 03×1 (3.16)

ε = 03×1 (3.17)

saccel = 03×1 (3.18)

baccel = 03×1 (3.19)

kg2 = 03×1 (3.20)

kg3 = 03×1 (3.21)

which can be written in state space format as

ẋ = Fx+G

 νaccel

νgyro

 (3.22)

15

where

F =


03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

Fv,r 03×3 Fv,θ 03×3 03×3 Fv,ε Fv,saccel
Fv,baccel

Fv,kg2 Fv,kg3

03×3 03×3 Fθ,θ Fθ,sgyro Fθ,bgyro 03×3 03×3 03×3 03×3 03×3

021×3 021×3 021×3 021×3 021×3 021×3 021×3 021×3 021×3 021×3


(3.23)

G =


03×3 03×3

I3×3 03×3

03×3 I3×3

021×3 I21×3

 (3.24)

Fv,r =
∂gI

∂rI
|nom, Fv,θ = TBI [aBI,non−grav×], Fv,ε = TBI [aBI,non−grav×] (3.25)

Fv,saccel
= TBI Diag(aBI,non−grav), Fv,baccel

= TBI , Fv,kg2 = TBI
a2

ge
, Fv,kg3 = TBI

a3

ge2
(3.26)

and

Fθ,θ = −[ωBB/I×], Fθ,sgyro = Diag(ωBB/I), Fθ,bgyro = I3×3 (3.27)

and

Q = E

[(
νaccel

νgyro

)(
νTaccelν

T
gyro

)]
=

(
Qaccelδ(t− τ) 0

0 Qgyroδ(T − τ)

)
(3.28)

To propagate the state covariance matrix we use

Pi+1 = ΦiPiΦ
T
i +GQGT∆t (3.29)

where

Φi = expF∆t ≈ I + F∆t+ F 2∆t2/2 (3.30)

16

This approach would deliver the same results as the Monte Carlo sim-

ulation in just one execution of the algorithm. The possible caveat is the

linearization of the equations of motions, or for more complex problems the

development of a linear model. Nonetheless, the elegance of the method and

its efficiency made it worthy of consideration.

In exploring the possibilities of LinCov, both Dr. Geller and Anders

Forslund were of great value. In an initial phase, enthusiasm towards a

new technique directed most of this students attention to the research of

the potential of this instrument. While gathering information, and acquiring

initial experience, a follow up meeting with both Dr. Geller and Dr. Fullmer

resulted in abandoning this approach, for a few reasons. Primarily, it seemed

that an experimental technique was less appreciated by the SDL staff. The

estimation of PEARL’s attitude was a matter to be assigned preferably to

a tool that delivers, reliably and consistently. Along that line, xNooch had

strong time boundaries. Researching a new technique and risking a setback,

or even worse, a failure, was not a chance the development team was ready

to take. As a side issue, the thesis being prepared by Anders Forslund does

cover in great deal the use of LinCov for spin axis estimation, a problem

similar to the one xNooch solves. For that reason, USU found that it would

be recommendable to invest part of its research force2 in a new and poten-

tially ground breaking technique, and another part in a solid, well known and

tested method. This partitioning should guarantee results of an exquisitely

scientific mark on one side, and of practical engineering matter on the other.

Anders’ much longer time at USU, paired with our different areas of exper-

tise, quickly advised the division of tasks.

Qualitatively, LinCov does not outclass a Kalman filter. In essence, what is

being processed is quite similar, and the mathematics supporting LinCov are

2its European contingent, as Dr.Fullmer introduced Anders and myself to the SDL
team, one freezing early March Friday morning.

17

based on the derivations of the Kalman filter3. Therefore, to not pursue the

usage of LinCov does not make the value of this thesis any lesser. Proof of

this may be found in [3] and [4]. At a much later stage, my colleague Anders

discovered that MatLab’s linearization tool removes the heaviest burden off

the application of LinCov, which is the linearization of the system or process

being simulated. That possibility opens a number of opportunities yet to be

explored. Please refer to his work (currently under development) for further

discussions.

3.2.3 The Kalman filter and the Kalman smoother

The following method turned out to be the one xNooch implemented. It was

chosen essentially because it’s the method with which this writer is and was

most comfortable with, along with the reasons discussed above. Again, here,

time constraints played a key role.

The standard Kalman filter is subject of many engineering courses, and its

widespread reaches many different sorts of applications. It’s a very efficient

recursive algorithm used to estimate the state(s) of a system after processing

a series of noisy measurements taken from whatever sensing equipment is

being used. It uses a model of the system to predict the evolution of it, and

then corrects that prediction with a noisy measurement4. It then corrects

its successive prediction, by propagating the related measurement error co-

variance. Extensive discussion on its application to spacecraft may be found

in [1]. A general form of the Kalman filter equations may be found in table

3.1. An interesting application of the same principles governing the Kalman

filter has been explored in [3], and called the Kalman smoothing filter.

3a long talk with Dr. Geller convinced me of this equipollence, as he himself admitted
his own tool would not outperform Kalman’s classic.

4Alternatively, like in our approach, where there is only the measurement equation, it
may figure out a realistic model for the system and follow it, without ever expliciting it.

18

Table 3.1: A simple discrete-time Kalman filter, as illustrated in [1]

Model xk+1 = Φkxk + Γkuk + Υkwk, wk ≈ N(0, Qk)
ỹk = Hkxk + vk, vk ≈ N(0, Rk)

Initialize x̂(t0) = x̂0

P0 = E{x̃(t0)x̃T (t0)}

Gain Kk = P−k H
T
k [HkP

−
k H

T
k +Rk]

−1

Update x̂+
k = x̂−k +Kk[ỹk −Hkx̂

−
k]

P+
k = [I −KkHk]P

−
k

Propagation x̂−k+1 = Φkx̂
+
k + Γkûk

P−k+1 = ΦkP
+
k ΦT

k + ΥkQkΥ
T
k

19

The so called Kalman smoothing filter is an application of the filter to a

batch of data. The standard version of the filter is in fact recursive, and only

ever keeps track of one state vector and one measurement, and the related

error covariances. For the PEARL problem, the entire collection of data is

available, and thus a batch estimation technique is surely advisable for it

can perform better than a recursive technique. The Kalman smoothing filter

does exactly that.

The idea behind it is simple: it takes a standard version of the filter,

and runs it through the entire set of data, recording the new filtered data

and the related error covariances. It then flips the data over, hence inverting

time, and runs the filter again, recording the results. The two result sets

are then aligned in time, and weight averaged, based on the associated error

covariance. The resulting set is the final result set of data.

If we call our state x(t), then the smoothed estimate based on

all measurements between 0 and T is denoted by x̂(t|T). An

optimal smoother can be thought of as a suitable combination of

two optimal filters. One of the filters, called a “forward filter”,

operates on all the data before time t and produces the estimate

x̂(t); the other filter, called a “backward filter”, operates on all the

data after time t and produces the estimate x̂(t)b. Together these

two filters utilize all the available information. . . . This suggests

that the optimal combination of x̂(t) and x̂(t)b will, indeed, yield

the optimal smoother; proof of this assertion can be found in [7].

. . . In fixed-interval smoothing, the initial and final times 0 and T

are fixed and the estimate x̂(t|T) is sought, where t varies from

0 to T . [3]

Refer to [3] for the derivation of the smoother. Table 3.2 shows the

smoother itself, in general form.

20

Table 3.2: A standard Kalman smoother, as illustrated in [3]

Model ẋ(t) = F (t)x(t) +G(t)w(t), w(T) ≈ N(0, Q(t))
z(t) = H(t)x(t) + v(t), v(t) ≈ N(0, R(t))

Initialize E[x(0)] = x̂0, E[(x(0)− x̂0)(x(0)− x̂0)T] = P0

other assumptions E[w(t1) · vT (t)] = 0 for all t; R−1(t) exists

Forward Filter ˆ̇x(t) = F (t)x̂(t) + P (t)HT (t)R−1(t)[z(t)−H(t)x̂(t)],
x̂(0) = x̂0

Error Covariance Ṗ = F (t)P (t) + P (t)F (t)T +G(t)Q(t)G(t)T−
Propagation −P (t)HT (t)R−1(t)H(t)P (t),

P (0) = P0

Backward Filter d
dτ

s(T − τ) = [F T (T − τ)− P−1
b (T − τ)G(T − τ)·

(τ = T − t) ·Q(T − τ)GT (T − τ)]s(T − τ)+
+HT (T − τ)R−1(T − τ)z(T − τ),

s(0) = 0

Error Covariance d
dτ
P−1
b (T − τ) = P−1

b (T − τ)F (T − τ)− F T (T − τ)·
Propagation ·P−1

b (T − τ)− P−1
b (T − τ)G(T − τ)·

(τ = T − t) ·Q(T − τ)GT (T − τ)P−1
b (T − τ)+

+HT (T − τ)R−1(T − τ)H(T − τ),
P−1
b (0) = 0

Optimal Smoother x̂(t|T) = P (t|T)[P−1(t)x̂(t) + s(t)]
= [I + P (t)P−b 1(t)]x̂(t) + P (t|T)s(t)

Error Covariance P (t|T) = [P−1(t) + P−1
b (t)]−1

Propagation = P (t)− P (t)P−1
b (t)[I + P (t)P−1

b (t)]−1P (t)

21

Chapter 4

Implementation and results

As previously explained, the problem at hand has been tackled choosing an

incremental approach: devising at first a solution to a simpler problem, and

iteratively adding complexity to the problem and adjusting the solution. The

first step in this approach, having chosen the Kalman smoother as a primary

solution, was to derive a Kalman filter capable of estimating the attitude of

PEARL based on the nature of the measurements we knew we were going to

obtain. Again, as a reminder, xNooch shall take as inputs the measurements

and the associated error covariances, and output an attitude estimate along

with an accuracy of that estimate.

4.1 Derivation of the Kalman Filter

This process has been aided greatly by [1] and by Dr. Fullmer’s course on

Attitude Control, attended while at USU, and the related course notes [8].

While attitude may be expressed in a number of ways (Euler angles, Ro-

drigues parameters, rotation vector...) it seemed appropriate to direct focus

on the quaternion description. Quaternions, as known, do not present singu-

larities and hence rid us of a potential problem. Quaternions though follow

22

tremendously non-linear operations, for they must obey a normalization con-

straint:

q2
1 + q2

2 + q2
3 + q2

4 = qTq = 1 (4.1)

and this constraint may be violated (and most likely is) by the linear mea-

surement updates of the filter. This obstacle may be overcome by utilizing

a multiplicative error quaternion, which we will introduce next. This ap-

proach, along with a normalization step in the algorithm, is very effective

with a small angle approximation.

4.1.1 Dealing with quaternions

As we know, a quaternion product may be written as R(q′′) = R(q′)R(q), or


q′′1

q′′2

q′′3

q′′4

 =


q′4 q′3 −q′2 q′1

−q′3 q′4 q′1 q′2

q′2 −q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4




q1

q2

q3

q4

 (4.2)

also definable as q′′ = q′ ⊗ q.

Recalling that q =

 ~q

q4

 and q−1 =

 ~−q
q4

.

According to Rodrigues’ formula,

R(q) = [q2
4 − q2]I3×3 + 2~q~qT − 2q4Q (4.3)

where

Q = q× =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (4.4)

These formulations allow for both RT (q) = R−1(q) and R−1(q) = R(q−1).

23

We may then define our measurement error as

R(q) = R(δq)R(q̂) (4.5)

RT
I = RT

MR
M
I (4.6)

where

T = true

M = measured

I = inertial

and

q = true quaternion

q̂ = measured quaternion

δq = quaternion error

so

R(δq) = R(q)R−1(q̂) = R(q)R(q̂−1) (4.7)

or

δq = q ⊗ q̂−1 (4.8)

and by differentiation

δq̇ = q̇ ⊗ q̂−1 + q ⊗ ˙̂q
−1

(4.9)

.

Since R(q)R−1 = I ⇒ I(q′′) = R(q)R(q−1) ⇒


0

0

0

1

 = q ⊗ q−1 and

substituting back into 4.9 we get

0 = q̇ ⊗ q−1 + q ⊗ q̇−1 (4.10)

0 = ˙̂q ⊗ q̂−1 + q̂ ⊗ ˙̂q
−1

(4.11)

From [5] we know that q̇ = 1
2
Ω(ω)q where

24

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 =

 −ω× ω

−ωT 0



and if we’re using measured values then ˙̂q = 1
2
Ω(ω̂)q̂.

Substituting into 4.11:

1

2
Ω(ω̂)q̂ ⊗ q̂−1 + q̂ ⊗ ˙̂q

−1
= 0 (4.12)

1

2

 −ω× ω

−ωT 0




0

0

0

1

+ q̂ ⊗ ˙̂q
−1

= 0 (4.13)

1

2

 ω̂

1

+ q̂ ⊗ ˙̂q
−1

= 0 (4.14)

−1

2

 ω̂

1


︸ ︷︷ ︸

R(q′′)

= q̂ ⊗ ˙̂q
−1︸ ︷︷ ︸

R(q′)R(q)

(4.15)

R(q) = R−1(q′)R(q′′) (4.16)

R(q) = R(q−1)R(q′′) (4.17)

q = q′−1 ⊗ q′′ (4.18)

which, with q ⇒ ˙̂q
−1
, q′ ⇒ q̂, q′′ ⇒ −1

2

 ω̂

0

 becomes

˙̂q
−1

= q̂−1 ⊗

−1

2

 ω̂

0

 (4.19)

25

Now, remembering:

q̇ =
1

2
Ω(ω)q (4.20)

if we define q′′ = q′ ⊗ q = Q(q) then matrices Q(q) and Ω

 ω

0

 are

identical.

Ω(ω)q =

 ω

0

⊗ q (4.21)

q̇ =
1

2


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0




q1

q2

q3

q4

 =
1

2

 ω

0

⊗ q (4.22)

Remembering 4.9, we obtain

δq̇ =
1

2

 ω

0

⊗ q ⊗ q̂−1 + q ⊗

−1

2
q̂−1

 ω̂

0

 (4.23)

Remembering q ⊗ q̂−1 = δq

δq̇ =
1

2


 ω

0

 δq − δq
 ω̂

0

 (4.24)

On a note, as we will use this equality later:

δq ⊗

 ω̂

0

 =


δq4 δq3 −δq2 δq1

−δq3 δq4 δq1 δq2

δq2 −δq1 δq4 δq3

−δq1 −δq2 −δq3 δq4




ω̂x

ω̂y

ω̂z

0

 (4.25)

26

=


0 −ω̂z ω̂y ω̂x

ω̂z 0 −ω̂x ω̂y

−ω̂y ω̂x 0 ω̂z

−ω̂x −ω̂y −ω̂z 0




δq1

δq2

δq3

δq4

 (4.26)

=

 ω̂× ω̂

−̂ωT 0

 δq = Γ(ω̂)δq (4.27)

Let ω = ω̂ + δω; then equation 4.24 becomes:

δq̇ =
1

2


 ω̂ + δω

0

⊗ δq − δq ⊗
 ω̂

0

 (4.28)

δq̇ =
1

2


 ω̂

0

⊗ δq − δq ⊗
 ω̂

0

+
1

2

 δω

0

⊗ δq (4.29)

δq̇ =
1

2
{Ω(ω̂)δq − Γ(ω̂)δq}+

1

2

 δω

0

⊗ δq
=

1

2


 −ω̂× ω̂

−ω̂T 0

−
 ω̂× ω̂

−ω̂T 0

 δq +
1

2

 δω

0

⊗ δq
=

 −ω̂× 0

0 0

 δq +
1

2

 δω

0

⊗ δq (4.30)

Let δq =

 δρ

δq4

; then

δq̇ = −ω̂×δρ+
1

2

 δω

0

⊗ δq (4.31)

Linearization of the last term

N − 1

2

 δω

0

⊗ δq = Ω(δω)

 ρ

δq4

 (4.32)

27

where δq4 =
√

(1− δq2
1 − δq2

2 − δq2
3)

N =
1

2


0 δωz −δωy δωx

−δωz 0 δωx δωy

δωy −δωx 0 δωz

−δωx −δωy −δωz 0




δq1

δq2

δq3

(1− δq2
1 − δq2

2 − δq2
3)1/2

 (4.33)

Careful observation shows how, for small angle variation and slow rota-

tion, the N matrix greatly reduces. Without going through trivial math, in

can be demonstrated that,

lim
δq,δω→0,0

N =
1

2


δωx

δωy

δωz

0

 =
1

2

 δω

0

 (4.34)

δq̇ = −

 ω̂×δρ

0

+

 δω

0


δρ̇ = −ω̂×δρ+ 1/2δω

δq̇4 = 0

 (4.35)

4.1.2 Rate Sensor Model

In this section we will show how the derivation of the rate sensor integrates

into the extended version of the Kalman filter we will be using. The deriva-

tion is once again guided by [1] and was rather surprising to this writer.

Nevertheless, it revealed its worthiness in the testing phase. We will start by

28

analyzing the model of the sensor.

ω̃ = ω + β + ην (4.36)

Here, ω̃ is the measured angular velocity, and it is decomposed into the true

angular velocity ω, the bias effect β, and the measurement noise ην . We will

also be considering the bias drift effect, namely β̇ = ηu. As these are vectorial

dimensions, we will define the standard deviations of the two noises as σν

and σu respectively, like so: ην = σnu
2I3×3 and ηu = σ2

uI3×3. As usual we’ll

be using a hat to indicate estimated values, and we will design the filter to

estimate the bias drift, assuming it will not vary in time. This is, of course,

a simplification.

δω = ω − ω̂ = ω̃ − β − ην − ω̃ + β̂ = − (β − β̂)︸ ︷︷ ︸
∆β

−ην = −(∆β + ην) (4.37)

Substituting this result into 4.35 yields

δρ̇ = −[ω̂×]δρ
1

2
(∆β + ην) (4.38)

From [5] we know that q =

 ρ

q4

 =


ex sin(α/2)

ey sin(α/2)

ez sin(α/2)

cos(α/2)

 and linearizing this

brings:

ρx = ex sin
α

2
(4.39)

δρx = ρx(α + δα)− ρx(α)

=
∂ρx
∂α
|α=0δα

=
1

2
ex cos

α

2
|α=0δα

29

=
ex
2
δα (4.40)

and so on for the y and z directions. A different transformation shows that:

δρ =
1

2


exδα

eyδα

ezδα

 =
1

2
δ~α =

1

2


δφ

δθ

δψ

 (4.41)

We have therefore found a direct relation with the Euler Angles.

So:

δρ̇ =
1

2
δα̇ = −1

2
[ω̂×]δα− 1

2
(∆β + ην) or δα̇ = −[ω̂×]δα− (∆β + ην)

(4.42)

which has finally brought us to our choice of a state vector, for the Kalman

filter. It resulted in a fairly straight-forward choice, for the literature is not

abundant and considering our hardware constraints this was the only suit-

able implementation. The derivation, however, differs in several points from

reference [1], which is the inspirational source. The differences are due to the

fact that the derivation was redone by this student, with the objective of

a) understanding the material;

b) looking for ways to improve it, or make more adequate for our particular

mission.

While task a was accomplished, task b proved to be too difficult of an achieve-

ment. Nevertheless, the final result of the derivation matches Crassidi’s, and

is therefore theoretically reliable. The testing proves it is indeed effective.

 δα

δβ

⇒
 “eulerangles′′

“bias′′



30

 δα̇

δβ̇

 =

 −ω̂× −I3×3

03×3 03×3

  δα

δβ

+

 −I3×3 03×3

03×3 I3×3

 ην

ηu

 (4.43)

equivalent to the more traditional

δẋ = F (x)δx+Gw (4.44)

.

4.1.3 The measurement equation

From the very beginning we knew we could rely on at least more than one vec-

torial measurements (sun sensor and magnetometer), and therefore planned

accordingly. The measurement equation is:

sB = R(q)sI (4.45)

where B stands for body coordinates, I for inertial, and R(q) is the rotation

matrix obtained from the attitude quaternion that relates the two coordi-

nates systems. Our measurement clearly comes in body frame coordinates.

The inertial vector, or, more precisely, the earth centered inertial coordinate

system vector, is a function of the universe and mission models. It was not

in this project’s scope to generate the ECI vector, but rather just to know

how to deal with it and its significance. The measurement equation defines

its relevance.

31

In general:

b1 = R(q)r1

b2 = R(q)r2

...

bm = R(q)rm


m vectors observed (4.46)

or, including measurement errors

b1meas = R(q)r1 + ν1

b2meas = R(q)r2 + ν2

...

bKmeas = R(q)rm + νm


(4.47)

or, changing notation:

ỹ = h(x̃) + ν (4.48)

Now, back to the quaternion. This filter is designed precisely for mission

attitude determination, but not for the detumbling phase (PEARL will utilize

another algorithm for detumbling, which is not a part of this report). This

means that it is appropriate to make the small angle assumption, and simplify

our model and, therefore, our filter and implementation.

Pulling back Rodrigues’ formula (4.3), but adapting it to small angles

(δq4 ≈ 1, ~ρ2 ≈ 0, ~ρ · ~ρT ≈ 0), we obtain

R(δq) = I3×3 − δα× =


1 δψ −δθ
−δψ 1 δφ

δθ −δφ 1

 (4.49)

32

where 2δρ = δα =


δφ

δθ

δψ

 and these are the approximated Euler angles,

valid only for small rotation scenarios.

Truth b = R(q)r

Predicted b̃− = R(q̂−)r

(4.50)

Error in the observed vector δb = b− b̂−

= (R(q)−R(q̂−))r

= [I3×3 − δα× − I3×3]R(q̂−)r

= −δα×R(q̂−)r

= [R(q̂−)r]×δα (4.51)

The measurement equation therefore becomes ỹm = b̂m(q̂−) + [R(q̂−)r]×δα︸ ︷︷ ︸
h(q̂−,α)

+νm,

or more in general ỹ = h(δα, δβ) + ν. By linearizing vector h about δα0 = 0

and δβ0 = 0 we get

h(δα, δβ) = b̂−(q̂−) + [R(q̂−)]×δα (4.52)

ỹ − b̂−(q̂−) =

 (R(q̂−)r)× 0 0 0
...

...
...

...


︸ ︷︷ ︸

3m×6

 δα

δβ

+ ν (4.53)

ỹ − b̂−(q̂−) = H(q̂−)X + ν (4.54)

33

which is our final measurement equation1, fitted to our problem.

4.1.4 Discrete time form

This section briefly illustrates the derivation of the Ω̄(ω) matrix, which al-

lows a smooth conversion to discrete time measurements. It is voluntarily

extremely synthetic.

˙̂q =
1

2
Ω(ω̂)q̂ ⇐⇒ ẋ = Ax (4.55)

Assuming

x(t) = eAtx0 (4.56)

We attempt to apply this type of solution to the quaternion form

ẋ(t) = Ax(t) (4.57)

We choose T as our sampling rate

x(T) = eATx(0) (4.58)

x(2T) = e2ATx(0) = eATx(0) ecc . . . ecc . . . (4.59)

1almost a month of tests were spent trying to understand why the filter presented an
unstable behavior. It seemed to work, but the higher the spin rate, the quicker the estima-
tion would be knocked off course, sometimes to return, but usually to just go bananas. A
few PhDs and a couple of tenured professors scratched their heads for quite a while, in the
attempt of solving this mysterious abnormality. At times it seemed a specific instant would
be key to instability. Others, the estimation would slowly drift away. But if simulated
non-spinning, it worked just fine. Every conceivable alteration was done, both in tuning
and in simplifying. An embarrassing amount of data sets had to be developed, to see if
the problem lay somewhere in between. The morning before departing from USU, head-
ing back to CTU, was when we were able to identify a very small error in this equation,
missing brackets to be precise. With the correction, the problem disappeared.

34

So, for any k,

xk+1 = eATxk (4.60)

Applied to the quaternion

q̂k + 1 = exp[
1

2
Ω(ω̂T]q̂k (4.61)

Matrix exponential form:

exp[
1

2
Ω(ω̂T] =

∞∑
j=0

[
1

2
Ω(ω̂T]j/j! (4.62)

which could be then separated in odd and even terms. But:

Ω(ω̂)Ω(ω̂) =


0 ω̂z −ω̂y ω̂x

−ω̂z 0 ω̂x ω̂y

ω̂y −ω̂x 0 ω̂z

−ω̂x −ω̂y −ω̂z 0




0 ω̂z −ω̂y ω̂x

−ω̂z 0 ω̂x ω̂y

ω̂y −ω̂x 0 ω̂z

−ω̂x −ω̂y −ω̂z 0

 =

=


−ω̂2 0 0 0

0 −ω̂2 0 0

0 0 −ω̂2 0

0 0 0 −ω̂2

 = −||ω̂||2I4×4

Ω(ω̂)2k = (−1)k||ω̂||2kI4×4 (4.63)

Ω(ω̂)2k+1 = (−1)k||ω̂||2kΩ(ω̂) (4.64)

which is also found in [1]We identified an infinte series of sines and cosines

exp[1/2 Ω(ω̂T] = cos

(
||ŵ||T

2

)
I4×4 +

Ω(ω̂)

||ŵ||
sin

(
||ŵ||T

2

)
(4.65)

35

Defining:

C = cos

(
||ŵ||T

2

)
and ψ̂ =

ŵ

||ŵ||
sin

(
||ŵ||T

2

)
(4.66)

exp[1/2 Ω(ω̂T] = CI +

 −ψ̂× ψ̂

−ψ̂ 0

 = Ω̄(ω̂) (4.67)

or in more compact form

q̂k+1 = Ω̄(ω̂k)q̂k =

 CI3×3 − ψ̂×k ψ̂k

−ψ̂k C

 q̂k (4.68)

which is the discrete time propagation of the quaternion estimate

4.1.5 Measurement updates

Quaternion

Assuming a measurement update2 comes in, ỹ: then

x̂+
k − x̂−k = ∆xk =

 δα̂+
k

δβ̂+
k

 = Kk(yk − h(x̂k)) (4.69)

R(q̂+
k) = R(δq̂+

k)R(q̂−k) (4.70)

or

q̂+
k =

 1
2
δα̂+

k

1

⊗ q̂−k =
1

2


2 δα3 −δα2 δα1

−δα3 2 δα1 δα2

δα2 −δα1 2 δα3

−δα1 −δα2 −δα3 2




q−1

q−2

q−3

q−4

 (4.71)

2in this section, all values are vectorial. To keep the writing slimmer, none of them will
be marked as such

36

=


q−1

q−2

q−3

q−4

+
1

2


δα3q2 −δα2q3 δα1q4

−δα3q1 δα1q3 δα2q4

δα2q1 −δα1q2 δα3q4

−δα1q1 −δα2q2 −δα3q3

 (4.72)

or

q̂+
k = q̂−k +

1

2


q4 −q3 q2

q3 q4 −q1

−q2 q2 q4

−q1 −q2 −q3



δα1

δα2

δα3

 (4.73)

q̂+
k = q̂−k +

1

2
Ξ(q̂−k)δα̂+

k (4.74)

Bias

β̂+
k = β̂−k + δβ̂+

k (4.75)

Rate ω

ω̂+
k = ω̃k︸︷︷︸

Measured rate

−β̂+
k (4.76)

4.1.6 Propagation of the state covariance

Looking back at the rate sensor model, these were our describing equations:

ω̃ = ω + β + ην (4.77)

β̇ = ηu (4.78)

37

Now let’s assume that

E[ηuη
T
ν] = σ2

uI3×3 (4.79)

E[ηνη
T
u] = σ2

νI3×3 (4.80)

Then, [1] tells us that

Pk + 1− = ΦkP
+
k ΦT

k +GkQkG
T
k (4.81)

where

Φ =

 Φ11 Φ12

Φ21 Φ22

 (4.82)

Φ11 = I3×3 − ŵ×
sin(||ŵ||T)

||ŵ||
+ ŵ×ŵ×

[
1− cos(||ŵ||T)

||ŵ||2

]
(4.83)

Φ12 = ŵ×
[

1− cos(||ŵ||T)

||ŵ||2

]
− I3×3T (4.84)

Φ21 = 03×3 (4.85)

Φ22 = I3×3 (4.86)

Gk =

 −I3×3 03×3

03×3 I3×3

 (4.87)

Qk =

 (σ2
ν + 1

3
σ2
uT

3)I3×3 −1
2
σ2
uT

2I3×3

−1
2
σ2
uT

2I3×3 σ2
uTI3×3

 (4.88)

(4.89)

4.1.7 The final derivation of the extended quaternion

attitude Kalman filter

Here is in brief a collection of the entire algorithm we have just derived, and

which will be shown at work in the following chapter.

38

The three initial guesses of quaternion, bias and the related error covari-

ance (presumably a relatively high value) are q̂−k β̂−k P−k .

1. Kalman gain calculation:

a)

R(q̂−k) (4.90)

b)

Hk(q̂
−
k) =


(R(q̂−k)rI1)× 0 0 0

...
...

...
...

(R(q̂−k)rIm)× 0 0 0

 (4.91)

c)

Kk = P−k H
T
k [HkP

−
k H

T
k +Rk]

−1 (4.92)

where R is none other than the measurement noise covariance;

2. Measurement update: yk, w̃k.

∆x̂+
k = Kk(yk − h(q̂−)) (4.93)

∆x̂+
k =

 δα̂+
k

δβ̂+
k

 (4.94)

q̂+
k = q̂−k +

1

2
Ξ(q̂−k)δα̂+

k (4.95)

β̂+
k = β̂−k + δβ̂+

k (4.96)

ω̂+
k = ω̃k − β̂+

k (4.97)

P+
k = [I −KkHk(q̂

−
k)]P−k (4.98)

3. Propagation

q̂−k+1 = Ω̄(ω̂+
k)q̂+

k (4.99)

β̂−k+1 = β̂+
k (4.100)

P−k+1 = ΦkP
+
k ΦT

k +GkQkG
T
k (4.101)

39

Chapter 5

Results and discussions

5.1 General comments

xNooch proved to be a much harder task than what was expected. As com-

mented previously, the ridding of annoying and very disruptive bugs was the

cause of a major setback that kept not just this writer, but a large part of

the department scratching their heads for quite a while. The final solution

came only just in time before the project time was over, and quite luckily I

might add.

In the attempt of getting xNooch to work, its code was cleaned up of any

source of disturbance or uncertainty. In removing uncertainty, we removed

complexity, attempting to make the problem simpler to solve and find just

where the threshold of its robustness lay. For that reason, the simulation ran

for last and that I show in this document is not realistic for a space mission.

First and foremost, we adopted a simple white noise that is generated by the

same code that runs the filter. The error model, in this simulation, is not

used. While white noise does not make the filter’s job any easier, it would

have been satisfactory to observe the performance with realistic mission data.

Second, the telemetry that is expected currently will have an 88 second win-

40

dow of transmission, approximately each 92 minutes. Consequently, the filter

is required to collect data while it can, and then predict and estimate for a

time much longer than the duration of the previous transmission. Unfor-

tunately, the development team has not yet completed an entire batch of

“truth” data past 88 seconds. Thus, the simulation shown in this report

documents 88 seconds of flight.

The data that is analyzed is still quite challenging, and not far from

realistic. Even though the noise is not modeled, the spacecraft dynamics are,

and so is the trajectory that is being followed and the spin motion applied to

it. This means the values of the ECI vectors are appropriate, and in line with

the signals the sensors are receiving. The sensors do thus follow the mission

model, the universe model, and the spacecraft model as well. The filter is

tuned to the sensitivity of the sensors, while the parameters for what we

could call “process noise”, which is whichever random disturbance our flight

path may encounter, are not known. One of the aids we were attempting

to give the filter, a magical sun sensor which may see the sun at all times

(even though the s/c is spinning) has not been removed, for it is part of

another not accessible simulation. In more technical terms, the sun vector

in body frame coordinates is always available and always known. The filter

is obviously devised to cope with sun sensor data switching on and off, but

has not been tested for it, for all the reasons explained above.

5.2 The graphs

The results shown below apply the filter we derived, in its entirety, and 88

seconds worth of data provided by a simulation built by other team members.

That simulation provides a simple model of the universe (relative positions of

the main celestial bodies), the satellite (its structure and sensor placement),

and the mission (1 Hertz spin frequency, along with orbit trajectory), with all

41

of the related physics, dynamics and disturbances. It does not model sensor

noise, for the reasons explained in the previous section.

Therefore, sensor noise has been added following the parameters here de-

scribed: the standard deviation σν of the random measurement noise acting

on the rate sensors is 0.01 rad/sec2. The standard deviation of the bias drift

acting on the rate sensors is σu = 0.01rad3/sec2. For the sun sensor, the

standard deviation is σsun = 0.04rad, and σmag = 0.2tesla for the magne-

tometer.

The following graphs plot the result of xNooch. Figure 5.1 shows the

Figure 5.1: The quaternion graphs of an 88 seconds simulation

estimation of the quaternion parameters in blue, against the red line indicat-

42

Figure 5.2: A close up of the quaternion graphs

43

ing the truth value. The entire 88 seconds show an extremely close match

of the values, and so does the close up in figure 5.2. The values match al-

most identically. The estimation does describe, very closely, the true state

of the simulation. The only severe bias to the estimation is the possibil-

ity to scan the position of the sun at all times, and not just at 1 Hertz

short intervals. The average quaternion error values are (q1 = 7.1842e− 004,

q2 = −3.3155e−004, q3 = 0.0011, q4 = 0.9997)1. Similar conclusions may be

Figure 5.3: The Euler angles calculated from the simulated data

drawn by looking at the Euler angle graphs, 5.3 and 5.4 both in full size and

zoomed. Here, especially for the spin axis, it was quite challenging to find

1these values clearly cannot form a quaternion themselves.

44

Figure 5.4: A closer look at the Euler angles graphs

45

the estimation to be at all different from the truth. The average error in φ is

0.0013 radians, while it is 0.004 in θ and 3.7192× 10−4 in ψ. It is extremely

accurate, as these numbers, graphs and the scale of the zoomed version show.

It sounds quite natural that the spin axis is the one that is estimated the

best, for it is the most stable one. This is surely evidence of the effective-

ness of spin stabilization. Figure 5.5 shows for a short instant the matching

Figure 5.5: The measured data versus the estimated prediction of the filter

of measured data, and predicted data. The difference between these two

measures is called the residual. The graph shows how the prediction itself

is quite good, and much smoother than the noisy measurements. Attempts

reaching up to 100x the standard deviations used here have shown results

46

still vaguely acceptable. Estimation was poor, but not worthless. Figures

Figure 5.6: The first three estimated states and their 3− σ values

5.6 and 5.7 show the oscillations in the actual values of the states, in the

filter’s inner workings, and the respective 3-sigma values. The graphs show

not only how the actual value of the state falls quite well in the predicted

3-sigma path, but also how each measurement greatly contributes to shrink

the expected standard deviation of our states. These graphs, especially the

three pertaining to the δα estimation, are perhaps the best indication that

the filter is working correctly. The δβs do not contribute much, for the val-

ues converge quite quickly and stay constant, as they are designed to be in

these simulations. Figure 5.8 shows the α angle error. It is an indicator of

47

Figure 5.7: The second three states, and the 3− σ values

48

Figure 5.8: The error in the angle α

49

Figure 5.9: A close up of the Kalman gain matrix diagonal values

how accurate we are estimating. It is the difference in the absolute value of

the estimated α and the true. As a reminder, α is the angle that drives the

quaternion. The average alpha angle error is 1.1795 deg. As we have said, we

are introducing little error in our system. Nevertheless, such a small error

reveals that the filter works, and it works quite well indeed. The last figure

is posted just to show the peculiarity of the filter’s reaction to a spinning

satellite. This filter could obviously work with a non-spinning satellite 2, but

it adapts to the spin motion by fluctuating its Kalman gain, which has in

fact an oscillatory behavior. It appeared surprising at first, but quite obvious

after a brief observation of equation 4.92 on page 39.

2but not with a tumbling one!

50

5.3 Conclusions and Further Work

These graphs show a simulation with quite favorable conditions. Neverthe-

less, they demonstrate the behavior of the filter and show its working state.

The filter is adaptable to a vast range of applications and satellites, and the

cure in its design and coding make it suitable to a teaching environment as

well. It has satisfied the development team at USU, and for the way it is

designed it can aid in both pre-mission design, simulation, on board attitude

estimation, and post-mission attitude accuracy estimation.

Looking back to the objective of xNooch, it is though only partly fulfilled.

While the filter does record the error covariance matrices at each step, and

therefore allows to know what is the accuracy of the current estimation, this

filter does not take advantage of batch estimation. Even though time was

limited, the smoothing option was investigated, and found an immediate

halt when analyzed more in depth. As explained earlier, the smoothing

principle is based on the combination of two estimates, suitably merged. This

particular filter adapts poorly to such an approach, for the states calculated by

it are variations in non-linear physical parameters. In principle, the variation

δα (or δβ) from step k to step k+1 has little to do with the corresponding

variation estimated by the so called “backward filter”, from step k+1 to k,

or any other step for that matter. A quickly discarded idea has been to use

the negative of the backward variation, but that approach does not seem to

be a correct solution, for the states we have chosen are rather non-linear in

nature. The case requires therefore more investigation, as this seems to be a

non-trivial problem. This work thus allows for further research, and may be

a module of a larger project.

In conclusion, the xNooch set out to be an optimal batch estimator, but

settled for being an effective optimal attitude Kalman filter, designed for the

PEARL cubesat but adaptable to other applications.

51

Bibliography

[1] Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems,

Chapman & Hall/CRC (2004)

[2] Paul Coddington, Monte Carlo Simulation for Statistical Physics North-

east Parallel Architectures Center at Syracuse University

[3] Gelb, A.: Applied Optimal Estimation, Analytic Science Corporation

Technical Staff, (1974)

[4] Geller, D.K: Linear Covariance Techniques for Orbital Rendezvous Anal-

ysis and Autonomous Onboard Mission Planning, Journal of Guidance,

Control and Dynamics, American Institute of Aeronautics and Astro-

nautics, (2006)

[5] Sidi, M.J.: Spacecraft Dynamics and Control, Cambridge, (1997)

[6] Geller, D.K.: lecture notes from the ‘Space Navigation’ course, held at

USU, April 11th 2008

[7] Rauch, H.E., Tung, F., and Striebel, C.T.: Maximum likelihood Esti-

mates of Linear Dynamic Systems, AIAA Journal, Vol. 3, No. 8, Au-

gust 1965

[8] Fullmer, R.: lecture notes from the ‘Attitude Control’ course, held at

USU, March 2008

52

