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Abstract

The problem of autonomously following a trail by a robot based on images from an
onboard monocular camera is tackled in this thesis. A robotic system that solves the
task of flying through a forest along a man-made dirt trail is presented. It is accom-
plished by using a classification deep convolutional neural network for determining
in which direction relative to the trail is the camera pointing. The output of this
classifier is then used to command the robot to follow the trail. It was implemented
to run online onboard an MRS multi-rotor micro aerial vehicle. Part of the imple-
mentation is also an algorithm for path planner trajectory generation. Performance
and robustness was tested in simulations, followed by real-world experiments. The
implemented system showed good practical results and can be used as a starting
point for more complex navigation and surveillance applications.

Keywords Unmanned Aerial Vehicles, Robotic Perception, Deep Learning, Convo-
lutional Neural Networks
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Abstrakt

Tato práce je zaměřená na problematiku sledováńı lesńı cesty pomoćı obrázku z
monokulárńı kamery, připevněné na bezpilotńı helikoptéře nebo pozemńım vozidle.
Je představen systém, řeš́ıćı úlohu navigace podél stezky v lese. Toho bylo dosaženo
s využit́ım klasifikačńı hluboké konvolučńı neuronové śıtě pro určeńı směru natočeńı
helikoptéry vzhledem k cestě. Systém byl implementován s minimálńım zpožděńım,
aby mohl být zapojen ve zpětné vazbě s plánováńım trajektorie helikoptéry v rámci
MRS UAV systému. Součast́ı implementace je algoritmus na generováńı bod̊u tra-
jektorie pro plánovač. Výkon a robustnost byly otestovány v simulaci a následně
během experiment̊u v reálném světe. Implementovaný systém prokázal dobré prak-
tické výsledky a může být použit jako výchoźı bod pro komplexněǰśı navigačńı a
pr̊uzkumné aplikace.

Kĺıčová slova Bezpilotńı Prostředky, Robotické Vńımáńı, Hluboké Učeńı, Kon-
volučńı Neuronové Śıtě
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Abbreviations

FOV Field of View

GPS Global Positioning System

LiDAR Light Detection and Ranging

MAV Micro Aerial Vehicle

MRS Multi-robot Systems Group

ROS Robot Operating System

UAV Unmanned Aerial Vehicle

RGB Red Green Blue additive colour model

USB Universal Serial Bus

IR Infrared

CNN Convolutional Neural Network

SAR Search and Rescue
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

Flying robots, also called UAVs have been used since the first half of the 20th century
[26]. They were still controlled by a human operator, but allowed for dangerous tasks to
be performed remotely, like aerial target practices. Originally designed for military purposes,
they evolved into a vast industry. Since that time, electronic hardware has become much more
compact, power-efficient, cheap and advanced. Also, aircraft designs have strongly evolved
after decades of research, battery power improved, and software got more advanced. Nowadays,
all these factors allow for a wide usage of compact and relatively inexpensive vehicles in many
industries and research.

UAVs can be equipped with different payloads and sensors, depending on their task
(Fig. 1.1). For example, thermal cameras are used for border control [4], [12], [32], detecting
animals in wildlife [19], [20], or forest fires [15], [31]. LiDARs can be used for 3D mapping of
a designated area [5], and for navigation in an obstructed environment. Digital cameras are
utilised for crops analysis [9], [11], area mapping [23], surveillance [32], monitoring of different
constructions or power lines [16].

Figure 1.1: MRS MAV equipped with firefighting and thermal imaging modules.

UAVs are also important for Search and Rescue (SAR) missions. Benefits of using
them in such operations are portability, fast deployment time, and generally only minimal
qualification required to operate them, thanks to flight computers with advanced software
[25], [30]. They can be used instead of human teams, reducing the risk for their life or health
in dangerous environments. UAVs may be also cheaper than alternatives, especially manned
aircraft, and faster than rescue teams or ground vehicles. They are usually not only less

CTU in Prague Department of Cybernetics



1. INTRODUCTION 2/30

expensive, but also provide data logging from all sensors, including GPS and associated image
data from high resolution cameras. This data can be used even for later review. For SAR
missions, two types of UAVs are typically used: fixed-wing aircraft and multi-rotor helicopters.
The first ones provide higher speed and longer flight time, but are less agile and take longer
time to take off and land the vehicle. Multi-rotors have the ability to hover, fly close to the
ground, in buildings, caves and other complex terrains. In this thesis, a multi-rotor MAV will
be used as an airframe.

1.2 Convolutional neural networks

Neural networks (also called artificial neural networks) are algorithms, whose design was
inspired by biological neural networks in human and animal brains. Their structure consists
of nodes called neurons, and connections between them. Every connection has its weight.
Neurons are grouped into layers, each layer has its unique number of them. Neurons which
receive a value (stimuli) on input from outside of the network are input neurons. Those which
receive values from other neurons, process this data, and output the result to other neurons
are hidden neurons. Those which output the result outside the network, are called output
neurons. The mentioned weights of connections between the neurons can be adjusted through
a learning process. During learning, a network learns to identify needed templates in the input
and produce a correct decision according to the task.

Convolutional neural networks have been experiencing tremendous growth during the
last 10 years, allowing for many previously unsolved problems to be tackled [1]. They are used
in military, healthcare, aerospace, social media, science and other applications. This approach
allowed for faster and more accurate analysis of many diseases even on early stages [10], using
measurements performed on the patient, which are then fed to a neural network. In aerospace
and automotive engineering, neural networks are often used as component fault detectors and
for improved guidance systems [6]. In electronics manufacturing and computer science, their
capabilities help to expose failures when producing the chips, synthesise voice, compress data
and solve many other tasks [7], [18]. In military applications, they help to identify hostile
objects or enemies [22].

There are different types of neural networks. Several examples are presented in this
chapter.

1.2.1 Segmentation networks

Among the most popular types are segmentation neural networks. Their goal is to
divide an image into multiple segments. In such architecture, each pixel refers to some class
or object type. This type is often used for biomedical applications. A good example is the
U-Net architecture, frequently used in light microscopy [21].

1.2.2 Recurrent networks

This type of networks is used for problems, such as language translation and speech
recognition. They are designed to handle sequential data on input (Fig. 1.2).

CTU in Prague Department of Cybernetics
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Recurrent neural
network

Recurrent connection

Output

Input

Figure 1.2: Example of a recurrent network architecture.

1.2.3 Generative adversarial networks

GAN networks consist of two neural networks, that contest with each other. Each net-
work’s gain is another network’s loss. For example, in the problem of generating realistic-
looking images, one network called the discriminator identifies how much the input image
is “realistic”, while the other (generator) generates this input and adjusts it to “fool” the
discriminator.

1.2.4 Classification networks

One of the most popular are classification neural networks. In such use-case given an
input image, a neural network must identify to which class does the image belong. A good
example is the Alexnet architecture for classification on 1000 classes subset from the ImageNet
dataset [28]. Back in 2012, it won the ImageNet large-scale visual recognition challenge. This
type of a neural network is used in this thesis. However, a more modern and suitable archi-
tecture from [17] is employed.

1.3 Trail following

In this thesis, the problem of trail following using image from monocular camera onboard
a multi-rotor MAV is tackled, including the implementation of a working algorithm, solving
the task. Following the man-made forest path is natural for humans, because it is usually the
most efficient way to get through this complex terrain. Such policy, in most cases, minimises
the travel time and possible injury to a person (Fig. 1.3). The same applies to robots. Human
paths are freely passable, unlike random trajectories in a forest, and it is a reason to stay on
them.

CTU in Prague Department of Cybernetics



1. INTRODUCTION 4/30

Figure 1.3: A random path in a forest is generally challenging to pass.

Trail following is an important task for autonomous navigation of robots. Suggested
use-cases are search and rescue missions, efficient navigation through forests and mapping of
the area. Motivation for this task is a situation when there is no opportunity to communicate
with and control the vehicle manually or when an autonomous mission is highly preferred. The
goal is to allow for a quadcopter or an unmanned ground vehicle (UGV) to navigate through
a forest using computer vision techniques. Having the image from the onboard camera, the
vehicle should determine in which direction to travel when flying through a forest, utilise the
trail. It must strictly follow the human path.

Algorithms solving related problems like lane-following, lane-departure and lane-assist
for cars on public roads, were introduced in 1990’s [33] and are commonly used in personal
vehicles since the early 2000’s [3]. But there is a clear distinction between the lane on a road
and a forest trail. In the first case, the lane is marked with contrast symbols and lines, making
the task solvable by simple segmentation algorithms, based on in-image contrast and colour
variance, image saliency [27]. Forest trail images provide smaller amount of distinguishable
features (Fig. 1.4) and it may be challenging even for humans to determine the direction of
travel [17].

CTU in Prague Department of Cybernetics
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(a) Image of a trail from the dataset [17]. (b) Image of a road taken by myself.

Figure 1.4: The difference between a forest trail on Fig. 1.4a and a road on Fig. 1.4b.

One of the first effectively solved by neural networks but still topical problems is clas-
sification. Neural networks are able to learn and then identify features corresponding to pre-
defined classes and combinations of those features [28]. This makes it possible to effectively
classify which class an image belongs to.

Treating the trail following task as a classification problem is a different approach that
tackles it. For this approach, classes like ”Left”, ”Right” and ”Straight” can be introduced
[17] (Fig. 1.5). It allows to estimate the current direction of the vehicle, given the probabilities
of these classes and to plan the trajectory of the MAV accordingly.

(a) Class ”left”. (b) Class ”right”.

(c) Class ”straight”.

Figure 1.5: Example images of different classes.

CTU in Prague Department of Cybernetics
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This thesis focuses on implementation of the trail-following algorithm using a classifi-
cation convolutional neural network. The implementation should run online in the Gazebo
simulation environment as well as onboard an MAV in a real-world deployment. Therefore,
delay of the algorithm must be sufficiently small. The task is to design an algorithm that
autonomously provides an MAV with a relatively safe direction and speed of movement. The
MAV is equipped with a PX4 flight computer, an Intel NUC companion computer, and an
Intel RealSense camera. The environment may contain obstacles, but it is assumed that the
trail is obstacle-free.

Implemented neural network can be used as an entry point for a more sophisticated
surveillance and navigation algorithms. For more complex environments a possible enhance-
ment is to use it alongside with an obstacle avoidance algorithms and lateral correction [2],
[8], [14].

CTU in Prague Department of Cybernetics
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Chapter 2

Methodology

In this thesis, an architecture suggested by Giusti, Guzzi, Ciresan, et al. [17] will be
used. It consists of 4 convolutional layers, each followed by a hyperbolic tangent activation
function and max-pooling layer, and then a fully connected layer with 200 hidden neurons.
Network processes images from a camera, attached to a vehicle. Input layer is formed by
3 × 101 × 101 neurons. Therefore, the input RGB rectangular image must be anisotropically
resized to a size 101×101 pixels (square) to be fed directly to the network. After going through
all the hidden layers and the softmax output layer, it produces 3 probabilities of each class,
which sum to 1. Based on these probabilities, it is possible to determine at which direction is
the camera most probably pointed. Given the fact that in the dataset, the cameras for ”left”
and ”right” classes were pointed 30° from the centre, interpolation is also possible based on
these probabilities.

2.1 Convolutional Neural Network

2.1.1 Convolutions

Convolution is a fundamental mathematical operation used in a wide range of image
processing techniques. In the context of Convolutional Neural Networks, convolution of an
input matrix I with a so called ”kernel” matrix K is applied to obtain an output matrix
O. The kernel is typically smaller and is applied to submatrices of I to extract features
corresponding to K in different regions of I. The convolutional layer of a CNN typically also
contains a bias term w0. The kernel matrix K and the bias w0 are parameters that are learned
during the training phase using the backpropagation algorithm, described in section 2.2. Let
us define

I =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. . . . . . . . . . . . . . . . . . . . . . .
xr1 xr2 xr3 . . . xrn

 , (2.1)

K =

w11 w12 w13

w21 w22 w23

w31 w32 w33

 . (2.2)

3 × 3 kernel size was chosen for illustration, but different sizes can be used.

Convolution is performed by ”stamping” a kernel onto the input data, starting from the
upper left angle and thus creating a linear combination of input array members and kernel
weights. The result of the first application of the convolution kernel will be

CTU in Prague Department of Cybernetics
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O(1, 1) = x11 · w11 + x12 · w12 + x13 · w13+

x21 · w21 + x22 · w22 + x23 · w23+

x31 · w31 + x32 · w32 + x33 · w33 + w0 .

(2.3)

And the equation for the convolutional kernel stamp starting on i-th row and j-th column
of the input image (where the convolution is defined) is

O(i, j) = w0 +
m∑
k=1

n∑
l=1

Ii+k−1,j+l−1 ·Kk,l , (2.4)

where K has m rows and n columns, i runs from 1 to M −m+ 1, j runs from 1 to N −n+ 1.
To produce the output array, the filter must slide through the whole input image.

2.1.2 Hyperbolic tangent

For a neural network to not act as a linear classifier, a nonlinearity should be introduced
in its hidden layers [13]. It allows the network to solve more complex tasks and increase its
performance. It is also a nature-inspired approach. Nonlinearity is introduced using nonlinear
activation layers, added after each convolutional layer. The most popular activation functions
are Rectified Linear Unit (ReLU), Leaky ReLU, Sigmoid and Hyperbolic Tangent. The last
one is used in this thesis. Hyperbolic Tangent has a very similar shape to the Sigmoid and
maps the output only to the range of [-1, 1] (Fig. 2.1). It is calculated using the following
equation:

tanh(x) =
ex − e−x

ex + e−x
, (2.5)

where x is the real input value obtained after the convolution stamp. Activation function is
applied to every member of O from the equation (2.4) to form the input I for the next layer.

Figure 2.1: A Hyperbolic Tangent function.
Author: Geek3, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=4198479

2.1.3 Max-pooling

Max-pooling is an operation applied to some part of the input data array taking only
the maximum value of this area. It is typically used in the form of a rectangular filter, which

CTU in Prague Department of Cybernetics



2. METHODOLOGY 9/30

slides through the whole image. It produces only one output value from each filter-sized input
area. Thus, it can be used for downsampling the image, taking only the most significant values
to the output. In this way, the learning process of the neural network is sped up because the
amount of learnable weights is decreased. Also, better resistance to distortions and affine
transformations is obtained [24].

2.1.4 Softmax

The softmax function is widely used in neural network architectures as the last layer.
It has the same amount of outputs as inputs. The softmax function may have any real values
on input, including positive, negative, zero, but its output values are always in the range [0, 1]
and they always sum to 1. These properties allow the output to be interpreted as a probability
distribution of the corresponding classes. This layer normalises the output, which is from Rn

to a probability distribution.

The softmax function is defined as:

σ(~z)i =
ezi
n∑

j=1
ezj

, (2.6)

where zi are elements of the real input vector, σ(~z) is the output vector, n is the number of
elements.

2.2 Backward propagation of error

Backward propagation is a way to calculate the gradient ∂J
∂w of a loss function J with

respect to the vector of weights w . The calculated gradient has the same length as the weights
vector. It represents how much each weight affects and contributes to the value of the loss
function. This knowledge is used to change the weights in a way that minimises the loss.

The first part of backpropagation is a forward pass. Given the input data and the
weights, output of the neural network is calculated and compared with ground truth through
the loss function. Then, a backward pass starts. Partial derivatives are calculated sequentially
through each layer starting from the last one and after multiplication give the total gradient
∂J
∂w .

The architecture used in this thesis consists of convolutional layers, max-pooling layers,
a hyperbolic tangent activation function and fully connected layers (Fig. 2.2). Max-pooling
chooses one input with the maximum value and feeds it directly to the output, other inputs are
ignored. It doesn’t have learnable parameters affecting the gradient. During backpropagation,
the gradient is only propagated to the maximal input, the remaining non-maximal inputs have
a zero gradient. The derivative of the hyperbolic tangent is dtanh(x)

dx = 1 − tanh(x)2. In the
convolutional layer, back propagation is the convolution of the input feature map with the
upstream gradient (Fig. 2.3). In the figure, γ(y) is any function, for example the activation

CTU in Prague Department of Cybernetics
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function. In this case, backpropagation through the convolution will be:

∂γ

∂w11
=

∂γ

∂y11
x11 +

∂γ

∂y12
x12 +

∂γ

∂y21
x21 +

∂γ

∂y22
x22 ,

∂γ

∂w12
=

∂γ

∂y11
x12 +

∂γ

∂y12
x13 +

∂γ

∂y21
x22 +

∂γ

∂y22
x23 ,

∂γ

∂w21
=

∂γ

∂y11
x21 +

∂γ

∂y12
x22 +

∂γ

∂y21
x31 +

∂γ

∂y22
x32 ,

∂γ

∂w22
=

∂γ

∂y11
x22 +

∂γ

∂y12
x23 +

∂γ

∂y21
x32 +

∂γ

∂y22
x33 .

(2.7)

Input image 101x101x3

Feature map 98x98x32

Feature map 49x49x32

Feature map 46x46x32

Feature map 23x23x32

Feature map 20x20x32

Feature map 10x10x32

Feature map 8x8x32

Feature map 4x4x32

200 hidden neurons

3 neurons

Convolution, 4x4 kernel, 1 stride, no padding, tanh activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 4x4 kernel, 1 stride, no padding, tanh activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 4x4 kernel, 1 stride, no padding, tanh activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 4x4 kernel, 1 stride, 1 padding, tanh activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Fully connected layer

Output

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Figure 2.2: The employed neural network architecture [17].
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conv(x, w)

Upstream
gradient

Figure 2.3: Upstream gradient in convolutional layer.

2.3 Loss function

To train the neural network, it is necessary to define a suitable loss function. It estimates
the penalty of the difference between a ground truth and a prediction of the neural network.
The loss function outputs one real value based on this data. Then, using the back propagation,
the penalty gets minimised. In this thesis, I use a cross-entropy loss criterion. Its equation is

Loss = −
n∑

x=0

p(x) · log q(x) , (2.8)

where n is the number of classes, p(x) is the desired probability of the class (ground truth),
q(x) is the prediction from the neural network.
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Chapter 3

Implementation

3.1 System hardware

Main hardware elements of the MAV platform used in the experiments are shown on
the Fig. 3.1.

Pixhawk autopilot 
and sensors

Intel NUC PC

Intel RealSense 
camera

M M M M

Speed controllers

LiDAR 
(optional)

Receiver for
the manual

control

Figure 3.1: Scheme of the employed system.

3.1.1 Pixhawk flight controller

Pixhawk is a low-cost advanced flight computer with open-source hardware. There are
different variations of form factors, featuring different amount of input/output ports. Pixhawk
is very flexible in terms of attachable peripherals, stable and well-tested. Most essential sensors
like accelerometers, gyro, digital compass (magnetometer) and barometer are already part of
the main board. MRS vehicles have these boards flashed with open-source PX4 autopilot
software. Features like advanced regulators, estimators, interface for controlling the MAV and
others are already implemented in this software, usually only minor tweaking is needed. Thus,
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an abstraction from the MAV hardware is created, allowing the vehicle to be controlled using
high-level commands.

3.1.2 Intel NUC companion computer

NUC is a compact high-performance computer, capable of running demanding AI and
machine learning software. It is possible to install the whole MRS system on it including
ROS software to command trajectories, speed and other parameters to a flight controller and
act as a main high-level computational unit. ROS runs inside the Ubuntu operating system
on this computer, so other software can be used simultaneously. Different peripherals can
be connected to the computer via USB. For this thesis, a RealSense camera is connected,
from which my algorithm (written in the Python programming language) receives images for
processing.

3.1.3 Intel RealSense D435 camera

The D435 is a powerful camera capable of taking normal RGB pictures as well as depth
images. It has a wide FOV, which is perfect for robotic applications. Also, its stereo imagers
feature global shutter, which is important in low-light conditions or during fast movements.
The camera consists of 4 modules: a right imager, an IR projector, a left imager and an RGB
module. However, for this thesis only the RGB module will be used. Its sensor has a resolution
of 2 MP and produces 1920 × 1080 images at the frame rate of 30 frames per second.

3.2 Dataset

For this task, the dataset provided by the authors of the CNN architecture was chosen
[17], but any similar dataset can be used. Requirement is that every image must be labeled
to one of the three classes. The used dataset was acquired by a hiker, wearing three head-
mounted cameras: one pointing straight ahead, one pointing 30 degrees left, one pointing 30
degrees right. In the code, there will be classes LEFT (for the camera pointed 30 degrees
left), STRAIGHT (forward camera), and RIGHT (for the camera pointed 30 degrees right).
Dataset is divided in such a way that approximately 75% of it is used for training, and 25%
for validation. So, the neural network estimates the current direction relative to the trail, and
based on this knowledge, further decision can be made.

The dataset was provided by the authors only as a set of photos. For the preparation
of these photos into usable form, I implemented a dedicated program in the Python pro-
gramming language. The program iterates through all images from the dataset and performs
transformations so that the images correspond to the required format. In this case, they are
resized to 101 by 101 pixels and saved in a suitable format for the training program.

3.3 Neural network code

The implementation of the neural network was not provided by the authors of the
architecture. Therefore, it was created by me. I have chosen the Python programming language
for this task. It has a lot of available powerful frameworks, especially for machine learning
and neural networks, which are internally implemented in faster low-level languages like C++.
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The PyTorch framework was chosen. It is a powerful open-source machine learning framework
with a Python API. PyTorch is capable of running on a GPU to accelerate tensor computing,
however, a CUDA-capable Nvidia GPU must be used. In this thesis, it was used on the MAV’s
onboard PC without the hardware acceleration.

The neural network is trained for 90 epochs, with a batch size of 512, but even a larger
size could be considered if the GPU has enough memory. The Adam optimizer is used, with
an initial learning rate of 0.005. A scheduler is set, for reducing the learning rate by 5% after
each epoch. The criterion for training is the cross-entropy loss, as defined in Sec. 2.3.

During the training process, the accuracy on the validation dataset reached the value
of 90% (Fig. 3.2). The process was stopped after 90 epochs because the validation loss has
converged (Fig. 3.3). Further training will cause overfitting and worse performance.

3.3.1 Training algorithm

After the initialization of the neural network model, optimizer, scheduler, and criterion,
the program enters a 90-epoch loop. Then, the iterative training begins. One step of the
optimisation consists of the forward pass followed by the backpropagation and an update of
the weights based on the calculated gradient. After the optimisation step, the accuracy and
loss function metrics are evaluated on the validation dataset (see Fig. 3.2 and Fig. 3.3) and the
learning rate is updated by the scheduler. In the end, after a sufficient amount of iterations,
the weights of the neural network are saved for further usage.
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Figure 3.2: Accuracy during the training process.

3.4 Navigation algorithm

Two different approaches were tested in this thesis. The first is angular and forward ve-
locity generation, the second is path generation in combination with a collision free pathfinding
algorithm.
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Figure 3.3: Loss during the training process.

3.4.1 Velocity generation

Generating velocities is the most intuitive way to utilise the neural network for trail
following. In this case, input to the vehicle are only two values: angular velocity for heading
correction and forward velocity for moving along the path when it is safe according to the
neural network outputs. Angular velocity ω can be calculated using a simple formula

ω = (p(RIGHT) − p(LEFT)) · ωmax , (3.1)

where p(RIGHT) is the probability of the current direction being ”right”, p(LEFT) is the
probability of the current direction being ”left”, ωmax is the maximum desired angular velocity.
Forward speed vx is calculated according to a formula:

vx = p(STRAIGHT) · vmax , (3.2)

where p(STRAIGHT) is the probability of the current direction being ”straight” and vmax is
the maximum desired longtitudinal velocity.

3.4.2 Path generation

MRS ROS-based system allows to control a UAV using paths. They are represented as
a sequence of geometric poses, which a vehicle should take. The implemented neural network
does not allow to predict a future direction of travel and gives an output only for the current
position. Therefore, it is possible to predict only one point of the path on every image pass
through the neural network. This point can be immediately sent to a path planner. Such
approach has a big advantage: the algorithm can be run simultaneously with obstacle avoid-
ance and other features. Path planner can then decide whether suggested direction is safe
or other maneuver must be taken to evade a collision. Each point consists of heading and x,
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y, z coordinates. These points are represented relative to the MAV’s current position with
tilt-correction (xy plane is always parallel to the ground and z is always perpendicular).

Heading α for the path point is calculated according to the formula:

α = (p(RIGHT) − p(LEFT)) · αmax , (3.3)

where αmax is the maximum desired increment in radians. Step in the x-axis rx relative to
the current position is calculated as

rx = p(STRAIGHT) · cos(α) · rmax , (3.4)

where rmax is the maximum desired step length. Step in the y-axis ry is calculated as

ry = p(STRAIGHT) · sin(α) · rmax . (3.5)

Altitude is considered to remain constant so for each point it is set to (1.8 m− actual height)
above the ground. A similar altitude was used in the dataset. Parameters αmax, rmax can be
tuned for better performance.

Such policy was used during the experiments because the ability to combine the algo-
rithm with a path planner is a priority.

3.4.3 Filtering of the neural network output

The implemented neural network produces results online, at 30 Hz. During the opera-
tion, a lens flare or other short-term disturbance can occur. It leads to rapid changes in the
prediction and combined with the path generation creates wrong, potentially unsafe points
in the path. Therefore, the output must be filtered. To get rid of high frequency changes, a
low-pass filter is used. In this thesis, a simple yet effective low pass filter was employed: a
moving average filter. For the frame number n, it also remembers k − 1 previous predictions
and outputs the average of these k predictions. Value k = 15 showed good results during tests
and thus was used in this work. Its formula is

yn = un + un−1 + un−2 + ...+ un−k+1 , (3.6)

where yi is the output of the filter for the frame number i, ui is the raw output from the
neural network for the frame number i.

3.4.4 Pathfinder

Pathfinder is a part of MRS system that creates a trajectory for the vehicle to travel to
the desired position. However, when no obstacle avoidance technique is used, the generated
trajectory may lead to a collision with an obstacle. To increase the safety during the exper-
iments a LiDAR was used. It allows to create a map of unsafe points online (those where
obstacles are present) and to avoid them when planning a trajectory.
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Chapter 4

Simulation

4.1 Software

For simulation of such complex application, a dedicated software is needed. The main
tool that was used for simulation and further usage on a real robot is the Robot Operating
System (ROS). It is a framework for robotic applications which offers abstraction from hard-
ware, and even contains already implemented functions for communication between vehicles,
sensors, cameras and other used hardware, both real and virtual. The communication is per-
formed using high-level messages. For every hardware unit a node is created. These nodes can
subscribe (receive information) or publish to some topic. A topic represents a virtual pipe,
through which the information is transferred. For example, there is a program running on the
robot PC. The program is subscribed to the topic "/image", where images are published by
the driver node "/camera". Then, it processes the images, makes a decision, and commands
the speed using the "/speed" topic of the control node "/drone" [29]. Specifically in the MRS
UAV system there are topics also for trajectory, odometry and other features.

Another tool used for simulation is Gazebo. It offers real-time graphical visualisation of
the ongoing experiment. Realistic scenarios can be created in this simulator, its engine allows
for shaders, different lighting conditions, and even physics simulation. Therefore, a virtual
model of the use-case scene and conditions is usually designed, including the vehicle itself.
Such model makes it possible to conveniently test the designed software before proceeding to
real-world experiments as the cost of a mistake in the real world can be high.

4.2 Simulation setup

For trail following simulation I decided to use the MRS pre-configured setup for one-
vehicle simulation (available at https://github.com/ctu-mrs/simulation). In my case, the
system runs inside a singularity container. Default simulation does not include the onboard
camera. Thus the front-facing camera was added to the robot model. The ”Baylands” world
(publicly available at http://models.gazebosim.org/) was selected for simulation, because it
has a section of forest path in it. Overview of this world is in Fig. 4.1.

The code must be modified to run in simulation. The only needed change is renaming the
topic, from which the images are received to match the name of the camera in the simulation.

4.3 Simulation results

During the experiment in simulation, performance of the implemented algorithm was
tested in close to real-world conditions. The MAV successfully managed to follow the trail
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Figure 4.1: ”Baylands” world. Image from docs.px4.io.

without getting lost (Fig. 4.2). There were some oscillations during the heading correction,
but these can be removed by using a more complex heading regulation and fine tuning. The
overall performance is good and the proposed methods for navigation along the path worked
as expected. The vehicle stayed on the trail for as long as the simulation was going, without
fails. However, the used map is relatively simple and has no obstacles or confusing factors. It
was used to check the basic performance. Further and more detailed testing is conducted in
real-world conditions, described in Sec. 5.2.
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(a) The neural network predicts that the MAV is most likely pointed right relative
to the path, when it is actually pointed right. Vehicle turns left.

(b) Prediction ”straight” is most likely, the MAV is pointed straight. Vehicle moves
forward.

Figure 4.2: Example images from the simulation.
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Chapter 5

Real-world evaluation

5.1 Neural network performance test

For evaluation of the neural network performance in real-world forest conditions, a
preliminary experiment was conducted. The on-board computer and the camera were powered
from a battery and manually moved through a forest. Data was outputted in real-time to a
laptop and the prediction correctness was evaluated (Fig. 5.1).

The testing showed good neural network performance. The accuracy of determining
the ”left” and ”right” classes in the tested situations was 100%. There was once a situation
though, where the neural network was outputting only a small probability of the ”straight”
class, when looking straight. Probabilities of the ”left” and the ”right” were the same, close
to 50%. But the issue was clearly dependent on the tilt angle of the camera, after tilting it a
few degrees down, the problem was solved. A possible source of the issue could be not only
the neural network fail-case, but also a lens flare.

5.2 Complete tests on the vehicle

A real-world evaluation was conducted in a forest near the Czech town Temešvár. To-
gether with the MRS team, suitable forest trails were found, where the algorithm was then
thoroughly tested. The trails were of different complexity (visually) and contained slight ob-
stacles on the sides (Fig. 5.2).

The first trail (Fig. 5.2a) was a 2.3 m wide partly dirty asphalt road with turns, sur-
rounded by trees and bushes. Due to the limited FOV of the camera and the relatively large
width of the trail, when the vehicle was in the centre of the road, it saw only a grey dull
pattern with no features and because of that outputed 100% probability of ”straight” class
even when not pointed straight. But as soon as the MAV got close to the road edge, the
neural network recognised it and gave the command to turn in the opposite direction. Then,
it started flying along the path and slowly got closer to the other side and the same situation
happened. However, this ”zig-zag” behaviour did not affect the performance too much. But
in some situations, flying close to the road edge is dangerous and during this test, the path
planner prevented the vehicle from executing several waypoints due to their proximity to an
obstacle (Fig. 5.3a). The problem of flying close to the sides can be solved by using a camera
with a wider FOV, which can capture both sides simultaneously. The autonomously travelled
distance on the first path was 130 m (Fig. 5.3b).

The second trail (Fig. 5.2b) was a 2-2.3 m wide completely dirt road with one sharp turn
and fences on sides. It was hard for the MAV to stay on it. A lot of distracting features were
present on the road and the trail itself was not well maintained. When analysing the images,
it can be seen that the contrast between the trail and dry grass on the sides is very low.
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(a) Camera pointed straight.
(b) Prediction: ”straight” is most likely.

(c) Camera is pointed left.
(d) Prediction: ”left” is most likely.

(e) Camera is pointed right.

(f) Prediction: ”right” is most likely.

Figure 5.1: Neural network performance in the preliminary experiment.

Probably, colour adjustments of the camera are required and also including such low-contrast
images to the dataset would help. Also, there was a ditch on the road which was classified as
a trail by the neural network (Fig. 5.4a). However, when the obstacle avoidance prevented it
from flying into the bush, the real trail reappeared in the field of view and the vehicle managed
to return on track. At the end, it got distracted again. This trail was not followed with much
success, but after the mentioned improvements, the results can be expected to improve. The
total distance travelled autonomously on this path was 40 m (Fig. 5.4b).

The third trail (Fig. 5.2c) was a 2.8 m wide gravel and dirt road with slight turns.
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(a) Trail 1.

(b) Trail 2.

(c) Trail 3.

Figure 5.2: The three trails used for testing in the real-world experiments.
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(a) The MAV avoiding an obstacle.

(b) A satellite image of the travelled path from Google Maps.

Figure 5.3: The first experiment.

Contrast between the road and sides on the gravel part was better than on previous trails. On
the dirt part, the contrast was much lower, causing the distinction between the trail and the
sides to be less clear. But the distinction was still sufficient for the CNN to correctly classify
the images. Its performance was better than on the other trails. The MAV flew a long way
through it. However, in the end it got confused by logs on the ground and the vehicle started
”following” one of them (Fig. 5.5a). It may have happened due to the road and the sides being
both covered in dirt and from the vehicle camera perspective they were not distinguishable.
The total distance travelled autonomously was 160 m on this trail (Fig. 5.5b). Images from
the MAV including the prediction are presented in Fig. 5.7.

During the experiments, the vehicle was mapping the environment using the onboard
LiDAR sensor. These maps are presented in Fig. 5.6. Approximately every meter, the position
and the direction of the drone are visualised using a red arrow. The performance of the
implemented algorithm can be seen from them. The obstacle avoidance did not change the
heading, so all the heading corrections during the flight were made only by the trail following
program. According to those images, the vehicle performed very good when flying through
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(a) The MAV got confused by a ditch, photo before recovery.

(b) A satellite image of the travelled path from Google Maps.

Figure 5.4: The second experiment.

the first and the third trail. The arrows are pointed along the safe path.
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Experiment number Travelled distance (m) Flight time (minutes)

1 130 6:50

2 40 3:00

3 160 6:11

Table 5.1: Experiment statistics.

(a) MAV got confused by the log.

(b) A satellite image of the travelled path from Google Maps.

Figure 5.5: The third experiment.
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(a) The first trail. (b) The second trail.

(c) The third trail.

Figure 5.6: Maps of the environment, obtained using the onboard LiDAR sensor during flight.
Poses of the MAV are marked with red arrows, occupied volume is marked with blue-green
squares. Resolution of the major grid is 10 m per square.

Figure 5.7: Onboard images and classification results.
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Chapter 6

Conclusion

In this thesis, a 3-class classification convolutional neural network was implemented to
solve the trail following problem utilising a purely visual approach. Using only an RGB camera
is a cheap solution and no other hardware than an onboard PC with a camera is required to
run the program. Also, the neural network is supplemented by an algorithm, which generates
path points according to the prediction. The program is able to run in the Gazebo simulator
and in real-world conditions online and was tested in both virtual and real environments.

During the training process, the neural network showed up to 90% accuracy on valida-
tion. However, the dataset that was employed for training, was acquired by other cameras than
those used in this thesis. During the experiments, the vehicle was able to fly long distances on
curvy trails (up to 160 m) but got stuck when the trail was not contrast enough or distracting
factors appeared in the image. This problem can be caused by the different FOV of the used
camera, colour rendering, image sensor quality and even season. Therefore, the results can be
improved by creating a new larger dataset with conditions close to the expected and training
the network on it. Also, increasing the field of view could help, because more features can be
captured by the camera.

Another possible improvement can be the usage of a segmentation neural network, as
it allows to predict also the shape of the future trajectory. However, it may be challenging to
distinguish the road from the sides during segmentation, and requires a big manually labeled
dataset. Therefore, in this thesis only the classification approach was taken.

The implemented algorithm is a good baseline and an addition for more complex nav-
igation solutions in forest conditions. This was demonstrated during the experiments, when
the LiDAR-based obstacle avoidance and path planning run alongside with the trail-following
neural network. It prevented the UAV from flying too close to dangerous obstacles like trees
or bushes.

The MAV flew autonomously up to 160 m in a challenging forest environment using the
proposed approach and the implemented program.
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