Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

A management system for autonomous
mobile robots

Bc. Filip Dvorak

Supervisor: Ing. Pavel Burget, PhD.
July 2023

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Dvorak Filip Personal ID number: 406426
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering
Study program: Cybernetics and Robotics
k J
Il. Master’s thesis details
\
Master's thesis title in English:
A management system for autonomous mobile robots
Master’s thesis title in Czech:
Systém pro Fizeni autonomnich mobilnich robotd
Guidelines:
The goal of this thesis is to design and implement a fleet management system, which will be based on KUKA Navigation
Server[1] for KUKA autonomous mobile robots KMP and KMR][2]. The fleet management system will become part of a
multi-agent system[3] developed in Testbed for Industry 4.0 and will provide services of delivering loads (i.e. parts or
products) of different types to required locations, mainly at stationary robots or assembly lines.
1) Design and implement an architecture of a fleet management system (FMS) that can connect to various navigation
servers to allow managing various types of mobile robots. The FMS will also have interface to a warehouse management
system and an independent localization system. The FMS must include an interface to the multi-agent system of Testbed.
2) Get acquianted with the KUKA mobile robots and their navigation solution (KUKA navigation server). Transfer KUKA
navigation server from local computers in the robots to a central server that will serve for all mobile robots in Testbed.
3) Implement high-level functionality to allow delivering required load (e.g. set of parts for a stationary robot) by a mobile
robot from a warehouse. This includes automatic selection of a best-suitable mobile robot, real-time trajectory adaptation,
and in-time delivery.
4) Test the system in Testbed with at least two zones at stationary robotic lines.
Bibliography / sources:
[1] KUKA Aktiengesellschaft Germany. KUKA Navigation Solution [online]. [vid. 2021-12-01] Available at:
https:/Amww.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_navigation_solution_en.pdf
[2] KUKA Aktiengesellschaft Germany. KUKA Product portfolio_01/2022 [online]. [vid. 2022-01-01] Available at:
https:/imww.kuka.com/-/media/kuka-downloads/imported/9ch8e311bfd744b4b0eab25ca883f6d3/kuka_rob_product-portfolio_en_scre
en.pdf
[3] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algoritmic, Game-Theoretic and Logical Foundations.
Cambridge University Press. June 2012. ISBN 0521899435
Name and workplace of master’s thesis supervisor:
Ing. Pavel Burget, Ph.D. Testbed CIIRC
Name and workplace of second master’s thesis supervisor or consultant:
Date of master’s thesis assignment: 17.01.2023 Deadline for master's thesis submission: 14.08.2023
Assignment valid until:
by the end of summer semester 2023/2024
Ing. Pavel Burget, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Péata, Ph.D.
k Supervisor's signature Head of department’s signature Dean'’s signature)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I want to thank to Ing. Pavel Burget,
PhD. for his support during my writing
of the thesis. Also for the opportunity to
work in Testbed for Industry 4.0, where
I had the chance to work with many dif-
ferent robots and other new technologies
and hardware. I also want to thank to
my family, girlfriend and friends for their
patience they had to show during my jour-
ney through my studies.

Declaration

I declare that the submitted work was de-
veloped independently and that I stated
all the available information sources in ac-
cordance with the Methodological instruc-
tion on the observance of ethical principles
in the preparation of university theses.

Abstract

The goal of this thesis is to design and
implement a fleet management system for
mobile robots wihtin Testbed for Indus-
try 4.0 at CIIRC CTU. This system will
be built over existing navigation solution
for mobile robots created by KUKA AG
company. The Fleet management sys-
tem should provide capability to deliver
shelves and loads (i.e. parts or prod-
ucts) of different types to required lo-
cations within Testbed workplace. The
implemented fleet management system
will have an interface for communication
within the multi-agent system developed
in Testbed. Architecture of this system is
designed in a way that it is possible to ex-
tend it for control of other robotic systems
or other types and brands of mobile robots.
Fleet manager also implements informa-
tion from independent localisation system
which allows optimisation in delivering re-
quired load by a mobile robot from the
warehouse or in between the robotic lines.
This optimisation includes automatic se-
lection of a best-suitable mobile robot,
real-time trajectory adaptation, and in-
time delivery. Designed fleet management
system is then tested for a set of trans-
portation tasks. Tasks are given through
multi-agent interface. We compare the
processing time of the task in the case of
embedded input from the real time loca-
tion system and without it.

Keywords: mobile robotics, in-time
delivery, multi-agent systems

Supervisor: Ing. Pavel Burget, PhD.

vi

Abstrakt

Cielom tejto diplomovej prace je im-
plementovat Fleet management system,
ktory bude vychadzat z hotového riesenia
KUKA Navserver, ktoré vyuziva mobil-
nych robotov KUKA KMP a KMR. Tento
navrhnuty systém by mal obsahovat roz-
hranie pre komunikaciu s multi-agentnym
systémom, ktory je vyvijany v priestoroch
Testbedu pre priemysel 4.0. Fleet manage-
ment systém by mal umoznif prepravu
tovaru, suciastok alebo cely regalov do po-
zadovanych lokacii, a to primarne medzi
skladom a vyrobnymi linkami. Pri ndvrhu
systému sa prihliada na moznost neskor-
sieho zakomponovania mobilnych robotov
inych vyrobcov. Systém by mal implemen-
tovat data z nezavislého lokaliza¢ného sys-
tému. Tieto data systém vyuziva pre ria-
denie robotov s ohladom na optimalizaciu
Casu dorucenia a predchadzanie stretom
s prekazkami. Navrhnuty systém testu-
jeme zadavanim tloh prepravy skrz mutli-
agentné rozhranie. Nasledne porovnavame
casy splnenia tloh v pripade zakompono-
vania dat z lokaliza¢ného systému s pripa-
dom, kedy tieto data nie si k dispozicii.

Klicova slova: mobilni robotika, vCasné
doruceni, multiagentni systémy

Preklad nazvu: Systém pro fizeni
autonomnich mobilnich robotu

Contents

1 Introduction 1
1.1 Aim and contribution of the work
1.2 Structure of the thesis.......... 3
2 Problem description 5|
2.1 Testbed for Industry 4.0
2.2 Warehouse hardware i
2.2.1 KUKA mobile robots [7l
2.2.2 Shelves 1o
2.3 KUKA Navigation Solution
2.3.1 Navserver installation options
2.3.2 Map creation
2.3.3 Robot motion options
2.4 Real time location system.
2.4.1 SIMATIC RTLS transponders
2.4.2 SIMATIC RTLS gates
2.5 Multi-agent system
3 Fleet Management System design
and implementation 25|
3.1 KUKA NavServer installation . .
3.2 Testbedmap
3.3 Shelves precise positioning
3.4 Docking to production line.
3.5 Fleet management system
architecture 135
3.5.1 Multi-agent interface
3.6 RTLS interface 371
3.7 Trajectory and time optimisation
4 Test of the system 41]

4.0.1 Communication test for task
assignment 41
4.0.2 Test of RTLS
43
45|

5 Conclusion

Bibliography

vii

Figures

2.1 Testbed floor plan [5]........... (§

2.2 Testbed Warehouse area and
equipment 7l

2.3 KUKA KMR IIWA robot 8

2.4 Schunk EGI 80 gripper with 3D
printed fingers................... 9

2.5 KUKA KMP600-s with additional
positioning plate mounted on lift

device 10l
2.6 KUKA KMP with shelf on top of

1 P [11]
2.7 Centering cones system
2.8 Plate which fix position of the shelf

on the ground
2.9 Architecture of standalone

Navserver installation
2.10 Architecture of WLAN Navserver

installation. 15
2.11 Default Navserver map
2.12 Example of graph created in

default map
2.13 Architecture of Siemens Simatic

RTLS [I4] ...,

2.14 Simatic RTLS tracking tags
RTLS4084T (left) and RTLS4083T

(right) ...
2.15 Mounting of the RTLS gates on

the ceiling of the Testbed
2.16 Dockerized multi-agent

communication architecture 23

2.17 Architecture of single agent . . .

3.1 Navserver Sunrise project settings
3.2 All the robots are connected to the

Navserverc.coouuuun.. 28]
3.3 Map of the Testbed
3.4 Map of the Testbed with specified

graph L.
3.5 Map of the Testbed with specified

graph i L

3.6 3D printed part in centering pad
3.7 Architecture of the Fleet Manager

Systemo i
3.8 Architecture of the communication

within Fleet Manager System
3.9 RTLS Simatic intelligence

MANAZET <« e vvveeee e 38|

viii

3.10 RTLS tag position

4.1 RTLS test setup

Tables

3.1 Table of KMR and KMP IP

addresses. . .. v e 27

ix

Chapter 1

Introduction

In today’s world industry, more and more emphasis is being placed on au-
tomation and production efficiency. In the case of the industrial production,
there is a large degree of robotization of the production workplaces, which
leads to the marginalization and displacement of the human workforce. This
trend is evident not only in the robotization of production lines but also in
the development of automated warehouses aimed at expediting the movement,
storage, and dispatch of goods. The implementation of automated goods
transportation extends beyond warehouses, finding its way into the factory
floor. Mobile robots play a crucial role in transporting goods, materials and
parts from local factory warehouses to production lines, where these items
are further processed. Then, of course, robots can also carry parts in between
the production lines. Another example of mobile robots usage is in matrix
production [I], where mobile robot carry the basis of the product across the
factory by going through different production lines by step. The product is
slowly built directly on the back of the mobile robot. This approach is used
for example in automotive.

The term Industry 4.0 [2] together with the term Flexible production [3]
refers to such a form of automation mentioned above and they are trying to
make production and factories smarter. Both of these concepts are based on
enhancing manufacturing agility and responsiveness. Both concepts capitalize
on data-driven decision-making, real-time connectivity, and the seamless
exchange of information. Industry 4.0 technologies provide the infrastructure
necessary for flexible production, enabling manufacturers to monitor, analyze,
and optimize their processes to accommodate changes in demand, design, and
production methods.

In our work, we design a system that adopts and applies the concepts of
Industry 4.0 and flexible production in a specific application. Specifically, we
propose and implement system of smart management of material transporta-
tion at the workplace between the local warehouse and individual production
lines. System should make this transportation as optimal as possible with
respect to time. We extend the data given to system in a way so it not only
incorporates data from existing robotic solution from KUKA, but also from

1. Introduction

independent real time localisation system. Given all the data, we develop
system which can optimize and make the transfer of the material at the
workplace more efficient. This kind of optimisation in real application leads
to an increase in the production of the factory and thus to greater profits. The
system should be easy to extend and allow management of robotic systems
of various brands, according to standards like VDA5050 [4]. Thus, making it
more accessible for real customers. The system also implements interface and
connection to the existing multi-agent platform, which creates possibilities
for further optimization and increase in efficiency of the production.

. 1.1 Aim and contribution of the work

The main goal and contribution of the work is in the design and implementa-
tion of a real application - Fleet management system (FMS). This system will
be physically deployed in the Testbed Industry for 4.0 department at Czech
Institute of Informatics, Robotics and Cybernetics of the Czech Technical
University. In Testbed, which serves as place for research and development
in industry 4.0 technologies, there are multiple production lines and local
warehouse with shelves and parts intended for production. In order to not
to use human workforce to move parts or whole shelves between production
lines, a mobile robotic system from KUKA AG company was purchased. It is
possible to install and program this system to do simple transport tasks from
one location to another. But that would be considered as hard-coded applica-
tion which does not meet the standards of Industry 4.0 or Flexible production.

In Testbed, research and development takes place and department functions
as a place where the latest technologies of the industry can be seen. Projects
that deal with flexible production and efforts to increase the efficiency of
production in industry are developed and take place here. All this using the
latest industrial technologies available on the market. The purpose of this
work is to develop the capabilities of the KUKA robotic system in a way
so it s transport capabilities will be available through specific interface for
some of these ongoing projects and applications which are being developed,
that have are research or also of business nature. Specifically, it is, for exam-
ple, the development of a multi-agent system taking care of the production
process of the product in the factory. Another example is the development
of a manufacturing execution system, which also procures and optimize the
production process over several production lines.

The designed FMS system not only exposes the possibility of transporting
goods for superior control systems, but also additionally processes data from
the real time location system installed at the workplace. This means that
FMS incorporates a certain optimal control of the motion of mobile robots,
which is normally not available in the KUKA Navserver solution.

Testbed also serves as a showroom, where the latest technologies are pre-

1.2. Structure of the thesis

sented for technological companies interested in automation and flexible
manufacturing. It is the place which holds various workshops, presenta-
tions and conferences about the topics in industry. Mobile robotics and its
demonstrations are not commonly seen in the Czech Republic. This means
that the functional demonstration of the mobile warehouse is an attraction
for potential customers and those interested in cooperation with the Czech
Institute of Cybernetics and Robotics.

. 1.2 Structure of the thesis

The work consists of 4 chapters. At the beginning, in chaper Problem description,
we describe Testbed workplace and all the used hardware and components
which we worked with. We point out specific problems of the components we
later address in the implementation part.

In chapter Fleet management system design and implementation, we
describe the proposed architecture of the Fleet Management System. We
describe all it “s components and how they are interconnected and what
communication protocols they use. We describe multi-agent interface. We
also describe how to install KUKA Navigation Server which is part of the
assignment.

Then subsequently in chapter Test of the system, we test the implemented
system with a set of tasks, which order transportation of goods with the
Testbed workplace. For some tasks, we artificially introduced obstacles in
specific locations of workplace. For those tasks, We test the system in two
separate states. We observe behaviour of the system when there is information
from real-time location tracking system available. Then we observe behaviour
of the system when there is no information about the tracker location.

In the last chapter Conclusion, we conclude results of our work and present
possible future work.

Chapter 2

Problem description

This chapter describes the workplace where we implement proposed applica-
tion. Chapter contains description of used hardware in warehouse. There is
also description of KUKA Navigation solution together with description of
used KUKA mobile robots. We describe Simatic real-time location system
from Siemens which is used as a source of location data for this application.
Also multi-agent system concept proposed in Testbed is presented.

Some hardware shortcomings are also mentioned, which we must take into
account during implementation of the system.

B 2.1 Testbed for Industry 4.0

The Testbed for Industry 4.0 is a department located on the ground floor of
the Czech Institute of Informatics, Robotics and Cybernetics of the Czech
Technical University building in Prague. In the next part of the work, we
refer to it only as Testbed. Testbed was established in the summer of 2017
and serves as an experimental and development workplace where the latest
technologies in the industry can be found, supplied by leading technology and
industrial companies like KUKA, Siemens, ABB, Sick, Keyence and many
more. The Testbed thus serves partly as a showroom. At the same time, it is
possible for those interested from a number of technological and industrial
companies, to collaborate on their solutions using available hardware and
software with the assistance of researchers who work here.

In Testbed, there are several production lines that serve to demonstrate
flexible production and the principles used in Industry 4.0. Floor plan of
Testbed is shown in figure [2.1,

2. Problem description

Conference
room

Figure 2.1: Testbed floor plan [5]

In the image, all the production lines are numbered and described as:

1. Montrac production line equipped with monorail conveyor system and 4

KUKA robots

2. Montrac automatic loading robotic station equipped with KUKA robot

3. Delta robot production line
4. Universal robotic cells equipped with 2 KUKA robots

5. Automated warehouse with a fleet of 5 KUKA mobile robots

6. Robotic multi-axis additive manufacturing cell which uses KUKA robot

and Leica laser tracker

7. ABB assembly line for flexible fast production equipped with 4 ABB

robots
8. Cell for assisted assembly with 2 KUKA collaborative robots
9. Robotic vision cells, each with KUKA robot

10. Robobar

Between these production lines, the warehouse serves as the primary tool
for storing and transporting products, goods and materials. That is because
it is equipped with KUKA mobile robots. In addition to the warehouse’s
mobile robots, Testbed also has a Bettaroe mobile robot used for testing the
delivery of shipments from Robobar. The third mobile robot in Testbed is
Festo Robotino, which works within the CP Factory production line, which
is located near VR station. These two robots are not yet used within the

warehouse system framework.

2.2. Warehouse hardware

. 2.2 Warehouse hardware

Two types of KUKA mobile robots are used to move products within the
Testbed workplace. The warehouse consists of parking spaces and charging
stations for these robots. Also, warehouse is equipped with seven shelves
which can contain different materials. Warehouse area is shown in figure

Figure 2.2: Testbed Warehouse area and equipment

B 2.2.1 KUKA mobile robots

Mobile robots, or otherwise called also AGVs, are robotic systems designed
to move autonomously within defined environment. They are equipped with
onboard computers and sensors using which they can locate themselves, navi-
gate and perform specific tasks.

Bl KUKA KMR IIWA

The first type of the robot present in Testbed warehouse is KUKA KMR
ITWA. This robot consists from KMP200 mobile platform on which the KUKA
LBR ITWA 14 R820 robotic arm is mounted [6]. Robot is shown in the figure
This robot is mainly used for transporting of small amount of work pieces
around Testbed, using its gripping device.

7

2. Problem description

Figure 2.3: KUKA KMR ITWA robot

The platform KMP200 has omnimove technology, which allows it to move
in x, y and rotational axis at the same time [8]. Even from standing start.
This technology allows the robot to easily position itself in space. Also with
high precision of +3 mm. Robotic platform can carry up to 200 kg of total
weight. The robotic platform is equipped with two laser scanners that provide
a 360-degree view of the robot’s surroundings. Scanners can evaluate obstacles
at three different distances. Based on the data from the scanners, the robot
adjusts its speed according to the distance from obstacles. At the same time,
based on the data from the laser scanner and wheel odometry, it is positioned
in space on map in which robot moves. Thus, the simultaneous localization
and mapping process takes place. As a result, it can avoid obstacles and
navigate in space independently.

Robotic arm has load capacity of 14 kg and a reach of 820 mm. Pose
repeatability of this robot is +0.15 mm. The ITWA robotic arm is equipped
with force torque sensors in each of the seven individual joints. This means
that this robot can work in collaborative mode, which makes human-robot
collaboration possible. Reason for this is that robot can work in a mode when

8

2.2. Warehouse hardware

it sense extensive force applied to the body of the robotic arm. If the force
exceeds certain threshold, robot will stop from safety reasons.

The robotic arm is for our application equipped with a Schunk EGI 80
electric parallel gripping device [9]. Gripper is mounted on flange of the
KUKA ITWA robot as shown in figure Gripper can be controlled for
certain position and gripping force. His maximum gripping force is up to 80
N. The fingers of the gripper are printed on a 3D printer. The fingers are
capable of gripping individual objects. The fingers can be changed manually
depending on application and on what products the robot has to carry. It is
also possible to change whole gripper. That is thanks to the manual gripper
exchange mounting.

Figure 2.4: Schunk EGI 80 gripper with 3D printed fingers

Gripper is powered from robot battery. Gripper is connected to the robot
controller through PROFINET as a slave device, thus it is possible to operate
gripper from the robotic program.

Bl KUKA KMP

The second type of robot is KMP600-s [7]. It is a robot equipped with two
drive wheels and four support wheels. The robot can move in x direction
and also rotate on spot. The robot can move at 8 different speeds depending

9

2. Problem description

on how far it is from the obstacle. Maximum acceleration is 1.25 meters
per second and maximum speed is 2 meters per second. Positional accuracy
without use of magnetic strip or any other assistant markings is +10 mm.
The mobile robot KMP is equipped with a lift. The lift can rise up by 60 mm
in less than three seconds and it can lift up to 600 kg [7]. Robot battery has
capacity to operate for eight hours and it can be charged under two hours.
Charging is done through plug, because it is faster. Charging can be done
autonomously. This type of robot is used to move entire shelves as it is shown
in figure Shelves are being moved between the warehouse and between
individual production lines.

Figure 2.5: KUKA KMP600-s with additional positioning plate mounted on lift
device

The positioning accuracy of the KMP robotic platform is not good enough
for the precise placement of the shelves into the robotic lines. Thus we need
to come up with some algorithm, which can increase precision of positioning
of the robot. We also need to implement algorithm for automatic charging of
KMP in case of low battery. Fleet Manager needs to check the battery level
on each of the AGVs. Otherwise there is a risk that robot batteries will be
excessively discharged and damaged.

B 2.2.2 Shelves

Shelves are used to store materials of various types. There is total of seven
shelves in warehouse. The shelf has a square base with the length of the side
100 cm. The height of the shelf is 115 cm. On a plane inclined at 30 degrees,
there are 3 levels which height can be adjusted according to the needs of a

10

2.2. Warehouse hardware

particular application or product dimensions. The shelf is equipped with a
spherical element located on the underside of each of the legs. This feature
allows for manual repositioning of the rack within the Testbed, for example
by a human worker. Shelf is shown in the figure [2.6

< ST

Figure 2.6: KUKA KMP with shelf on top of it

Precise positioning of the shelves is very important. Better to say, we
have to ensure that the shelf is always placed in the same place within the
production cell. If the shelf is not placed at the same position, production
cell has to always detect trays of materials through some camera system or
other position detection algorithm. For precise placement of the shelf in the
production line, first we need to be able to pick it up repeatedly in a same
manner. Fortunately, this precise picking up of the shelf problem was solved
during design of shelves. Shelves are equipped with centering cones with a
radius of 60 mm and a depth of 20 mm. Cones are placed on the bottom plate
of the shelf. The centering cones together with their counterparts located on
the AGV KMP mobile robot serve to eliminate or increase the tolerance of
positioning inaccuracy of the KMP mobile robot when picking up the rack
and placing it to the position on the top of the AGV. Centering cones system
is shown in figure

11

2. Problem description

(a) : Opposite part for centering cone (b) : Centering cone placed on the
placed on KUKA KMP bottom part of the shelf

Figure 2.7: Centering cones system

The shelves in warehouse are placed at precisely specified and numbered
places. The places are defined by four centering pads fixed on the floor.
Centering pod is shown in figure Dimension of the pods is 80 mm by 80
mm. Hole in the middle has diameter 20 mm.

g " i A s s e e

Figure 2.8: Plate which fix position of the shelf on the ground

This centering is also important when we want to precisely place the shelf
to the certain location within the workplace. Thus centering metallic pods
are placed in every location of the Testbed, where the delivery of the shelf is
possible.

The accuracy of the KUKA KMP robot when positioning itself is +10 mm.

12

2.3. KUKA Navigation Solution

When lifting the shelf, this accuracy is sufficient, because thanks to the cones
we get a tolerance of £30mm. The problem we have to solve is to ensure
a fixed position of the rack after it is placed. The basic solution is the use
of metal centering pads, see figure 4. This solution fixes the shelf, but it
still has +2mm freedom of movement and tolerance. This inaccuracy can
have an adverse effect on the robotic application that subsequently removes
or adds goods to the shelf. Also, we need to increase the precision of the
KUKA KMP robot positioning. That is because the hole where we try to
put the shelf provides tolerance +10mm which is not sufficient. Thus we
have to increase the accuracy of the robot in a different way, for example
programmatically. Another possible issue to solve is, that it is hard to create
shelves in a way when all of them have perfectly same dimensions. This leads
to the impossibility of creating hard-coded approach to program which access
the positions when picking and putting parts into the rack.

B 23 Kuka Navigation Solution

The KUKA Navigation Solution [10] takes care of the physical control of the
movement of KUKA mobile robots. This solution enables the autonomous
management of a fleet of KUKA mobile robots. It also enables the resolution
of mutual robot collisions and functions as a tool for programming the logic
of the robots movement in space. For navigation, it uses an offline map of
the workplace and then data from laser scanners and the status of individual
mobile robot. It does not require any cameras or other markings in the space
such as magnetic strips. The system locates robots on the map based on
data from scanners and odometry from sensors in the wheels. The system
provides a JAVA API interface. Programming of the logic takes place in the
JAVA programming language, within the eclipse-based Sunrise Workbench
environment [I1].

In order to be able to programmatically control and communicate with
robots, we need to install the so-called KUKA Navserver application.

B 2.3.1 Navserver installation options

The basic and easiest option for operating this Navserver application is to
install it on one of the computers located on the KUKA KMR robot. KMR is
equipped with its own WLAN network and this computer is connected there
as well. The disadvantage of this installation is that in order to communicate
with the Navserver, all other robots must be in close proximity to the KMR
robot where the Navserver is installed because they have to be able to connect
to its WLAN network. The advantage of this approach is that in the case of
using a single KMR for a application, this method is sufficient and much eas-
ier for installation. Architecture of this standalone setup is shown in figure [2.9]

13

2. Problem description

O

Software
KUKA
Navigation Solution

®

v KUKA NavBox

Navigation Server

Figure 2.9: Architecture of standalone Navserver installation

@)

Where specific components are:

1. Computer where Sunrise Workbench with Kuka Navigation Solution is
installed. This computer is also used to change and program code for
NavServer.

2. LAN or WLAN connection to virtual computer where NavServer is
installed

3. Virtual computer with the NavServer installation
4. WLAN connection to the robot NavBox

5. NavBox of the KUKA KMR robot which collects and sends data to the
Navserver. It serves as interface between Navserver and robot control
computer.

6. NavBox of the KUKA KMP robot which collects and sends data to the
Navserver. It serves as interface between Navserver and robot control
computer.

The second and more advanced installation option is the installation of the
Navserver on a virtual computer, or a server. In our case, virtual computer
or server should have access to the WLAN network of the Testbed workplace.
This approach is more complex to install and requires software changes in each
AGYV connected to the Navserver. But it provides the necessary flexibility in
the case of the dimensions of the Testbed workplace. This means that this
installation is necessary in our case. Architecture of this advanced setup is
shown in figure [2.10

14

2.3. KUKA Navigation Solution

(D)
Software _’

KUKA Navigation Server
Navigation Solution

®

KUKA NavBox

®

Figure 2.10: Architecture of WLAN Navserver installation

Where specific components of architecture are:

1. Computer where Sunrise Workbench with Kuka Navigation Solution is
installed. This computer is also used to change and program code for
NavServer.

2. NavServer is installed within same robot computer where the NavBox is
installed.

3. LAN or WLAN connection from user computer to the robotic system.

The Sunrise Workbench software [11] is used for the NavServer installation.
During the installation on remote computer, we need to provide enough
computing power when creating virtual computer instance. Also, we need to
address windows sharing problems, create PostgreSQL database and configure
it. Process of installation is fairly well described in documentation, but some
action or steps, which may be intuitive, are not mentioned. Thus, first
installation of software may be difficult and time demanding.

B 2.3.2 Map creation

Navserver uses a static map to control robots. This map is created offline
using Navserver and a KUKA robot equipped with at least one laser scanner.
In our case, both KMR and KMP robots meet this condition. Due to the
location of scanners on individual robots, it is more handy to use a KMR
type robot for scanning the map, because KMP robot has bigger blind spots.
But mainly because of KMRs ability to move in two directions at once thanks
to OmniMove technology [8].

The map is then generated by driving the robot around the space and

actively recording and storing data from laser scanners. The Navserver
map creation algotithm then uses the iterative closest point algorithm to

15

2. Problem description

reconstruct the map based on data from the laser scanner data which are
stored in XML file. Exported map from Navserver Map interface is in .omap2
format. Default map stored in the Navserver is shown in figure [2.11

Figure 2.11: Default Navserver map

Black points in the image represent walls or obstacles. Gray points in map
represent unknown points. Those are points which scanner did not reach
during scan. That “s because of the wall or obstacle which blocked the laser
beam, or because that space was not traversed during scan. White point
represent free space. Map has a orientation which can be defined during map
creation. In interface, map is shown with orientation as: X-axis points from
left to right and Y-axis points from down to up. Parameters of each map are:

® Name of the map
® Resolution
® Width

® Height

We need to be precise during creation of the map. Especially around places
where we want to achieve precise positioning. That means, that we should
traverse that specific area from different directions. Preferably at low speed.
Map represents state of the workplace as it was during the scan. When
something important changes, is added or removed in the map, it is advised

16

2.3. KUKA Navigation Solution

to scan the workplace from scratch and create new map. Map does not
represent or show obstacles which are put there temporarily. When we try
to navigate and control robots in non-actual map, it can lead to inability to
achieve desired positions and in high inacuraccy in positioning of the robot.

B 2.3.3 Robot motion options

With the standard Sunrise Workbench software package, AGVs can move
within a topology graph that is defined in map. In the case of using KMR, it
is possible to program movement even along pre-set line segments. Again,
thanks to the KUKA OmniMove technology. A sample of the graph created
in the map can be seen in the image The graph is created in the system
through the Sunrise Workbench interface using the KUKA Map perspective
window. For the possibility of creating a graph, there must be a map stored
in the NavServer. During creation of the graph, its data is stored directly in
the Navserver database, from where it is the loaded everytime some service
needs it.

Figure 2.12: Example of graph created in default map

A topology graph consists of vertices and edges. The location of the ver-
tices and their interconnection using edges is defined by the user. Each edge
represents one-way connection between two nodes. Both, vertices and edges,
have definable parameters, with the help of which it is possible to specify the
type of movement, speed, orientation of the robot when moving along the
edge and more. The specific parameters are as follows.

Some of the important parameters for the nodes setting:

® Accuracy - sets attribute for how precise positioning of the robot at this
position should be

17

2. Problem description

Position - exact x and y coordinates of node in map

Orientations to map - sets possible orientations of the robot with respect
to the map which are allowed for the robot in this position

Velocity and acceleration parameters - it is possible to set limits for
maximum velocity and acceleration which will robot have when it will
be moving through, from or into this node

Restriction - changing this parameter, we can black-list specific node
and prevent robots from visiting it

Waiting zone - it is possible to set time which robot should wait at
specific node

Available parameters for the edges setting:

VirtualLineMotion - parameter specifies the motion and orientation
which will robot use when traversing along edge

Velocity and acceleration parameters - it is possible to set limits for
maximum velocity and acceleration which will robot have when it will
be moving along edge

PathRecover - parameters sets how far can robot traverse from the edge
during the motion

Restriction - changing this parameter, we can black-list specific edge and
prevent robots from visiting it

Weight - it is possible to add weights to individual edges and thus
influence the path planning algorithm

When there is a graph defined, it is possible to program an application
which will control robot motion within this graph. In reality, fine tuning of
position of nodes and edges is necessary. That is because each node represents
specific point in real workplace.

Since the graph is stored in the NavServer database, it is possible to bypass
its creation via the KUKA Sunrise Workbench and create it there directly.
For example, via a program which will generate and import graph data to
specific database table. This approach of dynamic graph creation could save
a lot of time in case, we have a highly variable environment and we often
need to do mapping and graph creation. Also it is possible to create graph
grids which can cover whole map which can lead to higher flexibility in robot
motion and path programming.

18

2.4. Real time location system

B 2.4 Real time location system

RTLS, short for real time location system, is a technology that is used to
locate and track objects, people, objects or material in a specific area. RTLS
is mostly used in indoor spaces, most often in factories, in logistics, but also
in retail and healthcare. This form of tracking provides real-time position
data that can be used to increase production efficiency, increase workplace
safety, and more.

There can be many different technologies used for tracking. The most
commonly used technologies in RTLS are based on active radio frequency
identification, infrared, optical localization or bluetooth signals transmission
and receiving[I3]. RTLS system usually consists of a physical gate located
at fixed position in area where the tracking and localisation should be done.
Gateways act as signal receivers, or also as signal transmitters. Next, there
are tags, transponders or trackers that are portable and are placed on objects
or people that we want to track or locate. The algorithm on the RTLS server
continuously processes data from tags that are received through the gateways.
Signal of one tracking tag usually have to be received by more than one gate
in order to determine its position. RTLS evaluates data from gateways and
determines the position of the tags in workspace area in real time. Then
RTLS server can visualize the data in the application, or enable access to
data via some API interface.

One of the most common used technologies in RTLS is Ultra-wideband
technology [I5]. Ultra-wideband technology uses radio bandwidth to transfer
data and communicate on short distances. It uses high frequency bandwidth
- more than 500 MHz. One large commercial field of use of this technology is
in smartphones and smart locators like Apple AirTag or Samsung SmartTag.
These trackers can communicate with other devices of the same brand. Thus
mobile phone or notebook acts as a gateway and smart tag acts as tracker.
Since these brands are spread all over the world, we can track the tag practi-
cally anywhere where there are a large number of people with smartphones.
The problem is that it is a closed ecosystem of one brand and it does not
allow third parties to read data from this system. Also, it is not considered
as industrial grade technology.

The SIMATIC RTLS system from Siemens [14] is implemented in the
premises of the Testbed. In case of the SIMATIC RTLS, system provides
a localization accuracy of 20 cm to 30 cm. But its required to have quite
dense network of gates in area, where the localisation is carried out. Siemens
SIMATIC RTLS consists of two main parts, the hardware part and the soft-
ware part. Their architecture and interconnection is shown in the figure 2.13.

19

2. Problem description

Locating system,
i.e. SIMATIC RTLS

Real-time tracking and

- —
— —~
= real-time analytics

Mobile Material

Transport systems equipment boxes

Figure 2.13: Architecture of Siemens Simatic RTLS [14]

On the left part of the image there are the hardware parts of the
system, specifically gateways and tracking tags placed on the devices. Gate-
ways gather the data from tracking tags and send them into the Siemens
Location Manager component. This is the software component of the RTLS
solution which computes the real-time position of the tracking tags. This
position information can then be cyclically sent into higher control systems
or is available for program access through the API interface. Together, the
software and hardware parts make up Location Intelligence [16].

B 2.4.1 SIMATIC RTLS transponders

There are two types of trackers used in Testbed. Trackers are shown in the
figure

20

2.4. Real time location system

il
I G UL i
Figure 2.14: Simatic RTLS tracking tags RTLS4084T (left) and RTLS4083T
(right)

There is thirty trackers of type RTLS4083T and ten trackers of type
RTLS4084T available in Testbed. Main difference is in the size of the ePaper
display. Other big difference is in battery. RTLS4084T transponder is pow-
ered by external battery pack and in standby mode can last up to 8 years or
with 1 second localization cycle up to 18 months. RTLS4083T transponder
has built-in rechargeable Li-ion battery. For one charge it can last 1 year
in standby mode or with 1 second localization cycle up to 6 months. Both
transpodners can show data on display. The more often is display information
changed, the faster the battery is drained. Display, can show information such
as object id, product number, volume information and tag address. Accuracy
of localization of both transponders should be + 0.1m.

B 2.4.2 SIMATIC RTLS gates

There are nineteen gates distributed in the Testbed in a way, so that they
have the best signal in the places where AGVs move most often. The gates
are placed on the ceiling in horizontal or vertical positions. Gates and their
mounting is shown in figure RTLS gateways SIMATIC RTLS4030G are
configured to receive data from tags. At the same time, they are connected
to Testbed’s local network, where the Siemens Location Manager module is
installed on the server. An API interface is exposed on this server, which
allows access to location data and status of individual tags.

21

2. Problem description

(a) : Horizontal mounting of the gate (b) : Vertical mounting of the gate

Figure 2.15: Mounting of the RTLS gates on the ceiling of the Testbed

Data is available through API. In the Fleet Manager system implementation,
we need to read this data through API appropriately. At the same time, it is
assumed that we have to filter this received data and approximate the position
of the locator tag. The position received from the trackers will probably not
be static even if the tracked object or person is not moving. This is based on
the given accuracy of the trackers which is expected to oscillate around real
value. A lower accuracy during tracking can occur due to wrong gateways
configuration. This situation has occurred in the past and the setting of the
gates have been tuned repeatedly.

B 25 Multi-agent system

Multi-agent systems (MAS) are composed of multiple entities known as agents.
These systems can handle complex tasks by breaking them into smaller sub-
tasks, which are then managed by individual agents. To solve problems,
agents collaborate together within a shared environment, exchanging informa-
tion and resources while making decisions in a decentralized manner. Notable
traits of MAS systems include their decentralized decision-making, adaptabil-
ity, robustness, and capacity to handle errors. They can solve complex tasks
very effectively.

The application of MAS is particularly prominent in robotics, where an
agent can represent a single robot in a swarm of robots. These robots then
can collaborate to achieve goals such as exploring uncharted terrain or con-
ducting search and rescue operations. Another significant area for MAS is
in manufacturing and industry area. Here, agents can represent distinct
production cells, individual machines or even whole factories. With MAS sys-
tem, optimizing production efficiency, enhancing workplace safety, preventing
machine breakdowns, and supervising warehouse robots becomes feasible.

22

2.5. Multi-agent system

At Testbed, we use the MAS concept for demonstration and experiments
with distributed production. The main demonstration of MAS capabilities
lies in smart factory and smart production, which can manufacture a product
taking into account the optimal production time, manufacturing quality,
etc. Recently, there have been tests and experiments on an RC car model
made from 3D printed parts. The model contains soldered board designed
by colleagues at Testbed. Car is powered by a battery and thus it is a
realistically functional model that demonstrates the principle of distributed
production. The multi-agent system can currently manage production within
one robotic cell. The plan is to make it possible to manage production across
all production lines in Testbed using the principle of the MAS.

The core components of the Testbed multi-agent platform are device/machine
agents. Each device is represented by its agent in the group of cooperating
programs. Agents have the ability to activate particular machine actions or
operations by using the machine interface. The agentsmain structure follows
the Enterprise Model-View-Controller (MVC) pattern [I8]. Through the
Advanced Message Queuing Protocol (AMQP) controller[19], the agents can
send, receive, and manage messages. Each agent is dockerized. Architecture
of the agents and their communication through AMQP is shown in figure
2.16]

Agent 01 Agent 02 Agent 03
RabbitMQ Connector RabbitMQ Connector RabbitMQ, Connector
+ + +
Communication mechanism Communication mechanism Communication mechanism
AMQP
Server

Figure 2.16: Dockerized multi-agent communication architecture

These messages are then managed in a way where they’re processed inde-
pendently by agent ‘s state machines. State machines are called strategies.
The decision-making process operates without needing to remember past
decisions. All the information related to the current state and conditions is
continuously stored and extracted from a database. Architecture of single
agent instance is shown on image [2.17.

23

2. Problem description

1

G ¥

Controller AMQP controller

1

Repository

MSG processing service |)

Knowledge of
Service World
Strategy Knowledge of
Domain
Connector
Controller y ¢ 1
OPC UA MQTT

Figure 2.17: Architecture of single agent

Every agent is enrolled in the agent registry known as the directory service.
Besides its own identity, an agent also enlists the abilities it intends to provide
to others. This registry for agents operates as a ZooKeeper instance [20].
Representing a product order, there is a product agent. This agent employs
the Plan-Commit-Execute protocol to collaboratively determine the optimal
conditions for assembling the product. The agent continuously communicates
with the physical device using OPC UA interface [21]. There is also option
to communicate through alternative options, like MQTT interface. The
entire communication among the multi-agent setup is supervised through the
GrayLog [22] logging platform.

The warehouse system forms an important link that provides the trans-
portation of material between production lines. Therefore, it is necessary
to create an agent that would represent the warehouse system in existing
multi-agent ecosystem. That means, agent must be able to communicate
transportation capabilities of warehouse system to other agents and at the
same time it must be able to provide transportation management using AGVs
to other agents who need it. In this work, we deal with the design and
implementation of this agent.

24

Chapter 3

Fleet Management System design and
implementation

This chapter is about specifics of design and implementation of Fleet Man-
agement System which incorporates all the Testbed hardware, software and
principles mentioned in previous chapter.

Fleet Management System is supposed to ensure transportation function-
ality within the Testbed. Transport should be possible between the local
warehouse and between the production lines. FMS system should be able to
connect to Kuka Navserver and control it in order to fulfill transporation task
given from superior control system. Therefore, when designing the system, we
must take into account its easy expandability and flexibility. When designing
the architecture, we must consider the creation of a multi-agent interface
that can also forward orders for the transport of shelves and goods. The
system therefore contains both an interface for AMQP communication and
an interface for communication through OPC UA.

When implementing transportation function in the Testbed premises, we
consider transport options between the warehouse, the Montrac line, the
Delta line and the ABB line. Each of these lines has its own characteristic
place for docking of the shelf into the line. This means that it is necessary to
design the docking and undocking process for each production line separately.
This is due to the safety measures installed on individual lines.

Then we further expand the created FMS with data input from the RTLS
system installed in Testbed. This will add the possibility of optimizing the
shelf transport system beyond capabilities of Kuka Navigation Solution alone.
This is done by enabling the manual marking of obstacles in the Testbed
workplace by RTLS transponders. Then information about the obstacle is
transmitted to the FMS system which can work with it and propagate it to
the Navserver, which then plan collision free routes for the AGVs.

But first of all, we need to install Kuka Navserver.

25

3. Fleet Management System design and implementation

. 3.1 KUKA NavServer installation

In order to use the Kuka Navigation Solution, we must first install the Kuka
Navserver. We install Navserver on a virtual enviroment - computer instance
- initialized in local VMWare in Testbed. This virtual computer must meet
the following requirements:

® Windows 10 LTSC version
B 4 cores
® 8 GB RAM

® HDD size 50 GB and more

We pick IP address of the computer as 10.35.129.130. Computer has to
be connected into the Testbed WLAN with name CIIRC Testbed Lab. We
select the name of computer as kuka-navserverl7.

Then we follow installation instructions given in KUKA KMR, documenta-
tion [?]. Steps of installation of additional software needed to run Navserver
consists of:

1. Installation of Java version 1.8
2. Installation of PostgreSQL database version 9.6

3. Imstallation of Visual C++ Redistribuable 32-bit version 2015 or newer

Then we need to create kuka user for the PostgreSQL database, because
system is set up in a way, where it uses this username to access database. We
change the config file of the database in a way so only specific ip addresess
can access the database. From security reasons. We also create Kuka user in
the Windows system, because during installation of Kuka Navserver project,
the project is installed and files are copied from work computer onto the
server using windows sharing option. And when trying to share, Kuka Sunrise
Workbench is configured to use Kuka User on the target computer where
project is being installed. We create NAV folder on drive C:/, where the
Navserver project will be installed.

After the Navserver computer is ready, we connect to the same network
with our work computer where we have KUKA Sunrise Workbench 1.17.0.5
installed. Using our workbench, we create project for Navserver and configure
it. Configuration is shown in figure [3.1

26

3.1. KUKA NavServer installation

Konfigurace
Hodnota
v @ MavServer (Version: 1)
B e 10.35.128.130
2] Username kuka
] Password kuka
] ServerPort 8112
] NavDataSrclP 127.0.0.1
] NavDataSrcPort 3432
] NavDataSrcUserMame kuka
] NavDataSrcPassword kuka
] PostgresAdminPassword kuka
v & Bifrost
[Bifrost Subnet default
[] Bifrost Node GRPC Port 8224
[Bifrost Tunnel Port 8225
v B Kafka
[Port 9092
w % TimeSynchronization
[Port (UDP) 8110
w -33: World Graph Server
[Port 8084

Figure 3.1: Navserver Sunrise project settings

After configuration of Navserver, we need to reinstall every KMR and KMP
project in a way so they connect to Navserver on IP address 10.35.129.130
after their startup. For this task, we again use KUKA Sunrise Workbench
1.17.0.5. We reinstall KMRs and KMPs and change their IP addresses and
instance IDs in their project settings as it is given in table (3.1l

H AGYV Name IP address | Instance ID | AGV Type H

KMR200_1 10.35.129.5 1 KMR
KMR200_2 10.35.129.6 2 KMR
KMP_600_id3 | 10.35.129.7 3 KMP
KMP_600_id4 | 10.35.129.8 4 KMP
KMP_600_id5 | 10.35.129.9 5 KMP

Table 3.1: Table of KMR and KMP IP addresses.

In case of KMRs, we also need to reconfigure their Scalance Switches to the
client mode. We also need to change IP address of the device based on table
3.1l For the both types of robots, we also have to enter and set up WLAN
credentials and password of the network, where Navserver is installed. That “s
because we need switches of every robot to connect to the same WLAN
network where Navserver is, so they can communicate.

After installation of NavServer project and making changes in switches,

27

3. Fleet Management System design and implementation

we can restart Navserver and robots. After the restart, all the robots are
connected to the Navserver. We can check it in the Kuka Sunrise Workbench,
more precisely in the Map Perspective window in the Robots on other Maps
section. We see it there, as it is shown in figure [3.2], so the installation of
Navserver and reconfiguration of robots is successful.

) [KUKA Map P... ™ Programovani

Remove selected Robots

Robets on other Maps

g — 0
far > Ei;}] Robots
Aol =ik o B
Filtering
Robot All o
Robot Type Al Types v
State Selection
Robot State Mo Filter o
Robots on current map
Device I Robot Name Robot Type
£ >
Actions

] 1
] 2
] 3
] 4
] 5

Map ID Device ...

Robot Mame

KMRZ200_1
KMR200_2
KMP_600_id3
KMP_E00_id4
KMP_E00_id5

Figure 3.2: All the robots are connected to the Navserver

B 32 Testbed map

In order to be able to move and control robots within Testbed workplace, we
need to add map of the actual enviroment into the Navserver. We will do
it using work computer with Sunrise installed as it was in previous section

during Navserver installation.

28

3.2. Testbed map

For scanning of the Testbed map, we use KMR mobile robot for reasons
mentioned above in subsection Kuka KMR. In Sunrise we go to Map Perspec-
tive window where we lock the KMR200 1 robot and move it to the default
map. Then we start the mapping proccess. We drive robot around Testbed
workplace, slowly. We need to be carefull to allways change our position
relative to the robot. Otherwise, during multiple of scans, it could see our
feet in the same position as in previous scans, thus mapping algorithm would
consider our feet as an obstacle in the area. We do more traversing around
docking areas of Montrac, Delta and ABB line. Whole process takes around
15 minutes, because Testbed is relatively large workplace. In the end, we
birng the robot back to its starting position and we stop the mapping process.
After that, data from scanners are saved internally and we can download it
as XML file, or we can directly generate map. We generate the map from
data and we got the map shown in figure

. A

l m lnl .'|" L - "ﬂ Ji
gf‘»' l .

ii',,i BT

Figure 3.3: Map of the Testbed

Paramters of the map are:

® Name: 2023_05_23_ TestbedAll
® Resolution: 0.05

® Width: 1291

® Height: 631

We need these data to create transformation from a map which is used by
RTLS.

In this map we create topology graph. This graph is used druing the
transportation task of shelves from two precise location in warehouse or
within production lines. Graph is also used for testing of the RTLS data
effect onto the navigation of the robots. Used graph is shown in figure .

29

3. Fleet Management System design and implementation

Warehouse

| D . 0

S AL S
s " - 4 -
. iﬂ'_""’).«‘ A“.ﬁ !!- o-ab #on
Figure 3.4: Map of the Testbed with specified graph

In the figure, there are also marked positions of docking stations. Blue
one corresponds to the Montrac docking station, green one corresponds to
the Delta docking station and orange one corresponds to the ABB docking
station.

B 3.3 Shelves precise positioning

As it was mentioned before in the part containing shelf description, we need to
solve the problem of inaccurate positioning of KMP robot in docking station.
We can find out how imprecisely the robot is at the specified location using
laser scanners. It is possible to create a location element within the map.
This element shares most of the parameters that characterize node. However,
it is possible to create FineLocalization data for this location element. This
means that at a given location it is possible to create an accurate record of
data from the robot’s lasers about the surroundings of this location. This
process requires recording of data from scanners, which lasts approximately
20 seconds. This location data is then stored in the Navserver database.
Subsequently, as part of the program, we can navigate the robot to the node
with same position as this location. That with low positioning accuracy. After
reaching the position, robot can measure the current data from the lasers.
Then the current data is programmatically compared with those that were
learned and saved previously with high precision. The offset is expressed from
their difference. Offset tells us how inaccurate the current KMP position is
compared to the desired correct position. Offset expresses the inaccuracy in
the X-axis, Y-axis and rotation angle. Then we subsequently correct this

30

3.3. Shelves precise positioning

offset appropriately using algorithm implemented by us. Algorith uses basic
relative robot motions, readings from laserscanners and saved FineLocaliza-
tion data. Description of algorithm follows.

Considering that the KMP can only move in the x-axis forward and back-
ward and turn, for the correction in the Y-axis we have to apply a movement
similar to longitudinal parking. This means that the process of minimizing the
Y-axis offset is iterative. Due to the small spaces of the docking stations, the
robot can move a maximum of 5 ¢cm in one iteration in the Y-axis. Movement
in the Y-axis consists of going back, turning, moving forward and turning
again by the same value of the angle, just in the opposite direction. After
one iteration of correcting of Y-axis, measurement of offset is processed again.
We iterate through this unti Y-axis offset is within desired standard. Then
algorithm corrects X-axis offset by just moving forward or backward. At last,
it will correct its angle offset. In this way, we can achieve the accuracy of
placing the shelf in the range of +3 mm.

At warehouse, there is a long wall without any sharp edges. To be to teach
FineLocalization data, we need to add some contrast edges. For that, we can
use metalic block mounted to the ground as it is shown in figure 3.5, This
block are used also in the Montrac docking line.

Last thing how we increase the precision of shelves on the ground is by
adding 3D printed element to the centering pads on the ground. The centering
element has the task of eliminating the inaccuracy of the positioning of the
robot when parking at the place of placing or picking up the rack. Centering
pad with mounted 3D printed element is shown in figure [3.6. This element
was discussed and modelled by a colleague at Testbed.

31

3. Fleet Management System design and implementation

-
EMIE | |

Lo b

| vf',.. =
I-l

“l —
—

Figure 3.5: Map of the Testbed with specified graph

Figure 3.6: 3D printed part in centering pad

32

3.4. Docking to production line

Using all those methods and improvements above, we get 100% success
rate during picking and placing shelves to desired positions within Testbed
workplace. Only thing that could affect this precision is sudden changes in
docking positions for the shelves.

B 34 Docking to production line

In this section we explained implemented docking process on example of Mon-
trac production line. Docking to ABB and Delta line is practically identical.

We describe the procedure and communication during the docking process.
Docking means the process when the NavServer (the control system that
manages the AGV - in our case specifically the KUKA KMP) navigates the
specific AGV/KMP physically into to the docking station on the Montrac
production line. Docking operation si possible with or without shelf. Montrac
acts as a OPC UA Server with a given structure of directories and objects.
The docking process itself is managed by the NavServer, which connects to the
server as a OPC UA client. This is because the NavServer receives a request
from its agent or superior system to deliver the goods/shelf to a specific
station. The NavServer verifies its own delivery capabilities and, if resources
are available, evokes the process of moving to the Montrac and the docking
process itself. NavServer then successively calls methods on Montrac Server.
The server processes the methods calls and provides output of methods to
the NavServer. NavServer then processes the output of the individual called
methods and, based on that, either continues with the next step of the process
or terminates the process. In this variant of the communication design, we
expect that the scanners at the entrance to the docking station will be able to
distinguish the presence of a shelf in the given station. This means they can
detect the legs of the shelf. Alternatively, they should be able to recognize
the fact that there is another, unknown object in the station.

Communication Brief description of communication during docking and
undocking. More detailed requirements for methods and data processing are
described under individual methods. Docking Symbol -> describes direction
of communication as "from" -> "to": 1) NavServer -> Montrac: determines
the status of the station — NavServer calls the Montrac OPCUA server method
RequestStationStatus 2) Montrac -> NavServer: returns the status of the
station or information about the docking option through the RequestStation-
Status method 3) NavServer: If docking is possible, it sends the AGV (or picks
up the shelf and sends the AGV loaded with the shelf) to the predock position.
If docking is not possible, it returns this information to the client/agent. 4)
NavServer -> Montrac: The moment the AGV reaches the predock position, it
waits and requests the docking - it calls RequestDocking with specific param-
eters. 5) Montrac -> NavServer: through the output of the RequestDocking
method, it returns permission or denial of docking. 6) NavServer —> Montrac:
requests a safety connection via RequestSafetyConnection. 7) Montrac ->
NavServer: Montrac establishes a safety connection with the given AGV.

33

3. Fleet Management System design and implementation

The connection status is returned by the output of the RequestSafetyCon-
nection method. 8) NavServer —> Montrac: requests to switch the field of
Montrac safety scanners for KMP entrance via RequestSafetyFieldEntrance.
9) Montrac -> NavServer: Montrac switches the array of scanners in case
of correct contour detection. The status of switching scanners is returned
by the output of the RequestSafetyFieldEntrance method. 10) NavServer:
If the safety connection is successful and the array of Montrac scanners is
switched, the NavServer sends the AGV to the station. If he has a shelf, he
puts it down. 11) NavServer-> Montrac: confirms the placement of the shelf
by calling RequestDockingCheck. 12) Montrac -> NavServer: Montrac scans
the RFID and checks the correct placement of the rack with the scanners.
Corresponds to NavServer. 13) Montrac — if RequestDockingCheck is TRUE,
it detects the contour of the parked KMP and switches the array of scanners
(cancels entry) 14) Montrac — checks the switching of the scanner array, if OK,
and the RFID rack sensor is TRUE, it allows the movement of the robots 15)
NavServer unlocks KMP on the NavServer side.

Undocking 1. NavServer -> Montrac: NavServer requests undocking of
a specific type. Request Undocking with or without a rack by calling the
RequestUndock method. The method must evaluate the state of the produc-
tion line and thus verify the possibilities of undocking with or without a rack.
If, for example, material is being removed from the rack, it is possible to
dock the KMP without the rack (during the departure of the KMP (field of
Montrac scanners for the departure of the KMP), however, the robots must
always be parked and safely stopped). 2. Montrac -> NavServer: through
the output of the method called in the previous point. Montrac will allow
or deny the requested undocking. 3. NavServer —> Montrac: requests to
switch the field of Montrac safety scanners for KMP departure via method
RequestSafetyFieldExit. 4. Montrac -> NavServer: Montrac switches the
array of scanners in case of correct contour detection. The state of active
laserscanner field is returned as the output of the RequestSafetyFieldExit
method. By switching the field, the security of the Agilus robots will be
disabled. 5. NavServer: if the required type of undocking is enabled, the
NavServer will send the AGV/KMP to the predock position (either with rack
or without). 6. NavServer -> Montrac: When the AGV reaches the predock
position, the NavServer calls the RequestSafetyDisconnection method, which
requests disconnection of the Safety connection. 7. Montrac -> NavServer:
Montrac disconnects the safety and switches the array of scanners (closes the
passage). In case of successful disconnection of safety-connection between
Montrac and a specific AGV and switching of scanner fields, Montrac will
return information to the NavServer through the output of the RequestSafe-
tyDisconnection method called in the previous point. Montrac will enable the
security and movement of Agilus and Cybertec robots. 8. NavServer: after
successfully disconnecting the safety connection, the NavServer unlocks the
given AGV on the NavServer side.

34

3.5. Fleet management system architecture

. 3.5 Fleet management system architecture

Fleet management system is designed in a way so it can communicate with
other

The system is designed to form a communication interface between superior
control systems as MES or Multi-agent system. Those systems provides data
inputs and task which are processed by Fleet managements system. FMS
then delegate tasks to subordinate robotic systems. The connection of the
modules is shown in the figurd3.7.

Orders
Warehouse Fleet Manager system
Processing Database WH
Fleet Manager Warehouse
shelves/racks
/ \i
CP Factory Robotino RTLS Kuka NavServer KukaMAP
Robotino KMR1 KMR2 KMP1 KMP2

Figure 3.7: Architecture of the Fleet Manager System

System contains OPC UA client and server for communication with MES
and also for communication with production lines during docking process.
System contains AMQP RabbitMQ message broker for communication with
NavServer and also for communication with Multi-agent interface. It contains
MQTT client for acquisition of data from RTLS system. Communication
architecture is shown in figure [3.8

35

3. Fleet Management System design and implementation

QueueToNavserver QueueToFleetManager

) va
Kuka (<
—ly Agent Interface
Navserver =_

QueueToFleetManager QueueToAgent

BRabbit ERabbit
4
OPC UA OPC UA Server of
Client ﬁ } production line]
T \
MQTT Client ﬁ *
J

N

4

MQTT SIMATIC RTLS]

\,

Fleet Manager

Figure 3.8: Architecture of the communication within Fleet Manager System

The system is designed in Python version 3.7 programming language. For
this version of python, the OPC-UA libraries version 0.98.13 are available
and primarily used for the initialization of the OPC UA client and server.
The pika python amqp version 1.3.2 library is also used. System is dockerized.

B 3.5.1 Multi-agent interface

There is a instance of agent created for warehouse. It exists within its own
docker instance. It communicate with Testbed Multi-agent platform as it was
explained in section This instance is modified so it translate received
data and sends them into the Fleet Manager using AMQP geueue named
QueueToFleetManager. Agent is designed with fixed set of operations which
are shown outside to the other agents. For experiments, these capabilities
where exposed:

® Pick
® Place

® Transport

Based on this we can specify pick location for the KMP, or the location
from which the KMP will carry the shelf. Place location is also specified.
Transport has a boolean character, meaning that those operations could be
used to command KMP just to move from one position to another. Values
inside pick and place are allowed as:

® Warehouse

36

3.6. RTLS interface

® Montrac
® Delta

= ABB

We can explore nodes in ZooKeeper manager. We can see there a list of
capabilities of all agents connected to the AMQP server paired with a specific
agent, who provides this capability. Also there is a registry of all connected
agents. Agent ids are unique. List of capabilities is defined based on specific
abilities of agents which are currently connected to the MAS. It may looks
like this:

® / (ZooKeeper root)

Capabilities

= Pick
« Agent_ Id1
» Agent_1d2
= Place
« Agent_Id1
= Transport
« Agent_Id1
« Agent_ 1d2

Registry

= Agent_Idl
= Agent_ 1d2

That means that Agent_Id1 have pick, place and transport capabilities
and Agent_ Id2 has only pick and transport capability. Further design and
implementation is needed to extend this functionality.

. 3.6 RTLS interface

We studied Siemens Intelligence system. Interface of this system is shown in
image [3.9)

37

3. Fleet Management System design and implementation

SIEMENS Location Intelligence Eegisny 2 L & A @ Locationinteligenc.. v
D 1ap® Search Objects or Tags Q] = Advanced search
Dashboard
@) Manage Geofences —
[%)
Objects Geofences Search Results E
1N
Notifcations | OPjects (6) m Path | Heatmap T 3
; @ (S select All o
Tk @ TestRTLS20220623 v
Throughput) @ MiPokus4 Ml =
e
@@ [@ MiPokus3 v I
Customization |
)) @ MiPokus2 v | B.115
o
Event Handler [
O @ Mipokus o
@, e v s o g8 o a =)

) @ Test-Presentation [V X'

=
',gj
| £81163
=)

O,

User Profile

Figure 3.9: RTLS Simatic intelligence manager

Interface is mainly for application settings which we are not using. There is
a lot of options to create forbidden zones, check batteries of tags but mainly
check the position of the tags. We were observing how the position of one
tag was changing in period of one minute. Result is shown in figure |3.10

Figure 3.10: RTLS tag position

38

3.7. Trajectory and time optimisation

Based on this in Fleet Manager we collects 5 data sequences within 100 ms
and average the position of the tag.

B 37 Trajectory and time optimisation

Since we have a simple graph where we are testing the motions within Testbed,
we can optimise trajectory based on data from RTLS in one segment of the
graph, near the ABB line.

We use RTLS tag for marking the artifically placed obstacle on the graph
path in the Navserver map. Robot cannot move outside of this graph, so if it
would hit the obstacle robot would stop and also the program execution would
be timed-out. But based on approximated data from RTLS system which can
provide data about obstacle position, we can propagate this information into
the graph. As soon as we find the position of tag which mark obstacle, we set
the node parameter to forbidden. If there is some plan execution on Navserver,
we replan it. Any other new plan will plan path without considering this
node whish was marked forbidden. This part we test in next chapter.

39

40

Chapter 4
Test of the system

We test the communication and data flow from agent to navserver and robot.
Then we test RTLS system.

B 4.0.1 Communication test for task assignment

The warehouse receives a request for the delivery of specific product for the
Montrac production line. This product is located on a specific shelf in the ware-
house. We can transfer the shelf to the Montrac station using KUKA KMP
mobile robots. These are directly controlled by the KUKA Navserver which is
controlled by Fleet Manager system. Fleet Manager system waits for data on
AMQP queue from agent. Queue is called QueueToFleetManager. As soon
as there are some data, Fleet Manager process them and sends instructions
for target and source destination through AMQP queue QueueToNavserver.
In this example, shelf has pick location Warehouse and place location Montrac.

1. NavServer (Java) sends message addressed to Montrac OPC UA Server
via RabbitM@Q. The message contains the name of the method we want to
call, the parameters for the method (stationName, robotld, dockingType)
and the name of the queue, specifically QueueToMontrac.

2. RabbitMQ receiving and routing script (Python) reacts to this message
and, considering its parameters and addressing for Montrac OPC UA,
calls a method on the Server using the OPC UA Client (Python).

3. Montrac OPC UA Server runs the programmed method and provides
output result.

4. OPC UA Client gets the result of the called method and through the
RabbitMQ receiving and routing script sends this result to the Navserver
(using queue QueueToNavserver)

5. NavServer evaluates the response of the called method and continues
with further execution of the code (such as robot movement, or further
method calls)

41

4. Test of the system

Figure 4.1: RTLS test setup

B 4.0.2 Test of RTLS

We place the boxes on the path in graph which is normally used on a way to
ABB line, because it is shorter We command the robot to go to ABB
line. Wihtout the data from the RTLS system, the robot will stop in front of
the boxes with red sensor indicators. Robot would not move until program
reset and manual guidance of the robot to the distance from the boxes.

In next run, we put the SIMATIC RTLS4083T tracker on the pile of boxes.
Within few seconds, fleet manager receives information about position if
this tag which he consider internally as an obstacle. Fleet manager within
5 seconds of detection changes the parameter of the closest node to the
forbidden. Then KMP motion is executed and path is planned. Final path
leads through node 18 on the graph which is also visible on the picture
On this picture, the whole setup of the obstacle is shown.

42

Chapter 5

Conclusion

In this work we successfully installed Kuka Navigation Solution from the
local KMR Navbox installation to the Testbed WLAN network. Next we got
acquainted with the Kuka Navserver and KUKA mobile robots. Based on this
Kuka solution we proposed and implemented Fleet Manager System. This
system creates interface between superior control systems as is for example
multi-agent system. This MAS system is also slowly developed in Testbed, so
its capabilities are not wide. Thus we implemented simple agent interface for
this FMS system. Then we put our hands on RTLS Simatic system which can
provide location data of the tags placed in Testbed. System is unfortunately
not that precise as it was promised, but we were able to filter data and if the
nodes were distant enough from each other and if the obstacle was clearly
put on one node, then we could quite precisely change parameters of correct
node. That led to real time optimisation in trajectory when delivering shelves
around Testbed workplace. During implementation of Kuka system, testing
the positioning of robot and increasing the precision, we were able to solve a
lot of other practical problems which were outside of the scope of this work.
Thus working on this thesis was much more beneficial for me than I was
expecting in the beginning.

43

44

1]

8]

Bibliography

KUKA Aktiengesellschaft Germany. Matriz production: an example for
Industry 4.0 [online] Available from: https://www.KUKA.com/en-de/
lindustries/solutions-database/2016/10/matrix-production)

Saurabh Vaidya, Prashant Ambad, Santosh Bhosle. Industry 4.0 — A
Glimpse [online] Procedia Manufacturing Volume 20, 2018, Pages 233-238.
Available from: https://www.sciencedirect.com/science/article/|
pii/S2351978918300672

MANU. G, VIJAY KUMAR. M, NAGESH. H, JAGADEESH. D,
GOWTHAM. M. B. FLEXIBLE MANUFACTURING SYSTEMS (FMS):
A REVIEW [online] International Journal of Mechanical and Pro-
duction Engineering Research and Development 8(2):323-336. Avail-
able from: https://www.researchgate.net/publication/324841870_|
[Flexible_Manufacturing_Systems_FMS_A_Review

German Association of the Automotive Industry. VDA 5050 AGV Com-
munication Interface [online] Tech. Rep. Version 2.0, Jan. 2022. Available
from: https://github.com/vda5050/vda5050]

Czech Institute of Informatics, Robotics, and Cybernetics at CTU.
Groundfloor Testbed [online] Available from: https://testbed.ciircl
|cvut .cz/labs/testbed/|

KUKA Aktiengesellschaft Germany. KMR IIWA [online] Available from:
https://www.kuka.com/en-gb/products/mobility/mobile-robots/ |

KUKA Aktiengesellschaft Germany. KMP 600-S diffDrive [online]
Available from: https://www.kuka.com/en-us/products/mobility/
mobile-platforms/kmp-600-s-diffdrivel

KUKA Aktiengesellschaft Germany. KUKA omniMove AGVs [online]
Available from: https://www.kuka.com/en-de/products/mobility/|
mobile-platforms/kuka-omnimove|

45

https://www.KUKA.com/en-de/industries/solutions-database/2016/10/matrix-production
https://www.KUKA.com/en-de/industries/solutions-database/2016/10/matrix-production
https://www.sciencedirect.com/science/article/pii/S2351978918300672
https://www.sciencedirect.com/science/article/pii/S2351978918300672
https://www.researchgate.net/publication/324841870_Flexible_Manufacturing_Systems_FMS_A_Review
https://www.researchgate.net/publication/324841870_Flexible_Manufacturing_Systems_FMS_A_Review
https://github.com/vda5050/vda5050
https://testbed.ciirc.cvut.cz/labs/testbed/
https://testbed.ciirc.cvut.cz/labs/testbed/
https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa
https://www.kuka.com/en-gb/products/mobility/mobile-robots/kmr-iiwa
https://www.kuka.com/en-us/products/mobility/mobile-platforms/kmp-600-s-diffdrive
https://www.kuka.com/en-us/products/mobility/mobile-platforms/kmp-600-s-diffdrive
https://www.kuka.com/en-de/products/mobility/mobile-platforms/kuka-omnimove
https://www.kuka.com/en-de/products/mobility/mobile-platforms/kuka-omnimove

5. Conclusion

[9) SCHUNK SE & Co. KG. EGI 080-EC [online] Available from:
https://schunk.com/us/en/gripping-systems/parallel-gripper/ |
legi/egi-080-ec/p/000000000001474387

[10] KUKA Aktiengesellschaft Germany. KUKA Navigation Solution [online]
Available from: |https://www.KUKA.com/-/media/KUKA-downloads/|
|imported/9cb8e311bfd744b4b0eab25ca883£6d3/KUKA_navigation_ |
[solution_en.pdf|

[11] KUKA Aktiengesellschaft Germany. KUKA Sunrise.OS [online] Avail-
able from: https://www.kuka.com/en-de/products/robot-systems/
|[software/system-software/sunriseos|

[12] KUKA Product portfolio 01/2022 KUKA Navigation Solu-
tion [online] Available from: https://www.KUKA.com/-/media/|
[KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/ |
[KUKA_rob_product-portfolio_en_screen.pdf|

[13] Malik, Ajay. RTLS For Dummies. Wiley. p. 336. ISBN 978-0-470-39868-5.
2009

[14] Siemens Real-time locating with RTLS. [online] Available from:
https://www.siemens.com/global/en/products/automation/ |
|identification-and-locating/simatic-rtls.html|

[15] Yusnita Rahayu, Tharek Abd. Rahman, Razali Ngah, P.S. Hall. Ultra
Wideband Technology and Its Applications. [online] Wireless and Op-
tical Communications Networks, 2008. 5th IFIP International Confer-
ence. Available from: https://www.researchgate.net/publication/|
14340245 _Ultra_wideband_technology_and_its_applications]|

[16] Siemens Location Intelligence: Optimizing produc-
tion and logistic workflows. [online] Available from:
https://assets.new.siemens.com/siemens/assets/ |
lapi/uuid: £f712ed9f-55ae-45ab-a74f-d63708b3dd04/ |
|[dics-b10059-01-7600locationintelligence-144_original.pdf|

[17] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algoritmic,
Game-Theoretic and Logical Foundations. [online] Cambridge University
Press. June 2012. ISBN 0521899435.

[18] Trygve Reenskaug. The Model-View-Controller (MVC) Its Past
and Present. [online] University of Oslo 2003. Available from:
https://citeseerx.ist.psu.edu/document?repid=repl&type= |
p 0i=4ef90a7b9cibIicd02ac e a70c

[19] RabbitMQ Tm. AMQP 0-9-1 Model Ezplained. [online] Available from:
https://www.rabbitmqg.com/tutorials/amgp-concepts.html]

46

https://schunk.com/us/en/gripping-systems/parallel-gripper/egi/egi-080-ec/p/000000000001474387
https://schunk.com/us/en/gripping-systems/parallel-gripper/egi/egi-080-ec/p/000000000001474387
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_navigation_solution_en.pdf
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_navigation_solution_en.pdf
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_navigation_solution_en.pdf
https://www.kuka.com/en-de/products/robot-systems/software/system-software/sunriseos
https://www.kuka.com/en-de/products/robot-systems/software/system-software/sunriseos
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_rob_product-portfolio_en_screen.pdf
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_rob_product-portfolio_en_screen.pdf
https://www.KUKA.com/-/media/KUKA-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/KUKA_rob_product-portfolio_en_screen.pdf
https://www.siemens.com/global/en/products/automation/identification-and-locating/simatic-rtls.html
https://www.siemens.com/global/en/products/automation/identification-and-locating/simatic-rtls.html
https://www.researchgate.net/publication/4340245_Ultra_wideband_technology_and_its_applications
https://www.researchgate.net/publication/4340245_Ultra_wideband_technology_and_its_applications
https://assets.new.siemens.com/siemens/assets/api/uuid:f712ed9f-55ae-45ab-a74f-d63708b3dd04/dics-b10059-01-7600locationintelligence-144_original.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:f712ed9f-55ae-45ab-a74f-d63708b3dd04/dics-b10059-01-7600locationintelligence-144_original.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:f712ed9f-55ae-45ab-a74f-d63708b3dd04/dics-b10059-01-7600locationintelligence-144_original.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4ef90a7b9c1b1cd02acf273694e4059a70c7d198
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4ef90a7b9c1b1cd02acf273694e4059a70c7d198
https://www.rabbitmq.com/tutorials/amqp-concepts.html

5. Conclusion

[20] The APACHE software foundation. ZooKeeper 3.5 Documentation
[online] Available from: https://zookeeper.apache.org/doc/r3.5,
\1-alpha/zookeeperQOver.html|

[21] OPC FOUNDATION - The Industrial Interoperability Standard. OPC
Technologies - Unified Architecture [online] Available from:

lopcfoundation.org/about/opc-technologies/opc-ua/|

[22] Graylog Inc. What is Graylog? [online] Available from:
l|go2docs.graylog.org/5-1/what_is_graylog/what_is_graylog.htm

47

https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperOver.html
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://go2docs.graylog.org/5-1/what_is_graylog/what_is_graylog.htm
https://go2docs.graylog.org/5-1/what_is_graylog/what_is_graylog.htm

	Introduction
	Aim and contribution of the work
	Structure of the thesis

	Problem description
	Testbed for Industry 4.0
	Warehouse hardware
	KUKA mobile robots
	Shelves

	KUKA Navigation Solution
	Navserver installation options
	Map creation
	Robot motion options

	Real time location system
	SIMATIC RTLS transponders
	SIMATIC RTLS gates

	Multi-agent system

	Fleet Management System design and implementation
	KUKA NavServer installation
	Testbed map
	Shelves precise positioning
	Docking to production line
	Fleet management system architecture
	Multi-agent interface

	RTLS interface
	Trajectory and time optimisation

	Test of the system
	Communication test for task assignment
	Test of RTLS

	Conclusion
	Bibliography

