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Abstract

We address the problem of the ensemble
neural networks in the LIDAR pointclouds.
Neural networks are sometimes saturated
for specific situations meaning they per-
form worse on some scenarios due to ca-
pacity issues. The prediction results in the
LiDAR point cloud domain are deteriorat-
ing with increasing distance due to the low
density of the measurement in the remote
areas. We are using a multi-view ensem-
ble, which consists of detection models
operating on a separate view and merging
the transformation into one data represen-
tation. We are using frontview projection,
which is the transformation of the canoni-
cal coordinates of the LiDAR point cloud
to the spherical coordinates. The second
view is the projection of scan points to
zy plane called Bird’s Eye View (BEV).
In the both projections we merge mod-
els focusing on specific areas or distance
range. We further exploit semi-supervised
learning approach called pseudo-labelling
in order to generate labels from the ensem-
ble for baseline improvement. All meth-
ods are evaluated on semantic segmenta-
tion tasks in autonomous driving scenarios
and achieve improvement in terms of loU
against the baseline architecture.
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Abstrakt

Resime problém z oblasti poéitacového
vidéni, kde se zamérujeme na sdruzené
detekéni metody neuronovych siti pro Li-
DARové mraky bodi. Neuronové sité jsou
Casto naucené na konkrétni situace, coz
v nékterych pripadech vyrazné zhorsuje
jejich predikéni schopnost. Uspésnost pre-
dikce na LiDARovych mracnech bodt se
zhorsuje s narustajici vzdalenosti naskeno-
vanych bodu. Sdruzujeme modely z vice
pohledt, kdy jednotlivé modely pracuji
v rtznych projekcich a spojeni probihd v
jedna datové representaci. Prvni pohled
se nazyva frontview, kdy se jedna o trans-
formaci kanonickych souradnic mrac¢na Li-
DARovych bodu do sférickych souradnic.
Druhym pohledem je projekce naskenova-
nych bodt do roviny zy s ndzvem Bird’s
Eye View (BEV), neboli "pta¢i pohled".
V obou doménéach pracuji modely zamé-
fené na konkrétni oblast ¢i rozsah vzda-
lenosti. Dale vyuzivame semi-supervised
ucici techniku nazyvanou pseudo-labelling,
abychom vygenerovali label pro neanoto-
vanou Cast datasetu pomoci celého sdru-
zeného modelu a tim dosahli lepsich vy-
sledkt v primérném Jaccardové indexu
oproti baseline architekture.

Klicova slova: neurdlni sité, sdruzené
metody, LiDARové mraky bodu

Pteklad nazvu: Sdruzené detekéni
modely pro LiDARové mraky bodu
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Chapter 1

Introduction

The development of autonomous vehicles is on the rise. For a safe autonomous
driving in a city environment which is highly complex and dynamic, it is
suitable to use LiDAR sensors, which tell us the correct distance of the
individual points regardless of the weather or other external influences. Thus,
LiDAR sensors are likely to become an integral part of the hardware equipment
used on autonomous driven cars. In this Bachelor thesis, we are dealing with
the object detection LiDAR pointcloud. Due to the time complexity of object
detection neural networks, we focused on the semantic segmentation task on
LiDAR pointcloud, which is a fundamental problem in computer vision. If
the proposed methods work well in semantic segmentation tasks, they would
might benefit even in object detection. The goal is to assign a label to each
pixel or scan point. The semantic segmentation task is mostly used on RGB
images, where it is very difficult due to the complexity of the scene, the
complexity of object boundaries, and the occurrence of very small objects.
The problem is much complicated in LiDAR pointcloud domain, where scan
points have low density in remote areas, they are unordered, and it is very
hard to set the boundaries of the objects, because the data are very sparse
unlike RGB pictures, where pixels are in a more compact form. The bachelor
thesis is focused on a multiview ensemble method of models and improvement
of invidual neural networks for semantic segmentation in LiDAR pointclouds.
The main idea is to improve the detection performance by adding other
detection models and reasonably combine their outputs for more consistent
and better detection. [13]

Semantic segmentation algorithms which consume directly pointcloud and
work with them have not yet achieved the same results as well-established 2D
CNN on RGB images. Thus, we transformed the original LiDAR, pointclouds
to a 2D space, where we are using two projections. On each of them, the
individual models will be learned. First projection transforms the pointcloud
to spherical coordinates, where two angles defining the location are discretize
and put to a 2D grid. This projection is called Frontview insomuch as it is
very similar to seeing a set of points with our own eyes. Second projection is
called Bird’s Eye View, which projects a set of scan points on the zy plane.

Detection models are sometimes saturated for specific situations, meaning
they perform worse in some scenarios due to capacity issues. Part of the work



1. Introduction

is focusing on using multiple detectors altogether for detection, where we
use models prediction on some specific distance ranges or areas and combine
outputs from different projections. We force individual models to focus on
different areas by modifying the loss. The final ensemble pipeline, hereinafter
referred to as FEP, works with 6 models operating in Frontview projection
and 5 models working in Bird’s Eye View projection. FEP benefits from all
models. The final output is produced in the Frontview projection, but it can
be easily transformed to the pointcloud or Bird’s Eye View projection.

The final part of the work deals with an effort to improve the performance
of invidual models by a semi-supervised learning technique called pseudo-
labelling. The FEP produce pseudo labels of the unanotated part of dataset,
which is cheap and easy to get during data acquisition. These frames are
added to the original training dataset. We used two approaches to boost the
predictive ability of the model. We train the invidual models once again from
scratch and we are apply a fine-tunning training phase to the trained model
in order to increase the performance further with pseudo-labels.



Chapter 2
Approach

Majority of the progress of neural networks is focusing on deeper and deeper
networks since 2012, when the AlexNet [14] was proposed. The most fun-
damental among the deep neural networks is ResNet [I1], which is created
from residual units. The research claims that individual residual units are
not strongly depending on each others and the ResNet actually behaves as
an exponential ensemble of relatively shallow networks, which are put in
a row to make deep network [29]. Results on the ImageNet classification
dataset [9] have shown that almost duplication of the number of layers, where
we compare 152 and 269 layers ResNet, improves the mean IOU by 1.1%.
Problem of these very deep neural networks is the vanishing gradient, where
the problem appears even with the network uses shortcuts to propagate the
gradient further. The wide ensemble of many residual units surpasses the
results of deeper variants of ResNet network. This architecture achieves
state-of-the-art on datasets including PASCAL VOC [10], and Cityscapes [g].
[29]

The reliable scene understanding will be an indispensable part of au-
tonomous driving. The urban scenes are very complex and dynamics and that
requires reliable predictions to avoid accidents. Therefore, object detection
approaches have been proposed in variety modalities. The most used sensor
is a video camera, where the visible spectrum is used for daytime prediction,
whereas the infrared spectrum is used for night prediction. Relying on one
single detector would be problematic with the view that every sensor have
some error rate, different sensing due to weather changes, time of the day,
or material of the object. For real use of autonomous driving will might be
needed the multiple inputs ensemble neural network. To reach a maximal
generalization of the neural networks and alleviate overfitting , there are
commonly used techniques such as data generation, data augmentation, reg-
ularization, and ensemble methods of models. In this Bachelor thesis , we
are focusing on the ensemble only from one input sensor, but the ensemble of
multiple models in LiDAR point cloud domain all together to get the most
out of one sensor for further merging with results from other sensors. [13]

Convolutional neural networks [CNN] are nonlinear operations, which
brings us high flexibility in mapping very complex data. Thanks to this,
CNN can be optimized to a different set of weights during the training,

3



2. Approach

which produce a slightly different mapping of output to the same input. The
ensemble methods suppress this side effect and bring us a pipeline with better
predictive ability and generalization. [5]

B 21 Existing ensemble methods

B 2.1.1 Model Averaging

Frequently used approach to remove undesirable effects such as overfitting
and increased prediction success is to apply averaging. This simple method
trains n same models on the same dataset and during the prediction takes
the average of the output of all these models.

Every model is initialised with slightly different parameters, thus all trained
models are guaranteed to converge to different solutions, even though it sees
the same training data. [19]

The functionality of this method is also supported by the results of a
popular neural network called ImageNet, which achieved a top-5 error rate of
18.2% in "ILSVRC-2012" competition. Authors of the neural network tried to
use an ensemble method called "averaging" of 5 similar CNNs. This ensemble
model decreased top-5 error rate to 16.4%. [15]

B 2.1.2 Bootstrap Aggregating

It is a parallel method also known as "Bagging". We can separate this method
in two steps, bootstraping and aggregating. The key idea behind bootstraping
is to divide a big dataset into n subdatasets or if we are working with a
small dataset to create subdatasets with samples, which are randomly chosen.
These subdatasets are called bootstraps. Each bootstrap sample should have
sufficient distribution of all classes and create independence between them
thanks to a small overlap of frames in invidual bootstraps so that the samples
are not too much correlated. Then use a process called aggregating, which
creates n models with the same architecture and learns each of them with an
assigned bootstrap. Outputs of all models are then averaged. Final model
should be more robust, have better predictive ability and reduced variance.
This method is often used in decision tree algorithms, where multiple trees
are composed to a grouping called "random forest". [23]

B 2.1.3 Stacking

In this method, we can combine n models based on different or same archi-
tecture, called weak learners. Dataset is split into two parts. On the first
subdataset are trained these weak learners. When the training is done, the
models are evaluated on the second subdataset to create outputs from all
frames. Weak-learners are combined by meta-model, which consumes outputs
from them. The meta-model algorithm is trained on the second subdateset.
[23]
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B 2.1.4 Multiple inputs

Very often used approach is to work with multiple inputs from different
sensors, which are ensembled by neural networks. This ensemble technique
penetrated into the semantic segmentation task. One proposed way how to
use this technique in the neural network based on U-net is to propagate each
input in the encoder individually and the merging of featured maps takes
place in the decoder. Authors use as inputs RGB images and infrared sensor
for the semantic segmentation task. [12]

The next possible application of the multiple input ensemble method is to
combine LiDAR pointcloud projected into Bird’s Eye View and Frontview
camera RGB images. Authors combine 2D RGB images captured by the
camera and the LiDAR pointcloud projected into BEV grid. They proposed
a sparse non-homogeneous pooling method to fuse Frontview RGB images
and BEV pointcloud. The results on KITTI on the hardest predictive class
pedestrians achieved the state-of-the-art. [30]

B 22 Proposed ensemble methods

Bl 2.2.1 Range Level Ensemble

Models does not have to yield enough parameters and structure for all types
of detections. We can split it for different ranges and calculate loss only on
specific areas. That can lead to better performance, since the parameters will
be focused on specific features of lidar scan points as a function of range.

For multiclass classification is mostly used Cross Entropy loss (CE). We
have the unbalanced dataset, thus we alleviate this problem with weight
vector a € (0, 1), which is an extension of cross entropy loss.

exp (x;)
CE(z, a) a; - log (Zj oxp (x])) (2.1)

The equation [2.1] describe the computation of the loss, where z is pixel,
where is the loss computed. Index i is actual class and index j denotes set of
all classes.

We are further expanding the loss function to Focal Loss (FL) in the
equation 2.2 which should support efforts to correct imbalances in the
dataset. To the CE is add modulating factor (1 — pt)?, with tunable focusing
parameter v > 0. This factor should reduce the loss in pixels, where the
neural network is confident and focus optimization on pixels, where is less
certainty of determining the correct class. Variable pt in the equation [2.2
denotes probability. [18]

FL(z,a,7) = (1 —pt)” - CE (2.2)

We regularize the cross entropy loss and focal loss with a range function,
which define at what distance will the neural network calculate the loss and
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fit to this distance range.

range-CE(d) = range(d) - CE (2.3)

range-FL(d,v) = range(d) - (1 — pt)” - CE (2.4)

The range function is masking points with weights based on the distance
of the scan point. It will be examined more in the experiments section. In
equations [2.3/and 2.4, d denotes distance, where the scan point was scanned.

B 2.2.2 Multiview ensemble method

Multiview ensemble method is not used in semantic segmentation, because
most of these tasks are working with only RGB images, which have only one
view to the scene.

We work with two projections, where each of them has some advantages
over the other projection. We proposed fusing model, which is a neural
network consuming outputs from both projections. It is trying to merge the
outputs from these projections to get statistically the best out of each.

The fusing model should not have to yield enough parameters and structure,
to prevent overfitting. Therefore, we tried several types of the model. These
models are based on two types of methods.

We are proposing two methods how to combine outputs from both projec-
tion.

1. Learnable scalar It is a intuitive approach, where one of two projection
is multiplied by scalar, that fusing model would begin to give priority to
one of the projection. We can apply this method to each class from one
projection, which would perform better than one number if each of the
projection have better predictive ability in different classes.

2. Smothing This method is based on 2D convolutinal layers. Kernels
should smooth the output, because it happens a lot that some object is
classified as an object of one class, but in the middle of the object is a
patch which is misclassified. Very often this occurs on buses, where part
of the bus is classified as background.

Figure 2.1: Example of misclassified patches on the cars, a upper fig is ground
truth and bottom fig is prediction of the baseline in the frontview projection
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As we can see in fig [2.1] second car from the left and the farthest car are
only partly classified as a vehicle. The bus from the right of the fig 2.1
is predicted as a vehicle only of two thirds.

The smoothing approach would be able to smooth objects to more
compact form and improve the prediction ability. It is important to have
a model, which has not too many parameters and has a large enough
receptive field, because the valid pixels are quite remote and misclassified
patches can range from a few pixels to a big size.

B 2.3 Recurrent pipeline

Datasets have played a key role in the progress of many research fields by
providing problem-specific examples with ground truth. For more complex
tasks and better results are created datasets with hundreds or thousands
frames, which helps the algorithm to learn the specific task and generalize
the problem. Despite the great developments in the creation of datasets for
computer vision tasks, the number and difference of frames is not sufficient
very often. Moreover, the creating of the LiDAR pointcloud dataset is a very
lengthy and expensive work, because all annotation is done manually with
the help of advanced software which uses interpolation techniques to speed
up the process. [13]

We use the proposed FEP to produce pseudo labels for non-annotated
frames. These pseudolabels with the original dataset are used in the next
training phase for semisupervised learning to improve the generalization of
the invidual models. Thanks to the extension of the dataset with pseudo
labels, we can boost each model of the pipeline to upgrade the prediction
ability of the FEP.






Chapter 3

Implementation

. 3.1 Dataset

We used Argoverse dataset created by the company “Argo AI”, which head-
quarter is located in Pittsburgh , Pennsylvania [6]. Dataset is made up of
18137 pointclouds and each pointcloud has averaged captured around 107 000
points at 10 Hz. All data were captured in the city environment, specifically
in Pittsburgh (86 km) and Miami (204 km).

Data were collected by a fleet of cars, which were equipped with two lidar
sensors, seven ring-cameras and two-facing stereo cameras. Each lidar has
32 lines and they were placed on top of each other. With this placement
was created an overlapping 40° vertical field of view. The maximal range of
detectable rays is 200m.

2x LiDAR )—'a

e —
2x forward stereo cameras 40”‘ u—< Txring cameras

Figure 3.1: Ford Fusion Hybrid used for capturing data [6]

We work with 8245 labeled and 9892 unlabeled frames. Individual frames
were captured in sequence, where the frames are very similar. On average in
every sequence were 203 frames. We split the individual labeled frames in 3
groups, more precisely on training, validation and testing (5701, 1306 and
1238 frames). Frames from one sequence were put only in one group, in order
to prevent subsequent depreciation of results. Unlabeled data were put to

9
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the unlabeled training dataset, which will be further used for semi-supervised
learning.

number name color
0 buildings, sidewalk, trees ... red
1 vehicles yellow
2 pedestrians purple
3 motorcycles, scooter, wheelchair users, animals, cyclists | blue
4 other moving objects gray
5 roads cyan
6 unreflected ray (added class) black

Table 3.1: Overview table of individual classes

The dataset contains 6 classes, but classes 2 and 3 were put together
based on similarities. Trained models were unable to recognize the difference
between these two classes. Moreover, scan points density is very low on
pedestrians and cyclists, so without knowledge of other outputs from sensors
such as cameras, it is hard to decide about the classification.

Seventh class is artificially added to fill free space in 2D grid. This class
appears only in 2D projections.

B 32 Data Representations

Argoverse dataset contains 8245 labeled point cloud frames from 40 different
scenes and 9892 unlabeled point cloud from 49 scenes, which were used for
semi-supervised learning. The LiDAR pointclouds are normally sparse, have
variable density, and in addition non-uniform sampling of 3D space. When
we want to deal with object classification or semantic segmentation task using
neural networks on point clouds, we have to deal with these challenges. There
are three domains how to represent point cloud and let the neural network
learn on these representations.

10



3.2. Data Representations

B 3.2.1 Existing representations

Figure 3.2: Example of representations, from the left: Point Cloud, Voxel grid,
2D representations. Source: Adapted from [20]

B 2D representation

We can project 3D space into 2D grid from different directions or use different
transformations. Thus, we can use well-established 2D CNNs or pre-trained
networks [17] as VGG [26], AlexNet [14], GoogleNet [28] or U-net [24] for
semantic segmentation or object classification.

Projected point cloud to 2D grid has a disadvantage that lots of pixels in
2D grid are not occupied and we must add an extra class, which corresponds
to an empty pixel. Moreover, size of the grid is hard to set on the optimal
size, which would minimize the omission of the pixels and the grid has not
big memory demand.

Geometric 3D representations of scenes or objects have far more information
and details than just 2D projections of it. We are losing many points by
projecting of point clouds to 2D grid, because one pixel in the grid very often
corresponds to more than one pixel in the 3D space.

The well-developed 2D CNN architectures can better exploit the local and
global information from projected 2D view scenes [27] and thanks to the
reduction of one dimension, it reduces the computation cost and increases
the speed of evaluating. However, most of today’s classifiers are focused on
robust 2D CNN [13].

B Voxel grid

Normally, CNNs are used on data, which have some regular structure of grids.
Thus, to apply CNN directly to an unordered point cloud we need to divide
3D space to a regular grid. Then we can smoothly use 3D convolutional layers
and pooling layers. Coordinates of point cloud X € z1, 9,3, ..., x, where
z; € R3 needs to be discretized by process called Voxelization. It is a process,
which discretizes 3D space of point cloud into 3D grid. Typically the size of
the grid is related to the resolution of the data. Result of this process are
voxels with coordinates X € &1, &9, 23, ..., &pn, where &; € N3. In 3D, we can
visualise the voxel as a cube with the size of the length of sampling rate. Very
often in the surroundings of the origin of the coordinate system, assuming
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that the origin is in the center of the lidar, each voxel corresponds to more
than one point, because the grid has the same size in all 3D space, but the
concentration of points in the surroundings is usually much higher.

Voxel based models.

® VoxNet is proposed by Maturana. It is an object classifier, which uses
convolution layers, pooling layers and fully-connected layer and has less
than 1 million parameters. The model uses three different occupancy
grids, which are examined. The best one is chosen. The grids are binary
occupancy grid, density grid, and hit grid. [32]

B PointCloud

Learning directly on the LiDAR pointcloud is the latest approach. The
LiDAR creates an unordered group of points. Thus, the neural network with
the same group of N points, i.e. can be fed by N! permutations of points,
which corresponds to the same frame. The neural network must be invariant
to these permutations. A rigid transformation, such as rotation or translation
can be applied to the LiDAR pointcloud. These transformations should not
affect the performance of prediction. [7]

Voxel based models scan the local space by receptive fields, which have
a fixed and constrained stride. On the other hand, the models consuming
the point cloud decide the range of receptive fields, which have the biggest
accuracy. [17]

PointCloud based models.

#® PointNet is the first introduced algorithm, which consumes directly
all points. This model was primarily developed for a classification task,
but it can be used in the semantics segmentation task with modified
architecture. PointNet takes only spatial coordinates. It can learn
spatial features thanks to multilayer perceptron and then accumulating
features by maxpooling layer. The learned spacial features are then
assembled across all regions of the point cloud. Nevertheless, local points
are grouped and then max-pooling layer is applied. As a result, the
algorithm loses information about local structures. Therefore, PointNet
is not robust to complex objects or scenes. [7]

® PointNet+-+ is update of the mentioned PointNet. This update can
consume spatial coordinates but also non-spatial features such as intensity,
RGB, etc. Consuming of only spatial coordinates limits the ability to
recognize different surfaces of objects and performance on complex scenes.
[22]
Nevertheless, the semantic segmentation performance on Semantic Kitti
[4], which contains similarly urban scenes as Argoverse dataset is not
the best. Pointnet achieved mIOU 14.6 and Pointnet++ achieved mIOU
20.1. [1]
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3.2. Data Representations

We tried to use PointNet++ on the Argoverse dataset in the nonmodified
architecture of the introduced model.

The model consumes all scan points, but the occurrence of invidual
classes is unbalanced. Therefore, we used multiclass cross-entropy as the
loss function with weight vector, which should deal with the problem.

class 0 1 2 3 4 )
Occurence [%] | 82.22 | 10.92 | 0.31 | 0.01 | 0.06 | 6.47

Table 3.2: Occurrence of classes in the LiDAR pointcloud

Original point cloud is in [Features, Number of scan points|, where the
number of features is 4. Neural network will get information about
coordinates z,y,z and intensity of reflected ray. We can see visualisation

in fig[3.3.

Figure 3.3: Visualisation of point cloud

The training was performed with batch size 6 and with the 150 epoch.
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Results of Pointnet++

Class Precision Recall 10U

0 - background 0.845 0.906 0.777
1 - vehicles 0.815 0.706 0.609
2 - pedestrians 0.035 0.006 0.005
3 - cyclists 0.000 0.000 0.000
4 - moving objects || 0.053 0.009 0.008
5 - road 0.598 0.733 0.491

Mean I0U: 0.315
Precision: 0.391
Recall: 0.393

use of points: 100 %

Table 3.3: Results of PointNet++ on Argoverse dataset

Results have shown us that the model achieved better IOU than on
Semantic KITTI, but the classes in Semantic KITTI are much more
diverse. As we can see in table [3.3] the model is unable to learn small
objects such as classes two, three, and four, which represent pedestrians,
cyclists, and moving objects. Mean IOU on these classes is very close to
Z€ero.

We can see on the prediction of one frame in fig which tells us that
the model is able to learn the structure of the scenes such as location of

the road, cars, buildings, etc.

Figure 3.4: Prediction of PointNet+-+ on Argoverse dataset

Due to bad results on the Argoverse dataset, we decided to not use the
PointNet++ in the ensemble methods.
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3.2. Data Representations

B 3.2.2 Frontview

Frontview is an imitation of how a lidar captures a scene and it is closest to
how we see the world with our eyes, with the difference that here the scene is
not limited. Therefore, the scene is captured in a 360 degree view.

Original data of point cloud have information about coordinates z,y,z € R
and non-geometrical feature, which is intensity € RT. The intensity value
varies with the composition of the surface object reflecting the LIDAR ray, the
angle of impact, surface roughness, and moisture content. A higher number
corresponds to a higher reflectivity of the surface. [2]

The number of scan points is variable, but on average has around 107 000
points. First, we shifted the global origin to the center of the LiDAR, more
precisely to the center of the two lidars. We have to do this operation, so
that we can transform the canonical coordinate system to spherical without
scene distortion. LiDAR’s scanning lines form the shell of the cone using
scanning rays. We transformed the canonical coordinates to the spherical
representation using transformation relations from equations [3.1], [3.2], [3.3]
where variables z,y,z denote canonical coordinates, ¢ is a elevation angle and
0 denote azimuth in the spherical representation. Transformation can be seen
in fig |3.5.

r= /a2 +y2 + 22 (3.1)

¢ = arctan2(y, x) (3.2)

r

6 = arccos (Z) (3.3)

Now we have coordinates r € (0;150m), 0 € (0;7), ¢ € (0;27). We set the
threshold in distance (coordinate r) to 150m, because the farthest captured
points are isolated and do not form any recognizable structure, therefore have
not any valuable features for CNN.

We created 2D grid 2 x 244 x 2496 pixels, hereinafter referred to as grid
[Features, Height, Width] or [N, H, W|. We discretized coordinates ¢ with
Pstepsizes Where Qmae and @, are limits of the elevation angle computed in
one frame. The range of ¢ is different in every frame due to the calibration of
the data and the arrangement of the scene, therefore we set a condition that
difference between .4, and @, must be bigger then 50°. The condition
prevents big vertical stretching of the frames, which were captured, for
example, on a highway, where the upper rays did not return. If the difference
of limits of the variable ¢ is smaller than 50°, we set ©maz aS ©min + H0°.
All dataset was captured in the city, therefore the condition was never met.

Variables ¢ is in (@min; ©maz)- In other words, pixels with coordinates
from range (0; @stepsize) correspond to the same index in 2D grid. Thanks
to this fact, in some cases there exists a possibility that more than one scan
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point corresponds to the same pixel in 2D grid. When this inconvenience

occurs, we selected the nearest scan point of this subset.

2.7

estepsize = T%

= 0.144°

s

Spstepszze - (Somaz —_ Somz‘n)

(3.4)

(3.5)

We also discretized 6 with Ogsepsize. Further, the discretized coordinates ¢
and ¢ will be marked as x,y € N. Coordinate r has been added to features.

|

1

I
-5

.

e

(:

FPmin

Cropped 2D grid defined by P; 25

Pz(%, yz)

Ps(z3,y3)

Figure 3.5: Example of transformation from spherical coordinates to cropped

5x15 2D grid (red)

Now we locate each pixel based on coordinates z,y and have 3 features
(distance, intensity, T/F for scan points). Third feature is artificially created
and tells if any scan point captured by LiDAR is corresponding to the 2D
grid pixel, we put 1. In the other case that for the 2D grid pixel there is
no LiDAR rays, which scan any object, we put in the pixel a value 0. After
that, we normalize the data in features so that the distance is scaled in range
(—1;1) (the furthest scan points have value 1) and intensity is also scaled
in range(—1;1). During the transformation we lost a few points thanks to
duplicity in pixels. We achieved the averaged use of original points 87.7%.
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3.2. Data Representations

Figure 3.6: Visualisation of cropped 2D grid in Front View 775x224 pixels, that
means 30° field of view

Bl 3.2.3 Bird’s Eye View (BEV)

Another 2D map representation of the LiDAR pointcloud is BEV, which
projects the set of scan points to zy plane. The most important information
of the scene is the location, which can be mapped to 2D grid in BEV and
height of objects to the feature space. The projection can smoothly help
neural network to understand the scene, because contain well-encoded spatial
locations, along with the overall context of the scene. The neural network can
easily predict even small objects, which create a small subset of points with
similar intensity and they are surrounded by class 6 (unreflected rays). The
neural network has better results in BEV representation then Frontview, but
BEV has a bigger memory demand to capture the same area as Frontview.
Thanks to capturing of the scene in a representative manner, it is used for
many tasks. [21]

The projection projects 3D space to zy plane and add coordinate z as
another feature. LiDAR is capable of scanning points in the distance up to
200 m. The number of points more distant than 100m is very low. To achieve
a quite good concentration of points in the grid, we decided to use an area
about the size 20 x 40 m. This area creates a rectangular, where the longer
side is parallel to side of the car. In other words, we are more focusing on
the events in front of and behind the car that scans a scene using a lidar
(hereinafter referred to as the lidar car).

We created 2D grid, which size is 512x1024 pixels. We also discretize
cropped zy plane with sampling rate.

sampling rate = —— 0.0066

68 {
512 1024

pixel} (3.6)
In some cases there exists more than one scan point which corresponds
to the same pixel, therefore we applied a decision logic that takes pixels in
the same level (coordinate z) as the lidar car. If there are no scan points in
the subset which correspond to the pixel in this range, we choose the closest
pixel to the interval where the car is located. This projection can use on
average 20.9% points from the original point cloud, with included duplicity
and cropping. Duplicity of the pixel is elegantly visible in fig (3.7, where
LiDAR scans wall of building, but in the projection is just a straight line.
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We add 3 features to the 2D grid, coordinates z, intensity, and True/False
for the existing scan point. The intensity was scaled to (—1;1) and we did
the same with coordinate z, where -1 is the lowest scan point and 1 for the
highest scan point. Third feature as in Front View is artificially created and
tells the neural network, if this pixel have some corresponding scan point, we
add 1. In the case that no scan point was captured in discrete location z,v,
we add 0. Therefore, we created grid [3, 512, 1024] or [Number of features,
Height, Width].

Figure 3.7: Visualisation of Bird’s Eye View projection

B 3.3 2D Model

The model used for the segmentation task in the frontview and BEV data
representation is a modified version of U-net [24].

Model can be divided into two parts, encoder and decoder. In the encoder,
we used convolution layers with padding 1 and kernel size 3x3, batchnorms
with momentum 0.1 and epsilon le-5. As an activation function, we decided
to use relu. For reduction of dimensions a maxpool layer with kernel size 2x2
and stride 2 is used. From the maxpool layer, we get also indices (information
in which pixel was maxpool applied) and put them to the similar layer in
the decoder. Feature map from the last convolution layer from the subset of
convolutional layers with the same size in the encoder is propagated to the
decoder, where will be concatenated with the feature map with the same size.

The task is a multiclass segmentation problem and the occurrence of individ-
ual classes in the dataset is highly unbalanced, therefore we weighted the loss
function with a weight vector, which was computed from the training dataset.
For BEV and frontview is the vector different, because every representation
takes different number of pixels. Weighted vector’s dimension is 1x7, where
each index corresponds to the sum of all pixels in the ground truth for each
class in labelled training dataset, then the vector is rescaled to the sum of all
indexes is equal 1. Thereafter, we raise every element to the power of minus
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3.3. 2D Model

one. Finally, we scaled the vector to one. For the basic configuration of the
model was chosen the multiclass loss function Cross-entropy loss.

As an optimization method, we tried Stochastic Gradient Descent and
Adam optimizer. Subsequently, we found out that Adam achieves better
results during the training.

TG 125 128 125 37|
o
chmorm Rel P Unpool Softmax

‘‘‘‘‘

2
Bai

Figure 3.8: Architecture of our 2D model, which is inspired by U-net [24]

Architecture of the model is shown in the fig Dark orange boxes corre-
spond to max-pool layers, where dimensionality was reduced by coefficient 2.
Light orange boxes represent a multilayer feature map with 2D convolutional
layers, batchnorm layers and active function relu. Blue boxes are unpool
layers, which takes indices from maxpool layers and concatinate the output
with the feature maps from the encoder part. Number of channels is at the
bottom of each box. Diagonally written numbers represent a reduction of
size of the original grid.

B 3.3.1 Metrics

As a metric for semantic segmentation tasks is commonly used IoU (Inter-
section over Union), which defines the percent overlap between the target
mask and the prediction output [I7]. We also compare models based on their
precision, recall and overall accuracy (OA), but we consider most the IoU
and mean IoU (ToU), because unlike precision and recall, the IoU considers
FP and FN all at once. In table we bring a brief overview of the metrics,
which we are using in the evaluation of models.
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Metric Equation Description

TP - True Positive

TF - True Negative

FP - False Positive

FN - False Negative

IoU % Intersection over Union

ToU SN I(}\I,J’i Mean IOU

Precision % Ratio of prediction which are relevant

Recall % Ratio of correctly predicted pixels in ground
truth

N .

OA # Overall accuracy, where ¢; are correctly predicted

pixels and N is number of all pixels.

Table 3.4: Definition of used metrics

B 3.3.2 Frontview baseline

This model will be used as a reference to compare with ensemble methods.

In the table |3.5| we can see that the dataset in frontview is very unbalanced.
Classes two, three, and four (pedestrians, cyclist, and other moving objects)
in particular are very underrepresented, which is reflected in the results. We
tackle the balancing of the dataset in the loss function with weight vector.

class 0 1 2 3 4 5
training dataset [%] | 81.53 | 11.25 | 0.31 | 0.02 | 0.06 | 6.81

Table 3.5: Occurrence of classes in Frontview

Inclusion of classes is very unbalanced, moreover in one frame is on average
only 14.27 % of valuable pixels, the remaining 85.73 % are unreflected rays.
Thus, convolutional kernels count worthless pixels until valuable pixels are
not seen by the receptive field of pixels.

The baseline model was trained three times from scratch and we chose the
best model based on the results of metrics mean IOU.
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3.3. 2D Model

Baseline in frontview data representation

Class Precision Recall 10U

0 - background 0.956 0.959 0.919
1 - vehicles 0.884 0.909 0.812
2 - pedestrians 0.365 0.400 0.236
3 - cyclists 0.007 0.005 0.003
4 - moving object || 0.520 0.112 0.102
5 - road 0.857 0.799 0.705

Mean I0U: 0.463
Precision: 0.598
Recall: 0.531

use of points: 87.7 %

Table 3.6: Results of frontview baseline model on the test dataset

As we can see in table 3.6, the base model has relatively good predictive
ability in classes 0, 1 and 5, which are mostly represented in frontview.
Otherwise, classes 2, 3 and 4 do not reach even one percent representation
even if we combine them into one class. Neural network has few frames to
learn these classes and in addition, pedestrians, cyclists, or moving objects
take pixels in the order of units, therefore the predictions are very difficult.

Figure 3.9: Worst prediction in fronview, from above (Ground truth; prediction;
true/false, where green is for good prediction and red for wrong prediction)

Bl 3.3.3 Bird’s eye view baseline

For reference in BEV domain was trained the BEV base model.

The representation of classes three, four and five is even worse in BEV
representation, because pedestrians and cyclist takes fewer pixels. On these
objects, BEV takes only the heads of people and a few more pixels.

class 0 1 2 3 4 5
training dataset [%] | 67.31 | 17.30 | 0.34 | 0.03 | 0.00 | 14.93

Table 3.7: Occurrence of classes in Bird’s Eye View

The number of valid pixels is on average 3.92 % from 2D grid. The remaining
pixels are occupied by the sixth class, which represents the unreflected
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ray. This number is not surprising with respect to how one point cloud is
captured. LiDAR scans horizontally, which gives a precondition for frontview
transformation or projection on a cylinder, when the condition is to capture
the most pixels.

Baseline in Bird’s Eye View data representation

Class Precision Recall 10U

0 - background 0.952 0.927 0.886
1 - vehicles 0.835 0.918 0.777
2 - pedestrians 0.458 0.644 0.365
3 - cyclists 0.529 0.528 0.360
4 - moving object || 0.567 0.453 0.336
5 - road 0.857 0.872 0.761

Mean IOU: 0.581
Precision: 0.700
Recall: 0.724

use of points: 20.9 %

Table 3.8: Results of bird’s eye view baseline model on the test dataset

Despite the fact that the occurrence of classes 2, 3, and 4 is very low, the
model is able to predict them better than the baseline model in frontview.
As we can see on fig [3.10, object are in more compact form and they are
surrounded by class 6. The neural network can easily put the boundaries of
objects on the grid. On the other hand, the BEV base model confuses people
with similar objects such as bushes.

PR

i

B e = IR e S Y

Figure 3.10: Worst prediction in bird’s eye view, from left (ground truth;
Prediction; True/False, where green is for good prediction and red for wrong
prediction)
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3.4. Range Level Ensemble

B 34 Range Level Ensemble

B 3.4.1 Frontview

We analyzed the performance of baseline model in frontview on different
range levels. As we can see in table 3.9, neural networks have not the same
predictive abilities in different distances. The reason of this inconsistency is
the projection, because objects located closer to LIDAR sensors will take up
more space in comparation with objects on the edge of the maximal range,
where these objects take few pixels and they are very hard to predict. Our
frontview projection takes only scan points closer than 150 metres.

Baseline model - IOUs

Classes Distance [m]
(0; 10) | (10; 20) | (20; 30) | (30; 40) | (40; 50) | (50; 60) | (60; 70)

0 0.905 0.920 0.918 0.927 0.946 | 0.932 0.944
1 0.883 | 0.688 0.672 0.574 0.575 0.446 0.362
2 0.223 0.416 | 0.199 0.058 0.003 0.017 0.016
3 0.006 | 0.003 0.000 0.000 0.000 0.000 0.000
4 0.131 | 0.110 0.112 0.046 0.036 0.042 0.080
5 0.770 | 0.707 0.667 0.601 0.545 0.493 0.421

Table 3.9: Analysis of baseline model performance in different ranges of distances

From the analysis of performance on different levels. We decided to train
two types of models, where each of them will focus on a different range of
distances. We choose the maximal distance to 50 m. Beyond this threshold,
individual objects have not sufficient number of scan points for the neural
network to decide about the class of scan points. Moreover, this dataset
contains only the urban scene. Thus, we can assume that for autonomous
driving is this distance sufficient with respect to the braking distance of cars
driven in the city.

Success in individual distance range deals PIXOR real time object detector
from pointclouds. The authors performed an analysis of several models in
the distances 0-30, 30-50, 50-70. The results show that the performance in
distance 30-50 drops by 30 percent on average and in the farthest interval
the results are very weak. [31]

® Model focused on the surrounding area (0;25)[m]

= Model focused on remote areas (25;50)[m]

For both types of models, we tried several methods to include distance in
the loss function. Best method will be selected and the models from both
distance ranges will be work together as their final focus range of distances
will be (0;50)[m]. Each of the methods of models is trained for one time due
to the time complexity.
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Figure 3.11: Example of focus area, where black pixels correspond into individual
range functions; from left: surrounding area, remote area

As we can see on fig the method focusing in the remote areas, which
are in the distance from 25 up to 50 m, has very difficult work due to the
sparsity of the data in these locations.

B The model focused on the surrounding area

This model is specialized in the range of distances (0;25)[m]. Model is
concentrated with the range function. We tried three types of this function.

The range function is masking points with weights based on the distance
of the scan point. As we can see in equation range function multiplies
the loss based on the distance of the scan point. Variable d denotes distance
of the scan point.

range-CE(d) = range(d) - CE (3.7)

® Baseline model - This is the reference method, where we are using
cross-entropy loss with weight vector. The model was described in section
The range function is 1 in all pixels, therefore there is no difference

with normal CE.
range(d) =1,d € R (3.8)
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3.4. Range Level Ensemble

® Mode 1 - To this model entire frame is passed, thus neural network see
every pixel, but loss is computed only in the surrounded area. We are
using range-Focal loss with a weighted vector, which was computed for
every pixel from the training dataset located closer than 25 metres.

1, de (0;25)[m]

0, d € (25;150)[m] (3.9)

range(d) = {

8 Mode 2 - This approach compute loss in every pixel, but in surrounded
area is loss 10 times bigger then in others pixels. We used range-Cross
Entropy loss with a weight vector, which was computed in all pixels in
the training dataset.

10/9, d € (0;25)[m]

(3.10)
1/9, d € (25;150)[m]

range(d) = {

® Mode 3 - This method computes the loss from range distance (0; 75)[m].
Maximal loss is applied to the area where this model will work, i.e. from
0 to 25 metres. Then based on the distance is a linear descent of the loss
to 75 metres. For pixels located beyond 75 metres, no loss is computed,
but the neural network propagates information from these pixels to pixels
where the loss is computed through the receptive field of convolutional
kernels. We use range - Cross Entropy loss with a weight vector from all
pixels seen in the training dataset.

1, d € (0;25)[m]
range(d) = —%(m —75), € (25;75)[m)] (3.11)
0, d € (75;150)[m]

Every approach in the range function is for every frame rescaled, so that
the sum of all values of the range function in all pixels is 2496 - 244 = 609024.
This number is the sum of pixels in one frame.

2496 - 244
2 2oy ranges,, (d)

range;;(d) = range;;(d) - (3.12)

We can see in equation 3.12, that coefficient of rescale is different in every
frame, because the sum of weights over the whole 2D grid will be different in
every frame. Variable ,j denotes actual pixel and z,y are set of all coordinates
in the 2D grid.
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Figure 3.12: Calculation of losses based on individual methods in surrounded
area

B The model focused on remote areas

To complete ensemble we proposed a second model, which is focusing on the
remote areas, i.e. predicting pixels, which are located from 25 to 50 metres.
In this interval of distance, the data are relatively dense to recognize objects
from them. In this approach, we also tried three types of the range function.

# Mode 1 - In this method is used range-CFE with the same weight vector
as in the base model. The range function has on output 1 in pixels,
which correspond to pixels from the focus area. Otherwise, the range
functions have the value 0. Neural network consumes all pixels, but only
on a few of them compute loss.

1, d e (25;50)[m]

0, d e (0;25)U (50;150)[m)] (3.13)

range(d) = {

® Mode 2 - This approach has on an output 10/9, where the pixel is in
the range from 25 to 50 metres. Otherwise, put 1/9 on output. Loss in
the area it focuses on is 10 times bigger, then in others pixels. As the
loss function is used range-CFE with the same weight vector as in the
baseline model.

10/9, d € (25;50)[m]

(3.14)
1/9, d € (0;25) U (50; 150)[m]

range(d) = {
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3.4. Range Level Ensemble

® Mode 3 - This method computes loss from the distance range from
0 up to 75 meters. For the distance range at which it will operate,
i.e. (25;50)[m], return 1 in the range function. Then applied linear
descent on both sides of a interval as shown in fig[3.13 The method uses
range-CE with the weight vector, which was computed on all pixels in
the training dataset.

1, d € (25;50)[m]
e d € (0;25)[m]
range(d) = | L(d—75), de (50;75)[m] (3.15)
0, d € (75:150)[m]

All three approaches apply a rescale of the range function on every frame.
The result is that the sum of all outputs from the range function in one frame
has the same value. This value is equal to the number of pixels in one frame.
The rescalation can be seen in equation |3.12.
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Figure 3.13: Calculation of losses based on individual methods in remote areas

B 3.4.2 Bird's Eye View

Input frames to the bird’s eye view model captured an area with a capacity
of 32 x 64 meters. Thus on the grid appears a captured ray, which was
maximally at a distance 35.8 metres. Since the model takes only a few scan
points, it could be used in areas where the frontview has not much data and
its prediction ability is very low.

As the LiDAR will be used for detection around the car in the city environ-
ment, we tried to focus on the surrounding area of the car, which is crucial
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for safe driving of autonomous vehicles in the cities, given the fact that the
environment around the car can be very dynamic and complex.

B Surrounding of the car

2D grid has size 512x1024 pixels, which is 34x68 m in real units. We are
focusing on surroundings of the car. This model focusing on a grid size
300x602 pixels or 20x40 m in real units, hereinafter as "Focus-Area". We
proposed four methods how to apply distance in the loss function.

In the 2D grid in bird’s eye view, the distances are incorporated directly
into coordinates z,y in the grid, therefore we proposed for bird’s eye view
grid function loss mask istead of the range function. It has advantages such
as every loss mask can be pre-computed and so it reduces the computational
complexity.

Modified losses used bird’s eye view such as range-CFE or range-FL, compute
with loss mask instead of range function.

LRRE

Figure 3.14: Loss: Normal, model, mode2, mode3, mode4

® Base model - It was described [3.3.3. The model use the CFE loss with
a weight vector from the training dataset in all pixels.

loss mask(z,y) = 1,2,y € Z (3.16)

# Mode 1 - The model use range-CE with a weight vector, which was
computed in focus area in the training dataset. On the input of the
model is all frame, but loss is computed from the focus area.

2.903, z,y € "Focus-Area"

(3.17)
0, x,y € Z \ "Focus-Area'

loss mask(z,y) = {

On pixels, where the loss is computed, the loss mask puts on output
2.903, because we wanted to have the sum of all outputs from the range
function equal to the sum of all pixels in one frame.

® Mode 2 - This approach use range-FL with a weight vector from all
pixels in the training dataset. Loss in focus area is 10 times bigger, then
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3.5. Projection ensemble method of range models
in others pixels.

2.439, x,y € "Focus-Area'

(3.18)
0.2439, z,y € Z \ "Focus-Area"

loss mask(z,y) = {

With the same purpose as in mode 1, the outputs from the loss mask
are scaled.

® Mode 3 - This method use range-CE with the same vector as the base
model. The loss mask is created as a grid, where in focus area is put 1
and in others pixels 0.

1, x,y € "Focus-Area'

(3.19)
0, z,y € Z)\ "Focus-Area'

loss mask(z,y) = {

We want a linear descent on the edge of these two areas. Thus, we applied
the avg-pool2D function with kernel size 81x81 and padding 40 to keep
the size of the loss mask. This operation applies a 2D average pooling
over an input loss mask and creates a continuous transition between
Focus-Area and the rest of the 2D grid.

1024 - 512
>i > loss mask(i, j)

loss maskyew (7,y) = loss mask(z,y) - (3.20)

As the previous method, we rescaled every pixel in the loss mask as it
is shown in equation 3.20, where variables z,y denotes actual pixel and
>i >_;loss mask(i, j) is the sum of weights in the whole 2D grid.

® Mode 4 - This method is very similar to mode 3, with the difference
that the operation avg-pool2D were applied five times. The loss mask
was also rescaled.

B 35 Projection ensemble method of range models

B 3.5.1 Frontview

As we can see at table [4.6| from the remote area, mode 2 has the best
performance in comparison with all methods and the average of them. In
the surrounding area, we have the best results on the average of all models.
We fuse the models from these two areas, so that mode 2 predicts pixels
in distance from 25 up to 50 metres. These predictions are added to the
prediction from the average of models in the surrounding area, which compute
pixels in distance from 0 to 25 metres.
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3. Implementation

Remote area Surrounded area

Averaging

Fusing in
Frontview

Prediction

Figure 3.15: Ensemble of range models in frontview

B 3.5.2 Bird's eye view

In BEV, we tried the range loss function only on the surrounding area, where
the predictions are crucial for the safe driving in the city. For these pixels
located in this area, the average of all models proved to be the best.

The baseline model works for a more remote area. By combining the
pipelines working on these two areas creates a model working on the distance
from 0 up to 35.8 metres.

Surrounded area Remate area

Averaging

Fusing in Bird's
Eye View

Prediction

Figure 3.16: Fusing in Bird’s Eye View

B 3.6 Fusing Front View and Bird’s Eye View (FEP)

We want to apply the multiview ensemble method, which merge Projection
ensemble method of range models from Frontview and BEV. To achieve this,
we need to choose one data representation where the outputs from these two
pipelines will work.
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3.6. Fusing Front View and Bird's Eye View (FEP)

The use of a Frontview as the final data representation seems to be the most
sensible for several reasons. Frontview can use 87.7% from original pointcloud,
whereas BEV use on average 21%. We can also choose to work in 3D with the
LiDAR pointcloud, where BEV and Frontview can be transformed. However,
Pointnet++ did not achieve as good results as the 2D model, which we
observe in BEV and Frontview.

Frontview Bird's Eye View

:
:
Normal } [ Mode1] [ Modez] Made 3 }

|
|
i
| Mode 1
Averaging :
Surrounded area H

,,,,,,,,,,,,,,,,,,,,,,,,,, Mode 2

E _[ kL l
i f_l Mode 3

[ Fusingin Tranformation \ !| Fusing in Bird's
| Bomotearsa I[ Frantview ] [ 1o Frontview }‘* { Eye View ]

\ Mode 4
Fusing model

Remote area

Surrounded area

i

i

Prediction

Figure 3.17: Visualisation of the FEP

To combine the outputs from both projections, we must transform BEV to
Frontview. To reduce the computational complexity, we precomputed indices,
which tell us the information where the individual points in the BEV data
representation frames have to be mapped. The process is vectorized. The
95% of all points from BEV are used in the Frontview. Losses occur because
BEV is able to map more points, which corresponds to the same pixel in
Frontview. The pixels, which occurs in frontview, but BEV is unable to
decide about the classification is added zero to all channels.

Bl 3.6.1 Fusing model

To improve the merge of outputs from BEV and Frontview. We want to learn
fusing model, which consumes two outputs in shape [Batch Size, 224, 2496,
Number of channels]. The number of channels is 7 and should represent the
final features of invidual classes in pixels.

B Scalar method
This method applies the softmax to both tensors, because the original outputs
contain features in different ranges of values. The model has one or a few

parameters which will multiply the output of BEV data representation.
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3. Implementation

Frontview BEV

multp * BEV

.....................................

Qutput

Figure 3.18: Visualisation of procces in fusing model, which is based on method
Scalar

a. Learnable scalar for BEV. The simplest method is to use one learnable
scalar, which multiplies the output from BEV and then adds the output from
Frontview. Scalar multp tells us how much better or worse are the predictions
in Bird’s eye view then in the Frontview.

Output = Output 1, ey + multp - Output gy, (3.21)

The model contains one number, therefore we trained it only during 20
epoches. Initial value was set to one. Final value of the parameter is seen in
the equation 3.22.

multp = 2.086 (3.22)

The number corresponds to the results achieved by each pipeline, where
BEYV pipeline gets a better result on the test dataset. The achieved mean
10U is 0.6257.

b. Learnable scalar for each class. This is an extension of the previous
method. Each channel from BEV is multiplied by a learnable scalar, which
tells us on which projections we can rely on more in individual classes. It
should perform better then the previous method if one projection has some
worse and some better results in invidual classes.

Output gy ontvicw + Outputgpy - |70 71 22 23 T4 75 g } (3.23)

In equation [3.23, each parameter x; corresponds to a scalar which will
multiply the exact channel in the output from BEV pipeline. The model
was trained with 20 epochs, which should ensure the convergence to optimal
values. The initial value for every parameter was chosen number one, because
at this point the model adds both projections with the same ratio. Loss was
computed on pixels located closer than 50 metres, because the outputs from
frontview and BEV pipelines are computed on these pixels.
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3.6. Fusing Front View and Bird's Eye View (FEP)

background
vehicles
pedestrians
cyclists
moving objects
road

0 unreflected beam

value [-]

T
2.5 5.0 1.5 10.0 12.5 15.0 17.5
epoch [-]

Figure 3.19: The development of values for invidual classes during training

x [ background | [ 2.063
T vehicles 2.074
2 pedestrians 2.082
x3| = bicycles = | 1.965 (3.24)
T4 moving objects 2.040
x5 road 2.065
T6 unreflected ray —0.207

The development of the values from equation [3.23|is shown in figure [3.19]
where we can see that this model gives bigger weight to every class from BEV.
This corresponds to the results from BEV and Frontview pipelines, where
BEV has better predictive ability in every class. Updating of the model was
stopped in the ninth epoch, where the accuracy in the validation dataset has
reached the peak. An input to the model are probabilities, therefore larger
values can no longer improve the results of the pipeline.

The final coefficients x; are shown in equation [3.24], where every parameter
is very close to the parameter from method a. Thus, both methods achieved
similar or improvements.

B Smoothing method
We tried multiple variants of kernel size, number of layers, and two approaches.

1. First approach consumes features in the original form. Outputs from
BEV and Frontview are added and then the result is put to the input of
the model. The model contains multiple convolution layers, batchnorm
layer with momentum 0.1 and active function relu..
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3. Implementation

2. Second approach applies on both tensors softmax to rescale values to
the same range. Thus, this type of models work with probabilities and
we applied only convolutional layers, because relu and batchnorm would
have not any effect.

Every model was trained for 50 epochs.

a. Two convolutional layers with kernel size 3 . The model contains a
convolutional layer with kernel size 3 and padding 1. Then follows another
convolutional layer with kernel size 3. We tried only approach two. This
method has 882 learnable parameters and the receptive field is 5x5, which
would perform worse than methods with bigger receptive field.

b. Two convolutional layers with kernel size 7. On this setup was tried
approach one and two. This model contains a convolutional layer with kernel
size 7 and padding 3. Convolutional layers have in total 4802 parameters and
the receptive field is 13x13, which would be enough large to capture even a
big object.

d. Four convolutional layers with kernel size 3 . The deepest network
contains four convolutional layers with kernel size 3 and padding 1 to keep
sizes. On this method is tried approaches one and two. Convolutional layers
have in total 1764 parameters and the receptive field is 13x13.

B Combination of smoothing and learnable parameters (UNITE)

We choose a learnable scalar for each class and a smoothing model with
kernel size 3 and depth of two layers. This smoothing model has the best
performance on the test dataset.

Firstly, the output from BEV is multiple by a vector of parameters, then
an output from Frontview is add. To this final tensor is applied a smoothing
model.

B 3.7 Semi-Surervised training

We are using a naive semisupervised learning method called as pseudo-
labelling. We generated a pseudo-labels of the non-annotated frames by FEP.
Thus, we extended the original training dataset to 15593 frames. The ratio
between annotated and pseudo-labelled frames is 5701:9892 or 1:1.735. The
ratio shows as that the occurrence between annotated and non-annotated is
not so high.

We tried two approaches. The primary method of application of pseudo
labels is to use them only in the fine tune training phase. This method
achieved the state-of-the-art on the MNIST dataset. [16]

We used the frontview baseline model trained on the training dataset,
which has 5701 annotated frames. The parameters of the model were loaded
and trained in fine tune phase for 30 epochs.
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3.7. Semi-Surervised training

Second used approach uses pseudo-labels as hard labels. The authors [25] of
this method also introduce an uncertainty weight for each sample loss, which
is higher for samples that have distant k-nearest neighbors in the feature
space. [3]

We treat the pseudo labels as it was ground truth. The method was
examined on the original dataset plus pseudo labels and on the reduced
training dataset numbering 2142 annotated frames in order to increase the
ratio between original ground truth and pseudo-labels. Both models were
trained from scratch on 100 epoch with weighted vector counted on the
original training datasets. The probability distribution should not change,
because pseudo labels were generated by FEP, which use the same weighted
vector.

All implementation codes are available on: https://gitlab.fel.cvut!
cz/students/pokorny-simon
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Chapter 4

Experiments

B 2.1 Invidual models with range function

B 4.1.1 Frontview

B The model focused on the surrounding area

Results with the reduced training dataset. We trained all proposed types
of the range function on the reduced training dataset for one time. The
reduced training dataset has 2142 frames from 22 scenes. Validation and
testing datasets remain the same. We did this to compare the results with the
small amount data and big amount of data. The difference between them is
2142:5701, or 1:2.66. In tab we can see that none of the methods improved
the prediction ability. Small amount of data and little diversification of scenes
caused that the models have not learn. This is especially true for models
with modes 2 and 3. The results show that the baseline model has the second
best performance on a small amount of data. Mode 1 has achieved the best
mean IOU, but the difference is small that we attribute it to the variance
that neural networks have. On the other hand, the base model was chosen
from 3 training cycles and the models with modes 1,2, and 3 were trained for
1 time, therefore modification of the loss function with the range function
has the potential for improvement of predictive ability. We probably did not
reach the maximal capacity of the model. Each of the models has sufficiently
fit to the small training dataset, therefore we did not see a big difference.
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4. Experiments

Overall stats of IOU
Class Baseline | Mode 1 | Mode 2 | Mode 3
0 - background 0.856 0.873 | 0.856 0.811
1 - vehicles 0.699 0.738 | 0.702 0.679
2 - pedestrians 0.182 0.185 0.233 | 0.123
3 - cyclists 0.249 0.279 | 0.166 0.248
4 - moving object || 0.080 0.088 0.090 | 0.062
5 - road 0.699 0.673 0.660 0.676
Mean 10U 0.460 0.472 | 0.451 0.433
Precision 0.594 0.618 0.575 0.627
Recall 0.600 0.590 0.611 | 0.521

Table 4.1: Results of individual methods trained on the reduced dataset. The
evaluation took place on pixels located from 0 to 25 metres

Results with the original dataset. The whole labelled training dataset
has 5701 frames, which provides a good diversity of the data. Prediction
ability should be improved compared with results on the reduced training
dataset. This is contradicted by the results, where the baseline model achieved
approximately the same results as on the reduced dataset even that was also
trained for 3 cycles and the best performing model was chosen. The baseline
model is trying to describe the whole scene, therefore we probably reach the
maximal descriptive capabilities of the frontview baseline model. Based on
this every small improvement in models with range function we can take as
confirmation of the functionality of this approach.

Models with range function were trained for 1 time. Mode 2 improved the
mean IOU by 5.4% and mode 3 by 12.7% compared to the training on the
reduced dataset. Results of mean IOU achieved by the baseline model have
been increased by 5.4% using the range function with mode 3 and by 3.6%
using mode 2.

It is hard to say which of the modes perform better, because each of the
modes perform better on the bigger dataset or on the contrary. In any case,
the range function helps the model to safe capacity to better describe the
area on which is focused.

We tried to average all models and we get the best performance compared
to all models separately. Thus, we suppressed the variance of the neural
network.
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4.1. Invidual models with range function

Overall stats of IOU
Class Baseline | Mode 1 | Mode 2 | Mode 3 | Averaging
0 - background 0.919 0.881 0.894 0.906 0.916
1 - vehicles 0.812 0.780 0.765 0.797 0.832
2 - pedestrians 0.236 0.244 0.332 0.339 | 0.333
3 - cyclists 0.003 0.010 | 0.004 0.002 0.002
4 - moving object || 0.102 0.076 0.172 0.152 | 0.150
5 - road 0.705 0.693 0.711 0.732 0.746
Mean 10U 0.463 0.447 0.480 0.488 0.497
Precision 0.598 0.620 | 0.581 0.591 0.602
Recall 0.531 0.507 0.601 | 0.592 0.592

Table 4.2: Results of methods on pixels located from 0 to 25 metres

background 0016 0.0027 0.00087 0.0025 0.022

08

011 0.0013 8.6e-05 0.00054 0.0067

0.6

pedestrians - 032 029 037 0.0085 0.0024 0.013

o
2
£
cyclists, motorbikes .. - 0.078 03 0.0065 0.01 0.017 -04

moving objects ~ 0.28 013 0.048 0.00075 0.028

-02

road - 011 0.028 0.001 0.00019 0.0018

background aars pedestrians  cyclists, motorbikes .. moving objects road
Predicted class

Figure 4.1: Confusion matrices of the baseline in frontview projection

Merge of classes. In fig[4.1 we can see that the baseline model has a problem
to identify class number 3, which contains cyclists and confuse it with class
number 2, which represent pedestrians. The models with modes 1,2, and
3 also confuse classes 2 and 3. Cyclists and pedestrians are very similar in
sparse coverage of scan points by LiDAR, because the sensor captures mostly
the human and on the bike are only a few pixels. Thus, we decided to merge
these two classes.

Models were already trained to separate these classes, thus the model uses
some of the capacity to divide the feature space. Assuming that the models
are taught from scratch with just only 6 classes. They would probably achieve
better results.
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4. Experiments

Overall stats of IOU
Class Baseline| Mode 1 | Mode 2 | Mode 3 | Averaging| Mode 243
0 0.912 0.881 0.894 0.906 0.916 0.907
1 0.835 | 0.780 0.765 0.797 0.832 0.798
243 0.329 0.278 0.388 0.399 0.380 0.404
4 0.123 0.076 0.172 | 0.152 0.150 0.162
5 0.733 0.693 0.711 0.732 0.746 0.735
Mean IOU || 0.586 0.542 0.586 0.597 0.605 0.601
Precision 0.738 0.747 | 0.703 0.715 0.729 0.714
Recall 0.675 0.613 0.730 0.733 0.726 0.743

Table 4.3: Results on pixels located from 0 to 25 metres and with merge of
second and third class

Results with merge of classes. After unification classes 2 and 3, the dif-
ferences between individual methods get smaller. Best results achieved the
average of all models with the same coefficient. We tried to average the
models with method 2 and method 3, but we get worse mean 10U than the
average of all models.

B The model focused on remote areas

Results with reduced training dataset. We trained the models with range
function on the small amount of data as the models focused on the surrounding
of the car. Classify pixels, which are located from 25 up to 50 metres is
more complicated than in the closer pixels. Objects are covered with fewer
points. Despite the fact that the baseline model see a few of the frames did
not describe them as well as the models learned directly on them using the
range function.

Each method achieved at least small improvements in comparison with the
baseline model, because the baseline model has very weak predictive ability

in this distance range in comparison with the surrounding area.

As we can see in tab 4.4 even the average did not achieve the same results
as the model with the range function itself.
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4.1. Invidual models with range function

Overall stats IOU
Class Baseline| Mode 1 | Mode 2 | Mode 3 | Averaging
0 - background 0.920 0.922 0.924 | 0.924 | 0.919
1 - vehicles 0.456 0.458 0.465 | 0.453 0.450
2 - pedestrians 0.037 0.076 0.063 0.095 | 0.038
3 - cyclists 0.000 0.000 0.000 0.000 0.000
4 - moving object || 0.042 0.056 0.058 0.077 | 0.025
5 - road 0.569 | 0.527 0.550 0.566 0.568
Mean 10U 0.337 0.340 0.343 0.353 | 0.333
Precision 0.477 0.462 0.476 0.488 | 0.478
Recall 0.407 0.430 0.426 0.438 | 0.405

Table 4.4: Results of invidual methods trained on the reduced dataset. The
evaluation took place on pixels located from 25 to 50 metres

Results with the original dataset. Bigger amount of data further deepened
the difference between the baseline model and models using range function
in the loss. This time it was the best model with mode 2. The best results
was achieved on a different model than on a reduced dataset. Despite this
fact, the range function helps the neural network aim to the areas, where it
has better results. The worse the results are of the baseline in that area, the
better the progress we can get using the range function.

Overall stats IOU
Class Baseline| Mode 1 | Mode 2 | Mode 3 | Averaging
0 - background 0.934 0.930 0.949 | 0.940 0.943
1 - vehicles 0.611 0.560 0.673 | 0.560 0.633
2 - pedestrians 0.060 0.049 0.089 | 0.059 0.050
3 - cyclists 0.000 0.000 0.000 0.000 0.000
4 - moving object || 0.057 0.071 0.137 | 0.131 0.090
5 - road 0.613 0.599 0.636 0.631 0.641
Mean IOU 0.379 0.368 0.414 | 0.387 0.393
Precision 0.530 | 0.513 0.525 0.498 0.521
Recall 0.435 0.430 0.500 | 0.480 0.460

Table 4.5: Results on pixels located from 25 to 50 metres

Results with merging of classes. Based on the same arguments, we merged
classes 2 and 3. The evaluation was done with the same models as in Results
with the original dataset, but we change the metrics. The difference between
individual models is deepened.
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4. Experiments

Overall stats IOU

Class Baseline| Mode 1 | Mode 2 | Mode 3 | Averaging
0 0.934 0.930 0.949 | 0.940 0.943
1 0.611 0.560 0.673 | 0.560 0.633
243 0.053 0.047 0.088 | 0.058 0.046
4 0.057 0.071 0.137 | 0.131 0.090
5 0.613 0.599 0.636 0.631 0.641
Mean 10U 0.453 0.441 0.497 | 0.464 0.470
Precision 0.637 | 0.617 0.630 0.597 0.625
Recall 0.518 0.514 0.598 | 0.574 0.548

Table 4.6: Results on pixels located from 25 to 50 metres with merging of classes
2 and 3

B Bird’s Eye View

B Surrounding of the car

Results with merging of the classes. The baseline model was trained for 3
times and the best performing model was chosen. The models with individual
modes were trained only for 1 cycle due to the time complexity. Training the
baseline model has big variance in the results on the test dataset, therefore
the results of models with modes can be distorted.

We merged classes 2 and 3 as in the frontview for the same reason. The
models were trained for each class and we only merged the metrics in the
evaluation. The results show us that the best performance has the average of
all models. Despite the fact, that baseline model was trained for 3 times, the
model with mode 4 achieved better results, particularly in classes 2+3 and 4,
which are very hard to detect. Predictive ability on class five is similar in
every approach. This also applies to the class 0.

The baseline model in BEV has relatively strong predictive ability in the
surrounding of the car. Thus, models with range models do not improve the
results significantly. A greater benefit has the average of more models. In
our case of models with modes 1,2,3,4, and baseline.
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4.2. Ensemble methods

Overall stats IOU

Class Baseline| Mode 1 | Mode 2 | Mode 3 | Mode 4 | Averaging
0 0.864 0.855 0.868 0.857 0.863 0.877

1 0.826 0.815 0.857 0.818 0.846 0.859
243 0.607 0.552 0.544 0.637 0.574 0.639

4 0.348 0.342 0.267 0.425 0.256 0.451

5 0.813 0.810 0.812 0.815 0.812 0.824
Mean IOU 0.691 0.675 0.670 0.710 0.670 0.730
Precision 0.806 0.785 0.828 0.814 0.843 | 0.824
Recall 0.799 0.797 0.750 0.827 0.749 0.845

Table 4.7: Results with merging classes 2 and 3

. 4.2 Ensemble methods

B 4.2.1 Frontview

This is the evaluation of fusing models focused on the surrounding of the
car (0 up to 25 metres) and on the remote areas (25 up to 50 metres). The
pipeline is visualise in fig |3.15. For remote areas we are using only the model
with mode 2, because has the best results and for the closer area was chosen
the average of all models. Outputs of these models are add. The evaluation
on the test dataset shows that the ensemble of range models improved the
mean IOU by 2.5 %, on top of that the ensemble has better ability in every
class. Precision slightly decreased, but the difference is very small.

Overall stats IOU
Class Baseline | Ensemble of models
0 - background 0.917 0.924
1 - vehicles 0.819 0.822
243 - pedestrians + cyclists || 0.271 0.330
4 - moving objects 0.108 0.148
5 - road 0.715 0.731
Mean 10U 0.566 0.591
Precision 0.725 0.716
Recall 0.648 0.712

Table 4.8: Results on the test dataset; evaluation was done only on pixels
located from 0 up to 50 metres

B 4.2.2 Bird's Eye View

The process of the ensemble of models in BEV can be seen in fig|3.16. For
surrounding of the car is used the averaged of all models. On the pixels where
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the average of the models is not focused on is chosen the baseline BEV model.
Outputs from these areas are add-together.

The resulting pipeline achieved better results in IOU of all classes in
comparison with BEV baseline model. Mean IOU, precision, and recall have
been improved. The difference is not so noticeable, because we boost only
the surrounding area, where the baseline has relatively good accuracy. We
decided to be focused solely on the closest area, which is crucial for safe
driving in the city environment.

Overall stats IOU
Class One model | Fusing pipeline
0 - background 0.886 0.891
1 - vehicles 0.777 0.802
243 - pedestrians + cyclists || 0.398 0.404
4 - moving objects 0.336 0.374
5 - road 0.761 0.768
Mean 10U 0.632 0.648
Precision 0.741 0.752
Recall 0.768 0.786

Table 4.9: Results on the test dataset

B a3 Fusing Frontview and BEV

The final step to ensemble the FEP. In the section |3.6, we proposed several
methods and types of the fine tune model, which will combine outputs from
pipelines in BEV and Frontview.

We are trying to determine which of the methods will perform the best.
Models based on Learnable scalar were trained for 20 epoches and models
based on the Smoothing with approach 1 or 2 for 50 epoches, because contains
many parameters. The Unite, which is a combination of both methods was
trained for 50 epoches. As a reference (REF) we use a naive approach to add
outputs from BEV and Frontview together.
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4.4. Semi-supervised learning

Overall stats IOU

Learnable parametes Approach 1 Approach 2 Unite
Class REF |Multp |Multp 2 layers,|4 layers,|2 layers,||4 layers,|2 layers,

BEV  |classes kernel |kernel |kernel | kernel |kernel

3x3 3x3 7 3x3 =7

0 0.928 |/0.929 |0.929 0.926 0.926 0.926 0.927 0.927 0.926
1 0.826 ||0.829 |0.829 0.819 0.822 0.823 0.825 0.828 0.824
243 0.346 |/0.366 |0.366 0.336 0.338 |0.339 0.352 0.361 0.346
4 0.199 ||0.255 |0.255 0.195 0.179 0.166 0.170 0.167 0.157
5 0.747 1|0.750 |0.751 0.742 0.737 0.737 0.735 0.731 0.735
Mean 0.610 ||0.626 |0.626 0.604 0.600 0.599 0.602 0.603 0.598
10U
Precision||0.720 (|0.729 ]0.730 0.722 0.720 0.723 0.727 0.728 0.716
Recall 0.743 ||0.761 |0.761 0.721 0.719 0.718 0.727 0.720 0.724

Table 4.10: Results of the fine tune model based on several methods

As we can see from tab [4.10] the naive approach Learnable scalar achieved
best results achieved the best results. Smoothing approach did not work in
any setup. I attribute these bad results to the fact that outputs from the
pipeline are mostly generated by the averaging. Thus, the output of each
pipeline is generalized and it is very hard to improve it. The fine tune model
based on the smoothing reduces this generalizability and the final output a
lot depends on its. Moreover, the data in frontview are scattered, because
between valuable pixels are big gaps of pixels representing the unreflected ray.
Thus, the smoothing method would work well on 2D RGB images, where we
have only valuable pixels and the data are more continuous.

The method multp classes was chosen for generating the pseudo labels by
FEP. However, the multp BEV would achieve the same effect, because the
coefficients are very similar.

B aa Semi-supervised learning

B 4.4.1 Original training dataset extended with pseudo labels

We tried two methods to use a naive semi-supervised technique called pseudo-
labelling. The fine tunning phase, where we take the baseline model trained on
100 epoch and apply the fine tunning phase with the extended dataset on 30
epochs. The second approach trains the model from scratch on the extended
dataset on 100 epoches. The ratio between annotated and pseudo-labelled
frames is 5701:9892 or 1:1.735.
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Overall mean I0OU
Class Baseline | Fine tunning | From scratch
0 - background 0.917 0.928 0.930
1 - vehicles 0.819 0.851 0.856
243 - pedestrians + cyclists || 0.271 0.348 0.373
4 - moving objects 0.108 0.125 0.125
5 - road 0.715 0.730 0.732
Mean 10U 0.566 0.596 0.603
Precision 0.725 0.766 0.760
Recall 0.648 0.662 0.678

Table 4.11: Semi-supervised learning results on pixels located from 0 up to 50 m

As we can see on tab [4.11] both approaches significantly boost the perfor-
mance of the model. Training of the model from the scratch shows better
results on every class in comparison with the first approach, but requires a
big time complexity, because training on the dataset with pseudo labels is
very slow.

B 4.4.2 Reduced dataset extended with pseudo labels

This approach is a bit unfair given that the FEP was trained on the training
dataset with 5701 anotated frames, therefore pseudo-labels are much more
accurately predicted. However, we had baseline in the frontview projection
trained on 2142 annotated frames, thus we wanted to see use of the method
pseudo-labelling, when we have a bigger ratio between pseudo-labels and
annotated frames. In this case, we have the ratio 2142:9892 or 1:4.618.

The baseline on the reduced training dataset was trained for 3 time and
the model under semi-supervised learning uses the same annotated frames
plus pseudo labels and was trained for 1 time. The training of both models
lasted 100 epochs.

Overall mean 10U
Class Baseline | From scratch
0 - background 0.872 0.923
1 - vehicles 0.681 0.862
243 - pedestrians + cyclists || 0.151 0.324
4 - moving objects 0.069 0.097
5 - road 0.676 0.710
Mean IOU 0.490 0.582
Precision 0.649 0.772
Recall 0.579 0.636

Table 4.12: Semi-supervised learning results on pixels located from 0 up to 50
m with 2142 annotated frames

46



4.5. Discussion

As we can see in tab [4.12], we achieved a big boost of performance of the
model. It can be caused by the baseline model did not reach an optimal
minimum to describe the smaller dataset or it has insufficient number of
frames.

. 4.5 Discussion

It turns out that neural networks working with LiDAR point clouds have
deteriorating prediction ability with increasing distance of points, because the
current LiDAR sensors are not capable to capture remote areas with sufficient
amount of points [3I]. Our approach is to use a few models to predict pixels
from the distance range 0 up to 25 metres, where the baseline have relatively
strong ability to predict the data but in range 25 up to 50 its description of
the data is weak, therefore a second group of the models is focused on this
distance range.

The experiments in frontview show us that focusing a single model on some
distance range can boost its performance in that area. The difference from
the baseline is bigger when the model is focused on areas where the baseline
model fails. In distance 25 up to 50 metres, we have made improvements
in mean IOU by 5.4% in model using the range-CE loss with mode 3. We
achieved even better results with averaging of all models, the mean 10U
rose by 7.3%. We can see this approach as a wide neural network with the
difference that each model have a clearly defined area which is predicted.

The baseline model in the Bird’s Eye View projection has better results in
comparison with frontview, but the projection itself can not absorb as many
points as the frontview projection. Thus, the BEV is not a suitable candidate
to represent the whole LiDAR point cloud, but the model can better work
in that domain. We did not achieve such good results as in frontview by
using range-CE or range-FL loss function. It is given by the fact that we
focused on the surroundings of the car where the baseline itself has strong
predictive ability. Thanks to achieving high mean IOU, the BEV is suitable
for improving predictions in frontview after reprojection.

The naive methods multp BEV and multp classes turn out to be the
best working in the fusing of two domains. The smoothing method failed
to improve the predictive ability in any setup. It might be caused that the
input to the fusing model is generalized thanks to using multiple models and
applying another convolutional layer is not suitable in the final part of the
pipeline. The final ensemble pipeline achieved the mean IOU 0.626, while
the baseline model in frontview achieved the mean IOU 0.566.

The semi-supervised learning with a naive approach of pseudo-labels, which
were generated by FEP, was able to significantly improve the baseline in the
mean IOU by 6.5%. Further work could be focused on retraining the whole
group of models in the FEP to improve each of them.
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Chapter 5

Conclusion

The neural networks using data from LiDAR measurements have deteriorating
prediction ability with increasing distance of the scan points. We proposed
range function, which is masking points with weights based on the distance
of the scan point. These weights are used in the loss function and the model
is focusing on the specific areas. The experiments in the frontview projection
have shown us that range-function boost predictive ability of the model inside
the focused area. The improvement is more noticeable in the more distant
areas, where the individual model fails due to the density of the data. In the
distance range 25 metres up to 50 metres we achieved improvement by 5.4 %
in the mean IOU. Usage of multiple models in the same area achieved even
better results. It has improved the mean IOU by 7.3 %.

We are further fusing the outputs from frontview and bird’s eye view
pipelines, which are based on the ensemble of models focused on specific
areas. The merge of outputs by a simple neural network called fusing model
brings us better results in frontview. The experiments have shown us that
the ensemble of the models is capable to reach better results in comparison
with the frontview baseline model. The mean IOU has been improved by
10.6 %.

We also generate the pseudo-labels of the non-annotated part of the dataset
to retrain the models under semi-supervised approach. The baseline trained
from scratch on this extended dataset significantly improved the mean IOU
by 6.5 %.

Every model in the final ensemble pipeline can be retrained by semi-
supervised learning with pseudo-labelling approach for a few iterations to
obtain a stronger predictor. The outputs of the final pipeline can be further
merged with outputs from other sensors to improve quality of the detections.
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