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Abstrakt / Abstract

Táto dizertačná práca rozširuje teóriu
filtrovania so zníženou citlivosťou, tzv.
desenzitizované filtrovanie. Desenzitizo-
vané filtrovanie je efektívny prístup k
odhadovaniu stavu systémov s neurči-
tými parametrami. Stochastický prístup
k redukcii citlivosti, ktorý je popísaný v
tejto práci vedie k algoritmu presného
desenzitizovaného Kalmanového filtru
bez použitia plne odôvodnených pred-
pokladov. Na základe tohto výsledku sú
odvodené ďalšie varianty filtru, ktoré sú
vhodné pre špecifické prípady použitia.
Stochastický prístup taktiež umožňuje
priamočiaru analýzu stability odhadu.
V tejto práci je desenzitizovaný filter po-
užitý aj spolu s metódou interagujúcich
modelov. Touto kombináciou vzniká
algoritmus pre detekciu a diagnostiku,
ktorý funguje aj so zjednodušenými
modelmi. Ďalšie užitočné využitie de-
senzitizovaného Kalmanového filtru je
v algoritmoch pre distribuovaný od-
had stavu. V tomto prípade pomáha
zlepšiť lokálny odhad tým, že zahrňuje
neurčitosť susedných odhadov bez toho
aby zvýšil komunikačné zaťaženie siete.
Tento prístup je tiež použitý na vytvo-
renie metódy na distribuovanú detekciu
a diagnostiku chýb, ktorá dokáže odha-
dovať lokálne ale aj globálne chyby v
systéme.
Kľúčové slová: odhad stavu, detekcia

chýb, znecitlivené filtrovanie, neurčité
parametre, distribuované systémy

This thesis extends the theory of
desensitized filtering. Desensitized fil-
tering is an efficient approach to state
estimation for systems with uncertain
parameters. The stochastic approach to
sensitivity reduction developed in this
thesis leads to the exact desensitized
Kalman filter (XDKF) without using
assumptions that are not fully justified.
Based on this result, several variations
of the XDKF are introduced for specific
purposes. The stochastic approach al-
lows providing a straightforward way to
conduct stability analysis. The XDKF
is also used with the interacting multiple
model method, which results in fault de-
tection and diagnosis (FDD) algorithms
that work with simplified models. An-
other useful application of the XDKF
was found in the distributed state es-
timation algorithms, where it helps to
improve local estimation by considering
neighbor estimate uncertainty without
increased communication burden. This
distributed approach is also used for
developing a distributed FDD method,
which can detect and diagnose local and
global faults.
Keywords: state estimation, fault de-

tection, desensitized filtering, uncertain
parameters, distributed systems
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Chapter1
Introduction

Advanced control methods are based on a mathematical model of a controlled system
described by input, output, and state variables. The evolution of state variables in
time captures the entire system behavior. Various feedback control methods require
information about the system state, described by the state variables at a given time.
In most cases, the state is not or cannot be measured directly. Therefore, the state
needs to be estimated. Even when measurements are available, state estimation can
provide a smoother signal without outliers, enabling better control performance. The
state-of-the-art method for state estimation is the Kalman filter (KF) [1]. The KF is
the optimal estimator if a state-space model used in the KF exactly corresponds to a
real system.

Parameters in state-space models are often uncertain as a consequence of creating
models that significantly simplify the structure of detailed models of real systems. Nev-
ertheless, for control purposes, their behavior still sufficiently approximates the behavior
of real systems. Models with uncertain parameters can be used in conventional state
estimation algorithms without uncertainty information, but the optimality and stability
of these algorithms cannot be guaranteed. Therefore, special algorithms are used for
the state estimation of systems where the uncertainty of parameters is considered.

1.1 State estimation of systemswith uncertain

parameters

Many engineers have solved state estimation of systems with modeling errors in the
past. The Kalman filter (KF) was among the first algorithms that could estimate the
state of such systems efficiently. Successful applications in trajectory planning and
navigation helped the KF to gain popularity. The initial achievements of the KF were
nicely summed up by Kalman’s colleague Schmidt in [2]. As he explained, the issues
of systems with uncertain parameters were researched since the beginning, and several
solutions were proposed.

Reformulating the uncertain parameters as state variables can solve the problem.
If the parameters are not additive, this operation transforms a linear system into a
nonlinear one. The state vector augmented by the parameters is then estimated using
the extended Kalman filter (EKF) [3]. This way, the uncertainty is considered, and
the parameter vector is estimated. This method is not robust when the EKF updates
the parameter vector to an infeasible value because the linearization at the infeasible
operating point might crash the algorithm. Another downside is that updating the
parameter statistics is not desirable when the correct parameter statistics is known a
priori.

The next option is to use the Schmidt-Kalman filter (SKF) [4, 3]. At its beginnings,
this filter used to be referred to as the Kalman-Schmidt filter [2]. However, nowadays,
the name Schmidt-Kalman filter is regularly used. Similarly to the EKF, this method
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augments the state vector by the parameters. In this case, the Kalman filter is used in a
reduced state form. That is, the parameter vector statistics is not updated, but used for
updating the state statistics. Later, the same algorithm was derived by Woodbury [5]
using the ’consider’ analysis, called the consider Kalman filter (CKF). Several similar
reduced-order Kalman filters were developed, and their summary can be found in [6].

The class of observers called the unknown input observers [7] can also be used for
the state estimation of the systems with uncertain parameters. As the name suggests,
this algorithm models the uncertain parameters as additional unknown disturbances
of a system. The estimation error of these methods converges to zero regardless of
the unknown input in the system. These methods are mostly used in fault detection
algorithms [8].

Later, a robust filtering approach to the state estimation of uncertain systems became
popular. These methods are designed for state estimation under the worst-case scenario
based on norm-bounded parametric uncertainty [9–11]. More modern methods solve
robust 𝐻2 and 𝐻∞ filtering for systems with norm-bounded or polytopic uncertainty
using the LMI approach [12–14]. The robust Kalman filter for stochastic systems with
correlated noises was also developed [15]. A good overview of the robust methods can be
found in [16]. The performance of these methods depends on fulfilling the assumptions
of parametric uncertainty. If they are not met, the filter performance is not guaranteed.
Therefore, these methods are difficult to use when the parametric uncertainty cannot
be determined or differs from the types assumed by the published methods.

More recently, the desensitized Kalman filter (DKF) was developed [17]. The idea
for the DKF comes from the desensitized optimal control [18–19]. The method is
based on augmenting the standard Kalman filter criterion by weighted state estimate
sensitivity to unknown parameters. The goal is to balance the minimum-variance state
estimation and the state estimation with minimal state estimate sensitivity to unknown
parameters. The trade-off between objectives is controlled by weights for the partic-
ular objective. The parametric uncertainty does not need to be specified. Only the
expected value of the parameters needs to be provided. Unfortunately, the DKF is not
optimal due to the assumptions used for algorithm derivation. The DKF was included
in Desensitized Optimal Filtering and Sensor Fusion Tool Kit [20] funded by NASA.
The computational complexity of the DKF is significantly higher than the standard
KF because the gain is obtained by computing an implicit algebraic equation at each
step. This issue was solved by a special case of the DKF (SDKF) proposed in [21], also
called the fast DKF [22], where an explicit formula expresses the gain. The limiting
factor of the SDKF compared to the DKF is that weights on the state estimation error
sensitivity to the parameter are the same for all states. Published papers related to
the DKF are mostly application-oriented, focusing on applications to the Mars-entry
navigation [23–25]. The desensitized approach was also applied to more complex fil-
tering methods, such as the unscented DKF [26], the divided difference filter [27], the
cubature DKF [28], and the ensemble DKF [29].

1.2 Fault detection and diagnosis

Faults in a process can result in increased economic cost, out-of-specification products,
and even negative environmental impacts. Of course, these faults are not desirable.
Therefore, companies push for developing detection and diagnosis systems to remain
competitive and comply with economic and environmental demands [30].
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Many industries, if not all, require the detection of faults. Research and development
in this area is done by engineers with various backgrounds, which can easily create
confusion when it comes to using basic terminology. The terminology was established
by the IFAC SAFEPROCESS Technical Comitee [31]. First of all, the fault should not
be mistaken for failure. The main difference is that the system can operate when a
fault occurs but stops when a failure occurs. The fault detection is defined as a simple
task with two possible outcomes — fault occurs or not. This task is usually followed
by the fault isolation, which means determining the kind, place, and time of the fault.
These two terms create together the acronym FDI — Fault Detection and Isolation.
Furthermore, the FDI can be extended by the fault identification, which represents
determining the size and behavior of the fault, which extends the acronym to the FDII.
Also, the fault diagnosis term can be used as a replacement for the fault isolation and
identification which changes the acronym to the FDD — Fault Detection and Diagnosis.

In general, the FDD approaches can be divided into signal-based [32], qualitative
model-based [33], and quantitative model-based methods [34]. The signal-based meth-
ods have no prior knowledge of the process. Qualitative model-based or knowledge-
based methods use machine learning techniques to detect faults as the unusual behavior
of a system. The quantitative model-based methods require a mathematical model of
a system.

The control community is mostly focused on the quantitative model-based FDD
methods. Many great books and reviews of this research area are available, including [8,
30, 34–37]. These methods detect faults by analyzing the residuals generated using
measurements and analytic models. The main methods for residual generation can
be divided into observer-based methods, unknown input observers, parity relations
approach, optimization-based approach, and Kalman filter-based approach. Huang’s
review of these methods was published in [37].

Generally, the fault detection and diagnosis problem can be solved by state estimation
of a hybrid stochastic system. The goal of hybrid state estimation is to simultaneously
estimate the mode and state of the system. In the case of linear hybrid systems such
as Markov jump linear systems [38], the state and mode estimation is a multiple-
model problem. The multiple-model adaptive estimation (MMAE) approach [39] is a
Kalman filter-based approach that runs a bank of parallel Kalman filters where each
filter represents the particular system mode (nominal mode or fault). However, this
solution to a multiple-model problem requires implementing a fast-growing number of
Kalman filters. On the other hand, the interacting multiple-model (IMM) filter [40]
is an approximate method that solves the multiple-model problem efficiently when the
number of system modes is low and the system is not very complex. The IMM is a
popular estimator for systems where the models with Markovian jumps are used (e.g.,
navigation and tracking problems [41]). However, it is also used in fault detection and
diagnostics [42–43] using the modes to describe the nominal and faulty behavior of the
system. In such a configuration, the IMM computes the occurrence probability of each
mode determined by the likelihood. Then it is possible to make a quantified decision on
the fault occurrence and identify the probable source of the fault based on the likelihood
values.

1.3 Distributed algorithms

Typical applications of distributed state estimation algorithms are large networks of
intelligent edge devices which can gather information and estimate the local state in-
dependently. They need to operate only locally with fractional knowledge about the
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other subsystems in the network, so their computational demand is low compared to
the centralized system. If done correctly, such distributed networks can also be more
secure since the failure of any individual node does not propagate to the entire system.
Distributed state estimation is usually defined as a problem where distributed nodes
share local information to estimate the state of an entire network. The most common
solution is a consensus strategy introduced by Olfati-Saber [44]. This method aims
to find a consensus on the full state of a network. Another strategy is information
diffusion, introduced by Cattivelli and Sayed [45], which is motivated by practical ap-
plications where the consensus between nodes is not a priority. However, the full state
of the network is still the objective of estimation. Estimation of the full state of a net-
work is impractical in large-scale networks, and the priority is to estimate a local state.
State estimation methods for large-scale networks are usually based on partitioning the
network system into subsystems and estimating their local state using local Kalman
filters (LKF) with additional information obtained from the closest neighbors. These
methods need to compromise between the state estimation accuracy and communica-
tion burden. Among the methods with a low communication burden is the distributed
Kalman filter for a network of interconnected linear systems via locally measured out-
puts by Marelli et al. [46], where a local system state can be estimated by sharing only
the measured outputs. Roshany-Yamchi et al. [47] used the local Kalman filter (LKF)
for distributed predictive control with an even lower communication burden since only
the state estimates need to be shared. A method with high state estimation accuracy
but a large communication burden is the partition-based Kalman filter (PKF) intro-
duced in [48]. It includes the uncertainty information of neighbor estimates using state
estimation error covariances. The PKF requires sharing the state estimates and the
corresponding error covariances. Sharing the error covariances between nodes increases
the size of transferred data related to the state estimation information from 𝒪(𝑛) to
𝒪(𝑛2), where 𝑛 is the dimension of the state vector.

The distributed model-based fault detection methods for large-scale systems are
based on analyzing the local residuals and detecting a threshold breach. Boem et
al. published various papers related to distributed fault detection and isolation, includ-
ing [49], where the residuals are generated using local Luenberger estimators. Moreover,
the detection threshold computation considers the uncertainty of neighbor estimates.
In [50], stochastic systems are considered, the residuals are generated using a consensus-
like method, and the uncertainty of neighbors is included in the detection threshold
computation. In [51], a similar technique is applied to nonlinear systems. The dis-
tributed IMM algorithms are based on fusion [52], consensus [53], or diffusion [54],
which are all impractical for application to large-scale systems.

4



Chapter2
Motivation

In most real applications of Kalman filtering, simplified models are used. The Kalman
filter loses its optimality with simplified models, and its performance can be improved.
One of the easiest methods for improving the performance in such cases is to include
the uncertainty information in the model structure and, consequently, into a filtering
algorithm. For example, a first-order dynamical system is often chosen as a system
model in industrial applications. The usual development process starts with fitting the
model gain and time constant to the real system and then tuning the Kalman filter noise
covariances to achieve satisfactory performance. The uncertainty in parameters arises
necessarily during the model fitting process, but it is not considered in the filtering even
if it is quantifiable. When using filtering algorithms that are robust to parameters, the
uncertainty information from the fitting process is included in the filtering. Depending
on the filtering algorithm, the uncertainty is expressed as a parameter interval, a prob-
ability distribution, or a weight. Quantifying the uncertainty is difficult, and is often
transformed into tuning the uncertainty to achieve the desired filtering performance. In
the case of the SKF and the robust 𝐻2 and 𝐻∞ filtering methods, this tuning can lead
to counterintuitive parameter variance or parameter interval values. On the other hand,
the desensitized Kalman filter (DKF) is tuned by setting weights that represent confi-
dence in parameter accuracy, where zero means accurate and infinity means inaccurate.
This intuitive tuning is the main advantage of the desensitized filtering approach and is
why it is suitable for applications where the uncertainty of the parameter is difficult to
quantify. The DKF is a promising, intuitive, and robust filtering algorithm. Its main
drawback is that it did not attract interest among researchers. Therefore, it needs a
thorough theoretical analysis. The main topics for research are the assumption of zero
gain sensitivity to parameters, the stability of the algorithm, and the connection be-
tween stability and weight settings. The fault detection and diagnosis methods based
on filtering methods can equally benefit from the desensitized approach. Furthermore,
the benefits of the desensitized approach for considering uncertainty in the currently
popular distributed systems should also be studied. This thesis aims to contribute to
the desensitized filtering theory by solving the abovementioned challenges.
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Chapter3
Desensitized state estimation of linear

systems

This chapter summarizes the state estimation algorithms with reduced sensitivity to pa-
rameters for linear systems. Most of the results in this chapter were originally published
in [C2, J1, J2].

3.1 Algorithms for systemswith noise correlation

The original desensitized Kalman filter (DKF) [17] was derived for linear stochastic
systems with uncertain parameters and uncorrelated process and measurement noise.
This section shows the derivation of desensitized filters suitable for linear systems with
uncertain parameters and noise correlation, which were proposed in [C2]. Two filtering
algorithms are derived. One uses the sensitivity definition and optimization criterion
from the desensitized Kalman filter [17], The other uses the assumptions of the special
case of desensitized Kalman filter with analytical gain [21] (SDKF), also called the
fast desensitized Kalman filter [22] (FDKF). Both are single-step filtering algorithms
compared to the DKF and SDKF, which are two-step filtering algorithms.

3.1.1 Linear systemwith noise correlation

The algorithms assume the linear stochastic system in the state space form

𝘅𝑘+1 = 𝗔(𝝷)𝘅𝑘 + 𝗕(𝝷)𝘂𝑘 + 𝘃𝑘,
𝘆𝑘 = 𝗖(𝝷)𝘅𝑘 + 𝗗(𝝷)𝘂𝑘 + 𝗲𝑘,

(3.1)

where 𝘅𝑘 is the state vector of dimension 𝑁𝑥, 𝘂𝑘 is the input vector of dimension 𝑁𝑢,
𝘆𝑘 is the measurement vector of dimension 𝑁𝑦, 𝝷 is the parameter vector of dimension
𝑁𝜃, 𝗔(𝝷) is 𝑁𝑥 ×𝑁𝑥 matrix, 𝗕(𝝷) is 𝑁𝑥 ×𝑁𝑢 matrix, 𝗖(𝝷) is 𝑁𝑦 ×𝑁𝑥 matrix and 𝗗(𝝷)
is 𝑁𝑦 × 𝑁𝑦 matrix. The process noise 𝘃𝑘 and the measurement noise 𝗲𝑘 are white noise
sequences with samples from a normal distribution

[ 𝘃𝑘
𝗲𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤 𝗦

𝗦𝑇 𝗥 ]) . (3.2)

The non-zero cross-covariance matrix 𝗦 states the correlation between the process and
measurement noise. Also, both 𝘃𝑘 and 𝗲𝑘 are independent of the current state

cov (𝘃𝑘, 𝘅𝑘) = cov (𝗲𝑘, 𝘅𝑘) = 0. (3.3)

When the observer is designed using some estimated value �̂�, the true value is defined
as

𝝷 = �̂� + �̃�, (3.4)

7



3. Desensitized state estimation of linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . .

where �̃� denotes the difference between the true and estimated parameter vector, which
is assumed to be unknown. Notations

�̂� ≡ 𝗔(�̂�), �̂� ≡ 𝗕(�̂�),

�̂� ≡ 𝗖(�̂�), �̂� ≡ 𝗗(�̂�),
(3.5)

will be used to keep the text compact.
The correlation between the measurement and process noise is often neglected in

developing models and estimation algorithms. However, the cost of adding such infor-
mation is low, while it can significantly improve state estimation accuracy. For example,
the noise correlation must be considered in the models created by discretization of a
continuous-time system with discrete-time measurements. When a control algorithm is
developed for such a system, it should use the latest information about the system state
to increase the accuracy of the control. Therefore, the asynchronous sampling of the
control input and the measurements is used. Such sampling leads to the discretization
of the process and measurement equation, which creates noise correlation in the system.

3.1.2 Desensitized Kalman filter

The single-step Kalman filter equations for correlated measurement and process noise
estimate the state vector optimally in terms of minimizing the error covariance matrix.
The update equations in Joseph’s form are defined as follows

̂𝘅𝑘+1|𝑘 = 𝗔 ̂𝘅𝑘|𝑘−1 + 𝗕𝘂𝑘 + 𝗞𝑘 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 − 𝗗𝘂𝑘) , (3.6)

𝗣𝑘+1|𝑘 = (𝗔 − 𝗞𝑘𝗖)𝗣𝑘|𝑘−1 (𝗔 − 𝗞𝑘𝗖)𝑇 + 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇, (3.7)

where

̂𝘅𝑘+1|𝑘 = 𝔼 [𝘅𝑘+1 ∣𝒟𝑘 ] (3.8)

represents the conditional mean of the estimated state vector at time 𝑘 + 1 given all
available data 𝒟𝑘 = {𝘂1, . . . 𝘂𝑘, 𝘆1, . . . 𝘆𝑘} up to time 𝑘. The matrix 𝗣𝑘+1|𝑘 denotes the
state estimation error covariance, and it follows the state estimate notation

𝗣𝑘+1|𝑘 = 𝔼 [(𝘅𝑘+1 − ̂𝘅𝑘+1|𝑘 ) (𝘅𝑘+1 − ̂𝘅𝑘+1|𝑘 )
𝑇
] . (3.9)

The conditional index notation changes the definitions of state and covariance analog-
ically with the definitions above

̂𝘅𝑘|𝑘−1 = 𝔼 [𝘅𝑘 ∣𝒟𝑘−1 ] , (3.10)

𝗣𝑘|𝑘−1 = 𝔼 [(𝘅𝑘 − ̂𝘅𝑘|𝑘−1 ) (𝘅𝑘 − ̂𝘅𝑘|𝑘−1 )
𝑇
] . (3.11)

The matrix 𝗞𝑘 represents the optimal Kalman gain at time 𝑘 and it is obtained as

𝗞𝑘 = (𝗔𝗣𝑘|𝑘−1 𝗖𝑇 + 𝗦) (𝗖𝗣𝑘|𝑘−1 𝗖𝑇 + 𝗥)
−1

. (3.12)

The covariance update (3.7) keeps the covariance positive semi-definite, which is proved
as follows.

Proof. The joint probability distribution of the process and measurement noise is
described by (3.2). A covariance matrix is always positive semi-definite. Therefore, the
covariance of noise distribution is also positive semi-definite

[ 𝗤 𝗦
𝗦𝑇 𝗥 ] ≥ 0. (3.13)

8
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Then the following matrix is also positive semi-definite [55]

[ 𝗜𝑥 −𝗞𝑘 ] [ 𝗤 𝗦
𝗦𝑇 𝗥 ] [ 𝗜𝑥

−𝗞𝑇
𝑘

] = 𝗤 − 𝗞𝑘𝗦𝑇 − 𝗦𝗞𝑇
𝑘 + 𝗞𝑘𝗥𝗞𝑇

𝑘 ≥ 0, (3.14)

where 𝗜𝑥 is the identity matrix of size 𝑁𝑥. The covariance update is defined in (3.7).
It is defined as the sum of the positive semi-definite matrix (3.14) and the matrix
(𝗔 − 𝗞𝑘𝗖)𝗣𝑘|𝑘−1 (𝗔 − 𝗞𝑘𝗖)𝑇 which is a positive semi-definite matrix. Then the entire
update is the sum of positive semi-definite matrices, which results in a positive semi-
definite matrix. ∎

The desensitized Kalman filter for system (3.1) is based on the updates (3.6) and
(3.7) where the matrices with estimated parameters (3.5) are used

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞𝑘 (𝘆 − �̂� ̂𝘅𝑘|𝑘−1 − �̂�𝘂𝑘) , (3.15)

𝗣𝑘+1|𝑘 = (�̂� − 𝗞𝑘�̂�)𝗣𝑘|𝑘−1 (�̂� − 𝗞𝑘�̂�)𝑇 + 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇, (3.16)

and 𝗞𝑘 is derived from a modified optimality criterion. The derivation starts with the
sensitivity definition. The state error sensitivity to a particular uncertain parameter is
defined as stated in [17]

𝞂𝑝,𝑘+1|𝑘 =
𝑑 ̃𝘅𝑘+1|𝑘

𝑑 ̂𝜃𝑝
=

𝑑 ( ̂𝘅𝑘+1|𝑘 − 𝘅𝑘+1)

𝑑 ̂𝜃𝑝
=

𝑑 ̂𝘅𝑘+1|𝑘

𝑑 ̂𝜃𝑝
= 𝝽𝑝,𝑘 − 𝗞𝑘𝝲𝑝,𝑘, (3.17)

where the index 𝑝 denotes the particular parameter in the parameter vector and

𝝽𝑝,𝑘 = �̂�𝞂𝑝,𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

̂𝘅𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

𝘂𝑘, (3.18)

𝝲𝑝,𝑘 = �̂�𝞂𝑝,𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

̂𝘅𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

𝘂𝑘. (3.19)

Notice that the sensitivity definition assumes that the true state value is not sensitive
to the expected value of the parameter set in the model description. Then the state
estimation error sensitivity to the parameter is reduced to the state estimate sensitivity
to the parameter. On top of that, the assumption of the zero gain sensitivity is used,
formulated as follows.

Assumption 3.1.

For all ̂𝜃𝑝, 𝑝 = 1, . . . , 𝑁𝜃: ∂𝗞𝑘

∂ ̂𝜃𝑝
= 0.

The goal of the derivation is to find the gain which has reduced sensitivity to the
parameter error. If this goal is achieved, then the gain sensitivity is close to zero, which
is approximated by Assumption 3.1. Also, Assumption 3.1 significantly simplifies the
algorithm derivation.

The optimality criterion for the filtering problem is defined in the sense of desensi-
tized filtering, which means there are two optimization objectives. The first objective is
minimizing the trace of the estimation error covariance matrix. The second is the min-
imization of the weighted state error sensitivities to the parameter. The optimization
criterion is defined as

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = tr (𝗣𝑘+1|𝑘 ) +
𝑁𝜃

∑
𝑝=1

(𝞂𝑇
𝑝,𝑘+1|𝑘 𝗪𝑝𝞂𝑝,𝑘+1|𝑘 ) , (3.20)

9
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where 𝐽 is the cost function, tr is the matrix trace operator, 𝗪𝑝 are symmetric weighting
matrices representing tuning parameters between objectives in the optimality criterion.
If 𝗪𝑝 is large, then the emphasis is put on reducing the sensitivity to the parameter
𝜃𝑝. On the other hand, if the weight matrix is small, then the minimum mean square
error is prioritized. If all 𝗪𝑝 are set to zero, then the algorithm becomes the standard
Kalman filter.

To find the gain 𝗞𝑘, the following equation need to be solved

∂𝐽 (𝗞𝑘)
∂𝗞𝑘

= 0. (3.21)

First, the partial derivative of the cost is obtained as

∂𝐽 (𝗞𝑘)
∂𝗞𝑘

= −2 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦 +
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝝽𝑝,𝑘𝝲𝑇
𝑝,𝑘)) +

+ 2𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗥) + 2
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝗞𝑘𝝲𝑝,𝑘𝝲𝑇
𝑝,𝑘) . (3.22)

Then the optimal gain is the solution of the equation

𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗥) +
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝗞𝑘𝝲𝑝,𝑘𝝲𝑇
𝑝,𝑘) =

= �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦 +
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝝽𝑝,𝑘𝝲𝑇
𝑝,𝑘). (3.23)

The derived algorithm consists of the update equations (3.15), (3.16) and (3.17) where
𝗞𝑘 is the solution of (3.23). The algorithm is summed up in Algorithm 3.1.

Algorithm 3.1 (DKF for linear systems with noise correlation—DKF-NC).

. Evaluate model sensitivities

𝝽𝑝,𝑘 = �̂�𝞂𝑝,𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

̂𝘅𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

𝘂𝑘,

𝝲𝑝,𝑘 = �̂�𝞂𝑝,𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

̂𝘅𝑘|𝑘−1 + ∂�̂�
∂ ̂𝜃𝑝

𝘂𝑘.

. Solve for 𝗞𝑘

𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗥) +
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝗞𝑘𝝲𝑝,𝑘𝝲𝑇
𝑝,𝑘) =

= �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦 +
𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝝽𝑝,𝑘𝝲𝑇
𝑝,𝑘) .

. Update the state, sensitivity, and covariance

𝞂𝑝,𝑘+1|𝑘 = 𝝽𝑝,𝑘 − 𝗞𝑘𝝲𝑝,𝑘,

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞𝑘 (𝘆 − �̂� ̂𝘅𝑘|𝑘−1 − �̂�𝘂𝑘) ,

𝗣𝑘+1|𝑘 = (�̂� − 𝗞𝑘�̂�)𝗣𝑘|𝑘−1 (�̂� − 𝗞𝑘�̂�)𝑇 + 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇.

10
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3.1.3 Analytical gain

The main issue of the DKF-NC is that it requires solving the implicit equation at each
update step, creating a significant computational burden. The root cause of this issue
is a form of sensitivity definition and cost definition. The issue with an implicit gain
equation can be overcome by using a modified objective for sensitivity reduction as
proposed in [21]. First, sensitivity vectors (3.17) are joined into a sensitivity matrix

𝝨𝑘+1|𝑘 =
𝑑 ̃𝘅𝑘+1|𝑘

𝑑�̂�
=

𝑑 ( ̂𝘅𝑘+1|𝑘 − 𝘅𝑘+1)

𝑑�̂�
=

𝑑 ̂𝘅𝑘+1|𝑘

𝑑�̂�
= 𝝣𝑘 − 𝗞𝑘𝝘𝑘, (3.24)

where

𝝣𝑘 = �̂�𝝨𝑘|𝑘−1 +
∂ (�̂� ̂𝘅 𝑘|𝑘−1 + �̂�𝘂𝑘)

∂�̂�
, (3.25)

𝝘𝑘 = �̂�𝝨𝑘|𝑘−1 +
∂ (�̂� ̂𝘅 𝑘|𝑘−1 + �̂�𝘂𝑘)

∂�̂�
. (3.26)

The derivation is also simplified using Assumption 3.1. The objective for sensitivity
reduction is modified to the minimization of the trace of the weighted sensitivity matrix

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = tr (𝗣𝑘+1|𝑘 ) + tr (𝝨𝑘+1|𝑘 𝗪𝝨𝑇
𝑘+1|𝑘 ) . (3.27)

Remark 3.1. The weighting matrices in (3.20) are the symmetric matrices 𝗪𝑝 ∈
ℝ𝑁𝑥×𝑁𝑥 , where 𝑁𝑥 is the size of the state vector. On the other hand, the weighting
matrix in (3.27) is the symmetric matrix 𝗪 ∈ ℝ𝑁𝜃×𝑁𝜃 , where 𝑁𝜃 is the size of the
parameter vector. The weighting in the DKF-NC can be tuned more accurately since
it is possible to weight each parameter for each state separately. The weights in the
SDKF-NC set the same weights of the parameter vector for all states.

The partial derivative of the criterion with respect to the gain is obtained as
∂𝐽 (𝗞𝑘)

∂𝗞𝑘
= −2 (�̂�𝗣𝑘|𝑘−1 �̂�

𝑇
+ 𝗦 + 𝝣𝑘𝗪𝝘𝑇

𝑘)

+ 2𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗥 + 𝝘𝑘𝗪𝝘𝑇
𝑘) . (3.28)

The optimal gain is the solution of the equation, which is created by putting the above
derivative equal to zero. Then the optimal gain is obtained by the explicit formula

𝗞𝑘 = (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦 + 𝝣𝑘𝗪𝝘𝑇
𝑘) (�̂�𝗣𝑘|𝑘−1 �̂�

𝑇
+ 𝗥 + 𝝘𝑘𝗪𝝘𝑇

𝑘)
−1

. (3.29)

The covariance update equation can be further modified by substituting the optimal
gain defined in (3.29) into (3.7). After the substitution, the alternative form of the
covariance update equation is obtained as follows

𝗣𝑘+1|𝑘 = �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗤 − 𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦𝑇) + 𝝨𝑘+1|𝑘 𝗪𝝘𝑇
𝑘𝗞𝑇

𝑘 . (3.30)

The formulas (3.24) and (3.29) can be substituted in (3.30) to clarify that the alternative
covariance update results in a symmetric matrix. Then the obtained formulation is a
symmetric matrix

𝗣𝑘+1|𝑘 = �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗤 − (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦) 𝗣−1
𝑦 (�̂�𝗣𝑘|𝑘−1 �̂�

𝑇
+ 𝗦𝑇) −

− 𝗞𝑘𝝘𝑘𝗪𝝘𝑇
𝑘𝗞𝑇

𝑘 + (𝝣𝑘𝗪𝝘𝑇
𝑘) 𝗣−1

𝑦 (𝝣𝑘𝗪𝝘𝑇
𝑘)

𝑇
, (3.31)

11
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where

𝗣𝑦 = �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗥 + 𝝘𝑘𝗪𝝘𝑇
𝑘 . (3.32)

The special case of DKF-NC (SDKF-NC) algorithm consists of the update equations
(3.15), (3.16) (or (3.30)) and (3.24) where 𝗞𝑘 is defined in (3.29). This algorithm
updates the statistics with explicit formulas. Therefore, it is more efficient and faster
than the DKF-NC. The algorithm is summed up in Algorithm 3.2.

Algorithm 3.2 (Special DKF for systems with noise correlation— SDKF-NC).

. Evaluate model sensitivities

𝝣𝑘 = �̂�𝝨𝑘|𝑘−1 +
∂ (�̂� ̂𝘅 𝑘|𝑘−1 + �̂�𝘂𝑘)

∂�̂�
,

𝝘𝑘 = �̂�𝝨𝑘|𝑘−1 +
∂ (�̂� ̂𝘅 𝑘|𝑘−1 + �̂�𝘂𝑘)

∂�̂�
.

. Compute the gain

𝗞𝑘 = (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦 + 𝝣𝑘𝗪𝝘𝑇
𝑘) (�̂�𝗣𝑘|𝑘−1 �̂�

𝑇
+ 𝗥 + 𝝘𝑘𝗪𝝘𝑇

𝑘)
−1

.

. Update the state, sensitivity and covariance

𝝨𝑘+1|𝑘 = 𝝣𝑘 − 𝗞𝑘𝝘𝑘,

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞𝑘 (𝘆 − �̂� ̂𝘅𝑘|𝑘−1 − �̂�𝘂𝑘) ,

𝗣𝑘+1|𝑘 = (�̂� − 𝗞𝑘�̂�)𝗣𝑘|𝑘−1 (�̂� − 𝗞𝑘�̂�)𝑇 + 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇,
or

𝗣𝑘+1|𝑘 = �̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗤 − 𝗞𝑘 (�̂�𝗣𝑘|𝑘−1 �̂�
𝑇

+ 𝗦𝑇) + 𝝨𝑘+1|𝑘 𝗪𝝘𝑇
𝑘𝗞𝑇

𝑘 .

Remark 3.2. The DKF-NC and SDKF-NC are identical when applied to a first-order
system with a single uncertain parameter.

3.1.4 Example

The importance of including cross-correlation information in filtering algorithms is dis-
cussed based on a simple example. The example for the performance testing is chosen
to be a continuous-time system with discrete-time measurements. The reason for se-
lecting such a system is that it is more natural to describe physical phenomena in
the continuous-time domain. Also, the system output is measured by devices in the
discrete-time domain. The continuous-discrete state estimators are available, but it
is more practical to use the discrete state estimation, where a continuous system is
discretized first.

In real applications, the same models are usually used for estimation and control at
the same time. However, often the measurement and control input sampling is offset.
This method is called asynchronous sampling, and it is used to pass the maximum
amount of information to the control algorithm. The asynchronous sampling method is
depicted in Fig. 3.1. The control input sampling period 𝑇𝑠 is split by the parameter 𝜀.
The period 𝑇𝑐 = (1−𝜀) 𝑇𝑠 represents the time needed for computation of the new input,

12
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kTs (k + ε)Ts (k + 1)Ts

εTs = Ts − Tc Tc

x (kTs) = xk

x ((k + ε)Ts) x ((k + 1)Ts)

yk

uk

uk+1

Figure 3.1. Asynchronous sampling of a system with control.

and it is usually minimized to supply the control algorithm with the latest information.
Such sampling configuration causes a correlation between process and measurement
noise based on a common process noise input in the period (𝑘𝑇𝑠, (𝑘 + 𝜀) 𝑇𝑠). This is a
typical example of how the noise correlation is introduced to the system because of the
sampling method.

The example used for performance tests is a simple first-order continuous system
with an uncertain parameter. The continuous-discrete system description is

𝑑𝑥(𝑡) = 1
𝜃

(𝑢 (𝑡) − 𝑥 (𝑡)) 𝑑𝑡 + 𝑑𝑤 (𝑡) , (3.33)

𝑦(𝑡) = 𝑥 (𝑡) + 𝑒c (𝑡) ,

where 𝜃 is the uncertain parameter which represents the uncertain time constant of the
first-order system. The noise statistics is defined as

𝑑𝑤 (𝑡) ∼ 𝒩 (0, 𝑄c 𝑑𝑡) , 𝑒c (𝑡) ∼ 𝒩 (0, 𝑅c) , (3.34)

where 𝑑𝑤 is the Wiener process increment. The system is discretized with a sampling
period 𝑇𝑠 = 0.5 sec, and the measurements are asynchronous with 𝜀 = 0.75. The exact
discretization [56] of the system results in the discrete-time system

𝑥𝑘+1 = 𝑒
−𝑇𝑠

𝜃 𝑥𝑘 + (∫
𝑇𝑠

0
𝑒 −𝑡

𝜃 𝑑𝑡) 1
𝜃

𝑢𝑘 + 𝑣𝑘,

𝑦𝑘 = 𝑒
−𝜀𝑇𝑠

𝜃 𝑥𝑘 + (∫
𝜀𝑇𝑠

0
𝑒 −𝑡

𝜃 𝑑𝑡) 1
𝜃

𝑢𝑘 + 𝑒𝑘,
(3.35)

where the output 𝑦𝑘 describes the measurement at time (𝑘 + 𝜀)𝑇𝑠, but the traditional
notation with index 𝑘 is used instead. The discretized process noise 𝑒𝑘 and measurement
noise 𝑣𝑘 have statistics

[ 𝑣𝑘
𝑒𝑘

] ∼ 𝒩 ([ 0
0 ] , [ 𝑄𝑇𝑠

𝑄𝜀𝑇𝑠
𝑄𝜀𝑇𝑠

𝑄𝜀𝑇𝑠
+ 𝑅𝑐

]) , (3.36)

where

𝑄𝑇𝑠
= ∫

𝑇𝑠

0
𝑒 −𝑡

𝜃 𝑄𝑐𝑒 −𝑡
𝜃 𝑑𝑡, 𝑄𝜀𝑇𝑠

= ∫
𝜀𝑇𝑠

0
𝑒 −𝑡

𝜃 𝑄𝑐𝑒 −𝑡
𝜃 𝑑𝑡. (3.37)
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The example is tested for various configurations of 𝑄𝑐, 𝑅𝑐.
The SDKF-NC and DKF-NC are identical when applied to (3.35). Therefore, only

the SDKF-NC is tested here, but its performance results also apply to the DKF-NC. The
SDKF-NC is compared to the following state estimation algorithms in the example. The
first is a perfect Kalman Filter (PKF) representing the theoretical case with information
about true parameter value. The PKF is the standard KF in (3.6), (3.7) with the
information about the true value of the parameter. Therefore, the PKF is the best
estimator by the minimum mean square error criterion. The next algorithm is an
imperfect Kalman Filter (IKF), the Kalman filter where the parameter is set to the
expected value, which can differ from the true parameter value.

The algorithms are tested in the simulation, where the system responses to initial
conditions and an input step. The initial input has amplitude 20 and then changes to 10.
The initial system state has amplitude 10, and the initial state estimate is set to 0. The
initial state estimation error variance is set to 10. The uncertain parameter 𝜃 in (3.33)
is expected to be from interval 𝜃 ∈ [0.5, 9.5], with ̂𝜃 = 5 used as the parameter value in
the model used in the SDKF-NC and IKF. The SDKF-NC is tested at weight settings 1,
9, and 16 to show the impact on the state estimation accuracy. Each test configuration
is repeated in 100 Monte Carlo simulations, where the true value of the parameter is
generated randomly from the defined interval. The performance was tested on scenarios
with various process and measurement noise covariances of the simulated system. The
estimation algorithms used the exactly discretized noise covariance matrices computed
from the covariance matrix used in the simulation. The results of the Monte Carlo
simulation for 𝑄𝑐 = 0.01, 𝑅𝑐 = 0.01 are shown in Fig. 3.2. The figure nicely depicts the
impact of uncertain time constant in the first-order system. The impact is high during
the transient state, where the time constant plays a significant role. On the other hand,
the uncertainty is low during the steady state.

Figure 3.2. The figure shows the statistics from 100 Monte Carlo simulations for the sce-
nario with noise statistics: 𝑄𝑐 = 0.01, 𝑅𝑐 = 0.01. The input is the same for all simulations.

The parameter value is generated from interval [0.5, 9.5] for each simulation.

An ideal behavior of a robust Kalman filter for this example would be to increase
the covariance matrix during the transient state due to higher uncertainty and decrease
the covariance during the steady state. Put simply, the Kalman filter would rely more
on the measurement information during the transient state and follow the model dy-
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namics during the steady state. Fig. 3.3 depicts that the SDKF-NC behaves according
to these notes. The variance of the SDKF-NC is increased during the transient state,
and it decreases with decreasing impact of the uncertain parameter. In this example,
the variance changes are larger with higher weight settings which confirms the desen-
sitized approach. However, this is true only if the weight results in stable estimates.
For very high weight, the minimum mean square error objective is overweighted with
desensitizing objective, and the state estimation diverges.
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Figure 3.3. The figure shows the mean value of variance from 100 Monte Carlo simulations
for the scenario with noise statistics: 𝑄𝑐 = 4, 𝑅𝑐 = 4.

The Kalman filtering goal is to minimize variance, and the PKF, being the best
estimator, should have the lowest possible variance. Therefore, someone might need
clarification on why the PKF has a larger variance than the IKF in Fig. 3.3. The
explanation is that variance updates are computed based on the model and they are
independent of data. Then the low variance is optimal for some model but the higher
variance might be optimal for the real system. Hence the lowest variance does not infer
the optimality. In this example, the variance for the model with ̂𝜃 is lower than the
average variance for models with the true parameter values.

The accuracy test results are shown using the total root-mean-square error (RMSE)
metric in Fig. 3.4. The RMSE is obtained with the formula

RMSE = √ 1
𝑁

𝑁
∑
𝑘=1

(𝑥𝑘 − ̂𝑥𝑘|𝑘−1 )
2
. (3.38)

When the measurement noise covariance is small, the IKF performs comparably to the
PKF because the algorithm follows the measurement information and does not rely on
model dynamics too much. Therefore, there is no reason to use the SDKF-NC or other
method robust to parameter uncertainty in such a situation. On the other hand, the
SDKF-NC is valuable when the measurement noise is high, and the KF relies more
on the model dynamics. The weight of SDKF-NC needs to be tuned to achieve the
required performance. For example, if the goal is to achieve the lowest total RMSE,
then 𝑊 = 9 accomplishes it in this case.
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Figure 3.4. The figure shows the mean value of total RMSE from 100 Monte Carlo simu-
lations for systems with various noise statistics.

3.2 Exact desensitized Kalman filter

This section uses a stochastic approach to reducing the sensitivity to derive the exact
desensitized Kalman filter (XDKF) published in [J1]. The derivation of the XDKF does
not require the assumption of zero gain sensitivity. On the other hand, by applying this
assumption, the SDKF equivalent is obtained in a form corresponding to the Kalman
filter with the time-varying correlated process and measurement noise. This form is
used to propose a parametrized steady-state XDKF and, consequently, to define the
stability conditions. The adaptive objective normalization technique achieves improved
performance and more intuitive weight tuning.

3.2.1 Linear system

The system in this section is not as general as (3.1). Using the general system (3.1)
to derive the XDKF leads to complicated equations. Instead, a system with uncertain
parameters only in the state propagation equation and no noise correlation is used. This
system allows a clear presentation of the impact of the stochastic sensitivity definition
on the algorithm derivation.

Assume a discrete-time linear stochastic system which depends on a parameter vec-
tor 𝝷 in the state propagation equation

𝘅𝑘+1 = 𝗔(𝝷)𝘅𝑘 + 𝗕(𝝷)𝘂𝑘 + 𝘃𝑘,
𝘆𝑘 = 𝗖𝘅𝑘 + 𝗲𝑘,

(3.39)

where 𝘅𝑘 is the state vector of dimension 𝑁𝑥, 𝘂𝑘 is the input vector of dimension 𝑁𝑢,
𝘆𝑘 is the measurement vector of dimension 𝑁𝑦, 𝝷 is the parameter vector of dimension
𝑁𝜃, and 𝘃𝑘 and 𝗲𝑘 are white noise sequences with statistics

[ 𝘃𝑘
𝗲𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤 𝟬

𝟬 𝗥 ]) . (3.40)

𝗔(𝝷) is 𝑁𝑥 ×𝑁𝑥 matrix, 𝗕(𝝷) is 𝑁𝑥 ×𝑁𝑢 matrix and 𝗖 is 𝑁𝑦 ×𝑁𝑥 matrix. It is possible
to formulate the system with the output matrix 𝗖 dependent on the parameter vector,
but it results in an extensive derivation process. Assuming the parametric dependency
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only in the state propagation equation keeps the algorithm derivation straightforward
and compact. The matrices 𝗔(𝝷), 𝗕(𝝷) are assumed to be linear matrix functions of
parameters

𝗔(𝝷) = 𝗔0 + 𝜃1𝗔1 + 𝜃2𝗔2 + . . . + 𝜃𝑁𝜃
𝗔𝑁𝜃

, (3.41)
𝗕(𝝷) = 𝗕0 + 𝜃1𝗕1 + 𝜃2𝗕2 + . . . + 𝜃𝑁𝜃

𝗕𝑁𝜃
. (3.42)

The linear matrix function descriptions in (3.41) and (3.42) are inspired by Taylor series
expansion of a nonlinear function in the nominal point 𝝷nom

𝑓(𝝷) = 𝑓(𝝷nom) + (∂𝑓(𝝷)/∂𝜃1) |𝝷nom
Δ𝜃1 + (∂𝑓(𝝷)/∂𝜃2) |𝝷nom

Δ𝜃2 + . . . (3.43)

When the parameter value is known, a linear observer for the system (3.39) estimates
the state as

̂𝘅∗
𝑘+1|𝑘 = 𝗔(𝝷) ̂𝘅∗

𝑘|𝑘−1 + 𝗕(𝝷)𝘂𝑘 + 𝗞𝑘 (𝘆𝑘 − 𝗖 ̂𝘅∗
𝑘|𝑘−1 ) , (3.44)

and generates the state prediction error

̃𝘅∗
𝑘+1|𝑘 = 𝘅𝑘+1 − ̂𝘅∗

𝑘+1|𝑘 = (𝗔(𝝷) − 𝗞𝑘𝗖) ̃𝘅∗
𝑘|𝑘−1 + 𝘃𝑘 − 𝗞𝑘𝗲𝑘, (3.45)

where 𝗞𝑘 is a time-variant observer gain. The exact definition of 𝗞𝑘 is not important at
this stage. The mean value of the observer error (3.45) is zero. Therefore, minimizing
its covariance will result in the optimal observer in the minimum mean square error
(MMSE) sense. The optimal observer gain in the MMSE sense is called the Kalman
gain. Time index notations for observer gain will be omitted to keep the text compact.

When the observer is designed using some estimated value �̂�, the true value is defined
as

𝝷 = �̂� + �̃�, (3.46)

where �̃� denotes the parameter uncertainty, which is assumed to be unknown. The
observer state prediction mean becomes

̂𝘅𝑘+1|𝑘 = 𝗔(�̂�) ̂𝘅𝑘|𝑘−1 + 𝗕(�̂�)𝘂𝑘 + 𝗞𝑘 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) , (3.47)

which generates the prediction error

̃𝘅𝑘+1|𝑘 = 𝘅𝑘+1 − ̂𝘅𝑘+1|𝑘 ,

= (𝗔(�̂�) − 𝗞𝑘𝗖) ̃𝘅𝑘|𝑘−1 + 𝘃𝑘 − 𝗞𝑘𝗲𝑘 + �̃�𝘅𝑘 + �̃�𝘂𝑘, (3.48)

where the matrices �̃�, �̃� are defined as

�̃� ≡ 𝗔(𝝷) − 𝗔(�̂�), �̃� ≡ 𝗕(𝝷) − 𝗕(�̂�). (3.49)

Notations �̂� ≡ 𝗔(�̂�) and �̂� ≡ 𝗕(�̂�) will be used to keep the text compact.
Keeping the low sensitivity of prediction error to parameters guarantees that the

parameter error �̃� will have limited impact on ̃𝘅𝑘+1|𝑘 . The sensitivity of (3.48) to a
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parameter ̂𝜃𝑝, 𝑝 = 1, . . . , 𝑁𝜃, is obtained as

𝘀𝑝,𝑘+1|𝑘 ≡
𝑑 ̃𝘅𝑘+1|𝑘

𝑑 ̂𝜃𝑝
, (3.50)

= (�̂� − 𝗞𝗖) 𝘀𝑝,𝑘|𝑘−1 + ( ∂�̂�
∂ ̂𝜃𝑝

− 𝑑𝗞
𝑑 ̂𝜃𝑝

𝗖) ̃𝘅𝑘|𝑘−1 − 𝑑𝗞
𝑑 ̂𝜃𝑝

𝗲𝑘

− ∂�̂�
∂ ̂𝜃𝑝

𝘅𝑘 − ∂�̂�
∂ ̂𝜃𝑝

𝘂𝑘, (3.51)

= (�̂� − 𝗞𝗖) 𝘀𝑝,𝑘|𝑘−1 + (𝗔𝑝 − 𝗞𝜃𝑝
𝗖) ̃𝘅𝑘|𝑘−1 − 𝗞𝜃𝑝

𝗲𝑘

− 𝗔𝑝𝘅𝑘 − 𝗕𝑝𝘂𝑘, (3.52)

= (�̂� − 𝗞𝗖) 𝘀𝑝,𝑘|𝑘−1 − 𝗞𝜃𝑝
𝗖 ̃𝘅𝑘|𝑘−1 − 𝗞𝜃𝑝

𝗲𝑘

− 𝗔𝑝 ̂𝘅𝑘|𝑘−1 − 𝗕𝑝𝘂𝑘, (3.53)

where 𝗔𝑝, 𝗕𝑝 are the matrix coefficients of linear matrix functions defined in (3.41) and
(3.42), and

𝗞𝜃𝑝
≡ 𝑑𝗞

𝑑 ̂𝜃𝑝
. (3.54)

The sensitivity (3.50) is intentionally computed as a derivative with respect to pa-
rameter value ̂𝜃𝑝 rather than a derivative to a true value 𝜃𝑝 with approximation in the
parameter ̂𝜃𝑝

𝑑 ̃𝘅𝑘+1|𝑘

𝑑𝜃𝑝
∣
𝜃𝑝= ̂𝜃𝑝

. (3.55)

For example, take a state estimation where ̂𝜃𝑝 = 𝜃𝑝. In this case, the optimal state esti-
mation solution is the standard KF, and reducing the sensitivity to the true parameter
or any other parameter will only worsen the performance. Therefore, high sensitivity
to a parameter does not generally cause high state estimation error. Using the sensitiv-
ity definition (3.55) would make sense if the error ̃𝘅𝑘+1|𝑘 would be defined using only
the true parameter. Then it would approximate the sensitivity of the error to the real
parameter in the selected parameter value. However, the state estimation error (3.48)
explicitly defines the impact of the selected parameter ̂𝜃𝑝. Then the reduction can tar-
get the sensitivity of the state estimation to the selected parameter while not affecting
irrelevant high sensitivity to the true parameter.

Note that the real state 𝘅𝑘 is independent of ̂𝜃𝑝. This property is not used directly
in the definition of the sensitivity (3.50) as it is done in the DKF. It is used only
after evaluation of the prediction error derivative to eliminate the element �̃� (∂𝘅𝑘/∂ ̂𝜃𝑝),
which would otherwise appear in (3.53). This approach allows exploiting the stochastic
properties of the filter, e.g., the nonzero mean of the prediction error sequence caused
by a model bias. Consequently, the sensitivity is defined as the sensitivity of the true
prediction error rather than the sensitivity of the Kalman filter mean estimate.

3.2.2 Optimal filter

The optimal Kalman gain can be derived by minimization of the mean square prediction
error

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = tr 𝔼 [ ̃𝘅𝑘+1|𝑘 ̃𝘅𝑇
𝑘+1|𝑘 ]. (3.56)
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However, using such criterion results in the estimator, which does not use information
about the accuracy of model parameters. Model parameters are often uncertain or
biased, which can be caused by model simplification, linearization, or identification
from data. Incorporating information about the possible inaccuracy of parameters in
state estimation algorithm design can be done in several ways. In this thesis, a state
estimation method with dual objectives is proposed. First, the state estimation error
is minimized as it is in the standard Kalman filter. Secondly, the state prediction error
sensitivity to parameters is minimized. The sensitivity is a random variable with the
second non-central moment

𝔼 [𝘀𝑝,𝑘+1|𝑘 𝘀𝑇
𝑝,𝑘+1|𝑘 ] = ̂𝘀𝑝,𝑘+1|𝑘 ̂𝘀𝑇

𝑝,𝑘+1|𝑘 + cov (𝘀𝑝,𝑘+1|𝑘 ) . (3.57)

Minimizing only a trace of the sensitivity covariance (second central moment) would
minimize the variations around the sensitivity mean. Therefore, the trace of the second
non-central moment needs to be minimized to minimize the sensitivity. These objectives
are achieved by minimizing the optimization criterion defined as a convex combination
of second moments

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = 𝛼 tr 𝗣𝑥𝑥
𝑘+1|𝑘 + ∑

𝑝
𝛾𝑝 tr 𝗣𝑝,𝑠𝑠

𝑘+1|𝑘 ,

𝛼 ≡ 1 − ∑
𝑝

𝛾𝑝, 0 ≤ ∑
𝑝

𝛾𝑝 < 1, and 𝛾𝑝 ≥ 0,
(3.58)

where the second central moment of the state is denoted as

𝗣𝑥𝑥
𝑘+1|𝑘 ≡ 𝔼 [ ̃𝘅𝑘+1|𝑘 ̃𝘅𝑇

𝑘+1|𝑘 ] , (3.59)

and the second non-central moment of the sensitivity is denoted as

𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 ≡ 𝔼 [𝘀𝑝,𝑘+1|𝑘 𝘀𝑇

𝑝,𝑘+1|𝑘 ] . (3.60)

Notation in (3.60) is usually reserved for the second central moment. However, here it
is used to denote both central and non-central moments, which helps to increase text
readability. In the following text, the subscript 𝑘 at gain 𝗞𝑘 is omitted to keep the text
lucid. The second moment of sensitivity can be evaluated as

𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ (−𝗞𝜃𝑝
𝗖)𝗣𝑥𝑥

𝑘|𝑘−1 (−𝗞𝜃𝑝
𝗖)

𝑇

+ (−𝗞𝜃𝑝
𝗖)𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ (�̂� − 𝗞𝗖)𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 (−𝗞𝜃𝑝

𝗖)
𝑇

+ 𝗞𝜃𝑝
𝗥𝗞𝑇

𝜃𝑝
+ (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)

𝑇

− (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 (�̂� − 𝗞𝗖)

𝑇

− (�̂� − 𝗞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)
𝑇

, (3.61)

where the notation 𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 ≡ 𝔼 [𝘀𝑝,𝑘|𝑘−1 ̃𝘅𝑇

𝑘|𝑘−1 , ] 𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 ≡ 𝔼 [ ̃𝘅𝑘|𝑘−1 𝘀𝑇

𝑝,𝑘|𝑘−1 ] is used.
The rest of the second moments are evaluated as

𝗣𝑥𝑥
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑥𝑥

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ 𝗞𝗥𝗞𝑇 + 𝗤, (3.62)

𝗣𝑝,𝑥𝑠
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

− (�̂� − 𝗞𝗖)𝗣𝑥𝑥
𝑘|𝑘−1 𝗖𝑇𝗞𝑇

𝜃𝑝
+ 𝗞𝗥𝗞𝑇

𝜃𝑝
,(3.63)

𝗣𝑝,𝑠𝑥
𝑘+1|𝑘 = (𝗣𝑝,𝑥𝑠

𝑘+1|𝑘 )
𝑇

. (3.64)
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The optimal gain 𝗞 can be found by solving the equation

∂𝐽
∂𝗞

= 0. (3.65)

The derivatives of the criterion objectives required to evaluate (3.65) are

∂ tr 𝗣𝑥𝑥
𝑘+1|𝑘

∂𝗞
= −2�̂�𝗣𝑥𝑥

𝑘|𝑘−1 𝗖𝑇 + 2𝗞 (𝗖𝗣𝑥𝑥
𝑘|𝑘−1 𝗖𝑇 + 𝗥) , (3.66)

∂ tr 𝗣𝑝,𝑠𝑠
𝑘+1|𝑘

∂𝗞
= −2�̂�𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 𝗖𝑇 + 2𝗞𝜃𝑝
𝗖𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 𝗖𝑇 + 2𝗞𝗖𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 𝗖𝑇

+ 2 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇. (3.67)

The resulting equation for optimal gain is obtained by substituting (3.66) and (3.67)
to (3.65)

𝗞 [𝛼 (𝗖𝗣𝑥𝑥
𝑘|𝑘−1 𝗖𝑇 + 𝗥) + ∑

𝑝
𝛾𝑝𝗖𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 𝗖𝑇] + ∑
𝑝

𝛾𝑝𝗞𝜃𝑝
𝗖𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 𝗖𝑇 =

= 𝛼 (�̂�𝗣𝑥𝑥
𝑘|𝑘−1 𝗖𝑇) + ∑

𝑝
𝛾𝑝 [�̂�𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 𝗖𝑇 − (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇]. (3.68)

Since the multiplier of the gain 𝗞 in (3.68) is always a positive definite matrix, the
optimal gain can be expressed as

𝗞 = [�̂� (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 + 𝗦𝑘]

× [𝗖 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]
−1

, (3.69)

where

𝗦𝑘 = − ∑
𝑝

𝛾𝑝 [𝗞𝜃𝑝
𝗖𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 𝗖𝑇 + (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇] . (3.70)

The optimal gain definition (3.69) is an implicit equation

𝗞 = 𝗳𝐾 ( 𝑑𝗞
𝑑 ̂𝜃𝑝

) . (3.71)

The solution of (3.71) can be found by a fixed-point iteration method. First, an implicit
matrix function is obtained by calculating the derivative of 𝗞 1

𝑑𝗞
𝑑 ̂𝜃𝑝

= ∂𝗞
∂ ̂𝜃𝑝

+
𝑁𝑥

∑
𝑖=1

𝑁𝑥

∑
𝑗=1

∂𝗞
∂ ̂𝐴𝑖𝑗

𝑑 ̂𝐴𝑖𝑗

𝑑 ̂𝜃𝑝
, (3.72)

1 Note that if there were uncertain parameters in the output equation, additional elements ∂ ̂𝐶𝑖𝑗/∂ ̂𝜃𝑝
would appear in (3.72). Such generalization also leads to a result, but the derivation process is extensive.
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where ̂𝐴𝑖𝑗 is an element of �̂�. The partial derivatives of prior second moments with
respect to the parameter are considered zero. The derivative in (3.72) can be evaluated
as

𝑑𝗞
𝑑 ̂𝜃𝑝

= −𝛾𝑝
∂

∂ ̂𝜃𝑝

𝑑𝗞
𝑑 ̂𝜃𝑝

𝗖𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗖𝑇 [𝗖 (𝛼𝗣𝑥𝑥

𝑘|𝑘−1 + ∑
𝑝

𝛾𝑝𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]

−1

+
𝑁𝑥

∑
𝑖=1

𝑁𝑥

∑
𝑗=1

[𝗧𝐴
𝑖𝑗 (𝛼𝗣𝑥𝑥

𝑘|𝑘−1 + ∑
𝑝

𝛾𝑝𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 ) 𝗖𝑇]

× [𝗖 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]
−1

𝐴𝑝,𝑖𝑗, (3.73)

and it can be modified to

𝑑𝗞
𝑑 ̂𝜃𝑝

= [𝗔𝑝 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 − 𝛾𝑝
∂

∂ ̂𝜃𝑝

𝑑𝗞
𝑑 ̂𝜃𝑝

𝗖𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗖𝑇]

× [𝗖 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]
−1

, (3.74)

where 𝐴𝑝,𝑖𝑗 is the element of 𝗔𝑝 from the definition of 𝗔 in (3.41) and 𝗧𝐴
𝑖𝑗 ≡ ∂�̂�/∂ ̂𝐴𝑖𝑗

is the structure matrix of �̂� [57]. Here, a general structure of �̂� is assumed, so 𝗧𝐴
𝑖𝑗 is a

single-entry matrix. The implicit equation (3.73) can be shortened to

𝗞𝜃𝑝
= 𝗳𝐾𝜃

(𝗞𝜃𝑝
) , (3.75)

and modified into an iterated matrix function form

𝗞(𝑛+1)
𝜃𝑝

= 𝗳𝐾𝜃
(𝗞(𝑛)

𝜃𝑝
) , (3.76)

where 𝑛 is the iteration number. The fixed-point solution 𝗞𝜃𝑝
can be found if the

sequence 𝗞(0)
𝜃𝑝

, 𝗞(1)
𝜃𝑝

, 𝗞(2)
𝜃𝑝

, . . . converges for an arbitrary selected 𝗞(0)
𝜃𝑝

. Let’s start with

selecting 𝗞(0)
𝜃𝑝

such that 𝗞(0)
𝜃𝑝

≠ 𝟬 and the partial derivative ∂𝗞(0)
𝜃𝑝

/∂ ̂𝜃𝑝 = 0, i.e., 𝗞(0)
𝜃𝑝

is
nonzero and independent of ̂𝜃𝑝. Then the first iteration is evaluated as

𝗞(1)
𝜃𝑝

= [𝗔𝑝 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇]

× [𝗖 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]
−1

. (3.77)

Notice that 𝗞(1)
𝜃𝑝

does not depend on 𝗞(0)
𝜃𝑝

nor ̂𝜃𝑝. Then, the second iteration 𝗞(2)
𝜃𝑝

and

all that follows will be identical to 𝗞(1)
𝜃𝑝

. Therefore, the fixed point solution is found in
a single iteration. The fixed point solution of (3.75), i.e., the optimal gain sensitivity,
is given by (3.77).

Since the formula in (3.77) does not depend on 𝗞(𝑛)
𝜃𝑝

from the previous iterations, the
resulting state estimation algorithm does not need to repeat the iteration process, and
the gain sensitivities 𝗞𝜃𝑝

can be calculated explicitly. The derived algorithm is denoted
exact desensitized Kalman filter (XDKF), which is summed up in Algorithm 3.3.
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Algorithm 3.3 (eXact Desensitized Kalman Filter— XDKF).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣𝑥𝑥
𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 , 𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 , 𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 .

. Compute the gain sensitivity 𝗞𝜃𝑝
for all 𝑝 = 1, . . . , 𝑁𝜃 using (3.77).

. Compute the optimal gain 𝗞 using (3.69).

. Update the state, sensitivity, and second moments

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

̂𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 − 𝗔𝑝 ̂𝘅𝑘|𝑘−1 − 𝗕𝑝𝘂𝑘 − 𝗞𝜃𝑝
(𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

𝗣𝑥𝑥
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑥𝑥

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ 𝗞𝗥𝗞𝑇 + 𝗤,

𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ (−𝗞𝜃𝑝
𝗖)𝗣𝑥𝑥

𝑘|𝑘−1 (−𝗞𝜃𝑝
𝗖)

𝑇

+ (−𝗞𝜃𝑝
𝗖)𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ (�̂� − 𝗞𝗖)𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 (−𝗞𝜃𝑝

𝗖)
𝑇

+ 𝗞𝜃𝑝
𝗥𝗞𝑇

𝜃𝑝
+ (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)

𝑇

− (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 (�̂� − 𝗞𝗖)

𝑇

− (�̂� − 𝗞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)
𝑇

,

𝗣𝑝,𝑥𝑠
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑝,𝑥𝑠

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

− (�̂� − 𝗞𝗖)𝗣𝑥𝑥
𝑘|𝑘−1 𝗖𝑇𝗞𝑇

𝜃𝑝
+ 𝗞𝗥𝗞𝑇

𝜃𝑝
,

𝗣𝑝,𝑠𝑥
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑝,𝑠𝑥

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

− 𝗞𝜃𝑝
𝗖𝗣𝑥𝑥

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ 𝗞𝜃𝑝
𝗥𝗞𝑇.

3.2.3 Suboptimal filters

This section introduces suboptimal solutions focused on implementation complexity in
real applications. Presented methods are easier to implement, and some have lower
computational burden than the optimal XDKF. Furthermore, the performance of the
suboptimal algorithms in terms of state estimation accuracy is not degraded. They can
also serve as a starting point for deriving numerically robust versions of the XDKF,
which is crucial for industrial applications.

Zero gain sensitivity. First, the solution of the minimization problem (3.58) is
simplified by adding the following assumption

Assumption 3.2. For all ̂𝜃𝑝, 𝑝 = 1, . . . , 𝑁𝜃: 𝗞𝜃𝑝
= 𝟬.

The meaning of Assumption 3.2 is the same as in Assumption 3.1. It is repeated here
to emphasize its impact in the XDKF context. The rationale behind Assumption 3.2
is that reducing the state estimation sensitivity to parameters results in reducing the
amplitude of 𝗞𝜃𝑝

. Then the impact of 𝗞𝜃𝑝
is small and can be eliminated. Minimizing

(3.58) using Assumption 3.2 results in the gain (3.69) where the term 𝗦𝑘 (3.70) is
simplified to

𝗦𝑘 = − ∑
𝑝

𝛾𝑝 [(𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇] . (3.78)

There are two important consequences of applying Assumption 3.2. Firstly, the cross
terms 𝗣𝑝,𝑠𝑥, 𝗣𝑝,𝑥𝑠 need not be updated because they are no longer used in (3.61).
Secondly, the sensitivity update (3.53) is simplified to

𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞𝗖) 𝘀𝑝,𝑘|𝑘−1 − 𝗔𝑝 ̂𝘅𝑘|𝑘−1 − 𝗕𝑝𝘂𝑘, (3.79)

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Exact desensitized Kalman filter

i.e., Assumption 3.2 eliminates the stochastic terms 𝗲𝑘, ̃𝘅𝑘|𝑘−1 from the sensitivity up-
date. Therefore, 𝘀𝑝,𝑘+1|𝑘 is no longer a stochastic variable but a deterministic variable.
Consequently, 𝘀𝑝,𝑘+1|𝑘 = ̂𝘀𝑝,𝑘+1|𝑘 and the second moment update (3.61) is reduced to

𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 = 𝔼 [𝘀𝑝,𝑘+1|𝑘 𝘀𝑇

𝑝,𝑘+1|𝑘 ] = ̂𝘀𝑝,𝑘+1|𝑘 ̂𝘀𝑇
𝑝,𝑘+1|𝑘 . (3.80)

Equation (3.80) implies that updating the 𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 is unnecessary since it can be directly

computed from the sensitivity anytime.
The XDKF algorithm with the zero gain sensitivity assumption (XDKF-Z) is summed

up in Algorithm 3.4.

Algorithm 3.4 (XDKF with the zero gain sensitivity assumption—XDKF-Z).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 .

. Compute the auxiliary variable

𝗦𝑘 = − ∑
𝑝

𝛾𝑝 [(𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇] .

. Compute the gain

𝗞 = [�̂� (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝 ̂𝘀𝑝,𝑘|𝑘−1 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 ) 𝗖𝑇 + 𝗦𝑘]

× [𝗖 (𝛼𝗣𝑥𝑥
𝑘|𝑘−1 + ∑

𝑝
𝛾𝑝 ̂𝘀𝑝,𝑘|𝑘−1 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 ) 𝗖𝑇 + 𝛼𝗥]
−1

.

. Update the state prediction and the second moments

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

̂𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 − (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ,

𝗣𝑥𝑥
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣𝑥𝑥

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ 𝗞𝗥𝗞𝑇 + 𝗤.

It is important to note that the XDKF-Z defined in Algorithm 3.4 is an equivalent of
the DKF special case in Algorithm 3.2. In other words, the XDKF is reduced to the
SDKF by applying Assumption 3.2.

In order to analyze the algorithm in more detail, the XDKF-Z form needs to be
further modified. First, the covariance updates can be aggregated to the cumulative
update of weighted second moments

𝗣Σ
𝑘+1|𝑘 = (�̂� − 𝗞𝗖)𝗣Σ

𝑘|𝑘−1 (�̂� − 𝗞𝗖)
𝑇

+ 𝗞 (𝛼𝗥) 𝗞𝑇 + 𝗤Σ
𝑘|𝑘−1

− 𝗦𝑘|𝑘−1 𝗞𝑇 − 𝗞𝗦𝑇
𝑘|𝑘−1 , (3.81)

where

𝗣Σ
𝑘|𝑘−1 = 𝛼𝗣𝑥𝑥

𝑘|𝑘−1 + ∑
𝑝

𝛾𝑝 ̂𝘀𝑝,𝑘|𝑘−1 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 , (3.82)

𝗤Σ
𝑘|𝑘−1 = 𝛼𝗤 + ∑

𝑝
𝛾𝑝 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)

𝑇

− (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 �̂�

𝑇

− �̂� ̂𝘀𝑝,𝑘|𝑘−1 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)
𝑇

, (3.83)

𝗦𝑘|𝑘−1 = − ∑
𝑝

𝛾𝑝 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇. (3.84)
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When the XDKF-Z gain (3.69) with (3.78) is substituted into (3.81), the weighted
cumulative update can be rewritten into the form of difference Riccati equation (DRE)

𝗣Σ
𝑘+1|𝑘 = �̂�𝗣Σ

𝑘|𝑘−1 �̂�
𝑇

+ 𝗤Σ
𝑘|𝑘−1 −

− (�̂�𝗣Σ
𝑘|𝑘−1 𝗖𝑇 + 𝗦𝑘|𝑘−1 ) (𝗖𝗣Σ

𝑘|𝑘−1 𝗖𝑇 + 𝛼𝗥)
−1

×

× (𝗖𝗣Σ
𝑘|𝑘−1 �̂�

𝑇
+ 𝗦𝑇

𝑘|𝑘−1 ) . (3.85)

The weighted cumulative update in (3.85) can be used instead of individual updates if
the knowledge of the individual second moments is not required. Then the gain can be
formulated using the cumulative second moment (3.82) as

𝗞 = (�̂�𝗣Σ
𝑘|𝑘−1 𝗖𝑇 + 𝗦𝑘|𝑘−1 ) (𝗖𝗣Σ

𝑘|𝑘−1 𝗖𝑇 + 𝛼𝗥)
−1

. (3.86)

Using the weighted cumulative update to update the state estimate is sufficient. Notice
the similarity between the cumulative update (3.85) and the standard Kalman filter
with the correlated process and measurement noise in (3.6), (3.7). Equations (3.85)
and (3.86) correspond to the covariance update and gain of the standard Kalman filter
where the process and measurement noise is described by time-variable statistics

[ 𝘃𝑘
𝗲𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [

𝗤Σ
𝑘|𝑘−1 𝗦𝑘|𝑘−1

𝗦𝑇
𝑘|𝑘−1 𝛼𝗥

]) . (3.87)

The cumulative form of the XDKF-Z is summarized in Algorithm 3.5.

Algorithm 3.5 (XDKF-Z with cumulative update).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣Σ
𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1. Compute the auxiliary variables

𝗦𝑘|𝑘−1 = − ∑
𝑝

𝛾𝑝 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇,

𝗤Σ
𝑘|𝑘−1 = 𝛼𝗤 + ∑

𝑝
𝛾𝑝 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)

𝑇

− (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 �̂�

𝑇

− �̂� ̂𝘀𝑝,𝑘|𝑘−1 (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘)
𝑇

.

. Compute the gain using (3.86)

𝗞 = (�̂�𝗣Σ
𝑘|𝑘−1 𝗖𝑇 + 𝗦𝑘|𝑘−1 ) (𝗖𝗣Σ

𝑘|𝑘−1 𝗖𝑇 + 𝛼𝗥)
−1

.

. Update the state, sensitivity, and cumulative second moment

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

̂𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 − (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) ,

𝗣Σ
𝑘+1|𝑘 = �̂�𝗣Σ

𝑘|𝑘−1 �̂�
𝑇

+ 𝗤Σ
𝑘|𝑘−1 − 𝗞 (𝗖𝗣Σ

𝑘|𝑘−1 �̂�
𝑇

+ 𝗦𝑇
𝑘|𝑘−1 ) .
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Remark 3.3. The XDKF-Z applied to a stochastic system with uncertain parameters
gives the result equivalent to the standard KF applied to a stochastic system where
correlated process and measurement noise covariances are interpreted with uncertainty
in the parameters.

Steady-state solution. The steady-state solution of the optimal gain is particularly
useful for applications in embedded devices with limited computing power. The steady-
state gain of the standard Kalman filter can be found by solving the algebraic Riccati
equation (ARE). Then it is used as a fixed gain, so the embedded device needs to eval-
uate only the state estimation update equation (3.47). Unfortunately, the steady-state
gain cannot be found for desensitized filters due to the dependency of the gain (3.86)
on the state estimate, sensitivity, and input. Therefore, the gain-scheduled steady-state
solution is proposed.

When the time indices are omitted from (3.85), the weighted cumulative update can
be rewritten in the ARE form

𝗣Σ (𝘇) = �̂�𝗣Σ (𝘇)�̂�
𝑇

+ 𝗤Σ (𝘇) −

− (�̂�𝗣Σ (𝘇)𝗖𝑇 + 𝗦 (𝘇)) (𝗖𝗣Σ (𝘇)𝗖𝑇 + 𝛼𝗥)
−1

×

× (𝗖𝗣Σ (𝘇)�̂�
𝑇

+ 𝗦 (𝘇)) , (3.88)

which is parametrized by

𝘇 = [ ̂𝘅𝑇
𝑘|𝑘−1 𝘂𝑇

𝑘 ̂𝘀𝑇
1,𝑘|𝑘−1 . . . ̂𝘀𝑇

𝑁𝜃,𝑘|𝑘−1 ]𝑇 . (3.89)

The steady-state solution 𝗣Σ(𝘇) of the weighted cumulative update for the given 𝘇
can be computed using various numerical methods for solving the ARE. Then the
parameterized solution is used to obtain the steady-state gain parametrized by 𝘇

𝗞∞ (𝘇) = (�̂�𝗣Σ (𝘇)𝗖𝑇 + 𝗦 (𝘇)) (𝗖𝗣Σ (𝘇)𝗖𝑇 + 𝛼𝗥)
−1

. (3.90)

The value of 𝘇 can change during estimation, so the real steady-state gain does not
exist. The steady-state gain in (3.90) defines the steady-state gain, which would lead
to steady-state 𝗣Σ(𝘇) if 𝘇 is constant.

If the dependency of 𝗣Σ and 𝗞∞ on 𝘇 is smooth, then in case of operation in a
point 𝘇0 it may be acceptable to approximate the gains of the XDKF-Z by the steady-
state gain (3.90). For example, the steady-state gains of system (3.120) are depicted in
Figure 3.5. It can be seen that the gain is smooth, and the relative change of the gain
for different weight 𝛾 is below 10 % in the neighborhood of the selected state ̂𝘅0 = 𝟬,
hence it may be acceptable to use the steady-state approach.

The algorithm XDKF-S, which uses the steady-state gains, is summarized in Algo-
rithm 3.6.
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Figure 3.5. The figure shows steady-state gain 𝐾1 for the system in (3.120) as a function
of state 𝑥2. The function is evaluated with zero sensitivity value.

Algorithm 3.6 (XDKF with steady-state gains— XDKF-S).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 .

. Solve the ARE (3.88) and obtain steady-state gain 𝗞∞ using (3.90).

. Update the state and sensitivity

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞∞ (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

̂𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞∞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 − (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) .

An efficient way to apply the steady-state gain (3.90) is to precompute the steady-
state gains of the XDKF-S offline. The gains should be precalculated for application-
specific operating points. Then a gain scheduling method needs to be used at each
iteration to select the gain corresponding to ̂𝘅𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 and 𝘂𝑘. The accuracy of
this method depends on the selection of operating points for precomputing the gains.
Such an approach is commonly used for control algorithms in practice. The algorithm
is summarized in Algorithm 3.7.

Algorithm 3.7 (XDKF-S with gain scheduling).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1. Use a look-up table, interpolation, or other gain scheduling method to determine the
precomputed steady-state gain at the operating point 𝘇

𝗞∞ = gainSchedulingMethod (𝘂𝑘, ̂𝘅𝑘|𝑘−1 , ̂𝘀1,𝑘|𝑘−1 , . . . , ̂𝘀𝑁𝜃,𝑘|𝑘−1 ) .

. Update the state prediction

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗞∞ (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

̂𝘀𝑝,𝑘+1|𝑘 = (�̂� − 𝗞∞𝗖) ̂𝘀𝑝,𝑘|𝑘−1 − (𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘) .
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3.2.4 Separated steps

All XDKF algorithms are derived in a single step form, i.e., combining the data update
and time update steps. Sometimes, this form is not practical, and the data update
(filtering) step and time update (prediction) step need to be separated. Thanks to the
similarity with the standard Kalman filter, the single-step XDKF-Z in Algorithm 3.5 can
be separated by decorrelating the process and measurement noise correlated by (3.84).
The method for steps separation shown in [58] and [C3] updates the process noise
statistics based on the output measurement

̂𝘃𝑘|𝑘 = 𝔼 [𝘃𝑘] − 𝗦𝑘 (𝛼𝗥)−1 (𝗲𝑘 − 𝔼 [𝗲𝑘]) ,

= −𝗦𝑘 (𝛼𝗥)−1 (𝘆𝑘 − 𝗖𝘅𝑘) , (3.91)

𝗤Σ
𝑘|𝑘 = 𝗤Σ

𝑘|𝑘−1 − 𝗦𝑘 (𝛼𝗥)−1 (𝗦𝑘)𝑇 . (3.92)
Note that the process noise estimate ̂𝘃𝑘|𝑘 is not correlated with the measurement noise.
Then ̂𝘃𝑘|𝑘 can be used to transform the state propagation equation (3.39) into

𝘅𝑘+1 = (𝗔(𝝷) − 𝗦𝑘 (𝛼𝗥)−1 𝗖) 𝘅𝑘 + 𝗕(𝝷)𝘂𝑘 − 𝗦𝑘 (𝛼𝗥)−1 𝘆𝑘 + 𝘃dc
𝑘 , (3.93)

with the decorrelated process and measurement noise

[ 𝘃dc
𝑘

𝗲𝑘
] = 𝒩 ([ 𝟬

𝟬 ] , [ 𝗤Σ
𝑘|𝑘 𝟬
𝟬 𝛼𝗥 ]) . (3.94)

Similarly to the standard Kalman filter with the non-correlated process and measure-
ment noise, the algorithm can be split into a data-update step and a time-update step.
The final two-step algorithm is described in Algorithm 3.8.
Algorithm 3.8 (XDKF-Z with separated steps).

. Given 𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣Σ
𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 .

. Compute the auxiliary variables
𝗯𝑝,𝑘 = 𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘,

𝗦𝑘|𝑘−1 = − ∑
𝑝

𝛾𝑝𝗯𝑝,𝑘 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇,

𝗤Σ
𝑘|𝑘−1 = 𝛼𝗤 + ∑

𝑝
𝛾𝑝 (𝗯𝑝,𝑘𝗯𝑇

𝑝,𝑘 − 𝗯𝑝,𝑘 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 �̂�

𝑇
− �̂� ̂𝘀𝑝,𝑘|𝑘−1 𝗯𝑇

𝑝,𝑘) .

. Data-update step

𝗞𝑘 = 𝗣Σ
𝑘|𝑘−1 𝗖𝑇 (𝗖𝗣Σ

𝑘|𝑘−1 𝗖𝑇 + 𝛼𝗥)
−1

,

̂𝘅𝑘|𝑘 = ̂𝘅𝑘|𝑘−1 + 𝗞𝑘 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,
̂𝘀𝑝,𝑘|𝑘 = ̂𝘀𝑝,𝑘|𝑘−1 − 𝗞𝑘𝗖 ̂𝘀𝑝,𝑘|𝑘−1 ,

𝗣Σ
𝑘|𝑘 = 𝗣Σ

𝑘|𝑘−1 − 𝗞𝑘𝗖𝗣Σ
𝑘|𝑘−1 .

. Time-update step
�̂�dc = �̂� − 𝗦𝑘 (𝛼𝗥)−1 𝗖,

𝗤Σ
𝑘|𝑘 = 𝗤Σ

𝑘|𝑘−1 − 𝗦𝑘 (𝛼𝗥)−1 (𝗦𝑘)𝑇 ,

̂𝘅𝑘+1|𝑘 = �̂�dc ̂𝘅𝑘|𝑘 + �̂�𝘂𝑘 + 𝗦𝑘 (𝛼𝗥)−1 𝘆𝑘,

̂𝘀𝑝,𝑘+1|𝑘 = �̂�dc ̂𝘀𝑝,𝑘|𝑘 − 𝗯𝑝,𝑘,

𝗣Σ
𝑘+1|𝑘 = �̂�dc𝗣Σ

𝑘|𝑘 (�̂�dc)
𝑇

+ 𝗤Σ
𝑘|𝑘.

A numerically robust formulation of Algorithm 3.8 is proposed in Appendix A.
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3.2.5 Stability

Formulation of the second moment updates in the form of the Riccati equation is
an important result since this matrix equation is well studied with many published
results regarding its solution and stability. Anderson and Moore [59] proved that the
exponential stability of the Kalman filter is obtained when the stochastic system is
uniformly detectable and stabilizable. The proof of this theorem and all other published
proofs of Kalman filter asymptotic stability exploit its minimum-variance property.
According to the definition of detectability, if the pair (�̂�, 𝗖) is detectable, there exists
some 𝗟 such that (�̂� − 𝗟𝗖) is asymptotically stable. Then an asymptotically stable
filter is obtained as

̂𝘅𝑘+1|𝑘 = �̂� ̂𝘅𝑘|𝑘−1 + �̂�𝘂𝑘 + 𝗟 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) ,

𝗣𝑥𝑥
𝑘+1|𝑘 = (�̂� − 𝗟𝗖) 𝗣𝑥𝑥

𝑘|𝑘−1 (�̂� − 𝗟𝗖)
𝑇

+ 𝗤 + 𝗟𝗥𝗟𝑇.
(3.95)

The covariance is updated using the Lyapunov equation with a stable matrix (�̂� − 𝗟𝗖),
which implies that the covariance is bounded. The trace of the covariance matrix will
be minimized when the optimal Kalman filter gain is used since it is the minimum-
variance filter. Because the XDKF in Algorithm 3.3 with zero 𝛾𝑝 weights is identical to
the standard Kalman filter, the stability conditions for the XDKF can be formulated
by Theorem 3.1.

Theorem3.1 (Stable XDKF existence). Assume the system (3.39) where the pair (�̂�, 𝗖)
is detectable, the pair (�̂�, 𝗤1/2) is stabilizable, and 𝗣0|−1 ⪰ 0. Then there exist weights
𝛾𝑝, 0 ≤ ∑𝑝 𝛾𝑝 < 1, and 𝛾𝑝 ≥ 0, such that the XDKF applied to the system (3.39) is
stable.

Proof. The XDKF is reduced to the standard Kalman filter by setting all weights to
zero. Anderson and Moore [59] proved that the detectability of the pair (�̂�, 𝗖) and the
stabilizability of the pair (�̂�, 𝗤1/2) are sufficient conditions to obtain the exponential
stability of the standard Kalman filter. ∎

The nonzero 𝛾𝑝 weights weaken the minimum-variance property but decrease the
sensitivity to parameter error. Therefore, in general, the matrix (�̂� − 𝗞𝗖) with gain
𝗞 obtained by the XDKF may not be stable for all weights 𝛾𝑝. Consequently, the
XDKF is not generally stable for all weights 𝛾𝑝. The definition of stability constraints
on weights 𝛾𝑝 for a given system is an open question.

The stability of XDKF-S in Algorithm 3.6 can be analyzed easier because the gain
is calculated from ARE (3.88) which can be rewritten in an equivalent form with the
decorrelated process and measurement noise using the method in Section 3.2.4

𝗣Σ = 𝗔dc𝗣Σ𝗔𝑇
dc + 𝗤dc − 𝗔dc𝗣Σ𝗖𝑇 (𝗖𝗣Σ𝗖𝑇 + 𝛼𝗥)

−1
𝗖𝗣Σ𝗔𝑇

dc, (3.96)

where

𝗔dc = �̂� − 𝗦 (𝘇) (𝛼𝗥)−1 𝗖, (3.97)
𝗤dc = 𝗤Σ (𝘇) − 𝗦 (𝘇) (𝛼𝗥)−1 𝗦𝑇 (𝘇) . (3.98)

The essential requirement is that matrix 𝗤dc needs to be a positive semidefinite matrix.
By evaluating the elements in (3.98), the requirement can be written into following
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condition

0 ⪯ 𝗤 + ∑
𝑝

𝛾𝑝

𝛼
(𝗯𝑝,𝑘𝗯𝑇

𝑝,𝑘 − 𝗯𝑝,𝑘 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 �̂�

𝑇
− �̂� ̂𝘀𝑝,𝑘|𝑘−1 𝗯𝑇

𝑝,𝑘) −

− ∑
𝑝

(
𝛾𝑝

𝛼
)

2
𝗯𝑝,𝑘 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 𝗖𝑇𝗥−1𝗖 ̂𝘀𝑝,𝑘|𝑘−1 𝗯𝑇
𝑝,𝑘, (3.99)

where

𝗯𝑝,𝑘 = 𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘. (3.100)

From the definition, 𝗥 is a positive definite matrix, and 𝗤 is a positive semidefinite
matrix. Then there exists a decomposition

𝗤 = 𝝘𝝘𝑇. (3.101)

If the condition (3.99) is satisfied, the following decomposition exists

𝗤dc = 𝝘dc𝝘𝑇
dc. (3.102)

Goodwin and Sin [60] proved that the ARE (3.96) has the unique limiting positive
semidefinite solution, if the pair (𝗔dc, 𝗖) is observable and the pair (𝗔dc, 𝝘dc) is stabiliz-
able. Following theorem shows that checking the pairs (�̂�, 𝗖), (�̂�, 𝝘dc) for observability
and stabilizability is sufficient.

Theorem 3.2 (Equivalent pairs). Let (3.39) be a system with substituted parameter
vector �̂� such that the pair (�̂�, 𝗖) is observable and the pair (�̂�, 𝝘dc) is stabilizable.
Assume that 𝗤dc ≻ 0 is true for 𝗤dc (3.98) applied to the system. Then also the pair
(𝗔dc, 𝗖) is observable and the pair (𝗔dc, 𝝘dc) is stabilizable for 𝗔dc (3.97) applied to
the system.

Proof. First, the pair (�̂�, 𝝘dc) is stabilizable; therefore, the corresponding observability
matrix 𝓞 has full rank. There exist a full rank matrix 𝗧o such that

𝗧o𝓞 = 𝓞dc, (3.103)

where

𝓞 =
⎡
⎢
⎢
⎣

𝗖
𝗖�̂�

...
𝗖�̂�

𝑁𝑥−1

⎤
⎥
⎥
⎦

, 𝓞dc =
⎡
⎢
⎢
⎣

𝗖
𝗖(�̂� − 𝗦𝗥−1𝗖)

...
𝗖(�̂� − 𝗦𝗥−1𝗖)𝑁𝑥−1

⎤
⎥
⎥
⎦

,

𝗧o =
⎡
⎢
⎢
⎣

𝗜 𝟬 . . .
−𝗖𝗦𝗥−1 𝗜 𝟬 . . .

−𝗖𝗔𝗦𝗥−1 + (𝗖𝗦𝗥−1)2 −𝗖𝗦𝗥−1 𝗜 𝟬 . . .
...

. . .

⎤
⎥
⎥
⎦

.

(3.104)

All elements are not displayed to keep the text compact. The matrix 𝗧o is a lower
unitriangular matrix. Hence it has full rank. Then rank(𝓞dc) = rank(𝓞).

Similarly, the pair (�̂�, 𝗖) is observable; therefore, the corresponding controllability
matrix 𝓒 has full rank. There exist a full rank matrix 𝗧c such that

𝓒𝗧c = 𝓒dc, (3.105)
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where

𝓒 = [ 𝝘 �̂�𝝘 . . . �̂�
𝑁𝑥−1

𝝘 ] ,
𝓒dc = [ 𝝘 (�̂� − 𝗦𝗥−1𝗖)𝝘 . . . (�̂� − 𝗦𝗥−1𝗖)𝑁𝑥−1𝝘 ] ,

𝗧c =
⎡
⎢
⎢
⎢
⎣

𝗜 −𝝘−1𝗦𝗥−1𝗖𝝘 . . . 𝝘−1 ((�̂� − 𝗦𝗥−1𝗖)𝑁𝑥−1 − �̂�
𝑁𝑥−1

) 𝝘
𝟬 𝗜 . . . 𝟬
...

. . .
...

𝟬 𝗜

⎤
⎥
⎥
⎥
⎦

.
(3.106)

The matrix 𝗧c is an upper unitriangular matrix. Hence it has full rank. Then rank(𝓒) =
rank(𝓒dc). ∎

This result can be used to formulate the stability of the XDKF-S as follows.

Theorem 3.3 (XDKF-S stability). Let (3.39) be a system with substituted parameter
vector �̂� such that the pair (�̂�, 𝗖) is observable. Assume that the vector 𝘇 (3.89) is
bounded and the condition (3.99) is satisfied when they are applied to the system.
Then the XDKF-S in Algorithm 3.6 with weights 𝛾𝑝 is stable if the pair (�̂�, 𝝘dc) is
stabilizable for each 𝘇.

Proof. The XDKF-S with fixed 𝗞∞ calculated using fixed 𝘇 will converge to a unique
limiting positive semidefinite solution 𝗣Σ(𝘇). This is true for each fixed value of 𝘇.
In the XDKF-S, the state and input values can change between iteration steps, and
consequently, each 𝗞∞ pushes the cumulative second moment towards different limiting
𝗣Σ(𝘇). Therefore, the algorithm will converge to a time-varying 𝗣Σ(𝘇). Although it
might never converge to a single value, the algorithm cannot diverge because, according
to [60] and Theorem 3.2, all possible limiting 𝗣Σ(𝘇) are positive semidefinite and finite.
∎

The stability of the XDKF-S can be analyzed using the sufficient condition in the
following theorem.

Theorem 3.4 (Stability bound for XDKF-S). Let 𝛼b ∈ (0, 1] be a weight for which the
matrix

𝗤L = 𝛼b𝗤 − ∑
𝑝

(𝛾𝑝,b�̂� ̂𝘀𝑝 ̂𝘀𝑇
𝑝 �̂�

𝑇
+ 𝛾2

𝑝,b𝗯𝑝( ̂𝘅, 𝘂) ̂𝘀𝑇
𝑝𝗖𝑇𝗥−1𝗖 ̂𝘀𝑝𝗯𝑇

𝑝( ̂𝘅, 𝘂)) (3.107)

is positive definite for all feasible values of 𝘇, and it can be decomposed as 𝗤L = 𝝘L𝝘𝑇
L.

Let (3.39) be a system with substituted parameter vector �̂� such that the pair (�̂�, 𝗖)
is observable, and the pair (�̂�, 𝝘L) is stabilizable. Then the XDKF-S with weights
𝛼 = 1 − ∑ 𝛾𝑝 is stable for all 𝛼 ≥ 𝛼b.

Proof. Assume the ARE equation (3.96) where the process noise covariance is replaced
with 𝗤0 = 𝝘0𝝘𝑇

0

𝗣Σ = 𝗔dc𝗣Σ𝗔𝑇
dc − 𝗔dc𝗣Σ𝗖𝑇 (𝗖𝗣Σ𝗖𝑇 + 𝛼𝗥)

−1
𝗖𝗣Σ𝗔𝑇

dc + 𝗤0. (3.108)

The ARE (3.108) has the unique positive semidefinite solution if the pair (�̂�dc, 𝗖)
is observable, and the pair (�̂�dc, 𝝘0) is stabilizable [60]. Theorem 3.2 says that it is
sufficient to analyze the observability of the pair (�̂�, 𝗖), and the stabilizability of the
pair (�̂�, 𝝘0).
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Lemma 4 in [61] states that if (�̂�, 𝝘𝐿) is stabilizable pair and 𝝘0𝝘𝑇
0 ⪰ 𝝘L𝝘𝑇

L then
the pair (�̂�, 𝝘0) is also stabilizable. Given that the pair (�̂�, 𝝘L) is stabilizable, the
ARE (3.108) has a unique positive semidefinite solution if 𝗤0 ⪰ 𝗤L.

Since

(�̂� ̂𝘀𝑝 − 𝗯𝑝) (�̂� ̂𝘀𝑝 − 𝗯𝑝)
𝑇

⪰ 0,

𝗯𝑝𝗯𝑇
𝑝 − �̂� ̂𝘀𝑝𝗯𝑇

𝑝 − 𝗯𝑝 ̂𝘀𝑇
𝑝 �̂�

𝑇
⪰ −�̂� ̂𝘀𝑝 ̂𝘀𝑇

𝑝 �̂�
𝑇
, (3.109)

then 𝗤dc(𝛼b) ⪰ 𝗤L(𝛼b) is always true and the ARE in (3.96) has a unique positive
semidefinite solution for 𝛼b. Furthermore, the lower bound increases with increasing 𝛼

𝗤L(𝛼) − 𝗤L(𝛼b) ⪰ 0, (3.110)

(𝛼 − 𝛼b)𝗤 − ∑
𝑝

(𝛾𝑝 − 𝛾𝑝,b)�̂� ̂𝘀𝑝 ̂𝘀𝑇
𝑝 �̂�

𝑇
−

− ∑
𝑝

(𝛾2
𝑝 − 𝛾2

𝑝,b)𝗯𝑝( ̂𝘅, 𝘂) ̂𝘀𝑇
𝑝𝗖𝑇𝗥−1𝗖 ̂𝘀𝑝𝗯𝑇

𝑝( ̂𝘅, 𝘂) ⪰ 0. (3.111)

Then 𝗤dc(𝛼) ⪰ 𝗤L(𝛼b) which means that the ARE in (3.96) has a unique positive
semidefinite solution for all 𝛼 ≥ 𝛼b. ∎

Remark 3.4. Theorem 3.4 states two important things. First, to check the stability of
the XDKF-S, it is sufficient to check the positive definiteness of (3.107). Secondly, the
stability of the XDKF-S for some weights 𝛾𝑝 implies the stability of the XDKF-S for
all weights with the sum of weights lower than ∑𝑝 𝛾𝑝.

3.2.6 Normalized objectives

Setting up weights remains the main challenge for desensitized Kalman filters. In the
prior work, a weight on sensitivity reduction objective could be set up between zero and
infinity. Then the more inaccurate the parameter is expected to be, the higher weight
is set. The quantitative meaning of high weight cannot be defined since it depends on
the particular system. Therefore, one has to tune the weight using simulations.

In this thesis, weights in the range between zero and one are used. This range is
supposed to simplify tuning the weights by introducing a finite upper bound, making
the tuning more intuitive. However, the criterion (3.58) has multiple objectives which
can be symbolically rewritten as

𝐽(𝗞) = 𝛼𝐽KF(𝗞) + ∑
𝑝

𝛾𝑝𝐽S,𝑝(𝗞), (3.112)

where 𝐽KF is the minimum-variance objective and 𝐽S,𝑝 are the sensitivity reduction
objectives. The issue with (3.112) is that the objectives are not scaled, in general.
Therefore, the weight value needs to include the fixed scaling of objectives, which could
result in tuning the weights in low orders of magnitude. If the normalized objectives
are used, the weight can be tuned intuitively.

Section 3.2.5 discusses that not all weight settings are stable, and once some set
of stable weights ̄𝛾𝑝 is found and condition (3.107) is satisfied, then all sets where
∑𝑝 𝛾𝑝 ≤ ∑𝑝 ̄𝛾𝑝 are also stable. Nevertheless, a set of stable weights that does not
satisfy ∑𝑝 𝛾𝑝 ≤ ∑𝑝 ̄𝛾𝑝 can also exist. Using these results, the criterion 𝐽 can be
rewritten in a form where each objective leads to a stable solution

𝐽(𝗞) = 𝛼𝐽KF(𝗞) + ∑
𝑝

𝛾𝑝
̄𝐽S,𝑝(𝗞), (3.113)
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where

̄𝐽S,𝑝(𝗞) = (1 − ̄𝛾𝑝)𝐽KF(𝗞) + ̄𝛾𝑝𝐽S,𝑝(𝗞). (3.114)

are criteria for stable weights ̄𝛾𝑝. Note that if an arbitrary number of weights in
the stable set of weights { ̄𝛾1, . . . , ̄𝛾𝑁𝜃

} are replaced by zero, the stability of the set is
maintained.

The objectives can be normalized using a part of the multi-objective adaptive
weighted sum method introduced in [62]. Let 𝗞⋆

KF, 𝗞⋆
S,𝑝 be the optimal solution for

individual optimization of 𝐽KF, ̄𝐽S,𝑝 respectively. Then the utopia points are defined as

𝐽Utopia
KF = 𝐽KF(𝗞⋆

KF), ̄𝐽Utopia
S,𝑝 = ̄𝐽S,𝑝(𝗞⋆

S,𝑝). (3.115)

In multi-objective optimization, utopia points (also called ideal points) represent a lower
bound vector of the Pareto optimal solutions. Nadir points represent an upper bound
of the Pareto optimal solutions

𝐽Nadir
KF = max [𝐽KF(𝗞⋆

KF), 𝐽KF(𝗞⋆
S,1), . . . , 𝐽KF(𝗞⋆

S,𝑁𝜃
)] ,

̄𝐽Nadir
S,𝑝 = max [ ̄𝐽S,𝑝(𝗞⋆

KF), ̄𝐽S,𝑝(𝗞⋆
S,1), . . . , ̄𝐽S,𝑝(𝗞⋆

S,𝑁𝜃
)] .

(3.116)

The normalization of the objective function is done using the utopia and nadir points
as follows

𝐽N(𝗞) = 𝛼 𝐽KF(𝗞)
𝐽Nadir

KF − 𝐽Utopia
KF

+ ∑
𝑝

𝛾𝑝

̄𝐽S,𝑝(𝗞)
̄𝐽Nadir
S,𝑝 − ̄𝐽Utopia

S,𝑝
, (3.117)

𝐽N(𝗞) = 𝜈𝛼𝐽KF(𝗞) + ∑
𝑝

𝜈𝛾,𝑝𝐽S,𝑝(𝗞), (3.118)

where normalized weights 𝜈𝛼 > 0, 𝜈𝛾,𝑝 ≥ 0 are defined2 as

𝜈𝛼 = 𝛼
𝐽Nadir

KF − 𝐽Utopia
KF

+ ∑
𝑝

𝛾𝑝(1 − ̄𝛾𝑝)
̄𝐽Nadir
S,𝑝 − ̄𝐽Utopia

S,𝑝
,

𝜈𝛾,𝑝 =
𝛾𝑝 ̄𝛾𝑝

̄𝐽Nadir
S,𝑝 − ̄𝐽Utopia

S,𝑝
.

(3.119)

The weights 𝜈𝛼, 𝜈𝛾,𝑝 do not add up to one. Therefore, the combination of objectives
in (3.118) is not a convex combination in general. It could be modified into the convex
combination, but it would not impact the performance since the weight ratio would not
change. Nevertheless, the normalized objective (3.118) can be minimized the same way
as the original objective, which results in the XDKF where the weights 𝛼, 𝛾𝑝 are replaced
with the normalized weights 𝜈𝛼, 𝜈𝛾,𝑝 respectively. The objective normalization can be
applied to all proposed algorithms – XDKF, XDKF-Z, and XDKF-S. The algorithm
modification is summed up in Algorithm 3.9.

2 Paper [J1] includes a typo in the definition of 𝜈𝛼. Here the correct definition is provided.
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Algorithm 3.9 (XDKF/XDKF-Z/XDKF-S with normalized objectives).

. Given weights 𝛾𝑝, stable weights ̄𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 .

. Obtain 𝗞⋆
KF by temporary setting 𝛼 to one and running

XDKF/XDKF-Z/XDKF-S update step with the prior estimates.
. Obtain 𝗞⋆

S,𝑝 by temporary setting 𝛾𝑝 to ̄𝛾𝑝 and running
XDKF/XDKF-Z/XDKF-S update step with the prior estimates.
. Evaluate utopia (3.115) and nadir (3.116) points.
. Obtain posterior estimates by temporary setting 𝛼, 𝛾𝑝 to 𝜈𝛼, 𝜈𝛾,𝑝 (3.119) respectively,

and running XDKF/XDKF-Z/XDKF-S update step with the prior estimates.

The range of tuning the Algorithm 3.9 using 𝛾𝑝 is increased with larger ̄𝛾𝑝. The stable
weights need to be found numerically by checking the stability of candidate weights
using Theorem 3.1.

The normalized weights 𝜈𝛼, 𝜈𝛾,𝑝 need to be computed at each iteration. For some
practical applications, it might be better to approximate the weights, e.g., by their
mean value, and use them as fixed weights.

3.2.7 Numerical example

In this section, the performance of the algorithms is compared. The example used for
comparison was previously used in [63–65] to compare state estimation algorithms for
systems with uncertain parameters. The system is defined by the matrices

𝗔(𝜃) = [ 0.9802 0.0196 + 0.099 𝜃
0 0.9802 ] , 𝗖 = [ 1 −1 ] , (3.120)

and the noise covariances

𝗤 = [ 1.9608 0.0195
0.0195 1.9605 ] , 𝗥 = [ 1 ] . (3.121)

The value of the uncertain parameter 𝜃 is expected to be within the interval [−1, 1].
The real parameter value is fixed during each simulation. The parameter value 0 is
used for the models in all algorithms except the optimal Kalman filter, where the real
parameter value is used. The algorithms use the initial conditions in simulations with
the following values

𝘅0 = 𝟬, ̂𝘅0|−1 = [ 1 1 ]𝑇 , 𝗣𝑥𝑥
0|−1 = 𝗣𝑥𝑠

0|−1 = 𝗣𝑠𝑥
0|−1 = 𝗣𝑠𝑠

0|−1 = 𝗜. (3.122)

The simulations consisted of the response to initial conditions and lasted 1000 samples.
Seven different real parameter values were used in simulations. The set of 100 Monte
Carlo simulations was done for each real parameter value.

All simulation results with algorithm comparison can be repeated using the
MATLAB-based application SESUP [O2] created to demonstrate the performance of
the algorithms derived in this thesis. The SESUP application allows users to modify
the algorithm configuration and see comparison figures.
Optimal vs. suboptimal. The optimal version XDKF differs from the suboptimal

XDKF-Z only by assuming nonzero gain sensitivity to parameters. The optimal gain of
the XDKF can be compared to the suboptimal gain of the XDKF-Z at each iteration
using simulations. Figure 3.6 shows the first 200 samples of response to initial condi-
tions averaged over 100 Monte Carlo simulations. The figure shows the comparison of
the XDKF, the XDKF-Z, their versions with normalized objectives (XDKF-N, XDKF-
ZN), and the XDKF-S. It can be seen that the difference between the gains caused by

33



3. Desensitized state estimation of linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assumption 3.2 is very small. The small difference can be explained by the small gain
sensitivity of the XDKF, which justifies Assumption 3.2. On the other hand, normal-
izing the objectives has a major impact on the gain. The XDKF-S is the lightweight
version of the XDKF-Z, which gains can be precomputed offline. The results depicted
in Figure 3.6 show that the gains differ mainly during the initial response. The XDKF-S
uses steady-state gains, which explains the difference in the initial response. After the
initial response, the XDKF-S gain is comparable to the XDKF-Z and XDKF. Similar
behavior can be observed when comparing the standard Kalman filter to its steady-state
version.

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

G
a

in
 [

-]

XDKF (0.5)

XDKF-Z (0.5)

XDKF-N (0.5)

XDKF-ZN (0.5)

XDKF-S (0.5)

0 20 40 60 80 100 120 140 160 180 200

Samples [-]

0

0.01

0.02

0.03

0.04

|G
a

in
 s

e
n

s
it
iv

it
y
| 
[-

] XDKF (0.5) XDKF-N (0.5)

Figure 3.6. The optimal desensitized gain for 𝛾 = 0.5, absolute value of its sensitivity, and
the suboptimal gains. The figure shows the result of the simulation for real parameter

value 1. The parameters in brackets denote weight setting.

Normalized vs. raw objectives. Figure 3.7 compares the KF, the XDKF, and the
XDKF with normalized objectives (XDKF-N). The KF was used with the model with
zero parameter value. The XDKF-N is normalized with ̄𝛾 = 0.99. The root-mean-
square error (RMSE) is more consistent with normalized objectives, meaning that the
XDKF-N reduces the state-estimate error dependency on the parameter better. The
XDKF-N achieves lower sensitivity to the parameter than XDKF while using the same
weight setting, which can be seen in Figure 3.6, i.e., the objectives normalization im-
proves robustness to the parameter error. Also, because of the higher error covariance
𝗣𝑥𝑥, the XDKF-N reaches a higher gain and consequently responds faster than the
XDKF. The XDKF weight could be modified to normalize the objectives and achieve a
performance similar to the XDKF-N. In this example, it must be set much closer to 1.
However, the XDKF with fixed normalization cannot achieve the XDKF-N performance
because the XDKF-N normalizes the objectives adaptively at each step.
Tuning. The XDKF and its suboptimal versions are tuned using the weight 𝛾. With

𝛾 = 0, the XDKF is reduced to the standard KF. On the other hand, the sensitivity
to the parameter is reduced by increasing the weight 𝛾. The flat curve of the average
RMSE means low dependency on the parameter value, hence the robustness to the
parameter. As expected, minimizing the variance is not sufficient for achieving minimal
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Figure 3.7. Total RMSE and final state estimation error covariance trace. Comparison of
the standard KF, XDKF, and its normalized form. The 𝛾 weight value is shown in brackets.

The values are averaged over 100 Monte Carlo simulations.

state estimation error if the model differs from the real system, which can be observed
in Figure 3.7 where the XDKF achieves higher variance than the standard KF. The
weight setting choice is tailored to the particular application and the filtering goal.
XDKF vs. state-of-the-art. Finally, the XDKF is compared to the state-of-the-art

state estimation algorithms. The H∞ filter [11] is used for comparison as the algorithm
for systems with uncertain parameters. The H∞ was used with the configuration used
by Sayed [64]. The optimal KF with the accurate model parameter and the KF with
the mean model parameter were tested as best and worst-case scenarios benchmarks.
The optimal Kalman filter was used with the model identical to the system used for
generating data. The Kalman filter was used with the model with zero parameter
value. The DKF and novel XDKF were tested in a single-weight configuration, chosen
subjectively as a trade-off between reducing the sensitivity and keeping low volatility of
the estimates. The performance of the XDKF and the DKF can be directly compared
using the corresponding weight configuration. The corresponding DKF weights are
obtained by the diagonal matrix 𝑊 = diag([𝑤, 𝑤]), with values 𝑤 = 𝛾

𝛼 where 𝛾, 𝛼 are
the XDKF weights. For example, 𝛾 = 0.5 corresponds to 𝑤 = 1.

The comparison between algorithms is made by comparing their average root-mean-
square error (RMSE) from 100 Monte Carlo simulations. Figure 3.8 shows the test
results. Overall the DKF, the XDKF, and the XDKF-N have lower RMSE than the
KF or the H∞. Furthermore, their error is the most consistent, meaning they are
the best in reducing the dependency of the state-estimate error on the parameter.
Another important property of desensitized algorithms is that their performance can
be intuitively tuned. It means that in this example, choosing weights from zero to
maximum weight would move their curve in Figure 3.8 from the curve that represents
the results of the KF to an almost flat curve.

The XDKF-N outperforms other desensitized Kalman filters, showing the importance
of normalized objectives in multi-objective optimization. The results of the suboptimal
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Figure 3.8. Total RMSE comparison of the XDKF and state-of-the-art algorithms. The
value in brackets represents the weight value. The mean total RMSE from 100 Monte

Carlo simulations for each real parameter value is shown.

versions of the XDKF are not shown since their performance is very similar to the
XDKF, which would significantly deteriorate the clarity of the figure. The fact that the
performance of the suboptimal algorithms is almost indistinguishable from the optimal
is a remarkable result, which implies that the performance of simple gain-scheduled
XDKF-S is comparable to or better than robust state-of-the-art algorithms with a
significant computational burden. The results for the suboptimal algorithms can be
validated using the SESUP application [O2].

3.3 Discussion

The desensitized Kalman filter (DKF) was initially derived by Karlgaard [17]. The DKF
sensitivity is defined as the sensitivity of the state estimation error ̃𝘅 to the expected
parameter value ̂𝜃. However, this definition is instantly reduced to the sensitivity of the
state estimation mean ̂𝘅 to ̂𝜃 since the real state value is assumed to be independent of
parameters.

For the XDKF, the initial definition of sensitivity is the same, but the real state value
is not omitted in the next step. The rationale is that the prediction error is a random
variable that represents most of the valuable stochastic properties of the Kalman filter,
e.g., optimality, and bias. By reducing the prediction error to a state mean prediction,
the opportunity to take these properties into account is lost, and eventually, the prob-
lem is changed to desensitizing the algorithm rather than the state estimation error.
These arguments are reflected in the derived sensitivity forms. The sensitivity is a
deterministic variable in the DKF and a random variable in the XDKF. The sensitivity
definition closely relates to the augmentation of the optimization criterion. In the DKF,
the augmentation is done using a weighted sensitivity norm due to the deterministic
sensitivity formulation. The XDKF sensitivity is formulated as a random variable, so
the augmentation is defined by the trace of sensitivity second moments.
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Regarding the complexity, the original DKF algorithm requires solving an implicit
algebraic equation at each iteration step to obtain the gain, which creates a significant
computational burden compared to the explicit gain evaluation. The DKF in the special
case where the gain is expressed explicitly was published [C2]. The gain in the XDKF
is also expressed explicitly.

The DKF assumes zero gain sensitivity, formulated in Assumption 3.1, which is
equivalent to Assumption 3.2. Shen and Kaarlgard [26] admit in their remark that
the assumption is not always correct, but it is necessary to derive the DKF algorithm.
When this assumption is used on the XDKF, the XDKF-Z is obtained. Interestingly,
the XDKF-Z can be reinterpreted as a special case of the DKF (SDKF) in Algorithm 3.2
applied to the system (3.39). In order to derive the SDKF, the original DKF weighting
must be limited – the DKF allows to set the weight on the sensitivity of each state
estimation error to parameter individually, whereas the SDKF weights are the same for
all state estimation errors. Despite similarities between the XDKF-Z and the SDKF, the
XDKF-Z is denoted by a separate name to emphasize the inheritance from the XDKF,
which enables interpreting the XDKF-Z as the Kalman filter with the time-variable
correlated process and measurement noise.

A thorough stability analysis of DKF is yet to be published. However, the DKF and
the XDKF have a common problem with weakening the minimum-variance criterion,
resulting in a potentially unstable estimator. The stability conditions of the XDKF-
S are formulated in Theorem 3.4, and in the future, they can be used to define the
stability conditions of the XDKF-Z.

The overview of the differences between the desensitized algorithms is shown in Ta-
ble 3.1.

Assumption
3.1 or 3.2

Gain Sensitivity Normalized

XDKF no explicit stochastic optional
XDKF-Z yes explicit deterministic optional
XDKF-S yes precomputed deterministic optional
DKF-NC yes implicit deterministic no
SDKF-NC yes explicit deterministic no

Table 3.1. Overview of the properties of desensitized filters.
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Chapter4
Desensitized state estimation of nonlinear

systems

There are many methods for nonlinear filtering based on the Kalman filter. The simplest
one uses the first order Taylor approximation of a nonlinear function. This approxima-
tion is not suitable for highly nonlinear systems but is satisfactory for many nonlinear
systems. The main benefit over more advanced nonlinear filters is its similarity to the
linear Kalman filter and low computational burden. In this chapter, the desensitized
algorithms for linear systems are rederived for nonlinear systems using the first order
Taylor approximation. First, DKF-NC and SDKF-NC, which use the deterministic
approach to sensitivity reduction, are extended. Then, algorithms with the stochastic
approach to sensitivity reduction are derived.

4.1 Algorithms for systemswith noise correlation

In this section, the DKF-NC and the SDKF-NC, which follow the original desensitized
approach, are rederived for nonlinear systems. The extensions follow the extended
Kalman filter algorithm, which uses first order Taylor series approximation in a nominal
point. The derivations are similar to the derivation for linear systems. The results in
this section were published in [C2].

4.1.1 Nonlinear systemwith noise correlation

Let’s define a discrete-time nonlinear stochastic system

𝘅𝑘+1 = 𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷) + 𝘃𝑘,
𝘆𝑘 = 𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷) + 𝗲𝑘,

(4.1)

where 𝘅𝑘 is the system state vector of dimension 𝑁𝑥 at time 𝑘, 𝘆𝑘 is the system output
vector of dimension 𝑁𝑦 at time 𝑘, 𝘂𝑘 is the deterministic system input vector of dimen-
sion 𝑁𝑢 at time 𝑘, 𝝷 is the parameter vector of dimension 𝑁𝜃, 𝗳 is the vector-valued
function of state propagation, 𝗴 is the vector-valued function of system output, and
𝘃𝑘, 𝗲𝑘 are process and measurement noise sequences with statistics

[ 𝘃𝑘
𝗲𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤 𝗦

𝗦𝑇 𝗥 ]) . (4.2)

The update equations of the single-step extended Kalman filter in Joseph’s form are
as follows

̂𝘅𝑘+1|𝑘 = 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝗞𝑘 (𝘆 − 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�)) , (4.3)

𝗣𝑘+1|𝑘 = (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇 +

+ 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇, (4.4)
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where Jacobians are defined as

𝗙𝑥 = ∂𝗳
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗚𝑥 = ∂𝗴
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, (4.5)

and 𝗞𝑘 is the optimal Kalman gain that minimizes the trace of the state estimation
error covariance 𝗣𝑘+1|𝑘

𝗞𝑘 = (𝗙𝑥𝗣𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗦) (𝗚𝑥𝗣𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗥)
−1

. (4.6)

4.1.2 Extended DKF-NC

The state error sensitivity to the particular parameter is computed similarly to the sen-
sitivity in the linear DKF (3.17), but now it is computed using the state estimate (4.3)

𝞂𝑝,𝑘+1|𝑘 =
𝑑 ̂𝘅𝑘+1|𝑘

𝑑 ̂𝜃𝑝
= 𝝽𝑝,𝑘 − 𝗞𝑘𝝲𝑝,𝑘, (4.7)

where the index 𝑝 denotes the particular parameter in the parameter vector and

𝝽𝑝,𝑘 = 𝗙𝑥,𝑘𝞂𝑝,𝑘|𝑘−1 + 𝗳𝜃,𝑝, (4.8)

𝝲𝑝,𝑘 = 𝗚𝑥,𝑘𝞂𝑝,𝑘|𝑘−1 + 𝗴𝜃,𝑝. (4.9)

and Jacobians
𝗳𝜃,𝑝 = ∂𝗳

∂𝜃𝑝
∣

̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗴𝜃,𝑝 = ∂𝗴
∂𝜃𝑝

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

. (4.10)

The optimality criterion is the same as in the linear DKF-NC

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = tr (𝗣𝑘+1|𝑘 ) +
𝑁𝜃

∑
𝑝=1

(𝞂𝑇
𝑝,𝑘+1|𝑘 𝗪𝑝𝞂𝑝,𝑘+1|𝑘 ) , (4.11)

Since the nonlinear version differs from the linear only in the model sensitivity formu-
las (4.8), the solution of the optimality criterion leads to the same gain equation

𝗞𝑘 (𝗚𝑥,𝑘𝗣𝑘|𝑘−1 𝗚𝑇
𝑥,𝑘 + 𝗥) +

𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝗞𝑘𝝲𝑝,𝑘𝝲𝑇
𝑝,𝑘) =

= 𝗙𝑥,𝑘𝗣𝑘|𝑘−1 𝗚𝑇
𝑥,𝑘 + 𝗦 +

𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝝽𝑝,𝑘𝝲𝑇
𝑝,𝑘). (4.12)

The final algorithm is summed up in Algorithm 4.1.

Algorithm 4.1 (Extended DKF for systems with noise correlation— EDKF-NC).

. Evaluate Jacobians

𝗙𝑥 = ∂𝗳
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗳𝜃,𝑝 = ∂𝗳
∂𝜃𝑝

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

,

𝗚𝑥 = ∂𝗴
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗴𝜃,𝑝 = ∂𝗴
∂𝜃𝑝

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

.
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. Evaluate model sensitivities
𝝽𝑝,𝑘 = 𝗙𝑥,𝑘𝞂𝑝,𝑘|𝑘−1 + 𝗳𝜃,𝑝,

𝝲𝑝,𝑘 = 𝗚𝑥,𝑘𝞂𝑝,𝑘|𝑘−1 + 𝗴𝜃,𝑝.

. Solve for 𝗞𝑘

𝗞𝑘 (𝗚𝑥,𝑘𝗣𝑘|𝑘−1 𝗚𝑇
𝑥,𝑘 + 𝗥) +

𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝗞𝑘𝝲𝑝,𝑘𝝲𝑇
𝑝,𝑘) =

= 𝗙𝑥,𝑘𝗣𝑘|𝑘−1 𝗚𝑇
𝑥,𝑘 + 𝗦 +

𝑁𝜃

∑
𝑝=1

(𝗪𝑝𝝽𝑝,𝑘𝝲𝑇
𝑝,𝑘).

. Update the state, sensitivities, and covariance

𝞂𝑝,𝑘+1|𝑘 = 𝝽𝑝,𝑘 − 𝗞𝑘𝝲𝑝,𝑘,

̂𝘅𝑘+1|𝑘 = 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝗞𝑘 (𝘆 − 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�)) ,

𝗣𝑘+1|𝑘 = (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇 +

+ 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇.

4.1.3 Extended SDKF-NC

The state error vector sensitivity to the parameter vector is defined similarly to (3.24).
It is defined in the form of the sensitivity matrix

𝝨𝑘+1|𝑘 =
𝑑 ̂𝘅𝑘+1|𝑘

𝑑�̂�
= 𝝣𝑘 − 𝗞𝑘𝝘𝑘, (4.13)

where

𝝣𝑘 = 𝗙𝑥𝝨𝑘|𝑘−1 + 𝗙𝜃,𝑘, (4.14)
𝝘𝑘 = 𝗚𝑥𝝨𝑘|𝑘−1 + 𝗚𝜃, (4.15)

and Jacobians are defined as

𝗙𝜃 = ∂𝗳
∂𝝷

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗚𝜃 = ∂𝗴
∂𝝷

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

. (4.16)

The optimality criterion is the same as the criterion in the SDKF-NC, which is

𝐽 = tr (𝗣𝑘+1|𝑘 ) + tr (𝝨𝑘+1|𝑘 𝗪𝝨𝑇
𝑘+1|𝑘 ) . (4.17)

The derivation of the optimal gain is also identical to the SDKF-NC. The optimal gain
which results from the minimization of (4.17) is

𝗞𝑘 = (𝗙𝑥𝗣𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗦 + 𝝣𝑘𝗪𝝘𝑇

𝑘) (𝗚𝑥𝗣𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗥 + 𝝘𝑘𝗪𝝘𝑇

𝑘)
−1

. (4.18)

The optimal gain (4.18) can be substituted into the covariance update equation (4.4),
which will again give the alternative covariance update

𝗣𝑘+1|𝑘 = 𝗙𝑥𝗣𝑘|𝑘−1 𝗙𝑇
𝑥 + 𝗤 − 𝗞𝑘 (𝗚𝑥𝗣𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗦𝑇) +

+ 𝝨𝑘+1|𝑘 𝗪𝝘𝑇
𝑘𝗞𝑇

𝑘 . (4.19)

The Extended SDKF-NC (ESDKF-NC) algorithm consists of the update equations
(4.3), (4.4), and (4.13) where 𝗞𝑘 is defined in (4.18). The algorithm is summed up in
Algorithm 4.2.
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Algorithm 4.2 (Extended SDKF for systems with noise correlation— ESDKF-NC).

. Evaluate Jacobians

𝗙𝑥 = ∂𝗳
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗙𝜃 = ∂𝗳
∂𝝷

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

,

𝗚𝑥 = ∂𝗴
∂𝘅𝑘

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

, 𝗚𝜃 = ∂𝗴
∂𝝷

∣
̂𝘅 𝑘|𝑘−1,𝘂𝑘,�̂�

.

. Evaluate model sensitivities

𝝣𝑘 = 𝗙𝑥𝝨𝑘|𝑘−1 + 𝗙𝜃,
𝝘𝑘 = 𝗚𝑥𝝨𝑘|𝑘−1 + 𝗚𝜃.

. Compute gain

𝗞𝑘 = (𝗙𝑥𝗣𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗦 + 𝝣𝑘𝗪𝝘𝑇

𝑘) (𝗚𝑥𝗣𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗥 + 𝝘𝑘𝗪𝝘𝑇

𝑘)
−1

.

. Update the state, sensitivity, and covariance

𝝨𝑘+1|𝑘 = 𝝣𝑘 − 𝗞𝑘𝝘𝑘,

̂𝘅𝑘+1|𝑘 = 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝗞𝑘 (𝘆 − 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�)) ,

𝗣𝑘+1|𝑘 = (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇 +

+ 𝗤 + 𝗞𝑘𝗥𝗞𝑇
𝑘 − 𝗦𝗞𝑇

𝑘 − 𝗞𝑘𝗦𝑇,
or

𝗣𝑘+1|𝑘 = 𝗙𝑥𝗣𝑘|𝑘−1 𝗙𝑇
𝑥 + 𝗤 − 𝗞𝑘 (𝗚𝑥𝗣𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗦𝑇) + 𝝨𝑘+1|𝑘 𝗪𝝘𝑇
𝑘𝗞𝑇

𝑘 .

4.2 Extended exact DKF

This section summarizes the results published in [C4]. The ideas from exact desensitized
Kalman filter are extended to nonlinear systems using Taylor series approximation. The
result is the extended exact desensitized Kalman filter (EXDKF). Furthermore, the
adaptive weights that improve the performance by normalizing the EXDKF objectives
are introduced. Interestingly, the EXDKF differs from the XDKF due to the difference
in the state estimation error definition caused by the nonlinear function approximation
method. Consequently, the EXDKF applied to the linear system differs from the XDKF.

4.2.1 Nonlinear system

Assume a discrete-time nonlinear stochastic system defined in (4.1) but without the
correlation between the process and measurement noise

𝘅𝑘+1 = 𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷) + 𝘃𝑘,
𝘆𝑘 = 𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷) + 𝗲𝑘,

(4.20)

where 𝘅𝑘 is the system state vector of dimension 𝑁𝑥 at time 𝑘, 𝘆𝑘 is the system output
vector of dimension 𝑁𝑦 at time 𝑘, 𝘂𝑘 is the deterministic system input vector of dimen-
sion 𝑁𝑢 at time 𝑘, 𝝷 is the parameter vector of dimension 𝑁𝜃, 𝗳 is the vector-valued
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function of state propagation, 𝗴 is the vector-valued function of system output, and
𝘃𝑘, 𝗲𝑘 are white noise sequences with statistics

[ 𝘃𝑘
𝗲𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤 𝟬

𝟬 𝗥 ]) . (4.21)

The nonlinear system (4.20) can be linearized using first order Taylor series approxi-
mation in a nominal point 𝘅n, 𝘂n, 𝝷n

𝘅𝑘+1 ≈ 𝗳 (𝘅n, 𝘂n, 𝝷n) + 𝘃𝑘 + ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘅𝑘

∣
𝘅n,𝘂n,𝝷n

(𝘅𝑘 − 𝘅n) +

+ ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘂𝑘

∣
𝘅n,𝘂n,𝝷n

(𝘂𝑘 − 𝘂n) + ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝝷

∣
𝘅n,𝘂n,𝝷n

(𝝷 − 𝝷n) , (4.22)

𝘆𝑘 ≈ 𝗴 (𝘅n, 𝘂n, 𝝷n) + 𝗲𝑘 + ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘅𝑘

∣
𝘅n,𝘂n,𝝷n

(𝘅𝑘 − 𝘅n) +

+ ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘂𝑘

∣
𝘅n,𝘂n,𝝷n

(𝘂𝑘 − 𝘂n) + ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝝷

∣
𝘅n,𝘂n,𝝷n

(𝝷 − 𝝷n) . (4.23)

To design an observer for system (4.22), the nominal point for linearization needs to
be selected. The linearization accuracy increase with the nominal point closer to the
real system state. Therefore, the standard practice is to linearize in the best available
estimate. In this case it is ̂𝘅𝑘|𝑘−1 which is the state estimation mean, 𝘂𝑘 which is the
known input, and �̂� which is the estimated value of parameter vector. Usually, the best
available state vector point for the time propagation equation is the posterior estimate
̂𝘅𝑘|𝑘 . However, here the single step algorithm is derived, where the posterior estimate

is not explicitly evaluated for clarity. Then the linearized system is obtained as

𝘅𝑘+1 ≈ 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝘃𝑘 + 𝗙𝑥 ̃𝘅𝑘|𝑘−1 + 𝗙𝜃�̃�,

𝘆𝑘 ≈ 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝗲𝑘 + 𝗚𝑥 ̃𝘅𝑘|𝑘−1 + 𝗚𝜃�̃�,
(4.24)

where the Jacobians are defined as

𝗙𝑥 ≡ ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘅𝑘

∣
̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

, 𝗙𝜃 ≡ ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝝷

∣
̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

,

𝗚𝑥 ≡ ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝘅𝑘

∣
̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

, 𝗚𝜃 ≡ ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)
∂𝝷

∣
̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

,
(4.25)

the state estimation error is obtained as

̃𝘅𝑘|𝑘−1 = 𝘅𝑘 − ̂𝘅𝑘|𝑘−1 , (4.26)

and the true value of the parameter vector 𝝷 is defined as

𝝷 = �̂� + �̃�, (4.27)

where �̃� denotes the parameter deviation, which is assumed to be unknown.
The expected values of system (4.24) are obtained by evaluating the system in the

best available values of state and parameter vectors.

̂𝘅𝑘+1|𝑘−1 = 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) ,

̂𝘆𝑘|𝑘−1 = 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) .
(4.28)
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Note that first order approximation is used. Then the observer designed for sys-
tem (4.24) is designed as

̂𝘅𝑘+1|𝑘 = 𝗳 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�) + 𝗞𝑘 (𝘆𝑘 − 𝗴 ( ̂𝘅𝑘|𝑘−1 , 𝘂𝑘, �̂�)) , (4.29)

which creates the state estimation error

̃𝘅𝑘+1|𝑘 = 𝘅𝑘+1 − ̂𝘅𝑘+1|𝑘 (4.30)

= 𝗙𝑥 ̃𝘅𝑘|𝑘−1 + 𝗙𝜃�̃� + 𝘃𝑘 − 𝗞𝑘 (𝗚𝑥 ̃𝘅𝑘|𝑘−1 + 𝗚𝜃�̃� + 𝗲𝑘) , (4.31)

with the covariance matrix of state estimation error obtained as

𝗣𝑥𝑥
𝑘+1|𝑘 = 𝔼 [ ̃𝘅𝑘+1|𝑘 ̃𝘅𝑇

𝑘+1|𝑘 ] , (4.32)

= (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑥𝑥
𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇 + 𝗤 + 𝗞𝑘𝗥𝗞𝑇

𝑘 . (4.33)

The sensitivity of the state estimation error to the parameter ̂𝜃𝑝 is obtained as

𝘀𝑝,𝑘+1|𝑘 ≡
𝑑 ̃𝘅𝑘+1|𝑘

𝑑 ̂𝜃𝑝
, (4.34)

= 𝗙𝑥,𝜃,𝑝 ̃𝘅𝑘|𝑘−1 + 𝗙𝑥𝘀𝑝,𝑘|𝑘−1 − 𝗳𝜃,𝑝

− 𝗞𝑘 (𝗚𝑥,𝜃,𝑝 ̃𝘅𝑘|𝑘−1 + 𝗚𝑥𝘀𝑝,𝑘|𝑘−1 − 𝗴𝜃,𝑝)

− ∂𝗞𝑘

∂ ̂𝜃𝑝
(𝗚𝑥 ̃𝘅𝑘|𝑘−1 + 𝗚𝜃,𝑝�̃� + 𝗲𝑘) , (4.35)

where
𝗙𝑥,𝜃,𝑝 = ∂𝗙𝑥

∂ ̂𝜃𝑝
, 𝗳𝜃,𝑝 ≡ ∂𝗳 (𝘅𝑘, 𝘂𝑘, 𝝷)

∂𝜃𝑝
∣

̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

,

𝗚𝑥,𝜃,𝑝 = ∂𝗚𝑥

∂ ̂𝜃𝑝
, 𝗴𝜃,𝑝 ≡ ∂𝗴 (𝘅𝑘, 𝘂𝑘, 𝝷)

∂𝜃𝑝
∣

̂𝘅𝑘|𝑘−1 ,𝘂𝑘,�̂�

.
(4.36)

It is important to note that the sensitivity is defined with the assumption of linear
dependency of the system on a parameter, i.e.,

∂𝗙𝜃

∂ ̂𝜃𝑝
= 𝟬. (4.37)

This condition is typically not satisfied when 𝗳 depends on the parameter exponentially.
Omitting this assumption is possible, but further approximation would be required.
Therefore, the results in this section can be applied only to nonlinear systems which
satisfy this assumption.

The gain sensitivity (∂𝗞𝑘)/(∂ ̂𝜃𝑝) is generally not zero. However, for most systems,
the assumption of zero gain sensitivity is valid. Therefore, Assumption 3.2 stating the
zero gain sensitivity is used in the following derivation. For further reference on the
impact of the gain sensitivity, see Section 3.2. The sensitivity definition with zero gain
assumption is reduced to

𝘀𝑝,𝑘+1|𝑘 = (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝) ̃𝘅𝑘|𝑘−1 + (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝘀𝑝,𝑘|𝑘−1 −

− (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝) . (4.38)
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Since the sensitivity is a random variable, it can be described using the mean value

̂𝘀𝑝,𝑘+1|𝑘 = (𝗙𝑥 − 𝗞𝑘𝗚𝑥) ̂𝘀𝑝,𝑘|𝑘−1 − (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝) , (4.39)

and the second moment

𝗣𝑝,𝑠𝑠
𝑘+1|𝑘 = 𝔼 [𝘀𝑝,𝑘+1|𝑘 𝘀𝑇

𝑝,𝑘+1|𝑘 ] , (4.40)

= (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝) 𝗣𝑥𝑥
𝑘|𝑘−1 (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝)𝑇

+ (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇

+ (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝) 𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇

+ (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝)𝑇

− (𝗙𝑥 − 𝗞𝑘𝗚𝑥) ̂𝘀𝑝,𝑘|𝑘−1 (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝)
𝑇

− (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝) ̂𝘀𝑇
𝑝,𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇

+ (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝) (𝗳𝜃,𝑝 − 𝗞𝑘𝗴𝜃,𝑝)
𝑇

, (4.41)

where the cross second moments between the state estimation error and the covariance
are

𝗣𝑝,𝑥𝑠
𝑘+1|𝑘 = 𝔼 [𝘅𝑘+1|𝑘 𝘀𝑇

𝑝,𝑘+1|𝑘 ] (4.42)

= (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑥𝑥
𝑘|𝑘−1 (𝗙𝑥,𝜃,𝑝 − 𝗞𝑘𝗚𝑥,𝜃,𝑝)𝑇

+ (𝗙𝑥 − 𝗞𝑘𝗚𝑥) 𝗣𝑥𝑠
𝑘|𝑘−1 (𝗙𝑥 − 𝗞𝑘𝗚𝑥)𝑇 , (4.43)

𝗣𝑝,𝑠𝑥
𝑘+1|𝑘 = (𝗣𝑝,𝑥𝑠

𝑘+1|𝑘 )
𝑇

. (4.44)

This concludes the description of the nonlinear system (4.20), its linearization (4.24)
and the observer (4.30) with its sensitivity (4.38).

4.2.2 Suboptimal filter

The extended exact desensitized Kalman filter is derived using the optimization criterion
from the XDKF. The optimization criterion weights the minimum mean square error
used in the standard Kalman filter with the minimum trace of the sensitivity second
moment

min
𝗞𝑘

𝐽 (𝗞𝑘) , 𝐽 (𝗞𝑘) = 𝛼 tr 𝗣𝑥𝑥
𝑘+1|𝑘 + ∑

𝑝
𝛾𝑝 tr 𝗣𝑝,𝑠𝑠

𝑘+1|𝑘 ,

𝛼 ≡ 1 − ∑
𝑝

𝛾𝑝, 0 ≤ ∑
𝑝

𝛾𝑝 < 1, and 𝛾𝑝 ≥ 0,
(4.45)

where 𝛾𝑝 are the weights that control the trade-off between the optimization objectives.
The optimal gain 𝗞𝑘 is obtained by solving

∂𝐽 (𝗞𝑘)
∂𝗞𝑘

= 0. (4.46)
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Solving requires to evaluate

∂tr𝗣𝑝,𝑠𝑠
𝑘+1|𝑘

∂𝗞𝑘
= −2𝗙𝑥,𝜃,𝑝𝗣𝑥𝑥

𝑘|𝑘−1 𝗚𝑇
𝑥,𝜃,𝑝 − 2𝗙𝑥𝗣𝑝,𝑠𝑠

𝑘|𝑘−1 𝗚𝑇
𝑥

− 2𝗙𝑥,𝜃,𝑝𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥 − 2𝗙𝑥𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝

+ 2𝗙𝑥 ̂𝘀𝑝,𝑘|𝑘−1 𝗴𝑇
𝜃,𝑝 + 2𝗳𝜃,𝑝 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 𝗚𝑇
𝑥 − 2𝗳𝜃,𝑝𝗴𝑇

𝜃,𝑝

+ 2𝗞𝑘𝗚𝑥,𝜃,𝑝𝗣𝑥𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝 + 2𝗞𝑘𝗚𝑥𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥

+ 2𝗞𝑘𝗚𝑥,𝜃,𝑝𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥 + 2𝗞𝑘𝗚𝑥𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝

− 2𝗞𝑘𝗚𝑥 ̂𝘀𝑝,𝑘|𝑘−1 𝗴𝑇
𝜃,𝑝 − 2𝗞𝑘𝗴𝜃,𝑝 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 𝗚𝑇
𝑥

+ 2𝗞𝑘𝗴𝜃,𝑝𝗴𝑇
𝜃,𝑝, (4.47)

and

∂tr𝗣𝑥𝑥
𝑘+1|𝑘

∂𝗞𝑘
= −2𝗙𝑥𝗣𝑥𝑥

𝑘|𝑘−1 𝗚𝑇
𝑥 + 2𝗞𝑘 (𝗚𝑥𝗣𝑥𝑥

𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗥) . (4.48)

Then solving (4.46) gives the solution

𝗞𝑘 = 𝗟𝗠−1, (4.49)

where

𝗟 = 𝛼 𝗙𝑥𝗣𝑥𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥

+ ∑
𝑝

𝛾𝑝 (𝗙𝑥,𝜃,𝑝𝗣𝑥𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝 + 𝗙𝑥𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥

+ 𝗙𝑥,𝜃,𝑝𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗙𝑥𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝

− 𝗙𝑥 ̂𝘀𝑝,𝑘|𝑘−1 𝗴𝑇
𝜃,𝑝 − 𝗳𝜃,𝑝 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗳𝜃,𝑝𝗴𝑇

𝜃,𝑝), (4.50)

𝗠 = 𝛼 (𝗚𝑥𝗣𝑥𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗥)

+ ∑
𝑝

𝛾𝑝 (𝗚𝑥,𝜃,𝑝𝗣𝑥𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝 + 𝗚𝑥𝗣𝑝,𝑠𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥

+ 𝗚𝑥,𝜃,𝑝𝗣𝑝,𝑥𝑠
𝑘|𝑘−1 𝗚𝑇

𝑥 + 𝗚𝑥𝗣𝑝,𝑠𝑥
𝑘|𝑘−1 𝗚𝑇

𝑥,𝜃,𝑝

− 𝗚𝑥 ̂𝘀𝑝,𝑘|𝑘−1 𝗴𝑇
𝜃,𝑝 − 𝗴𝜃,𝑝 ̂𝘀𝑇

𝑝,𝑘|𝑘−1 𝗚𝑇
𝑥 + 𝗴𝜃,𝑝𝗴𝑇

𝜃,𝑝). (4.51)

The solution 𝗞𝑘 exists if 𝗠 is a positive definite matrix. The EXDKF is summed up
in Algorithm 4.3.

Algorithm 4.3 (Extended eXact DKF— EXDKF).

. Given weights 𝛾𝑝, stable weights 𝛾𝑝,ub and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣𝑥𝑥
𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 ,

𝗣𝑠𝑠
𝑝,𝑘|𝑘−1 , 𝗣𝑠𝑥

𝑝,𝑘|𝑘−1 .
. Evaluate the Jacobians (4.25) and (4.36) .
. Obtain gain (4.49) .
. Update the covariance (4.32) and the second moments (4.41), (4.44), (4.43) .
. Update state estimation mean (4.29) .
. Update sensitivity mean (4.39) .
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4.2.3 Normalized objectives

The traces of second moments 𝗣𝑥𝑥
𝑘+1|𝑘 , 𝗣𝑠𝑠

𝑝,𝑘+1|𝑘 are not normalized in general. There-
fore, the weight values must also capture the scaling of the objectives. This scaling
would also need to be adaptive since the trace of second moments is time-variant. The
adaptive normalization method for the XDKF was proposed to overcome this issue in
Section 3.2.6. The same method can be applied to the EXDKF, which leads to the
EXDKF with normalized objectives (EXDKF-N) summarized in Algorithm 4.4.

Algorithm 4.4 (Extended eXact DKF with Normalized objectives— EXDKF-N).

. Given weights 𝛾𝑝, stable weights ̄𝛾𝑝 and prior estimates ̂𝘅𝑘|𝑘−1 , 𝗣𝑥𝑥
𝑘|𝑘−1 , ̂𝘀𝑝,𝑘|𝑘−1 ,

𝗣𝑠𝑠
𝑝,𝑘|𝑘−1 , 𝗣𝑠𝑥

𝑝,𝑘|𝑘−1 .
. Evaluate the Jacobians (4.25) .
. Obtain 𝗞⋆

KF by temporary setting 𝛼 to zero and and running EXDKF update step
in Algorithm 4.3 with the prior estimates .
. Obtain 𝗞⋆

S,𝑝 by temporary setting 𝛾𝑝 to ̄𝛾𝑝 and and running EXDKF update step in
Algorithm 4.3 with the prior estimates.
. Evaluate utopia (3.115) and nadir (3.116) points for the 𝗞⋆

KF, 𝗞⋆
S,𝑝 obtained in the

previous steps.
. Obtain posterior estimates ̂𝘅𝑘+1|𝑘 , 𝗣𝑥𝑥

𝑘+1|𝑘 , ̂𝘀𝑝,𝑘+1|𝑘 , 𝗣𝑠𝑠
𝑝,𝑘+1|𝑘 , 𝗣𝑠𝑥

𝑝,𝑘+1|𝑘 by temporary
setting 𝛼, 𝛾𝑝 to 𝜈𝛼, 𝜈𝛾,𝑝 (3.119) respectively, and running EXDKF update step in
Algorithm 4.3 with the prior estimates .

4.2.4 Numerical example

The performance of the EXDKF and the EXDKF-N is tested on the nonlinear system
based on the example in Section 3.2.7. The performance is compared to the standard
extended KF (EKF) and the desensitized extended Kalman filter (EDKF) from [17].

The nonlinear discrete-time system is defined as

𝑥1,𝑘+1 = 0.9802𝑥1,𝑘 + (0.0196 + 0.099𝜃) 𝑥2
2,𝑘 + 𝑤1,𝑘,

𝑥2,𝑘+1 = 0.9802𝑥2
2,𝑘 + 𝑤2,𝑘,

𝑦 = 𝑥1,𝑘 − 𝑥2,𝑘 + 𝑒𝑘,
(4.52)

where the noise covariances are

𝗤 = [ 1.9608 0.0195
0.0195 1.9605 ] , 𝗥 = 1, (4.53)

and the value of the uncertain parameter 𝜃 is expected to be within the interval [−1, 1].
The real parameter value is fixed during each simulation.

The test runs 500 Monte Carlo simulations for each of the nine true parameter values
from the valid interval. Each simulation is 200 samples long, and it is initiated with
the initial state value

𝑥1,0 = 𝑥2,0 = 1. (4.54)

Two versions of the EKF are used for the comparison. One version is denoted as
the perfect EKF and contains information about the true parameter value. The other
is denoted as the imperfect EKF, and it assumes that the parameter is zero. The
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same parameter expected value ̂𝜃 = 0 is used by the desensitized algorithms – EDKF,
EXDKF, EXDKF-N. All filters are initiated with the state estimate

̂𝑥1,0|−1 = ̂𝑥2,0|−1 = 0, 𝗣𝑥𝑥,0|−1 = 𝗜, (4.55)

and sensitivity

̂𝑠1,0|−1 = 𝟬, 𝗣𝑠𝑠,0|−1 = 𝗜, 𝗣𝑠𝑥,0|−1 = 𝟬. (4.56)

The EXDKF and the EXDKF-N are used with weight 𝛾 = 0.5, and the EXDKF-N uses
𝛾ub = 0.99 for objective normalization. The EDKF is used with the weighting matrix
𝗪 = 𝗜, which corresponds to the EXDKF weighting. The corresponding EDKF weights
are obtained by the diagonal matrix 𝑊 = diag([𝑤, 𝑤]), with values 𝑤 = 𝛾

𝛼 where 𝛾, 𝛼
are the XDKF weights.
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Figure 4.1. Cumulative RMSE comparison. Separate figures show the final cumulative
RMSE for the states 𝑥1, 𝑥2 after 200 samples. The mean cumulative RMSE from 500
Monte Carlo simulations for each real parameter value is shown. The value in brackets

represents the weight value.
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The test results are shown in Fig. 4.1. The comparison is made using the root-
mean-square error (RMSE) between true and estimated states. The results show that
the imperfect EKF has significantly worse accuracy than the others. The desensitized
filters prove their robustness to the uncertain parameter. Their accuracy is similar for all
tested true parameter values. The accuracy of the desensitized filters is sometimes even
better than the perfect EKF because the EKF is not the optimal filter for nonlinear
systems due to the linearization error. Among the desensitized filters, the proposed
filters EXDKF and EXDKF are more accurate than the original EDKF. Furthermore,
the normalized objectives in the EXDKF-N improve the estimation accuracy.
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Chapter5
Desensitized fault detection and diagnosis

This chapter focuses on using desensitized filters for fault detection applications. Most
of the results in this chapter were originally published in [O3, J2].

The Kalman filter can also be used for fault detection purposes by analyzing the
statistics of a prediction error sequence. The prediction error sequence is also called
the innovation sequence. In the nominal case, i.e., when no fault occurs in the system,
the innovation sequence should have white noise properties. Most model-based fault
detection methods rely on this property, so they make decisions based on various tests
on the innovation sequence. One of these methods is the interacting multiple-model
(IMM) method. The model in the IMM is described as a Markovian jump linear system
(MJLS). The idea behind the MJLS is that a system behavior changes due to external
conditions, but a linear model can describe it at each time. System behavior under
fixed conditions is called a system mode. The system can be modeled by a set of linear
models which describe all system modes. Mode changes are modeled as a discrete-time
Markov chain.

Let us assume the discrete-time Markovian jump linear system

𝘅(𝑚)
𝑘+1 = 𝗳(𝑚) (𝘅(𝑚)

𝑘 , 𝘂𝑘, 𝝷) + 𝘃(𝑚)
𝑘 = 𝗔(𝑚)(𝝷)𝘅(𝑚)

𝑘 + 𝗕(𝑚)(𝝷)𝘂𝑘 + 𝘃(𝑚)
𝑘 ,

𝘆𝑘 = 𝗴(𝑚) (𝘅(𝑚)
𝑘 , 𝝷) + 𝗲(𝑚)

𝑘 = 𝗖(𝑚)𝘅(𝑚)
𝑘 + 𝗲(𝑚)

𝑘 ,
(5.1)

where 𝑚 in the superscript brackets denotes the mode number from the predefined set
ℳ = {1, 2, . . . , 𝑁m} which is active at time 𝑘. The variables of the system at each
mode have properties of the linear system in (3.39), namely 𝘅𝑘 is the state vector of
dimension 𝑁𝑥, 𝘂𝑘 is the input vector of dimension 𝑁𝑢, 𝘆𝑘 is the measurement vector of
dimension 𝑁𝑦, 𝝷 is the parameter vector of dimension 𝑁𝜃, 𝗔(𝑚)(𝝷) is 𝑁𝑥 × 𝑁𝑥 matrix,
𝗕(𝑚)(𝝷) is 𝑁𝑥 × 𝑁𝑢 matrix and 𝗖(𝑚) is 𝑁𝑦 × 𝑁𝑥 matrix. The matrices 𝗔(𝑚), 𝗕(𝑚) are
assumed to be linear matrix functions of parameters

𝗔(𝑚)(𝝷) = 𝗔(𝑚)
0 + 𝜃1𝗔(𝑚)

1 + . . . + 𝜃𝑁𝜃
𝗔(𝑚)

𝑁𝜃
, (5.2)

𝗕(𝑚)(𝝷) = 𝗕(𝑚)
0 + 𝜃1𝗕(𝑚)

1 + . . . + 𝜃𝑁𝜃
𝗕(𝑚)

𝑁𝜃
. (5.3)

The noise statistics of the system is

[ 𝘃(𝑚)
𝑘

𝗲(𝑚)
𝑘

] ∼ 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤(𝑚) 𝟬

𝟬 𝗥(𝑚) ]) . (5.4)

The Markovian model mode transition probabilities

𝑇 (𝑙, 𝑚) = 𝑃 (𝑀𝑘+1 = 𝑚 |𝑀𝑘 = 𝑙) , (5.5)

from the transition probability matrix 𝗧 define the probability of transition from mode
𝑙 ∈ ℳ to mode 𝑚 ∈ ℳ. Notation 𝑇 (𝑙, 𝑚) denotes the element of 𝗧 at 𝑙-th row and
𝑚-th column.
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The IMM offers a suboptimal solution to state estimation of discrete-time Markovian
jump linear systems (MJLS). Each mode of the MJLS requires a separate implementa-
tion of the Kalman filter. Together, they create a bank of Kalman filters. The algorithm
is depicted in Fig. 5.1. The posterior state estimates from the last step ̂𝘅(𝑚)

𝑘−1|𝑘−1 are
mixed by Markov mode transition probability 𝗧 and mode probability 𝝻𝑘−1. Then the
filter bank evaluates the posterior state estimates ̂𝘅(𝑚)

𝑘|𝑘 and the likelihoods of system
modes Λ(𝑚)

𝑘 . After that, the posterior state estimates are mixed by the posterior mode
probability 𝝻𝑘, which results in a single combined state estimate ̂𝘅𝑘|𝑘 .

The purpose of the output combination step is to give a single equivalent mixture
distribution that represents the state system state. However, in some applications, a
state of a single mode might be required. Then the combination step can be skipped.

If the dimensions of mode state vectors differ, the dimensions need to be unified
before mixing and combination steps. Solutions to this problem are discussed in [66].
An unbiased solution replaces all missing estimates at the given mode with the best
available estimate, e.g., from the last combination step. Other methods might replace
the missing estimates with some default values. Note that missing estimates of state,
sensitivity, and second moments must be provided. The choice of the method depends
on the particular application.

The IMM can be easily used for fault detection and diagnosis by defining the MJLS
as a model which consists of a mode for nominal system behavior and modes for system
behavior when faults occur. The IMM applied to such a model simultaneously estimates
the state and mode probability of the system. The mode probability gives information
about the system’s most probable mode, which indicates (detects) the probability of
fault occurrence.

Initialize
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update

Combination

Delay
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Figure 5.1. Interacting multiple-model method.

As in the desensitized filters, the true parameter vector 𝝷 is unknown, so the estimated
parameter vector �̂� is used in the filters. Also, the following compact notation is used
for matrices 𝗔(𝑚), 𝗕(𝑚)

�̂�
(𝑚)

≡ 𝗔(𝑚) (�̂�) , �̂�
(𝑚)

≡ 𝗕(𝑚) (�̂�) . (5.6)

5.1 IMMwith desensitized Kalman filtering

The IMM algorithm for the system in (5.1), which reduces sensitivity to parameters,
can be created by modifying the standard IMM. First, the standard Kalman filters in
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the filtering step are replaced by the desensitized filters. In this section, the SDKF
is chosen. The IMM with the XDKF will be introduced in the next section. The
filters in the IMM must have separate update steps due to mixing updates between the
data-update step and the time-update step. That is why the SDKF is used as it was
originally derived in [21]. To complete the IMM modification for the SDKF usage, the
interaction step needs to be extended by mixing the state estimation error sensitivities
to the parameter vector which are used in the filtering step. The IMM algorithm with
SDKF is defined as follows.

Algorithm 5.1 (IMMwith SDKF— IMM-SDKF).

. Initialize. The initial values need to be determined for the initial mode probability
𝝻0, initial estimate of state mean ̂𝘅(𝑚)

0|0 , state estimation error covariance 𝗣(𝑚)
0|0 and

initial state estimation error sensitivity to parameters 𝝨(𝑚)
0|0 .

. Interaction/Mixing. The standard IMM step equations are applied together with
mixing of sensitivities

𝜋𝑘−1 (𝑚 |𝑙 ) = 𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙)
∑𝑙∈ℳ 𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙)

, (5.7)

̅𝘅(𝑚)
𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
̂𝘅(𝑙)
𝑘−1|𝑘−1 𝜋𝑘−1 (𝑚 |𝑙 ) , (5.8)

�̅�(𝑚)
𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
𝜋𝑘−1 (𝑚 |𝑙 ) [𝗣(𝑙)

𝑘−1|𝑘−1 +

+ ( ̂𝘅(𝑙)
𝑘−1|𝑘−1 − ̅𝘅(𝑚)

𝑘−1|𝑘−1 ) ( ̂𝘅(𝑙)
𝑘−1|𝑘−1 − ̅𝘅(𝑚)

𝑘−1|𝑘−1 )
𝑇
], (5.9)

�̅�(𝑚)
𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
𝝨(𝑙)

𝑘−1|𝑘−1 𝜋𝑘−1 (𝑚 |𝑙 ) , (5.10)

where 𝜇𝑘−1 (𝑚) denotes the m-th element in the mode probability vector 𝜇𝑘−1 at time
𝑘−1, and 𝜋𝑘−1 (𝑚 |𝑙 ) is the mixing probability that denotes the transition from mode
𝑙 to mode 𝑚. Linear combination of sensitivities in (5.10) comes from the definition
of sensitivity in (3.24) where it is defined as the sensitivity of the state mean value to
the parameter vector. This sensitivity definition can be applied to (5.8) and obtain
�̅�(𝑚)

𝑘−1|𝑘−1 = ∂ ̅𝘅(𝑚)
𝑘−1|𝑘−1 /∂�̂�, which results in (5.10).

. Mode state estimation. The state estimation is done using separate SDKF for each
mode. The updates are defined as follows
. Time-update step

̂𝘅(𝑚)
𝑘|𝑘−1 = �̂�

(𝑚)
̅𝘅(𝑚)
𝑘−1|𝑘−1 + �̂�

(𝑚)
𝘂𝑘−1, (5.11)

𝝨(𝑚)
𝑘|𝑘−1 = �̂�

(𝑚)
�̅�(𝑚)

𝑘−1|𝑘−1 + ∂𝗳(𝑚)

∂𝝷
∣

̅𝘅(𝑚)
𝑘−1|𝑘−1 ,𝘂𝑘−1,�̂�

, (5.12)

𝗣(𝑚)
𝑘|𝑘−1 = �̂�

(𝑚)
�̅�(𝑚)

𝑘−1|𝑘−1 (�̂�
(𝑚)

)
𝑇

+ 𝗤. (5.13)

. Data-update step

𝝘(𝑚)
𝑘 = 𝗖(𝑚)𝝨(𝑚)

𝑘|𝑘−1 , (5.14)

̂𝘆(𝑚)
𝑘|𝑘−1 = 𝗖(𝑚) ̂𝘅(𝑚)

𝑘|𝑘−1 , (5.15)
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𝗦(𝑚)
𝑘|𝑘−1 = 𝗖(𝑚)𝗣(𝑚)

𝑘|𝑘−1 𝗖(𝑚)𝑇
+ 𝗥 + 𝝘(𝑚)

𝑘 𝗪(𝑚) (𝝘(𝑚)
𝑘 )

𝑇
, (5.16)

𝗞(𝑚)
𝑘 = (𝗣(𝑚)

𝑘|𝑘−1 𝗖(𝑚)𝑇
+ 𝝨(𝑚)

𝑘|𝑘−1 𝗪(𝑚) (𝝘(𝑚)
𝑘 )

𝑇
) (𝗦(𝑚)

𝑘|𝑘−1 )
−1

, (5.17)

̂𝘅(𝑚)
𝑘|𝑘 = ̂𝘅(𝑚)

𝑘|𝑘−1 + 𝗞(𝑚)
𝑘 (𝘆𝑘 − ̂𝘆(𝑚)

𝑘|𝑘−1 ) , (5.18)

𝝨(𝑚)
𝑘|𝑘 = 𝝨(𝑚)

𝑘|𝑘−1 + 𝗞(𝑚)
𝑘 𝝘(𝑚)

𝑘 , (5.19)

𝗣(𝑚)
𝑘|𝑘 = (𝗜 − 𝗞(𝑚)

𝑘 𝗖(𝑚)) 𝗣(𝑚)
𝑘|𝑘−1 (𝗜 − 𝗞(𝑚)

𝑘 𝗖(𝑚))
𝑇

+ 𝗞(𝑚)
𝑘 𝗥 (𝗞(𝑚)

𝑘 )
𝑇

. (5.20)

. Probability update. The probabilities of modes are updated using the standard IMM
mode probability update

Λ(𝑚)
𝑘 = 𝑝 (𝘆𝑘 ∣ ̂𝘅(𝑚)

𝑘|𝑘−1 , 𝗣(𝑚)
𝑘|𝑘−1 , 𝝨(𝑚)

𝑘|𝑘−1 ) ,

where 𝑝 (𝘆𝑘 ∣ ̂𝘅(𝑚)
𝑘|𝑘−1 , 𝗣(𝑚)

𝑘|𝑘−1 , 𝝨(𝑚)
𝑘|𝑘−1 ) ∼ 𝒩 ( ̂𝘆(𝑚)

𝑘|𝑘−1 , 𝗦(𝑚)
𝑘|𝑘−1 ) , (5.21)

𝜇𝑘 (𝑚) = 1
𝑞

Λ(𝑚)
𝑘 ∑

𝑙∈ℳ
𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙) , (5.22)

where 𝑞 is the normalizing factor.
. Output combination. The standard IMM output combination step is extended with

the combination of sensitivities derived using the approach explained in the interac-
tion/mixing step.

̂𝘅𝑘|𝑘 = ∑
𝑚∈ℳ

̂𝘅(𝑚)
𝑘|𝑘 𝜇𝑘 (𝑚), (5.23)

𝗣𝑘|𝑘 = ∑
𝑚∈ℳ

𝜇𝑘 (𝑚) [𝗣(𝑚)
𝑘|𝑘 + ( ̂𝘅(𝑚)

𝑘|𝑘 − ̂𝘅𝑘|𝑘 ) ( ̂𝘅(𝑚)
𝑘|𝑘 − ̂𝘅𝑘|𝑘 )

𝑇
], (5.24)

𝝨𝑘|𝑘 = ∑
𝑚∈ℳ

𝝨(𝑚)
𝑘|𝑘 𝜇𝑘 (𝑚). (5.25)

To summarize, the IMM-SDKF is the IMM algorithm where the state estimation
error sensitivity to parameters is considered. This modification can improve state esti-
mation accuracy when uncertain parameters are present in the model. The IMM-SDKF
algorithm maintains the efficiency of the standard IMM.

5.2 IMMwith exact desensitized Kalman filtering

The IMM algorithm for the system in (5.1) can also be modified by the exact desensi-
tizing filter. Since the IMM requires a two-step filtering algorithm, the XDKF-Z with
separated steps in Algorithm 3.8 is the most suitable. The modification of the IMM
starts with replacing the standard Kalman filters in the filtering step are replaced by
the XDKF-Z. The replacement is simple, but the user must be careful with the time
indices. The reason is that the order of the steps in Algorithm 3.8 must be flipped, so
the algorithm starts with a time-update step. Consequently, the decorrelation matrices
in the time-update step must be computed at the previous step, meaning they must be
stored in memory together with the state, sensitivity, and covariance. An alternative
solution is to reorder IMM algorithm steps which will be done in Chapter 7. Otherwise,
the definition of the IMM algorithm with XDKF-Z (IMM-XDKF-Z) is straightforward.
The IMM-XDKF-Z is summed up in Algorithm 5.2.
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Algorithm 5.2 (IMMwith XDKF-Z— IMM-XDKF-Z).

. Initialize. The initial values need to be determined for the initial mode probability
𝝻0, the initial estimate of state mean ̂𝘅(𝑚)

0|0 , the state estimation error covariance 𝗣(𝑚)
0|0

and the initial state estimation error sensitivity to parameters ̂𝘀(𝑚)
𝑝,0|0 .

. Interaction/Mixing. The standard IMM step equations are applied together with a
mixing of sensitivities

𝜋𝑘−1 (𝑚 |𝑙 ) = 𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙)
∑𝑙∈ℳ 𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙)

, (5.26)

̅𝘅(𝑚)
𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
̂𝘅(𝑙)
𝑘−1|𝑘−1 𝜋𝑘−1 (𝑚 |𝑙 ) , (5.27)

�̅�Σ,(𝑚)
𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
𝜋𝑘−1 (𝑚 |𝑙 ) [𝗣Σ,(𝑙)

𝑘−1|𝑘−1 +

+ ( ̂𝘅(𝑙)
𝑘−1|𝑘−1 − ̅𝘅(𝑚)

𝑘−1|𝑘−1 ) ( ̂𝘅(𝑙)
𝑘−1|𝑘−1 − ̅𝘅(𝑚)

𝑘−1|𝑘−1 )
𝑇
], (5.28)

̅𝘀(𝑚)
𝑝,𝑘−1|𝑘−1 = ∑

𝑙∈ℳ
̂𝘀(𝑙)
𝑝,𝑘−1|𝑘−1 𝜋𝑘−1 (𝑚 |𝑙 ) , (5.29)

where 𝜇𝑘−1 (𝑚) denotes the 𝑚-th element in the mode probability vector 𝜇𝑘−1 at
time 𝑘 − 1, and 𝜋𝑘−1 (𝑚 |𝑙 ) denotes the element of the matrix with mixed transition
probabilities 𝝿𝑘−1. where it is defined as the sensitivity of the state mean value to
the parameter vector.
. Mode state estimation. The filtering update is defined as follows
. Time-update step

�̂�
(𝑚)
dc = �̂�

(𝑚)
− 𝗦(𝑚)

𝑘−1 (𝛼(𝑚)𝗥(𝑚))
−1

𝗖(𝑚), (5.30)

𝗤(𝑚)
dc = 𝗤Σ,(𝑚)

𝑘−1 − 𝗦(𝑚)
𝑘−1 (𝛼(𝑚)𝗥(𝑚))

−1
(𝗦(𝑚)

𝑘−1)
𝑇

, (5.31)

̂𝘅(𝑚)
𝑘|𝑘−1 = �̂�

(𝑚)
dc ̅𝘅(𝑚)

𝑘−1|𝑘−1 + �̂�
(𝑚)

𝘂𝑘−1 + 𝗦(𝑚)
𝑘−1 (𝛼(𝑚)𝗥(𝑚))

−1
𝘆𝑘−1, (5.32)

̂𝘀(𝑚)
𝑝,𝑘|𝑘−1 = �̂�

(𝑚)
dc ̅𝘀(𝑚)

𝑝,𝑘−1|𝑘−1 − 𝗯(𝑚)
𝑝,𝑘−1, (5.33)

𝗣Σ,(𝑚)
𝑘|𝑘−1 = �̂�

(𝑚)
dc �̅�Σ,(𝑚)

𝑘−1|𝑘−1 (�̂�
(𝑚)
dc )

𝑇
+ 𝗤(𝑚)

dc . (5.34)

. Uncertainty-update step

𝗯(𝑚)
𝑝,𝑘 = 𝗔(𝑚)

𝑝 ̂𝘅(𝑚)
𝑘|𝑘−1 + 𝗕(𝑚)

𝑝 𝘂𝑘, (5.35)

𝗦(𝑚)
𝑘 = − ∑

𝑝
𝛾(𝑚)

𝑝 𝗯(𝑚)
𝑝,𝑘 (𝗖(𝑚) ̂𝘀(𝑚)

𝑝,𝑘|𝑘−1 )
𝑇

, (5.36)

𝗤Σ,(𝑚)
𝑘 = 𝛼𝗤(𝑚) + ∑

𝑝
𝛾(𝑚)

𝑝 [𝗯(𝑚)
𝑝,𝑘 (𝗯(𝑚)

𝑝,𝑘 )
𝑇

−

− 𝗯(𝑚)
𝑝,𝑘 (�̂�

(𝑚)
̂𝘀(𝑚)
𝑝,𝑘|𝑘−1 )

𝑇
− �̂�

(𝑚)
̂𝘀(𝑚)
𝑝,𝑘|𝑘−1 (𝗯(𝑚)

𝑝,𝑘 )
𝑇
]. (5.37)

. Data-update step

𝗞(𝑚)
𝑘 = 𝗣Σ,(𝑚)

𝑘|𝑘−1 (𝗖(𝑚))
𝑇

(𝗖(𝑚)𝗣Σ,(𝑚)
𝑘|𝑘−1 (𝗖(𝑚))

𝑇
+ 𝛼(𝑚)𝗥(𝑚))

−1
, (5.38)
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̂𝘅(𝑚)
𝑘|𝑘 = ̂𝘅(𝑚)

𝑘|𝑘−1 + 𝗞(𝑚)
𝑘 (𝘆𝑘 − 𝗖(𝑚) ̂𝘅(𝑚)

𝑘|𝑘−1 ) , (5.39)

̂𝘀(𝑚)
𝑝,𝑘|𝑘 = ̂𝘀(𝑚)

𝑝,𝑘|𝑘−1 − 𝗞(𝑚)
𝑘 𝗖(𝑚) ̂𝘀(𝑚)

𝑝,𝑘|𝑘−1 , (5.40)

𝗣Σ,(𝑚)
𝑘|𝑘 = 𝗣Σ,(𝑚)

𝑘|𝑘−1 − 𝗞(𝑚)
𝑘 𝗖(𝑚)𝗣Σ,(𝑚)

𝑘|𝑘−1 . (5.41)

. Probability update. Before the probability update, the state error covariance needs
to be extracted from the cumulative second moment by rewriting (3.82) into

𝗣(𝑚)
𝑘|𝑘−1 = 1

𝛼(𝑚) (𝗣Σ,(𝑚)
𝑘|𝑘−1 −

𝑁𝜃

∑
𝑝=1

𝛾(𝑚)
𝑝 ̂𝘀(𝑚)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑚)
𝑝,𝑘|𝑘−1 )

𝑇
) . (5.42)

Then the output error covariance 𝗣𝑦𝑦,(𝑚)
𝑘|𝑘−1 is computed, and the probabilities of modes

𝝻𝑘 are updated using the standard IMM mode probability update

𝗣𝑦𝑦,(𝑚)
𝑘|𝑘−1 = 𝗖(𝑚)𝗣(𝑚)

𝑘|𝑘−1 (𝗖(𝑚))
𝑇

+ 𝗥(𝑚), (5.43)

Λ(𝑚)
𝑘 = 𝑝 (𝘆𝑘 ∣ ̂𝘅(𝑚)

𝑘|𝑘−1 , 𝗣(𝑚)
𝑘|𝑘−1 ) ,

where 𝑝 (𝘆𝑘 ∣ ̂𝘅(𝑚)
𝑘|𝑘−1 , 𝗣(𝑚)

𝑘|𝑘−1 ) ∼ 𝒩 ( ̂𝘆(𝑚)
𝑘|𝑘−1 , 𝗣𝑦𝑦,(𝑚)

𝑘|𝑘−1 ) , (5.44)

𝜇𝑘 (𝑚) = 1
𝑞

Λ(𝑚)
𝑘 ∑

𝑙∈ℳ
𝑇 (𝑙, 𝑚) 𝜇𝑘−1 (𝑙) ,

where 𝑞 is the normalizing factor.
. Output combination. The standard IMM output combination step is extended with

the combination of sensitivities derived using the approach explained in the interac-
tion/mixing step.

̂𝘅𝑘|𝑘 = ∑
𝑚∈ℳ

̂𝘅(𝑚)
𝑘|𝑘 𝜇𝑘 (𝑚), (5.45)

𝗣Σ
𝑘|𝑘 = ∑

𝑚∈ℳ
𝜇𝑘 (𝑚) [𝗣Σ,(𝑚)

𝑘|𝑘 + ( ̂𝘅(𝑚)
𝑘|𝑘 − ̂𝘅𝑘|𝑘 ) ( ̂𝘅(𝑚)

𝑘|𝑘 − ̂𝘅𝑘|𝑘 )
𝑇
], (5.46)

̂𝘀𝑝,𝑘|𝑘 = ∑
𝑚∈ℳ

̂𝘀(𝑚)
𝑝,𝑘|𝑘 𝜇𝑘 (𝑚).

To sum up, the IMM-XDKF is the IMM algorithm where the state estimation error
sensitivity to parameters is considered in a stochastic sense.

5.3 Application to buildings

The FDD using the IMM can be done by simply analyzing posterior mode probabilities.
The fault modeled in mode 𝑚 is detected when its mode probability 𝜇𝑘(𝑚) is the highest
among all modes. In practical applications, various thresholds can be set to minimize
false positive or false negative detections.

This section focuses on detecting faults in buildings that could cause the inefficiency
of a control algorithm. The inefficiencies of the control algorithm could be caused
by inaccurate state estimation or abrupt changes in a zone. The inefficiencies can be
autonomously removed, and energy consumption can be decreased when accurate state
estimation and fault detection are provided to a control algorithm.
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A simple building model is used for testing the performance. The building model
captures the thermal dynamics of the building using the RC (Resistance-Capacitance)
equivalent method, which is based on the first-principles approach. The building is
depicted in Fig. 5.2, consisting of three rooms connected in a row. Each room has a
window and a controlled heating source. The inner wall length is the same in all rooms,
but the outer walls differ. The rooms are modeled as first-order systems, and each wall
is modeled as a third-order system. The adjacent walls with the same zones are merged
into one wall model, resulting in three models for walls in each room and two for walls
between rooms. Then the complete model consists of three room models and five wall
models.

Figure 5.2. Plan of the building model used in simulations.

The entire building model is a linear system of the 18th order, with the state vector
defined as

𝘅 = [𝑇R1, 𝑇R2, 𝑇R3, 𝑇W1i, . . . , 𝑇W5i, 𝑇W1e, . . . , 𝑇W5e, 𝑇W1c, . . . , 𝑇W5c]
𝑇, (5.47)

where 𝑇R𝑟 represents the temperature in room 𝑟. Furthermore, 𝑇W𝑤i, 𝑇W𝑤e, 𝑇W𝑤c are
the 𝑤-th wall temperatures of interior/exterior surfaces and core respectively. The
inputs to the system include the outside (ambient) air temperature 𝑇amb and the heat
flow input 𝑞in to each room which is controlled using a set of feedback PI controllers
with limited resource. The input vector is defined as

𝘂 = [𝑞in1, 𝑞in2, 𝑞in3, 𝑇amb]𝑇, (5.48)

where 𝑞in1, 𝑞in2, 𝑞in3 are the manipulated variables and 𝑇amb is the disturbance variable.
The outputs of the system are the temperature measurements in rooms

𝘆 = [𝑇R1, 𝑇R2, 𝑇R3]𝑇. (5.49)

The state space system matrices are not given in this text since they are too large, and
this work is not focused on creating a building model.

The testing is designed to compare the standard IMM to the IMM-SDKF and the
IMM-XDKF-Z using the “average zone” models. The average zone model means that
each room (zone) is modeled by the same 1 average room model. The goal is to show that
1 In practice, several average zone models would need to be created to distinguish between the dynamics

of distinct zones. Usually, the number of average zone models needed to create a building model is low
compared to the number of all zones in a building.

57



5. Desensitized fault detection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the faults can be detected even without complete information about room parameters,
which would improve the scalability of the FDD system. Additionally, the standard
IMM with the building model with full information is used as the benchmark for the
best achievable performance. The building model with full information is also used for
generating the measurement data.

Two types of faults are tested. The faults are modeled as model disturbances which
extend the original building model. A separate augmented building model is created for
each fault. These models are then used together with the nominal model as the system
modes in the IMM algorithm. The first disturbance (fault 1) represents a situation
when a window is opened in the first room, which can cause energy waste in order to
satisfy a temperature setpoint. This situation can be modeled by augmenting the state
space model with the unknown input state that represents the additional heat flow for
room 1

𝑞d,𝑘+1 = 𝑞d,𝑘 + 𝑤𝑞d
, 𝑤𝑞d

∼ 𝒩 (0, 𝑄𝑞d
) . (5.50)

Also, the new state is added to the heat flow balance equation of room 1. The second
disturbance (fault 2) is the ambient temperature measurement fault, representing a
situation with sun radiation heating an ambient temperature thermometer. In this case,
the thermometer provides information about outside air temperature. This disturbance
is modeled as the extra state

𝑇d,𝑘+1 = 𝑇d,𝑘 + 𝑤𝑇d
, 𝑤𝑇d

∼ 𝒩 (0, 𝑄𝑇d
) . (5.51)

Then the real ambient temperature is computed as the disturbed measurement sub-
tracted by disturbance

𝑇amb = 𝑇amb,sensor − 𝑇d. (5.52)

The two disturbance modes were selected to illustrate both local and global distur-
bances. The heat flow disturbance represents the local disturbance because it mainly
affects one room. The ambient temperature has an impact on all rooms. Distinguishing
the disturbances will become more relevant in Chapter 7, which is devoted to distributed
FDD methods.

In the experiment, the MJLS model with four system modes is used: the nominal
model (model without fault), the model with fault 1 (opened window), the model with
fault 2 (disturbed ambient temperature), and the model with both faults (faults 1 and
2). In that order, the state vectors of modes are defined as

𝘅(1) ≜ ⎡⎢
⎣

𝘅
0
0

⎤⎥
⎦

, 𝘅(2) ≜ ⎡⎢
⎣

𝘅
𝑞d
0

⎤⎥
⎦

, 𝘅(3) ≜ ⎡⎢
⎣

𝘅
0
𝑇d

⎤⎥
⎦

, 𝘅(4) ≜ ⎡⎢
⎣

𝘅
𝑞d
𝑇d

⎤⎥
⎦

. (5.53)

The state vector dimensions must be unified to mix them in the interaction and combi-
nation steps. The unbiased method is used in the interaction step, where the full states
are completed with the best available estimates from the last combination step. Com-
pletion is done in the combination step using zero mean value and expected variance.
This setting proved to be the best in accurately estimating the disturbance state. The
mode transition probability matrix is defined as

𝗧 =
⎡
⎢⎢
⎣

0.998 0.001 0.001 0
0.14 0.859 0 0.001
0.001 0 0.998 0.001

0 0.001 0.14 0.859

⎤
⎥⎥
⎦

, (5.54)
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where the modes are ordered as mentioned above (nominal, fault 1, fault 2, both faults).
The matrix is created by determining the probabilities of opening/closing the window
( 0.1%/14%) and heated/non-heated thermometer (0.1%). Transition to the mode
with both faults can be done only from single fault modes and vice versa. Also, the
transitions between single-fault modes and from no-fault to combined-fault mode (and
vice versa) have zero probability.

The performance of the proposed algorithms was tested in the MATLAB Simulink.
The system was tested using Monte Carlo simulations for various faults. The simula-
tions were run with the constant ambient temperature between −10 °C to 10 °C , and
heating setpoints were always 23 °C . The initial conditions of the system and esti-
mators were 20 °C for all zone and wall temperatures in the state vector. The white
Gaussian noise with variance 𝜎2 = 0.052 was added to all temperature measurements
in rooms to simulate real measurements.

All experiments consisted of responding to initial conditions and at least one fault oc-
currence. The total simulation time of each experiment was one hour. Each experiment
was repeated 100 times using the Monte Carlo simulations. The steady states of the
simulated disturbances depend on the ambient conditions that are generated randomly
for each run.

The results are interpreted by the mode probabilities because the decision mech-
anism can differ from application to application but it is always linked to the mode
probability. The figures with mode probability results show the mean and standard
deviation computed over mode probability responses in 100 Monte Carlo simulations.
To improve the readability, the standard IMM the accurate model will be referred to as
the perfect IMM-KF, and the standard IMM with the average model will be referred
to as the imperfect IMM-KF.

In the first scenario, the window was opened at time 𝑡 = 30 min and then closed at
time 𝑡 = 42 min. The disturbance simulations are shown in Fig. 5.3.

0 10 20 30 40 50 60

Time [min]

-3

-2.5

-2

-1.5

-1

-0.5

0

q
d
 [

k
W

]

0 10 20 30 40 50 60

Time [min]

-1

-0.5

0

0.5

1

T
d
 [

d
e

g
re

e
s
 C

]

Figure 5.3. Opened window fault. The figure shows the simulated disturbances. The verti-
cal lines represent standard deviations of disturbances from 100 Monte Carlo simulations.

The difference between using the accurate model and the average model is clear from
the results of the perfect IMM-KF in Fig. 5.4 and the results of the imperfect IMM-KF
in Fig. 5.5. The results of the imperfect IMM-KF show that before the fault occurrence,
the Fault 2 mode is the most probable, which is wrong. Also, the standard deviation
is high, meaning the results are inconsistent. Therefore, the imperfect IMM-KF is not
satisfactory for detecting this fault.

The results of the IMM-SDKF and IMM-XDKF-Z are shown in Fig. 5.6 and Fig. 5.7
respectively. The high mode probability of the correct modes, a clear difference between
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Figure 5.4. Opened window fault. The figure shows the mode probability of the standard
IMM with the accurate zone model (perfect IMM-KF).
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Figure 5.5. Opened window fault. The figure shows the mode probabilities of the standard
IMM with the average zone model (imperfect IMM-KF).

the mean values, and a low standard deviation indicate that both desensitized IMM
algorithms can detect the fault clearly and consistently. The performance of the IMM-
SDKF and IMM-XDKF-Z is similar to the perfect IMM-KF, so the average zone model
does not deteriorate it.
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Figure 5.6. Opened window fault. The figure shows the mode probabilities of the IMM-
SDKF with the average zone model.

The second scenario simulates the gradually heated thermometer of outside air tem-
perature. The disturbance begins at time 𝑡 = 20 min and the disturbance temperature
gradually goes to 10 °C as it is shown in Fig. 5.8.
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Figure 5.7. Opened window fault. The figure shows the mode probabilities of the IMM-
XDKF-Z with the average zone model.
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Figure 5.8. Heated thermometer fault. The figure shows the simulated disturbances.

The result of the perfect IMM-KF and the imperfect IMM-KF are shown in Fig. 5.9
and Fig. 5.10, respectively. The heated thermometer is detectable using the perfect
IMM-KF, whereas, in the imperfect IMM-KF, the combined fault has the highest prob-
ability during the fault occurrence. Therefore the average model in the imperfect IMM-
KF significantly deteriorates detection performance.
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Figure 5.9. Heated thermometer fault. The figure shows the mode probabilities of the
standard IMM with the accurate zone model (perfect IMM-KF).

The results for desensitized IMM algorithms are in Fig. 5.11 and Fig. 5.12. The
IMM-SDKF and the IMM-XDKF-Z have delayed detection by a few minutes compared
to the perfect IMM-KF. Otherwise, their performance results are again very similar.
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Figure 5.10. Heated thermometer fault. The figure shows the mode probabilities of the
standard IMM with the average zone model (imperfect IMM-KF).
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Figure 5.11. Heated thermometer fault. The figure shows the mode probabilities of the
IMM-SDKF with the average zone model.
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Figure 5.12. Heated thermometer fault. The figure shows the mode probabilities of the
IMM-XDKF-Z with the average zone model.

The fault can be clearly and consistently detected by both the IMM-SDKF and the
IMM-XDKF-Z.

The last experiment presents the detection of simultaneous faults. In the simulation,
the Fault 1 and Fault 2 scenarios run simultaneously, i.e., the thermometer is heated,
then the window is opened for 12 min. The simulation of disturbances is shown in
Fig. 5.13.
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Figure 5.13. Simultaneous faults. The figure shows the simulated disturbances. The verti-
cal lines represent standard deviations computed from 100 Monte Carlo simulations.

The faults are accurately detected using the perfect IMM-KF shown in Fig. 5.14.
In the previous results, the imperfect IMM-KF could not detect the separate faults,
so the detection of both faults was not expected. These expectations are confirmed
by the results of the imperfect IMM-KF in Fig. 5.15. The mode probabilities do not
correspond to the real modes, so the imperfect IMM-KF cannot detect the faults.
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Figure 5.14. Simultaneous faults. The figure shows the mode probabilities of the standard
IMM with the accurate zone model (perfect IMM-KF).
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Figure 5.15. Simultaneous faults. The figure shows the mode probabilities of the standard
IMM with the average zone model (imperfect IMM-KF).

Finally, the results of the IMM-SDKF and the IMM-XDKF-Z are shown in Fig. 5.16
and Fig. 5.17 respectively. The mode probabilities mean values of the IMM-SDKF
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correspond to the real modes. In the recovery phase after the windows are closed (end
of Fault 1), the mode probability of the combined faults (Fault 1+2) is close to the mode
probability of the heated thermometer (Fault 2), and the standard deviation is higher.
In this phase, the distinguishing between modes might not be clear. However, this
unclear phase lasts only for about 10 min. Then the modes are correctly and consistently
distinguished. The mode probabilities of the IMM-XDKF-Z are estimated correctly and
consistently. Its performance is similar to the perfect IMM-KF. Both the IMM-SDKF
and the IMM-XDKF-Z proved suitable for detection in the scenario with simultaneous
faults.
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Figure 5.16. Simultaneous faults. The figure shows the mode probabilities of the IMM-
SDKF with the average zone model.

0 10 20 30 40 50 60

Time [min]

0

0.2

0.4

0.6

0.8

1

P
ro

b
. 
m

e
a
n
 [
-]

0 10 20 30 40 50 60

Time [min]

0

0.2

0.4

0.6

0.8

1

P
ro

b
. 
s
td

 [
-]

Nominal Fault 1 Fault 2 Fault 1+2

Figure 5.17. Simultaneous faults. The figure shows the mode probabilities of the IMM-
XDKF-Z with the average zone model.
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Chapter6
Distributed desensitized state estimation

Distributed formulation of the exact desensitized Kalman filter can be very useful for
application on large-scale networks. The goal is to obtain state estimates of local
subsystems given the information from their closest neighbors. There are two areas
where the desensitized algorithm can improve the local state estimation. First, the local
estimation can be improved when local subsystems have uncertain parameters. Second,
the local estimation can be improved by reducing the sensitivity to the information
obtained from neighbors. This approach helps keep low communication burden between
neighbors while considering the uncertainty of neighbor estimates. The results in this
chapter were published in [J2].

6.1 Distributed linear stochastic system

The distributed state estimation method for linear systems interconnected by linear
combinations of neighbors’ state vectors is proposed in this section. The method as-
sumes a network of linear interconnected non-overlapping systems with the local node
system

𝘅(𝑖)
𝑘+1 = 𝗔(𝑖) (𝝷(𝑖)) 𝘅(𝑖)

𝑘 + 𝗕(𝑖) (𝝷(𝑖)) 𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

𝗚(𝑖)
𝑗 𝘅(𝑗)

𝑘 + 𝘃(𝑖)
𝑘 ,

𝘆(𝑖)
𝑘 = 𝗖(𝑖)𝘅(𝑖)

𝑘 + 𝗲(𝑖)
𝑘 ,

(6.1)

where the integer 𝑖 in the superscript brackets identifies the particular network node,
𝘅(𝑖)

𝑘 is the node state vector at time 𝑘, 𝘂(𝑖)
𝑘 is the node input vector, 𝘆(𝑖)

𝑘 is the node mea-
sured output vector, 𝘃(𝑖)

𝑘 , 𝗲(𝑖)
𝑘 are the process and measurement white noise sequences, 𝑗

denotes the adjacent node from the neighborhood set 𝒢(𝑖) = {𝑗(𝑖)
1 , . . . , 𝑗(𝑖)

𝑁g,𝑖
}, and 𝑁g,𝑖

is the number of neighbors of node 𝑖. The process and measurement noise statistics are

[ 𝘃(𝑖)
𝑘

𝗲(𝑖)
𝑘

] = 𝒩 ([ 𝟬
𝟬 ] , [ 𝗤(𝑖) 𝟬

𝟬 𝗥(𝑖) ]) . (6.2)

Furthermore, noise inputs are not correlated across nodes

E [𝘃(𝑖)
𝑘 (𝘃(𝑗)

𝑘 )
𝑇
] = 𝟬, E [𝘃(𝑖)

𝑘 (𝗲(𝑗)
𝑘 )

𝑇
] = 𝟬, E [𝗲(𝑖)

𝑘 (𝗲(𝑗)
𝑘 )

𝑇
] = 𝟬,

for all 𝑖 ≠ 𝑗.
(6.3)

The local systems depend on vectors of local uncertain parameters 𝝷(𝑖) ∈ ℝ𝑁𝜃,𝑖 , where
𝑁𝜃,𝑖 denotes the dimension of the local parameter vector at node 𝑖. The matrices 𝗔(𝑖),
𝗕(𝑖) are assumed to be linear matrix functions of parameters

𝗔(𝑖) (𝝷(𝑖)) = 𝗔(𝑖)
0 + 𝜃(𝑖)

1 𝗔(𝑖)
1 + 𝜃(𝑖)

2 𝗔(𝑖)
2 + . . . + 𝜃(𝑖)

𝑁𝜃,𝑖
𝗔(𝑖)

𝑁𝜃,𝑖
, (6.4)

𝗕(𝑖) (𝝷(𝑖)) = 𝗕(𝑖)
0 + 𝜃(𝑖)

1 𝗕(𝑖)
1 + 𝜃(𝑖)

2 𝗕(𝑖)
2 + . . . + 𝜃(𝑖)

𝑁𝜃,𝑖
𝗕(𝑖)

𝑁𝜃,𝑖
. (6.5)
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The linear matrix function descriptions in (6.4), (6.5) are inspired by Taylor series
expansion of a nonlinear function in the operating point 𝝷op

𝑓(𝝷) = 𝑓(𝝷op) + (∂𝑓(𝝷)/∂𝜃1) |𝝷op
Δ𝜃1 + (∂𝑓(𝝷)/∂𝜃2) |𝝷op

Δ𝜃2 + . . . , (6.6)

which is often used for linearization of nonlinear systems.
The local state estimation of the system (6.1) requires sharing state estimates and

error covariances among neighbors. Sharing the state estimation error covariances in-
creases the size of transferred data related to the state estimation information from
𝒪(𝑁𝑥) to 𝒪(𝑁2

𝑥), where 𝑁𝑥 is a state vector dimension. Instead of using the error
covariances, the uncertainty of neighbor state estimates can be expressed by additional
uncertain parameters, which results in the modified local system description

𝘅(𝑖)
𝑘+1 = 𝗔(𝑖) (𝝷(𝑖)) 𝘅(𝑖)

𝑘 + 𝗕(𝑖) (𝝷(𝑖)) 𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘 + 𝘃(𝑖)

𝑘 ,

𝘆(𝑖)
𝑘 = 𝗖(𝑖)𝘅(𝑖)

𝑘 + 𝗲(𝑖)
𝑘 ,

(6.7)

where the estimates from neighbors are considered to be deterministic inputs multi-
plied by unknown uncertain parameters 𝜌(𝑖)

𝑗 , 𝑗 ∈ 𝒢(𝑖). Putting these parameters in the
parameter vector 𝞀(𝑖) ∈ ℝ𝑁g,𝑖 allows to formulate the extended parameter vector of the
𝑖-th local system as

𝝝(𝑖) = [ 𝞀(𝑖)

𝝷(𝑖) ] , (6.8)

with dimension 𝑁Θ,𝑖 = 𝑁g,𝑖 + 𝑁𝜃,𝑖. The state estimation method for the local sys-
tem (6.7) should include uncertainty of the parameters to reduce the impact of the pa-
rameter uncertainty on the state estimation error, and consequently, reduce the impact
of the neighbor estimate uncertainty. In this case, the desensitized approach is chosen
because it does not require a prior definition of the uncertainty, such as a probability
distribution or an interval, but only the expected value is needed. In this particular
application to the local system (6.7), the expected values of parameter vectors 𝞀(𝑖) are
all one. In the desensitized approach, the reduction of the state estimation error sensi-
tivity to uncertain parameters is tuned using weights. The proposed local desensitized
Kalman filter algorithm (LXDKF) is derived in the following section.

6.2 Local desensitized Kalman filter

The local exact desensitized Kalman filter (LXDKF) for the local system (6.7) is derived
in this section. The LXDKF is based on the exact desensitized Kalman filter with zero
gain sensitivity and cumulative update in Algorithm 3.5.

When the true parameter values are known, a linear observer for the local system (6.7)
estimates the state as

̂𝘅(𝑖)∗
𝑘+1|𝑘 = 𝗔(𝑖) (𝝷(𝑖)) ̂𝘅(𝑖)∗

𝑘|𝑘−1 + 𝗕(𝑖) (𝝷(𝑖)) 𝘂𝑘 + ∑
𝑗∈𝒢(𝑖)

𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1

+ 𝗞(𝑖)
𝑘 (𝘆(𝑖)

𝑘 − 𝗖(𝑖) ̂𝘅(𝑖)
𝑘|𝑘−1 ) , (6.9)

and generates the state prediction error

̃𝘅(𝑖)∗
𝑘+1|𝑘 = 𝘅(𝑖)

𝑘+1 − ̂𝘅(𝑖)∗
𝑘+1|𝑘 , (6.10)

= (𝗔(𝑖) (𝝷(𝑖)) − 𝗞(𝑖)
𝑘 𝗖(𝑖)) ̃𝘅(𝑖)∗

𝑘|𝑘−1 + 𝘃(𝑖)
𝑘 − 𝗞(𝑖)

𝑘 𝗲(𝑖)
𝑘 , (6.11)
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where 𝗞(𝑖)
𝑘 is a time-variant observer gain. The mean value of the observer error (6.10)

is zero. Therefore minimizing its covariance will result in the optimal observer in the
minimum mean square error (MMSE) sense.

When the observer is designed using some estimated parameter vector �̂�
(𝑖)

, the true
value is defined as

𝝝(𝑖) = �̂�
(𝑖)

+ �̃�
(𝑖)

= [
�̂�(𝑖)

�̂�
(𝑖) ] + [

�̂�(𝑖)

�̂�
(𝑖) ] , (6.12)

where �̃�
(𝑖)

denotes the parameter error, which is assumed to be unknown. The observer
state prediction mean becomes

̂𝘅(𝑖)
𝑘+1|𝑘 = 𝗔(𝑖)(�̂�

(𝑖)
) ̂𝘅(𝑖)

𝑘|𝑘−1 + 𝗕(𝑖)(�̂�
(𝑖)

)𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

̂𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1

+ 𝗞(𝑖)
𝑘 (𝘆(𝑖)

𝑘 − 𝗖(𝑖) ̂𝘅(𝑖)
𝑘|𝑘−1 ) , (6.13)

which generates the prediction error

̃𝘅(𝑖)
𝑘+1|𝑘 = 𝘅(𝑖)

𝑘+1 − ̂𝘅(𝑖)
𝑘+1|𝑘 , (6.14)

= (𝗔(𝑖)(�̂�
(𝑖)

) − 𝗞(𝑖)
𝑘 𝗖(𝑖)) ̃𝘅(𝑖)

𝑘|𝑘−1 + 𝘃(𝑖)
𝑘 − 𝗞(𝑖)

𝑘 𝗲(𝑖)
𝑘

+ �̃�
(𝑖)

𝘅(𝑖)
𝑘 + �̃�

(𝑖)
𝘂(𝑖)

𝑘 + ∑
𝑗∈𝒢(𝑖)

̃𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1 , (6.15)

where the matrices �̃�
(𝑖)

, �̃�
(𝑖)

are defined as

�̃�
(𝑖)

≡ 𝗔(𝑖) (𝝷(𝑖)) − 𝗔(𝑖)(�̂�
(𝑖)

),

�̃�
(𝑖)

≡ 𝗕(𝑖) (𝝷(𝑖)) − 𝗕(𝑖)(�̂�
(𝑖)

).
(6.16)

The notations �̂�
(𝑖)

≡ 𝗔(𝑖)(�̂�
(𝑖)

) and �̂�
(𝑖)

≡ 𝗕(𝑖)(�̂�
(𝑖)

) will be used to keep the text
compact.

Low sensitivity of prediction error to parameters guarantees that even large param-
eter variation �̃�

(𝑖)
will have a limited impact on the state estimate error ̃𝘅(𝑖)

𝑘+1|𝑘 . The
sensitivity of prediction error (6.14) to a selected parameter Θ̂(𝑖)

𝑝 , where 𝑝 = 1, . . . , 𝑁Θ,𝑖
and 𝑁Θ,𝑖 = 𝑁g,𝑖 + 𝑁𝜃,𝑖, is obtained as

𝘀(𝑖)
𝑝,𝑘+1|𝑘 ≡

𝑑 ̃𝘅(𝑖)
𝑘+1|𝑘

𝑑Θ̂(𝑖)
𝑝

, (6.17)

= (�̂�
(𝑖)

− 𝗞(𝑖)
𝑘 𝗖(𝑖)) 𝘀(𝑖)

𝑝,𝑘|𝑘−1 + ∂�̂�
(𝑖)

∂Θ̂(𝑖)
𝑝

̃𝘅(𝑖)
𝑘|𝑘−1

− ∂�̂�
(𝑖)

∂Θ̂(𝑖)
𝑝

𝘅(𝑖)
𝑘 − ∂�̂�

(𝑖)

∂Θ̂(𝑖)
𝑝

𝘂(𝑖)
𝑘 − ∑

𝑗∈𝒢(𝑖)

∂ ̂𝜌(𝑖)
𝑗

∂Θ̂(𝑖)
𝑝

𝗚(𝑖)
𝑗 ̂𝘅(𝑗)

𝑘|𝑘−1 , (6.18)

= (�̂�
(𝑖)

− 𝗞(𝑖)
𝑘 𝗖(𝑖)) 𝘀(𝑖)

𝑝,𝑘|𝑘−1

− 𝗔(𝑖)
𝑝 ̂𝘅(𝑖)

𝑘|𝑘−1 − 𝗕(𝑖)
𝑝 𝘂(𝑖)

𝑘 − ∑
𝑗∈𝒢(𝑖)

𝛿𝑗 𝑗(𝑖)
𝑝

𝗚(𝑖)
𝑗 ̂𝘅(𝑗)

𝑘|𝑘−1 , (6.19)
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where 𝗔(𝑖)
𝑝 , 𝗕(𝑖)

𝑝 are the matrix coefficients of linear matrix functions defined in (6.4)
and (6.5), and 𝛿𝑗 𝑗(𝑖)

𝑝
denotes the Kronecker delta, i.e. 𝛿𝑗 𝑗(𝑖)

𝑝
is one if 𝑗 = 𝑗(𝑖)

𝑝 and

zero otherwise. Also, when 𝑝 > 𝑁g,𝑖, neighbor 𝑗(𝑖)
𝑝 does not exist and 𝛿𝑗 𝑗(𝑖)

𝑝
is zero.

Furthermore, it is assumed that the impact of the gain sensitivity is negligible

𝑑𝗞(𝑖)
𝑘

𝑑Θ̂(𝑖)
𝑝

= 0. (6.20)

The assumption (6.20) is fully justified in Section 3.2. The mean value notation will be
used to emphasize that the sensitivity in (6.19) is a deterministic variable

𝘀(𝑖)
𝑝,𝑘+1|𝑘 = 𝔼 [ ̂𝘀(𝑖)

𝑝,𝑘+1|𝑘 ] = ̂𝘀(𝑖)
𝑝,𝑘+1|𝑘 . (6.21)

As mentioned in the previous sections, the desensitized approach uses two objectives.
First, the state estimation error is minimized as in the standard Kalman filter. Second,
the state prediction error sensitivity to uncertain parameters is minimized. The goal is
achieved by minimizing the optimization criterion defined as a convex combination of
individual objectives

𝐽 (𝑖) = 𝛼(𝑖) tr 𝔼 [ ̃𝘅(𝑖)
𝑘+1|𝑘 ( ̃𝘅(𝑖)

𝑘+1|𝑘 )
𝑇
] +

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 tr ( ̂𝘀(𝑖)

𝑝,𝑘+1|𝑘 ( ̂𝘀(𝑖)
𝑝,𝑘+1|𝑘 )

𝑇
) ,

where 𝛼(𝑖) ≡ 1 −
𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 , 0 ≤

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 < 1, and 𝛾(𝑖)

𝑝 ≥ 0.

(6.22)

The following notation is used for the covariance notation in the next text

𝗣(𝑖)
𝑘 ≡ 𝔼 [ ̃𝘅(𝑖)

𝑘 ( ̃𝘅(𝑖)
𝑘 )

𝑇
] . (6.23)

The state estimation error covariance is defined as

𝗣(𝑖)
𝑘+1|𝑘 = (�̂�

(𝑖)
− 𝗞(𝑖)

𝑘 𝗖(𝑖))𝗣(𝑖)
𝑘|𝑘−1 (�̂�

(𝑖)
− 𝗞(𝑖)

𝑘 𝗖(𝑖))
𝑇

+ 𝗞(𝑖)
𝑘 𝗥(𝑖)(𝗞(𝑖)

𝑘 )
𝑇

+ 𝗤(𝑖). (6.24)

The sensitivity product is evaluated as

̂𝘀(𝑖)
𝑝,𝑘+1|𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘+1|𝑘 )
𝑇

= (�̂�
(𝑖)

− 𝗞(𝑖)
𝑘 𝗖(𝑖)) ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(�̂�

(𝑖)
− 𝗞(𝑖)

𝑘 𝗖(𝑖))
𝑇

+ 𝗯(𝑖)
𝑝,𝑘 (𝗯(𝑖)

𝑝,𝑘)
𝑇

− 𝗯(𝑖)
𝑝,𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(�̂�
(𝑖)

− 𝗞(𝑖)
𝑘 𝗖(𝑖))

𝑇

− (�̂�
(𝑖)

− 𝗞(𝑖)
𝑘 𝗖(𝑖)) ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 (𝗯(𝑖)
𝑝,𝑘)

𝑇
, (6.25)

where

𝗯(𝑖)
𝑝,𝑘 = 𝗔(𝑖)

𝑝 ̂𝘅(𝑖)
𝑘|𝑘−1 + 𝗕(𝑖)

𝑝 𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

𝛿𝑗 𝑗𝑝
𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1 . (6.26)
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The optimal gain 𝗞(𝑖)
𝑘 can be found from the first order optimality condition

∂𝐽
∂𝗞(𝑖)

𝑘

= 0. (6.27)

The derivatives of the elements of criterion (6.22) required to evaluate (6.27) are

∂ tr𝗣(𝑖)
𝑘+1|𝑘

∂𝗞(𝑖)
𝑘

= −2�̂�
(𝑖)

𝗣(𝑖)
𝑘|𝑘−1 (𝗖(𝑖))

𝑇

+ 2𝗞(𝑖)
𝑘 (𝗖(𝑖)𝗣(𝑖)

𝑘|𝑘−1 (𝗖(𝑖))
𝑇

+ 𝗥(𝑖)) , (6.28)

∂tr ( ̂𝘀(𝑖)
𝑝,𝑘+1|𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘+1|𝑘 )
𝑇
)

∂𝗞(𝑖)
𝑘

= −2�̂�
(𝑖)

̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(𝗖(𝑖))
𝑇

+ 2𝗞(𝑖)
𝑘 𝗖(𝑖) ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(𝗖(𝑖))

𝑇

+ 2𝗯(𝑖)
𝑝,𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(𝗖(𝑖))
𝑇

. (6.29)

The resulting gain equation is obtained by substituting (6.28) and (6.29) to (6.27)

𝗞(𝑖)
𝑘 [𝗖(𝑖) (𝛼(𝑖)𝗣(𝑖)

𝑘|𝑘−1 +
𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
) (𝗖(𝑖))

𝑇
+ 𝛼(𝑖)𝗥(𝑖)] =

= �̂�
(𝑖)

(𝛼(𝑖)𝗣(𝑖)
𝑘|𝑘−1 +

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
) (𝗖(𝑖))

𝑇
−

−
𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 𝗯(𝑖)

𝑝,𝑘 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(𝗖(𝑖))

𝑇
. (6.30)

A rank-1 update of the covariance results in a positive semi-definite matrix. Therefore,
the multiplier of the gain 𝗞(𝑖)

𝑘 in (6.30) is a positive definite matrix, and the gain can
be defined as

𝗞(𝑖)
𝑘 = [�̂�

(𝑖)
𝗣Σ,(𝑖)

𝑘|𝑘−1 (𝗖(𝑖))
𝑇

+ 𝗦(𝑖)
𝑘 ] [𝗖(𝑖)𝗣Σ,(𝑖)

𝑘|𝑘−1 (𝗖(𝑖))
𝑇

+ 𝛼(𝑖)𝗥(𝑖)]
−1

, (6.31)

where

𝗣Σ,(𝑖)
𝑘|𝑘−1 = 𝛼(𝑖)𝗣(𝑖)

𝑘|𝑘−1 +
𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
, (6.32)

𝗦(𝑖)
𝑘 = −

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 𝗯(𝑖)

𝑝,𝑘 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(𝗖(𝑖))

𝑇
. (6.33)

The cumulative matrix 𝗣Σ,(𝑖)
𝑘|𝑘−1 in (6.32) is a positive semi-definite matrix. Then it is

sufficient and convenient to update the cumulative moment 𝗣Σ,(𝑖)
𝑘|𝑘−1 instead of the sep-

arate covariance update 𝗣(𝑖)
𝑘|𝑘−1 . The cumulative moment update equation is obtained

as

𝗣Σ,(𝑖)
𝑘+1|𝑘 = �̂�

(𝑖)
𝗣Σ,(𝑖)

𝑘|𝑘−1 (�̂�
(𝑖)

)
𝑇

+ 𝗤Σ,(𝑖)
𝑘|𝑘−1

− 𝗞(𝑖)
𝑘 [𝗖(𝑖)𝗣Σ,(𝑖)

𝑘|𝑘−1 (�̂�
(𝑖)

)
𝑇

+ (𝗦(𝑖)
𝑘 )

𝑇
] , (6.34)
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where the cumulative process noise matrix is

𝗤Σ,(𝑖)
𝑘|𝑘−1 = 𝛼(𝑖)𝗤(𝑖) +

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 [𝗯(𝑖)

𝑝,𝑘 (𝗯(𝑖)
𝑝,𝑘)

𝑇
−

− 𝗯(𝑖)
𝑝,𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(�̂�
(𝑖)

)
𝑇

− �̂�
(𝑖)

̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 (𝗯(𝑖)

𝑝,𝑘)
𝑇

]. (6.35)

The weighted cumulative update in (6.34) is a Riccati difference equation (RDE). This
update can be interpreted as a covariance update of the standard Kalman filter with
the correlated process and measurement noise and time-varying covariance matrices

[ 𝘃(𝑖)
𝑘

𝗲(𝑖)
𝑘

] = 𝒩 ([ 𝟬
𝟬 ] , [

𝗤Σ,(𝑖)
𝑘|𝑘−1 𝗦(𝑖)

𝑘

(𝗦(𝑖)
𝑘 )

𝑇
𝛼(𝑖)𝗥(𝑖)

]) . (6.36)

The algorithms with separate data-update and time-update steps are more suitable
for distributed state estimation since the information can be shared after each time
iteration and between the steps. The particular steps are described as follows. The
data-update step obtains the state estimate 𝘅𝑘|𝑘 based on the measurements at time 𝑘
and the prior state estimate 𝘅𝑘|𝑘−1 . The time-update step obtains the state estimate
𝘅𝑘+1|𝑘 based on the model and the posterior state estimate 𝘅𝑘|𝑘 .

Thanks to the LXDKF similarity with the standard Kalman filter, the single-step
LXDKF can be separated by decorrelating the process and measurement noise with
mutual correlation defined by (6.33). The steps can be separated using the approach
in Section 3.2.4, which results in the decorrelated process and measurement noise

[ 𝘃dc,(𝑖)
𝑘
𝗲(𝑖)

𝑘
] = 𝒩 ([ 𝟬

𝟬 ] , [
𝗤Σ,(𝑖)

𝑘|𝑘 𝟬
𝟬 𝛼(𝑖)𝗥(𝑖) ]) , (6.37)

where

𝗤Σ,(𝑖)
𝑘|𝑘 = 𝗤Σ,(𝑖)

𝑘|𝑘−1 − 𝗦(𝑖)
𝑘 (𝛼(𝑖)𝗥(𝑖))

−1
(𝗦(𝑖)

𝑘 )
𝑇

. (6.38)

The state propagation equation (6.7) is transformed into

𝘅(𝑖)
𝑘+1 = (𝗔(𝑖) (𝝷(𝑖)) − 𝗦(𝑖)

𝑘 (𝛼(𝑖)𝗥(𝑖))
−1

𝗖(𝑖)) 𝘅(𝑖)
𝑘 + 𝗕(𝑖) (𝝷(𝑖)) 𝘂(𝑖)

𝑘 +

+ ∑
𝑗∈𝒢(𝑖)

𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘 − 𝗦(𝑖)

𝑘 (𝛼(𝑖)𝗥(𝑖))
−1

𝘆𝑖
𝑘 + 𝘃dc,(𝑖)

𝑘 . (6.39)

Then the algorithm can be split into a data-update step and a time-update step, as
shown in Section 3.2.4. The final two-step algorithm is described as follows.

Algorithm 6.1 (Local eXact Desensitized Kalman Filter — LXDKF). The LXDKF algo-
rithm requires initialization of the weights 𝛾(𝑖)

𝑝 and the prior state mean ̂𝘅(𝑖)
𝑘|𝑘−1 , the

cumulative moment 𝗣Σ,(𝑖)
𝑘|𝑘−1 , and the state estimation error sensitivities to parameters

̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 . The following LXDKF update steps need to be executed at each local node at

each time iteration
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. Exchange data. The prior state estimates ̂𝘅(𝑖)
𝑘|𝑘−1 are exchanged with neighbors. The

local input and measurement data are obtained.
. Uncertainty-update step. The process noise covariance matrix and the cross-

covariance matrix are updated.
𝗯(𝑖)

𝑝,𝑘 = 𝗔(𝑖)
𝑝 ̂𝘅(𝑖)

𝑘|𝑘−1 + 𝗕(𝑖)
𝑝 𝘂(𝑖)

𝑘 + ∑
𝑗∈𝒢(𝑖)

𝛿𝑗 𝑗𝑝
𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1 , (6.40)

𝗤Σ,(𝑖)
𝑘|𝑘−1 = 𝛼(𝑖)𝗤(𝑖) +

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 [𝗯(𝑖)

𝑝,𝑘 (𝗯(𝑖)
𝑝,𝑘)

𝑇
−

− 𝗯(𝑖)
𝑝,𝑘 ( ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(�̂�
(𝑖)

)
𝑇

− �̂�
(𝑖)

̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 (𝗯(𝑖)

𝑝,𝑘)
𝑇

], (6.41)

𝗦(𝑖)
𝑘 = −

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 𝗯(𝑖)

𝑝,𝑘 ( ̂𝘀(𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(𝗖(𝑖))

𝑇
, (6.42)

where 𝗯(𝑖)
𝑝,𝑘 is an auxiliary variable used just to simplify the formulas (6.41) and (6.42).

. Data-update step. The state estimate, the sensitivity, and the cumulative moment
are updated based on measurements.

𝗞(𝑖)
𝑘 = 𝗣Σ,(𝑖)

𝑘|𝑘−1 (𝗖(𝑖))
𝑇

[𝗖(𝑖)𝗣Σ,(𝑖)
𝑘|𝑘−1 (𝗖(𝑖))

𝑇
+ 𝛼(𝑖)𝗥(𝑖)]

−1
, (6.43)

̂𝘅(𝑖)
𝑘|𝑘 = ̂𝘅(𝑖)

𝑘|𝑘−1 + 𝗞(𝑖)
𝑘 (𝘆(𝑖)

𝑘 − 𝗖(𝑖) ̂𝘅(𝑖)
𝑘|𝑘−1 ) , (6.44)

̂𝘀(𝑖)
𝑝,𝑘|𝑘 = ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 − 𝗞(𝑖)
𝑘 𝗖(𝑖) ̂𝘀(𝑖)

𝑝,𝑘|𝑘−1 , (6.45)

𝗣Σ,(𝑖)
𝑘|𝑘 = 𝗣Σ,(𝑖)

𝑘|𝑘−1 − 𝗞(𝑖)
𝑘 𝗖(𝑖)𝗣Σ,(𝑖)

𝑘|𝑘−1 . (6.46)

. Exchange data. The posterior state estimates ̂𝘅(𝑖)
𝑘|𝑘 are exchanged with neighbors.

. Time-update step. The state estimate, the sensitivity, and the cumulative moment
are propagated in time using local models. Notice that the updates are done using
the decorrelated system and noise matrices since the process and measurement noise
are correlated by 𝗦(𝑖)

𝑘 .

�̂�
(𝑖)
dc = �̂�

(𝑖)
− 𝗦(𝑖)

𝑘 (𝛼(𝑖)𝗥(𝑖))
−1

𝗖(𝑖), (6.47)

𝗤Σ,(𝑖)
𝑘|𝑘 = 𝗤Σ,(𝑖)

𝑘|𝑘−1 − 𝗦(𝑖)
𝑘 (𝛼(𝑖)𝗥(𝑖))

−1
(𝗦(𝑖)

𝑘 )
𝑇

, (6.48)

̂𝘅(𝑖)
𝑘+1|𝑘 = �̂�

(𝑖)
dc ̂𝘅(𝑖)

𝑘|𝑘 + �̂�
(𝑖)

𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

̂𝜌(𝑖)
𝑗 𝗚(𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘 + 𝗦(𝑖)

𝑘 (𝛼(𝑖)𝗥(𝑖))
−1

𝘆(𝑖)
𝑘 , (6.49)

̂𝘀(𝑖)
𝑝,𝑘+1|𝑘 = �̂�

(𝑖)
dc ̂𝘀(𝑖)

𝑝,𝑘|𝑘 − 𝗯(𝑖)
𝑝,𝑘, (6.50)

𝗣Σ,(𝑖)
𝑘+1|𝑘 = �̂�

(𝑖)
dc𝗣Σ,(𝑖)

𝑘|𝑘 (�̂�
(𝑖)
dc)

𝑇
+ 𝗤Σ,(𝑖)

𝑘|𝑘 . (6.51)

The LXDKF in Algorithm 6.1 requires communication only between the adjacent
nodes. The communication transfer between any two neighbors is shown in Fig. 6.1.
It is required to transfer only the state estimate information twice at each iteration.
In the case of a double-precision, a node needs to transfer 16 × 𝑁𝑥 bytes per step
to each neighbor, which corresponds to complexity 𝒪(𝑁𝑥). For comparison, the PKF
need to transfer 16 × (𝑁𝑥 + 𝑁2

𝑥) bytes per step, i.e. its complexity is 𝒪(𝑁2
𝑥), because

it needs to share the covariance matrix. Such transfer rate is not negligible because
the network bandwidth is usually also needed for other purposes such as a distributed
control algorithm, data logging, etc.
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Figure 6.1. The LXDKF algorithm communication transfer between neighbors.
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Chapter7
Distributed desensitized fault detection and

diagnosis

The IMM method that uses filtering methods for the FDD was discussed in Chapter 5.
Similarly, the distributed FDD methods can be developed based on the distributed
state estimation algorithms. This chapter describes a distributed model-based FDD
method that is scalable, reusable, accurate and has a low communication burden. The
results in this chapter were published in [J2].

7.1 Local IMMwith desensitized filtering

Application of the IMM-based FDD to the network (6.7) consists of two parts. First, a
set of local modes needs to be defined for each network node. Second, a local IMM is
used for state estimation of a local system, where the LXDKF replaces Kalman filters.

The local Markov jump linear system is defined as

𝘅(𝑖,𝑚𝑖)
𝑘+1 = 𝗔(𝑖,𝑚𝑖)(𝝷(𝑖))𝘅(𝑖,𝑚𝑖)

𝑘 + 𝗕(𝑖,𝑚𝑖)(𝝷(𝑖))𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

𝜌(𝑖)
𝑗 𝗚(𝑖,𝑚𝑖)

𝑗 ̂𝘅(𝑗)
𝑘 + 𝘃(𝑖)

𝑘 ,

𝘆(𝑖)
𝑘 = 𝗖(𝑖,𝑚𝑖)𝘅(𝑖,𝑚𝑖)

𝑘 + 𝗲(𝑖)
𝑘 ,

(7.1)

where 𝑖 in the superscript brackets denotes the local network node number, 𝑗 defines
the neighbor network node number from neighborhood set 𝒢(𝑖) = {𝑗(𝑖)

1 , 𝑗(𝑖)
2 , . . . , 𝑗(𝑖)

𝑁g,𝑖
},

𝑚𝑖 in the superscript brackets denotes the mode number at node 𝑖 at time 𝑘, and 𝑚𝑖 is
from the predefined set ℳ(𝑖) = {1, 2, . . . , 𝑁m,𝑖}. Other properties follow the properties
of the local system (6.7). The neighbor estimate ̂𝘅(𝑗)

𝑘 do not have any mode superscript
𝑚𝑗 because the local node uses the estimate from neighbor as it is sent and have no
information about adjacent node mode set ℳ(𝑗).

The accuracy of the IMM can be improved if the mode set ℳ(𝑖) is variable in time [67].
Such an approach can overcome a situation where a mode has a high probability even
though a quantifiable reason exists that this mode cannot occur in a real scenario. In
this thesis, the modes from the predefined set ℳ(𝑖) are deactivated if they do not satisfy
predefined local or global constraints. The examples of the local constraint 𝑐(𝑖,𝑚𝑖)

𝑘 are

. time constraint: the time has passed the initialization phase 𝑡𝑘 ≥ 𝑡init. input constraint: an input value is within predefined bounds 𝑢LB ≥ 𝑢𝑘 ≥ 𝑢UB. state estimate constraint: a state estimate is within predefined bounds 𝑥LB ≥ ̂𝑥𝑘 ≥
𝑥UB. likelihood constraint: a difference between local mode likelihood values is greater
than threshold Λ(𝑖,𝑚𝑖)

𝑘 − Λ(𝑖,𝑙𝑖)
𝑘 ≥ 𝜖, where 𝑙𝑖 ∈ ℳ(𝑖).

The local constraint definition is not fixed to the given examples and can also be defined
as a combination of constraints. The global constraints 𝐶(𝑖,𝑚𝑖)

𝑘 are defined as the logical
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conjunction of the local constraints and selected local constraints in the neighbors’ nodes
If the constraints are not satisfied, the mode is deactivated by modifying the transition
probability matrix. The modification starts with setting the probability of staying in
the deactivated mode to zero. Then, the probability of the transition to deactivated
mode is significantly reduced compared to the transition to active mode. Finally, the
transition probability matrix is normalized after the modifications. The constraint
mode activation results in the current transition probability matrix where the elements
define the probability of transition from the mode 𝑙𝑖 to the mode 𝑚𝑖

𝑇 (𝑖)
𝑘 (𝑙𝑖, 𝑚𝑖) = 𝑃 (𝑀𝑘+1 = 𝑚𝑖 |𝑀𝑘 = 𝑙𝑖 ) , (7.2)

where 𝑀𝑘 denotes the mode at time 𝑘. The local IMM algorithm needs to evaluate the
constraint mode activation before mixing the mode state estimates.

The desensitized approach from the LXDKF in Algorithm 6.1 is used for the mode
state estimation step to increase robustness against neighbor estimate errors This sub-
stitution results in the local IMM with constrained mode activation and filtering done
by the LXDKF, which will be referred to as the LIMM-XDKF. The LIMM-XDKF re-
quires initialization of the weights 𝛾(𝑖)

𝑝 and the prior estimates of the state mean ̂𝘅(𝑖,𝑚𝑖)
𝑘|𝑘−1 ,

the cumulative state estimation error covariance 𝗣Σ,(𝑖,𝑚𝑖)
𝑘|𝑘−1 , the state estimation error

sensitivities to parameters ̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘|𝑘−1 , the prior mode probability 𝝻(𝑖)

𝑘−1, and the initial
transition probability matrix 𝗧(𝑖)

0 . The following LIMM-XDKF update steps need to
be executed at each local node at each time iteration:
Algorithm 7.1 (Local IMMwith eXact Desensitized Kalman Filtering – LIMM-XDKF).

. Exchange data. The prior state estimates ̂𝘅(𝑖)
𝑘|𝑘−1 are exchanged with neighbors. The

local input and measurement data are obtained.
. Uncertainty-update step. The variable noise covariance matrices are updated for

each mode 𝑚𝑖 ∈ ℳ(𝑖).

𝗯(𝑖,𝑚𝑖)
𝑝,𝑘 = 𝗔(𝑖,𝑚𝑖)

𝑝 ̂𝘅(𝑖,𝑚𝑖)
𝑘|𝑘−1 + 𝗕(𝑖,𝑚𝑖)

𝑝 𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

𝛿𝑗 𝑗𝑝
𝗚(𝑖,𝑚𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘−1 , (7.3)

𝗤Σ,(𝑖,𝑚𝑖)
𝑘|𝑘−1 = 𝛼(𝑖)𝗤(𝑖,𝑚𝑖) +

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 [𝗯(𝑖,𝑚𝑖)

𝑝,𝑘 (𝗯(𝑖,𝑚𝑖)
𝑝,𝑘 )

𝑇
−

− 𝗯(𝑖,𝑚𝑖)
𝑝,𝑘 ( ̂𝘀(𝑖,𝑚𝑖)

𝑝,𝑘|𝑘−1 )
𝑇

(�̂�
(𝑖,𝑚𝑖)

)
𝑇
−

− �̂�
(𝑖,𝑚𝑖)

̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘|𝑘−1 (𝗯(𝑖,𝑚𝑖)

𝑝,𝑘 )
𝑇

], (7.4)

𝗦(𝑖,𝑚𝑖)
𝑘 = −

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 𝗯(𝑖,𝑚𝑖)

𝑝,𝑘 ( ̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
(𝗖(𝑖,𝑚𝑖))

𝑇
. (7.5)

. Data-update step.

. The state estimate, the sensitivity, and the cumulative covariance are updated for
each mode based on measurements

𝗞(𝑖,𝑚𝑖)
𝑘 = 𝗣Σ,(𝑖,𝑚𝑖)

𝑘|𝑘−1 (𝗖(𝑖,𝑚𝑖))
𝑇

[𝗖(𝑖,𝑚𝑖)𝗣Σ,(𝑖,𝑚𝑖)
𝑘|𝑘−1 (𝗖(𝑖,𝑚𝑖))

𝑇
+ 𝛼(𝑖)𝗥(𝑖,𝑚𝑖)]

−1
, (7.6)

̂𝘅(𝑖,𝑚𝑖)
𝑘|𝑘 = ̂𝘅(𝑖,𝑚𝑖)

𝑘|𝑘−1 + 𝗞(𝑖,𝑚𝑖)
𝑘 (𝘆(𝑖,𝑚𝑖)

𝑘 − 𝗖(𝑖,𝑚𝑖) ̂𝘅(𝑖,𝑚𝑖)
𝑘|𝑘−1 ) , (7.7)

̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘|𝑘 = ̂𝘀(𝑖,𝑚𝑖)

𝑝,𝑘|𝑘−1 − 𝗞(𝑖,𝑚𝑖)
𝑘 𝗖(𝑖,𝑚𝑖) ̂𝘀(𝑖,𝑚𝑖)

𝑝,𝑘|𝑘−1 , (7.8)

𝗣Σ,(𝑖,𝑚𝑖)
𝑘|𝑘 = 𝗣Σ,(𝑖,𝑚𝑖)

𝑘|𝑘−1 − 𝗞(𝑖,𝑚𝑖)
𝑘 𝗖(𝑖,𝑚𝑖)𝗣Σ,(𝑖,𝑚𝑖)

𝑘|𝑘−1 . (7.9)
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. Before the mode probability update, the state error covariance needs to be ex-
tracted from the cumulative second moment

𝗣(𝑖,𝑚𝑖)
𝑘|𝑘−1 = 1

𝛼(𝑖) (𝗣Σ,(𝑖,𝑚𝑖)
𝑘|𝑘−1 −

𝑁Θ,𝑖

∑
𝑝=1

𝛾(𝑖)
𝑝 ̂𝘀(𝑖,𝑚𝑖)

𝑝,𝑘|𝑘−1 ( ̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘|𝑘−1 )

𝑇
) . (7.10)

Then likelihoods Λ(𝑖,𝑚𝑖)
𝑘 of the measurement being from the particular mode are

computed and used to update the mode probabilities 𝜇(𝑖)
𝑘 (𝑚𝑖)

Λ(𝑖,𝑚𝑖)
𝑘 = 𝑝 (𝘆𝑘∣ ̂𝘅(𝑖,𝑚𝑖)

𝑘|𝑘−1, 𝗣(𝑖,𝑚𝑖)
𝑘|𝑘−1) , (7.11)

𝝻(𝑖)
𝑘 (𝑚𝑖) = 1

𝑞
Λ(𝑖,𝑚𝑖)

𝑘 ∑
𝑙𝑖∈ℳ(𝑖)

𝑇 (𝑖)
𝑘−1(𝑙𝑖, 𝑚𝑖)𝜇

(𝑖)
𝑘−1 (𝑙𝑖) , (7.12)

where 𝑞 is the normalizing factor, 𝜇(𝑖)
𝑘 (𝑚𝑖) is the 𝑚𝑖-th element of the vector 𝝻(𝑖)

𝑘 ,
and 𝑇 (𝑖)

𝑘−1(𝑙𝑖, 𝑚𝑖) is the element in 𝑚𝑖-th row and 𝑙𝑖-th column of the matrix 𝗧(𝑖)
𝑘−1.

. The state estimate is updated as the linear combination of the mode state estimates
weighted by the mode probabilities

̂𝘅(𝑖)
𝑘|𝑘 = ∑

𝑚𝑖∈ℳ(𝑖)

̂𝘅(𝑖,𝑚𝑖)
𝑘|𝑘 𝜇(𝑖)

𝑘 (𝑚𝑖) . (7.13)

. Exchange data. The posterior state estimates ̂𝘅(𝑖)
𝑘|𝑘 are exchanged with neighbors.

Also, the local constraints needed for the global constraint evaluation are exchanged.
. Time-update step.

. The transition matrix is updated based on the local and global constraints which
determine the active mode set.

if 𝑐(𝑖,𝑚𝑖)
𝑘 ∧ 𝐶(𝑖,𝑚𝑖)

𝑘

𝗧(𝑖)
𝑘 (ℳ(𝑖), 𝑚𝑖) = 𝗧(𝑖)

0 (ℳ(𝑖), 𝑚𝑖), (7.14)
else

𝑇 (𝑖)
𝑘 (𝑚𝑖, 𝑚𝑖) = 0, (7.15)

𝗧(𝑖)
𝑘 (ℳ(𝑖) − {𝑚𝑖}, 𝑚𝑖) = 𝗧(𝑖)

0 (ℳ(𝑖) − {𝑚𝑖}, 𝑚𝑖) × 10−3, (7.16)
end (7.17)

𝗧(𝑖)
𝑘 (ℳ(𝑖), 𝑚𝑖) = 1

∑𝑙𝑖∈ℳ(𝑖) 𝑇 (𝑖)
𝑘 (𝑙𝑖, 𝑚𝑖)

𝗧(𝑖)
𝑘 (ℳ(𝑖), 𝑚𝑖), (7.18)

where 𝗧(𝑖)
𝑘 (ℳ(𝑖), 𝑚𝑖) is the 𝑚𝑖-th column of matrix 𝗧(𝑖)

𝑘 .
. The statistics of the modes are mixed according to the current transition matrix

and mode probabilities

𝜋(𝑖)
𝑘 (𝑚𝑖| 𝑙𝑖) =

𝑇 (𝑖)
𝑘 (𝑙𝑖, 𝑚𝑖)𝜇

(𝑖)
𝑘 (𝑙𝑖)

∑𝑙𝑖∈ℳ(𝑖) 𝑇 (𝑖)
𝑘 (𝑙𝑖, 𝑚𝑖)𝜇

(𝑖)
𝑘 (𝑙𝑖)

, (7.19)

̅𝘅(𝑖,𝑚𝑖)
𝑘|𝑘 = ∑

𝑙𝑖∈ℳ(𝑖)

̂𝘅(𝑖,𝑙𝑖)
𝑘|𝑘 𝜋(𝑖)

𝑘 (𝑚𝑖| 𝑙𝑖), (7.20)

̅𝘀(𝑖,𝑚𝑖)
𝑝, 𝑘|𝑘 = ∑

𝑙𝑖∈ℳ(𝑖)

̂𝘀(𝑖,𝑙𝑖)
𝑝, 𝑘|𝑘𝜋(𝑖)

𝑘 ( 𝑙𝑖| 𝑚𝑖), (7.21)

�̅�Σ,(𝑖,𝑚𝑖)
𝑘|𝑘 = ∑

𝑙𝑖∈ℳ(𝑖)

𝜋(𝑖)
𝑘 (𝑚𝑖| 𝑙𝑖)[𝗣(𝑖,𝑙𝑖)

𝑘|𝑘 +

+ ( ̂𝘅(𝑖,𝑙𝑖)
𝑘|𝑘 − ̅𝘅(𝑖,𝑚𝑖)

𝑘|𝑘 ) ( ̂𝘅(𝑖,𝑙𝑖)
𝑘|𝑘 − ̅𝘅(𝑖,𝑚𝑖)

𝑘|𝑘 )
𝑇

]. (7.22)
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. The statistics of the modes are propagated in time according to the models

�̂�
(𝑖,𝑚𝑖)
dc = �̂�

(𝑖,𝑚𝑖)
− 𝗦(𝑖,𝑚𝑖)

𝑘 (𝛼(𝑖)𝗥(𝑖,𝑚𝑖))
−1

𝗖(𝑖,𝑚𝑖), (7.23)

𝗤Σ,(𝑖,𝑚𝑖)
𝑘|𝑘 = 𝗤Σ,(𝑖,𝑚𝑖)

𝑘|𝑘−1 − 𝗦(𝑖,𝑚𝑖)
𝑘 (𝛼(𝑖)𝗥(𝑖,𝑚𝑖))

−1
(𝗦(𝑖,𝑚𝑖)

𝑘 )
𝑇

, (7.24)

̂𝘅(𝑖,𝑚𝑖)
𝑘+1|𝑘 = �̂�

(𝑖,𝑚𝑖)
dc ̅𝘅(𝑖,𝑚𝑖)

𝑘|𝑘 + �̂�
(𝑖,𝑚𝑖)

𝘂(𝑖)
𝑘 + ∑

𝑗∈𝒢(𝑖)

̂𝜌(𝑖)
𝑗 𝗚(𝑖,𝑚𝑖)

𝑗 ̂𝘅(𝑗)
𝑘|𝑘 +

+ 𝗦(𝑖,𝑚𝑖)
𝑘 (𝛼(𝑖)𝗥(𝑖,𝑚𝑖))

−1
𝘆(𝑖)

𝑘 , (7.25)

̂𝘀(𝑖,𝑚𝑖)
𝑝,𝑘+1|𝑘 = �̂�

(𝑖,𝑚𝑖)
dc ̅𝘀(𝑖,𝑚𝑖)

𝑝,𝑘|𝑘 − 𝗯(𝑖,𝑚𝑖)
𝑝,𝑘 , (7.26)

𝗣Σ,(𝑖,𝑚𝑖)
𝑘+1|𝑘 = �̂�

(𝑖,𝑚𝑖)
dc �̅�Σ,(𝑖,𝑚𝑖)

𝑘|𝑘 (�̂�
(𝑖,𝑚𝑖)
dc )

𝑇
+ 𝗤Σ,(𝑖,𝑚𝑖)

𝑘|𝑘 . (7.27)

. The state estimate is updated as the linear combination of the mode state estimates
weighted by the mode probabilities

̂𝘅(𝑖)
𝑘+1|𝑘 = ∑

𝑚𝑖∈ℳ(𝑖)

̂𝘅(𝑖,𝑚𝑖)
𝑘+1|𝑘 𝜇(𝑖)

𝑘 (𝑚𝑖) . (7.28)

The LIMM-XDKF describes the state and mode estimation. Nevertheless, the cur-
rent mode decision needs to be made for FDD applications. The simplest decision-
making algorithm is to select the mode with the highest mode probability

𝑑(𝑖)
𝑘 = max

𝑚𝑖
𝜇(𝑖)

𝑘 (𝑚𝑖). (7.29)

This decision can also be used to reconfigure a model-based controller such as the MPC,
for example, by switching to an alternative model and using a corresponding state
estimate. The mode decision allows the MPC to use the model with the most accurate
system representation, improving prediction accuracy and control performance.

7.2 Application to buildings

This section describes how the proposed algorithm can provide state estimates and
mode decisions to the DMPC, which controls a building heating system. First, the
building model is introduced. Then the model is used with the LIMM-XDKF, which
provides the information to the local controller.

7.2.1 Building floormodel

The building envelope includes the parts of the building where most of the thermal
capacity is included (walls, floors, roofs). It creates a border between the outdoor and
indoor environments. The indoor environment is further split into zones. Intercon-
nected zone models create the model of a floor/building. The interactions between
zones are depicted in Fig. 7.1. The zones interact by heat conduction (through walls)
and heat convection (open corridors – dashed line).

The zone temperatures are controlled using decentralized DMPC controllers designed
using linearized models of the zones. Each zone has its fan coil unit (FCU) with heat
flow output manipulated by the controller and a temperature setpoint tracked by the
controller.
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The zones and their interactions are modeled using high-fidelity models designed in
the Modelica environment. The model consists of the following components

. zone models with completely mixed air volume,

. floor and partition walls definitions

. fan coil unit with manipulated heat flow setpoint

. inputs for disturbances as inner heat gains

. fixed ventilation with the air of known temperature modeled as a source of constant
pressure (supply duct) with a damper (VAV) and a sink of constant pressure with
pressure resistance in the duct
. boundary walls are split between the zone models, and each zone contains approxi-

mately half of the wall
. external wall, where a concept of equivalent ambient air temperature is used to

represent the cumulative impact of all heat sources.

Figure 7.1. Building floor scheme with connections between zones.

In each zone, the air temperature (TZ) is measured. The inputs to the zone include a
heat setpoint to the zone heat source (QFCU), a vector of air temperatures in adjacent
zones, connected by open doors/openings (TZ), a vector of partial wall inner temper-
atures in adjacent zones (TW), and weather disturbances. The weather disturbances
are calculated for each surface by the weather disturbance model, and they include a
vector of the solar short-wave radiation coming through the windows (JWin), vectors
of equivalent window temperatures (TEqWin) and wall temperatures (TEqWal). Both
equivalent air temperatures are computed according to German VD 6007 standard [68],
where solar irradiance with dry bulb ambient air temperature and longwave radiation
can be incorporated into an equivalent air temperature. The solar radiation model
evaluates the incidence solar radiation on every surface of the building based on the
geographic location; direct and global solar radiation forecast; black body sky tempera-
ture (or cloudiness); azimuth and tilt of the surface, and date and time. Each window’s
total transmitted radiation is computed based on the computed incidence angle.
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The model is described only verbally since the detailed description is extensive, and
the building modeling is beyond the scope of the thesis.
Simplified model. The nonlinear zone models in Modelica are too complicated for

control and FDD applications. They are also too specific, so it is difficult to reuse them
in different projects.

Therefore, the zone models are simplified. First, each model is linearized at a fixed
operating point and discretized using Euler’s method with 60 seconds sampling period.
The result is a set of 7 interconnected linear discrete-time models that approximately
describe the building. The zone model has 14 states if the zone is located in a corner
and 13 otherwise.

The state estimation using the approximate linearized model can be more accu-
rate by using the uncertainty of model parameters. However, information about the
uncertainty of parameters is lacking. Fortunately, the entire information about the
parameter uncertainty statistics is not required for the LIMM-XDKF, but only the list
of the parameters with expected values is needed. The list is created by perturbing
each model parameter and observing if the model eigenvalues change significantly. This
way, the list of parameters with a high impact on model dynamics is obtained. Their
expected values are the values of the nominal model parameters before perturbation.
For the LIMM-XDKF purpose, the list of the uncertain parameters is extended by the
parameters that define the error of the neighbors’ state estimates.

Next, the linearized zone models with uncertain parameters are reduced to the third
order. The reduced model captures the main dynamics of the zone, which means it can
also approximately describe zones similar to the one originally modeled in Modelica.
The discrete-time zone models are reduced with the balanced truncation method using
Matlab and MORLAB toolbox [69]. The parameterized model order reduction methods
are discussed in [70].
Models of zonemodes. The LIMM-XDKF for each zone uses predefined models for

the normal behavior mode and additional modes that capture local and global faults.
Abrupt heat loss in a zone is selected as an example of a local fault event. An example of
such an event can be opening the window in winter. This mode is included in the mode
set for all seven zones. The heat loss is modeled as an imbalance created by an unknown
input to the zone heat balance equation. To be able to estimate the amplitude of the
heat loss, the nominal model is augmented by an additional state and the difference
equation. The heat loss state connects to the nominal model with the same gain as the
FCU heat flow

[ 𝗿𝑘+1
ℎ𝑘+1

] = [ 𝗔𝑟 𝑏𝑟,1
0 1 ] [ 𝗿𝑘

ℎ𝑘
] + [ 𝑏𝑟,1 𝗕′

𝑟,1
0 0 ] [ �̇�FCU,𝑘

𝘂′
1,𝑘

] + 𝘄𝑘, (7.30)

where ℎ𝑘 is the heat loss state, 𝗿𝑘 is the reduced order state vector of the nominal model,
and 𝗕′

𝑟,1 is the reduced order input matrix without the column that corresponds to the
FCU heat flow input �̇�FCU,𝑘.

The global fault event is represented by the shadows restricting solar gains calculated
by the forecast or unexpected clouds not included in the forecast. This mode is included
in all controllers except the one for zone 7, which has no window. For demonstration
purposes of this example, the mode representing this scenario is modeled by expecting
half of the calculated solar gains

𝗿𝑘+1 = 𝗔𝑟𝗿𝑘 + [ 0.5 𝑏𝑟,2 𝗕′
𝑟,2 ] [ 𝐽Win,𝑘

𝘂′
2,𝑘

] + 𝘃𝑟,𝑘, (7.31)

where 𝗕′
𝑟,2 is the reduced order input matrix without the column that corresponds to

the solar gain input 𝐽Win,𝑘.
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7.2.2 Zone state estimation and control

The performance of the LIMM-XDKF is tested in combination with the DMPC con-
troller, which generates the local control action to follow the temperature setpoint in
the zone. The local communication scheme between the LIMM-XDKF and controller
is shown in Fig. 7.2. The LIMM-XDKF provides the state estimate information and
mode decision to the DMPC. The DMPC algorithm is based on the optimal condition
decomposition [71]. The particular design of the DMPC is beyond the scope of this
thesis. For the purpose of this thesis, it is sufficient to describe it as a generator of the
local heat flow signal QFCU. The local weather disturbances JWin, TEqWin, TEqWal
are computed based on the weather disturbance model and weather forecast.

Local Zone Controller

Local MPC

State

Model ID

Control action

Local IMM

State Estimate

Input

Mode Decision

Figure 7.2. Communication between the local IMM-XDKF and the local MPC.

The LIMM-XDKF detects and diagnoses faults based on predefined models corre-
sponding to individual modes. The nominal mode in the LIMM-XDKF is the local
model with nominal behavior. The second mode is the fault mode, which has an
additional estimated state representing the unknown disturbance of the heat balance
equation. This mode is denoted as the heat loss or HL mode in the next text. The
third mode is the fault mode with reduced solar gains on the input, which describes
the scenario with a shadow in front of the zone window. This mode is denoted as the
shadow or SH mode in the next text. The initial transition probabilities between modes
are defined using transition matrices

𝗧(𝑖)
0 = ⎡⎢

⎣

0.99 0.005 0.005
0.005 0.995 0

0 0.005 0.995
⎤⎥
⎦

, for 𝑖 ∈ {1, 2, . . . , 6}

𝗧(7)
0 = [ 0.995 0.005

0.005 0.995 ] ,

(7.32)

where the order of modes is the nominal mode, the heat loss mode, and the shadow
mode. Zone 7 does not have shadow mode since the mode is not feasible due to the
zone location.

Notice that the shadow mode would have an identical likelihood with the nominal
mode during zero solar gain in a zone. However, the shadow mode cannot occur if there
is zero solar gain. This scenario is described by the local constraint that deactivates
the shadow mode when the solar gain is lower than 4 kW.

Furthermore, the shadow mode activation is constrained by a global constraint. The
building is virtually located in the northern hemisphere, with zone 2 pointing north.
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Therefore, the shadow mode is mostly relevant in zones 4, 5, and 6. The global con-
straints are the conjugates of local constraints and neighbors’ constraints

𝐶(4,3)
𝑘 = 𝑐(4,3)

𝑘 ∧ 𝑐(5,3)
𝑘 ,

𝐶(5,3)
𝑘 = 𝑐(5,3)

𝑘 ∧ 𝑐(4,3)
𝑘 ∧ 𝑐(6,3)

𝑘 ,

𝐶(6,3)
𝑘 = 𝑐(6,3)

𝑘 ∧ 𝑐(5,3)
𝑘 ,

(7.33)

where the local constraint is satisfied when the shadow mode likelihood is higher than
the nominal mode likelihood

𝑐(𝑖,3)
𝑘 = Λ(𝑖,3)

𝑘 > Λ(𝑖,1)
𝑘 . (7.34)

The FDD capability of the LIMM-XDKF is demonstrated by simulating the heat
loss and shadows. The zone temperatures and solar gains are shown in Fig. 7.3. It
can be seen that the local controllers follow the constant temperature setpoints during
simulations.
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Figure 7.3. Zone temperatures and solar gains. The number in the plot backgrounds de-
notes the zone number. The zone temperature is denoted TZ and the solar gain is denoted
as JWin. The axis scale color corresponds to the signal color. The x-axis shows the

simulation time.

The heat loss in zone 4 demonstrates the local fault detection. The simulated scenario
represents a real situation when a window is opened in winter. The simulated and
detected faults in particular zones are depicted in Fig. 7.4. The heat loss is detected
several minutes after the fault occurrence. Since the fault is modeled as unknown input,
the algorithm can also estimate the amplitude of heat loss. The amplitude estimation
is depicted in Fig. 7.5, where it can be seen that 5 kW heat loss is estimated with
approximately 10 % (= 500 W) accuracy. Recovery back to the nominal behavior is
again detected within several minutes, which is a very good result in building systems
with relatively slow dynamics. The heat loss can also be seen in Fig. 7.3, where it causes
a one-degree drop in the zone temperature. After the detection, the information about
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Figure7.4. Mode detection. The number in the plot backgrounds denotes the zone number.
The y-axis denotes the modes – nominal mode as OK, heat loss mode as HL, and shadow
mode as SH. When the blue line is not visible at a given time, it is identical to the red line.
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Figure 7.5. Heat loss estimation in zone 4. The figure shows the simulated heat loss (blue)
and the state estimated by the LIMM-XDKF that corresponds to heat loss (red).

the fault occurrence is sent to the DMPC controller, which could take some corrective
actions. For example, the zone setpoint or the zone thermal input is decreased to
prevent wasting energy when the opened window is detected in winter. Such actions
are not implemented in this example, which can be seen in Fig. 7.3, where the zone 5
temperature is increased to compensate for the heat loss in zone 4.

Global fault detection is demonstrated by reducing the real solar gains compared to
the solar gains predicted by the weather forecast. The simulated scenario represents a
real situation where unexpected clouds restrict solar radiation. The real solar radiation
is shown in Fig. 7.3. The solar radiation starts to increase gradually, but at the simula-
tion time equal to 4 hours, it is reduced for more than one hour. It is crucial to note that
the LIMM-XDKF does not have information about this drop in solar radiation. First,
notice that the shadow mode starts to be activated immediately after the solar gain
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crosses the 4 kW threshold, which can be seen in Fig. 7.6. However, it is only activated
for a short time since the global constraint is not satisfied. Similar likelihoods between
the nominal and shadow mode cause fast activation and deactivation at low solar gains.
The shadow mode is activated for longer when the real solar radiation drops. After
that, the nominal mode probability drops, whereas the shadow mode becomes the most
probable. Eventually, the global fault is detected locally in each zone where the fault
occurred, which can be seen in Fig 7.4. The recovery to the nominal mode is fast after
the fault is removed. The spikes of false positive shadow mode detection in the zones
4, 5, and 6 in Fig. 7.6 show that the FDD performance needs to be improved by adding
a hysteresis for decision making.
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Chapter8
Conclusion

This thesis brings new results to the desensitized filtering theory. The core result is the
stochastic approach to sensitivity definition, which allows the derivation of the exact
desensitized Kalman filter. Thanks to the convenient formulation of the exact desen-
sitized Kalman filter, many interesting algorithms and results can be further derived.
The main results mentioned in this thesis are summarized in the following sections.

8.1 Desensitized state estimation

The main contributions are in the field of desensitized filtering. The stochastic approach
to reducing sensitivity leading to the exact desensitized Kalman filter (XDKF) is the
core result that enables derivation of the following useful variants of the XDKF:

. Algorithm with zero gain sensitivity assumption resulting in reduced complexity has
comparable performance to the XDKF, so it is useful for real applications.
. Algorithm with separate data-update and time-update steps is useful when both prior

and posterior state estimates are required.
. Parametrized steady-state algorithm is ideal for applications with limited computing

power, such as implementation in embedded devices.
. Algorithms with normalized objectives and adaptive weights improve the performance

of the XDKF and make the weight tuning intuitive.

The formulation of the XDKF allowed us to analyze the stability and formulate the
stability conditions related to weights. Also, the extended XDKF was derived for
nonlinear systems.

8.2 Desensitized fault detection

A correct model is essential to model-based fault detection and diagnosis. Therefore,
using simplified models can be difficult. This thesis showed that the interacting multiple
model method with desensitized filtering is a promising fault detection and diagnosis
method when using simplified models. Two algorithms were described. One is based on
the original desensitized Kalman filter, and the other is based on the exact desensitized
Kalman filter. Both algorithms proved the ability to detect and diagnose separate and
simultaneously occurring faults. The proposed algorithms using simplified models with
explicit uncertainty provide performance comparable to the conventional algorithms
with accurate models.

8.3 Distributed state estimation and fault detection

In this thesis, it is shown how the desensitized approach can be valuable for distributed
state estimation. The result is the local exact desensitized Kalman filter (LXDKF), a
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distributed method that is scalable, reusable, accurate, and has a low communication
burden. The LXDKF is suitable for large-scale networked systems that can be parti-
tioned into interconnected subsystems, ensuring scalability. The uncertainty of neigh-
bor estimates is considered in local estimates using the desensitized filtering approach
without sharing it. Therefore, the state estimation accuracy is improved compared to
the distributed methods without covariance sharing, whereas the network communica-
tion load remains low. Compared to the distributed methods with neighbor covariance
sharing, the communication transfer is lower since the uncertainty is considered locally
without sharing. The local state estimation is robust to parameter uncertainty, and its
accuracy can be improved when there is a mismatch between real and model param-
eters. Consequently, simplified local models can be used, creating an opportunity to
reuse the algorithm for similar systems. A distributed interacting multiple model filter
for large-scale networks which use the approach of LXDKF is also introduced. This
method, named LIMM-XDKF, is based on and has properties of the LXDKF. Another
extension is the distributed model-based fault detection and diagnosis method based on
the LIMM-XDKF. In case-study simulations, the method detected local or global faults
while providing the information to the distributed model-predictive controller used for
the heating control.

8.4 Future work

There is still much work to be done in the desensitized filtering theory. In the case of
theoretical work, the most important area for further research is the stability analysis.
Also, the benefits of stochastic sensitivity definition in more advanced state estimation
methods need to be studied. For example, our preliminary results show that desensitized
approach might be useful for the moving horizon estimation.

For real applications, numerically stable algorithms are required. A numerically
robust formulation of the exact desensitized Kalman filter is presented but needs to be
fine tuned. Last but not least, the algorithms should be applied to various problems
because the true advantages and disadvantages arise only then.
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AppendixA
Numerically robust algorithm

In theory, the Kalman filter algorithm includes matrix operations that guarantee the
positive semi-definiteness of a covariance matrix. However, in real applications, a co-
variance matrix can lose positive semi-definiteness due to limited floating point preci-
sion, which can cause numerical instability of the algorithm. Decomposing a covariance
matrix in factors can diminish these issues. Modified algorithms of the Kalman fil-
ter are used to update covariance factors in a way that does not corrupt the positive
semi-definiteness of the covariance matrix.

The most common methods are based on Cholesky decomposition [72] where a co-
variance is decomposed as 𝗣 = 𝗟𝗟𝑇 where 𝗟 is a lower triangular matrix. The LDL
decomposition is a variant of the Cholesky decomposition where a covariance matrix is
decomposed in 𝗟 and 𝗱 factors

𝗣 = 𝗟𝗗𝗟𝑇 ≡ |𝗟; 𝗱| (8.1)

where 𝗗 is a diagonal matrix with vector 𝗱 on the diagonal, 𝗟 is a lower triangu-
lar matrix with ones on the main diagonal, and |𝗟; 𝗱| is the notation for the matrix
decomposition.

In this chapter, the XDKF-Z with separated steps described in Algorithm 3.8 is inter-
preted in a factorized form. Second moment updates in the XDKF-Z are reformulated
to updates of the 𝗟 and 𝗱 factors of the second moments.

A.1 Uncertainty-update step

The uncertainty-update step in Algorithm 3.8 is defined as

𝗯𝑝,𝑘 = 𝗔𝑝 ̂𝘅𝑘|𝑘−1 + 𝗕𝑝𝘂𝑘, (8.2)

𝗦𝑘|𝑘−1 = − ∑
𝑝

𝛾𝑝𝗯𝑝,𝑘 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 𝗖𝑇, (8.3)

𝗤Σ
𝑘|𝑘−1 = 𝛼𝗤 + ∑

𝑝
𝛾𝑝 [𝗯𝑝,𝑘𝗯𝑇

𝑝,𝑘 − 𝗯𝑝,𝑘 ̂𝘀𝑇
𝑝,𝑘|𝑘−1 �̂�

𝑇
− �̂� ̂𝘀𝑝,𝑘|𝑘−1 𝗯𝑇

𝑝,𝑘] . (8.4)

In this step, the update of the cumulated process noise moment must be replaced by
the update of factors. First, the update is reformulated as

𝗤Σ
𝑘|𝑘−1 = 𝛼𝗤

+ ∑
𝑝

𝛾𝑝 (�̂� ̂𝘀𝑝,𝑘|𝑘−1 − 𝗯𝑝,𝑘) (�̂� ̂𝘀𝑝,𝑘|𝑘−1 − 𝗯𝑝,𝑘)
𝑇

− ∑
𝑝

𝛾𝑝 (�̂� ̂𝘀𝑝,𝑘|𝑘−1 ) (�̂� ̂𝘀𝑝,𝑘|𝑘−1 )
𝑇

. (8.5)
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The process noise covariance 𝛼𝗤 can be decomposed as ∣𝗟𝗤; 𝛼𝗱𝗤∣. Then the update
consists of updating the process noise covariance factors with rank-1 updates and rank-1
downdates sequentially

∣𝗟Σ
𝑘|𝑘−1 ; 𝗱Σ

𝑘|𝑘−1 ∣ = ∣𝗟𝗤; 𝛼𝗱𝗤∣

+ ∑
𝑝

𝛾𝑝 (�̂� ̂𝘀𝑝,𝑘|𝑘−1 − 𝗯𝑝,𝑘) (�̂� ̂𝘀𝑝,𝑘|𝑘−1 − 𝗯𝑝,𝑘)
𝑇

− ∑
𝑝

𝛾𝑝 (�̂� ̂𝘀𝑝,𝑘|𝑘−1 ) (�̂� ̂𝘀𝑝,𝑘|𝑘−1 )
𝑇

. (8.6)

The rank-1 update and downdate algorithms can be found in [73]. The downdates are
subtractions of dyadic products from factors. Adding a dyadic product to the positive
semi-definite matrix will always result in a positive semi-definite matrix. However, the
subtraction can cause numerical instability in the algorithm. Therefore it is important
to limit the downdating if the operation would result in a matrix which is not positive
definite. See [73] for more details on downdates.

A.2 Data-update step

The prior cumulative second moment is represented by the decomposition

𝗣Σ
𝑘|𝑘−1 = ∣𝗟Σ

𝑘|𝑘−1 ; 𝗱Σ
𝑘|𝑘−1 ∣ , (8.7)

and the measurement noise covariance is decomposed as

𝗥 = |𝗟𝗥; 𝗱𝗥| . (8.8)

Then the main computation of the update is done by triangulating the joint probability
covariance matrix

[ 𝗣𝑦𝑦 𝗣𝑦𝑥

𝗣𝑥𝑦 𝗣𝑥𝑥 ] ≡ ∣[
𝗟𝗥 𝗖𝗟Σ

𝑘|𝑘−1
𝟬 𝗟Σ

𝑘|𝑘−1
] ; [ 𝗱𝗥

𝗱Σ
𝑘|𝑘−1

]∣ ⟶ ∣[
𝗟𝑦 𝟬
𝗞𝑦 𝗟Σ

𝑘|𝑘
] ; [

𝗱𝑦
𝗱Σ

𝑘|𝑘
]∣ , (8.9)

where the arrow denotes processing by a triangularization algorithm. An algorithm for
triangularization called dyadic reduction was pioneered by Karel Šmuk and published
in [74]. Interestingly, the elements of the factors give us the updated factors and gain

𝗣Σ
𝑘|𝑘 = ∣𝗟Σ

𝑘|𝑘 ; 𝗱Σ
𝑘|𝑘 ∣ , (8.10)

𝗞𝑘 = 𝗞𝑦𝗟−1
𝑦 . (8.11)

Then the gain is used to update the state and the sensitivity

̂𝘅𝑘|𝑘 = ̂𝘅𝑘|𝑘−1 + 𝗞𝑘 (𝘆𝑘 − 𝗖 ̂𝘅𝑘|𝑘−1 ) , (8.12)
̂𝘀𝑝,𝑘|𝑘 = ̂𝘀𝑝,𝑘|𝑘−1 − 𝗞𝑘𝗖 ̂𝘀𝑝,𝑘|𝑘−1 . (8.13)
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A.3 Time-update step

The decorrelated system matrix computation and the propagation of the state and
sensitivity remain the same as in Algorithm 3.8

�̂�dc = �̂� − 𝗦𝑘 (𝛼𝗥)−1 𝗖,
̂𝘅𝑘+1|𝑘 = �̂�dc ̂𝘅𝑘|𝑘 + �̂�𝘂𝑘 + 𝗦𝑘 (𝛼𝗥)−1 𝘆𝑘,

̂𝘀𝑝,𝑘+1|𝑘 = �̂�dc ̂𝘀𝑝,𝑘|𝑘 − 𝗯𝑝,𝑘.

The second moment update requires more computation. First, the matrix to be sub-
tracted must be triangulated

𝗦𝑘 (𝛼𝗥)−1 (𝗦𝑘)𝑇 ≡ ∣𝗦𝑘𝗟−1
𝗥 ; 𝛼

𝗱𝗥
∣ ⟶ |𝗟𝗦𝗥; 𝗱𝗦𝗥| . (8.14)

If the system dimension is lower than the output dimension, the triangularization
in (8.14) is impossible since the matrix has more rows than columns. However, the
𝗟-factor can be augmented with a zero matrix to obtain a square shape matrix, and
the 𝗱-factor can be augmented by ones. Then triangularization is possible

∣[ 𝗦𝑘𝗟−1
𝗥 𝟬𝑁𝑥×(𝑁𝑥−𝑁𝑦) ] ; [

𝛼
𝗱𝗥

𝟭𝑁𝑥−𝑁𝑦
]∣ ⟶ |𝗟𝗦𝗥; 𝗱𝗦𝗥| . (8.15)

After that, the process noise covariance can be downdated as

∣[ 𝗟Σ
𝑘|𝑘−1 𝗟𝗦𝗥 ] ; [ 𝗱Σ

𝑘|𝑘−1
−𝗱𝗦𝗥

]∣ ⟶ ∣𝗟𝗤; 𝗱𝗤∣ . (8.16)

The downdate can again result in losing the positive semi-definiteness of the covariance.
In such a case, the downdate must be skipped. Finally, the second moment factors can
be updated

∣[ 𝗟𝗤 �̂�dc𝗟Σ
𝑘|𝑘 ] ; [ 𝗱𝗤

𝗱Σ
𝑘|𝑘

]∣ ⟶ ∣𝗟Σ
𝑘+1|𝑘 ; 𝗱Σ

𝑘+1|𝑘 ∣ . (8.17)

This concludes the algorithm. Note that in this formulation, the second moments are
not stored in memory. Instead, the factors are updated and kept in memory. The
second moment can be computed from the factors at any time. The efficiency of this
formulation can be perfected, and it is the subject of further research.
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