
CZECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF CONTROL ENGINEERING

Simulating the impact of prioritization of
emergency vehicles at traffic light controlled

junctions on the other traffic

MASTER’S THESIS

VÍT OBRUSNÍK

Supervisor: Ing. Zdeněk Hurák, Ph.D.

Prague, May 2019

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434659Personal ID number:Obrusník VítStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Simulating the impact of prioritization of emergency vehicles at traffic light controlled junctions on
the other traffic

Master’s thesis title in Czech:

Simulace dopadu preference vozidel integrovaného záchranného systému na světelných křižovatkách
na další dopravu

Guidelines:
The key focus of this project is on a microscopic simulation of traffic in an urban area comprising a few adjacent traffic
light controlled junctions and an emergency vehicle driving through them. Two modes of an emergency vehicle driving
through the crossroads should be considered: first, the emergency vehicle is just blue-lighting and sirening its way through
the crossroads while ignoring the traffic lights altogether; second, the emergency vehicle uses a radio vehicle-to-infrastructure
(V2I) communication system to inform the traffic light controller about its approaching and to request a priority for passing.
Simulations based on the data from real traffic are to be used to conclude if the worries of some practitioners that while
the latter mode might save a few seconds for the emergency vehicle, the other traffic takes much longer to recover after
the emergency vehicle is gone, are justified. The proposed simulators are SUMO for the traffic and OMNeT++ for the
communication. The empirical data from the induction loops and traffic lights for a given area will be provided.

Bibliography / sources:
[1] H. Noori, “Modeling the impact of VANET-enabled traffic lights control on the response time of emergency vehicles in
realistic large-scale urban area,” in 2013 IEEE International Conference on Communications Workshops (ICC), 2013, pp.
526–531.
[2] T. Bellemans, B. De Schutter, and B. De Moor, “Models for traffic control,” Journal A, vol. 43, no. 3–4, pp. 13–22, 2002.
[3] C. Sommer and F. Dressler, Vehicular Networking, 1 edition. Cambridge, United Kingdom: Cambridge University Press,
2015.

Name and workplace of master’s thesis supervisor:

doc. Ing. Zdeněk Hurák, Ph.D., Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2019Date of master’s thesis assignment: 15.02.2019

Assignment valid until:
by the end of summer semester 2019/2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Zdeněk Hurák, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Abstract

In this thesis, a microscopic traffic simulation scenario is created containing four adjacent
traffic light controlled junctions. The main task is to simulate prioritization techniques for
emergency vehicles going through them. Three modes are modelled: first, the emergency
vehicle has no preference on traffic lights and needs to rely on sirens and bluelight, second, the
emergency vehicle signals preemption request after crossing certain distance from the junction
and third, the emergency vehicle beacons its position and traffic light controller decides about
the time to start preference, based on actual traffic situation. Outputs from simulations are
then used to compare the benefits for the emergency vehicle and the impact on the other traffic.
The area of the simulation scenario is a part of Brno city (the Czech Republic). Induction loop
measurements were provided for traffic demand modelling. Static traffic light signal plans for
the area were used.

Abstrakt

V této práci je vytvořen scénář mikroskopické simulace dopravy obsahující čtyři po sobě
jdoucí křižovatky řízené semafory. Hlavní náplní je simulovat metody preference pro vozidla
záchranných služeb projíždějících křižovatkami. Simulovány jsou ťri módy: první, záchranné
vozidlo nedostává žádnou preferenci na semaforech a spoléhá se jen na sirény a majáky, druhý,
po projetí určité vzdálenosti od křižovatky se záchranné vozidlo přihlásí o preferenci, ťretí,
záchranné vozidlo signalizuje svou pozici a řadič křižovatky rozhodne o čase spuštění pref-
erence v závislosti na aktuálním stavu dopravy. Z výstupních dat simulací je vyhodnocena
výhodnost jednotlivých módu pro záchranné vozidlo a je analyzován dopad na okolní do-
pravu. Simulovaná oblast je část města Brno (Česká republika). Pro namodelování hustoty
dopravy byla poskytnuta data z měření indukčních smyček. V simulaci byly použity statické
signální plány semaforů pro danou oblast.

iii

Declaration

I declare that I wrote the presented thesis on my own and that I cited all the used information
sources in compliance with the Methodical instructions about the ethical principles for writing
an academic thesis.

Prague, May 2019

Vít Obrusník

v

Acknowledgements

I am very grateful to my supervisor, Zdeněk Hurák, for letting me work in his research
group on amazing projects. I am very proud of this experience and I have learned a lot of
things on the way. I also thank my colleague, Loi Do, because he informed me about the
opportunity and without him, I would probably not be there. This work would not be possible
without Ivo Herman, our project partner. Therefore I thank him dearly for all the long calls we
had. I also thank Ondřej Miklóš from BKOM for his contribution. I must thank Jan Přikryl for
his time that he spent discussing the project with me. It really helped me a lot. I would like
to express my gratitude also to people who spend their time developing open source software
SUMO and Veins, which I used throughout my thesis.

Many thanks belong to my family for their support during all these years. The biggest
thank you belongs to my girlfriend, Daria, she is just great

vii

Contents

Acronyms xi

1 Introduction 1
1.1 Problem definition . 2
1.2 Aim of this work . 3
1.3 Structure of the thesis . 3

2 Traffic modelling 5
2.1 Models classification . 5

2.1.1 Macroscopic . 6
2.1.2 Mesoscopic . 6
2.1.3 Microscopic . 6
2.1.4 Submicroscopic . 6

2.2 Car-following models . 6
2.3 SUMO . 8

2.3.1 Components . 8
2.3.2 Detectors and devices . 10
2.3.3 Running the simulation . 11
2.3.4 TraCI . 12
2.3.5 Outputs . 13
2.3.6 Other tools . 14

2.4 Vehicles in network simulation . 15

3 Scenario 19
3.1 Area . 19
3.2 Network . 19
3.3 Traffic demand . 20

3.3.1 DFROUTER . 21
3.3.2 Flowrouter . 22
3.3.3 Processing the datasets . 22

3.4 Public transport . 24
3.5 Traffic lights . 24
3.6 V2X communication . 25
3.7 Emergency vehicle . 26
3.8 Simplifications made . 27
3.9 Validation . 28

ix

CONTENTS

4 Preference modes 33
4.1 No preference . 33
4.2 Distance based preference . 34

4.2.1 Description . 34
4.2.2 Implementation . 35

4.3 Queue discharge based preference . 37
4.3.1 Description . 37
4.3.2 Queue discharge model . 38
4.3.3 Implementation . 41

5 Comparison 45
5.1 Methodology . 45
5.2 Trip duration of emergency vehicle . 46
5.3 Duration of traffic light preference . 47
5.4 Waiting time of other vehicles . 48

6 Conclusion 51
6.1 Future work . 51

Bibliography 55

x

Acronyms

API Application programming interface.

ATR Automatic Traffic Recorder.

CSV comma-separated values.

CT cycle time.

DSRC Dedicated short-range communication.

EV emergency vehicle.

FCD Floating car data.

GPS The Global Positioning System.

GUI Graphical user interface.

IDE Integrated development environment.

IDM Intelligent driver model.

LTE Long-Term Evolution.

NED Network description language.

OBU On board unit.

OMNeT++ Object-oriented modular discrete event network simulation framework.

OSM Open Street Map.

RSU Roadside Unit.

SUMO Simulation of Urban MObility software package.

TCP Transmission control protocol.

TLC traffic light controller.

TLJ traffic-light controlled junction.

TraCI Traffic Control Interface.

xi

Acronyms

V2I vehicle to infrastructure.

V2V vehicle to vehicle.

V2X vehicle to anything.

VANET Vehicular ad-hoc network.

Veins Vehicles in network simulator.

XML Extensible Markup Language.

xii

Chapter 1

Introduction

I n this thesis, I deal with simulating the traffic on traffic-light controlled junctions (TLJs). In
particular, I focus on scenarios when emergency vehicles (EVs) (ambulance, fire brigade or

police) are rushing through the TLJs to the accident site. These scenarios can be commonly
witnessed in all major cities on daily basis: first you hear the sirens, then you see the EV
equipped with a blue light device, coming fast from nowhere, approaching a junction, other
vehicles trying to clear the way.

Clearly, it is necessary that EVs gets to the accident site as soon as possible. Some research
was done to show the correlation between mortality rate and emergency services response
time [1, 2], authors in [3] claim that 75% of deaths caused by car accidents happen in the
first hour after the accident, sometimes referred to as golden hour. In the Czech Republic and
in many other countries, EVs have permission to go through a red light or cross and overtake
through double line. EVs drivers often need to exploit this permissions. However, there are
severe drawbacks:

• Passing the TLJ through the red lights is dangerous. EV drivers have much higher chance
to participate in an accident [4].

• EVs drivers going through the red lights are responsible for casualties if they cause an
accident.

The study [5] shows that the most accidents of EVs happens at controlled and uncontrolled
intersections. The most frequent reason is crossing the junction at red traffic lights (32%). See
the evaluation of 189 reported accidents of EVs in Germany throughout the years of 2009 and
of 2015 in Fig. 1.1.

One way to mitigate the risks stated above and improve the response time of EVs is to give
EVs preference on TLJs (note: I will use the terms preference, prioritization and preemption
interchangeably throughout the text). The basic concept is to switch the traffic lights to green
in a direction from which the EV is approaching. The switch should take place soon enough so
other vehicles can empty the junction before the arrival of the emergency vehicle. This allows
the EV to go through the junction faster and safer while also mitigating the risks stated above.

This topic is motivated by real world problems of traffic engineers. A few companies from
industry introduced the problems and actively participated in the research, especially by pro-
viding the data and the domain knowledge. The work on this thesis was done in the research
group Advanced Algorithms for Control and Communications (AA4CC), Department of Control
Engineering, Faculty of Electrical Engineering at Czech Technical University in Prague.

1

Chapter 1. Introduction

0 10 20 30
Percentage [%]

Red traffic light
Uncontrolled intersections

Overtaking
Turning

Icy roads
Abrupt breaking

Rear-end Collision
Oncoming traffic

Miscellaneous
Alcohol

Unknown reasons
Pedestrian crossing

Parking
Storm

Stop sign
Oneway Street

Intention

Figure 1.1: Reasons of accidents of EVs. Data taken from [5, 6].

1.1 Problem definition

The prioritization of EVs is used in some cities in the Czech Republic. Prioritization comes
with its own unique challenges:

• It is argued by some practitioners (based on their empirical observations) that while
the preference might save a few seconds for the EV, the other traffic takes longer to
recover after the EV is gone. Taking into consideration that the number of ambulances
driving through the city at a given moment is typically very high, the worries of creating
unnecessary traffic jams are seriously blocking further adoption of vehicle to anything
(V2X) communication enabled priority granting adaptive control schemes.

• Current method of prioritization requires a virtual area around a TLJ to be defined.
This area serves as a border for the EV. When the border is crossed, the preference is
activated. This is far from ideal because the preemption phase might be switched on too
late or too soon. Also, it takes experienced traffic engineer and significant amount of
time to define the border.

(a) TLJ without preference (b) TLJ with preference

Figure 1.2: (a) Driver needs to take care about the vehicles from the opposite direction and
also pedestrians crossing the street. (b) Preference is a big help for the EV driver. Taken from
http://www.firebrno.cz/preference-vozidel-hzs-zelena-vlna-v-brne

2

http://www.firebrno.cz/preference-vozidel-hzs-zelena-vlna-v-brne

1.2 Aim of this work

1.2 Aim of this work

The aim of this work is to tackle both problems described in 1.1. Thus, to validate the
concerns of traffic engineers about the impact on the other traffic, and to propose a better
solution. In order to do this, I created a simulation scenario of a part of Brno city (Czech Re-
public) with four adjacent TLJs. The traffic demand is configured based on the measurements
from the induction loops. Traffic lights operate in static signal plan.

To compare different modes of preference, one needs to have a program which simulates
the preference of EVs by today means. The development of such program is described in detail.
Then I proposed and simulated novel preference method which eliminates the need of defining
the virtual boundary around the TLJ. Of course, some parameters for consideration by traffic
engineers stay.

To sum up the above, I have considered three modes of an EV driving through the TLJ:

1. the EV is just blue-lighting and sirening its way through the junction while ignoring the
traffic lights altogether

2. current method of prioritization, which is based on Long-Term Evolution (LTE) commu-
nication, The Global Positioning System (GPS), and an area defined by traffic engineers
around a junction

3. newly proposed method of prioritization is modelled, where the emergency vehicle uses
a radio vehicle to infrastructure communication system and GPS to inform the traffic
light controller (TLC) about its approaching and to signal a request for a priority, TLC
then decides about the time when to start a priority phase.

After simulating these modes I will study the trip times and waiting times of vehicles in the
simulations. The results are then compared and discussed.

1.3 Structure of the thesis

This thesis is structured to 6 chapters. In Chapter 2, I give a brief introduction to traffic
modelling and then I discuss the tools that are used for simulations. In Chapter 3, a process
of creating and validating the simulation scenario is described. Chapter 4 finally deals with
preference modes for EVs. Analysis of the outputs is discussed in Chapter 5 and Chapter 6
concludes the work.

3

Chapter 2

Traffic modelling

W hen studying a phenomena, researchers tend to look for mathematical models that
provide reasonable description of the problem at hand. These models should be

detailed enough and in the same time should be feasible to analyse or simulate. Studying the
traffic dynamics is not different. In this chapter, I give a brief introduction to modelling the
traffic. By traffic, I mean vehicles (usually cars) going through the network of roads. We could
also switch vehicles to other means of transport (e.g. pedestrians or trains) and switch roads
to other edge types (e.g. sidewalks or rails), and we would still be modelling the traffic.

In the first two parts of the chapter, I describe several traffic modelling approaches. To
solve the problems described in 1.1, it is necessary to have a good simulation tool and to
understand very well how the tool works. Thus, I describe the chosen simulator in detail in
the third part. How to model vehicles in network is the topic of the last section.

2.1 Models classification

It is important to have some inside knowledge when dealing with mathematical models in
simulations. There is a variety of ways to classify traffic models:

• Mathematical structure (Partial Differential Equations, Coupled Ordinary Differential
Equations, Cellular automatons and more)

• Randomness (deterministic vs. stochastic)

• Scale of the independent variables (continuous vs. discrete)

• Conceptional foundation (heuristic vs. first principles)

• Level of details (Macroscopic, Mesoscopic, Microscopic, Submicroscopic)

• and many more

See [7] for a detailed description, [8] for an overview of development of traffic models in
the last century and [9] for a closer look at some of them with an example. Classification by
the level of details (or one can say level of aggregation) is the most important with respect to
my work so it makes sense to elaborate a bit more on it.

5

Chapter 2. Traffic modelling

2.1.1 Macroscopic

In principle, macroscopic models describe traffic flows similarly to the way fluid dynamics
describes fluids going through pipes. If we are not interested in particular participants of traffic
but we are interested in behaviour of traffic streams on bigger scale (e.g. the whole city), then
macroscopic models are good tools. Macroscopic models are good match for traffic (control)
engineers because they are usually interested in variables such as density ρ(x , t) and flow
q(x , t) of vehicles in space and time. Detailed elaboration on macroscopic models is given in
[9].

2.1.2 Mesoscopic

Mesoscopic models are something between macroscopic and microscopic models. That
means, they are better suited for high level scenarios, yet still keeps good level of details about
vehicles. These models are rarely used.

2.1.3 Microscopic

As opposite to macroscopic models, microscopic models treat every single participant of
traffic stream. As expected, if a large number of traffic participants is modelled, the resulting
behaviour resemble the macroscopic behaviour. However, for fewer vehicles, we can observe
more realistic results than if we model few vehicles with macroscopic models. This level of
details comes with much more demanding computational cost. Due to the nature of the prob-
lems 1.1, microscopic simulation is the best choice. Some researchers implement microscopic
models as cellular automaton [10]. Such implementations are better suited for freeway simu-
lations.

2.1.4 Submicroscopic

Models which go into even more details and model the interaction of wheels with the road
or properties of the engine, are called submicroscopic.

2.2 Car-following models

Car-following models are the core of microscopic simulations. These models describe the
behaviour of a single vehicle α in terms of dynamic variables: position xα(t), speed vα(t) and
acceleration v̇α(t). Interactions with other vehicles and road segments are taken into account.
In continuous-time models, the driver’s response is governed by a set of coupled ordinary
differential equations:

ẋα(t) = vα(t), (2.1)

v̇α(t) = amic(sα, vα, vl), (2.2)

where sα is the distance-gap between vehicles (bumper-to-bumper) and vl is the speed of the
leading vehicle. The term amic(sα, vα, vl) is an acceleration model that further specifies driving
strategies of car-following models. In my work I used two types shown below, others are

6

2.2 Car-following models

usually used for specific purposes. I tried to simulate a queue of 5 vehicles starting off with
both of the models.

Krauss

Krauss model is an extension of older Gibbs-model [11, 12]. It is characteristic for noisy
acceleration which results in slightly jerky movement of vehicles.

0 10 20 30 40 50
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

vehicle 1
vehicle 2
vehicle 3
vehicle 4
vehicle 5

(a) Speed characteristic of Krauss model

0 10 20 30 40 50
time [s]

-4

-3

-2

-1

0

1

2

ac
ce

le
ra
tio

n
[m

/s
^
2]

vehicle 1
vehicle 2
vehicle 3
vehicle 4
vehicle 5

(b) Acceleration characteristic of Krauss model

Figure 2.1: Five simulated vehicles in a queue governed by Krauss model starts off at time 10.

Intelligent Driving Model

Intelligent driver model (IDM) exhibits smoother movement behaviour than Krauss model.
This is the model that I will be using later in the work. Newer modifications of IDM also exist.

0 10 20 30 40 50
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

vehicle 1
vehicle 2
vehicle 3
vehicle 4
vehicle 5

(a) Speed characteristic of IDM

0 10 20 30 40 50
time [s]

-2

-1

0

1

2

ac
ce

le
ra
tio

n
[m

/s
^
2]

vehicle 1
vehicle 2
vehicle 3
vehicle 4
vehicle 5

(b) Acceleration characteristic of IDM

Figure 2.2: Five simulated vehicles in a queue governed by IDM starts off at time 10.

7

Chapter 2. Traffic modelling

2.3 SUMO

Simulation of Urban MObility software package (SUMO) [13, 14] is a free and open source
microscopic, multi-modal traffic simulation suite available since 2002 developed by DLR - Insti-
tute of Transportation Systems. SUMO is programmed in C++ and Python programming lan-
guages. Since 2019, SUMO is licensed under Eclipse1 and is a part of OpenMobility project2.
The vision of OpenMobility is: "Advancing Simulation Environments for Transport Applica-
tions".

Because this text might be used as a reference for some of my peers, I will include some
practical tips and links to study materials. After reading this section, you should have a rough
understanding of how SUMO works. Invaluable resource for learning is the Wiki3, where you
can find the installation manual, tutorials and documentation.

2.3.1 Components

The microscopic dynamics of vehicles are determined by the interplay of several models
(from Erdmann, 2014, [15]):

1. Car-following model: determines the speed of vehicle in relation to the vehicle ahead of
it.

2. Intersection model: determines the behaviour of vehicles at different types of intersec-
tions in regards to the right-of-way rules, gap acceptance and avoiding junction blockage.

3. Lane-changing model: determines lane choice on multi-lane roads and speed adjust-
ments related to lane changing.

The behaviour is also influenced by randomization, SUMO uses well known Mersene Twister
pseudorandom number generator [16], the seed can be set in config file (Section 2.3.3). You
can use different seeds to slightly variate the output of simulation runs.

Two mandatory inputs must be provided to run a simulation: a road network and traffic
demand routes. From now on, when writing about SUMO specific files or concepts, I will write
the terms in italics to distinguish them from other meanings. All of the inputs are written as
files in Extensible Markup Language (XML) format.

Network

A network file can be built using Graphical user interface (GUI) program NETEDIT (Fig. 2.3)
or using command line tools NETGENERATE or NETCONVERT. Network is basically a graph as
known from graph theory. It is defined by nodes (nodes or junctions) and edges (edges). Edges
are divided into lanes that are connected to other lanes via connections. The shape of an edge
can be arbitrarily changed by geometry points.

1Eclipse Public License - v 2.0: https://www.eclipse.org/legal/epl-v20.html
2OpenMobility: https://openmobility.eclipse.org/
3SUMO Wiki: https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki

8

https://www.eclipse.org/legal/epl-v20.html
https://openmobility.eclipse.org/
https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki

2.3 SUMO

Figure 2.3: Example of creating trivial network in NETEDIT GUI program. The network has five
nodes and eight edges. One of the edges is selected (in blue) and its shape is changed with geometry
point (smaller red circle). The selected edge is divided into two lanes, other edges have only one
lane. The connections between lanes are visible inside the middle junction.

Routes

A route file consists of vehicle type or vType (what kind of vehicle will be departed), vehicle
(when will the vehicle depart) and vehicle route (where will the vehicle go). Of course, the
definitions can be split into more files. Vehicle route is a path in the graph (network) that is
defined by a sequence of consecutive edges. Instead of single vehicles, SUMO allows to define
repeated vehicles, this is called flow. Here is an example of simple rou file with one vehicle and
flow:

<routes>

<!-- vehicle types -->

<vType id="typePassenger" vClass="passenger" carFollowModel="IDM"↘

minGap="2.5"/>

<!--vehicle routes-->

<route id="left-right" edges="left0A0 A0right0"/>

<!--vehicles -->

<vehicle id="v1" type="typePassenger" route="left-right" depart="↘

0"/>

<!--flows-->

<flow id="f1" type="typePassenger" begin="1" end="200" period="1"↘

route="left-right"/>

</routes>

9

Chapter 2. Traffic modelling

In the example I have chosen my vehicle type to behave according to Intelligent driving model
(2.2). If no carFollowModel is specified, the default one is chosen, which is Krauss (2.2).
Other parameters can be found on Wiki page4

Additional files

Apart from mandatory inputs, there are various other entities that can be specified as
additional files. From SUMO Wiki:

• infrastructure related things: traffic light programs, induction loops and bus stops

• additional visualization: points of interests (POIs) and polygons (i.e. rivers and houses)

• dynamic simulation control structures: variable speed signs and rerouters

• demand related entities: vehicle types and routes

Here is an example of additional file that defines traffic light logic (tll) for the junction from
Fig. 2.3. This can be written be manually or NETEDIT GUI can be used to generate the file.
Note that the number of characters in state corresponds to the number of connections at the
junction.

<additional>

<tlLogic id="A0" type="static" programID="0" offset="0">

<phase duration="42" state="GGgrrrGGgrrr"/>

<phase duration="3" state="yyyrrryyyrrr"/>

<phase duration="42" state="rrrGGgrrrGGg"/>

<phase duration="3" state="rrryyyrrryyy"/>

</tlLogic>

</additional>

2.3.2 Detectors and devices

Detectors play an important role in my work. They can simulate induction loop detec-
tors. Such detectors are called E1 detectors5 and they can be created in NETEDIT or man-
ually written into additional XML file. In the toolset of SUMO, you can find a script gener-
ateTLSE1Detectors.py for generating E1 detectors for each junction in the supplied network file.
Another type is E2 detector which is used to model computer vision system that observes traffic
situation on a larger scale. Here is an example of definition of two types of detectors on the
same lane

4Definition of Vehicles, Vehicle types, and Routes: https://sumo.dlr.de/wiki/Definition_of_Vehicles,
_Vehicle_Types,_and_Routes

5E1 Induction Loops Detectors: https://sumo.dlr.de/wiki/Simulation/Output/Induction_Loops_

Detectors_(E1)

10

https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes
https://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes
https://sumo.dlr.de/wiki/Simulation/Output/Induction_Loops_Detectors_(E1)
https://sumo.dlr.de/wiki/Simulation/Output/Induction_Loops_Detectors_(E1)

2.3 SUMO

<additional>

<e1Detector id="det_e1" lane="e1_0" pos="30.00" freq="600.00" file="↘

output/det.xml"/>

<laneAreaDetector id="det_e2" lane="e1_0" freq="600" length="10" ↘

file="output/det_e2.xml"/>

</additional>

Device is a specification for vehicle type that it is supplied with particular piece of equipment.
I used two types throughout my work:

1. Device.fcd which enables vehicles to collect Floating car data (FCD) data.

2. Device.bluelight which is used to model EVs.

2.3.3 Running the simulation

The number of files is growing rapidly when building bigger simulation scenario so there
is a concept of config file where you can specify all the other files at once. The filename usually
ends with .sumocfg. Similar config files work for other parts of the SUMO suite that require
bigger number of inputs.

SUMO is mostly used from command line. The minimal command may look like this, it
runs the simulation without visual output (suitable for batch simulation runs). To start with
GUI, replace sumo with sumo-gui:

sumo -n network.net.xml -r routes.rou.xml --additional-files file.add.xml

sumo -c config.sumocfg

Both commands do the same thing assuming that network.net.xml, routes.rou.xml and
file.add.xml are specified in config.sumocfg. It is useful to know the order of loading files
to ensure the correct resolution of references. From SUMO Wiki:

1. the network is read

2. the additional files are read (completely from top to bottom) in the order in which they
are given in the option

3. the route files are opened and the first n steps are read

4. each n time steps, the routes for the next n time steps are read

SUMO runs numeric simulation in discrete time steps. The length of a single time step can be
specified in config. Interesting feature is sublane model that increases a lateral resolution of
lanes, so vehicles drive in parallel or can move more to the sides inside their lane. This is useful
for modelling two-wheeled vehicles or modelling the emergency corridor. To activate sublane
model, lateral resolution must be set in config file.

Finally, here is a listing of usable config file:

11

Chapter 2. Traffic modelling

<configuration>

<input>

<net-file value="network.net.xml"/>

<route-files value="routes.rou.xml"/>

<additional-files value="detectors.det.xml,\

traffic_lights.tll.xml"/>

</input>

<output>

<tripinfo value="output/tripinfo.xml"/>

<!-- other outputs -->

</output>

<time>

<step-length value="0.1"/>

<!-- start at 7:00 a.m. and end at 7:10 a.m. -->

<begin value="25200"/>

<end value="25800"/>

</time>

<processing>

<!-- sublane model -->

<lateral-resolution value="0.4"/>

</processing>

</configuration>

2.3.4 TraCI

There is a way how to directly interfere with a running simulation and change its state
called Traffic Control Interface (TraCI) [17]. TraCI uses Transmission control protocol (TCP)
based client/server architecture where SUMO acts as a server. TraCI client implementations
exist in programming languages C++, .NET, Matlab or Java. However, the main library which
is tested daily and supports the whole Application programming interface (API) coverage is in
Python. TraCI can be used to model V2X applications and also to couple SUMO with other
(often network) simulators. It is necessary to define the environment variable on your system
that points to the installation directory of SUMO: SUMO_HOME in order to use TraCI.

API commands are logically grouped into (currently) 15 domains: simulation, GUI, POI,
polygon, vehicle, vehicletype, edge, lane, traffic light, induction loop, junction, multientry exit,
areal, route and person. Available methods of each domain can be found in the documen-
tation of Python library6. Simulations are slower when running with TraCI. By how much
slower is dependent on the amount and type of additional code that is executed in every
step. This is a Python code snippet to get an idea about how simulation running with TraCI
works:

6TraCI documentation: https://sumo.dlr.de/pydoc/

12

https://sumo.dlr.de/pydoc/

2.3 SUMO

while traci.simulation.getMinExpectedNumber() > 0:

traci.simulationStep()

user code performed after every simulation step, e.g.:

speed = traci.vehicle.getSpeed("v1")

pos = traci.vehicle.getPosition("v1")

num_det = traci.inductionloop.getLastStepVehicleNumber("det_e1")

do something with the data

traci.close()

If you need to perform code on every simulation step, then a better and more efficient
option is to implement a listener: subclass of traci.StepListener. The listener needs to
override step() function. Moreover, if you need some values of particular TraCI domain, then
there is a possibility to subscribe to those values. I combine these two concepts in the following
code snippet to implement a listener that gets position and speed of a vehicle and counts from
E1 detector in every step:

import traci

import traci.constants as tc

class SimulationListener(traci.StepListener):

def __init__(veh_id, det_id):

self.veh_id = veh_id

self.det_id = det_id

traci.vehicle.subscribe(self.veh_id, (tc.VAR_SPEED,

tc.VAR_POSITION))

traci.inductionloop.subscribe(self.det_id, (

tc.LAST_STEP_VEHICLE_NUMBER))

def step(self, t=0):

veh_data = traci.vehicle.getSubscriptionResults(self.veh_id)

il_data = traci.inductionloop.getSubscriptionResults(self.det_id)

do something with the data

return True

listener = SimulationListener("v1", "det_e1")

traci.addStepListener(listener)

2.3.5 Outputs

SUMO is able to log a huge variety of different outputs and write them into XML files. By
default, they are all disabled and must be activated by options in config file or in additional

13

Chapter 2. Traffic modelling

files. I describe only the outputs that I will use later. The whole list of possibilities can be
found on SUMO Wiki7.

• Fcd output: contains FCD data (position, speed and heading) for each time step and for
all vehicle types with device.fcd specified in their definitions. A tool called plot_trajecto-
ries.py can visualize FCD outputs or save them comma-separated values (CSV) files for
other processing.

• Tripinfo output: contains information about trips of all the vehicles defined in rou file.
Among other entries, time of departure, time of arrival, total waiting time and total stop
time can be found here. By default, tripinfo output logs only finished trips but can be
set to log also unfinished trips.

• Edge data: logs various information, e.g. density, speed, waiting time for all edges in the
network in every time step.

• Traffic light output: is used to observe the behaviour of traffic lights during a simula-
tion run, especially times of switches of phases or programs definitions. Very useful for
evaluating performance of dynamic traffic lights applications.

• Summary output: contains aggregated information about all the vehicles in the simula-
tion, e.g. number of running vehicles, number of inserted vehicles, number of waiting to
be inserted etc.

• Detectors output: logs number of vehicles passed over a detector, their speed etc.

Here is an example of tripinfo output:

<tripinfos>

<tripinfo id="v1" depart="0.0" departLane="e1_0" departPos="5.10" ↘

departPosLat="0.00" departSpeed="0.00" departDelay="-0.03" ↘

arrival="25.4" arrivalLane="e2_0" arrivalPos="51.80" ↘

arrivalPosLat="0.00" arrivalSpeed="18.61" duration="25.4" ↘

routeLength="153.39" waitingTime="0.00" waitingCount="0" ↘

stopTime="0.00" timeLoss="0.95" rerouteNo="0" devices="" vType="↘

typePassenger" speedFactor="1.12" vaporized=""/>

<!-- other entries -->

</tripinfos>

2.3.6 Other tools

SUMO comes with a lot of Python based tools that can be found in SUMO_HOME/tools.
They can help a user with wide range of tasks, e.g:

7SUMO outputs: https://sumo.dlr.de/wiki/Simulation/Output

14

https://sumo.dlr.de/wiki/Simulation/Output

2.4 Vehicles in network simulation

• configuring tll (traffic lights logic)

• generating detector definitions

• adjusting network

• visualisation of outputs

Another useful library is Sumolib8. This library is designed to process static data of SUMO.
I found it extremely convenient to parse outputs using sumolib. The following code snippet
shows how to parse tripinfo output using sumolib. Do not let the first seven lines confuse you,
this is a standard beginning of any SUMO tool to ensure that SUMO_HOME is defined:

import os, sys

if ’SUMO_HOME’ in os.environ:

tools = os.path.join(os.environ[’SUMO_HOME’], ’tools’)

sys.path.append(tools)

else:

sys.exit("please declare environment variable ’SUMO_HOME’")

import sumolib

for trip in sumolib.xml.parse(’output/tripinfo.xml’, ’tripinfo’):

print(trip.duration)

if trip.vType == "typePassenger":

print(trip.waitingTime)

2.4 Vehicles in network simulation

Radio communication systems in which vehicles are involved can be described as:

• vehicle to vehicle (V2V)

Communication of vehicles between each other. Vehicles can share data about their
environment, e.g. jams, accidents. They can inform other vehicles going in the opposite
direction about the problems they might expect on the road.

• vehicle to infrastructure (V2I)

Communication between vehicles and infrastructure along the roads. This can be com-
munication of vehicles with TLCs or Roadside Units (RSUs), which are built specifically
for this purpose. RSUs can serve as proxies when vehicles are too far apart and V2V is
infeasible.

• V2X

The abbreviation captures both of the two stated above.

8Tools/Sumolib: https://sumo.dlr.de/wiki/Tools/Sumolib

15

https://sumo.dlr.de/wiki/Tools/Sumolib

Chapter 2. Traffic modelling

Note that the terms car to car (C2C) and car to infrastructure (C2I) are often used in lit-
erature and among some practitioners. It has the same meaning and I will use the V-version
only.

An in-depth source about the topic is [18]. The type of communication protocol used,
depends on the application. If the time of delivery of messages is not critically important for
the application, any cellular network can be used, e.g. LTE. On the other hand if the delay of a
message might affect safety of passengers on board, then Dedicated short-range communication
(DSRC) must be used. An example of DSRC is IEEE 802.11p standard. This protocol is designed
for Vehicular ad-hoc network (VANET). To simulate VANET, I used an open source library called
Vehicles in network simulator (Veins), originally published in [19].

Veins9 couples two simulators. The first one is SUMO, which is discussed in this chap-
ter. The second one is Object-oriented modular discrete event network simulation framework
(OMNeT++). OMNeT++ is heavily used in the industry and in academia for simulations of
communication networks. To use Veins, it is necessary to become familiar with OMNeT++.
There are really good tutorials online10, I would recommend to go through ’tic-toc’ tutorial
first. OMNeT++ has its own Eclipse-based Integrated development environment (IDE). Veins
source files are imported into OMNeT++ IDE as a separated project. The behaviour of user-
defined modules is implemented in C++ programming language. I will not go into details
here (those are covered in the tutorials). But briefly, the minimum work that need to be done
is to implement two methods:

• initialize()

Run only once to initiate class fields and to send first messages.

• handleMessage(cMessage *msg)

The behaviour of the module after receiving a message from other modules or self-
message.

To build complex networks of modules, OMNeT++ has its own high-level language called Net-
work description language (NED). Simulation is started from project-unique file called omnetpp.ini.
This ’main’ file serves for defining parameters of modules, settings of repeated simulation runs
and various additional settings.

Veins initializes every new vehicle from SUMO as a Car module in OMNeT++. TraCI client
C++ implementation is a part of Veins so you can influence the vehicles in SUMO. Veins comes
with sumo_launchd.py program that uses TraCI internally. The program starts a daemon, that
listens for a request from OMNeT++ to launch SUMO and then, when it’s running, to update
the state of both simulators after each step. You can replace sumo with sumo-gui to run with
GUI.

./sumo-launchd.py -vv -c sumo

Starting to simulate your own scenario might be a little bit tricky at first. The easiest ap-
proach is to copy the example provided and modify it to your needs. Let’s say we want to create

9Veins homepage: http://veins.car2x.org/
10OMNeT++ tutorials: https://docs.omnetpp.org/tutorials/tictoc/

16

http://veins.car2x.org/
https://docs.omnetpp.org/tutorials/tictoc/

2.4 Vehicles in network simulation

a simulation called MyScenario. The first thing we need to do is to create my_scenario.launchd.xml
file where we define the names of all SUMO related files for our scenario. Those files must be
placed in the same directory as the Veins project itself. It might look like this:

<launch>

<copy file="network.net.xml"/>

<copy file="routes.rou.xml"/>

<copy file="traffic_lights.tll.xml"/>

<!-- other files of SUMO scenario -->

<copy file="config.sumocfg" type="config"/>

</launch>

Another necessary step is to create a NED file that defines the components of your scenario.
Let’s say we want to have one RSU in MyScenario:

import org.car2x.veins.nodes.Scenario;

import org.car2x.veins.nodes.RSU;

network MyScenario extends Scenario

{

submodules:

rsu[1]: RSU {

@display("p=150,40;i=veins/sign/yellowdiamond");

}

}

Now you need to implement application layer of the submodules. To do this I would rec-
ommend to copy MyVeinsApp module and change whatever you need. The module has well
documented source files. The parameters for the submodules are specified in the omnetpp.ini
file. Note, that even though we specified no Car module in the NED file, they are initiated dy-
namically. You can define their own layer to model VANET application. It might look like
this:

.rsu[].applType = "MyVeinsAppl"

.rsu[].appl.headerLength = 80 bit

.rsu[].appl.sendBeacons = false

.rsu[].appl.beaconInterval = 1s

.rsu[].appl.beaconUserPriority = 7

other settings

*.manager.moduleType = "org.car2x.veins.nodes.Car"

.manager.moduleName = "node"

17

Chapter 2. Traffic modelling

.node[].applType = "MyCarVeinsAppl"

.node[].appl.sendBeacons = true

Veins creates better abstractions for simulating VANET. You do not have to implement ’pure’
handleMessage(cMessage *msg). You choose your application specific callbacks instead. For
example, from the following snippet from MyVeinsAppl, I used only the first one and I kept
others empty.

void MyVeinsApp::onBSM(DemoSafetyMessage* bsm)

{

// Your application has received a beacon message

// from another car or RSU

// code for handling the message goes here

}

void MyVeinsApp::onWSM(BaseFrame1609_4* wsm)

{

// Your application has received a data message

// from another car or RSU

// code for handling the message goes here

}

void MyVeinsApp::onWSA(DemoServiceAdvertisment* wsa)

{

// Your application has received a service advertisement

// from another car or RSU

// code for handling the message goes here

}

To sum this up, I recommend these steps to run your own simulation in Veins:

1. Copy the example from Veins source code.

2. Change .launchd.xml file with the names of your SUMO files.

3. Copy the SUMO files to the directory of Veins project.

4. Implement application layers for Cars or RSU modules of Veins. Start from MyVeinsApp.

5. Attach those application layer to modules in omnetpp.ini file.

6. Start sumo_launchd.py daemon.

7. Start the Veins simulation from within the OMNeT++ IDE.

18

Chapter 3

Scenario

I n this chapter, I give a detailed description of the process of creating the scenario. I started
creating the scenario in SUMO version 0.32 but at that time versions 1.0 and subsequently

1.1 were released. The final simulation is built in SUMO version 1.1 and OMNeT++ 5.4.1,
which are coupled within the Veins framework version 5.a1. At the time of writing, SUMO
version 1.2 is released but is not yet compatible with latest version of Veins.

3.1 Area

All the simulations described later in the thesis take place in Brno city (the Czech Republic)
around Mendlovo náměstí. The choice is not arbitrary, the area contains four major TLJs and
prioritization is currently used in all four of them. I will refer to junctions by code-names used
by traffic engineering companies operating in Brno. The codes and respective junctions are
given in Table 3.1 and their positions are visualised in Fig. 3.1.

3.2 Network

Basic network was imported from Open Street Map (OSM) [20] using osmWebWizard.py1

script which can be found in the tools available with SUMO package. After starting the script,
a new page is opened in an internet browser with OSM and several options in the menu. A
user can select an area from the map to import directly to SUMO, pick what kinds of traffic to
generate (options include cars, trucks, pedestrians etc.), then set the duration of the simulation
and click on ’Generate Scenario’ button. The tool then generates all the files needed to start
the simulation.

I decided to generate only the network without vehicles because guessed routes are usually
randomized and do not reflect reality. Generating the traffic demand is described in 3.3. As

Junction code Streets intersecting
1.01 Úvoz, Pekařská
1.03 Mendlovo náměstí, Křížová
1.02 Křížová, Václavská
2.06 Křížová, Poříčí, Vídeňská

Table 3.1: Substituting the junction names

1How to import OSM map to SUMO: https://sumo.dlr.de/wiki/Networks/Import/OpenStreetMap

19

https://sumo.dlr.de/wiki/Networks/Import/OpenStreetMap

Chapter 3. Scenario

-200 -100 0 100 200
East (m)

-300

-200

-100

0

100

200

300

N
or

th
 (m

)

1.01

1.03

1.02

2.06

Figure 3.1: Junctions positions and their respective codes

for network generation, the script does pretty good job by itself but additional corrections are
often necessary:

• Junctions of generated SUMO network might consist of many little junctions. This can be
solved by merging the junction points together in NETEDIT and resetting the connections
of lanes.

• Tram rails are created as extra edges that are placed on top of other edges. This results in
unrealistic behaviour where vehicles and trams can meet at the same position without
collision. I solved it by removing extra edges and then adding extra lanes specifically for
trams to remaining edges.

• Pedestrian sidewalks are also imported. I decided not to simulate pedestrians in the
scenario so I removed all the edges for pedestrians.

Nice perk is that osmWebWizard.py contains option to extract shapes and buildings infor-
mation into XML file which can be loaded to SUMO-GUI as additional file. Those files contains
definitions of polygons. This can serve as colourful decoration (as seen in Fig. 3.2b), but more
importantly, buildings are used as obstacles for signal shadowing models of V2X communica-
tion in Veins. I will come back to it later in Section 3.6.

3.3 Traffic demand

Devices for counting passing vehicles are deployed in the area, this equipment is called
Automatic Traffic Recorder (ATR). Either induction loops built permanently into the roads or
computer vision systems implement ATR. I obtained datasets which cover the whole week from

20

3.3 Traffic demand

(a) OpenStreetMap (b) SUMO-GUI

-200 -100 0 100 200
East (m)

-300

-200

-100

0

100

200

300

N
or
th
 (m

)

(c) Julia plot

Figure 3.2: Simulated area as viewed in: (a) OpenStreetMap, (b) SUMO-GUI and (c) plot made
with Julia package which will be used for further visualisations

14 November to 20 November 2018. Measurements are aggregated in intervals 10 minutes
long. Unfortunately, measurements from junction 1.02 were not provided.

Traffic counts from ATR do not contain the whole information to model the demand, be-
cause we still do not have the routes. Fortunately, SUMO comes with several tools to estimate
the traffic demand from observation points2. Some of them are described in [13]. Necessary
first step is to place E1 detectors in the network, preferably on the exact same spot as they are
placed in reality. I briefly explain two modules I used.

3.3.1 DFROUTER

This module assumes that an area is completely covered by detectors. All sources and sinks
of the network must be measured, DFROUTER does not provide satisfactory results otherwise.
The only case where it is reasonable to use DFROUTER in my scenario is to generate demand
for only one junction. This is indeed what I did with smaller network containing only junction
2.06, this way I learned how to use these tools. DFROUTER is not suitable for dense networks,
such as cities, but is best suited for highway scenarios. Detailed explanation of the workflow
can be found in [21] and [22].

DFROUTER takes network, detector definitions and measurement file as input and then
produces routes and vehicles definitions. The minimal prompt may look like this:

dfrouter --net-file network.net.xml

--measure-files measurements.csv

--routes-output routes.rou.xml

--emitters-output vehicles.xml

2Introduction to demand modelling: https://sumo.dlr.de/wiki/Demand/Introduction_to_demand_

modelling_in_SUMO

21

https://sumo.dlr.de/wiki/Demand/Introduction_to_demand_modelling_in_SUMO
https://sumo.dlr.de/wiki/Demand/Introduction_to_demand_modelling_in_SUMO

Chapter 3. Scenario

There are so many other options for DFROUTER that it is not convenient to define all of them
in a single command. The solution is to create config XML file (similar to sumocfg) that can
be used to define all parameters and then use only this file as input to generate the traffic
demand:

dfrouter --save-template config.dfrocfg

dfrouter -c config.dfrocfg

3.3.2 Flowrouter

Flowrouter is suited for scenarios where not all sources and sinks are covered with detectors
so it is the best tool for my scenario and it produces the most realistic results. I generated all
my traffic demand definitions with this tool. Flowrouter is in continuous development, a short
description can be found in [13]. The script works in two steps.

1. It generates all possible routes possible in the network.

2. Maximum flow problem [23] is solved assuming the provided measurements as capacity.

Similarly as DFROUTER, flowrouter takes network, detectors definition and measurement
file as input. The output traffic demand in the rou file is generated as flows going through
the routes aggregated in time intervals whose duration can be provided as an option. Unfor-
tunately, flowrouter does not come with config file yet, so all inputs must be specified in the
command. This can get tedious if you need more options so a good advice is to write flowrouter
calls into a BASH script. This is how the minimal command may look like:

python $SUMO_HOME/tools/detector/flowrouter.py

-n network.net.xml

-d detectors.det.xml

-f measurements.csv

-o routes.xml

-e flows.xml

-i 10

3.3.3 Processing the datasets

After taking a closer look at the ATR datasets I encountered some problems.

• The detector placed on left-turning lane on direction to the north at junction 1.01 mal-
functioned and showed unrealistic number 255 in most of the readings, even at night. I
excluded the detector from the scenario.

22

3.3 Traffic demand

-200 -100 0 100 200
East (m)

-300

-200

-100

0

100

200

300

N
or
th
 (m

)

detectors positions

(a) Positions of vehicles counting detectors (b) Detailed views.

Figure 3.3: Positions of the detectors which were chosen for demand modelling. The pictures
on the right are screenshots from SUMO-GUI. They depict the placement of the detectors (yellow
rectangles) on the lanes of junctions (from top) 1.01, 1.03, 2.06. Junction 1.02 is missing.

• There are pairs of detectors on the same road placed close to each other with different
measurements in the same interval. This can be caused by using different technologies
for counting vehicles with one being more erroneous than the other or maybe there was
a jam in the particular interval. Anyway, in such cases I decided to use only one of the
detectors so I do not confuse the routing tool. Positions of chosen detectors are depicted
in Fig. 3.3.

In total I used 26 detectors out of 42 provided. The detectors have code names starting with
the code name of the junction on which it lies and some other code after it.

The datasets I obtained are saved as CSV files. It was necessary to transfer them into a
format suitable as input for DFROUTER or flowrouter. I wrote a Python script to do the job.
The input for the routing tools has the following format:

Detector;Time;qPKW;qLKW;vPKW;vLKW

1.01_DVA1;0;10;0;25;0

... other entries ...

qPKW is the number of passenger vehicles that went through the detector during the interval.
vPKW is the average speed of those vehicles. qLKW and vLKW are the number and speed of trans-
port vehicles that went through the detector. My datasets do not include the speed readings
or any other information. So I set all qLKW and vLKW to zero and vPKW to 25.

23

Chapter 3. Scenario

3.4 Public transport

Trams, buses and trolleybuses go through the area and there are several stops. Thus,
I could not omit public transport from the simulations. I manually created route files with
vehicle type definitions and flows. Moreover, SUMO allows busStops definitions and those need
to be created as well. I did all of this based on timetable3 of public transport in Brno. All
public transport going in working days is simulated throughout the whole day. The flows are
determined based on how many connections depart in particular interval. The code snippet
below is a part of my scenario:

<additional>

<vType id="TRAM" vClass="tram" color="yellow"/>

<!-- other vTypes -->

<busStop id="tram_mendl_left_in" lane="gneE6_0" lines="1"/>

<busStop id="tram_vaclavska_out" lane="-4073052#0_0" lines="1, 2"/>

<!-- other busStops -->

</additional>

<flows>

<interval begin="18000" end="21600">

<!-- 5:00 a.m. - 6:00 a.m. -->

<flow id="tram1_5to6_0" type="TRAM" from="32348347#0.297" to="↘

-4073052#0" number="7">

<stop busStop="tram_mendl_left_in" duration="20"/>

<stop busStop="tram_vaclavska_out" duration="20"/>

</flow>

<!-- other flows -->

</interval>

<!-- other intervals -->

</flows>

3.5 Traffic lights

I was provided with static signal plans for all four junctions in the area from our industry
partner. Even though static plans are not used during peak hours and dynamic plans based on
phases switching triggered by demand are used instead, I decided to use them. I was told by
the respective partner that based on his look into the detailed log of traffic lights behaviour,
the dynamic programs closely resemble the static programs. The only differences are in times
when a vehicle of public transport request priority or when pedestrian pushes the button to
request green phase on zebra crossing. Otherwise, the green times for all the lanes are almost

3Public transport timetable in Brno: http://www.jrbrno.cz/

24

http://www.jrbrno.cz/

3.6 V2X communication

the same for both static and dynamic signal plans. I do not simulate pedestrians of preemption
for public transport, see Section 3.8 for more details.

I obtained signal plans with 60s, 80s and 100s long cycle time (CT). The rule of thumb says
that the denser the traffic flows are, the longer CT we should choose. I was told that that the
100s CT signal plans are used most of the day, from 7:00 a.m. to 8:00 p.m. Signal plans with
shorter CT are active at night or in times when traffic is not expected to be big. I chose to use
only the plans with 100s CT for all my simulations because I simulate EVs going through the
area only in peak hours.

The signal plans definitions were given to me as scanned documents so it was necessary
to put traffic lights definitions into SUMO manually. I wrote them into separated tll files for
each TLJ. This work is tedious and error prone so it needs to be done with caution.

3.6 V2X communication

Public transport vehicles in Brno have capability to communicate with each other and with
the infrastructure via installed V2X communication units. TLCs are also equipped with similar
communication units. Moreover, there are several RSUs in the area. These units are still quite
new and their potential is not fully used yet. This will change in near future.

I ported the scenario into Veins to simulate scenarios when EV communicates with TLC
directly via IEEE 802.11p standard. The buildings exported from OSM now play crucial role
for obstacle shadowing models. Parameters of the shadowing model can be read from the
listing:

<root>

<AnalogueModels>

<AnalogueModel type="SimplePathlossModel" thresholding="true">

<parameter name="alpha" type="double" value="2.0"/>

</AnalogueModel>

<AnalogueModel type="SimpleObstacleShadowing" thresholding="true"↘

>

<obstacles>

<type id="building" db-per-cut="9" db-per-meter="0.4"/>

</obstacles>

<parameter name="carrierFrequency" type="double" value="↘

5.890e+9"/>

</AnalogueModel>

</AnalogueModels>

<Decider type="Decider80211p">

<!-- The center frequency on which the phy listens-->

<parameter name="centerFrequency" type="double" value="5.890e9"/>

</Decider>

</root>

One of the RSU is placed in the north-east corner of the junction 2.06 and is nowadays

25

Chapter 3. Scenario

operated in a mode for testing. Among other data, the RSU logs GPS positions of vehicles
that successfully connected to it as well as GPS positions where the connection was lost. The
dataset with these logs was provided to me so I was able to compare V2X communication in
simulation with real life measurements. The comparison can be seen in Fig. 3.4. Firstly, I tried
to plot several points from the log on a larger area around my scenario to get an idea about
the reach of the RSU. The results surprised me a bit because there are points quite far away
from the RSU where I would not expect the RSU to function at all, especially the points at
north-east tip of the map at Fig. 3.4a. However, as was confirmed to me by respective partner,
those points are usually unpredictable connections caused by reflections from buildings. The
points placed on the main roads approaching the position of the RSU (roads in orange color)
are the points where the RSU is expected to work well.

I was interested in the reach of beacons sent via IEEE 802.11p in the scenario so I tried
to simulate a few V2I enabled vehicles and observe where the connection is established with
the RSU. The resulting area is depicted in Fig. 3.4b also with a few points from real life mea-
surements. This plot shows that the communication as modelled in Veins can be compared to
reality and that in most cases, it is even conservative because the RSU does not reach any car
close to the junction 1.02. From this result I conclude that Veins is a good tool for testing new
V2X applications in this scenario.

-500 -250 0 250 500
East (m)

-500

-250

0

250

500

N
or

th
 (m

)

Vehicle connected to RSU
Vehicle disconnected from RSU
RSU

(a) Larger area

-200 -100 0 100 200
East (m)

-300

-200

-100

0

100

200

300

N
or

th
 (m

)

Reach of RSU in simulation
Vehicle connected to RSU
Vehicle disconnected from RSU
RSU

(b) Area of my scenario

Figure 3.4: Comparison of real life measurements of V2I communication between vehicles and
RSU. On the left side, a larger map shows the reach of communication. On the right side, only my
scenario is depicted. Use the position of the RSU for orientation.

3.7 Emergency vehicle

With the network, traffic demand, traffic lights and V2X communication prepared, it is
time to model EV. Here is the list of things one can do in SUMO in order to simulate EV4

1. Define vType equipped with device.bluelight. The device allows vehicle to violate red
traffic lights and other vehicles are forced to create a corridor for EV (this is possible

4Emergency Vehicle simulation: https://sumo.dlr.de/wiki/Simulation/Emergency

26

https://sumo.dlr.de/wiki/Simulation/Emergency

3.8 Simplifications made

only in a simulation with sublane model).

2. Set vClass="emergency, this allows vehicle to overtake on the right.

3. Allow vehicle to exceed speed limit by specifying speedFactor > 1 in vType definition.

4. Take over the control of simulated vehicle with TraCI and implement special behaviour.

I use the first three items from the list. Examples of similar settings used in EVs simulations
can be found in [5, 6, 24, 25, 26]. The vehicle type definition is listed here, some less important
parameters are omitted for brevity.

<vType id="EMERGENCY" vClass="emergency" length="6.5" width="2.1"\

speedFactor="1.5" guiShape="emergency" laneChangeModel="SL2015"\

carFollowModel="IDM">

<param key="has.bluelight.device" value="true"/>

<param key="has.fcd.device" value="true"/>

</vType>

Then you need to write vehicle specification (time of departure) and also the definition of
route. I simulate only one route for EV which is depicted in Fig. 3.5. I did a few additional
adjustments to the network to make the resulting behaviour of EVs more realistic. In reality,
passenger vehicles are not allowed to drive on lanes that have tram rails but those lanes are
otherwise usable for buses or EVs. To give a simulated EV freedom to choose a lane so it can go
faster if some lane is more occupied than the other I set some extra connections at junctions as
can be seen in Fig. 3.6. This changes in the network need to be treated also in the traffic lights
program definitions in tll files. One option is to simply add one more character at a position
of respective connection in traffic light phases states or to define signal groups in the program.
I chose the first option so every extra connection extends the state of the traffic light phases
definitions of respective junction by one character.

3.8 Simplifications made

During the creation of the scenario, I made several simplifications. I was either forced to
make them (e.g. because I did not obtain necessary data) or I chose to make them for my own
convenience (e.g. because the problem was too complex or insignificant). The simplifications
are listed here.

• Preference of public transport vehicles on TLJ is not modelled. Nowadays, trams request
TLC for preference when approaching the area described in 3.1. In result, their signal
phase can be shifted along the cycle time as necessary, which affects the rest of the
phases. I use only static signal plans in the simulation. Thus, the trams almost never
stop on TLJs in reality, but they do in my simulation. So situations when both tram and
EV request priority are not considered.

27

Chapter 3. Scenario

-200 -100 0 100 200
East (m)

-300

-200

-100

0

100

200

300

N
or
th
 (m

)

start

end

-2326166445167154948

-4336804303812522873

start

end

Figure 3.5: The route of EV for simulations. According to partners from industry, EVs pass this
route frequently. Note that all four TLJ are crossed.

• Pedestrian crossings and pedestrians are not modelled. In reality, traffic lights for pedes-
trians affect prioritization methods for EV because the minimal green time for pedestri-
ans is much longer than the minimal green time for vehicles.

• Synchronization of traffic lights is not implemented. In practise, traffic lights are syn-
chronized in phases to provide green waves for traffic participants. When they de-
synchronize, TLC starts to synchronize them again, which can take several minutes.
This could be partially solved by actuated traffic lights in SUMO. But I didn’t want to
introduce extra complexity into the simulation.

• No parking lots and parking vehicles are simulated. There are two big parking lots in
the zone which might influence the flows on the streets.

• One way railroad track on Poříčí street is missing.

• Except from public transport and emergency vehicle, only one other vehicle type is sim-
ulated. The type is passenger vehicle with default parameters from SUMO.

3.9 Validation

To validate that the simulation scenario corresponds to reality, we need to compare counts
of vehicles from real induction loops and counts of simulated vehicles from corresponding E1
detectors. I used three ways how to do it. I show the procedure and results from one full day,
I chose Tuesday, November 20, 2018. The results for other days are similar.

28

3.9 Validation

(a) (b) Extra connections at junction 1.03

Figure 3.6: Adjustments to connections of lanes on two junctions. Note the curious connections
in dark blue color, they allow EV to switch lanes at junctions. Other simulated vehicles are not
permitted to use these connections.

• The flows computed by flowrouter can be compared with measurements with flowFrom-
Routes.py tool. It prints comparison and statistics to standard output. The command
may look like this:

python $SUMO_HOME/tools/detector/flowFromRoutes.py

-d detectors.det.xml

-r routes.xml

-e flows.xml

-f measurement.csv

--geh

You can add -i 60 to make the comparison aggregated in 60 minutes intervals and not
in the whole simulation duration. The parameter --geh makes the script compute GEH
statistics5, last value in Table 3.3.

• Another approach is to collect edge output from simulation run and compare it with
real measurements. There is a tool for it called flowFromEdgeData.py. Example of us-
age:

python $SUMO_HOME/tools/detector/flowFromEdgeData.py

-d detectors.det.xml

-e edgeData.xml

-f measurements.csv

Output from this one usually reports slightly worse error than from flowFromRoutes.py,
that is because simulation (edgeData) can deviate a little bit from its plan (flows). The
results are shown in Table 3.2 and Table 3.3(except GEH). Measurements are aggregated
for groups of neighbouring detectors throughout the whole day.

5See Appendix III in: http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf

29

http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf

Chapter 3. Scenario

• Third approach is to visually compare simulated and real measurements. Fig. 3.7 il-
lustrates the results of such effort. I simulated the whole day with virtual E1 detectors
and collected the counts of vehicles aggregated in 10 minutes interval (just like the real
measurements). Then I plotted them both against each other for all detectors. The
vertical axis shows the flow of vehicles through the detector per 10 minutes, the hori-
zontal axis shows daytime. In some cases it might look that the simulation is way off,
e.g. 1.01_DS3. But when you take into account that 1.01_DS3 and 1.01_DS4 are put
on neighbouring lanes, the total numbers of vehicles more or less fit. It is the aspect
of simulation that vehicles changed lanes as they did. The same holds for pairs 1.01_-
DVC1, 1.01_DVC2 and 2.06_DVC1, 2.06_DVC2. This is not apparent from results of two
previous two approaches because the detectors are grouped in them.

Taking into consideration that I did not obtain data from junction 1.02 and one of the
detectors malfunctioned, the results are satisfactory. In conclusion, I am confident that the
simulation scenario resembles reality.

Detector group Simulation Real measurements
1.01_DS{3,4} 8749 9495
1.01_DS5 3501 3226
1.01_DS6 3933 3813
1.01_DVA{1,2} 10024 9749
1.01_DVB 3592 3364
1.01_DVC{1,2} 8689 9395
1.03_DS{1,2} 2807 4975
1.03_DVB{1,2} 5610 7228
1.03_DVC{1,2} 10276 11294
2.06_DS2 9976 9427
2.06_DVA1 9509 9509
2.06_DVA2 2143 2142
2.06_DVB{1,2} 9841 9736
2.06_DVC{1,2} 7460 8030
2.06_DVD{1,2} 14361 14290

Table 3.2: Comparison of simulation with measurements

Avg sim flow Avg real flow RMSE RMSPE GEH
7364.73 7711.53 827.42 0.13 0.94

Table 3.3: Statistics of simulation and measurements and their comparison

30

3.9 Validation

0 4 8 12 16 20 24
0.00

0.25

0.50

0.75

1.00
Detector code

dayhour
ve

h/
10

 m
in

 [-
]

sim
real

0 4 8 12 16 20 24
0

20
40
60
80

100
120

1.01_DS3

0 4 8 12 16 20 24
0

10
20
30
40
50
60

1.01_DS4

0 4 8 12 16 20 24
0

10
20
30
40
50
60

1.01_DS5

0 4 8 12 16 20 24
0

25

50

75

100
1.01_DS6

0 4 8 12 16 20 24
0

20

40

60

80

1.01_DVA1

0 4 8 12 16 20 24
0

20

40

60

80

1.01_DVA2

0 4 8 12 16 20 24
0

10
20
30
40
50
60

1.01_DVB

0 4 8 12 16 20 24
0

20

40

60

1.01_DVC1

0 4 8 12 16 20 24
0

20

40

60

80

1.01_DVC2

0 4 8 12 16 20 24
0

20

40

60

1.03_DS1

0 4 8 12 16 20 24
0

10
20
30
40
50
60

1.03_DS2

0 4 8 12 16 20 24
0

20

40

60

80

1.03_DVB1

0 4 8 12 16 20 24
0

10
20
30
40
50

1.03_DVB2

0 4 8 12 16 20 24
0

20

40

60

80
1.03_DVC1

0 4 8 12 16 20 24
0

20

40

60

80

1.03_DVC2

0 4 8 12 16 20 24
0

25
50
75

100
125

2.06_DS2

0 4 8 12 16 20 24
0

20
40
60
80

100
120

2.06_DVA1

0 4 8 12 16 20 24
0

10

20

30

2.06_DVA2

0 4 8 12 16 20 24
0

20

40

60

80

2.06_DVB1

0 4 8 12 16 20 24
0

20

40

60

80

2.06_DVB2

0 4 8 12 16 20 24
0.0

2.5

5.0

7.5

10.0

2.06_DVB3

0 4 8 12 16 20 24
0

10
20
30
40
50

2.06_DVC1

0 4 8 12 16 20 24
0

20

40

60

80

2.06_DVC2

0 4 8 12 16 20 24
0

25

50

75

100

2.06_DVD1

0 4 8 12 16 20 24
0

25

50

75

100

2.06_DVD2

0 4 8 12 16 20 24
0

10

20

30
2.06_DVD3

Figure 3.7: Comparison of all day simulation with measurements from ATR. Day: Tuesday,
November 20, 2018. The first plot at the top-left position serves as a legend.

31

Chapter 4

Preference modes

R easonably realistic traffic demand was set. The simulation scenario is now ready to be
experimented with EVs. I have simulated in those three following modes.

1. EV gets no preference at TLJ. I will refer to this mode as ’no preference’.

2. EV gets preference just after crossing the virtual border set beforehand. I will refer to
this mode as ’distance based preference’.

3. EV requests priority and TLC computes the time when preference phase starts based on
the actual traffic situation in front of TLJ. I will refer to this mode as ’queue discharge
based preference’.

In this chapter I will describe how each mode works and how is the functionality modelled
in SUMO. In the case of queue discharge based preference, I also explain how Veins was used.
The evaluation and comparison of all three modes is in the next chapter.

4.1 No preference

Figure 4.1: Schematic picture of no preference mode

To simulate a situation where EV gets no priority is easy. At this point, everything is ready.
However, there are few things which need to be considered while simulating this mode and
collecting outputs. The model is not flawless. EV sometimes gets stuck unrealistically behind
another vehicle and is unwilling to change lane. I tried to find some parameters in lane-
changing models to make it better but I was unsuccessful.

33

Chapter 4. Preference modes

The behaviour of other vehicles that are trying to clear the way under the effect of EV’s
device.bluelight usually works as expected but sometimes a bug occurs and some vehicle blocks
the way for EV.

Another imperfection is driving and overtaking in the opposite direction. In reality EVs
drivers often drive in opposite direction to take over a queue. Unfortunately, opposite driving
model in SUMO is currently incompatible with sublane model. There is a way to create a
network, where driving in opposite direction is possible, if sublane is not used. However, if I
would use this way, then I would also have to simulate also other modes without sublane, to
make the simulations comparable in the final evaluation. I had to make a decision, whether
to use sublane or opposite driving. I have chosen to use former because it is more realistic for
overall simulation and sublane is needed for other vehicles to clear the way for EV. I think I
have made the right decision. I also tried opposite driving and the resulting behaviour was not
convincing enough.

4.2 Distance based preference

Figure 4.2: Schematic picture of distance based preference mode.

4.2.1 Description

This mode is currently used in the area for EVs preemption. The working principle is
straightforward: preference starts after EV crosses a virtual border of a TLJ en-route.

Creating the virtual border is tedious job and is not replicable to more than one junction.
A geographical point needs to be defined for every upstream lane connected to a TLJ which is
about to have prioritization capability. Those points need to be at a specified driving distance
from the TLJ (usually around 300 meters in urban areas). The points produce a shape that we
call the virtual border. Now, the virtual border can be integrated into traffic lights system and
plotted into a map.

An EV has On board unit (OBU) that is connected to GPS and is able to send messages via
cellular network - LTE. A path of the EV is known, so if there is a TLJ with preference on the
way, the OBU can check if the virtual border of the TLJ was crossed, with every GPS coordinates
update. Right after the border is passed, EV signals priority request via LTE infrastructure.

There is a rule for traffic lights behaviour in the Czech Republic1 which states that any
green phase for vehicles cannot be active for less than 5 seconds (I will refer to this rule as

1Norm ČSN 365201-1

34

4.2 Distance based preference

5 second rule). The minimal time is even longer for green phase of pedestrian crossings.
TLC cannot start the preference immediately, but has to first check if the rule is not violated.
If the EV requests priority in ’bad’ time, e.g. when green phase just started for pedestrian
crossing that intersects the path of EV, the preference phase is postponed by up to 20 seconds.
The preference stops after EV gets behind the TLJ and is around 20 meters away. Maximal
duration of preference is one minute.

4.2.2 Implementation

To model the distance based preference, I wrote Python program that runs the simulation
using TraCI. The program takes config file and rou file with EV definition (vehicle type, vehicle
and route) as inputs. Two constants are defined: DIST_THRESHOLD=300 (the driving distance
from a junction to the virtual border) and DIST_THRESHOLD_AWAY=40 (the distance from the
junction that needs to be surpassed to stop preference). The program is object-oriented, I
wrote a few classes to make an abstraction of the behaviour 4.2.1. Here is a list of the classes
with descriptions of their purpose:

• EmergencyVehicle

An instance of this class holds information from provided rou file.

• EmergencyVehiclesManager

Instanced only once at the beginning of the simulation. Holds list of EmergencyVehicle
and can answer questions about their route or time of departure.

• Listener4CheckingEmVehsDepart

Instanced only once at the beginning of the simulation. Subclass of traci.StepListener.
The only task of this object is to wait for departures of EmergencyVehicle and then at-
tach a new object of Listener4ParticularEmVeh for each departed EmergencyVehicle.

• Listener4ParticularEmVeh

Instanced for each departed EmergencyVehicle. Subclass of traci.StepListener.
Each instance has a reference to TlsPreferenceManager. An instance of this class
checks the driving distance to junctions on the route of particular EmergencyVehicle. If
the distance is less then the constant DIST_THRESHOLD, it notifies TlsPreferenceManager
with priority request. After requesting priority, the instance checks whether the junction
was passed already and if the EmergencyVehicle is at least DIST_THRESHOLD_AWAY from
the junction. If yes, it notifies the TlsPreferenceManager to stop preference.

• TlsPreferenceManager

Instanced only once at the beginning of the simulation. This object creates and acti-
vates preference program on junctions upon request. It keeps log about which junc-
tions are in preference mode and saves their previous program and phase. The previous
program and phase are activated again after receiving request to stop preference from
Listener4ParticularEmVeh.

The basic workflow of the program can be described in four steps:

35

Chapter 4. Preference modes

1. Parse rou file using sumolib and create objects of EmergencyVehicle type.

2. Initialize TlsPreferenceManager and Listener4CheckingEmVehsDepart.

3. Run simulation step.

4. Repeat 3. until there are no more vehicles or time is up.

The implementations of traci.StepListener.step() functions in Listeners take care of
everything else in step 3.

Some more remarks

TlsPreferenceManager checks the 5 seconds rule when requested priority. Thus, the max-
imal theoretical delay of preemption is 8 seconds in my simulations (5 seconds till the end of
green phase plus 3 seconds of yellow phase to stop the cars from other directions).

The preference program is created on demand. I compare current state of traffic lights
with desired state for preemption (green only on lanes of EV path). If needed, I insert transi-
tion phase (orange for ways, others than prioritized) to stop other flows. Situation when red
switches directly to green cannot happen in my scenario.

It can be used with any SUMO scenario provided that you specify the rou file. There might
be problems with scenarios where traffic light program controls multiple junctions.

The program can handle multiple EVs running in the simulation. In the case of two EVs
send priority request to the same TLC, the situation is resolved in first-come, first-served policy.

The source code is saved in runner_LTE.py file and is a part of this work. It is used from
command line, there is also option --no-gui to run without GUI:

python runner_LTE.py -c config.sumocfg -e emergency.rou.xml

36

4.3 Queue discharge based preference

4.3 Queue discharge based preference

Figure 4.3: Schematic picture of distance based preference mode.

4.3.1 Description

The third mode is a V2X enabled preference based on direct communication between an
EV and a TLC. The EV beacons GPS coordinates EVpos and speed EVspeed every second. Public
transport vehicles are able to forward the beacon. TLC decides, when should the preference
phase start, based on EVpos and current traffic situation in front of the TLJ. At this time, I
assume that the state of the traffic in front of the TLJ is known to the TLC. By state of the
traffic (or traffic situation), I mean the number of vehicles in the queue in front of the TLJ.
The motivation for this method is to prevent situations, when the preference phase is started
too early or too late and to remove the need of defining virtual borders.

A lot of time is wasted for other traffic participants when using distance based mode and
the affected lanes in front of the TLJ are empty. It can happen that all the lanes, except the
lane the EV is coming from, are stopped for tens of seconds without apparent reason to other
road users.

On the other hand, in the rush hours when traffic demand peaks, EVs might struggle to
pass the virtual border and vehicles cannot clear the way on time. In this situations, queue dis-
charge based might start to prioritize sooner to accomplish the original purpose of preference:
reducing a duration of EVs trip duration.

Similar method is used in [27]. The author develops an algorithm that computes the time
needed for all vehicles in the queue to pass the TLJ. The preemption phase is started at that
time so there are no vehicles approaching the TLJ from which the EV is coming at the time of
arrival of the EV. I decided to try slightly different approach. This is my reasoning: the queue
does not have to be discharged completely, it will be enough if the last vehicle of the queue is
moving at the saturation speed. The following algorithm runs on TLC:

1. Compute the arrival time of the EV from EVpos and EVspeed from the beacon = AT .

2. Get the number of vehicles in front of the stop line of TLJ = w0.

3. Compute the time when the last vehicle in the queue reaches the saturation speed= LT .

4. Estimate how long will be the ’tail’ of moving vehicles that are still in front of the stop
line at the time LT .

37

Chapter 4. Preference modes

5. Then compute the time that EV needs to surpass this distance = X T .

6. Compute time to start preference = AT − LT − X T .

The step 1. is straightforward. TLC gets driving distance of EV to the TLJ and divides it by
EVspeed . I will explain other steps in the next section.

4.3.2 Queue discharge model

The task is now to develop a formula to compute the time needed for the last vehicle in the
queue to accelerate to saturation speed (LT). I will use the exponential queue discharge flow
rate and speed model given in [28, 29]. The derivations of formulas in the following lines are
described in [29]. I will not repeat it here, I will only use them.

Considering a queue as an entity, its behaviour can be described by the following set of
functions of the time since start of green phase:

vs(t) = vn

�

1− e−mv(t−tr)
�

, (4.1)

qs(t) = qn

�

1− e−mq(t−tr)
�

, (4.2)

hs(t) =
hn

1− e−mq(t−tr)
, (4.3)

where

t = time since start of green phase [s],

tr = response time of first vehicle [s],

vs(t) = discharge speed at time t [km/h],

qs(t) = queue discharge volume at time t [veh/h],

hs(t) = queue discharge headway at time t [s],

vn =maximum queue discharge speed [km/h],

qn =maximum queue discharge volume [veh/h],

hn =minimal queue discharge headway [s],

mv = a parameter in the speed model [−],

mq = a parameter in the discharge volume model [−].

I estimated the parameters of the model to resemble behaviour of vehicle types in my sce-
nario in SUMO. To do this, I created a new scenario (test scenario) with just a straight road
with one TLJ, I put an E1 detector right to the stop line of the junction and laid down an E2
detector on the lane in front of the junction. A screenshot of the test scenario is in Fig. 4.5.
Then I defined a flow of 20 vehicles to depart, just to stop at red lights. When all vehicles were
standing still in the queue, a phase switched to green. Measurements of speed from E1 detector
are plotted in 4.4a. The parameters of equation 4.1 were found using least squares regression.
The result is in 4.4b. I obtained parameters mv and vn. SUMO measures speed in m/s, so the
parameter vn had to be converted to km/h.

38

4.3 Queue discharge based preference

0 10 20 30 40
time since start of green phase [s]

0.0

2.5

5.0

7.5

10.0

sp
ee
d
[m

/s
]

SUMO E1 measurements

(a) Speed at junction stop line

0 10 20 30 40
time since start of green phase [s]

0.0

2.5

5.0

7.5

10.0

sp
ee

d
[m

/s
]

SUMO E1 measurements
model fit

(b) Equation 4.1 fitted to measured points

Figure 4.4: Speed measurements at the stop line and model fit

Figure 4.5: A queue of vehicles in SUMO. Yellow rectangle is E1 detector, light blue area is the E2
detector.

Figure 4.6: The resulting behaviour of the queue discharge based prefernce. The EV reaches the
queue at the time when all vehicles are going at saturation speed.

The maximal queue discharge volume qn (or saturation flow) was estimated from practi-
cal formula for "through movements at isolated intersections". In comparison with simulated
result, it is reasonably accurate:

qn = 1012+ 24.5 · vn. (4.4)

For other development, we need to define average vehicle length Lv and average space gap
between standing vehicles in the queue Ls j . I assume we can get these values (in SUMO, they
are length and minGap of vehicle type definition). Their sum results in average jam spacing
Lh j = Lv + Ls j . Parameters mv and mq from equations 4.1 and 4.2 are coupled by the relation

mq = 1000 ·mv
vn

qn Lh j
, (4.5)

so we can compute the parameter mq. The headway 4.3 at time t is in the relation with flow
4.2:

hs(t) = 3600/qs(t), (4.6)

so the minimal (saturation) headway time follows the same relation

hn = 3600/qn. (4.7)

39

Chapter 4. Preference modes

Now we can compute average spacing of a queue moving at saturation speed (saturation spac-
ing) as

Lhn = 1000 ·
vn

qn
. (4.8)

Average driver response time to start moving after the vehicle in front of him starts moving is

t x = hn − 3.6 ·
Lh j

vn
(4.9)

Acceleration delay of a single vehicle is

da = ts + hn − t x , (4.10)

where ts is the start loss of the first vehicle in the queue. The time to accelerate to saturation
speed can be estimated as

ta =
vn

3.6 · aa
, (4.11)

where aa is average acceleration rate that can be computed from

aa =
(1−ma) · vs

3.6 · da
. (4.12)

ma in the last equation is a parameter of average acceleration characteristic which can be
estimated from experimentally derived formula

ma = 0.467+ 0.002 · vn. (4.13)

All parameters of the model and their values are listed in Table 4.1. Assuming that the queue
has w0 vehicles, then the time when the last vehicle is going at saturation speed after green
phase starts, could be computed by the following formula

LT = w0 · t x + ta. (4.14)

Step 4. and 5. of the algorithm is to compute the time that the EV needs to surpass the
remaining distance of the vehicles in motion in front of the TLJ (X T). Let w(t) be a dynamic
variable describing the number of cars at an approach to the intersection at time t and the
initial condition is w(0) = w0. Then assuming no other inflow of vehicles, the following first
order differential equation holds:

ẇ(t) = −qs(t). (4.15)

I used a numerical solver to do the first order euler discretization and solve. I plotted the
solution against measurements from E2 detector. The result is in Fig. 4.7a. The solution of
4.15 can be approximated by a linear function of time t:

wl in(t) = w0 + 1.5−
qn

3600
· t, (4.16)

that is depicted in 4.7b. The approximation is used by TLC to compute the time X T :

X T =
wl in(LT) · Lhn

EVspeed
. (4.17)

40

4.3 Queue discharge based preference

The time to start preference can now be computed in step 6. of the algorithm. The screenshot
in 4.6 depicts the situation. Figures 4.9 and 4.10 show FCD outputs of the test scenario.

0 10 20 30 40
time since start of green phase [s]

0

5

10

15

20

ve
hi
cl
es
 in
 q
ue
ue
 [-
]

SUMO E2 measurements
model

(a) Queue discharge of 20 vehicles.

0 10 20 30 40
time since start of green phase [s]

0

5

10

15

20

ve
hi
cl
es

 in
 q
ue

ue
 [-
]

model
linear approximation

(b) Linear approximation of the solution wl in

Figure 4.7: Queue discharge and linear approximation

vn qn hn mv mq
34.4 1855.5 1.9 0.25 0.68
Lv Ls j Lh j Lhn ts
4.3 2.5 6.8 18.5 1.0
t x ta da aa ma

1.23 3.7 1.71 2.6 0.54

Table 4.1: All parameters of the queue discharge model

4.3.3 Implementation

In my simulations, EVs do not send their actual speed EVspeed . Instead, I have defined a
parameter called EV_desired_speed that is set to maximal value that the EV can go: 75 km/h
is set for main simulation runs, 50 km/h for testing scenario. The reason is to make the
algorithm more conservative. It starts the preemption a little bit sooner because EVspeed is
always <= EV_desired_speed.

I have also introduced t_cons=5 (conservative time constant). The constant is substracted
from the time to start preference to make it even more conservative, especially to cope with 5
second rule. I did not use t_cons in the test scenario.

Even though it would be possible to model this mode using only SUMO and TraCI, I de-
cided to go into more details. I believe it makes the simulation more trustworthy and opens
possibilities for new ideas. Thus, this mode is the only reason why I have bothered with V2X
simulations. To model this mode of prioritization, I had to implement these modules in Veins:

• EmergencyAppl

Application layer of EV. The only job is to send beacons with EVpos periodically.

• ForwarderAppl

Application layer of vehicles of public transport. This application only decrements hop-
count of the beacon from EV and then resends it.

41

Chapter 4. Preference modes

0 10 20 30 40
time [s]

0

5

10

15

20

ve
hi
cl
es
 in

 q
ue

ue
 [-
]

0 10 20 30 40
time [s]

0

10

20

30

ve
lo
ci
ty
 [k

m
/s
]

0 10 20 30 40
time [s]

0

500

1000

1500

flo
w
 [v

eh
/h
]

0 10 20 30 40
time [s]

0

1

2

3

4

he
ad

w
ay

 [s
]

Figure 4.8: Identified model with a solution of (4.15) for 20 vehicles in top left plot. TLC assumes
that queues behave according to this model.

• TrafficLightAppl

Application layer of TLC. Receives beacons from EV and computes time to start prefer-
ence, adds t_cons. Then schedules a message with instruction for TrafficLightLogic
to start prioritization. E2 detectors placed on connections to the junctions are used to get
number of vehicles in the queue. It also instruct TrafficLightLogic to stop preference
and go back to previous program and phase when the EV is gone.

• TrafficLightLogic

Implements the logic of preference switching. It tries to start priority phase immediately
after receiving a message from TrafficLightAppl. This module also checks 5 seconds
rule and creates preemption program for the EV. The traffic light program switch is
realized by TraCI call. It also switches the previous program back.

Remarks about real adoption of the method

The benefit of the queue discharge based method is taking away the necessity to define the
virtual border around every TLJ. This is because the TLC decides about the time of starting
the preemption upon request and from actual traffic situation. Another nice feature is the fact
that it can be implemented with no changes in the infrastructure. Only the algorithm needs
to be programmed. Communication units are already installed.

However, if we wanted to implement the method on real TLC, we would have to deal with
two problems:

1. How to obtain traffic data

42

4.3 Queue discharge based preference

0 25 50 75 100
time [s]

0

200

400

600

800

1000

1200

di
st
an

ce
 [m

]

EV
other vehicles

Figure 4.9: Time-distance plot from FCD output of queue discharge based preference with 20
vehicles in the test scenario. TLJ is placed at 800 meters. The phase is depicted by red and green
color. The EV has desired speed set to only 50 km/h.

Currently, there is no precise system to count vehicles in front of the TLJ in real time.
Induction loops might be used for estimation but this is not an easy problem. Another
possibility is to use some online maps2 services API.

2. Queue discharge model calibration

The model I used is a rough estimation of the behaviour of real drivers. For real life us-
age, more rigorous identification is probably needed. But I think that some conservative
estimate of parameters would also work.

0 25 50 75 100
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

EV
other vehicles

(a) Time-speed

0 25 50 75 100
time [s]

-2

-1

0

1

2

3

ac
ce

le
ra
tio

n
[m

/s
^
2]

EV
other vehicles

(b) Time-acceleration

Figure 4.10: FCD output visualisations from the test scenario.

2For example HERE maps contain Traffic API https://www.here.com/

43

https://www.here.com/

Chapter 4. Preference modes

Figure 4.11: Running simulation of the queue discharge based method in the scenario of Brno.
On the left, the simulation of V2X communication in GUI of OMNeT++. On the right, the mobility
simulation in SUMO-GUI. They are coupled by sumo_launchd.py.

44

Chapter 5

Comparison

I n this chapter, I compare the outputs from extensive simulations of three implemented
modes. Firstly, I describe how I collected the outputs from simulations. Then I evaluate

different kinds of SUMO outputs. I were interested in tripinfo output of EVs, traffic light switches
output, tripinfo output of other vehicles.

5.1 Methodology

To evaluate performance of all three modes of preference, I conducted an experiment. I
chose the morning peak hours of three days:

• Wednesday, November 14, 2018, 7:00 a.m.-9:00 a.m.,

• Thursday, November 15, 2018, 7:00 a.m.-9:00 a.m.,

• Tuesday, November 20, 2018, 7:00 a.m.-9:00 a.m.,

and I repeated the following procedure for each of those time intervals.

1. EV is set to depart at given time tdepar t .

2. Simulation starts at time tdepar t −∆T

3. Simulation ends at time tdepar t +∆T

4. Outputs are collected from the simulation run.

5. The seed for random number generator is changed and step 2. is repeated until ten
repetitions are over.

6. Set tdepar t = tdepar t + tstep and repeat from 1.

In other words, to variate the traffic situation around the EV, I set the EV to depart at different
times. I simulate ∆T before the EV departs to warm up the simulation (so other vehicles have
time to fill the scenario). And I simulate ∆T after the departure of EV, so I will be able to
measure impact on the other traffic.

I wrote Python script that can run the simulations. It takes initial time of departure of
EV tdep, time by how much to variate time of departure tstep, number of runs N and mode
specifier (whether to simulate no preference mode, distance based mode or queue discharge

45

Chapter 5. Comparison

Algorithm 1: Pseudocode for batch simulations
init: seeds[10], ∆T
getOptions: tdep, tstep, N , mode
for i in range(0, N) do

tdep := tdep + i · tstep
setEvDepartAt(tdep)

for s in seeds do
beg = tdep −∆T
end = tdep +∆T
modifyXmlFiles()
runSimulation(beg, end, mode=mode, seed=s)
collectOutputs()

end
end

based mode). The parameter N is a little bit misleading, because every simulation is repeated
ten times with different seed. So if I start the script with N = 2, then 20 simulations will run,
where the first 10 of them will be simulated with the EV departure time tstep before the last
10 of runs. I run the procedure using following values:

tdep = 25200,

∆T = 300,

tstep = 30,

N = 240.

The number 25200 corresponds to 7:00 a.m. in seconds from midnight. With 240 repetitions,
incrementing tdep by tstep each time, we end up 30 seconds before 9:00 a.m. The pseudocode
of the algorithm is written in alg. 1. The outputs are distinguished by a unique prefix, holding
the information about the source of the output:

mode_tdep_seed_output_type.xml.

I run 240 simulation per mode per day and everything is repeated 10 times, totalling in
21600 simulation runs. The reason why I decided to repeat every simulation 10 times with
different seed is to make sure that the results are not random. After the first simulation batch,
I noticed that differences in trip durations for other vehicles are very small. Repeating the
simulations with different seed produced similar results, so I am confident that the results
presented in this chapter are replicable even with different parameters of the simulation. To
discuss the results, I show the plots from one day (November 14, 2018) and one particular
seed.

5.2 Trip duration of emergency vehicle

The plot 5.1 shows durations of EV trips throughout the test interval. It is apparent that the
duration of EV trip without preference varies wildly. That is partially because of the problems
discussed in 4.1 but also because the EV might hit TLJ with red light in very congested state.
With different times of departure of the EV, different traffic lights phases might be encountered

46

5.3 Duration of traffic light preference

EV trip time Mean [s] Std [s]
No preference 105.38 31.18
Distance based 74.12 3.20

Queue discharge based 76.62 5.76

Table 5.1: Values from Fig. 5.1

on its path. As for two preference modes, distance based method performs slightly better for
EVs.

7:00 7:30 8:00 8:30 9:00
daytime

50

100

150

200

du
ra
tio

n
of
 E
V
tr
ip
 [s

]

no preference
distance based
queue discharge based mean ±std

Figure 5.1: EV trip durations for each mode throughout the testing interval.

5.3 Duration of traffic light preference

This is the comparison of only preemption modes. Fig. 5.2 shows the duration of how long
was each of the TLJs in preference phase. Queue discharge based method takes the traffic
situation into account so the duration of prioritization varies according to it. I think this plot is
reasonable result. Maybe, if the scenario was more congested, then the means would be closer
to each other. However, I haven’t tried this. The duration of preference in distance based mode
varies only because of 5 seconds rule.

Duration of preference phase
1.01 1.02 1.03 2.06

Mean Std Mean Std Mean Std Mean Std
Distance based 27.38 2.41 26.17 2.17 25.36 2.48 28.60 2.16

Queue discharge based 23.18 5.36 20.96 8.36 19.44 6.51 19.31 4.41

Table 5.2: Durations of preference phases. Values are visualised in Fig. 5.2

47

Chapter 5. Comparison

1.01 1.02 1.03 2.06
junction code

0

10

20

30

du
ra
tio

n
[s
]

distance based
queue discharge based

Figure 5.2: Duration of preference phase of each of four TLJs

5.4 Waiting time of other vehicles

Fig. 5.3 shows the means of aggregated waiting times of other vehicles and their standard
deviations over respective 240 simulation runs. Waiting time is being counted when a vehicle
is stopped involuntarily. Mean waiting time rose by around 3 seconds in the case of distance
based preference and by around 2 seconds in the case of queue discharge based preference,
compared to the mode with no preference.

Table 5.3 shows more tripinfo data of other vehicles. The best indicator of the impact of
preference is the waiting time of other vehicles. It can be seen from the table that both, distance
based mode and queue discharge based mode increase the mean waiting time of other vehicles
in all three days.

In the table, I distinguish between all and finished trips because SUMO simulates less
vehicles in preference modes. That is because the occupancy of certain edges might be higher
at the moment and SUMO decides to insert a new vehicle later. The mean waiting time is
aggregated for all vehicles, even unfinished. The table shows the data for all three days.

no pref distance
 based

queue di
scharge

based

36

38

40

42

44

w
ai
tin

g
tim

e
[s
]

Figure 5.3: Aggregated waiting time of other vehicles.

48

5.4 Waiting time of other vehicles

Wednesday, November 14, 2018, 7:00 a.m.–9:00 a.m.
Mode No preference Distance based Queue discharge based

Trips [#]
(finished)

510.75 503.88 504.81

Mean duration [s]
(finished)

101.87 105.12 104.12

Max duration [s]
(finished)

409.132 421.82 417.86

Waiting time [s]
(all)

38.21 41.18 40.21

Max waiting time [s]
(all)

278.11 284.25 277.77

Thursday, November 15, 2018, 7:00 a.m.–9:00 a.m.
Mode No preference Distance based Queue discharge based

Trips [#]
(finished)

489.07 481.93 493.92

Mean duration [s]
(finished)

106.03 109.17 108.15

Max duration [s]
(finished)

416.50 427.75 423.65

Waiting time [s]
(all)

41.61 44.47 43.40

Max waiting time [s]
(all)

285.78 294.43 292.59

Tuesday, November 20, 2018, 7:00 a.m.–9:00 a.m.
Mode No preference Distance based Queue discharge based

Trips [#]
(finished)

500.75 492.5 494.48

Mean duration [s]
(finished)

103.03 106.59 105.31

Max duration [s]
(finished)

417.92 425.12 422.91

Waiting time [s]
(all)

39.69 42.88 41.62

Max waiting time [s]
(all)

283.83 286.44 282.08

Table 5.3: Comparison of the experiment done over three days in morning peak time. I simulate
5 minutes before and 5 minutes after EV departs. The time of departure of EV goes from 7:00
a.m. till 9:00 a.m., every 30 seconds. That gives 240 simulation runs per mode per day (2160
simulation runs). Values listed in the table are mean values of respective 240 simulation runs.
Similar results were obtained for other batches.

49

Chapter 6

Conclusion

I n the last chapter I summarize what have been accomplished in this thesis and I propose
a few projects that can pick up the results of this thesis.

The task was to develop a microscopic traffic simulation of a real area, simulate two modes
of EVs going through them and then study the impact on the other traffic. All of these tasks
were done successfully.

• Firstly, I described the tools which I used in the work. This resulted in the text that can
be used as a tutorial for newcomers of the research group (Chapter 2).

• The simulation scenario based on real measurements was created and prepared for V2X
simulations (Chapter 3).

• I described three modes of preference of EVs and developed programs to simulate them.
Moreover, the queue discharge based preference uses a new approach and exhibits
promising results (Chapter 4).

• Outputs from simulations were analysed and all three methods were compared against
each other (Chapter 5).

I defined two problems in Section 1.1. Based on my simulations, I conclude that prioritiza-
tion of EVs indeed prolongs the journey for other road users. It is not a big difference but it is
definitely measurable. Then I proposed a new approach which removes the need of a virtual
border and is a good trade-off between performance for EVs and for the other traffic.

6.1 Future work

The biggest improvement of the scenario would be modelling dynamic traffic lights with
preference for public transport and simulate EVs in this environment. It might be interesting
to study the impact of prioritization of EVs to the public transport.

There is a possibility to extend the scenario by several other adjacent junctions, that are
newly equipped with V2X enabled communication units. This results from C-ROADS project
effort.

Modelling pedestrians and zebra crossings would certainly make the simulation scenario
more lively.

The scenario might be used as a testbed for developing new preference algorithms.

51

Bibliography

[1] R. Sánchez-Mangas, A. Garcia-Ferrer, A. de Juan, and A. Martín Arroyo, “The probability
of death in road traffic accidents. how important is a quick medical response?” Accident;
analysis and prevention, vol. 42, pp. 1048–56, 07 2010.

[2] R. P Gonzalez, G. R Cummings, H. Phelan, M. Mulekar, and C. B Rodning, “Does in-
creased emergency medical services prehospital time affect patient mortality in rural
motor vehicle crash? a statewide analysis,” American journal of surgery, vol. 197, pp.
30–4, 06 2008.

[3] M. Fogue, P. Garrido, F. Martinez, J.-C. Cano, C. Calafate, and P. Manzoni, “Automatic
accident detection: Assistance through communication technologies and vehicles,” IEEE
Vehicular Technology Magazine, vol. 7, pp. 90–100, 09 2012.

[4] S. Burke, E. Salas, and J. Peter Kincaid, “Emergency vehicles that become accident statis-
tics: Understanding and limiting accidents involving emergency vehicles,” Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 45, pp. 508–512, 10
2001.

[5] L. Bieker-Walz, “Traffic safety evaluations for emgergency vehicles,” Young Researchers
Seminar, 06 2015.

[6] L. Bieker-Walz, “Cooperative traffic management for emergency vehicles in the city of
bologna,” SUMO 2017 – Towards Simulation for Autonomous MobilityVolume: 31, 05
2017.

[7] M. Treiber, A. Kesting, and C. Thiemann, Traffic Flow Dynamics: Data, Models
and Simulation. Springer Berlin Heidelberg, 2012. [Online]. Available: https:
//books.google.cz/books?id=Xlsa9aaLc_QC

[8] S. P. Hoogendoorn and P. H. L. Bovy, “State-of-the-art of vehicular traffic flow modelling,”
in Delft University of Technology, Delft, The, 2001, pp. 283–303.

[9] T. Bellemans, B. De Schutter, and B. De Moor, “Models for traffic control,” Journal A,
vol. 43, no. 3–4, pp. 13–22, 2002.

[10] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” J. Phys.
I France., vol. 2, no. 12, 1992.

[11] S. Krauß, “Microscopic modeling of traffic flow: Investigation of collision free vehicle
dynamics,” D L R - Forschungsberichte, 01 1998.

[12] B. Ciuffo, V. Punzo, and M. Montanino, “Thirty years of gipps’ car-following model,”
Transportation Research Record Journal of the Transportation Research Board, vol. 2315,
pp. 89–99, 12 2012.

53

https://books.google.cz/books?id=Xlsa9aaLc_QC
https://books.google.cz/books?id=Xlsa9aaLc_QC

BIBLIOGRAPHY

[13] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using
sumo,” in The 21st IEEE International Conference on Intelligent Transportation Systems.
IEEE, 2018. [Online]. Available: https://elib.dlr.de/124092/

[14] M. Behrisch, L. Bieker-Walz, J. Erdmann, M. Weber (Geb. Knocke, D. Krajzewicz, and
P. Wagner, Evolution of SUMO’s Simulation Model, 01 2014, pp. 1–21.

[15] J. Erdmann, “Lane-changing model in sumo,” in SUMO2014, ser. Reports of the
DLR-Institute of Transportation SystemsProceedings, vol. 24. Deutsches Zentrum
für Luft- und Raumfahrt e.V., May 2014, pp. 77–88. [Online]. Available: https:
//elib.dlr.de/89233/

[16] Wikipedia contributors, “Mersenne twister — Wikipedia, the free encyclopedia,” 2019,
[Online; accessed 18-May-2019]. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Mersenne_Twister&oldid=896072298

[17] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P. Hubaux,
“Traci: An interface for coupling road traffic and network simulators,” in Proceedings
of the 11th Communications and Networking Simulation Symposium, ser. CNS
’08. New York, NY, USA: ACM, 2008, pp. 155–163. [Online]. Available: http:
//doi.acm.org/10.1145/1400713.1400740

[18] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University Press, 2014.
[Online]. Available: http://book.car2x.org/

[19] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network and Road
Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on Mobile Computing,
vol. 10, no. 1, pp. 3–15, January 2011.

[20] OpenStreetMap Wiki, “Main page — openstreetmap wiki,,” 2014, [Online; accessed
7-May-2019]. [Online]. Available: https://wiki.openstreetmap.org

[21] T. Nguyen, D. Krajzewicz, M. Fullerton, and E. Nicolay, “Dfrouter—estimation of vehi-
cle routes from cross-section measurements,” Lecture Notes in Control and Information
Sciences, vol. 13, pp. 3–23, 01 2015.

[22] J. Zambrano-Martinez, C. Calafate, D. Soler, and J.-C. Cano, “Towards realistic urban
traffic experiments using dfrouter: Heuristic, validation and extensions,” Sensors, vol. 17,
pp. 1–29, 12 2017.

[23] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian Journal of
Mathematics, vol. 8, p. 399–404, 1956.

[24] L. Bieker-Walz, M. Behrisch, and M. Junghans, “Analysis of the traffic behavior of emer-
gency vehicles in a microscopic traffic simulation,” 05 2018.

[25] L. Bieker-Walz, Y.-P. Flötteröd, A. Sohr, and S. Ruppe, “Gaining insight into routing be-
haviors of emergency vehicle from real-world trajectories,” 10 2018.

[26] L. Bieker-Walz, “Self-organizing traffic management for emergency vehicles,” 09 2017.

54

https://elib.dlr.de/124092/
https://elib.dlr.de/89233/
https://elib.dlr.de/89233/
https://en.wikipedia.org/w/index.php?title=Mersenne_Twister&oldid=896072298
https://en.wikipedia.org/w/index.php?title=Mersenne_Twister&oldid=896072298
http://doi.acm.org/10.1145/1400713.1400740
http://doi.acm.org/10.1145/1400713.1400740
http://book.car2x.org/
https://wiki.openstreetmap.org

BIBLIOGRAPHY

[27] H. Noori, L. Fu, and S. Shiravi, “A connected vehicle based traffic signal control strategy
for emergency vehicle preemption,” in Proc. of the Transportation Research Board 95th
Annual Meeting, 01 2016.

[28] R. Akçelik, M. Besley, and R. Roper, “Fundamental relationships for traffic flows at sig-
nalised intersections.” 09 1999.

[29] R. Akçelik and M. Besley, “Queue discharge flow and speed models for signalised inter-
sections,” Transportation and Traffic Theory in the 21st Century, proceedings of the 15th
International Symposium on Transportation and Traffic Theory, pp. 99–118, 08 2002.

55

	Acronyms
	Introduction
	Problem definition
	Aim of this work
	Structure of the thesis

	Traffic modelling
	Models classification
	Macroscopic
	Mesoscopic
	Microscopic
	Submicroscopic

	Car-following models
	SUMO
	Components
	Detectors and devices
	Running the simulation
	TraCI
	Outputs
	Other tools

	Vehicles in network simulation

	Scenario
	Area
	Network
	Traffic demand
	DFROUTER
	Flowrouter
	Processing the datasets

	Public transport
	Traffic lights
	V2X communication
	Emergency vehicle
	Simplifications made
	Validation

	Preference modes
	No preference
	Distance based preference
	Description
	Implementation

	Queue discharge based preference
	Description
	Queue discharge model
	Implementation

	Comparison
	Methodology
	Trip duration of emergency vehicle
	Duration of traffic light preference
	Waiting time of other vehicles

	Conclusion
	Future work

	Bibliography

