
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Placement and Routing for

Dynamic Reconfiguration in

FPGAs

DOCTORAL THESIS

August 2010 Ing. Petr Honźık





Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Placement and Routing for

Dynamic Reconfiguration in

FPGAs
by

Ing. Petr Honźık

Supervisor: Ing. Jǐŕı Kadlec, CSc

Dissertation submitted to the Faculty of Electrical Engineering of

Czech Technical University in Prague

in partial fulfillment of the requirements

for the degree of

Doctor

in the branch of study

Control Engineering and Robotics

of study program Electrical Engineering and Informatics

August 2010





To my family, grandfather i.m. and Kačka.





Preface

The presented thesis is a part of a long term joint research at the Department of Signal

Processing of the Institute of Information Theory and Automation (UTIA) of the Czech

Academy of Sciences of the Czech Republic, and the Department of Control Engineering,

Faculty of Electrical Engineering of the Czech Technical University in Prague under the

supervision of Ing. Jǐŕı Kadlec, CSc. in the field of the development and implementation

of advanced digital signal processing (DSP) algorithms for adaptive control and audio and

video processing.

The common target platforms for the research are Field Programmable Gate Arrays

(FPGAs) and Digital Signal Processors (DSPs). Matlab/Simulink is used to specify, model

and verify algorithms that are later converted and synthesized in HW. As such specialized

solutions are likely to be used in embedded systems, features that result in extremely fast

execution, use small amount of memory, small chip area or low power consumption are

also researched.

I joined the Department of Signal Processing at UTIA in 2003, when the EU RECONF2

project was intensively researched. Later in the IST project Æther I learned about self-

adaptive systems and made use of my previous results from the previous projects. In the

year 2005 a cooperation with the Atmel Corporation was established and allowed me to

research the FPGA technology at the low level. The last project Scalopes allowed me to

continue in the research oo self-adaptive networks.

The presented work deals with reconfigurable systems with self-adaptivity based on

the FPGA technology. The thesis consists of three parts. The first part deals with partial

dynamic reconfiguration of FPGA devices. The second part analyzes self-adaptive systems,

their elements and features. The third part introduces a network on chip, and analyzes it

in terms of communication, hardware cost and data stream processing.

First of all I would like to express my gratitude to my supervisor Jǐŕı Kadlec for

supporting me during all my research and becoming my supervisor, to Martin Daněk for

introducing me to reconfigurable and adaptive systems and for useful discussions in all

stages of my research, to Rudolf Matoušek for introducing me to FPGAs. My thanks also

belong to all the people I have met during my research.

My deepest thanks belong to my family and grandfather, in memoriam, for supporting

i



me when I needed it.

This work was supported by the following institutions which I gratefully acknowledge:

• the European Commission under the FP6-IST projects Reconf IST-2001-34016,

Æther IST-027611.

• the Artemis JU under the project Scalopes 2008-100029 and MSMT 7H09005.

• the Ministry of Education under the projects C-A-K LN00B096 and 1M05667

Petr Honźık

Prague, August 27, 2010

ii



Placement and Routing for Dynamic Reconfiguration in

FPGAs

Ing. Petr Honźık

Czech Technical University in Prague,

Institute of Information Theory and Automation of the ASCR

Supervisor: Ing. Jǐŕı Kadlec, CSc

Institute of Information Theory and Automation of the ASCR

The presented work deals with reconfigurable systems with self adaptivity based on the

FPGA platform. The thesis consists of three parts.

The first part deals with partial dynamic reconfiguration on the FPGA devices. The

possibility of the dynamic reconfiguration in the reconfigurable systems and its space com-

plexity is analyzed. The function density that expresses an application performance run-

ning in a dynamic module is presented. Further the text presents reconfigurable hardware

platforms available on today’s market and the methodology how to implement the recon-

figurable flow and the reconfigurable hardware. It introduces a reconfiguration controller

and its features necessary to control the reconfiguration process and store configuration

bitstreams in an external memory. The problems with connections between a static and

dynamic parts of the design during reconfiguration is presented. The two reconfigurable

coprocessors with an identical function on Virtex from Xilinx and on AT94K FPSLIC from

Atmel have been implemented. The comparison of these two implementations is done.

The second part analyses self adaptive systems, their elements and features. The anal-

ysis of the requirements of the self adaptive system is done with respect to the future

implementation on the reconfigurable platforms based on the FPGA devices. An intro-

duction of principles of the self adaptive element that is the basic building block of our

adaptive system is done. There is a brief description of the four main blocks of the self

adaptive element and their interaction with the environment. The next part describes

iii



an implementation of a self adaptive ring network with four self adaptive elements. The

simulation of the self adaptive features of the network is done.

The third part introduces a network on chip, analyzes it from the side of communication

and hardware cost and data stream processing. The stress is put on restrictions due to

the FPGA technology. The 2D-Mesh topology was chosen as the most suitable topology

for the future simulation of the self adaptive system. Three routing algorithms and their

impact to full loading network in the 2D-Mesh network are presented. The following text

describes three placement algorithms and the Step-Adaptive Algorithm for improving the

placement of running applications on the network and optimization criteria are defined.

The simulation framework is used to test the features of the self adaptive system on

test cases. The result of the simulations on the self adaptive system compares the Step-

Adaptive Algorithm and the presented placement algorithms.

iv



Contents

Preface i

Abstract iii

List of Acronyms xiii

1 Introduction 3

1.1 Goals and Objectives of the Dissertation . . . . . . . . . . . . . . . . . . . . 5

1.2 Current State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Structure of the Disertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Dynamic Reconfiguration Analysis 15

2.1 State of the Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . . 16

2.2 Theory of the Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . 17

2.3 Application Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Thinking Dynamically From the Outset . . . . . . . . . . . . . . . . . . . . 25

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Reconfigurable Hardware Platform 27

3.1 Reconfigurable FPGA Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Reconfigurable FPGA Coprocessor . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Comparison FPGA Coprocessor . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



4 Self-Adaptivity 49

4.1 Requirements of a Self-Adaptive System . . . . . . . . . . . . . . . . . . . . 50

4.2 Architecture of a Self-Adapt Element . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Function Block of a Self-Adapt Element . . . . . . . . . . . . . . . . . . . . 52

4.4 Modeling and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Network on Chip 63

5.1 Network on Chip Topology Selection . . . . . . . . . . . . . . . . . . . . . . 63

5.2 2D-Mesh Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Network on Chip Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Placing Applications 77

6.1 Placing Tasks to Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Network Parameters Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Self-Adaptive Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Simulating the Self Adaptive Placement . . . . . . . . . . . . . . . . . . . . 93

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 115

7.1 Objectives Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Summary of Author’s Contribution . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix: 121

A Network Traffic Visualization 121

A.1 Network Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Network Parameters Expression . . . . . . . . . . . . . . . . . . . . . . . . . 121

B Testing Applications 125

C Progress Graphs 129

vi



Biblioghraphy 144

List of Author’s Publications I

Funding and Projects V

Vita IX

vii



viii



List of Figures

2.1 A typical stream-type application. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 A dynamic reconfigurable stream type application . . . . . . . . . . . . . . 22

2.3 A typical control-type application. . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Xilinx Virtex2 - configuration blocks. . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Bus Macro element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Atmel AT94K FPGA with AVR and peripherals. . . . . . . . . . . . . . . . 32

3.4 Implementation-dependant flow. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Bitstream logical organization. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Possible port connections and routing . . . . . . . . . . . . . . . . . . . . . 37

3.7 Synthesizing an invalid component. . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Floating-point unit: design structure. . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Microcontroller execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 FP coprocessor on Virtex2 with MicroBlaze: block diagram . . . . . . . . . 42

3.11 FP coprocessor on Atmel AT94K: block diagram . . . . . . . . . . . . . . . 43

4.1 Self-Adapt Element block diagram . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Reconfigurable computing engine . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Implementation of Self-Adapt Element . . . . . . . . . . . . . . . . . . . . . 56

4.4 Model of a Self-Adapt Element network . . . . . . . . . . . . . . . . . . . . 57

4.5 Ring network with four Self-Adapt Elements . . . . . . . . . . . . . . . . . 58

4.6 Interpretation of simple packet structure . . . . . . . . . . . . . . . . . . . . 60

4.7 Consecutive processing data in network . . . . . . . . . . . . . . . . . . . . 61

5.1 The overview of hardware cost of topologies . . . . . . . . . . . . . . . . . . 68

ix



5.2 The overview of communication bandwidth of topologies . . . . . . . . . . . 68

5.3 Routing flits in 2D-mesh network . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Random routing flits in a full load network . . . . . . . . . . . . . . . . . . 71

6.1 An example of a hop and unused node matrix . . . . . . . . . . . . . . . . . 81

6.2 Result of First Node Placement algorithm . . . . . . . . . . . . . . . . . . . 83

6.3 Result of Best Node Placement algorithm . . . . . . . . . . . . . . . . . . . 84

6.4 Result of Multi-Best Node Placement algorithm . . . . . . . . . . . . . . . . 85

6.5 Best node algorithm example . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Rules for moving tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.7 Screeshot of the MeshViz simulation framework . . . . . . . . . . . . . . . . 95

6.8 Compare of average approximation . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Evolution of six stream applications . . . . . . . . . . . . . . . . . . . . . . 107

6.10 Evolution of two stream applications . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Network notation and IO ports . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Node and ports vizualization . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.3 Network graf visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.1 Example of test application . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.1 Network and applications path cost progress . . . . . . . . . . . . . . . . . . 131

C.2 Graphs of SA alg. for S1, S2, S3 with path cost method . . . . . . . . . . . 132

C.3 Graphs of SA alg. for S1, S2, S3 with hops cost method . . . . . . . . . . . 133

C.4 Graphs of SA alg. for S4, S5, S6 with path cost method . . . . . . . . . . . 134

C.5 Graphs of SA alg. for S4, S5, S6 with hops cost method . . . . . . . . . . . 135

C.6 Graphs of standard deviation with hop cost calculation . . . . . . . . . . . . 136

C.7 Comparison of improvements network parameters . . . . . . . . . . . . . . . 137

x



List of Tables

2.1 Summary of the reconfiguration methods . . . . . . . . . . . . . . . . . . . 20

3.0 Parameters that affect reconfiguration . . . . . . . . . . . . . . . . . . . . . 29

3.1 Summarise the device characteristics . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The resource usage in the FP coprocessor application . . . . . . . . . . . . . 46

3.3 Data pertinent to dynamic reconfiguration . . . . . . . . . . . . . . . . . . . 46

5.1 Comparison of the most common NoCs . . . . . . . . . . . . . . . . . . . . 67

6.1 Result of Step Adaptive alg. with path cost on sets S1, S2, S3 . . . . . . . . 98

6.2 Approximation of Step Adaptive alg. with path cost on sets S1, S2, S3 . . . 98

6.3 Result of Step Adaptive alg. with path cost on sets S4, S5, S6 . . . . . . . . 99

6.4 Approximation of Step Adaptive alg. with path cost on sets S4, S5, S6 . . . 99

6.5 Result of Step Adaptive alg. with hop cost on sets S1, S2, S3 . . . . . . . . 100

6.6 Approximation of Step Adaptive alg. with hop cost on sets S1, S2, S3 . . . 100

6.7 Result of Step Adaptive alg. with hop cost on sets S4, S5, S6 . . . . . . . . 101

6.8 Approximation of Step Adaptive alg. with hop cost on sets S4, S5, S6 . . . 101

6.9 Average of Step Adaptive alg. with path cost on sets S1, S2, S3 . . . . . . . 102

6.10 Average appr.of Step Adaptive alg. with path cost on sets S1, S2, S3 . . . . 102

6.11 Average of Step Adaptive alg. with hops cost on sets S1, S2, S3 . . . . . . . 102

6.12 Average appr.of Step Adaptive alg. with hops cost on sets S1, S2, S3 . . . . 103

6.13 Average of Step Adaptive alg. with path cost on sets S4, S5, S6 . . . . . . . 103

6.14 Average appr.of Step Adaptive alg. with path cost on sets S4, S5, S6 . . . . 103

6.15 Average of Step Adaptive alg. with hops cost on sets S4, S5, S6 . . . . . . . 104

6.16 Average appr.of Step Adaptive alg. with hops cost on sets S4, S5, S6 . . . . 104

xi



6.17 List of applications run on the network . . . . . . . . . . . . . . . . . . . . . 110

xii



List of Acronyms

ASIC Application–Specific Integrated Circuit

AVR 8-bit Microcontroller Unit from Atmel

BRAM Block RAM

CLB Configurable Logic Block

DFF D–Type Flip Flop

DMA Direct Memory Access

DSP Digital Signal Processor

EDK Embedded Development Kit

FPGA Field–Programmable Gate Array

fps frames per second

FPSLIC Field–Programmable System–Level Integrated Circuits

GCC GNU C Compiler

HDL Hardware Description Language

IC Integrated Circuit

ICAP Internal Configuration Access Port

IOB Input/Output Buffer

IP Intellectual Property

ISE Integrated Software Environment

JTAG Joint Test Action Group

LUT Look–Up Table

MB MicroBlaze soft–core processor

xiii



MIPS Million Instructions Per Second

RAM Random Access Memory

RISC Reduced Instruction Set Computing

SoC System on Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

TRS Technical Requirement Specification

TWS Two–Wire Serial port

UART Universal Asynchronous Receiver/Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High–Speed Integrated Circuit

VLSI Very Large–Scale Integration

XPS Xilinx Platform Studio

XST Xilinx Synthesis Tool

xiv



1



2



Chapter 1

Introduction

The era of a single computer per one person became on era of pervasive computing with

many computers per one person. The beginning of the era of pervasive computing started

with an expansion of embedded systems and mobile systems. Current products have to

process more and more complex tasks and fulfill requirements from users that put more

demands on communication interfaces and cooperation among products.

The near future will increase the number of not only single computers, but mainly

multiprocessors and systems on chip with heterogeneous hardware cores. These cores will

have to process a huge amount of various data coming from the environment. Current

cores can not fulfill requirements of the future multi-cores that will work independently of

any central controller, and can adapt to environment that will change during life time of

system.

The higher requirements on the future multi-cores will require much wider function-

ality with low power consumption and mainly reuse of the hardware resources. Today’s

computing systems have low hardware resource utilization, and the specific hardware pays

for high performance by low utilization. This increases the cost of the hardware and

power consumption. The future hardware has to have reconfiguration features that al-

low the change hardware functions of parts or the whole system without interrupting its

run. This process will significantly increase the functionality and utilization of hardware

resources and decrease power consumption.

The current mainly centralized systems depend on central arbiters or controllers that

synchronize and control the whole system. It leads to inefficiency of utilization of hardware

3



4 CHAPTER 1. INTRODUCTION

and bottlenecks between parts of the system. The future systems and their parts have

to implement some level of self adaptivity to avoid the central controlling mechanism. It

will simplify the cooperation between parts of the system, and minimize problems with

failures of part of the system.

An example of a system with the multi-core concept is the IBM Cell processor (Kahle

et al., 2005) or the NVidia GPU with CUDA architecture (Zou et al., 2009). They im-

plement a multiprocessor unit with several smaller processors on one chip that cooperate

to finish the task. They still use a central arbiter to control the whole system and one

communication bus, but some of the features became very near the requirements of the

future systems on chip.

We will use programmable logic array devices known as FPGAs that allow to imple-

ment most of the future requirements on today’s devices. They cannot be compared with

multiprocessors like IBM Cell and NVidia GPU with CUDA architecture but they can

be used as an ideal starting platform that can prove methodology and features we find

desirable in future systems.

The FPGA devices allow fast prototyping of the hardware, and open fields for partial

dynamic reconfiguration that can be used to change functions of parts of a system on chip.

The current FPGA devices can contain several smaller microcontrollers with attached

hardware accelerators that can act as a strong platform for future systems on chip with

many of the features we described above. Unfortunately the speed of the FPGA devices

cannot be compared with ASIC devices. The operating frequency of the current FPGA

devices reaches 250MHz, in the case of the ASIC devices it is 20 times higher, but the

functionality of the FPGA devices with partial reconfiguration is much higher than the

functionality of the ASIC devices. The ASIC devices have a fixed structure designed

during the factory process and cannot be changed during the life time of the device.

More, the design of a new ASIC is extremely expensive and cannot fulfill various customer

requirements for low volume production.

The future solution that can merge advantages of both device types can bring a new

dimension to reconfigurable devices. A real example of the first solution of the combi-

nation of an ASIC device with an FPGA device is Atmel AT94K FPSLIC that has a

hard core AVR type microcontroller connected to the programmable gate array. Another

solution is the Xilinx Virtex device with the hard core Power PC processor attached to



1.1. GOALS AND OBJECTIVES OF THE DISSERTATION 5

the programmable gates array. The future will use this model on a single chip to multi

cores with many elements containing microcontroller with reprogrammable hardware ac-

celerators. We can call this multi-core concept reprogrammable basic computing element

array. Such a reprogrammable array will be very close to our model of the future system

on chip we discussed above. With the self-adaptive technology and scalability it can fulfil

all requirements of future Multi-Processor Systems on Chip that will be able to adapt to

their environment.

1.1 Goals and Objectives of the Dissertation

In our work we plan to use the partial dynamic reconfiguration technology on reconfig-

urable devices and use this technology to extend the functionality of the current com-

mercially available devices. The extended functionality will be focused on the use of

self-adaptive features that allow to design hardware with adaptive functions.

The current FPGA technology opens possibilities to implement reconfigurable devices

that allow to change the function of part of devices without stopping the whole device. The

design of reconfigurable devices still isn’t well supported by commercial tools, and there

isn’t clear methodology that would lead to a successful partial dynamic reconfigurable

design with acceptable cost and short time to market.

The work will analyze partial dynamic reconfiguration and describe main barriers that

prevent to use this technology and its features widely. The work brings overview of the

partial dynamic reconfigurable methodology and proposes solutions to the barriers. As a

proof that the proposed solutions can lead to successful partial reconfigurable design the

work will implement a reconfigurable platform with these features on two commercially

available FPGA devices from different suppliers.

The analysis and proposed solutions with implementation of the two platforms is the

first main contribution of the work. On this building block the work will continue on the

level of self adaptivity that can fully use all features of partial dynamic reconfiguration

and brings wide extension for future designs with self-adaptive features.

The current microcontrollers and CPUs became a bottleneck for parallel algorithms

mainly in the case of embedded systems and mobile systems. The FPGA technology can

bring solutions in this area because the FPGA devices offer parallel processing on the



6 CHAPTER 1. INTRODUCTION

hardware level. The increasing size of the memory will increase the logic size of the FPGA

devices. The reconfigurable features bring to FPGA devices same extensions of function-

ality as task switching to CPU technology years ago. We can observe a combination of the

hardware coprocessors and microcontroller on one chip in many System on Chip designs

that became very useful in embedded systems. It is supposed that in the near future this

combination of hardware accelerators with a microcontroller will become widely used and

they will compose extensive systems containing hundreds of such hybrid microcontrollers

cooperating as one unit facing outside as an adaptive hardware block that will be able to

adapt its function according to the requirements from the environment. The first designs

in this direction is the IBM Cell processor and the NVidia GPU with CUDA architecture.

The work will introduce the structure of a self-adaptive element that uses the com-

bination of a hardware accelerator with a microcontroller and self adaptivity that are

ensured by partial dynamic reconfiguration. Because the era of pervasive computing will

become a reality in the near future, we will design the self-adaptive element with respect

to connecting each other together and allowing them to cooperate as one complex system

that propagates self adaptivity from the elements to the whole system.

Because of the size of the current FPGA devices and because of the implementation

demand the last part of the work will be realized only in a simulation tool designed for

this purpose. The work will design the most suitable network on chip topology that can

connect self-adaptive elements together and offer scalability of the whole system.

The last part of the work will introduce an adaptive algorithm that can be used a basic

self-adaptive feature of the network of the self-adaptive elements. The test and comparison

of various parameters of the self-adaptive algorithm will be done to prove that systems

with such features can bring improvement to a self-adaptive network.

The work will bring a new view on the use of partial dynamic reconfiguration combined

with the self-adaptive features and implemented on the network with hybrid computing

elements that can change their function according to the requirements from the environ-

ment, and they are able to process massive parallelism in hardware accelerators.

Summary of the Objectives

In this section, we summarize and specify the objectives of this thesis in detail. The list

of tasks to be accomplished is as follows:



1.1. GOALS AND OBJECTIVES OF THE DISSERTATION 7

• To introduce a new technology based on partial dynamic reconfiguration we perform

a low level analysis of the reconfiguration process and design a method that leads to

designing reconfigurable hardware on reconfigurable devices.

• To increase variability and adaptability of the reconfigurable hardware we analyze the

function of the partially reconfigurable hardware and its restrictions and extensions.

• To open a new reconfigurable platform the methodology to design hardware is mod-

ified to cover specific steps that allow to implement designs with partial reconfigu-

ration.

• To validate the possibility of the using partial dynamic reconfiguration the reconfig-

urable coprocessors with reconfigurable features will be built on two commercially

available hardware platforms that allow to implement the reconfiguration process.

• To increase the variability of the reconfiguration features the self-adaptive element

will be designed as the basic building element of self-adaptive systems based on the

reconfigurable hardware. The self-adaptive element will be designed as an indepen-

dent core that will be able to adapt its function according to the requirements from

the environment.

• To create a suitable environment for the self-adaptive elements the analysis of the

current network on chip topologies suitable for reconfigurable hardware will be per-

formed. According to this we will choose the best network topology for cooperative

self-adaptive elements.

• To use the chosen network the basic parameters and placement algorithms have to

be introduced. They ensure first placement of application in the network and its

start and interaction with an already running applications in the network.

• To measure and evaluate the effectiveness of using the network cost functions will

be set up. They will drive the adaptation process.

• To improve efficiency of the running network that is fragmented by placement and

releasing applications an adaptive algorithm has to be designed. The adaptive algo-

rithm will be part of each node in the network and guarantee that nodes will adapt



8 CHAPTER 1. INTRODUCTION

their function to the most suitable function for a given case in the possible range of

the node’s neighborhoods.

Scientific Originality and Innovation

The work focusses on embedded systems with FPGA devices used in System on Chip

designs. The System on Chip became a progressive technology that solves problems with

opposing requirements of high performance and low power consumptions for embedded

and mobile systems.

The aim of this work is to put together partial dynamic reconfiguration on FPGA

devices and self-adaptive features that are opened for FPGA devices with reconfiguration.

The work builds on the fact that future FPGA devices will increase their logic space and

contain a huge amount of cores with hardware accelerators. These cores will need to

increase their functionality, and they will need a mechanism to adapt their function to the

requirements of the environment.

The work introduces method of dynamic reconfiguration and uses this exploration in

the area of reconfigurable FPGA devices for designing a structure of a universal self-

adaptive element that will be the basic computing element in future computing networks

on chip. These combinations bring new pieces of knowledge for the future approach to

pervasive computing that is the next generation of the design era.

The particular innovative solutions include:

• Introduction of three methods of the dynamic reconfiguration and definition of their

space complexity. Analysis of the function density that defines the application per-

formance of a dynamic module.

• Design of a reconfigurable coprocessor for universal use in parallel computing. Im-

plementation and verification of the reconfigurable coprocessor on two independent

FPGA platforms.

• Structure of the self-adaptive element based on the reconfigurable coprocessor and

its verification on the ring bus topology.

• Integration of the self-adaptive elements in a scalable network on chip with moni-

toring their interactions with an environment.



1.2. CURRENT STATE OF THE ART 9

• Development of the Step Adaptive algorithm for improving parameters of the run-

ning network on chip with self-adaptive elements and the dynamic reconfiguration

technology.

1.2 Current State of the Art

The current situation in reconfigurable hardware mainly on the FPGA devices is influ-

enced by the need for high hardware resource reuse, high computing power and low power

consumption. The last two factors go against each other, and can be solved by new trends

in the silicon technology or by reusing hardware resources. Increasing hardware resource

reuse leads to the reconfiguration process in hardware. Two main trends are preferred

today: connected microcontrollers on one chip and connected heterogeneous cores on one

chip. We will focus on heterogeneous cores on one chip, and their adaptivity to require-

ments that come from the environment. The adaptivity increases hardware resource reuse

and increases the functionality of the whole system on chip.

The future designs that will build on many-core platforms and schemas will need to

handle these cores as one unit working in parallel on many small tasks that come from

outside of the unit. The self-adaptivity feature of each element in the unit is one approach

how to manage the whole unit.

The following sections will discuss the research that is relevant to the presented work.

Reconfigurable Hardware

The current state of reconfigurable hardware comes mainly from the state of the FPGA

devices. They are the main representative devices of the reconfigurable hardware design.

Recently the design tools became open to the technology of partial dynamic reconfigura-

tion. But still there is not a clear methodology that can lead to a sufficient reconfigurable

design. As an example of the partial dynamic reconfigurable implementation is the Gecko

design from IMEC, Belgium (Verkest, 2003) that uses tiles in an FPGA device as re-

configurable blocks with variable functions. An implementation of a notetaker for blind

people (Daněk et al., 2005) is another example of partial dynamic reconfiguration of FPGA

devices.

The last way of using reconfigurable hardware is a reconfigurable coprocessor with



10 CHAPTER 1. INTRODUCTION

high functional density attached to a processor. The hardware coprocessor works as a

slave for an embedded microprocessor that calls services on the hardware coprocessor.

They have local memory to share data and control signals. The reconfiguration process

is hidden from the designer and it is covered by software functions. The designer can

call functions that guarantee right function of the reconfigurable coprocessor. The paper

(Huang and Hsiung, 2009) shows a reconfigurable system with virtualization of the partial

dynamic reconfiguration. The paper (Danek et al., 2008) shows a reconfigurable hardware

accelerator based on the FPGA device that increases the level of abstraction.

The reconfigurable hardware can be used to increase fault tolerance of hardware. The

reconfiguration process can change a faulty part of the hardware. The paper (Straka

et al., 2010) presents a modern fault tolerant architecture using reconfigurable hardware

for increasing fault tolerance of the architecture. The paper (Kafka, 2008) analyses ap-

plicability of partial runtime reconfiguration in fault emulators based on FPGAs. It uses

reconfiguration for loading emulators and injecting faults in the emulated circuit.

Another type of the reconfigurable hardware with a different approach to hardware is

the plastic cell architecture PCA (Ito et al., 1998). The PCA combines the object model

and communication on special hardware that allows to allocate part of the hardware matrix

to objects and send communication messages through the hardware to another allocated

object. The plastic cell contains small hardware that can implement basic gates like D,

JK or LUT.

Multi-core Hardware

The current multi-core hardware can be split to two classes. The first class contains multi-

core designs based on field of microprocessors connected by any type of communication

bus. This concept comes from the multi-computer schema with several boards connected

together. A typical example of an implementation of the multi processor design on chip

is the IBM Cell processor (Kahle et al., 2005) or the NVidia GPU with CUDA processor

(Zou et al., 2009). They use the model of several processors with local memory connected

together by a communication bus. The bus is controlled from one place that creates a

centralized mechanism for the whole design.

The second class contains heterogeneous multi-core designs based on computing ele-

ments that cooperate to increase the computing power. Such designs often contain some



1.2. CURRENT STATE OF THE ART 11

type of a microcontroller and hardware accelerators that form computing elements. Many

of these elements on a single chip are connected together by a communication bus. The

communication bus has a scalable topology that tries to avoid any centralization and data

overloading.

A typical heterogeneous multi-core design is a reconfigurable system on chip with the

Morpheus architecture (Kuhnle et al., 2008). The Morpheus architecture contains hetero-

geneous reconfigurable engines and on chip memory connected together by the spidergon

topology bus. The NEC Dynamically reconfigurable processor (DRP) (Suzuki et al., 2004)

is a typical mesh heterogeneous multi-core design with scalable processing elements. The

matrix of processing elements contains a special reconfigurable microcontroller connected

from sides with horizontal and vertical memories.

Chip vendors open new fields of the custom ASIC devices with the possibility to change

their basic functions inside the chip. The chip contains a scalable network with basic

computing elements that can be chosen before its fabrication. The ST Microelectronics

platform P2012 can offer such services.

Self-Adaptivity on Hardware

The main characteristic of the current self-adaptive system is the capability to determine

its function or configuration at a given time in an autonomous and distributed way. The

self-adaptive features have to be supported on the hardware level and by the architecture

intended to be used as an efficient platform for self-adaptive systems.

The main benefit of such computing architectures against conventional architectures

is the possibility to delegate part of the operational and functional specifications of an ap-

plication to the computing resource itself. This enables the handling and managing of an

increasingly complex environment of software, hardware and communication infrastruc-

ture. Therefore a self-adaptive computing device must embedded all the necessary facilities

(hardware, software, communication) so as to autonomously perform the trade-offs and

resource optimisation required by the adaptation process.

The self-placement and self-routing processes on the multi-core hardware allow to

perform complex functionality changes in real-time. In the current FPGA devices these

programmed changes consist of modifying the configuration of an FPGA configuration

memory by means of a configuration manager.



12 CHAPTER 1. INTRODUCTION

The research on the FPGA and self-adaptivity described in (Casas et al., 2007) intro-

duces a self-adaptive architecture based on the FPGA devices. It is an example of the

implementation with self-adaptivity in hardware. Self-adaptivity opens fields for increas-

ing fault tolerance of the hardware. The current implementation of self-adaptivity and

fault tolerance in hardware can be found in (Soto et al., 2009).

Network on Chip

Interconnection became an important part of the design with the increasing number of

cores on chip. Mainly the network on chip became frequently used with the development

of the multi-core field. For this purpose the scalability and decentralization are the most

important features of a network on chip. In current designs with a higher number of

multi-cores, the mesh type of the network became most suitable. It offers a simple routing

mechanism.

The basic paper in the network on chip is (Salminen et al., 2007) that defines the basic

properties of the network on chip paradigm and compares network topologies suitable for

FPGA devices.

The network topology strongly influences the parameters of the network and at the

same time the connected computing elements. Mostly the topology is a compromise be-

tween the hardware cost and data throughput. When only several cores are connected

together in most cases the ring topology is used as in the multi-processor IBM Cell (Kahle

et al., 2005) that uses four independent rings to connect all computing and IO blocks.

Designs with a huge number of cores use mainly the mesh topology. The mesh topology

offers cores and communication throughput scalability and are very efficient in point-to-

point communication. The paper (Strunk et al., 2009) presents a reconfigurable mesh

topology implemented on the FPGA device.

Recent designs use the mesh network to connect soft-core microcontrollers on FPGA

devices to increase the computing power and reconfiguration. The paper (Giefers and

Platzner, 2010) uses the soft-core Microblaze microprocessors and hybrid interconnect to

realize a reconfigurable mesh network.



1.3. STRUCTURE OF THE DISERTATION 13

1.3 Structure of the Disertation

The dissertation thesis is divided to seven chapters. The chapters start with a low level

analysis of dynamic reconfiguration in FPGA devices, continue with a design of a recon-

figurable platform, and finish with a design of a reconfigurable network of self-adaptive

elements that are able to adapt their function to the requirements of the environment.

Chapter 2. In this chapter dynamic reconfiguration of FPGA devices are analyzed.

Dynamic reconfiguration extends their functionality and increases their function density.

Further the chapter analyzes the space complexity of the dynamic reconfiguration. Three

methods are presented for reconfiguration of a dynamic module. Later the text ana-

lyzes function density that expresses an application performance running in the dynamic

module. The end of the chapter presents two types of applications. The stream-type

application allows to process data in batches by different functions, and the control-type

application changes the function in the dynamic module according to requests from exter-

nal devices.

Chapter 3 This chapter presents reconfigurable hardware platforms available on to-

day’s market and the methodology implementing the reconfigurable flow and reconfig-

urable hardware. It introduces the reconfiguration controller and its features necessary to

control the reconfiguration process. Further the chapter describes three ways to store the

configuration bitstream in an external memory and its impact on speed of the reconfig-

uration process. Later the text introduces problems with connections between the static

and dynamic parts of the design during reconfiguration. It describes how to solve prob-

lems with the floating connection lines and how to unify interfaces of different dynamic

modules by using a wrapper module. Based on the analysis done before, the chapter

implements two reconfigurable coprocessors with identical functions in Virtex from Xilinx

and in AT94K FPSLIC from Atmel; these two implementations are compared.

Chapter 4 This chapter presents a self-adaptive system, its elements and features.

The analysis of requirements of the self-adaptive system is done with respect to a future

implementation in the reconfigurable platforms based on the FPGA devices. Further, the

text introduces principles of the self-adaptive element that is the basic building block of our

adaptive system. There is a brief description of the four main blocks of the self-adaptive

element and their interaction with the environment. The end of the chapter describes the



14 CHAPTER 1. INTRODUCTION

details of the self-adaptive element and its implementation including the building blocks

and reconfigurable parts.

Chapter 5 This chapter presented a network on chip analysis from the point of com-

munication, hardware cost and video processing. The stress is put on FPGA restrictions.

The 2D-Mesh topology is chosen as the most suitable for future simulation of the self-

adaptive system. Three routing algorithms and their impact on a fully loaded 2D-Mesh

network are presented. The end of the chapter describe details of the network we will use

in future simulations. The definition of the following network parameters used to evaluate

network performance during the simulation is presented: link capacity, communication

latency and the move function delay.

Chapter 6 This chapter deals with the network model and application model. The

placement process is presented and three placement algorithms are designed to inject

applications in the network. Cost values are defined for measuring effectiveness of the

network use. The text describes the Step-Adaptive Algorithm for improving the place-

ment of applications running in the network and measures are defined. The simulation

framework is used to test the features of the self-adaptive system on test cases. The result

of the simulations of the self-adaptive system compares the Step-Adaptive Algorithm and

placement algorithms.



Chapter 2

Dynamic Reconfiguration Analysis

This chapter analyzes the dynamic reconfiguration. The following text discusses the FPGA

devices and their possibilities with respect to the dynamic reconfiguration and the present

technology state with a brief overview of the dynamic reconfiguration parameters and their

characteristics. At the end of the chapter the application type analysis is done.

The main part of the work in this chapter on dynamic reconfiguration was done by

author and colleagues in the EU research project RECONF 2 (nr.IST-2001-34016), see

description of the project on page V. The project was directly focused on design method-

ology and environment for dynamic reconfigurable FPGA and their implementation on

FPGAs available on market.

The research in the area of dynamic reconfigurable FPGAs has several significant

papers that define fundamental of the partial reconfiguration on FPGA. Some of them

are (DeHon and Wawrzynek, 1999), (Banerjee et al., 2005) and (Liu and Wong, 1999).

The partial dynamic reconfiguration on the FPGA brings many difficulties that must be

solved for sufficient introduction technology to market. Author and colleagues describe

and solve several of them in RECONF 2 project. The following chapter and papers (Daněk

et al., 2004) and (Bartosinski, Daněk, Honźık and Matoušek, 2005b) describe suggested

solutions and methodology for the partial dynamic reconfiguration.

15



16 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

2.1 State of the Dynamic Reconfiguration

The FPGA devices present an important direction in the evolution of the VLSI devices.

They allow to design VLSI circuits effectively and quickly with minimal requirements

for production costs. The FPGA devices have few advantages like short design cycle and

reusability in the case of SRAM-based FPGA devices. On the other hand, there are several

disadvantages when compared with application-specific integrated circuits – ASICs for

example, worse performance, lower operating frequency and power consumption. Because

of the production costs FPGAs are not used in productions that exceed 10000 pieces (Wu

et al., 1998).

The FPGA devices have two major advantages. First, the FPGA technology follows

the RAM process development curve that goes down much faster than the processor de-

velopment curve. The performance of the FPGA devices grows faster than that of the

processors. The second advantage relies on the dynamic reconfiguration. It can be used

to increase the functional density compared to the ASIC devices, and decrease power

consumption.

There is a group of applications that have to be solved in hardware because the data

throughput to be processed is too big for a software solution. Such implementations open

new possibilities for the FPGA devices and mainly for their dynamic reconfiguration.

An example is a portable video device with low consumption, or general data streaming

applications.

Complexity of the Dynamic Reconfiguration

The dynamic reconfiguration of the FPGA devices was introduced few years ago and a

lot of research groups have worked on the connected problems. Many problems have

been solved since the first attempt to dynamic reconfiguration was done (DeHon and

Wawrzynek, 1999). But introducing such a technology to a wider engineer society and

designing robust applications with dynamic reconfiguration are still hard problems, and a

lot of barriers is on the way. Today’s main problems are the lack of design tools provided

by several companies and the absence of good guidelines for the dynamic reconfiguration

design flow.

The actual state of the practical dynamic reconfiguration of the FPGA devices is



2.2. THEORY OF THE DYNAMIC RECONFIGURATION 17

captured in few applications introduced by several research groups (see Section 3.4). These

applications were designed in spite of the inconvenient design tools and guidelines. To offer

dynamic reconfiguration to the wide engineering society a lot of work still has to be done.

The area of using dynamic reconfiguration is limited by the current size of the devices

and the speed of the reconfiguration process. The present trend is to reconfigure a de-

vice less often because of the slow speed of the reconfiguration process (see Section 2.2).

This can be solved by using multi-context FPGA devices that can switch between two

configuration contexts in one clock cycle.

2.2 Theory of the Dynamic Reconfiguration

This section analyzes dynamic reconfiguration of the FPGA devices from the theoretical

point of view, and shows its problems, limitations and possible solutions. Several possible

solutions to the dynamic reconfiguration process and the organization of the configuration

bitstreams are described. Further, it describes how functional density can be increased by

dynamic reconfiguration and the limitations for two platforms available on the marked.

The following notation is used for analyze parameters of the dynamic reconfiguration on

FPGA:
s = The dynamic slot on the chip

ts = The time required to set all bits in the slot s.

tp = The time to change one dynamic module to another by a

differential bitstream.

tl = The time needed to set a new module from the empty module.

to = The time to set the empty module from the last module.

tc = The configuration time of the dynamic module.

te = The execution time of the dynamic module.

As, Ad = The area of static As and dynamic Ad part of design.

CA = The application cost.

DA = The application density.

Fmax = The maximal frequency of incoming data batches in stream-type

applications.



18 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

Types of the Dynamic Reconfiguration

The biggest part of the FPGA device is a slot for dynamic modules. The slot can be

organized in one big part or more smaller ones over the whole FPGA device. This allows

to use more dynamic modules that run concurrently or to have just one big dynamic

module over the whole free area inside the FPGA device (Banerjee et al., 2005), (Handa

and Vemuri, 2004), (Liu and Wong, 1999). The dynamic reconfiguration process changes

the FPGA configuration memory that belongs to the slot according to the configuration

data of the required dynamic module. The dynamic modules are stored in an external

memory. During the dynamic reconfiguration process the static part of the FPGA device

keeps running. Only the processed slot that is reconfigured is disconnected from the static

part of the FPGA device and from other slots if there are any. Loading of a new dynamic

module consists of changing each bit over the whole slot to the required value. ts is a time

required to set all bits in the slot s. It is the worst case time for the reconfiguration of the

slot s. There are lots of cases during reconfiguration processes when it is not necessary

to change all bits in the slot, because many of them can have the same value like the

previous dynamic slot. Unfortunately, each dynamic slot has a different set of unchanged

bits associated with a specific dynamic module. That’s why the new dynamic module has

to rewrite all bits in the slot and it requires the worst time ts. In the case of n dynamic

modules the space complexity is O1(n).

There is another possibility to change a dynamic module in slot (Honźık, 2005). The

previous text said that each dynamic module has a set of bits that have the same value in

other dynamic modules. This suggests a differential configuration bitstream that describes

just bits with different values from the last dynamic module in the slot. In some cases

a differential bitstream can occupy very small memory space, but in other cases its size

can be equal to the size of the whole slot. The time tp is a time necessary to change

one dynamic module to another by a differential bitstream. The relationship between ts

and tp can be described as follows: ts ≥ tp > 0. It is easy to find that tp can not be

0, because it would mean a configuration to the same dynamic module. The strategy

to change dynamic modules with differential bitstreams seems well-suited to decrease the

time complexity of the reconfiguration, because the time tp isn’t worse than ts, and in

many cases it is better than ts. But the space complexity is not so good. It is necessary

to create differential bitstreams for reconfiguration among all n dynamic modules. In the



2.2. THEORY OF THE DYNAMIC RECONFIGURATION 19

case of few modules this is possible, but with an increasing number of dynamic modules

the space complexity increases too fast. In this case the space complexity for this case can

be described as follows:

2(

n∑
k=1

(n− k)) ≈ O2(n
2)

The last possible way to solve the problem with dynamic modules is a combination of

the two aforementioned methods. Such types of dynamic modules are acceptable from the

point of view of the time and space complexity. This reconfiguration method requires an

empty configuration bitstream (an empty module). The empty bitstream is a starting point

for all other dynamic modules, so each new dynamic module loaded to a slot will be loaded

over empty bitstream configuration of the slot. As a consequence, only one differential

bitstream for each dynamic module is needed to be loaded over the last module in the

slot. Before loading the new module, the slot has to be reconfigured bask to the empty

module. For each new dynamic module a clear bitstream is needed. Which is a differential

bitstream generated as a difference between the empty slot and the corresponding dynamic

module.

The empty bitstream can be just a bitstream that changes all bits in the slot to the same

value or a bitstream that sets the slot to the most often used dynamic module. To achieve

an ideal state (= fastest reconfiguration) the empty bitstream may be formed as an average

over all configuration bitstreams. To get the fewest changes during the reconfiguration

process the empty module should minimize the Hamming distance between configurations

bitstreams.

The time needed to set a new module from the empty module is denoted as tl. Afterward

tl is defined in the same fasion as tp so ts ≥ tl > 0. The time to set the empty module from

the last module is denoted as to. to is defined similary to tl. So the time to change the last

dynamic module to a new dynamic module is a sum of the time to set the empty module

to and the new module to the empty module tl. The time complexity can be up to 2ts in

the worst case. But we can say that on average it is equal to ts. The space complexity can

be worse than that in the first case, because there are two bitstreams for each dynamic

module (the load bitstream and the clear bitstream). In the case of n modules the space

complexity is O3(2n) ≈ O3(n).

To compare the time and space complexity of these three methods we will consider



20 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

Reconfiguration type Space Complexity Reconfiguration Time

Full bitstream O(n) ts

Differential bitstream O(n2) ts ≥ tp > 0

Empty bitstream O(n) ts ≥ tl > 0

Table 2.1: Summary of the reconfiguration methods for the dynamic mod-

ule.

the worst case scenario. The time complexity comparison can be seen as tp = ts =
tl+to
2 .

From this it follows that the first method and the second method are equal and the last

method is twice slower. Fortunately, in well-composed tasks the second method should be

better than the first one, and the third method can perform similarly to the first and the

second methods as follows: 2ts ' tl + to ' tp. The space complexity of the first and third

methods is the same, but in almost all cases the bitstream for the whole slot is bigger

than the differential bitstream. Unfortunately, two differential bitstreams are required by

the third method. The space complexity for the second method is really very bad, and in

the case of many dynamic modules it cannot be used. The time complexity of the second

method is the best.

Finally, it is important to say that the previous analyses of the time and space com-

plexity don’t consider the time required for initialization and the space required to store

additional information about each dynamic module. It is considered that such time and

space is very small compared to the rest.

Performance Issues

The next very important perspective is the application performance. The dynamic recon-

figuration increases the functional density, but the price paid is the decreased application

performance. The designer must optimize these two parameters to satisfy the technical

requirement specification (TRS).

The designer should always analyze the application in detail and try to estimate the

resulting performance. The performance must satisfy the TRS, and in addition it must

overcome other implementation technologies (DSP, uControllers, etc.) at least in one

important parameter (power dissipation, size, weight, cost, design time, etc.). If this is

not the case, the designer should probably select the other technology.



2.3. APPLICATION TYPES 21

For reconfigurable applications there is an important fact that the application oper-

ational time is a sum of the execution time and the configuration time t = te + tc. For

the current FPGA devices, tc lies in the order of milliseconds. Dynamically reconfigurable

applications have tc parameter less affected than the statically reconfigurable applications,

because just a portion of the design is affected by the reconfiguration.

The best expression of the application performance is the functional density.

Definition 2.2.1 The functional density is defined as an inverse of the application cost

CA = At , where A is the area and t is the total operational time, i.e. DA = 1
C = 1

At . A

simple modification can be done for dynamically reconfigurable applications:

DA =
1

Astes +Ad(ted + tcd)
,

where Astes is the cost of the static part, and Ad(ted + tcd) is the cost of the dynamic

part of the application. It is clear that the Tcd parameter strongly affects the functional

density.

The maximal functional density of application can be achieved when the tcd
ted

ratio ap-

proaches in the limit to 0, i.e. tcd ≪ ted. For a real application it means that the

processing time of the dynamic part of the application must be much bigger than the time

required to reconfigure it. If it is not, the performance will be enormously downgraded.

2.3 Application Types

This chapter will discuss classification of dynamically reconfigurable applications and their

types according to their implementation. To design dynamically reconfigurable application

the type of application has to be defined . It is divided to two main groups: stream-type

applications and control-type applications.

The stream-type application operates on a continuous data stream. A good example

would be audio or video processing. Applications in this group are typically designed

as a pipelined data-path with input and output buffers. They process data in real

time. Many applications in this group process the data in batches. A typical example

is video processing based on video frames.



22 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

The control-type application can be understood as a complex sequential circuit that

controls another process. A parallel port controller or a state machine that imple-

ments a set of protocols would be the best examples. The decomposition is typically

used to overcome the drawbacks of a single state-machine like solution.

Stream-Type Applications

A typical stream-type application is shown in Figure 2.1. In fact, all the data processing

is done in a data-path with several processing units. The units can be inserted or removed

from the path to obtain the requested result. The input and output of such data-path is

typically buffered to overcome latency problems in the data-path.

buffer

processing

unit 1

input 
buffer

processing

unit 2

output

Figure 2.1: A typical stream-type application.

Figure 2.2 presents the same data-path implemented using the dynamic reconfiguration

approach. The set of processing units was replaced by one dynamic module called super-

macro that can be used to implement any of the data-path functions. The design is now

significantly simplified.

buffer 1

super−macro

processing unit 1

processing unit 2

buffer 2

Figure 2.2: A stream-type application implemented using dynamic recon-

figuration.

The input and output buffers were replaced by two buffers that are capable to handle

data in both directions. The super-macro is a dynamic module that implements either



2.3. APPLICATION TYPES 23

processing unit 1 or processing unit 2. Only one unit is loaded in the super-macro at

one time and therefore there is significant decrease in the design size. The other unit is

stored in an external storage as a bitstream. Units may be swapped upon request similarly

to a replacement of an IC in a package holder. The transformed application contains in

addition a reconfiguration controller that controls the reconfiguration process. It is not

shown in Figure 2.2.

The application can now process the data in batches. First, a new data comes in the

buffer 1. Depending on requested data-path configuration, the processing unit 1 is loaded

in the super-macro. Once the whole batch is processed, it is stored in the buffer 2. If only

one processing was requested, the buffer 2 becomes the output buffer. If not, the other

unit replaces the processing unit 1 and the data batch is processed again, but from buffer

2 in the buffer 1. In this case, the buffer 1 becomes the output buffer.

This solution is well scalable. The more processing units are required in the data-

path, the higher logic spare may be achieved. With increasing the size of data batch the

reconfiguration overhead decreasing and the functional density increases.

In the case that only one processing unit is required, the design leads to a very efficient

solution without any drawbacks. In other cases, the maximal frequency of incoming data

batches must be lower than an inversion of a sum of processing and reconfiguration times

of all requested processing units:

Fmax ≤ 1∑n
i=1 tei + tci

≤ 1

n(temax + tcmax)
,

where n is the number of processing units involved in the computation, te is the

execution time and tc is the reconfiguration time of a particular unit.

Control-Type Applications

A typical control-type application is shown in Figure 2.3. It is the parallel port controller.

It contains three state machines that implement different communication standards (SPP,

EPP, ECP). Only one protocol is required for communication with another device and

therefore the others may be unloaded from the FPGA fabric. This trick reduces the size

of the application and the implementation can fit in a smaller FPGA device.

This approach uses the standard dynamic modules. In Figure 2.3, the unloaded dy-

namic modules are marked with a dash-dot line. The only loaded module is the ECP



24 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

interface

ECP

EPP

protocol

protocol

SPP

protocol

interface

control

lofic

Figure 2.3: A typical control-type application.

protocol state machine. This example is well scaleable, because with increasing the num-

ber of dynamic modules the design size does not change. It depends only on the size of the

biggest dynamic module. The functional density of this application is very good, because

the execution time is long compared to the reconfiguration time.

The parallel port interface is a very simple example. The different protocol state

machines are not required to communicate with each other, and they do not need to store

any internal state. Once the host finishes the communication with the other side, there is

enough time to switch the protocol controller.

In the case of more complex state machines, the designer must precisely analyze the

application and search for temporal localities of well defined design partitions (configu-

rations). The longer the application stays in one configuration, the bigger the functional

density.

The other problem is the state storage. In the best case the loaded design partition

requires only reset to enter the required state (our parallel port example). In other cases

the data storage infrastructure must be implemented in the static part of the design. In our

case, it is integrated with the reconfiguration controller. There exist FPGA prototypes that

can handle the state storage automatically, but unfortunately they are not commercially

available yet.



2.4. THINKING DYNAMICALLY FROM THE OUTSET 25

2.4 Thinking Dynamically From the Outset

The best results can be achieved when the design is being developed with the dynamic

reconfiguration in mind. The design can be written in a way that it looks as an output

from the partitioning tool. In this case, the designer is able to use all benefits of super-

macros, reduce the amount of stored sequential states and optimize the storage elements.

The functional density is typically higher, because the designer can use the knowledge of

the application functionality to optimally partition the design.

The designer can start building the application directly as shown in Figure 2.2. The

top-level entity includes only one instance of the super-macro. The buffers can be im-

plemented in a different way to support bi-directional data transfers. The multiplexers

shown in Figure 2.1 can be completely omitted due to the function of the reconfiguration

controller.

The drawback of this approach lies mainly in the verification of the design. The current

simulators do not support simulation of dynamically reconfigurable applications. Using

the constraint file and the simulation tool, a special testbench environment that enables

simulation can be set up.

2.5 Summary

The chapter analyzed the dynamic reconfiguration, the FPGA devices and their possibil-

ities in the area. The FPGA technology has wide opportunity in the future that brings a

memory technology and its variability, fast prototyping application and low cost develop-

ment curve. The dynamic reconfiguration brings new features for the FPGA devices. It

extends functionaly and increase function density.

The next part of the chapter analyze reconfiguration process, its possibility and space

complexity. Three methods are presented for reconfiguration dynamic module from last

to new. Each method has its advantages and disadvantages. The first metod rewrites

all bits in the dynamic slot and has space complexity O(n). The second method uses a

differential bitstream that changes only necessary bits in the last dynamic module to get

the new dynamic module. It is the fastest reconfiguration method but the space complexity

is O(n2). The last method uses empty module. Each reconfiguration process is done in

two steps. From the last module to the empty module and from the empty module to



26 CHAPTER 2. DYNAMIC RECONFIGURATION ANALYSIS

the new module. This method has the space complexity O(n) but the speed is in most of

cases better than the first method.

Further the text analyzes function densityDa that express the application performance.

The maximal functional density is done by a ratio between a reconfiguration time tcd and

execution time ted. From this ratio we can see that tcd ≪ ted. For a real application it

means that the processing time of the dynamic part of the application must be much longer

than the time required to reconfigure it. If it is not, the performance will be enormously

downgraded.

The end of the chapter presents two types of applications. The stream-type application

allows to process data in batches by different functions. The function is loaded in the

dynamic module and data are processed in the dynamic module. The function in the

dynamic module is changed and data are processed by the new function. The second

type, control-type application changes function in dynamic module according requests

from control devices. The function of the whole application is changed by changing the

control part of the design.



Chapter 3

Reconfigurable Hardware Platform

This chapter will deal with available reconfigurable FPGA platforms and their support of

dynamically reconfigurable applications (Daněk et al., 2004), (Horta et al., 2002). There

are a few FPGA device types on the market. It is possible to meet pure FPGA devices

like Spartan and Virtex from Xilinx (Xil, 2001), (Xil, 2000) and AT40K and AT6000 from

Atmel (Atm, 1999a), (Atm, 2002a). On the other hand, there are several combinations

of an FPGA with an ASIC microcontroller or microprocessor on one chip. An example

is the Virtex II Pro family from Xilinx (Xil, 2003) or FPSLIC from Atmel (Atm, 2002c).

The first decision is between a pure hardware solution implemented just in an FPGA,

or a combination of software and hardware solutions implemented in the FPGA with

an additional microcontroller. An embedded microcontroller in the FPGA opens a new

posibility to manage the design from software. In designs with the dynamic reconfiguration

the reconfiguration process can be managed more easily and effectively.

The main part of the work in this chapter on reconfigurable hardware platform was

done by the author and colleagues in the EU research project RECONF2 (nr.IST-2001-

34016), see the description of the project on page V, in the project C-A-K (nr.LN00B096),

see the description of the project on page VII and the commercial cooperation with the

FPGA chip supplier Atmel Corporation, see page VI. The project RECONF2 was directly

focused on design methodology and environment for dynamically reconfigurable FPGA and

their implementation on FPGAs available on the market. The project CAK was focused

on cooperation of universities and industry. The final implementation of the reconfigurable

platform was funded by FPGA chip supplier Xilinx and Atmel.

27



28 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

The research in the area of dynamically reconfigurable FPGAs has several significant

papers that describe other possible implementations of the reconfigurable platform on

FPGA. Some of them are (Verkest, 2003) and (Prophet, 2004).

The implementation of the reconfigurable hardware platform on the FPGA brings

many difficulties and barriers that must be solved during implementation. The author and

colleagues described and solved several of them inthe RECONF project and in cooperation

with Atmel. The following chapter and papers (Bartosinski et al., 2005a) and (Honźık and

Kafka, 2005) describe suggested solutions of implementations a hardware platform with a

partial dynamic reconfiguration.

3.1 Reconfigurable FPGA Devices

There are several FPGA devices that allow to change the whole or a part of the configu-

ration memory during the lifetime of the application. This features were not included in

the first FPGA devices twenty years ago. To be reconfigurable, the FPGA devices have

to have direct access to the SRAM-based configuration memory from external sources, an

internal microcontroller, or directly from the programmable logic array.

The SRAM-based configuration memory is a special type of memory that affects the

function of the FPGA device. Each element in the memory is connected with some element

in the logic matrix or interconnection. By changing the contents of this memory element

the element in the function of the logic matrix or interconnection will be changed. This

way the design can change its internal structure and function while running. The change of

one element in the configuration memory must not affect the other logic elements. In other

words, the remaining elements have to work properly during addressing and changing the

first element. This feature enables partial dynamic reconfiguration of the FPGA device.

The parameters of the configuration are affected by many things: The speed of the

configuration interface and its data path width, the type of the communication protocol,

or the size of the configuration memory. FPGA devices have several types of configuration

modes. There are both master and slave configuration modes. The master mode allows

the device to behave as a stand-alone unit that generates clock and addresses for the con-

figuration data stored in an external memory device. The slave mode has to be managed

by an external device, which can be a microcontroller or configuration automata. The



3.1. RECONFIGURABLE FPGA DEVICES 29

slave mode is suitable for partial reconfiguration. The configuration interface can be serial

or parallel. Because of speed the parallel interface is more suitable for reconfiguration,

but it employs more I/O pins in the package of the FPGA device.

Currently there are three types of FPGA devices widely available on the market that

support dynamic reconfiguration. The following table describes important parameters of

these FPGA devices. More information can be found in (Atm, 1999a), (Atm, 1999b),

(Atm, 2002a), (Atm, 2002c), (R.Matoušek, 2003), (Xil, 1997), (Xil, 2001), (Xil, 2003),

(Xil, 2010a), (Xil, 2010b), (Xil, 2010c), (Xil, 2010d). (Alt, 2007)

Device Array Memory LB Width freq. 50%

[bit] Mem [bit] [MHz] [ms]

AT40K40 48×48 336,504 139 16 33 0.32

AT94K40 48×48 815,852 219 16 33 0.77

XC2S200 28×42 1,335,840 977 8 50 1.67

XCV1000 64×96 6,127,744 977 8 50 7.66

XCV3200E 104×156 16,283,712 952 8 50 20.36

XC2V8000 112×104 26,194,208 2 199 8 66 24.79

XC2VP125 136×106 43,602,784 2 225 8 66 41.29

XC4VSX35 96×40 13,700,288 n/a 32 66 6,49

XC5VSX50T 120×34 12,556,672 n/a 32 66 2.97

XC5VLX110T 160×64 31,118,848 n/a 32 66 7.37

XC5VSX240T 240×78 79,610,368 n/a 32 66 18.85

XC6VLX760 360×166 184,823,072 n/a 32 66 43.76

XC6VSX475T 360×105 156,689,504 n/a 32 66 37.10

Table 3.0: Important parameters that affect reconfiguration - Column 1

describes the device type. Column 2 denotes size of the logic

matrix. Column 3 shows the memory size needed to store one

configuration of the whole device. Column 4 shows the memory

size occupied by one logic block. Column 5 shows the configura-

tion interface data path width. Column 6 denotes the maximal

operating frequency of the configuration interface and column 7

shows the time it takes to configure 50% of the device through

the described interface and frequency.



30 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

Xilinx Virtex2

Xilinx Virtex2 devices are today’s high-end FPGA devices used widely in the industry

and research (Xil, 2000), (Xil, 2003). They can be reconfigured by loading application

specific configuration data into the configuration memory. They have the ability to be

partially reconfigured by loading new data into a specified area of the chip without any

affect of the rest of the chip, while the rest of the chip remains in operation. There are two

kind of partial reconfiguration - static and dynamic. Static partial reconfiguration is done

before the device is fully active or when the device is inactive; this can be accomplished

by deactivating the chip select signal (CS) during configuration. For the partial recon-

figuration to take place, the rest of the device is in the shutdown mode and is brought

up again once the reconfiguration is completed. Partial dynamic reconfiguration is done

when the device is active. Except during some inter-design communication, certain areas

of the device can be reconfigured while other areas remain operational and unaffected by

the reprogramming.

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

R
ig

h
t 

IO
B

 c
o

lu
m

n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

C
L

B
 +

 b
o

rd
er

 I
O

B
 c

o
lu

m
n

B
lo

ck
 S

el
ec

tR
A

M
 c

o
n

te
n

t 
an

d
 i

n
te

rc
o

n
n

ec
t

L
ef

t 
IO

B
 c

o
lu

m
n

B
lo

ck
 S

el
ec

tR
A

M
 c

o
n

te
n

t 
an

d
 i

n
te

rc
o

n
n

ec
t

B
lo

ck
 S

el
ec

tR
A

M
 c

o
n

te
n

t 
an

d
 i

n
te

rc
o

n
n

ec
t

B
lo

ck
 S

el
ec

tR
A

M
 c

o
n

te
n

t 
an

d
 i

n
te

rc
o

n
n

ec
t

B
lo

ck
 S

el
ec

tR
A

M
 c

o
n

te
n

t 
an

d
 i

n
te

rc
o

n
n

ec
t

Figure 3.1: Xilinx Virtex2 - configuration blocks.

Partial reconfiguration of Virtex2 devices can be accomplished from an external source

in either the Slave SelectMAPmode, or the Boundary-Scan mode, or from the internal logic

resources by using the internal configuration access point (ICAP). The ICAP implements

an internal connection to the SelectMAP port.

The internal configuration memory is partitioned into frames. Each frame is one bit

wide and its size depends on the chip height. The number and size of frames varies

according to the device size. The total number of configuration bits for a particular device

is calculated by multiplying the number of frames by the number of bits per frame, and



3.1. RECONFIGURABLE FPGA DEVICES 31

adding the total number of bits. The device resources are organized into columns that are

composed of several frames as Figure 3.1 shows. The number of frames in column depends

on the kind of resources present in the column.

The configuration bitstream contains a synchronization word (each word is 32bits long)

and two kinds of packets, header packet and data packet. There are two types of header

packets: Type1 packet headers are used for register writes. A combination of Type1 packet

and data packet are used for frame data writes. Frames are read and written sequentially

with ascending addresses for each operation. Multiple consecutive frames can be read or

written with a single configuration command. The smallest amount of data that can be

read or written with a single command is a single frame. The entire CLB array plus the

IOBs and SelectRAM block interconnect can be read or written by a single command.

Each SelectRAM block contents must be read or written separately.

There are two methods to create the partial bitstream:

Difference-based method of partial reconfiguration is accomplished by making a small

change to a design and then by generating a bitstream based on only the differences

in the two designs. Switching the configuration of a module from one implementation

to another is very fast as the bitstream differences can be smaller than the entire

device bitstream.

Module-based method of partial reconfiguration is based on the modular design method-

ology. This flow requires the signals used as communication paths between or

through reconfigurable modules use fixed routing resources, as shown in Figure 3.2.

The Bus Macro is a fixed routing bridge with reliable communication; it is a pre-

routed hard macro used to specify the exact routing channels that will not change

from compilation to compilation. For independent modules bus macros are not

needed.

TBUF

long line

TBUF

Figure 3.2: Bus Macro element.



32 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

Atmel AT40K/AT94K

Atmel AT40K is a 40K-gate FPGA device with logic cells organized in a 2D array (Atm,

2002a). The logic cell consists of two 3-input LUTs , two DFFs, and connection switches.

The AT94K is an extended version that contains (see Figure 3.3) in addition a hard core

of AVR 8-bit microcontroller connected to the east-side FPGA I/O pads, a hardware

multiplier, two UARTs, a two-wire serial port (TWS), three counters, a watchdog timer,

and a 36KB dual-port internal SRAM memory accessible both by the AVR and FPGA.

The memory can be partitioned to a 20-32KB AVR program space and a 4-16KB AVR

data space.

The AT40K (Atm, 2002a) and AT94K (Atm, 2002c) supports four configuration modes,

out of which the simplest reconfiguration mode is the so-called Mode 4 (Atm, 1998),

(Atm, 2001a) (simplest = principally does not require an external hardware). The mode

4 reconfiguration is based on four configuration registers denoted as FPGAX, FPGAY,

FPGAZ, and FPGAD that are accessible by the user logic inside the FPGA device

(AT40K), or serviced by the AVR (AT94K). The first three registers specify the address

in the FPGA configuration memory, the last contains the configuration data. This means

that the designer can change the configuration of any logic or routing element at any time

without a need to consider other FPGA resources.

memory

        

        

        

        

        

        

        

        

        

        

        

        

        

        

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

AVR

external
UARTs counters

data memoryprogram memory

FPGA fabric

TWS multiplier

watchdog

Figure 3.3: Atmel AT94K FPGA with AVR and peripherals.

3.2 Implementation Issues

The implementation issues described in this section deal with physical implementation of

dynamic reconfiguration in hardware with all the necessary support circuits. The issues



3.2. IMPLEMENTATION ISSUES 33

are connected both with the implemented user design and with the necessary supporting

designs (Daněk et al., 2004). The discussion is based on the experience of the author

with the RECONF2 flow developed within the EU project RECONF2 for both Xilinx and

Atmel FPGAs.

FPGA

hardware

memory

DM1 DM2 DMx

place & route

static
module

RECONF
CTRL

dynamic
modules

design

static
part

bitstream composer

formatter andconfiguration

FPGA

tool

memory

downloader

bitstream

bitstream

static

master

Figure 3.4: Implementation-dependant flow.

Figure 3.11 shows parts of the RECONF2 flow that are affected by a specific hardware

implementation (Carvalho et al., 2004), (Robertson and Irvine, 2004), (Wu et al., 2002).

The important inputs and outputs are marked with a thick line, these are denoted as idea,

which can be replaced by the relevant front-end tools in the case of automated re-design for

reconfiguration, static bitstream, which is the initial contents of the whole FPGA device,

and master bitstream file, which, simply speaking, merges together all needed partial

bitstreams that implement different contexts of the dynamic modules. The dashed line

indicates a dependency between the organization of the master bitstream file and the

reconfiguration controller, namely its address generation part.



34 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

Reconfiguration Controller

The reconfiguration controller is responsible for correct transfer of data between a storage

that contains the configuration bitstreams, and the programmable fabric. Considering a

general FPGA-based system-on-a-chip (SOC) platform, the controller can be implemented

either in a microcontroller or in hardware. In the case of the microcontroller implemen-

tation the controller is likely to be specified as a sequential computer program in C, the

hardware implementation will probably be specified in VHDL.

Both implementations share common structure: an external scheduler triggers the data

transfer and on completion of the transfer the reconfiguration controller must signal this

fact to the scheduler and the data management blocks. The controller basically consists

of two parts:

• The bitstream starting address generation locates the required partial bitstream in

the master bitstream file stored in an external memory.

• The responsible for proper timing and completeness of the transfer of the partial

bitstream.

The structure of the first part depends on the selected organization of the master bitstream

file, the second part consists of a memory address register for accessing the external mem-

ory and either an end-of-partial-bitstream-mark detection circuit, or a top address register

that is loaded with the top address of valid data for each partial bitstream to be trans-

ferred.

Bitstream Organization

The bitstream organization is given mainly by the architecture of the used external memory

and by the properties of the reconfiguration controller. This section will concentrate on

the logical organization that affects the reconfiguration controller.

Figure 3.5 shows three possible organization schemes of a master bitstream file. The

first scheme (in the left part) uses an index table at the beginning of the bitstream to

redirect the reconfiguration controller to specific bitstreams as needed. The second scheme

reserves a word at the beginning of each bitstream that contains the length of the following

bitstream. The third scheme reserves fixed slots for all bitstreams and in addition it

includes the length of the following bitstream at the beginning of each bitstream.



3.2. IMPLEMENTATION ISSUES 35

The first scheme is the most straightforward one. Its major advantage is that each

bitstream can be accessed in a constant time, since two addressing operations are needed:

the first retrieves the bitstream starting address from the index table and the second stores

it to a bitstream address register. The drawback of this scheme is mainly the limited size

of the bitstream index table, which determines the number of addressable bitstreams.

 ¡  ¡  ¡  ¡  

 ¡  ¡  ¡  ¡  

 ¡  ¡  ¡  ¡  

 ¡  ¡  ¡  ¡  

¢¡ ¢¡ ¢¡ ¢¡ ¢

¢¡ ¢¡ ¢¡ ¢¡ ¢

¢¡ ¢¡ ¢¡ ¢¡ ¢

¢¡ ¢¡ ¢¡ ¢¡ ¢

£¡ £¡ £¡ £¡ £

£¡ £¡ £¡ £¡ £

£¡ £¡ £¡ £¡ £

£¡ £¡ £¡ £¡ £

¤¡ ¤¡ ¤¡ ¤¡ ¤

¤¡ ¤¡ ¤¡ ¤¡ ¤

¤¡ ¤¡ ¤¡ ¤¡ ¤

¤¡ ¤¡ ¤¡ ¤¡ ¤

¥¡ ¥¡ ¥¡ ¥¡ ¥

¥¡ ¥¡ ¥¡ ¥¡ ¥

¥¡ ¥¡ ¥¡ ¥¡ ¥

¥¡ ¥¡ ¥¡ ¥¡ ¥

¦¡ ¦¡ ¦¡ ¦¡ ¦

¦¡ ¦¡ ¦¡ ¦¡ ¦

¦¡ ¦¡ ¦¡ ¦¡ ¦

¦¡ ¦¡ ¦¡ ¦¡ ¦

§ § §

§ § §

§ § §

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨ © © ©

#1

bitstream

PTR BST #1

PTR BST #2

PTR BST #3

not used

PTR next

PTR next

PTR next

EOB mark

0x000000

0x100000

0x200000

not used

#1

bitstream

not used

not used

not used

not used

0x300000

#3

#1

#3

#3bitstream

bitstream

bitstream

bitstream

#2

bitstream

#2
#2

bitstream

bitstream

Figure 3.5: Bitstream logical organization.

The second scheme is based on the linked list structure. Its biggest advantages are the

unlimited number of addressable bitstreams and a possibility of simple addition of new

bitstreams at the end of the master bitstream file. The most important disadvantage is that

the time required to retrieve a bitstream is not constant - to generate the starting address

of the n-th bitstream n read/add operations are needed. Under usual circumstances we

may limit the time by twice the time required to read the biggest bitstream contained in

the master bitstream file.

The third scheme adopts the better of the two previous schemes to achieve an efficient

hardware implementation. Its advantage is a very fast bitstream starting address genera-

tion with a constant bitstream access time and a very simple hardware implementation,

but this is traded for wasted memory space due to padding bitstreams to a constant size.



36 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

Bitstream Storage

Probably in all marketed FPGA devices reconfiguration is simply a data transfer operation

between a bitstream storage and special locations inside the FPGA. Given the usual sizes

of configuration bitstreams, the necessary storage size exceeds the size of the available

memory built in the FPGA devices and it is necessary to use an external bitstream memory.

The external memory is likely to have a classical address/data parallel interface, or it

may use an SPI-like interface. In any case it is possible to reduce the required read/write

controller to its simpler read-only version required for reconfiguration. The complete

read/write controller is needed in a preparatory stage to download the master bitstream

file to the memory; the end user will likely never modify the configuration data and the

reconfigurable design can use the read-only controller to spare chip resources and increase

design robustness.

The Need of Wrappers

Compared to the classical VHDL design the use of dynamic reconfiguration brings new

requirements on synthesis of user macros. The designs are usually synthesized as several

independent user designs that are packed together during placement and routing, i.e.

when all valid FPGA configurations must be assembled to produce valid configuration

bitstreams.

There are two main synthesis issues: net connectivity, and preservation of macro ports.

Net connectivity can be analysed as shown in Figure 3.6 parts a, b and c. Part a shows

a situation where an output in the static part feeds inputs in the dynamic part, part c

shows a reverse situation with an output in the dynamic part feeding inputs in the static

part, and part b shows a mix of the two where an output in the static part feeds both an

input in the dynamic part as well as static part.

The problem arising in the situation shown in part a is where the actual net branching

occurs, and it is solved during placement and routing as is discussed later.

The problem with the situation in part c is that during reconfiguration or in contexts

where the output is not present on the FPGA the inputs in the static part are floating,

i.e. their value is not defined. This problem must be solved on the synthesis level, for

example, by using an interface buffer in the static part that will be enabled only when the



3.2. IMPLEMENTATION ISSUES 37

part
dynamic
part

static
part

static
part

static
part

dynamic
part

dynamic
part

dynamic
part

dynamic
part

static
part

static

d)

O

O

O

I

I0

I0

I1

I1

O

O I0

I0

I1

I1

O

O

O

I

I0

I0

I1

I1

O O O

I1 I1

I0I0

a) b) c)

Figure 3.6: Possible port connections and routing between the static and

dynamic parts.

corresponding dynamic logic is present.

Net connectivity is the most critical problem that arises in the most complex shown in

part b. The problem is that the user assumes that an input in the static part connected

to the output in the static part should always remain connected no matter which dynamic

modules are present on the FPGA. As discussed later on this is not usually the case,

since during reconfiguration the router removes all nets that have at least one port in the

dynamic part.

O5 removed

SI0 I0

d−module with ports

ports in the static part

SI1

SI2

SI3

SI4

I1

I2

I3

I4

O0

O1

O2

O3

O4

O5

SO1

SO3

SO4

SO5

SO2

SO0

SI0

d−module with ports

ports in the static part

SI1

SI2

SI3

SI4

I1

I2

I3

I4

O0

O1

O2

O3

O4

SO1

SO3

SO4

SO5

SO2

SO0

NC !

!

logic

removed

O4=0

O5=O4

Figure 3.7: Synthesizing an invalid component.



38 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

A sample situation with macro ports is shown in Figure 3.7. The depicted user macro

connects signal SI0 to a logic that is optimized away during synthesis, and the logic

driving output signals O4 and O5 is also optimized away and replaced with a constant low.

Since the top-level design must be synthesized as a separate design, it uses the dynamic

logic instantiated as black-box components, which preserves all their interface inputs and

outputs. On the other hand, when synthesizing the user macro, its interface ports are

generated to reflect the actual inputs and outputs used by the logic. When integrating

together such a macro with the top-level design during mapping, placement and routing,

the tool will find an inconsistency between the static and dynamic part connections and

generate an error. This usually does not happen in classical modular designs, since the

design flow is the other way round, i.e. the user first defines all macros, gets their post-

synthesis interface definitions, and instantiates them as black-box components in the top-

level design. There is also no need to unify interfaces of different user macros as is the

case with reconfigurable super-macros.

A systematic solution to these problems requires a new approach to logic synthesis and

routing. At present, a viable workaround is to preserve all defined entity ports used in user

macros, and to transform all connections with mixed inputs and outputs in the static and

dynamic part to connections with no direct ”static input to static output” connections as

shown in Figure 3.6 d. This can be easily done by the use of interface buffers generated

in a core generator, instantiated as black-boxes in the top-level design as well as in each

dynamic module used.

A suitable solution for the RECONF flow is to introduce interface wrappers that

decrease the degrees of freedom the designer has to tackle to a reasonable level (Honźık and

Kafka, 2005), (Horta et al., 2002). A wrapper is a component that consists of several static-

to-dynamic and dynamic-to-static connectors implemented either as buffers, or latches, or

registers. In the presented concept always one static wrapper goes together with just one

dynamic wrapper.

3.3 Reconfigurable FPGA Coprocessor

This section describes a realistic example that demonstrates how dynamic reconfiguration

can be used to implement a reconfigurable hardware accelerator attached to a processor



3.3. RECONFIGURABLE FPGA COPROCESSOR 39

core (Bartosinski et al., 2005a), (Daněk et al., 2004), (Kadlec et al., 2004), (Maruyama

and Hoshino, 1999).

Systems with current FPGAs that use dynamic reconfiguration must use an exter-

nal data memory to store the additional configuration bitstreams. An external FLASH

memory can be used to store fixed bitstream data that are copied at different times to

specific locations of the internal SRAM memory. The FPGA is divided to a static part

that implements an access to the FPGA reconfiguration data, and to a dynamic part that

contains user-defined designs; the designs can be reconfigured at run time. The special

features of this design are:

• All implemented coprocessor cores have the same interface.

• All implemented coprocessor cores are self-contained function units without direct

dependencies between them.

• The design is writen in VHDL and C language; it does design independent on used

platform.

These facts make this example ideal for an implementation using super-macros. The

accelerator cores are formed by a set of parameterised single-cycle floating-point units that

perform basic arithmetic operations such as addition, multiplication, and square root. A

possible integration with CPU-FPGA devices, such as the Atmel FPSLIC with the AVR

hard core microcontroller, or the Xilinx Virtex2/2Pro with the MicroBlaze soft core or

PowerPC hard core microprocessors, leads to a computationally powerful, yet simple SoC

design that can be used for simple DSP applications.

The idea is to include a relatively complex unit in the FPGA and to reconfigure it

on demand (Bartosinski et al., 2005a), i.e. when the nature of the required data process-

ing changes. The proposed design is a study on implementing complex, self-contained,

mutually exclusive units in a reconfigurable hardware available today.

Design Structure

The structure of the design is shown in Figure 3.8.The design consists of a wrapper that

provides a data interface for the CPU, and of a reconfigurable functional block that holds



40 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

reconfiguration

library of

precompiled

IP cores

virtual

socket

microcontrollerperipherals

controller

interface

FPGA

Figure 3.8: Floating-point unit: design structure.

different contents according to the desired floating-point function (denoted as Library of

precompiled IP cores).

Data exchange between the FPGA and CPU is managed either through a dedicated

8-bit data bus. The design uses three main data exchange channels:

1. Between the CPU and the FPGA.

2. Between external memory and the CPU via the FPGA.

3. Between the static part of the FPGA and the replaceable floating-point unit.

The first and third channels are represented by the FPGA hardware. The second channel

is implemented as a C function that uses a dedicated logic implemented in the FPGA

static part.

Programming Model

The FPGA design implements a numeric floating point coprocessor for the CPU. The idea

is that the software support built into the operating system makes both the data processing

and the reconfiguration processes transparent to the programmer (Honźık, 2004a). FPGA

execution happens when demanded by a user program. The compiler detects functions

that are supported in hardware, and adds necessary function calls to routines that handle

CPU-FPGA data transfer and FPGA reconfiguration (Wigley and Kearney, 2001).

The principle of the programming model can be seen in Figure 3.9, where the com-

mands written in the C programming language call procedure FP ADD and FP DIV



3.3. RECONFIGURABLE FPGA COPROCESSOR 41

(Honźık, 2004b). These two procedures hide calls to the reconfiguration controller that

pass the identifier and parameters over to the dynamic module. In the case that a required

dynamic module is not in the slot the reconfiguration process will be initiated. This ap-

proach is platform independent and it can be used on any platform with any programming

language.

DATA XER

FPGA

empty slot

FP unit contents program execution

compiler and OS

FP DIV

FP ADDFP MULT

FP SQRT

Z = FP_DIV(Z, (Y+1));

...

X += FP_ADD(Z, Q);

...

void main(void) {

Q=

FPGA context MGMT

Figure 3.9: Microcontroller execution.

Implementation in Xilinx Virtex2

The design (shown in Figure 3.10) was implemented using the starter kit from Memec with

Virtex2 XC2V1000-FG456-4. It consists of two main parts: 1) the static part with the

MicroBlaze (MB) processor and its peripherals, 2) the dynamic part with the floating-point

coprocessor modules.

The static part implements the MB processor (32bit RISC soft-core processor) with

the following peripherals: internal 32 KB SRAM, UART, controller of external DDR

SDRAM, the configuration controller connected to the ICAP, and the interface to the

dynamic part, i.e. the communication ports to the FP coprocessor. The interconnection

between the static part and dynamic part is defined by 2x24 output signals and 24 input

signals.

The design was created only with using the Xilinx tools - the Embedded Development

Kit (EDK) and Integrated Software Environment (ISE). The implementation of the design

is based on module based partial reconfiguration flow.

The processor module was created in EDK as the first step in the implementation

flow. The outputs of this step are separate netlists of the processor and its peripherals.

The floating-point coprocessor modules were created in Handel-C, compiled into VHDL,



42 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

and synthesized with the Xilinx synthesis tool (XST). The next steps were the creation of

the top-level designs for each combination of the interconnected modules. The top-level

design was synthesized with modules instantiated as black-boxes.

The user constraint file describes the placement of the modules and BusMacro inter-

connections. Because the MB processor is provided from Xilinx as a macro, it has a fixed

width, which means that in this case the processor must consume more than half the width

of the used Virtex2 chip.

dynamic part static part

OPB
floating

point

operation

FP data

interface

microprocessor
32 KB

SRAM

UART

controller

reconf.

controller

controller

memory

BM external

BM

Figure 3.10: The FP coprocessor on Virtex2 with MicroBlaze.

The next performed step was mapping, placement and routing of each module sep-

arately with the information from the top-level design. Partial bitstreams for dynamic

modules (FP coprocessor modules) were created in this step.

The top-level design had to be assembled from module netlists to create the initial

full bitstream. The initial program for the processor is saved in an internal memory,

and therefore it must be added into the initial full bitstream. The resulting full FPGA

bitstream was imported into EDK, where the C program for the processor was compiled

with GCC and included in the bitstream.

The sizes of the partial bitstreams are about 100kB each, but in the described imple-

mentation the dynamic area is used sparsely and could have been narrower. A program

executed in MicroBlaze controls the communication with the FP coprocessor and its re-

configuration.

Implementation in Atmel AT94K

The FPGA is divided to a static part that implements an access to the FPGA reconfigura-

tion data and the AVR program code, and to a dynamic part that contains the user-defined



3.3. RECONFIGURABLE FPGA COPROCESSOR 43

designs that can be reconfigured at run time - in our case the different floating-point op-

erations. Before the AT94K FPGA can be used as an AVR coprocessor, it is necessary

to define data exchange schemes between the AVR and FPGA (Atm, 2001b). There are

two possible schemes: to use registers implemented in the FPGA, or to use the internal

SRAM; the design uses dedicated registers connected to the AVR-FPGA bus. The width

of the FPGA registers is limited by the 8-bit AVR-FPGA data bus. The advantage of

this scheme is its simplicity, a major drawback is its slow transfer rate: each AVR load or

store instruction requires 2 clock cycles.

To be able to use dynamic reconfiguration in a reasonable way it is necessary to add

an external FLASH memory to the AT94K chip that will store the additional configura-

tion information. The static part of the FPGA must implement a DMA controller that

will provide the AVR with the access to the configuration data. The most convenient

implementation of the DMA controller uses one FPGA register for context (bitstream) se-

lection and another for data passing. The static part of the FPGA implements an address

register that consists of the context register (MS bits) and a counter. On writing to the

context register the counter is reset. Each time the data register is read by the AVR the

counter increments. When the top address specified in the bitstream header is reached,

i.e. when the reconfiguration of the dynamic part is finished, the FPGA interrupts the

AVR operation.

user

programs

floating

point

program

operation

data
transfer

reconfig.
mgmt

pgm mem
mgmt

SRAM

AVR FPGA

reconfig.
controller

context

data

A B Y

BIOS

ex
te

rn
al

 m
em

o
ry

d
o
u
t

d
in

registers
mode 4

X Y Z D

regfile

data

Figure 3.11: The FP coprocessor on AT94K with AVR.

When not considering different execution time due to reconfiguration, the reconfigura-

tion process is transparent to the application software. The access to the FPGA coproces-

sor is implemented as a special AVR BIOS function, whose parameters are the required



44 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

operation and its operands passed either as direct values in the case of the register transfer,

or as a starting address of their location and their number in the case of the SRAM trans-

fer. When BIOS detects a request for an operation different than the one currently present

in the FPGA, it calls a function that reconfigures the FPGA. This function first translates

the requested operation to the context (address) of the corresponding bitstream and writes

it to the context register. Then it sequentially reads 4-tuples of values and writes them to

the four FPGA configuration registers (X, Y, Z, D) (Atm, 2001b), (Atm, 2002b) until the

FPGA generates an interrupt.

The runtime reconfiguration of the AT94K FPGA fabric requires partial bitstreams.

Such bitstreams reconfigure only a part of the chip while the rest is not affected in its

operation. A new version of the Figaro design implementation tool provided by Atmel is

meant to generate bitstreams that are suitable for partial reconfiguration of the FPGA.

A special implementation procedure must be used to obtain such bitstreams. The idea is

to get several complete bitstreams with all different coprocessor contexts that contain the

same placement and routing of the identical static part.

The Figaro tool works with a system of macros stored in a design library. Any design

component can be implemented as a macro and stored in a library. The top-level design

may contain instances of such components as black boxes (i.e. without a description of

their content). Figaro will then search project libraries for components that fit the instance

interfaces.

All design configurations with different coprocessor contexts must contain the same

placement and routing of the identical static part. To obtain partial bitstreams the com-

plete bitstreams obtained in the previous step must be compared using the Figaro bit-

stream compression tool. The tool generates incremental changes that must be performed

to switch from the configuration given by the base bitstream to the configuration given by

the new bitstream. To be able to use the partial bitstreams for changing the coprocessor

configuration, all possible coprocessor context swap combinations must be generated. A

direct approach leads to space complexity O(n2) combinations (each to each), where n

is the number of contexts. (see Section 2.2) A significant reduction of combinations is

obtained by introducing a common reference coprocessor configuration, such as empty

contents (empty bitstream) or the most frequently used function; this approach decreases

the number of necessary bitstreams to space complexity O(n) . Both partial bitstreams



3.4. COMPARISON FPGA COPROCESSOR 45

consist of 20000 32-bit configuration words, with their sizes being 100kB each.

3.4 Comparison FPGA Coprocessor

As can be seen, AT94K is suitable for applications where power consumption matters. The

Virtex2 device is suitable for complex non-portable designs. Another observation is that

the use of the AVR hard core in the AT94K device effectively increases its factual logic

capacity when compared to Virtex2 designs with MicroBlaze. The reconfiguration times

in both devices seem somewhat equivalent when the operating frequency is considered.

Atmel AT94K40FPSLIC Xilinx XC2V1000

Chip size 5K to 40K 1M

SRAM 18.4Kbits 720Kbits

Multipliers 40 18×18 bits

Processor AVR 8-bit RISC hard core mi-

crocontroller (120K)

MicroBlaze 32-bit RISC soft

core processor

36KB SRAM, counters, UARTs 32KBSRAM, UART

FPGA ⇔ AVR interface OPB bus for peripheral connec-

tions

System clock up to 25MHz up to 100MHz

Table 3.1: Summarise the device characteristics of both FPGA platforms

Real Dynamically Reconfigurable Applications

The following text describes several applications that use the dynamic reconfiguration of

the FPGA devices. There are many research papers about the dynamic reconfiguration

and related work, but only a few of them really got down to the real hardware test

bench. The others were just playing with this feature or they did a brief evolution. To

get a functional dynamically reconfigurable design requires using any hardware platform

and doing a lot of hardware tests. The following applications were carried out as far as

industrial applications.

GIN - a notebook for blind people uses the dynamic reconfiguration to achieve an low

power consumption and portability. Gecko is a dynamically reconfigurable platform that



46 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM

Atmel AT94K40FPSLIC Xilinx XC2V1000

Static part 447 cells
.
= 19% FPGA 6400 cells

.
= 62.5% FPGA

Processor AVR build-in ASIC macro MicroBlaze 2053 cells
.
= 32%

3 18×18 Multipliers
.
= 10%

17 BlockRAM
.
= 57%

Reconf. part 1176 cells
.
= 51% 3840 cells

.
= 37.5 %

FP ADD: 970 cells
.
= 42% FP ADD: 927 cells

.
= 24%

FP MUL: 602 cells
.
= 26% FP MUL: 287 cells

.
= 7%

Free resources 327 cells
.
= 14 % Static part: 4100 cells

.
= 64 %

Reconf.part: 2822 cells
.
= 73 %

Power con-

sumption

74mW 1.1W

Table 3.2: The resource usage in the FP coprocessor application for both

implementations.

Atmel AT94K40FPSLIC Xilinx XC2V1000

Type Mode4 reconfiguration full columns reconfiguration

FPADD Bit-

stream Size

2x 14KB 116KB

FPMUL Bit-

stream Size

2x 7KB 110KB

Speed 4MHz
.
= 50ms 25MHz

.
= 5.3ms

25MHz
.
= 8ms 66MHz

.
= 2ms

Table 3.3: Data pertinent to dynamic reconfiguration of both paltforms



3.5. SUMMARY 47

increases functionality of the Xilinx FPGA devices and creates a modular, easy to use

platform. The last application uses the dynamic reconfiguration to increase reliability of a

system by using triple modular redundancy with the ability to re-load the failed modules

in the FPGA device.

3.5 Summary

This chapter presented reconfigurable hardware platform available on todays market and

the methodology how to implement reconfigurable flow and reconfigurable hardware. In

the beginning of the chapter two devices (Virtex2 from Xilinx and AT94K from Atmel)

were presented as devices with reconfigurable features. The text described possible meth-

ods that can be used for reconfiguration process.

Further the chapter presented reconfiguration controller and its features necessary to

control reconfiguration process. The reconfiguration controller as software in embedded

microcontorller and pure hardware type reconfiguration controller were presented.

The chapter presented the way how to store configuration bitstreams. There are three

types of storing configuration bitstreams in external memory. Each type has different

features important for the reconfiguration process. The speed of the access to bitstream

data and space occupied by the bitstream database influence dynamically reconfigurable

hardware design. The following text presented problems between static and dynamic

part of the design. The connection of these two parts can bring lots of problems during

reconfiguration. The text describe how to solve floating connection lines and how to unify

interfaces of different dynamic modules by using a wraper module.

Based on the analysis done before we implemented two reconfigurable coprocesors

with identical function. The first implementation was done on Virtex 2 from Xilinx and

the second implementation was done on AT94K FPSLIC from Atmel. Both implemen-

tation works as the CPU with attached reconfigurable floating-point unit that can be

called by software services. The reconfigurable floating-point unit can change function

by reconfiguration. The end of the chapter compares these two implementations. The

Virtex2 implementation is better for non-portable more complex reconfigurable systems.

The AT94K FPSLIC implementation is better for smaller portable reconfigurable systems

with major stress on power consumption.



48 CHAPTER 3. RECONFIGURABLE HARDWARE PLATFORM



Chapter 4

Self-Adaptivity

The following chapter will discuss Self-Adaptive principles from the side of a Self-Adaptive

systems based on an FPGA with dynamic reconfiguration. The previous text showed the

possibility of the dynamic reconfiguration and platforms for its realization. The following

text will define the basic Self-Adaptive architecture and its requirements. Further it

will introduce main functionalities of a Self-Adaptive system. In the end of the chapter

we will outline hardware parts of the Self-Adaptive system and its cooperation with its

environment.

The main part of the work on Self-Adaptive systems and its implementation was done

by the author and his colleagues in the EU research project ÆTHER (nr.FP6-2004-IST-4-

027611) and Czech research project CAK (nr.1M0567). The project ÆTHER was directly

focused on Self-Adaptive systems and pervasive computing and their collaborative work.

On the international scientific scene, some other projects are scientifically linked with

the ÆTHER proposal at the hardware level. In the U.S., the High Productivity Computing

Systems (HPCS) program (DARPA-HPCS, n.d.) of the U.S. DARPA agency aims at

developing a broad spectrum of innovative computing system. These features will help

critical systems such as military ones to achieve their goals even if they are damaged.

The Architectures for Cognitive Information Processing (ACIP) program (DARPA-ACIP,

n.d.) aims at designing a new generation of computing architectures in order to build

”systems that know what they are doing”. The MIT Oxygen project (MIT-Oxygen, n.d.)

gathers academic labs and industrials around the topic of adaptable, efficient and powerful

computing resources for pervasive applications. The T-Engine forum (T-Engine, n.d.),

49



50 CHAPTER 4. SELF-ADAPTIVITY

(Krikke, 2005) funds by 22 technological firms aims at developing an open, standardised,

real-time platform for future ubiquitous systems.

On the European side, several projects in the pervasive computing domain are under

way. The RUNES project (EU-Runes, n.d.) aims at enabling the creation of large-scale,

widely distributed, heterogeneous networked embedded systems that interoperate and

adapt to their environments. The goal of the project is to ease the development of wide

networks of embedded systems in order to enable the programmers to exploit all the

benefits of the great number of computing resources.

4.1 Requirements of a Self-Adaptive System

The Self-Adaptivity can be defined as the ability of a system to adapt to an environment.

It is done by allowing components to monitor environment and change their behaviour in

order to preserve or improve the operation of the system according to some defined criteria.

The environment of a system is defined by everything that interacts with this system. The

adaptation of a system can occur at different levels, from hardware to software.

The software level adaptation takes a place in operation memory, stack and registers.

The architecture of computing units based on microprocessors has hardware support for

software changing without any interrupting of function. System of memory windows can

change function of computing unit in one clock.

The hardware level adaptation takes a place in the architecture that must adapt its

structure. The adapted hardware has to be reconfigurable in order to allow a deep change

in the hardware structure.

The Self-Adaptive architecture also needs to efficiently monitor its environment and its

behaviour in order to be aware of its performance and the possible related improvements.

It also needs a decision taking mechanism to decide the moment of the adaptation. The

combination of the monitoring process and the decision taking process provides the device

with the ability to Self-Adapt. It can automously trigger adaptation process to improve

or to keep its performance after a modification in its environment.



4.2. ARCHITECTURE OF A SELF-ADAPT ELEMENT 51

4.2 Architecture of a Self-Adapt Element

We will define Self-Adapt Element as architecture based on Self-Adaptive system. The

Self-Adapt Element is a indivisible computing entity with local autonomous decision pro-

cess occurs that affect its own operation. Figure 4.1 shows a functional view of the Self-

Adapt Element that takes into account the definition given in the previous paragraph and

the discussions about implications of Self-Adaptivity at the hardware and software level.

Let us describe the different parts shown in figure 4.1:

• The computing engine processes data. It must provide the necessary processing

power to handle future complex algorithms required by new standards and multi-

media applications. It must also be reconfigurable to handle a wide spectrum of

applications, and as the user needs may vary when the system is online, this recon-

figuration process must be dynamic (”on the fly” reconfiguration). It is the most

flexible block of the Self-Adapt Element.

• The observer is responsible for monitoring the computation process and other run-

time parameters. It allows the Self-Adapt Element to sense its current environment

and optimize its performance, which means both comparing its actual processing

parameters with the required constraints given by the application designer, and

monitoring communication parameters.

• The controller is in charge of actually taking all decisions regarding the ongoing

computation task. Based on the observations of the current running task, the con-

troller is responsible for changing the state of the Self-Adapt Element by loading any

locally available task implementation. The computing tasks that are loaded can be

pre-synthesized hardware tasks best seen as configurations for an FPGA-like fabric

or pre-compiled code best seen as binaries for a CPU soft core, both implemented

in the computing engine.

• The communication interface is responsible for the management of Self-Adaptive

assemblies. It enables resources sharing and collaboration between Self-Adapt Ele-

ments as well as providing the Self-Adapt Element with goals to be reached.

These four main functionalities are embedded in a common box which is the Self-

Adapt Element. This box has three links with the external world (which might be joined



52 CHAPTER 4. SELF-ADAPTIVITY

Comm.

Interface

Observer

Input Data

C
o

lla
b

o
ra

ti
o

n

Controller

Reconfigurable

Computing

Engine

Processed Data

Figure 4.1: Self-Adapt Element block diagram with four main functionali-

ties and three links with external world.

for implementation purposes): the input and the output links are directly related to data

processing since the Self-Adapt Element has a dataflow model. The communication link

is dedicated to communications among different Self-Adapt Elements. The Self-Adapt

Element is basically a tightly coupled hardware/software entity with its computing engine

seen as a hardware-based reconfigurable computing unit (e.g. an FPGA fabric), and the

observer and the controller implemented as more software programmable CPU cores.

4.3 Function Block of a Self-Adapt Element

The implementation of Self-Adapt Element defined in the previous text leads to embedded

devices with adaptive features. Embedded devices are the main resources for computing

power and are not intended to follow the user. On the contrary, handheld devices are

limited in size and weight since they belong to the user and follow him. They can delegate

part of their computation in order to conserve power and they can perform a wide variety

of functions thanks to reconfiguration.

The Self-Adaptive embedded device must be able to handle the broad range of appli-

cations that are required by the user. This implies that it must be able to provide both

the necessary computing power and a large flexibility to efficiently handle a wide spectrum

of algorithms. But this should also be small enough in order to be apt for pervasive and

low power applications.

For the implementation of the Self-Adapt Element we will use knowledge from chap-

ter 2. We will use hardware parts and principles from chapter 3. The reconfigurable



4.3. FUNCTION BLOCK OF A SELF-ADAPT ELEMENT 53

HW accelerator 1

HW accelerator 2

HW accelerator 3

HW accelerator 4

Memory A

Memory B

Memory A

H
a
rd
w
a
re

R
e
c
o
n
fi
g
u
ra
ti
o
n

Software

Reconfiguration

Figure 4.2: Possible implementation of reconfigurable computing engine

and its interaction with sorrounding.

coprocessor introduced in the chapter 3 will be base building block for implementation of

Self-Adapt Element.

Reconfigurable Computing Unit

The main part of the Self-Adapt Element is reconfigurable computing unit that executes

incoming data according current configuration. The reconfiguration of execution part leads

the use reconfigurable hardware. Another requirement derived from this first assumption.

The system has to be able to quickly change the executed operation during runtime to fol-

low the needs of the user and minimize latency. It implies that the system reconfiguration

has to be relatively fast and dynamic.

The range of the possible implementations of the computing engine is broad and de-

pends on the granularity of the unit being configured. One can envisage a range of archi-

tectures where various combinations of hardwired processors, soft processors and custom

logic can be configured.

The two possible types of reconfiguration can be used to change the executed opera-

tion in computing unit. The hardware reconfiguration changer hardwired function in the

hardware accelerators as in figure 4.2. The hardware reconfiguration changes elementary

functions of the computing unit. The hardwired function can be seen as atomic dataflow

functions like ADD, SUB or MAC. The hardwired functions can be viewed as a bitstream

file that is loaded into an FPGA to program it.

Another method how to change function of the computing unit is software reconfig-

uration, see figure 4.2. The software reconfiguration will change the way how to use

elementary hardwired function. It changes internal dataflow between memories and hard-



54 CHAPTER 4. SELF-ADAPTIVITY

wired functions that change complex function of the Self-Adapt Element from external

point of view.

We implemented reconfigurable unit as block of reconfigurable accelerators and three

dual port RAMs. The unit is able to process incoming data stored in one of the RAM and

result stores to another RAM. This cycle allows to process data in iterations by hardware

accelerators, see figure 4.2. The control of the execution data is done by microcontroller.

The microcontroller can switch dataflow in the computing unit according the internal

program stored in two internal program memory, see figure 4.3.

Observer

To adapt to its environment or to improve the execution of loaded tasks, the system must

be aware of its performance. This implies the use of an observation process that enables

the system to know if it respects the required constraints. The existence of this observation

process can close the loop inside the computing entity, thus enabling Self-Adaptation as

it is shown in figure 4.1 by arrows between observer, controller and computing engine.

The observation task has two main objectives. On the one hand, it must embed the

required sensors to perform the monitoring that is specified by the designer. On the other

hand, it must filter and translate the monitored variables to compute a report to the

controller. This enables the sensors to be calibrated and taken into account dynamically.

Since the task that is loaded in the computing engine will change during the life time

of the device, it is highly probable that the monitored variables will also change. So the

observer has to accept new parameters dynamically.

The observer is implemented as data monitor. It reads tags of the incoming data and

create statistic table. The table contains number of packet of each passed or processed

application in the adaptive system. Data form table are sent to microcontroller for decision

of behaving of the Self-Adapt Element on environment.

Controller Unit

The controller’s unit role is to initiate the reconfiguration process based on the infor-

mation received from the observer and a goal assigned to the Self-Adapt Element. The

controller unit compares the observed parameters with the constraints that are given by

the application designer as part of the goal. If the observed parameters indicate that the



4.3. FUNCTION BLOCK OF A SELF-ADAPT ELEMENT 55

computation task is deviating from the goal/constraints, the controller takes a decision

on the improvement of the computation process. It can then decide to change the imple-

mentation of the executed function in the reconfigurable computing unit so as to respect

the given constraints. Constrains can be processing time, processing coefficients or power

consumption.

The second role of the controller is to manage the different implementations of tasks

that are stored in the local Self-Adapt Element memory. If a new implementation is

needed by the computing unit to perform the mission, the controller either initiates an

immediate task load if the task is locally available or sends a request for an appropriate

task implementation.

The control unit is sequential automata and its implementation leads to microcon-

troller. We used PicoBlaze soft core microcontroller as building block. The Picoblaze has

two program memories that allow to do software reconfiguration in one cycle by switching

memories, see figure 4.3.

The PicoBlaze has three functions in the Self-Adapt Element. It controls dataflow unit

and drives internal switches of computing unit to complete task. Further it receives data

from observer and evaluates function of the Self-Adapt Element. If the PicoBlaze finds

that function should changed the hardware or software reconfiguration is called. The last

function of the PicoBlaze is communication with environment through PLB bus.

Communication Interface

The Self-Adapt Element is viewed as a unified computing model whether it is working as

an on-chip computing model or as a multi-chip model. These entities must embed some

mechanisms to enable a Self-Adapt Element to publish its internal resources and abili-

ties and to discover the resources belonging to other Self-Adapt Elements. This sharing

mechanism enables two Self-Adapt Elements to exchange their tasks or just to clone their

states to another Self-Adapt Element, providing the system with self-healing capabilities

and online optimization.

As the adaptive systems can be pervasive, the environment will often change during

the lifetime, so the system has to optimize continuously to new applications, new users

or new elements that may enter the computing area. So the communication channel can

be the place of intensive one-to-one exchanges among elements since the system does not



56 CHAPTER 4. SELF-ADAPTIVITY

Reconfigurable

dataflow

unit

Data memory

Data memory

Data memory

Microcontroller

Program memory 1

Program memory 2

Data

interface

Data

interface

CTRL & Status registers

D
a

ta
 m

o
n

it
o

r

Comm.

interface

COMPUTING UNIT

CONTROLLER UNIT

Figure 4.3: Possible implementation of Self-Adapt Element using reconfig-

urable hardware platform.

implement a centralized control.

The fact that a Self-Adapt Element has the ability to take local decisions will po-

tentially dramatically decrease the need of intensive control communications among Self-

Adapt Elements related to optimization, thus relaxing the constraints on this part of the

system.

The adaptive system is a virtual processor composed of several computing units type

of Self-Adapt Element that are aggregated during runtime. The Self-Adapt Element has

the ability to cooperate with others by the means of a publish/discovery mechanism. On

the one hand the Self-Adapt Element can publish its active state and the tasks that are

stored in its memory. On the other hand it can listen to others in order to discover their

state and abilities. This mechanism brings the possibility of tasks exchanges between

Self-Adapt Elements or task cloning in order to parallelize an algorithm or for self-healing

purposes.



4.4. MODELING AND IMPLEMENTATION 57

FIR
FIR

FIR

FIR FIR

Data 1,5,3,2 5

Data -2,-6,1 2

Data 5,8,2,3 5

Data Coeficients Tags Self Adaptive network
Packet

Figure 4.4: Model of a Self-Adapt Element network with the FIR filter

function.

4.4 Modeling and Implementation

Imagine a network of Self-Adapt Elements discussed above that implement a family of

FIR filters. The requirement is to share the resources among different data channels with

different data throughput and filtering requirements, see Figure 4.4. The task of the

network is to process data streams, i.e. perform different filtering operations on the input

data and generate responses. The network operates on tagged data packets. Each packet

is formed by a header and data part. The header specifies in some way operations needed

to process the data part. In the example given in Figure 4.6, the first number in the header

specifies the order of FIR required to process the data with the next numbers specifying

the FIR weights. The header can be viewed in a more general way as a sequence of tags

that specify a sequence of operations required to process the data.

A Self-Adapt Element reaction depends on tag values. The packet consists of five

parts, see Figure 4.6:

• Packet length: the overall length of the packet.

• Array of tags: tags mark operations that are required to process the data array. In

a way the array of tags defines the semantic meaning of the data in the system.

• End of tag array delimiter.

• Data array length.

• Data array: the data can be unprocessed input data, partially processed data, or

the desired results.



58 CHAPTER 4. SELF-ADAPTIVITY

Self 

Adaptive 

Element

Self 

Adaptive 

Element

Self 

Adaptive 

Element Self 

Adaptive 

Element

Input 

Cutter

Output 

Router

Configuration Master

Input Data Output Data

Figure 4.5: Ring topology network with four Self-Adapt Elements and in-

frastructure for data handling.

The whole network of FIR Self-Adapt Elements can be viewed as a linear chain of

processing elements with a FIFO memory forming a loop to circulate data not completely

processed, see Figure 4.5. The use of this topology (ring) enables us to concentrate on the

Self-Adapt Element computation only, since ring can emulate any given network topology

on a logical level. We are aware of the importance of a proper networking scheme, and it

will be addressed in more advanced stages of this research.

The Self-Adapt Element network is modeled in the Matlab/Simulink environment and

verified on the Celoxica RC10 boards acting as hardware in the loop. The idea is to use

the Simulink environment for modeling, visualization and debugging. A major advantage

of this approach is that it allows us to gradually move from the software model to the

hardware implementation.

Another advantage is the possibility to use any FPGA platform provided it supports

a standard simple data exchange protocols; this way we can easily mix implementations

on different boards and with FPGAs from different families and manufacturers.

Model in Simulink

We created a model of the Self-Adapt Element network with four Self-Adapt Elements

connected in the ring topology. The structure and basic functions of the Self-Adapt

Element was discussed above. The network also contains blocks for handling packets

in the network and the reconfiguration master controller. The model of the Self-Adapt

Element network in Simulink uses on the following blocks:

Input Cutter The input cutter takes an input data stream and divides it into packets of



4.4. MODELING AND IMPLEMENTATION 59

data. We assume packets with the same length, but this is not necessary in all cases.

In addition the cutter prepares the packet headers for the data. In the simplest

case the header contains an ordered array of tags that indicate operations that are

required to process the data. In more advanced stages of this experiment the array

of tags will merely indicate the current state of the data and its desired state, with

the proper sequence of operations decided by the Self-Adapt Element network itself.

Output Router The output router is responsible for directing the processed data out

of the network, and to direct partially processed data packets back to the network.

The processed data are recognized by an empty array of tags. Partially processed

data are then stored in a FIFO memory in the feedback loop.

Configuration Master The configuration master is responsible for managing the database

of configuration bitstreams for the reconfigurable FPGA part and binary programs

for the CPU part of the Self-Adapt Elements. The master sends configurations on

demand from individual Self-Adapt Elements. The master by no means introduces

central control to the Self-Adapt Element network since this would invalidate the

distributed processing character of the experiment.

Self-Adapt Element The Self-Adapt Element monitors the character of data that pass

through it, it processes data packets with tags that match its functionality. The

distributed control of the network is implemented as individual local decisions by

each Self-Adapt Element to change its internal configuration to match the majority of

passing data tags and subsequent requests for new configurations to the configuration

master.

We use the above building blocks to assemble a Simulink schema that models the Self-

Adaptive network. Figure 4.5 shows a sample network with four Self-Adapt Elements, one

input cutter, one output router and a configuration master. The whole network is modeled

in Simulink. The Self-Adapt Elements are implemented in individual FPGA development

boards (in our case Celoxica RC10) and connected to the Simulink environment as hard-

ware in the loop. It allows to use advantages of the Matlab/Simulink environment and

hardware platform together. The Matlab plays the role of the input cutter, output router

and configuration master. Further it generates cycle-accurate test data that are compared

with the output of the simulated network to check them.



60 CHAPTER 4. SELF-ADAPTIVITY

Figure 4.6: Interpretation of simple packet structure with signals plot.

As a test case we used audio data generated by a Matlab script and filtered in the

Self-Adaptive network. At the beginning the Self-Adapt Elements have no function and

just pass the data through. When the observer of the Self-Adapt Element decides on one

of the available functions, the Self-Adapt Element gets configures and starts processing

th appropriate data. During the run of the network all the Self-Adapt Elements become

processing the data that cycle in the network.

The incoming data in the network consecutively set the function in each Self-Adapt

Element and the computing power of the network increases. Figure 4.7 shows stages of

the processed data in the network. Figure 4.7(a) shows a stage where only one Self-

Adapt Element implements the function of a FIR filter and only the data with the first

tag are processed. Other data only pass through the Self-Adapt Elements and cycle in

the network. Figure 4.7(d) shows a stage when all the Self-Adapt Elements have been

configured and data with all tags are processed in one pass through the network.

When new data come from environment with different tags that define a new function

that is not served by any Self-Adapt Element, the data cumulate in the network and

influence the decision of the observers. The observers change the functions of the Self-

Adapt Elements, and the network adapts to the new type of data. This process tests the

Self-Adaptive mechanism of the network with Self-Adapt Elements.



4.5. SUMMARY 61

(a) Data processed by only one Self-Adapt Element (b) Data processed by two Self-Adapt Elements

(c) Data processed by three Self-Adapt Elements (d) Data processed by four Self-Adapt Elements

Figure 4.7: Consecutive processing data in network by Self-Adapt Ele-

ments.

4.5 Summary

This chapter presented a Self-Adaptive systems and its elements. At the beginning of the

chapter the requirements of the Self-Adaptive system were analyzed. It was done with

respect to a future implementation on reconfigurable platforms based on the FPGA de-

vices. Further the text introduces principles of the Self-Adaptive-element that is the basic

building block of our adaptive system. It countains a brief description of the four main

blocks of the Self-Adapt Elements and their interaction with the environment. Then the

chapter describes the details of the Self-Adapt Element and its implementation includ-

ing the building blocks and reconfigurable parts. The implementation of the Self-Adapt

Element is based on the previous knowledge presented in Chapter 2 and Chapter 3.



62 CHAPTER 4. SELF-ADAPTIVITY

The end of the chapter presents the implementation of a model of the Self-Adaptive net-

work with four Self-Adapt Elements. The model is implemented in the Matlab/Simuling

environment, and the Self-Adapt Elements are implemented in FPGA boards connected to

the Matlab/Simulink environment as hardware in the loop. To test the network we used a

desing with a distributed computation of a FIR filter. The implementation of the network

shows the adaptation process of the empty network to the fully configured network.



Chapter 5

Network on Chip

This chapter will discuss topology of network on chip suitable for the FPGA chips. The

text introduces seven types of network topologies and compares networks topologies from

their communication and hardware cost. We will choose the best topology for video and

image algorithms suitable to implement on current FPGA chips.

Further the chapter introduces three basic routing algorithms for data transporting

over the network. There are presented principles of the routing algorithms and their

influence communication delay.

The last part of the chapter describes details of the chosen topology and defines basic

parameters of the topology we chose for future simulation of a adaptive system. We

will define parameters suitable for measuring the network communication and adaptation

processes.

The paper (Salminen et al., 2007) defines network on chip and compares common

topologies. The papers (Ni and McKinley, 1993), (A. Mello and Calazans, 2004), (Palesi

et al., 2009) describe current state of the routing algorithms and their trends. Finally

the (Kogel, T. et al., 2006) and (Foroutan et al., 2010) describe parameters and their

analytical evaluations for networks implemented on SoC.

5.1 Network on Chip Topology Selection

Network-on-Chip (NoC) connects nodes into one computing engine on a single chip. Such

system with computing elements and network connect them is called System-on-Chip

63



64 CHAPTER 5. NETWORK ON CHIP

(SoC). The basic properties of the NoC paradigm discussed in (Salminen et al., 2007) are:

• separates communication from computation

• offers scalability in links and nodes

• variable link width and buffer sizes

• avoids centralized controller for communication

• offers varying properties for transfer

• allows multiple frequency domains

but commonly the name NoC is used for all communication networks that are targeted

for a single chip implementation. There are several most important NoC topologies that

can connect a number of nodes into the SoC. To compare them we chose the following

topologies: single bus, ring, tree, star, 2D-mesh, fully connected and hypercube topology

The main application area that we will use the network for are video and graphic

applications for analyzing pictures in real time. For this reason we will have strict con-

strains on data transfer capacity in the network. According to (Salminen et al., 2007) and

(Sander, 2004) the comparison of the topologies below brings groups of suitable networks

for graphic algorithms. The graphic algorithms for video processing brings the following

constrains for NoC:

• HDTV standard resolution in 24 bit color depth

• Real-time constrain in image processing with 25fps in HDTV

Further we will use self adaptivity in the network. This feature nodes accessible to each

other to utilize node reconfiguration. The network must allow to measure parameters of

running applications and communication parameters. These parameters identify success

of the adaptive process.

There are two aspects of different NoC topologies that we should look at. The first

is scalability and the second is the cost of communication and hardware implementation.

We will look at the communication cost from three sides: communication one node to one

node (one-to-one), communication one node to all nodes called broadcasting (one-to-all)

and communication all nodes to one node (all-to-one). The parameter p is a number of

nodes in the NoC topology.



5.1. NETWORK ON CHIP TOPOLOGY SELECTION 65

Single Bus Topology

The single bus has a low hardware cost, all nodes are accessible to others but the shared

bus is a bottleneck when increasing the number of nodes. This topology is suitable for

systems with small communication requirements.

Hardware cost 1

One-to-One 1

One-to-All 1

All-to-One p

P P PPP

Ring Topology

The ring topology partly solves the problem with bottleneck in a shared bus. It is suitable

mainly for pipelined algorithms that can utilize connections between blocks. It will have

communication bottleneck for collateral algorithms that work on the same data.

Hardware cost p

One-to-One ⌊p2⌋
One-to-All ⌈p2⌉
All-to-One 2⌈p2⌉

P

P

PP

PP

PP

Star Topology

The star topology implements connections with only 2 hops between all nodes. The major

problem can be found in the central switch. It uses a centralized control mechanism.

When increasing a number of nodes the switch can be a bottleneck of the network. The

solution can be found in connected several substar topologies to one star topology.

Hardware cost p− 1

One-to-One 2

One-to-All p− 1

All-to-One 2(p− 1)

P

P

PP

PP

PP

S



66 CHAPTER 5. NETWORK ON CHIP

Tree Topology

The tree topology can bring a bottleneck in the top switch during more communication

flows over the network. The solution is to add more wires in the top switch and create a

fat tree. But more wires increase the hardware cost.

Hardware cost 2p− 2

One-to-One 2 log2 p

One-to-All log2 p(1 + log2 p)

All-to-One 2 log2 p(1 + log2 p)
P PPP

S

S S

2D-Mesh Topology

The 2D-Mesh topology offers a good ratio between the hardware cost and communication

between nodes. The problem can be found in a communication protocol and in communi-

cation swithes. The topology has a complicated communication protocol.

Hardware cost 2(
√
p)(

√
p− 1)

One-to-One 2(
√
p− 1)

One-to-All 2(
√
p− 1)

All-to-One 2⌈
√
p
2 ⌉

P

P

PP

PP

P

P P

Fully Connected Topology

The fully connected topology has an excellent throughput. The connection between nodes

is one hop. Problem is with a hardware cost. When increasing the number of nodes, the

hardware cost increases quadratically.

Hardware cost p (p−1)
2

One-to-One 1

One-to-All ⌈log2 p⌉
All-to-One 2⌈log2 p⌉

P

P

PP

PP

PP



5.1. NETWORK ON CHIP TOPOLOGY SELECTION 67

HyperCube Topology

The hypercube topology is one of the most elegant designs, often used in multi-processor

solutions. The throughput of this topology is sufficient for image processing. The problem

is with implementation in hardware and its hardware cost with more nodes.

Hardware cost p
2 log2 P

One-to-One log2 p

One-to-All log2 p

All-to-One 2 log2 p

P

P

P

P

P

P

P

P

We discussed the most common NoC topologies in the previous text. The parameters of

the NoCs were described and we chose three main parameters: scalability, communication

cost and hardware cost. From the FPGA side of view the hardware cost affect placement

design into chip. We are restricted by the connection matrix in the FPGA chip and

the size of the chip. The scalability became an important parameter in multiprocessor

design. Scalability has to bring an easy way to resize a connection network, a number

of processing nodes and a bandwidth of connection link. The communication cost is an

important parameter in designs with high communication load such as video processing.

Even more when the design has to satisfy real-time constraints.

Topology Bus Ring Star Tree 2D-Mesh Fully Hypercube

Scalability + + 0 + + - -

Communication cost - - - - + + +

Hardware cost + + + - 0 - -

Table 5.1: Comparison of the most common NoCs from side of scalability,

communication cost and hardware cost.

The short summary of these three parameters is shown in table 5.1. Each parameter

is compared three categories from the best to worst (+, 0,−). From the comparison of

the NoC we will choose 2D-Mesh topology as the best NoC topology for image and video

processing designs. It brings scalability; successful communication cost and the hardware

cost fulfill restrictions that come from the FPGA connection matrix.



68 CHAPTER 5. NETWORK ON CHIP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2  3  4  5  6  7  8  9  10

H
ar

dw
ar

e 
co

st

Number of nodes

Topologies
Single Bus

Ring
Star
Tree

2D-Mesh
Fully connected

Hypercube

Figure 5.1: The overview of hardware cost of selected topologies

 0

 5

 10

 15

 20

 25

 30

 2  3  4  5  6  7  8  9  10

ba
nd

w
id

th

Number of nodes

Topologies
Single Bus

Ring
Star
Tree

2D-Mesh
Fully connected

Hypercube

Figure 5.2: The overview of communication bandwidth of selected topolo-

gies



5.2. 2D-MESH TOPOLOGY 69

5.2 2D-Mesh Topology

We compared parameters of the NoC topologies in the previous text and we chose 2D-

Mesh as the best topology. The 2D-Mesh brings scalability, suitable communication cost

and hardware cost doesn’t exceed FPGA restrictions.

The 2D-Mesh network has several modifications such as 2D-Wrap round mesh. The

2D-Wrap round Mesh connects nodes in the edge of network together in a vertical and a

horizontal direction. The connection is direct. It solves the problem with high commu-

nication load in center of 2D-Mesh topology that can bring difficulties during processing.

Unfortunately in the FPGA technology such a direct connection of the edges will be solved

by long lines. In our case we use long line and half long lines for a connection of dynamic

and static parts. Direct edge connections significantly decrease a number of the long lines.

From that reason in the following text we will use the 2D-Mesh topology without direct

edge connections.

Routing Packets in a Network

We have defined a network topology suitable for the FPGA chips and able to transfer

data between each node. The performance of the 2D-Mesh network partly depends on the

efficiency of a routing algorithm. The research about routing on the network is a huge

challenge and there are a lot of papers about this problem. Because packet routing is

not the main goal of this work, we will use the knowledge from the following papers (Ni

and McKinley, 1993), (A. Mello and Calazans, 2004), (Palesi et al., 2009) and (Gindin

et al., n.d.). The papers discussed problems from a side of successful delivery packets and

flits like deadlock, livelock and starvation and from the way of routing like deterministic

or adaptive routing and minimal and nonminimal path.

We chose three types of routing that can test future placement algorithms nodes on

network. The types of the routing differ mainly in their routing rules.

Direct routing algorithm

The direct routing algorithm routes flits alternating in a X and Y direction until reaching

the destination node. This creates a direct path from a source node to a destination

node as we can see in Figure 5.3(a). This routing algorithm will have problems with



70 CHAPTER 5. NETWORK ON CHIP

communication overload in the center of the network in a case of more long diagonal

communication paths.

XY routing algorithm

The XY routing algorithm routes flits first in the X direction, until the flits reach the X

coordination of the destination node. Afterward the flits are routed in the Y direction

until reaching the destination node. The example of the communication is in Figure 5.3(b).

This algorithm solves problems with communication overload in the center of the network.

Extended XY routing algorithm

The extended XY routing algorithm routes flits according to their order number. If the

order number is odd, the flit is routed first in the X direction. If the order number is even,

the flit is routed first in the Y direction. When they reach the first coordination the flits

are routed in the second coordination until reaching the destination node. The example

of the communication is in figure 5.3(c). These routing rules create two paths from the

source node to the destination node. Each path has half the communication load than in

the path with XY routing rules. It distributes the communication load into a bigger space

in the network communication matrix.

To simplify routing process and hardware cost of routing blocks we will use determin-

istic distributing way of routing with a minimal path. The flit contains the address of the

destination node and the order number of the flit.
X

Y

(a) Direct flits routing

X

Y

(b) XY flits routing

X

Y

(c) Extended XY flits routing

Figure 5.3: Three types of routing flits in 2D-mesh network (a), (b) and

(c)

Our three different routing algorithms bring three types of communication load in



5.3. NETWORK ON CHIP CHARACTERISTICS 71

the network. The direct routing algorithm will move the communication load into the

center of the network, see Figure 5.4(a) unlike the extended XY routing algorithm that

will distribute the communication load into the whole network, see Figure 5.4(c). The

comparison of the three algorithms can be seen in the random communication test in Figure

5.4. The random communication test proves the communication load of routing algorithm.

All the nodes in the network are occupied by a random generator that randomly generates

flits. Each generated flit is randomly directed into one of the nodes in the network.

From the heat graph in Figure 5.4 we can see the distribution of the communication

load in the 5x5 2D-Mesh network. A dark node means more communication load than a

white node.

’test.trans’ matrix

 0  1  2  3  4

 0

 1

 2

 3

 4

 20

 40

 60

 80

 100

 120

 140

(a) Direct packet routing

’xytest.trans’ matrix

 0  1  2  3  4

 0

 1

 2

 3

 4

 20

 40

 60

 80

 100

 120

 140

(b) XY packet routing

’yxytest.trans’ matrix

 0  1  2  3  4

 0

 1

 2

 3

 4

 20

 40

 60

 80

 100

 120

 140

(c) Extended XY packet routing

Figure 5.4: Random routing flits in a full load network with three types of

routing rules. (a), (b) and (c)

5.3 Network on Chip Characteristics

The previous text discussed the network topology and we chose the 2-D Mesh topology as

the most suitable for our purpose. To measure network parameters and test the network

we have to define parameters of the network. The main parameters like link capacity or



72 CHAPTER 5. NETWORK ON CHIP

communication delay can be determined by an analytical method see (Foroutan et al.,

2010). Other methods to evaluate parameters of the network are described for example in

(Kogel, T. et al., 2006), (Guz et al., 2007) and (Chang and Yubai, 2006).

The network we chose in the previous text has a regular topology. We will use the

5x5 size mesh topology in our simulation. Links are connected by five port switches with

names west, north, east, south and process. The links are full duplex. Each direction has a

32bit wide bus to connect the switches. The switch works as an automation with a packet

switching mechanism. There is a fifo buffer for incoming data with the capacity of 6 flits.

To measure the performance of the network we have to define network parameters

that describes actual network status and performance. The parameters come from single

parts of the network like links, flit path, loading of switches and processors. We will use

the network cost and the application cost as the main parameters that describe load of

the network and its effeciency. Both parameters come from the basic parameters of the

network described below.

The following notation is used to analyze the network on chip performance:

F = The set of all flows from every source module 1 ≤ s ≤ N to every

destination module 1 ≤ d ≤ N .

f i = A flow from set F .

mi = The mean packet length of flow f i ∈ F .

λi = Average packet generation rate of flow f i ∈ F [packet/second].

T f
REQ = The required mean packet delivery time for flow f .

Cj = Capacity of link j [bits/second].

CLmax = Maximal capacity of link j [bits/second].

tlat = communication latency of single transaction.

treconf = time consumed by the reconfiguration process.

Ct = weight average of past rewards and the initial estimate C0.

α = step size parameter (constant) 0 ≤ α ≤ 1.

rt = reward from running a process in time t.

Flit Format

We suppose a flit communication format for communication in all the networks presented

above. The flit is composed from a header, data and tail. The flit header contains



5.3. NETWORK ON CHIP CHARACTERISTICS 73

information about the destination and data format. The flit data contains data processed

from the previous node. The flit tail contains the whole flit check sum. The size of the

flit depends commonly on the size of the data. In our simulation we will use 1024 word of

32bit size flits including the header and tail.

Link Capacity

All the links in a NoC have the same link capacity. It is defined as:

Definition 5.3.1 The capacity of the link CLmax is determined by a configuration of the

communication resource bitwidth and by a clock frequency of the resource.

CLmax = bitwidth ∗ clockfrequency (5.1)

The link capacity has to be higher than the required capacity required by the processes

communicating over the link. The 100% utilization of the link can be reached only theo-

retically. The average utilization of the link should not exceed 50% when the considering

communication delays. With increasing the utilization of the link the communication de-

lays can increase significantly. The minimal link capacity is defined in (Guz et al., 2007)

and can be formalized as follows:

Given: F

∀f ∈ F : mf , λf , T f
req

Have: ∀linkj, assign link capacity (Cj)

∀f ∈ F : T f ≤ T f
REQ

Where:
∑

Cj is minimal link capacity

where F is a set of all flows, mf is a mean packet length, λf is a average packet generation

and T f
req is a mean packet delivery time.

The theoretical capacity of a link in our network is 381MB/s in each direction in a case

of 100MHz communication frequency. The minimal capacity for one HDTV video stream

is 148MB/s, that is 39% of a capacity of a link.



74 CHAPTER 5. NETWORK ON CHIP

Communication Latency

The communication latency is a time needed to transfer one flit from its source to desti-

nation. We will use the hop communication latency term. The term hop communication

latency in this text means the latency with which the flit crosses one hop between two

neighboring nodes. The IO buffer in network interface is time stamp for the hop commu-

nication latency.

The following notation is used in order to analyze the communication latency:

Definition 5.3.2 The communication latency tlat is a single transaction that correspond

to the delay from start to completion one events on the link.

tlat = ∆tpending +∆tarbitrate +∆ttransfer (5.2)

where tpending is the time which the packet will reach the top of the internal switch fifo

buffer. It’s size is size ∗ 10, 24µs. The worst time in our network is equal to the size

of the buffer. The arbitration time tarbitrate is the time from the request for transfer to

neighbor and its answer. The time depends on the load of the neighboring switches. The

worst case can be 51, 2µs (five input streams share one output stream). The transfer time

ttransfer is equal to the size of the packet. We will use 1024x32bit size packets and buffers.

The ttransfer is 10, 24µs. In our network the worst communication latency between two

switches is 112.64µs.

Move Function Delay

The move function delay treconf in the network is thetime needed to change the function

of the processor by partial dynamic reconfiguration. The process changes the hardware

function of the module. The reconfiguration process is described in the Chapter 3. The

speed of the reconfiguration process depends mainly on the reconfiguration method pre-

sented in section 2.2. The following notation is used in order to analyze the move function

delay:

Definition 5.3.3 The move function delay treconf is time consumed by reconfiguration

process changing hardware function. It contains request time and reconfiguration time.

The structure of reconfiguration time depends on reconfiguration method.

treconf = treq + to + tc (5.3)



5.4. SUMMARY 75

where treq is the time from the request function to the answer of the reconfiguration

arbiter. The reconfiguration process contains two operations. The first operation is delete

a reconfiguration module and takes time to, and the second is set a new module and takes

time tc. to = 0 in case when we reconfigure full module.

In our simulation we will use reconfiguration of the floating-point unit as the basic

function of the processor. The reconfiguration process by the method with the full column

bitstream takes 1.3ms. The request time treq depends on the architecture and speed of an

external memory system that stores reconfiguration bitstreams.

Averaging Method

The evaluation of the network parameters and running application parameters shows ef-

fectivity of our placement algorithms. To calculate parameters we will use the averaging

method published in (Sutton, S. R. and Barto, G. A., 1998). The method is suitable

for non stationary problems. It uses a step size parameter that evaluates new values of

our cost function in the next step. The step size parameter determines the size of new

incoming reward that is added to the old weight average from the last step.

Definition 5.3.4 The averaging method evaluates the weight average Ct of past rewards

during the lifetime of the measuring process. The speed of evaluation is done by step size

parameter α

Ct = Ct−1 + α(rt − Ct−1) (5.4)

where Ct−1 is the weight average from the last step. α is the step size parameter (constant)

0 ≤ α ≤ 1. rt is a reward from running process in time t.

5.4 Summary

This chapter presented a network on chip analysis from the side of communication, hard-

ware cost and video processing. The emphasis was done to FPGA restrictions. According

to the presented parameters of the networks we chose the 2D-Mesh topology as the most

suitable for our future simulation of the self adaptive system.

Further we presented three routing algorithms for routing flits in the 2D-Mesh network.

The text described principles of routing algorithms and tests of their impact on full load

network.



76 CHAPTER 5. NETWORK ON CHIP

The end of the chapter described details of the network we will use in our simulation.

We defined parameters of the network; like link capacity, communication latency and move

function delay that we will use to evaluate network performance during the simulation of

an adaptive network.



Chapter 6

Placing Applications

This chapter describes methods how to place and improve placement of applications tasks

in a 2D-Mesh network implemented on an FPGA device. First we discuss parameters

and constrains that have to be met during a placement process. Next we design three

placement algorithms that can be used to reach placement constrains. Each of the designed

algorithms has own specific features suitable for different case.

When we have a network with placed applications, we need some parameters for mea-

suring effectiveness of the data processing. For this purpose we will use a cost function

that will measure parts and the whole network. The cost will be based on communication

in the network connection matrix to evaluate loading of each region of the network.

To improve effectiveness of the running network we will design an algorithm that

adapts placement on the network according to the current communication load. The

adaptive algorithm will be run in each node to work independently and without any central

controller. As an input, the algorithm will use cost values of involved nodes. The success

of the adaptation process will be measured by the network cost that shows effectiveness

of the communication in the network.

The last part of the chapter will introduce a simulation framework built to test adap-

tation of the algorithms. We will choose three sets of applications that test a stream and a

parallel types of applications and their improvement after adaptation process. To test the

usefulness of adaptation placement in real life of the network, we will simulate process of

placing and releasing applications on the network and their improvement during life time

with incremental adaptation.

77



78 CHAPTER 6. PLACING APPLICATIONS

6.1 Placing Tasks to Nodes

The application that we want to run on the network has to be placed to it. The application

is broken down to small tasks that can be processed by nodes in the network. The tasks

are placed to nodes by a placement algorithm. The placement algorithm finds the best

node for each task according to the number of nodes and network parameters.

The following notation is used for analyze the placing application on a network on

chip:

px = Node in the network G(P,L) where px ∈ P

lij = Link between two nodes where lij ∈ L

vx = Task from an application A(V,E) where vx ∈ V

eij = Interaction between two tasks where eij ∈ E

hmin(ps, pd) = Minimal hop distance between source node ps ∈ P and

destination node pd ∈ P

pred(vk) = Task pred(vk) is predecessor of task vk

dist(vk, pf ) = Distance between placed task vk and free node pf ∈ Pf

Pf = Group of free nodes from P

Mdist = Manhattan distance matrix with distances between all nodes in P

Mhop = Hop matrix contains number of hops between node p00 ∈ P and

node pij ∈ P

Munused = Unused matrix with occupation of nodes P

Network Model

The network model is defined using a connection graph. The connection graph is a direct

graph G(P,L), where each vertex pi ∈ P represents a node in the mesh topology. The edge

between vertices pi and pj denoted lij ∈ L represents a connection between two nodes in

the mesh network. lij is considered to be direct from node pi to node pj . To describe the

parameters of the network we introduce hop distance H. hij ∈ H represents the number

of the edges between nodes pi and pj . C introduces the cost of path. cij ∈ C represents

the cost of the path between nodes pi and pj .

In the previous chapters we described NoCs and we have chosen the chooses mesh

topology as the best topology for designs with dynamic reconfiguration. The mesh topol-

ogy offers the best proportion between scalability and connection of nodes. We defined



6.1. PLACING TASKS TO NODES 79

the mesh network as a pair G(P,L). On the other hand we have applications that we need

to run on the mesh network. An application is defined by a pair A(V,E).

Application Model

The application model is defined in the same way as the network model. The application

model decomposes application A to tasks vi ∈ V and their interactions eij ∈ E. The

application can be written as a pair A(V,E). Each vertex vi ∈ V represents one task, and

each edge eij represents an interaction between task vi and task vj . eij is considered as a

direct interaction and reflects how task vi influences task vj .

Definition 6.1.1 For the purpose of a future placement algorithm we define a predecessor

of the node vj as pred(vj) and a successor of the node vi as succ(vi). The predecessor and

the successor are defined as:

∀vi; vj ∈ V ; (vi, vj) ∈ ∃ ⇔ vi ∈ pred(vj) ∧ vj ∈ succ(vi) (6.1)

Placement Algorithm

The placement algorithm is a process that assigns tasks vi ∈ V to nodes pj ∈ P in the

network. A placed application is described by an application model, and the network is

described by the network model. Placement is a projection of application tasks to nodes

in the network.

Definition 6.1.2 The placing process defined by the placement algorithm to places groups

of tasks vi ∈ V to groups of nodes pj ∈ P according to constrains defined by the application

area and the network topology.

V 7→ P : ∀vi ∈ V, ∃pj ∈ P ; place(vi) = pj (6.2)

Hop Distance

The hop distance is a distance between two nodes that shows how many links have to be

passed to deliver a flit from the source node to the destination node. It is one method to

define a cost of delivering flits between two tasks.



80 CHAPTER 6. PLACING APPLICATIONS

Definition 6.1.3 The minimal hop distance hmin(ps, pd) is the length of the shortest path

from the source node ps to the destination node pd.

The minimal hop distance is equivalent to the efficiency of the communication and

energy consumption.

In the following definitions we will use two dimensional mathematic expressions because

in chapter 5 we have chosen the 2D-Mesh network as the best network for the Self-Adaptive

system. The implementation of the 2D-Mesh network allows us to restrict to only two

dimensions.

Definition 6.1.4 The distance dist(vs, pf ) is the number of the link in the path from the

source task vs placed on node to the destination node pf .

dist(vs, pf ) =

{
0 ⇔ place(vs) = ∅
|ps(x)− pf (x)|+ |ps(y)− pf (y)| otherwise

Manhattan Distance and Hop Matrix

We need to know a distance (number of hops) between two nodes to place tasks in nodes.

To find a distance (i.e. the number of hops in the network) in a graph we can use the

Manhattan distance matrix defined below.

Definition 6.1.5 The Manhattan distance matrix Mdist shows the distance between two

nodes in an orthogonal network.

Mdist =

∣∣∣∣∣∣∣∣
0 pij . . .

pji 0 . . .
...

...
. . .

∣∣∣∣∣∣∣∣
pxy = |pi(x)− pj(x)|+ |pi(y)− pj(y)|

where pxy(x) and pxy(y) are coordinates [x, y] of node pxy in the network P .

The distance values are used by the placement algorithm. The Manhattan distance

matrix can be used, but its size increases quadratically when increasing the network size.

This becomes a problem when we consider the memory limits in embedded systems. For

this reason we define the hop matrix Mhop. The elements of the hop matrix Mhop contain



6.1. PLACING TASKS TO NODES 81

Mhop =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

∣∣∣∣∣∣∣∣∣∣∣∣∣
(a) Hop matrix Mhop

Munuse =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0

1 0 1 1 0

0 0 1 1 0

0 0 0 0 1

0 1 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(b) Unused node matrix Munused

Figure 6.1: An example of a hop matrix 6.1(a) and unused node matrix

6.1(b) for a mesh network of 5x5 nodes.

for each node in the network its distance in hops from origin defined at the node [0, 0]. It

can be easily implemented in hardware as a memory array. It leads to fast access to the

distance information. An example of a hop matrix for a 5x5 network is in Figure 6.1(a).

Definition 6.1.6 The hop matrix Mhop shows number of hops from the node at coor-

dination [0, 0]. Subtractions of the two values on two elements we have number of hops

between nodes.

Mhop =

∣∣∣∣∣∣∣∣
p00 p10 . . .

p01 p11 . . .
...

...
. . .

∣∣∣∣∣∣∣∣
pxy = |pxy(x)− p00(x)|+ |pxy(y)− p00(y)|

where pxy(x) and pxy(y) are coordinates [x, y] of node pxy in the network P .

Unused Node Matrix

We need a fast method to find an occupation of node in network by any task from run-

ning application. For this purpose we define an unused node matrix that describes the

occupation of all nodes in the network.

Definition 6.1.7 The unused node matrix Munused shows nodes that contain task vi of

any running application ak ∈ A. If node pxy executes task vi the matrix Munused contains

1 at position [x, y], otherwise the matrix element is set to 0.



82 CHAPTER 6. PLACING APPLICATIONS

Munused =

∣∣∣∣∣∣∣∣
p00 p10 . . .

p01 p11 . . .
...

...
. . .

∣∣∣∣∣∣∣∣
pxy =

{
0 ⇔ ∃vi ∈ V, vi ∈ pxy

1 ⇔ ∀vi ∈ V, vi /∈ pxy

where pxy is a node in the network P and vi is a task from application A running in the

network.

The unused node matrix Munused is used by the placement algorithm. It contains

information about the occupation of nodes by tasks. The implementation of the unused

node matrix in hardware is done by a memory array. This guarantees fast access to the

occupation information. An example of the unused node matrix for a 5x5 mesh network

is in Figure 6.1(b).

First Node Placement

The first node placement algorithm is based on placing tasks vi on the first free node

pj in the network. The first free node is chosen from the unused node matrix Munused.

The first node placement algorithm is the fastest placement algorithm, and its hardware

cost implementation is minimal. The most significant problem of the placing task is its

inefficient use of the network and heavy communication load. The reason for using this

algorithm is its short placing time on an low loaded network. Figure 6.2 shows an example

of two applications placed on the network by a first node placement algorithm.

Best Node Placement

The best node placement algorithm is based on placing task vk on a free node pj with a

minimal hop distance between placed taks vs and free node pj .

vk ∈ V ∃pj ∈ Pf ⊂ P ; place(vk) = pj ∧ dist(pj , vs) = min (6.3)

where dist(pj , vs) is the hop distance from the last placing task vs and node pj . Pf is a

group of free nodes from P .



6.1. PLACING TASKS TO NODES 83

S1

1 6 3

2 7 4

3 8 5

4 1 6

5 2 7

S2

(a) An application placed on

the network. The stream

application is light grey,

the parallel application is

dark grey

’fnmap.mesh’ matrix

 0

 20

 40

 60

 80

 100

(b) A graph of network utilization. The network

path cost Cnet = 283 and the network hop cost

Hnet = 9.

Figure 6.2: Two applications placed by First Node Placement algorithm.

The placement algorithm finds the nearest free node pj to the last placed task vs.

The hop distance is calculated from the hop matrix. The time to find the best node is

equivalent to the number of nodes in network.

The best node placement algorithm is suitable for pipelined applications that can

be broken down to more chained tasks. It generates an effective and fast placing of an

application to the network. The hardware cost of the algorithm is low and it is suitable for

loaded networks. Figure 6.3 shows an example of two applications placed on the network

by the best node placement algorithm. We can see that the network path cost is better

than in case of the first node placement.

Multi-Best Node Placement

The Multi-Best Node placement algorithm is based on placing a task vk on a free node

pj that has a minimal distance from tasks in N(vk). The tasks in N(vk) have direct

connections to vk.

vk ∈ V ∃pj ∈ Pf ⊂ P ; ∀vs ∈ pred(vk);
∑

vs∈pred(vk)

dist(place(vs), pj) = min (6.4)



84 CHAPTER 6. PLACING APPLICATIONS

S1

2 3 7

1 4 6

6 5 5

7 1 4

8 2 3

S2

(a) An applications placed on

the network. The stream

application is light grey,

the parallel application is

dark grey

’bnmap.mesh’ matrix

 0

 20

 40

 60

 80

 100

(b) A graph of network utilization. The network

path cost Cnet = 223 and the network hop cost

Hnet = 7.

Figure 6.3: Two applications placed by the Best Node Placement algo-

rithm.

where dist(place(vs), pj) is the hop distance from task vs placed on node to node pj . The

group of tasks N(vk) are tasks palced on nodes that interact with task vk. Pf is a group

of free nodes and subset of nodes from P .

The Multi-Best Node placement algorithm is most suitable for parallel applications

that can be broken down to more tasks that work concurrently. It generates an effective

placement of such applications on the network. The hardware cost of the algorithm is

acceptable for FPGA chips and it works in loaded network. Figure 6.4 shows an example

of two applications placed on the network by the Multi-Best Node placement algorithm.

We can see that the network path cost is better than in the case of first node placement

and best node placement.

Get-Best Node Algorithm

The Get-Best Node algorithm finds the best position for task vbest in the network. The

best position is determined by the hop distance from its predecessor tasks already placed

on the network. The algorithm finds a node in a group of unused nodes only. The hop

distance is counted from the hop matrix, see Figure 6.1(a).

The principle of Algorithm 1 is to count the distance from all nodes with the predecessor



6.1. PLACING TASKS TO NODES 85

S1

2 6 7

1 4 6

3 7 5

5 8 4

1 2 3

S2

(a) An application placed on

the network. The stream

application is light grey,

the parallel application is

dark grey

’mbnmap.mesh’ matrix

 0

 20

 40

 60

 80

 100

(b) A graph of the network utilization. The network

path cost Cpath = 203 and the network hop cost

Chop = 6.

Figure 6.4: Two applications placed by the Multi-Best Node Placement

algorithm.

pf1

pbest

pf3

pf2

D
is

t 
=

 2
D

is
t 
=

 2

Dist = 3

Figure 6.5: Example of the best node for task with three placed predeces-

sors.

tasks of task vbest and all unused nodes in the network. The unused node with the minimal

hop distance to the nodes with predecessor tasks is the best node pbest to place task vbest

on it. Figure 6.5 shows the best node pbest with minimal distance from nodes pf that

contain predecessor tasks of task vbest.

To implement of the algorithm in hardware we will the use the hop matrix Mhop,

unused node matrix Munused, see Figure 6.1(b) and the list of predecessors of the task we

want to place on the network.

To process all unused nodes takes nnode operations, to process all predecessors takes

nprec and to count distance Distf takes two operations. The algorithm takes 2nnodenprec



86 CHAPTER 6. PLACING APPLICATIONS

Input: Unused nodes, placed predecessors of task vbest

Output: Best Node Position pbest for task vbest

1 foreach unused Node i do

2 foreach Predecessor of vbest placed on pf do

3 Distf =
∑

|pi(x)− pf (x)|+ |pi(y)− pf (y)|
4 end

5 if Distbest > Distf then

6 Distbest = Distf

7 pbest = pi

8 end

9 end

Algorithm 1: The algorithm finds the best position in the network for task vbest. The

position is determined by the shortest distances from its predecessors placed in the

network.

operations. The worst case for our network size 5x5 is 1200 operations (2 ∗ 25 ∗ 24) and in

an average case it requires 192 operations (2 ∗ 12 ∗ 8).

6.2 Network Parameters Evaluation

The previous text introduced the network and application model and placement algorithms

to place tasks of applications to the network. Now we have a running network with several

applications, and we need to measure parameters of the network to assess effectiveness of

processing data on the network. To assess the network we define a cost that measures

effectiveness of parts of the network. The cost value can be used as a parameter for a future

adaptation of the network placement and for increasing performance of the network. We

define the following costs:



6.2. NETWORK PARAMETERS EVALUATION 87

Clink = Link cost reflects loading of link by communication

Cflit = Flit path cost reflects cost of path passed by the flit from the source

Hflit = Flit hop cost reflects the number of links passed by the flit from the source

Cnet = Net cost reflects cost of paths passed by all flits in the network

Hnet = Net hop reflects the number of links passed by all flits in the network

L′ = Sequence of links the flit passed during its delivery

α = a step size parameter in the range 0 ≤ α ≤ 1 for calculating a weight

average of costs

Link Cost Evaluation

The link cost Clink reflects the use of a communication link between two nodes. It is a

weighted average of all flits that passed through the link during a defined time. The link

cost can be in the range [0 − 100] where 100 means fully used a link and 0 is an unused

link. Using a link with Clink near 100 can lead to its overloading and delaying flits in the

network. The link cost parameter is used for calculating flit path cost during the adapting

process of a node.

Clink(t+1) = Clink(t) + α(f − Clink(t)) (6.5)

where α is the evaluation speed parameter, f is reward from passing flits through the link.

If the flit passes, f = 100, otherwise f = 0. t is time.

Flit Cost and Hops Evaluation

The flit path cost Cflit says how expensive it was to deliver the flit from a source task to

the current task. It is a sum of all link costs Clink of links between the nodes that the

flit passed through. The flit hop cost Hflit says how many links the flit passed during its

delivery from a source task to the current task. The ratio of the flit path cost and flit hop

cost indicates the quality of the path the flit passed.

Cflit =
∑
l∈L′

Clink(l); L′ = (l1, l2, l3, ...ln) (6.6)

Hflit =
∑
lı∈L′

1 = |L′|; L′ = (l1, l2, l3, ...ln) (6.7)



88 CHAPTER 6. PLACING APPLICATIONS

where L′ is the sequence of links the flit passed during its delivery.

Network Cost Evaluation

The network cost contains two parameters, the network path cost Cnet and the network

hop cost Hnet. Both the parameters say how the network is fragmented compared to the

theoretical minimum of the network cost for the current set of applications. The network

path cost is a weighted average of all flit path costs of flits that reached their destination

nodes over the whole network. The network hop cost is a weighted average of all flit hop

cost of flits that reached their destination nodes over the whole network.

Cnet(t+1) = Cnet(t) + α(
∑
i∈A′

∑
j∈V ′

∑
k∈T ′

Cflits(i, j, k)− Cnet(t)) (6.8)

Hnet(t+1) = Hnet(t) + α(
∑
i∈A′

∑
j∈V ′

∑
k∈T ′

Hflits(i, j, k)−Hnet(t+1) (6.9)

where A′ denotes all the running applications, V ′ denotes all the destination nodes in

applications and T ′ denotes all flits that reached their destination node.

6.3 Self-Adaptive Placement

The running network accommodates and releases lots of applications during its life. The

applications are accommodated irregularly according to incoming requests from the en-

vironment. When an application processes all data, the network releases it. These two

operations cause fragmentation of tasks in the network. A fragmented network has higher

power consumption and longer data processing.

We developed an algorithm that improves parameters of the network without inter-

rupting its work. The algorithm improves the fragmentation of tasks. The Step-Adaptive

Algorithm is based on statistical information available at each node that contains a task.

An autonomous and independent algorithm without a centralized unit was the main re-

quirement when developing the algorithm. The algorithm tries to adapt the current place-

ment of a task on nodes by removing tasks independently step-by-step. We call the

algorithm Step-Adaptive Algorithm, see Algorithm 2. The algorithm incrementally adapts

task placement on the network according to the current communication.

The following notation is used to analyze the communication on a network on chip:



6.3. SELF-ADAPTIVE PLACEMENT 89

Cport = a port cost reflects the communication on a port of a node pi ∈ P

α = a step size parameter in the range 0 ≤ α ≤ 1 for calculating a weight

average of costs

βmagnetic = a coefficient that increases the port cost of direct neighbour nodes vi and vj

with Hmin(vi, vj) = 1

Principle

The Step-Adaptive Algorithm look for the best placement of all running applications on

the network. The network hop cost Hnet and network path cost Cnet are two parameters

used for measuring the adaptive process of the network as a whole. The algorithm uses a

port cost Cport to measure local parameters influenced by the process. Further we use the

flit path cost Cflit and flit hop cost Hflit that were introduced in Section 6.2.

The main principle of the algorithm is to move a task from its current node to a

neighbour node with the biggest port cost Cport of the current node. The task moves in

the same direction as the data come from. If the task meets a task with the biggest port

cost Cport, it tries to move around. If the task meets the source task, the algorithm stops.

Each node has an independent counter with a random seed that invokes the Step-

Adaptive Algorithm for the node. The node needs to know only its port cost and port

cost and occupation of its neighbour nodes. It allows to adapt a node independently of

any central unit and central information.

Definition 6.3.1 The port cost calculates loading of each port by incoming flits that are

processed in the node. It show the direction of incoming data. We have two types of the

port cost:

Path method: port cost calculates from flit path cost Cflit that says how expensive it

is to deliver flits from the source to the node.

Cport(t+1) = Cport(t) + α(βmagneticCflit(t) − Cport(t))

Hop method: port cost calculate from flit hop cost Hflit that says the distance from

the source to the node that the flits have to pass to get delivered.

Cport(t+1) = Cport(t) + α(βmagneticHflit(t) − Cport(t))



90 CHAPTER 6. PLACING APPLICATIONS

where Cflit(t) or Hflit(t) is a flit value to passed port l in time t. α is a positive step size

parameter in the range 0 ≤ α ≤ 1. βmagnetic is a constantly increasing relation between

direct neighbours. Each port of the node has its own port cost Cport.

We use only flits that are processed in the current node to calculate the port cost. Flits

that only pass through the node do not influence the port cost directly. They influence

only the link cost Clink. The link cost influences the flit path cost Cflit. The link cost

doesn’t influence the flit hop cost Hflits.

Definition 6.3.2 The coefficient βmagnetic increases the port cost of the node when the

source task is a direct neighbour node of the current node. The size of the coefficient

depends on the type of the method used to calculate the port cost.

βmagnetic =


1 if Hflit > 1 for path and hop method

< 1− 1.9 > if Hflit = 1 for path method

< 1− 3 > if Hflit = 1 for hop method

The coefficient βmagnetic influences the relation between nodes during adaptation. It re-

flects that source and destination tasks placed to neighbour nodes have a bigger port cost

than when they are far away from each other.

Rules

The Step-Adaptive Algorithm moves tasks according to basic moving rules. Moving rules

define behaving of tasks during adaptation. The rules are classified in two classes according

to the number of incoming streams of flits to a task. We have rules for one-stream tasks

and for multi-stream tasks.

The rules are in figure 6.6. Rules A, B, and C are valid for both one-stream and

multi-stream tasks. Rules D and E are valid only for one-stream tasks and rules F and G

are valid for multi-stream tasks.

Algorithm 2 applicates rules for adapting tasks positions. The following text describes

details of each rule and its implementation in the algorithm.

Rule A defines a behaviour when a task reaches its source, see the algorithm line 7. In

this case the port cost of the node is increased by multiplying it with the magnetic

coefficient βmagnetic. Than other nodes must have a higher port cost to remove the



6.3. SELF-ADAPTIVE PLACEMENT 91

SOURCE DEST.

C = 5 C = 10

UNUSED C = 10
C = 15 C = 10

C = 5

C = 12

C = 15 C = 10

UNUSED

UNUSED

C = 15 C = 10

C = 5

C = 12

C = 15 C = 8

Rule A

Rule F

Rule G

Rule ERule D

Rule C

Rule B

C
=

1
0

C
 =

 5

C=10no move task

move task

node with incoming 

port and cost = 10

switch tasks

Legend:

Figure 6.6: Rules for moving tasks across nodes during Step-Adaptive Al-

gorithm processing.

task. When the task reaches its external source from outside of the network, the

magnetic coefficient is 2β.

Rule B defines a behaviour when a node moves its task to a free node, see the algorithm

line 4. This move is always done independently of its port cost.

Rule C defines a behaviour when a node wants to move a task to an occupied node, see

the algorithm line 9. If the port cost Costbest of the node is higher than the port

cost max(Costnext) of the occupied node, the tasks at the nodes are swapped.

Rule D defines a behaviour when the neighbour node pnext has a higher port cost than

the current node, see the algorithm lines 18 and 20. In this case the task at the node

is moved to the right node pright or to the left node pleft.



92 CHAPTER 6. PLACING APPLICATIONS

Rule E defines a behaviour when the neighbour node pnext has a higher port cost and

the left and right nodes are occupied, see the algorithm lines 22. The algorithm

tests both the max port cost of the left node pleft and the right node pright. The

task is swapped with the task of the node with a smaller port cost than the current

port cost. If both the costs are higher, then the current port cost task stays at its

position.

Rule F defines a behaviour of a node with two and more streams. The algorithm chooses

the highest port cost Costbest of the current node, and tests if the neighbour node has

a higher port cost max(Costnext). If the Costbest is smaller, the algorithm chooses

the next port with Costbest > 0.

Rule G defines a behaviour of a node with two streams coming from opposite sides.

When one of the right or left node’s port has a lower cost than the cost of the

connecting port of the current node, the algorithm moves the task to the neighbour

node. The algorithm chooses the first port of the current node with the highest cost

Costbest.

Algorithm

The pseudo code of the Step-Adaptive Algorithm is on page 94. The algorithm is imple-

mented in each node of the network. The input of the algorithm is node pn with task vn,

and an actual port cost Cport for each port of node pn. We can split the algorithm to three

parts.

The first part from line 1 to line 11 solves an interaction with the neighbour node pnext

in the direction we want to move the task in the current node. It can moves a task, swap

a task with a task in node pnext, or escape the algorithm without moving task vn

The second part from line 12 to line 14 solves nodes with more input streams. The

code invokes a loop with the first part to the next port of the node.

The last part from line 16 solves walking around a node with a high port cost. It tries

to move the task to the right node pright or the left node pleft from the current node. If

the node doesn’t satisfy any rule, it stays at the same position.

The result of the algorithm improves the position of the task vn in the case that any

of the rules described above was applicable to the node pn with task vn. In other cases



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 93

task stays in the current node pn.

6.4 Simulating the Self Adaptive Placement

The previous text introduced the Placement and Step-Adaptive Algorithm for a network

on chip. These algorithms were designed with respect to the implementation on the FPGA

devices. The FPGA technology restricts mathematical operations mainly to integer types.

From this reason we will respect restrictions in the implementation of the algorithms in

the simulation framework.

We have built the simulation framework in Visual C++ as a program for simulation

of the network. The simulation framework will prove the network architecture introduced

in chapter 5 and the placement and the Step-Adaptive Algorithm.

Simulation Framework

The simulation framework MeshViz, see screenshot in Figure 6.7, is built in the object

oriented C language as a program for personal computer. It implements the simulation

tool for a network with 5x5 nodes. The internal clock of the network is tuned by the

software timer, which allows to change the speed of the simulation and synchronization of

all processes in the network.

The simulation framework contains tools for placing tasks to the network by the First

Node Placement, Best Node Placement and Multi-Best Node Placement algorithms intro-

duced in Section 6.1.

A node can contain one task of an application that is running on the network. Ap-

plications are placed to the network by one of the placement algorithms. The task and

node are identified by coordination [x, y], see Appendix A. A task can migrate from one

node to another. This process is equivalent to the partial dynamic reconfiguration. The

migration process is driven by the Step-Adaptive Algorithm.

Each node has a small process we denoted in Section 4.3 as an observer. This process

monitors incoming and passing flits, and creates statistics for each port. These statistics

are of two types. The observer creates the path cost statistic that is influenced by the

flit path cost Cflit and hop cost statistic that is influenced by flit hop cost Hflit of each

flit incoming to the destination node. It informs the node which port is loaded by the



94 CHAPTER 6. PLACING APPLICATIONS

Data: Node pn with task vn

Result: New node pnew for task vn

1 Get maxCostbest of ports from node pn

2 Neighbour node pnext of node pn where lbest(pnext, pn)

3 Get maxCostnext of ports from node pnext

4 if pnext does not contain a task then

5 Move task vn to node pnext

6 else

7 if pnext contains source of vn then

8 End of the algorithm

9 else if lnext < lbest then

10 Swap task vn and vnext

11 else

12 if pn has more inputs then

13 Costbest = 0;

14 New iteration

15 else

16 Get maxCostright of ports from right node pright

17 Get maxCostleft of ports from left node pleft

18 if pright has not task then

19 Move task vn to node pright

20 else if pleft has not task then

21 Move task vn to node pleft

22 else if Costright > Costleft then

23 if Costbest > Costleft then

24 Swap task vn and vleft

25 else if Costbest > Costright then

26 Swap task vn and vright

27

28 end

29 end

30 end

31 end

Algorithm 2: Step-Adaptive Algorithm



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 95

Figure 6.7: Screeshot of the MeshViz simulation framework with a 5x5

mesh network.

incoming flits and the direction of the source nodes. The Step-Adaptive Algorithm can

use one of the port costs to migrate tasks in the network.

Placement an Application to the Network

The network can contain maximal 25 different applications. For simulation purposes

we can place an application by three placement algorithms and by a random inject. To

simulate different cases of the applications we have serial and parallel types of applications,

for more details see Appendix B.

The application panel of the simulation framework allows to define a type of an appli-

cation, placement algorithms and parameters of the application like the number of nodes,

delay of nodes and rate of flits for application. For easier comparison we defined six sets

of applications that cover the stream type, parallel type and mixed type algorithms, see

Appendix B.

The application panel allows to start, stop and release each application separately. By

this function we can simulate the life time of the network including introducing a new

application invoked by an external event and releasing a finished application from the



96 CHAPTER 6. PLACING APPLICATIONS

network.

Routing Flits

The simulation framework offers three types of routing methods described in Section 5.2.

The routing method significantly influences loading of the connection matrix and the

Step-Adaptive Algorithm. To simulate the test sets we will use the XY routing algorithm.

Simulation process

The simulation process is controlled by the simulation panel on the right side of the

simulation framework. It allows to set the speed of the simulation, start and stop the

simulation and manually tick the internal clock. Each node contains an information about

its tasks and its basic settings. Each application has its own color that identifies its nodes.

The lower line shows an application number, task order number and delay of the task.

The upper line shows the content of the node buffer. Each flit in the buffer is represented

by its application number.

Measuring the Network

The simulation framework implements a measuring process for each node and link in the

network. The measuring process is used to improve the algorithm and calculate the cost of

flits going through parts of the network. Each link has its link cost Clink that is displayed

on each side of the node. The passing flits add the link cost value to its flit path cost and

increment their flit hop cost value.

We have a local and global flit path cost and hop cost. The local flit path cost and

local hop cost is used only between the source node and the destination node of the flit.

The local costs of the flit influence the port cost of the destination node. The global flit

path cost is counted over the whole application and it is a sum of all local flit path costs.

It gives the application cost and hop. The application cost and hop shows the effectivity of

a placed application in the network. The sum of costs of all running applications evaluates

the network cost Cnet and network hop Hnet.

The simulation framework can make a snapshot of the actual traffic over nodes and

links. The mesh graph and its explanation can be found in Appendix A.2. Form this



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 97

graph we can see loading of the network parts. The simulation run can save the network

costs and application costs in a file to see the improvement process and its results. The

sample rate for saving is 500 clock ticks.

The Step-Adaptive Algorithm implemented in the simulation framework uses the cost

of network parts to drive the improving process. The algorithm can be set in the panel.

We can choose from two port statistics: the port cost and port hop. It is set in the panel.

The hop cost is easier to implement in hardware and the path cost is more accurate to

identify loading of the ports.

The second parameter that influences the Step-Adaptive Algorithm is the magnetic.

It sets the magnetism of two neighbor nodes that form a source-destination pair. The

following sections will discuss the impact of the parameter to the Step-Adaptive Algorithm.

The value of 1 is equivalent to the value 0.1 defined in Definition 6.3.2.

The third parameter is the stepsize. The stepsize influences evaluation of the cost

value for links and network. The value of 1 is equivalent to the value 0.01 for parameter

α in Equation 5.4.

Adaptivity Based on the Path Method

The network with six application sets S1 to S6 has been simulated. The Step-Adaptive

Algorithm was driven by the path cost (later called path method) to test its attributes.

We did 150 runs for each set of applications to get the behaviour of the Step-Adaptive

Algorithm. Each 25 runs from a total of 150 runs have a different magnetic coefficient to

observe its impact to the Step-Adaptive Algorithm. The application set can be split to

two groups. First, application sets S1, S2 and S3 test applications with different commu-

nication loads. Second, application sets S4, S5 and S6 have the same communication load.

Graphs of the simulation progress for the first group is in Figure C.2 and for the second

group in Figure C.4. Graphs on the left side show the network hop cost and graphs on the

right side show the path cost of the running application set. The optimal placement appli-

cation set on the network is represented by the line Minimal network cost. The weighted

average of each run with the same magnetic coefficient is represented by the same color.

We have three magnetic coefficients for the path method. Magnetic coefficient 10 is small

enough not to influence the Step-Adaptive Algorithm, magnetic coefficient 15 already in-

fluences short paths, and magnetic coefficient 19 doubled the magneticity between two



98 CHAPTER 6. PLACING APPLICATIONS

nodes.

The simulation for the first group should test behaviour of applications with a low and

high communication load. We want to know if the magnetic coefficient can influence the

Step-Adaptive Algorithm and see its impact on high communication load applications as

well as low communication load applications.

From Graphs C.3(a) and C.3(b) of the set S1 it can be seen that different magnetic

coefficients can generate better results. The run with the magnetic coefficient 10 has a

result than runs with higher magnetic coefficient. This result was supported by another

measurement on the set S1. From the graphs C.3(c) and C.3(d) of the set S2 it can

be seen that different magnetic coefficients cannot improve results of the Step-Adaptive

Algorithm. From Graphs C.3(e) and C.3(f) of the set S3 it can be seen that a higher

magnetic coefficient cannot improves result of the Step-Adaptive Algorithm.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 27.5/254 20.6/254 74.6/94 36.1/233 45.8/132 29.8/133

β = 15 29.1/434 22.6/591 72.5/55 36.2/272 47.9/277 32.4/349

β = 19 27.6/303 21.3/831 84.0/134 38.3/134 47.2/322 31.0/322

Table 6.1: Minimal network hop and path cost of the Step-Adaptive Algo-

rithm with the path method on the test sets S1, S2, S3 and the

iteration when it reached minimum.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.000 1.001 1.102 1.056 1.006 1.023

β = 15 1.058 1.099 1.070 1.058 1.053 1.112

β = 19 1.003 1.033 1.241 1.119 1.037 1.066

Table 6.2: Approximation of network hop and path cost of the Step-

Adaptive Algorithm with the path method on the test sets S1,

S2, S3. Value 1 means minimal cost.

From Table 6.1 we can see the best network cost and the iteration it was reached in

by the Step-Adaptive Algorithm with different magnetic coefficients. From Table 6.8 we

can see that all the sets can get very near to the minimal network cost. For the set S1 it

can reach the minimal network cost.



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 99

The simulation on the second group should test the behaviour applications with same

communication load and impact of magnetic coefficient to the Step-Adaptive Algorithm.

From Graphs C.4(a) and C.4(b) of the set S4 we can see that the magnetic coefficient

can significantly improve result of the Step-Adaptive Algorithm. This is caused by the

elimination of power that holds neighbour nodes in case of M=10. Without the magnetic

coefficient the stream applications strongly influence themselves and they cannot get near

to the minimal network cost. From Graphs C.4(c) and C.4(d) of the set S5 and Graphs

C.4(e) and C.4(f) of the set S6 we can see that the magnetic coefficient cannot influence the

results. It is because tasks in parallel applications have more input streams from different

sides, and cannot migrate to only one source. In such cases the magnetic coefficient cannot

be used.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 53.1/988 33.5/747 20.2/193 20.3/253 64.2/48 35.0/392

β = 19 48.0/288 30.0/288 21.2/110 21.6/244 71.5/34 36.4/129

β = 29 48.0/597 30.0/597 20.2/385 20.2/203 68.2/317 37.7/324

Table 6.3: Minimal network hop and path cost of the Step-Adaptive Algo-

rithm with the path method on the test sets S4, S5, S6 and the

iteration when it reached this minimum.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.106 1.118 1.000 1.014 1.174 1.166

β = 19 1.000 1.000 1.019 1.080 1.306 1.213

β = 29 1.000 1.000 1.000 1.012 1.247 1.256

Table 6.4: Approximation of network hop and path cost of the Step-

Adaptive Algorithm with the path method on the test sets S4,

S5, S6. Value 1 means minimal cost.

Adaptivity Based on the Hop Method

Another simulation was done with different input parameters of the Step-Adaptive Al-

gorithm with the same six groups of application sets as in the simulation above. The



100 CHAPTER 6. PLACING APPLICATIONS

Step-Adaptive Algorithm was driven by the hop cost (later called the hop method) to test

its attributes. We performed from 150 to 600 runs for each set of the application as before

to get the behaviour of the Step-Adaptive Algorithm driven by the hop cost. Each group

of runs have a different magnetic coefficient.

Graphs of the simulation progress for applications with different communication loads

is in Figure C.3 and for applications with the same communication load in Figure C.5.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 27.5/351 20.6/356 68.8/186 34.7/310 47.5/227 29.6/349

β = 20 27.5/341 20.6/341 73.7/17 37.8/248 50.2/384 29.5/172

β = 30 28.7/913 22.6/477 77.4/33 36.2/177 47.6/244 31.1/346

Table 6.5: Minimal network hop and path cost of the Step-Adaptive Algo-

rithm with the hop method on the test sets S1, S2, S3 and the

iteration when it reached this minimum.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.000 1.001 1.016 1.014 1.045 1.016

β = 20 1.000 1.001 1.088 1.105 1.104 1.015

β = 30 1.043 1.098 1.144 1.060 1.047 1.068

Table 6.6: Approximation of network hop and path cost of the Step-

Adaptive Algorithm with the hop method on the test sets S1,

S2, S3. Value 1 means minimal cost.

From the simulation on the first group we can see a small difference in the progress

of the stream type applications, in Figures C.3(a) and C.3(b). Other two sets don’t show

significant differences between various magnetic coefficients when we use the hop method

for driving the Step-Adaptive Algorithm. From Graph C.3 and Tables 6.7 and 6.8 we can

reach the same conclusions as for simulations with the path cost method.

The simulations on the second group of application sets don’t bring any differences

between the hop method and the path method.



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 101

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 48.0/567 30.0/567 20.3/376 21.9/377 58.8/140 32.5/373

β = 30 50.0/395 31.6/403 20.3/268 21.1/214 55.2/383 30.9/383

β = 50 53.3/262 33.3/262 22.1/116 22.8/159 60.5/131 32.8/328

Table 6.7: Minimal network hop and path cost of the Step-Adaptive Algo-

rithm with the hop method on the test sets S4, S5, S6 and the

iteration when it reached this minimum.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.000 1.000 1.003 1.093 1.075 1.083

β = 30 1.042 1.055 1.007 1.053 1.009 1.030

β = 50 1.110 1.110 1.096 1.141 1.106 1.092

Table 6.8: Approximation of network hop and path cost of the Step-

Adaptive Algorithm with the hop method on the test sets S4,

S5, S6. Value 1 means minimal cost.

Step Adaptive Algorithm Comparison

We introduced two methods for driving the Step-Adaptive Algorithm and test them on

six application test sets to find all features specific to each method. We will split the

simulation results to two groups. Group one will contain test sets S1, S2 and S3 with

different communication loads. Group two will contain test sets S4, S5 and S6 with

the same communication load. To compare the simulation results we count the average

network cost for each test set and for each magnetic coefficient. The average cost is not

count over all iterations of the improvement process, but after the network cost stabilized.

Test sets S1, S2 and S3

Table 6.9 contains average network costs calculate by the path method and Table 6.11

contains average network costs calculate by the hop method. From these two tables we

can see that both methods have very similar results, and we cannot exactly say which of

the methods works better. Tables 6.10 and 6.12 contain a proportion between the minimal

network cost and average network cost. Both the methods are able to reach a proportion



102 CHAPTER 6. PLACING APPLICATIONS

between 1.5 and 1.2.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 34.3 25.9 105.6 42.1 65.9 39.2

β = 15 41.3 30.2 107.6 42.3 64.1 37.9

β = 19 42.4 31.2 109.4 42.8 64.1 38.7

Table 6.9: Average of the network hops and path cost of Step Adaptive

algorithm with the path method on the test sets S1, S2, S3.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.246 1.259 1.560 1.232 1.448 1.349

β = 15 1.502 1.464 1.589 1.238 1.409 1.301

β = 19 1.542 1.515 1.616 1.252 1.410 1.331

Table 6.10: Average approximation of the network hops and path cost of

Step Adaptive algorithm with the path method on the test sets

S1, S2, S3. Value 1 means minimal cost.

Graphs on pages 132 and 133 show the network cost progress during the Step-Adaptive

Algorithm. The graphs contain the minimal network cost and network cost reached by the

Multi-Best Node placement in an empty network (MBN Placement). Improving network

placement by Step adaptive algorithm is not able to reach at least the same network

cost as by the MBN placement. It is caused by one dominant application with high

communication load being present in each test set.

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 39.0 28.0 97.6 41.8 69.2 40.3

β = 20 32.6 25.2 97.1 41.6 62.7 37.8

β = 30 39.5 29.6 97.7 42.2 65.5 39.2

Table 6.11: Average of the network hops and path cost of Step Adaptive

algorithm with the hops method on the test sets S1, S2, S3.



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 103

Set1 Set1 Set2 Set2 Set3 Set3

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 1.418 1.358 1.442 1.221 1.522 1.383

β = 20 1.186 1.223 1.434 1.216 1.379 1.298

β = 30 1.436 1.439 1.443 1.234 1.440 1.346

Table 6.12: Average approximation of the network hops and path cost of

Step Adaptive algorithm with the hops method on the test sets

S1, S2, S3. Value 1 means minimal cost.

Test sets S4, S5 and S6

Table 6.13 contains average network costs gained by the path method on test sets S4, S5

and S6 Table 6.15 contains average network costs gained by the hop method on the same

test sets. From Tables 6.13 and 6.15 we can see that both the methods have problem with

improving the network placement without the magnetic coefficient M=10. From Graphs

C.4(b) and C.5(b) we can see that a small magnetic coefficient can cause oscillations in

the network cost with the same stream applications.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 110.7 59.0 26.1 25.1 104.4 48.1

β = 19 60.6 36.6 26.8 25.8 97.8 47.8

β = 29 68.5 40.7 26.2 25.1 98.3 47.3

Table 6.13: Average of the network hops and path cost of Step Adaptive

algorithm with the path method on the test sets S4, S5, S6.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 2.306 1.967 1.294 1.255 1.908 1.603

β = 19 1.262 1.220 1.327 1.288 1.788 1.594

β = 29 1.427 1.356 1.295 1.256 1.798 1.576

Table 6.14: Average approximation of the network hops and path cost of

Step Adaptive algorithm with the path method on the test sets

S4, S5, S6. Value 1 means minimal cost.

The main difference between the methods can be seen for applications of the parallel



104 CHAPTER 6. PLACING APPLICATIONS

type (set S5). The result of the path method is two times better than for the hop method.

Sets S4 and S6 show similar results for both methods.

The result of the Step-Adaptive Algorithm is close to the Multi-Best Node placement

algorithm for both methods. It is caused by the same communication load of applications,

the MBN Placement algorithm places applications sequentially and the second application

already cannot occupy the best nodes for itself. The network cost of the MBN Placement

strongly depends on the placing order of applications mainly with different communication

loads.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 104.0 56.0 34.0 28.6 88.8 44.5

β = 30 68.9 39.8 33.3 27.8 93.7 44.7

β = 50 67.1 40.7 34.2 28.2 89.0 43.0

Table 6.15: Average of the network hops and path cost of Step Adaptive

algorithm with the hops method on the test sets S4, S5, S6.

Set4 Set4 Set5 Set5 Set6 Set6

Cnet Hnet Cnet Hnet Cnet Hnet

β = 10 2.167 1.865 1.682 1.430 1.624 1.485

β = 30 1.436 1.328 1.649 1.389 1.713 1.491

β = 50 1.397 1.358 1.694 1.412 1.628 1.434

Table 6.16: Average approximation of the network hops and path cost of

Step Adaptive algorithm with the hops method on the test sets

S4, S5, S6. Value 1 means minimal cost.

From the previous simulations and comparisons of both the methods and from the

comparison graph in Figure 6.8 we can conclude that for applications with different com-

munication loads we can use both the methods with similar results. For applications with

the same communication loads we need the magnetic coefficient and the path method can

have better results for parallel applications.

The graphs on page 136 show a standard deviation for all the test sets and the hop

method. The graphs indicate that the Step-Adaptive Algorithm has stable results for all

test sets.



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 105

 0

 0.5

 1

 1.5

 2

 2.5

 3

S1 S2 S3 S4 S5 S6

A
ve

ra
ge

 a
pp

ro
xi

m
at

io
n

Application test sets

P-M10/10
P-M15/19
P-M19/29
H-M10/10
H-M20/30
H-M30/50

Minimal Network Cost

Figure 6.8: Bar graph compares average approximation of application test

sets.

Network Cost Influenced by Applications

To choose the right composition of applications in the network and the right magnetic co-

efficient we need to know how parameters of the running applications influence the network

cost. Figure C.1 shows an impact of application costs on the network cost during progress

of the Step-Adaptive Algorithm. The network cost is mainly influenced by applications

with higher communication load. The low communication load applications have only a

small impact on the network cost. From this we can say that when the application with

a higher communication load reaches a cost near to the minimal cost, the improvement

process can be stopped. Longer runs do not bring about any improvement. The designs

that have to reduce task migration can improve only the placement of high communication

load applications.

Stream Application Tests

Stream type applications are most used in image processing and computer graphics. Paral-

lelism of these applications can be seen on more stream applications that work concurrently

in one network. From this reason we want to know the behavour of the Step-Adaptive

Algorithm in the network with only stream applications. As two test cases we chose five

stream applications, each with four nodes, and two stream applications, each with nine



106 CHAPTER 6. PLACING APPLICATIONS

nodes. All the applications have the same rate of incoming flits. We want to see the

interaction of the applications as the placement, and their effectiveness in terms of use of

the network resources us.

As in the first test case we run five equal stream applications in the network, see Figure

6.9. We use two placement algorithms to inject applications to the network. To simulate

a real situation when applications are injected in the network that already processes a

number of applications we use random placement. The loading graph of the network with

the random placement algorithm is in Figure 6.9(a). We can see an unfolded communi-

cation in the whole network and the network path cost Cnet is 595, and the network hop

cost Hnet is 165. The minimal network path cost in this case is 121.3, and the network

hop cost is 50. This placement reached the to minimal network cost after 350 iterations.

To simulate network cost improvement after injecting five stream applications in an

empty network we used the Multi-Best Node Placement Algorithm. This placement al-

gorithm reaches a better network cost than random placement. The network starts with

the network path cost Cnet equal to 194, and the network hop cost Hnet equal to 64.

This placement reached the minimal network cost after 145 iterations. The minimal cost

is reached faster than with the random placement because the initial network costs are

smaller. The Step-Adaptive Algorithm for this test case generates the minimal network

cost. The result of the network loading is in Figure 6.9(c). We can see that all applica-

tions were replaced to chains to optimize their communication. Figure 6.9(d) shows the

improving progress of the network hop cost and the network path cost with the random

placement (Rand.Place.) and with the Multi-Best Node Placement (MBN Place.). The

Step-Adaptive Algorithm used the magnetic coefficient equal to 20.

The comparison of the two different starts of the network shows that both reached the

minimal network cost. The run with the Multi-Best Node placement reached the minimal

network cost two times faster than with the random placement. The improving Multi-Best

Node placement can downgrade the network cost for a short time, but the final result gets

improved by 37%. In the case of the random placement the improvement is 79.6%, but

because the starting network cost is three times worse. Comparing Graphs 6.9(a) and

6.9(b) we can see that the Multi-Best Node placement can eliminate the problem with

overloaded node links.

As the second test case we run two equal stream applications in the network, see Figure



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 107

Network loading

Six Equal Hops M=20
fileBM matrix

Iteration

C
os

t

 0

 10

 20

 30

 40

 50

(a) Network load after placement an application

with the Random Node Algorithm

Network loading

Six Equal Hops M=20
"sixMB-h20-beg.mesh" matrix

Iteration

C
os

t
 0

 10

 20

 30

 40

 50

(b) Network load after placement an application

with the Multi-Best Node Alagorithm

Network loading

Six Equal Hops M=20
fileEM matrix

Iteration

C
os

t

 0

 10

 20

 30

 40

 50

(c) Network load after improving a placement of an

application by the Step-Adaptive Algorithm

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300  350  400

C
os

t

Iteration

Six Equal Hops M=20
Net.Path Cost Rand.Place M=20
Net.Hops Cost Rand.Place M=20
Net.Path Cost MBN Place M=20
Net.Hops Cost MBN Place M=20

(d) Improving network cost Cnet and Hnet with

the Step-Adaptive Algorithm with the Random

Node placement and Multi-Best Node place-

ment at the start of the network.

Figure 6.9: Evolution of network parameters when using the Step-Adaptive

Algorithm for six equivalent stream applications.



108 CHAPTER 6. PLACING APPLICATIONS

6.10. We use two placement algorithms as in the first test case to inject applications to

the network. The loading graph of the network with the random placement algorithm is in

Figure 6.10(a). We can see unfolded communications in the whole network, and network

path cost Cnet is 450, and the network hop cost Hnet is 156. The minimal network path

cost for this test case is 68.8, and the network hop cost is 36. The random placement

reached the minimal cost after 660 iterations.

We injected two equal stream applications by the Multi-Best Node placement algorithm

to simulate network cost improvement by the Step-Adaptive Algorithm. The network

starts with the network path cost Cnet with 76.4 and the network hop cost Hnet with 40.

From the simulation results we see that behaviour of applications during the improving

process depends on the magnetic coefficient. When the magnetic coefficient is smaller

than 30, the applications oscillate, and the network cost can increase as we can see in

Figure 6.10(d), blue and violet lines. When the magnetic coefficient is higher than 30, the

magneticity between the neighbor nodes is big enough to generate placement as best as

with the Step-Adaptive Algorithm, see Figure 6.10(d), light blue and yellowlines.

We can see that all applications in both the tests were reshaped to chains that are

near to most efficient in terms of communication. The conclusion of the tests for stream

applications is that the improvement process leads a near optimal placement. From the

results of the second test case we can see that, a higher magnetic coefficient produces

better results with the of Step-Adaptive Algorithm, and it can prevent bad placement by

the Multi-Best Node placement algorithm.

Comparing the Placement and Self Adaptive Algorithm

We simulated the Step-Adaptive Algorithm with different values of the magnetic coefficient

and the measuring method in the previous text. All these tests were done on the test sets

from Appendix B. The test sets test the interaction of applications with each other during

the improvement process. The test sets cannot prove the behavour of the improvement

process when placing new applications to the network.

This section will test the Step-Adaptive Algorithm in real network life when new

applications are placed to the network and finished applications are released from the

network. For placing a new application we use the Multi-Best Node placement algorithm

and the random placement algorithm that places an application to a running network.



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 109

Network loading

fileBMR matrix

Iteration

C
os

t

 0

 10

 20

 30

 40

 50

(a) Network load after placement an application

with the Random Node algorithm

Network loading

fileBMM matrix

Iteration

C
os

t
 0

 10

 20

 30

 40

 50

(b) Network load after placement an application by

the Multi-Best Node algorithm

Network loading

fileEMR matrix

Iteration

C
os

t

 0

 10

 20

 30

 40

 50

(c) Network load after improving the placement of

applications by the Step-Adaptive Algorithm

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  100  200  300  400  500  600  700  800  900  1000

C
os

t

Iteration

Net.Path Cost Rand.Place M=20
Net.Hops Cost Rand.Place M=20
Net.Path Cost MBN Place M=20
Net.Hops Cost MBN Place M=20
Net.Path Cost MBN Place M=30
Net.Hops Cost MBN Place M=30

(d) Improving network cost Cnet and Hnet with

the Step-Adaptive Algorithm with the Random

Node placement and Multi-Best Node place-

ment at the start of the network.

Figure 6.10: Evolution of network parameters when using the Step-

Adaptive Alagorithm for two equivalent stream applications.



110 CHAPTER 6. PLACING APPLICATIONS

Type Place Release Rate Nodes

Stream 77 237 12 2

Stream 77 1197 10 2

Stream 77 1197 8 2

Stream 77 237 15 2

Stream 77 877 4 2

Stream 77 1197 6 2

Stream 77 877 4 2

Parallel 557 2797 8 9

Parallel 957 1517 3 8

Parallel 1197 2157 15 6

Stream 1837 2477 15 4

Stream 1837 2477 3 4

Type Place Release Rate Nodes

Parallel 2317 2797 15 3

Parallel 2317 2477 4 3

Stream 2637 3434 15 2

Stream 2637 - 10 2

Stream 2637 - 3 2

Stream 2637 - 15 2

Stream 2637 - 10 2

Stream 2637 - 3 2

Stream 3117 - 15 2

Stream 3117 - 10 2

Stream 3117 - 3 2

Stream 3434 - 3 4

Table 6.17: List and parameters of applications placed and released on the

network to test impact of the Step-Adaptive Alagorithm to the

network cost.

The Multi-Best Node placement algorithm improves positively the cost of applications by

choosing the best free node for each task of the application.

Table 6.17 summarizes applications and their parameters that we use to test the Step-

Adaptive Algorithm in real life of the network. Each line of the table represents one

algorithm that is placed to the network. The algorithm is described by its type, placing

time and releasing time. Further important parameters are the rate of the flits processed

by an application and the number of nodes that are occupied by an application. A closer

description of the stream and parallel application types is in Appendix B.

First, we test only application placing by the Multi-Best Node placement algorithm

without any adaptation by the Step-Adaptive Algorithm. Figure C.7(c) shows the network

hop cost (blue line). Figure C.7(d) shows network path cost (blue line). Each change of

the value is caused by placing or releasing an application. We can see cases with low

communication load and high communication load of the network communication that is

equivalent to high and low network cost.

To test if the Step-Adaptive Algorithm can bring a better network cost in time than

just placing applications to the network, we measured the network cost during the life



6.4. SIMULATING THE SELF ADAPTIVE PLACEMENT 111

time of the network with applications like in the first test case. In this case we start the

Step-Adaptive Algorithm with the hop method and the magnetic coefficient equal to 20.

The result of the test is in Figure C.7(c) that shows the network hop cost (red line) and

Figure C.7(d) that shows the network path cost (red line). From these graphs we can see

that in almost all cases the Step-Adaptive Algorithm improved the network costs after

any change in the applications running in the network.

When we study the graphs in Figure C.7, we can note the placement process changes

the network cost. The Step-Adaptive Algorithm starts improving the placement and the

network cost that was changed by a new application. In the case of an application with a

heavy communication load the improvement became better than in the case of application

with low a communication load.

An application with a heavy communication load is placed to free nodes in the net-

work. But these nodes cannot be really the most suitable nodes, and the application

can significantly increase the network cost. A typical case is when we place several low

communication load applications, and later we place heavy communication load applica-

tions. The heavy communication load application cannot be placed near the data source

because of the previous application. It will increase mainly the network path cost. The

Step-Adaptive Algorithm starts moving tasks with a heavy communication load to their

source and push low communication load tasks out from their nodes.

When we compare the types of applications running in the network, we can see that

the stream applications reached better improvement by the Step-Adaptive Algorithm than

the parallel applications. It is due to heavy transfer between nodes with serial connections.

Another conclusion is that more small applications have better improvements than

fewer bigger applications. It is caused by the independency of the small applications.

The tasks of the small applications can be moved easier than large applications. Large

applications create long walls from tasks tied together by their communications.

From the test of real application cases in the network we can conclude that the place-

ment algorithm can bring some improvement compared to the random node placement,

but there is still enough space to improve the network cost. This improvement can be done

by the Step-Adaptive Algorithm. The Step-Adaptive Algorithm brings improvements in

most of the cases from 20% to 40% compared to the network cost gains by the Multi-Best

Node Placement Algorithm.



112 CHAPTER 6. PLACING APPLICATIONS

6.5 Simulation Results

The previous sections introduced the simulation framework with the Step-Adaptive Al-

gorithm and two methods for driving the improvement process in the running network.

With these tools and methods we simulated six types of application sets that cover many

real but different application cases. From the simulation we can assess the application

behaviour in the network and their improvement.

We introduced two methods for driving the Step-Adaptive Algorithm. The complex

path cost method that respects the communication load of the links in the network and the

easier hop cost method that uses only the distance between a source task and a destination

task. In the current state both methods have very similar results, and they can be used for

driving improvement process successfully. The implementation cost of the path method

is much higher than the hop method, we can conclude that the hop method is better for

the self-Adaptive network on an FPGA device. Probably the path method can have much

better results in connection with the routing algorithm that will open another dimension

for routing and placing to the network.

We designed the Step-Adaptive Algorithm for improving task placement in the net-

work. With this we introduced the magnetic coefficient that holds neighbor tasks together.

From the simulation we can see that the magnetic coefficient can significantly influence

stream type applications with the same communication load. Generally the magnetic coef-

ficient can control all stream type applications placing. We can use the magnetic coefficient

to force an application to group tasks in a chain and decrease delays in a concrete appli-

cation. In the case of parallel applications the magnetic coefficient doesn’t work because

the task works with more input streams.

The Step-Adaptive Algorithm is designed to improve placement of applications in a

running network. Injecting and releasing an application from the network increase task

fragmentation in the network, and we need the Step-Adaptive Algorithm for task defrag-

mentation. The Step-Adaptive Algorithm improves network fragmentation even when we

use the Multi-Best Node placement algorithm to inject applications in the network. From

the simulation of a real life time of the network we can see that the Step-Adaptive Algo-

rithm can significantly improve the placement. An average improvement during the life

time of the network is between 20% and 40%. It strongly depends on the type of the



6.6. SUMMARY 113

application and on the communication load of the application.

We simulated a self-Adaptive network in the simulation framework to find suitable

network topology and improvement algorithm. All restrictions for simulation come from

the FPGA platform that is our target platform for the self-Adaptive network. They

reguire us to find an undemanding topology and algorithms that can be implemented on

the FPGA devices. From this reason we prefer the Step-Adaptive Algorithm with the hop

method for implementation. The result of the hop method is similar as the path method,

but the implementation of the cost calculation hardware block is much easier than for the

path method.

6.6 Summary

The chapter discussed application placing to a network and continuous improvement of

placed running applications. At the beginning of the chapter we defined a network model

and an application model and a placing process that places applications to the network.

We introduced a matrix that contains information about the current placement on the

network and its implementation in hardware. For the placing application we designed three

placement algorithms. Each placement algorithm is suitable for a different application type

and can handle the placing process with different speed and effectivity of placing tasks to

the network.

The next part of the chapter introduced measuring efficiency of processing data in the

network. We defined cost functions of links, paths and network that can be measured by

two methods, by the path cost that reflects the cost of delivering packets from a source

node to a destination node, and the hop cost that reflects the distance between a source

node and a destination node. The cost values are inputs to the adaptation process and

can explain its effectivity and successfulness.

The self-Adaptive placement section introduces the Step-Adaptive Algorithm and its

principles. The Step-Adaptive Algorithm is a mechanism that moves tasks in the network

and increases the effectivity of processing data in the network.

The end of the chapter test the Step-Adaptive Algorithm on six sets of testing ap-

plications that cover stream type applications, parallel type applications and mixed type

applications. There are two groups of test runs. First there are tests of the Step-Adaptive



114 CHAPTER 6. PLACING APPLICATIONS

Algorithm with the cost function based on the path cost, and second we run tests with the

hop cost function. The text continues with a comparison of these two groups of test runs.

Finally we present a test on a real network life with consecutive injection of new appli-

cations to the network and releasing finished applications. These tests are done only for

the placement algorithms and for runs with placement algorithm and the Step-Adaptive

Algorithm to see if the improvement can be achieved on the running network.



Chapter 7

Conclusion

The basic analysis of the partial dynamic reconfiguration of FPGA devices has been done

to the start of the thesis. Three different reconfiguration types have been introduced and

their complexity was determined. The full bitstream reconfiguration with O(n), differential

bitstream reconfiguration with O(n2) and empty bitstream reconfiguration with O(n). Each

of the reconfiguration types is suitable for different applications.

Stream type applications and control type applications have been identified as two

basic classes of reconfigurable applications. It opens a new dimension in FPGA devices,

increases variability and adaptability of the hardware. For this reason the functional

density has been defined and the basic condition for maximizing the function density has

been specified as reconfiguration time ≪ execution time

On the previous knowledge the methodology for dynamic reconfiguration has been

prepared and the technological barriers have been solved. The two commercially available

FPGA platforms have been presented - Virtex from Xilinx Inc. and FPSLIC from the

Atmel Corporation, both have features that allow to implement partial dynamic recon-

figuration. The reconfiguration controller and the wrapper to connect dynamic modules

with the static part has been designed. With the platforms and the basic blocks the

way to implement a reconfigurable coprocessor has been opened. We implemented two

reconfigurable coprocessors on the FPGA platforms. The comparison of the coprocessors

shows that the FPSLIC platform is suitable for small and portable devices with low power

consumption and Virtex is suitable for complex and large designs with the main demand

on device speed.

115



116 CHAPTER 7. CONCLUSION

To open new possibilities of the partial dynamic reconfiguration self-adaptivity has

been determined as an important principle for future reconfigurable devices. The require-

ments of self-adaptive systems have been researched, and a self-adaptive element has been

designed as the basic building block of the self-adaptive systems based on the FPGA

devices. The basic building blocks of the self-adaptive element have been defined: Recon-

figurable computing unit, Observer, Controller unit and Communication interface. To test

the design of the self adaptive element a ring topology network with four elements with

FIR filter functions has been implemented. The results of the tests on the ring network

show that the principle of the self adaptive element works. We found important to store

the past state in the elements and not to transport them in packets together with data.

The analysis of the networks on chip has been done to find the most suitable connec-

tion network to connect self-adaptive elements in a self-adaptive system. Seven network

topologies have been presented and compared from the side of the hardware cost and the

communication cost. As the most suitable network for self-adaptive elements implemented

on the FPGA devices we chose the 2D-Mesh network. The scalability and regular shape

has been found as important features for the self-adaptive system.

Because of huge implementation demand in hardware of a network on chip with self-

adaptive elements we only simulated the parts of the self-adaptive systems. We verified

their function and a possibility of a real implementation of the partial dynamic reconfigu-

ration on the FPGA devices and the function and structure of the self-adaptive element.

Parameters gained from the previous implementations we used in the simulation of the

future self-adaptive systems. The model of the network and application has been defined.

The placement process has been described by three placement algorithms suitable for

stream and parallel application types. The placement algorithms have been designed with

respect to the restrictions of the FPGA technology and the possibility to simulate real

application scenarios.

To adapt functions of the network and improve the parameters of the running network,

parameters of the network have been defined and the Step-Adaptive Algorithm has been

designed. The Step-Adaptive Algorithm uses features of the partial reconfiguration and

the function of the observer block in the self-adaptive element to move tasks across nodes

in the network and improve the network parameters.

To verify the Step-Adaptive Algorithm and network topology the simulation framework



117

has been developed on the personal computer platform. Six application test sets have

been composed to cover all possible real cases. We defined two measuring methods for

the Step-Adaptive Algorithm: The Path cost method that is more complex, but it has

a higher hardware cost, and the Hops cost method that covers only distances, but its

hardware cost is lower. We have been simulating runs for both methods and for all six

application test sets to find the features of the Step-Adaptive Algorithm in the mesh

network. From the simulation we can see that both methods have the same results in the

case of concurrently running applications with different communication load. In the case

of applications with the same communication load we found that stream applications need

the magnetic coefficient to get better results and parallel applications have better results

with the path cost method. From the results of the simulation we can conclude that the

path cost methods have not enough. Better results compared to its hardware cost, and we

can say that the hop cost method with the magnetic coefficient from 20 up can bring the

best ratio between the implementation demands and improving the results in the mesh

network.

At the end a simulation of a real case of the self-adaptive network has been tested.

A set of 24 different applications has been continuously placed and released to/from the

network by the Multi-Best Node placement algorithm with and without the Step-Adaptive

Algorithm. The result was that the self-adaptivity can bring about 20% to 40% improve-

ment. The bigger improvement can be gained for applications with high communication

load.

The contribution of the thesis is the analysis of the possibilities of partial dynamic

reconfiguration and its composition with self-adaptivity. The self-adaptive elements con-

nected in a scalable and parameterized network opens new possibilities for implementa-

tion of stream processing designs with high functional density. It decreases the cost of

the hardware by increasing its functional density. The thesis introduced placement and

self-adapting algorithms with respect to the restrictions of the FPGA technology. With

an increasing size of the FPGA devices a future implementation of huge networks with

self-adaptive elements can manage future complex multi-core designs.

The future work will focus on implementing knowledge in modern FPGA devices and

preparing a self-adaptive platform to accommodate a wide range of stream applications.



118 CHAPTER 7. CONCLUSION

7.1 Objectives Revisited

In this section, the dissertation objectives presented in introduction of the thesis are briefly

reviewed and the achieved results are presented:

• To introduce a new technology of partial dynamic reconfiguration we performed a

low level analysis of the reconfiguration process and the design methods that lead

to designing reconfigurable hardware on reconfigurable devices.

The analysis of the complexity of dynamic reconfiguration has been done and two

classes of dynamically reconfigurable designs have been introduced in Chapter 2.

• To increase the variability and adaptability of the reconfigurable hardware we an-

alyzed the functionality of the partial reconfigurable hardware and its restrictions

and extensions.

The increasing functionality of the reconfigurable design has been presented and the

ratio between the reconfiguration time and the processing time has been presented as

the key parameter of the reconfiguration design in Chapter 2.

• To open a new reconfigurable platform the methodology of the design. Hardware

has been modified to cover specific steps that allow to implement design with partial

reconfiguration.

An analysis of two commercially available FPGA platforms has been presented. A

methodology for designing reconfigurable designs has been introduced and configura-

tion bitstream organization, the wrapper module and the reconfiguration controller

have been presented in Chapter 3 as the key parts of a reconfigurable design.

• To validate the possibility of using the partial dynamic reconfiguration the reconfig-

urable coprocessors with reconfigurable features will be built on two commercially

available hardware platforms that allow to implement the reconfiguration process.

Two reconfigurable FPGA coprocessors based on the presented platforms have been

designed and implemented to verify the theoretical knowledge presented in Chapter 2

and Chapter 3. Both reconfiguration coprocessors have been compared.



7.1. OBJECTIVES REVISITED 119

• To increase the variability of the reconfiguration features the self-adaptive element

will be designed as the basic building element of self-adaptive systems based on re-

configurable hardware. The self-adaptive element will be designed as an independent

IP core that will be able to adapt its function according to the requirements ot the

environment.

Self-adaptivity and the key factor and requirements have been presented in Section

4.1. The self-adaptive element and its basic building block have been designed in

Section 4.2 as the basic element of future self-adaptive systems. An implementation

of a self-adaptive system with self-adaptive elements has been done in Section 4.4 to

prove the design of the element and self-adaptibility of the whole system.

• To create a suitable environment for the self-adaptive elements the analysis of the

current network on chip topologies suitable for reconfigurable hardware will be done.

According to this we will choose the best network topology to connect self-adaptive

elements.

The analysis of the network on chip topologies has been done in section 5.1 to find

best topology for the self-adaptive system. The 2D-Mesh topology has been chosen

in section 5.2 as the most suitable topology to connect self-adaptive elements in a

self-adaptive system.

• To use the chosen network the basic parameters and placement algorithms have to

be introduced. They ensure first the injection of an application to the network and

its start and interaction with already running applications in the network.

The network and application model have been introduced. Three placement algorithms

have been designed in Section 6.1.

• To measure and evaluate the effectiveness of using the network the cost functions

will be set up. They will be the input parameters to the adaptation process.

The network cost parameters have been set up in Section 6.2 to measure the success-

fulness of the adaptation process.

• To improve the effectiveness of the running network that is fragmented by injecting

and releasing applications an adaptive algorithm has to be designed. The adaptive



120 CHAPTER 7. CONCLUSION

algorithm will be part of each node in the network, and it will guarantee that nodes

will adapt their function to the most suitable function for a given case in the possible

range of node’s neighborhoods.

The Step-Adaptive Algorithm has been designed in section 6.3. The two cost methods

have been used to verify the Step-Adaptive Algorithm and the methods have been

compared. A real example of a self-adaptive system has been simulated to show how

an application placement improves due to the adaptation process in the network.

7.2 Summary of Author’s Contribution

The author’s contribution consists of:

• Analysis of the complexity of the reconfiguration process.

• Cooperation on implementation of the reconfigurable coprocessors based on the At-

mel FPSLIC platform and the reconfigurable methodology for the Atmel FPSLIC

platform.

• Implementation of the self-adaptive element and the self-adaptive system on a ring

network to verify the design of the self-adaptive concept on FPGA devices.

• Analysis of network topologies to find the most suitable topology for connecting the

self-adaptive elements in one system.

• Development of three placement algorithms for the network on chip.

• Development of the Step-Adaptive Algorithm for improving placement on the run-

ning network and ways for measuring successfulness of the placing process.

• Implementation of the simulation framework to verify the self-adaptive system based

on the mesh network and test the parameters of the self-adaptive system.



Appendix A

Network Traffic Visualization

All the previous chapters describe a network on chip (network) and algorithms that run

on it. For a better explanation of the network parameters and their characterization this

appendix explains the notation and parameters we used.

A.1 Network Notation

We use a 2D-mesh network with 25 nodes organized in a matrix of 5x5 in all the examples

and descriptions, see Figure A.1. The notation of nodes starts from the top left corner.

The top left node has coordinates [0, 0] and the bottom right node has coordinates [4, 4].

The axis X represents columns and axis Y represents rows in the network mesh.

The Network has five inputs and five outputs. The inputs are connected to the left

side of the network through the west port Win. The outputs are connected to the bottom

side of the network through the south port Sout.

A.2 Network Parameters Expression

The logical model of the node is in Figure A.2. The node has an execution unit P that

processes incoming data and a transfer unit T that routes incoming data to the desired

output or to the execution unit. The transfer unit can be seen as a network router. Each

node except edge nodes has four input ports and four output ports. Ports are called

North, East, South and West according to the direction from the node. They connect

121



122 APPENDIX A. NETWORK TRAFFIC VISUALIZATION

[0,0] [1,0] [2,0] [3,0] [4,0]

[0,1] [1,1] [2,1] [3,1] [4,1]

[0,2] [1,2] [2,2] [3,2] [4,2]

[0,3] [1,3] [2,3] [3,3] [4,3]

[0,4] [1,4] [2,4] [3,4] [4,4]

IN2

X

Y

IN1

IN0

IN3

IN4

OUT0 OUT1 OUT2 OUT3 OUT4

Figure A.1: Numbering of nodes in the network, and input/output ports

for communication with environment.

P
WIN

WOUT

EOUT

EIN

S
IN

S
O
U
T

N
O
U
T

N
IN

T

P
WIN

WOUT

EOUT

EIN

T

P
EOUT

EIN

S
IN

S
O
U
T

N
O
U
T

N
IN

T

P
WIN

WOUT

S
IN

S
O
U
T

N
O
U
T

N
IN

T

P
WIN

WOUT

EOUT

EIN

T

Figure A.2: Explanation of the NoC graph with dataflow and data process-

ing at a node and ports. Port names: North, East, South and

West.

nodes together and create the network connection matrix.

The model from Figure A.2 corresponds to the network graph. Each element of the

network graph visualizes one node with its ports. The node and ports are filled by a gray

color that represents use of the visualized part. If the execution unit or other parts of the

node are used near to 100%, it is filled with a dark gray or black color. If the execution

unit or other parts of the node are unused, it is filled with a white color, they don’t appear

on the network graph. The scale legend is on the right side of the graph and the scale

is in percents unless stated otherwise. Figure A.3(b) shows the network graph with two

running applications.



A.2. NETWORK PARAMETERS EXPRESSION 123

S1

2 3 7

1 4 6

6 5 5

7 1 4

8 2 3

S2

(a) An example of two appli-

cations placed on the net-

work. A stream applica-

tion is light grey, a parallel

application is dark grey.

S1 and S2 are data sources

for the applications.

’bnmap.mesh’ matrix

 0

 20

 40

 60

 80

 100

(b) An example of a NoC graph with two applica-

tions and its dataflow and data processing.

Figure A.3: Two applications placed on the NoC and their dataflow and

data processing graph.

Figure A.3(a) shows applications placed on the nodes in the network. The color denotes

groups of nodes that form one application. The number in the node identifies the task in

the application. The sources of the running applications are represented by Sx on the left

side of the network. The outputs of the network are connected to nodes at the bottom of

the network. They are represented by Ox.

Matrix A.3(a) and heat graph A.3(a) identify tasks and their dataflow in the network.

The placed applications are described in Appendix B. For the test purpose we use a serial

and a parallel application model. Tasks of the serial application model are numbered

sequentially. In the parallel application the concurrently working nodes are numbered in

interval < 2, n − 1 >. The first and last nodes in the parallel application distribute and

pick up packets to/from the nodes that work concurrently.



124 APPENDIX A. NETWORK TRAFFIC VISUALIZATION



Appendix B

Testing Applications

We use sets of the basic testing applications to prove the parameters of placement and

improvement algorithms. The testing applications are of two types. The first is the stream

type, see Figure B.1(a), that contains several tasks that communicate in a serial way. The

second type of application contains nodes that work concurrently, see Figure B.1(b). The

first node prepares and sends flits to the concurrently working nodes. The last node

collects flits from the concurrently working nodes. This application models for parallel

applications.

We created six sets of applications that contain the application types described above.

These sets prove our network for a wide range of applications including their concurrent

execution in the network. All the tests in this thesis have been done with the following

sets of applications

Stream Type Set

The test set S1 contains three stream applications with different flit rates and with the

following parameters. It models the stream-type graphic algorithms like filter, erosions or

subtractions. The minimal number of hop for the set is 20.6, and the minimal path for

the set is 27.5.

125



126 APPENDIX B. TESTING APPLICATIONS

Type Nodes Rate Start Delay Hops Path

Stream 5 5 1 2 10 19.2

Stream 6 10 3 2 6 5.5

Stream 7 15 5 2 4.6 2.8

The test set S4 contains three stream applications with the same flit rates and with

the following parameters. It models stream-type graphic algorithms like filter, erosions or

subtractions. The minimal number of hop for the set is 30, and the minimal path for the

set is 48.

Type Nodes Rate Start Delay Hops Path

Stream 5 5 1 2 8.3 13.3

Stream 6 5 3 2 10 16

Stream 7 5 5 2 11.7 18.7

Parallel Type Set

The test set S2 contains two parallel applications with the different flit rates and with

the following parameters. The set models parallel-type graphic algorithms like coloring or

AdaBboost. The minimal number of hop for the set is 34.2, and the minimal path for the

set is 67.7.

Type Nodes Rate Start Delay Hops Path

Parallel 8 2 1 4 21.2 52.4

Parallel 10 5 3 4 13 15.3

The test set S5 contains two parallel applications with the same flit rates and with

the following parameters. The set models parallel-type graphic algorithms like coloring or

AdaBoost. The minimal number of hop for the set is 20, and the minimal path for the set

is 20.8.

Type Nodes Rate Start Delay Hops Path

Parallel 8 4 1 4 10 11.3

Parallel 10 4 3 4 10 9.5



127

Mixed Type Set

The test set S3 contains one parallel application and two stream applications with different

flit rates and with the following parameters. The set models concurrent execution of

parallel and serial types of graphic algorithms like coloring and erosions. The minimal

number of hop for the set is 29.1 and the minimal path for the set is 45.5.

Type Nodes Rate Start Delay Hops Path

Parallel 8 3 1 4 15.1 26

Stream 5 5 3 2 10 17.2

Stream 5 15 5 2 4 2.3

The test set S6 contains one parallel application and one stream application with the

same communication load and with the following parameters. The set models concurrent

execution of parallel and serial types of graphic algorithms like coloring and erosions. The

minimal number of hop for the set is 30, and the minimal path for the set is 54.7.

Type Nodes Rate Start Delay Hops Path

Parallel 9 2 1 4 22.9 50.4

Stream 9 14 3 2 7.1 4.3

All the sets have been designed to model different types of applications executed in

the network. They occupy 72% of the nodes in the network. The rate of the flits for each

application was chosen in a wide range to test the behaviour of different application load

on the network and their influence on each other during improving the network. The sets

test the placement behaviour and mainly the improvement algorithms during their run.

The tables of the sets show the parameters of the applications used in the set. Each task

in the application have delay parameter that specifies cycle delay for one flit processed

inside. The parameters hops and path present minimal placement of the application. The

value can be influenced by other applications running on the network concurrently. These

parameters were found by the random placement with selection of the best result. We

cannot test all possibilities for the reason of the huge number of combinations 25!.

The following table shows the minimal network cost and the network cost reached by

the Multi-Best Node placement (MBN Place) into an empty network.



128 APPENDIX B. TESTING APPLICATIONS

1 2 n-1 n

(a) An example of a typical stream application with

n tasks.

1

2

n-1

n

n-2

3

(b) An example of a typical

parallel application with n

tasks.

Figure B.1: Two types of test applications used in the sets.

S1 S2 S3 S4 S5 S6

min(Cnet) 27.5 67.7 45.5 48 20.2 54.7

min(Hnet) 20.6 34.2 29.1 30 20 30

MBNPlaceCnet 30 96.5 62.9 61.6 37.3 76.7

MBNPlaceHnet 22.7 40.3 34.9 35 26.4 32.1



Appendix C

Progress Graphs

This appendix contains progress graphs for simulations of the test sets in the simulation

framework. The progress graphs are part of Chapter 6. They show the behaviour of the

network and its parameters when improving the placement of the running applications.

Brief information about the content of the graphs is in the caption under each graph.

Application comparison The graphs show behaviour of each application in the test set.

The impact on the network cost can be seen from the graphs. See Figures on page

131.

Improving the Placement with the Path Method shows the progress of improving

the application sets S1, S2 and S3 placed by the Step-Adaptive Algorithm with the

path method as input parameters of algorithm. See Figures on pages 132 and 136.

Improving the Placement with the Hops Method shows the progress of improving

the application sets S1, S2 and S3 placed by the Step-Adaptive Algorithm with the

hop method as input parameters of algorithm. See Figures on pages 133 and 136.

Improving the Placement with the Path Method shows the progress of improving

the application sets S4, S5 and S6 placed by the Step-Adaptive Algorithm with the

path method as input parameters of algorithm. See Figures on pages 134 and 136.

Improving the Placement with the Hops Method shows the progress of improving

the application sets S4, S5 and S6 placed by the Step-Adaptive Algorithm with the

hop method as input parameters of algorithm. See Figures on pages 135 and 136.

129



130 APPENDIX C. PROGRESS GRAPHS

Real Example of Improving Placement shows the progress of improving the appli-

cation placement by the Step-Adaptive Algorithm with the hop method as input

parameters of algorithm. The graph shows injecting and releasing applications dur-

ing the life time of the network. See Figures on page 137.



131

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Application S1 M=20
Network S1-h M=20

App S1-h M=20
App S1-h M=20
App S1-h M=20

(a) Network and S1 applications path cost progress.

The Step-Adaptive Algorithm with the path

method.

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Application S1 M=19
Network S1-p M=19

App S1-p M=19
App S1-p M=19
App S1-p M=19

(b) Network and S1 applications path cost progress.

The Step-Adaptive Algorithm with the hops

method.

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Application S2 M=20
Network S2-h M=20

App S2-h M=20
App S2-h M=20

(c) Network and S2 applications path cost progress.

The Step-Adaptive Algorithm with the path

method.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Application S2 M=19
Network S2-p M=19

App S2-p M=19
App S2-p M=19

(d) Network and S2 applications path cost progress.

The Step-Adaptive Algorithm with the hops

method.

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Application S3 M=20
Network S3-h M=20

App S3-h M=20
App S3-h M=20
App S3-h M=20

(e) Network and S3 applications path cost progress.

The Step-Adaptive Algorithm with the path

method.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Application S3 M=19
Network S3-p M=19

App S3-p M=19
App S3-p M=19
App S3-p M=19

(f) Network and S3 applications path cost progress.

The Step-Adaptive Algorithm with the hops

method.

Figure C.1: Network and application path cost progress for the Step-

Adaptive Algorithm.



132 APPENDIX C. PROGRESS GRAPHS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Networks S1-p
Net S1-p M=10
Net S1-p M=15
Net S1-p M=19

min(Hnet)
MBN Placement

(a) Network hops cost Hnet for application S1 run-

ning for 1000 iterations.

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Networks S1-p
Net S1-p M=10
Net S1-p M=15
Net S1-p M=19

min(Cnet)
MBN Placement

(b) Network path cost Cnet for application S1 run-

ning for 1000 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S2-p
Net S2-p M=10
Net S2-p M=15
Net S2-p M=19

min(Hnet)
MBN Placement

(c) Network hops cost Hnet for application S2 run-

ning for 400 iterations.

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S2-p
Net S2-p M=10
Net S2-p M=15
Net S2-p M=19

min(Cnet)
MBN Placement

(d) Network path cost Cnet for application S2 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S3-p
Net S3-p M=10
Net S3-p M=15
Net S3-p M=19

min(Hnet)
MBN Placement

(e) Network hops cost Hnet for application S3 run-

ning for 400 iterations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S3-p
Net S3-p M=10
Net S3-p M=15
Net S3-p M=19

min(Cnet)
MBN Placement

(f) Network path cost Cnet for application S3 run-

ning for 400 iterations.

Figure C.2: The Step-Adaptive Algorithm progress for test sets S1, S2 and

S3 with the path cost Cflit.



133

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Networks S1-h
Net S1-h M=10
Net S1-h M=20
Net S1-h M=30

min(Hnet)
MBN Placement

(a) Network hops cost Hnet for application S1 run-

ning for 1000 iterations.

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Networks S1-h
Net S1-h M=10
Net S1-h M=20
Net S1-h M=30

min(Cnet)
MBN Placement

(b) Network path cost Cnet for application S1 run-

ning for 1000 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S2-h
Net S2-h M=10
Net S2-h M=20
Net S2-h M=30

min(Hnet)
MBN Placement

(c) Network hops cost Hnet for application S2 run-

ning for 400 iterations.

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S2-h
Net S2-h M=10
Net S2-h M=20
Net S2-h M=30

min(Cnet)
MBN Placement

(d) Network path cost Cnet for application S2 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S3-h
Net S3-h M=10
Net S3-h M=20
Net S3-h M=30

min(Hnet)
MBN Placement

(e) Network hops cost Hnet for application S3 run-

ning for 400 iterations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S3-h
Net S3-h M=10
Net S3-h M=20
Net S3-h M=30

min(Cnet)
MBN Placement

(f) Network path cost Cnet for application S3 run-

ning for 400 iterations.

Figure C.3: The Step-Adaptive Algorithm progress for test sets S1, S2 and

S3 with the hops cost Hflit.



134 APPENDIX C. PROGRESS GRAPHS

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Networks S4-p
Net S4-p M=10
Net S4-p M=19
Net S4-p M=29

min(Hnet)
MBN Placement

(a) Network hops cost Hnet for application S4 run-

ning for 1000 iterations.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Networks S4-p
Net S4-p M=10
Net S4-p M=19
Net S4-p M=29

min(Cnet)
MBN Placement

(b) Network path cost Cnet for application S4 run-

ning for 1000 iterations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S5-p
Net S5-p M=10
Net S5-p M=19
Net S5-p M=29

min(Hnet)
MBN Placement

(c) Network hops cost Hnet for application S5 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S5-p
Net S5-p M=10
Net S5-p M=19
Net S5-p M=29

min(Cnet)
MBN Placement

(d) Network path cost Cnet for application S5 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S6-p
Net S6-p M=10
Net S6-p M=19
Net S6-p M=29

min(Hnet)
MBN Placement

(e) Network hops cost Hnet for application S6 run-

ning for 400 iterations.

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S6-p
Net S6-p M=10
Net S6-p M=19
Net S6-p M=29

min(Cnet)
MBN Placement

(f) Network path cost Cnet for application S6 run-

ning for 400 iterations.

Figure C.4: The Step-Adaptive Algorithm progress for test sets S3, S4 and

S5 with the path cost Cflit.



135

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Networks S4-h
Net S4-h M=10
Net S4-h M=30
Net S4-h M=50

min(Hnet)
MBN Placement

(a) Network hops cost Hnet for application S4 run-

ning for 1000 iterations.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700  800  900  1000

P
at

h 
co

st

Iteration

Networks S4-h
Net S4-h M=10
Net S4-h M=30
Net S4-h M=50

min(Cnet)
MBN Placement

(b) Network path cost Cnet for application S4 run-

ning for 1000 iterations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S5-h
Net S5-h M=10
Net S5-h M=30
Net S5-h M=50

min(Hnet)
MBN Placement

(c) Network hops cost Hnet for application S5 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S5-h
Net S5-h M=10
Net S5-h M=30
Net S5-h M=50

min(Cnet)
MBN Placement

(d) Network path cost Cnet for application S5 run-

ning for 400 iterations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Networks S6-h
Net S6-h M=10
Net S6-h M=30
Net S6-h M=50

min(Hnet)
MBN Placement

(e) Network hops cost Hnet for application S6 run-

ning for 400 iterations.

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

P
at

h 
co

st

Iteration

Networks S6-h
Net S6-h M=10
Net S6-h M=30
Net S6-h M=50

min(Cnet)
MBN Placement

(f) Network path cost Cnet for application S6 run-

ning for 400 iterations.

Figure C.5: The Step-Adaptive Algorithm progress for test sets S4, S5 and

S6 with the hops cost Hflit.



136 APPENDIX C. PROGRESS GRAPHS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Deviation
s1-h30.Herr

(a) Network hops cost Hnet for S1, standard devia-

tion

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Deviation
s2-h20.Herr

(b) Network hops cost Hnet for S2, standard devi-

ation

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Deviation
s3-h20.Herr

(c) Network hops cost Hnet for S3, standard devia-

tion

 40

 50

 60

 70

 80

 90

 100

 110

 0  100  200  300  400  500  600  700  800  900  1000

H
op

s 
co

st

Iteration

Deviation
s4-h50.Herr

(d) Network path cost Hnet for S4, standard devi-

ation

 25

 30

 35

 40

 45

 50

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Deviation
s5-h10.Herr

(e) Network path cost Hnet for S5, standard devia-

tion

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  50  100  150  200  250  300  350  400

H
op

s 
co

st

Iteration

Deviation
s6-h30.Herr

(f) Network path cost Hnet for S6, standard devia-

tion

Figure C.6: The Step Adaptive algorithm progress for the hop cost calcu-

lation, standard deviation



137

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

H
op

s 
co

st

Iteration

Network Hops Cost
Step Adapt.Alg. Hops MG=20

First Node placing

(a) Network hops cost Hnet for the Step-Adaptive

Algorithm, random node placement.

 0

 100

 200

 300

 400

 500

 600

 700

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

P
at

h 
co

st

Iteration

Network Path Cost
Step Adapt.Alg. Hops MG=20

First Node placing

(b) Network path cost Cnet for the Step-Adaptive

Algorithm, random node placement.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

H
op

s 
co

st

Iteration

Network Hops Cost
Step Adapt.Alg. Hops MG=20

Multi-Best Node placement

(c) Network hops cost Hnet for the Step-Adaptive

Algorithm, Multi-Best Node placement.

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

P
at

h 
co

st

Iteration

Network Path Cost
Step Adapt.Alg. Hops MG=20

Multi-Best Node placement

(d) Network path cost Cnet for the Step-Adaptive

Algorithm, Multi-Best Node placement.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500
-20

 0

 20

 40

 60

 80

 100

Im
pr

ov
em

en
t

H
op

s 
co

st

Iteration

Network Improvement
SA alg. Improvment

No Adapt

(e) Improvment of network hops cost Hnet by the

Step-Adaptive Algorithm.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

-100

-50

 0

 50

 100

 150

 200

 250

 300

Im
pr

ov
em

en
t

P
at

h 
co

st

Iteration

Network Improvement
SA alg. Improvment

No Adapt

(f) Improvment of network path cost Cnet by the

Step-Adaptive Algorithm.

Figure C.7: Comparison of network parameters for the Step-Adaptive Al-

gorith and placement application to the network.



138 APPENDIX C. PROGRESS GRAPHS



Bibliography

A. Mello, L. Copello, F. G. M. and Calazans, N. (2004), ‘Evaluation of routing algorithms

on mesh based nocs’.

Alt (2007), Stratix-II GX - Megafunction User Guide.

Atm (1998), AT40K series cache logic (Mode 4) configuration.

Atm (1999a), AT6000 series configuration.

Atm (1999b), AT6000(LV) series.

Atm (2001a), AT94K series cache logic (Mode 4) configuration.

Atm (2001b), AT94K series configuration.

Atm (2002a), AT40K series.

Atm (2002b), AT40K series configuration.

Atm (2002c), AT94K series FPSLIC.

Banerjee, S., Bozorgzadeh, E. and Dutt, N. (2005), Physically-aware hw-sw partition-

ing for reconfigurable architectures with partial dynamic reconfiguration, in ‘Design

Automation Conference, 2005. Proceedings. 42nd’, pp. 335 – 340.

Bartosinski, R., Daněk, M., Honźık, P. and Matoušek, R. (2005a), Dynamic reconfigu-

ration in FPGA-based SoC designs, in G. Takách, A. Hlawiczka and J. Sziraj, eds,

‘Proceedings of the 8th IEEE Workshop on Designs and Diagnostics of Electronic

Circuits nad Systems’, University of West Hungary, Sopron, pp. 129–136.

139



140 BIBLIOGRAPHY

Bartosinski, R., Daněk, M., Honźık, P. and Matoušek, R. (2005b), Dynamic reconfiguration

in FPGA-based SoC designs. Abstract, in H. Schmidt and S. Wilton, eds, ‘FPGA 2005

- ACM/SIGDA Thirteenth ACM International Symposium on Field-Programmable

Gate Arrays’, ACM, Monterey, p. 274.

Carvalho, E., Calazans, N., Brião, E. and Moraes, F. (2004), Padreh: a framework for the

design and implementation of dynamically and partially reconfigurable systems, in

‘SBCCI ’04: Proceedings of the 17th symposium on Integrated circuits and system

design’, ACM Press, New York, NY, USA, pp. 10–15.

Casas, J., Moreno, J., Madrenas, J. and Cabestany, J. (2007), A novel hardware architec-

ture for self-adaptive systems, pp. 592 –599.

Chang, W. and Yubai, L. (2006), Network on chip: Key communication technology in

mp-soc, in ‘ITS Telecommunications Proceedings, 2006 6th International Conference

on’, pp. 1159 –1164.

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R. and Pohl, Z. (2004), Reconfigurable

system-on-a-programmable-chip platform, in Z. Peng, M. Fischerová and E. Gram-

atová, eds, ‘Proceedings of the 7th IEEE Workshop on Design and Diagnostics of

Electronic Circuits and Systems’, Institute of Informatics SAS, Bratislava, pp. 21–28.

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R., Pohl, Z. and Heřmánek, A. (2005), Gin -

notetaker for blind people: An example of using dynamic reconfiguration of FPGA, in

‘Proceedings of the 1st HiPEAC Workshop on Advanced Computer Architecture and

Compilation for Embedded Systems’, Academia Press, Ghent, Belgium, pp. 15–18.

Danek, M., Kadlec, J., Bartosinski, R. and Kohout, L. (2008), Increasing the level of

abstraction in fpga-based designs, pp. 5 –10.

DARPA-ACIP (n.d.), ‘http://www.darpa.mil/ipto/programs/acip/index.htm’.

DARPA-HPCS (n.d.), ‘http://www.darpa.mil/ipto/programs/hpcs/’.

DeHon, A. and Wawrzynek, J. (1999), Reconfigurable computing: what, why, and impli-

cations for design automation, in ‘Design Automation Conference, 1999. Proceedings.

36th’, pp. 610 –615.



BIBLIOGRAPHY 141

EU-Runes (n.d.), ‘http://www.ist-runes.org/’.

Foroutan, S., Thonnart, Y., Hersemeule, R. and Jerraya, A. (2010), An analytical method

for evaluating network-on-chip performance, in ‘Design, Automation Test in Europe

Conference Exhibition (DATE), 2010’, pp. 1629 –1632.

Giefers, H. and Platzner, M. (2010), A triple hybrid interconnect for many-cores: Recon-

figurable mesh, noc and barrier, pp. 223 –238.

Gindin, R., Cidon, I. and Keidar, I. (n.d.), ‘Architecture and routing in noc based fpgas’.

Guz, Z., Walter, I., Bolotin, E., Cidon, I. Ginosar, R. and Kolodny, A. (2007), ‘Net-

work delays and link capacities in application-specificwormhole nocs’, VLSI Design

2007(90941), 15.

Handa, M. and Vemuri, R. (2004), An efficient algorithm for finding empty space for online

fpga placement, in ‘Design Automation Conference, 2004. Proceedings. 41st’, pp. 960

– 965.

Honźık, P. (2004a), AVR core supported dynamic reconfiguration, in L. Husńık and

L. Lhotská, eds, ‘POSTER 2004. Proceedings of the 8th International Student Con-

ference on Electrical Engineering’, ČVUT FEL, Praha, pp. 1–5.

Honźık, P. (2004b), Communication library for AVR microcontrollers, Technical Report

2110, ÚTIA AV ČR, Praha.

Honźık, P. (2005), Analysis and implementation of dynamic reconfiguration for FPGAs (in

Czech), in ‘PAD 2005. Workshop for doctoral students’, ČVUT FEL, Praha, pp. 1–6.

Honźık, P. and Kafka, L. (2005), Front end tools for a dynamic reconfiguration, in

L. Husńık and L. Lhotská, eds, ‘POSTER 2005. Proceedings of the 8th International

Student Conference on Electrical Engineering’, ČVUT FEL, Praha, pp. 1–4.

Horta, E. L., Lockwood, J. W., Taylor, D. E. and Parlour, D. (2002), Dynamic hardware

plugins in an FPGA with partial run-time reconfiguration, in ‘DAC ’02: Proceedings

of the 39th conference on Design automation’, ACM Press, New York, NY, USA,

pp. 343–348.



142 BIBLIOGRAPHY

Huang, C.-H. and Hsiung, P.-A. (2009), ‘Hardware resource virtualization for dynamically

partially reconfigurable systems’, Embedded Systems Letters, IEEE 1(1), 19 –23.

Ito, H., Oguri, K., Nagami, K., Konishi, R. and Shiozawa, T. (1998), The plastic cell

architecture for dynamic reconfigurable computing, in ‘Rapid System Prototyping,

1998. Proceedings. 1998 Ninth International Workshop on’, pp. 39 –44.

Kadlec, J., Daněk, M. and Honźık, P. (2004), Reconfigurable 24-bit floating-point copro-

cessor Demo, Technical Report 2116, ÚTIA AV ČR, Praha.

Kafka, L. (2008), Analysis of applicability of partial runtime reconfiguration in fault em-

ulator in xilinx fpgas, pp. 1 –4.

Kahle, J. A., Day, M. N., Hofstee, H. P., Johns, C. R., Maeurer, T. R. and Shippy,

D. (2005), ‘Introduction to the cell multiprocessor’, IBM Journal of Research and

Development 49(4.5), 589 –604.

Krikke, J. (2005), ‘T-engine: Japan’s ubiquitous computing architecture is ready for prime

time’, IEEE Pervasive Computing 4, 4–9.

Kuhnle, M., Hubner, M. nad Becker, J., Coppola, A., Pieralisi, L., Locatelli, R., Maruccia,

G., DeMarco, T., Campi, F., Deledda, A., Mucci, C. and Ries, F. (2008), ‘An inter-

connect strategy for a heterogeneous, reconfigurable soc’, Design Test of Computers,

IEEE 25(5), 442 –451.

Liu, H. and Wong, D. F. (1999), Circuit partitioning for dynamically reconfigurable fpgas,

in ‘In International ACM/SIGDA Symposium on Field Programmable Gate Arrays’,

pp. 187–194.

Maruyama, T. and Hoshino, T. (1999), A reconfigurable architecture for high speed com-

putation by pipeline processing, in ‘FPL 99: Field Programmable Logic and Appli-

cations: 9th International Workshop’, ACM Press, New York, NY, USA, pp. 514 –

519.

MIT-Oxygen (n.d.), ‘http://oxygen.csail.mit.edu/’.

Ni, L. and McKinley, P. (1993), ‘A survey of wormhole routing techniques in direct net-

works’, Computer 26(2), 62 –76.



BIBLIOGRAPHY 143

Palesi, M., Kumar, S. and Catania, V. (2009), ‘Bandwidth-aware routing algorithms for

networks-on-chip platforms’, Computers Digital Techniques, IET 3(5), 413 –429.

Prophet, G. (2004), ‘Reconfigurable systems shape up for diverse application tasks’, EDN

Europe pp. 27 – 34.

R.Matoušek (2003), ‘Reconfigurable designs in FPGAs’, Postgraduate Study Report DC-

PSR-2003-10 pp. 1–43.

Robertson, I. and Irvine, J. (2004), ‘A design flow for partially reconfigurable hardware’,

Trans. on Embedded Computing Sys. 3(2), 257–283.

Salminen, E., Kulmala, A. and Hamalainen, T. (2007), On network-on-chip comparison,

in ‘Digital System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th

Euromicro Conference on’, pp. 503 –510.

Sander, I. (2004), Network-on-chip topology, Technical Report 2B1447, KTH ICT Royal

Institute of Technology, Sweden.

Soto, V., Moreno, J., Madrenas, J. and Cabestany, J. (2009), Implementation of a dynamic

fault-tolerance scaling technique on a self-adaptive hardware architecture, pp. 445 –

450.

Straka, M., Kastil, J. and Kotasek, Z. (2010), Modern fault tolerant architectures based

on partial dynamic reconfiguration in fpgas, pp. 173 –176.

Strunk, J., Volkmer, T., Rehm, W. and Schick, H. (2009), An on chip network inside a

fpga for run-time reconfigurable low latency grid communication, pp. 539 –546.

Suzuki, M., Hasegawa, Y., Yamada, Y., Kaneko, N., Deguchi, K., Amano, H., Anjo,

K., Motomura, M., Wakabayashi, K., Toi, T. and Awashima, T. (2004), Stream

applications on the dynamically reconfigurable processor, in ‘Field-Programmable

Technology, 2004. Proceedings. 2004 IEEE International Conference on’, pp. 137 –

144.

T-Engine (n.d.), ‘http://www.t-engine.org/’.



144 BIBLIOGRAPHY

Kogel, T., Leupers, R. and Meyr, H. (2006), Integrated SysteLevel Modeling of

Networon-Chip enabled MultProcessor Platforms, Springer. ISBN 1-4020-4825-4.

Sutton, S. R. and Barto, G. A. (1998), Reinforcement Learning: An Introduction ,

MIT Press. ISBN 0262193981.

Verkest, D. (2003), ‘Machine chameleon [handheld devices]’, Spectrum, IEEE 40(12), 41

– 46.

Wigley, G. and Kearney, D. (2001), The first real operating system for reconfigurable com-

puters, in ‘ACSAC ’01: Proceedings of the 6th Australasian conference on Computer

systems architecture’, IEEE Computer Society, Washington, DC, USA, pp. 130–137.

Wu, G.-M., Lin, J.-M. and Chang, Y.-W. (1998), ‘The future of reconfigurable systems’,

5th Canadian Conference on Field Programmable Devices .

Wu, G.-M., Lin, J.-M. and Chang, Y.-W. (2002), ‘Performance-driven placement for

dynamically reconfigurable FPGAs’, ACM Trans. Des. Autom. Electron. Syst.

7(4), 628–642.

Xil (1997), XC6200 field programmable gate arrays.

Xil (2000), Virtex 2.5 V field programmable gate arrays.

Xil (2001), Spartan-II 2.5V field programmable gate arrays.

Xil (2003), Virtex-II Pro platform FPGA user guide.

Xil (2010a), Platform Flash In-System Programmable Configuration PROMs.

Xil (2010b), Virtex-5 FPGA - User Guide.

Xil (2010c), Virtex-6 FPGA Configuration - User Guide.

Xil (2010d), Virtex-6 FPGA Data Sheet - DC and Switching Characteristics.

Zou, C., Xia, C. and Zhao, G. (2009), Numerical parallel processing based on gpu with

cuda architecture, pp. 93 –96.



List of Author’s Publications

Papers in Proceedings

Bartosinski, R., Daněk, M., Honźık, P. and Kadlec, J. (2007), Modelling self-adaptive

networked entities in matlab/simulink, in ‘International Conference Technical Com-

puting Prague’, Humusoft CZ, Prague.

Bartosinski, R., Daněk, M., Honźık, P. and Matoušek, R. (2005a), Dynamic reconfigu-

ration in FPGA-based SoC designs, in G. Takách, A. Hlawiczka and J. Sziraj, eds,

‘Proceedings of the 8th IEEE Workshop on Designs and Diagnostics of Electronic

Circuits nad Systems’, University of West Hungary, Sopron, pp. 129–136.

Bartosinski, R., Daněk, M., Honźık, P. and Matoušek, R. (2005b), Dynamic reconfiguration

in FPGA-based SoC designs. Abstract, in H. Schmidt and S. Wilton, eds, ‘FPGA 2005

- ACM/SIGDA Thirteenth ACM International Symposium on Field-Programmable

Gate Arrays’, ACM, Monterey, p. 274.

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R. and Pohl, Z. (2004), Reconfigurable

system-on-a-programmable-chip platform, in Z. Peng, M. Fischerová and E. Gram-

atová, eds, ‘Proceedings of the 7th IEEE Workshop on Design and Diagnostics of

Electronic Circuits and Systems’, Institute of Informatics SAS, Bratislava, pp. 21–28.

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R., Pohl, Z. and Heřmánek, A. (2005a),

Dynamic reconfiguration in FPGA-based SoC designs, in ‘Proceedings of the 1st

HiPEAC Workshop on Advanced Computer Architecture and Compilation for Em-

bedded Systems’, Academia Press, Ghent, Belgium, pp. 35 –38.

I



II LIST OF AUTHOR’S PUBLICATIONS

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R., Pohl, Z. and Heřmánek, A. (2005), Gin -

notetaker for blind people: An example of using dynamic reconfiguration of FPGA, in

‘Proceedings of the 1st HiPEAC Workshop on Advanced Computer Architecture and

Compilation for Embedded Systems’, Academia Press, Ghent, Belgium, pp. 15–18.

Danek, M., Philippe, J.-M., Honzik, P., Gamrat, C. and Bartosinski, R. (2008), Self-

adaptive networked entities for building pervasive computing architectures, in ‘ICES

’08: Proceedings of the 8th international conference on Evolvable Systems: From

Biology to Hardware’, Springer-Verlag, Berlin, Heidelberg, pp. 94–105.

Kloub, J., Honzik, P. and Danek, M. (2010), Reconfigurable hardware objects for image

processing on fpgas, in ‘Design and Diagnostics of Electronic Circuits and Systems

(DDECS), 2010 IEEE 13th International Symposium on’, pp. 121 –122.

Research Reports

Honźık, P. (2004b), Communication library for AVR microcontrollers, Technical Report

2110, ÚTIA AV ČR, Praha.

Honźık, P. (2004c), Getting started with AVG-GCC, Technical Report 2115, ÚTIA AV

ČR, Praha.

Kadlec, J., Daněk, M. and Honźık, P. (2004a), Reconfigurable 24-bit floating-point copro-

cessor demo, Technical Report 2116, ÚTIA AV ČR, Praha.

Kadlec, J., Daněk, M. and Honźık, P. (2004b), Reconfigurable scrolling demo, Technical

Report 2117, ÚTIA AV ČR, Praha.

Matoušek, R. and Honźık, P. (2004), SDIO interface for the FPSLIC, Technical Report

2118, ÚTIA AV ČR, Praha.

Journals

Bartosinski, R., Daněk, M., Honźık, P., Matoušek, R. and Pohl, Z. (2005), ‘Reconfigurable

System-on-a-chip’, The Syndicated 5(2), 3.



LIST OF AUTHOR’S PUBLICATIONS III

Daněk, M., Honźık, P., Kadlec, J., Matoušek, R. and Pohl, Z. (2005), ‘Reconfigurable

System on a Programmable Chip Platform’, Atmel Journal 4(Spring), 9 –12.

Honźık, P. (2005b), ‘Programming AVR in circuits (in Czech)’, A Radio. Praktická elek-

tronika 10(4), 20.

Kadlec, J., Daněk, M., Honźık, P., Matoušek, R. and Pohl, Z. (2006), ‘Platforma s

částečnou dynamickou rekonfiguraćı FPGA (in Czech)’, Automa 2(2), 2.

Others Workshops and Posters

Honźık, P. (2004a), AVR core supported dynamic reconfiguration, in L. Husńık and

L. Lhotská, eds, ‘POSTER 2004. Proceedings of the 8th International Student Con-

ference on Electrical Engineering’, ČVUT FEL, Praha, pp. 1–5.

Honźık, P. (2005a), Analysis and implementation of dynamic reconfiguration for FPGAs

(in Czech), in ‘PAD 2005. Workshop for doctoral students’, ČVUT FEL, Praha,

pp. 1–6.

Honźık, P. (2006), ‘Analysis and implementation of dynamic reconfiguration for fpgas’,

[presentation], CAK 2006, CTU Prague.

Honźık, P., Kadlec, J. and Matoušek, R. (2005), SD card file system for atmel FPSLIC,

in ‘WORKSHOP 2005. Proceedings of the 8th International Student Conference on

Electrical Engineering’, ČVUT FEL, Praha, pp. 1–2.

Honźık, P. and Kafka, L. (2005), Front end tools for a dynamic reconfiguration, in

L. Husńık and L. Lhotská, eds, ‘POSTER 2005. Proceedings of the 8th International

Student Conference on Electrical Engineering’, ČVUT FEL, Praha, pp. 1–4.



IV LIST OF AUTHOR’S PUBLICATIONS



Funding and Projects

This appendix presents the list of project that the author participated in during his re-

search and study at the Department of Signal Processing at Institute of Information The-

ory and Automation of the Czech Academy of Sciences in the Czech Republic and at

the Department of Control Engineering at Faculty of Electrical Engineering of the Czech

Technical University in Prague. All these projects were significant contributions to this

work, and helped the author experience wider international and domestic research.

The majority of the projects are funded by the EU commission and supported the

author’s cooperation with foreign institutions. It allowed the author to research on the

top of technology in his research area. The cooperation with researches from abroad

brought the author experience with the technology and methods used in others research

laboratories and institutions.

The commercial project with the FPGA chip supplier Atmel Corporation in the area

of placement and routing for partial dynamic reconfiguration gave the author detailed

information about the problems with the FPGA technology and the method for influencing

the design during mapping and placement of internal resources.

Reconf 2

The aim of the RECONF 2 project was to develop a design environment suitable for

an efficient use of the dynamically reconfigurable FPGA. This new type of FPGA made

it possible to design innovative low cost architectures. That opened new application

opportunities, such as implementation of adaptive computing systems.

The main targeted application domains were real time image processing, signal pro-

cessing. These applications were included in most embedded systems found in aeronautic,

V



VI Founding and Projects

automation, multimedia, industrial process control.

Project ID IST-2001-34016

Funder

Members 6

Country 5

Web page www.reconf.org

Kick off 1 March 2002

Final 31 December 2004

ATMEL Place & Route

The aim of the cooperation with the Atmel Corporation was to develop tools for mapping

and placement logic blocks in field programmable gate arrays supplied by the Atmel Cor-

poration. The tool reads generated logic netlist in the FGD format and generate bitstream

files for configuring the programmable gate array. The main advantage of the tool is full

support for partial dynamic reconfiguration. A partial result of the cooperation were sug-

gestions for a new architecture of a field programmable gate array and its structure to

make full use of all features of partial dynamic reconfiguration.

Funder Atmel Corporation

Members 2

Country 2

Web page www.atmel.com

Kick off 1 January 2006

Final 31 August 2006

Æther

ATHER was an IST-FET project funded under the 6th Framework Programme (FP6).

Selected under the fourth call in the Advanced Computing Architecture (ACA) initiative of

the Future and Emerging Technologies (FET) programme, ATHER’s main objective was

to study novel self-adaptive computing technologies for future embedded and pervasive

applications.



Founding and Projects VII

Project ID FP6-IST-027611

Funder IST-FET

Members 14

Country 9

Web page www.aether-ist.org

Kick off 1 January 2006

Final 30 June 2009

Scalopes

The project focuses on cross-domain technology and tool developments for multi-core

architectures. These developments are driven by and proven for 4 different application

domains: communication infrastructure, surveillance systems, smart mobile terminals and

stationary video & entertainment systems. Focus in the technology developments are on

application & programming models, composability, dependability, reliability, predictable

system design, resource management and tools supporting these new developments. As

much as possible generic cross-domain tools and architectures are worked upon, but also

application-specific extensions are covered. The project focuses on enhancing as much as

possible the generic aspects by means of identifying how future cross-domain reference

platforms will be made.

Project ID ARTEMIS-2008-100029

MŠMT ČR 7H09005

Funder Artemis JU and MŠMT ČR

Members 36

Country 11

Web page www.scalopes.eu

Kick off 1 January 2009

Final 31 March 2011

C-A-K and C-A-K 2

Center for Applied Cybernetics (the Center) takes advantage of established research back-

ground and teams, and provides concerted action of leading research groups and hi-tech



VIII Founding and Projects

companies in the country. It offers to its young researchers an opportunity for creative

growths and top-class working conditions for research and development in a perspective

field. The Government investment will pay off in progress in the field, increase of qual-

ified workforce and directly through the financial growth of the participating industrial

companies.

Our department deals with the following problems:

• Distributed control systems

• Operating systems for Real-Time control

• Internet programming

• Industrial automation and Fieldbuses

• Rapid prototyping

Project ID LN00B096 & 1M0567

Funder Ministry of Education

Youth and Sports

Members 19

Web page www.c-a-k.cz

Kick off 1 January 2000

Final 31 December 2011



Vita

Petr Honźık was born in Př́ıbram, Czech Republic. He received a Socrates scholarship

in 2002 at the Faculty of Science at the University of Lisbon, Portugal. He received the

Ing. degree in 2003 from the University of West Bohemia in Pilsen. From September

2003 he is a PhD. student at the Department of Control Engineering at the Faculty of

Electrical Engineering of the Czech Technical University in Prague. From October 2003

he is a member of the Department of Signal Processing at Institute of Information Theory

and Automation of the Czech Academy of Sciences. Petr participated during his research

on European Union projects RECONF2 IST-2001-34016, AETHER FP6-IST-027611 and

SCALOPES Artemis JU 100029/MŠMT ČR 7H09005. Currently he is participating in

the project C-A-K 2 1M0567.

Petr works as a researcher with specialization on high performance programmable

hardware with dynamic reconfiguration. He is interested in programmable integrated

circuits design and design of the System-on-Chip based on the FPGA devices. He is

also interested in progressive processor and controller architectures and microcontroller

programming based on INTEL51 and AVR architectures.

IX



X VITA

Address:

Department of Signal Processing,

Institute of Information Theory and Automation,

Pod Vodárenskou věž́ı 4,

Praha 8, 182 08,

Czech Republic

E-mail: peters@utia.cas.cz


