CESKE VYSOKE UCENT TECHNICKE V PRAZE
FAKULTA ELEKTROTECHNICKA

KATEDRA RIDICI TECHNIKY

The role of structural dynamics in
energy dissipation and
layer exfoliation in

Transition Metal Dichalcogenides

DOCTORAL THESIS

submitted by

Florian Belviso

for the degree of Doctor of Philosophy

Ph.D. Program: P0533D110030 - APPLIED PHYSICS

Supervisor: Dr. Antonio Cammarata

July 2021






“The best that most of us can hope to achieve in physics

is simply to misunderstand at a deeper level.”

Wolfgang Pauli






Acknowledgements

Aux miens, que j'emporte ot que j’aille.

I would like to take the opportunity to thank all the people from Advanced Material
Group in Prague. From the precious insights about scientific techniques, to the out
of control and unspeakable discussions, this working and human environment was
the best a rookie scientist could hope for.

To Stépéanka, our beautiful nanny, for her competence and efficiency in solving
all the problems that the gods of administration tried to throw at us.

To Tomés and his distant but constant supervision, for knowing to push when
necessary.

To my Drunkle Paolo, for sharing his advice and knowledge with me, along with
his time (a scarce resource in the world of research).

To my friend Ben, who is always ready to give a hand, and have the patience to
correct my frenglish.

To my supervisor Antonio, for his time and assistance, for helping me to improve
myself. A scientist to look up to, on top of being one of the nicest person i know.

To Eric Bousquet and his fellow colleagues of ABINIT team, for welcoming me
and teaching me about methods and code implementation, and being involved in
my doctoral examination.

To the people of the SOLUTION project, for the conferences, the exchanges and
the adventures.

Finally, this project has received funding from the European Union’s Hori-
zon2020 research and innovation programme under grant agreement No. 721642:
SOLUTION. This work has been done with the support of the Czech Science Foun-
dation (project No. 17-24164Y), and by the project “Novel nanostructures for en-
gineering applications” No. CZ.02.1.01/0.0/0.0/16 026/0008396. This work was
also supported by The Ministry of Education, Youth and Sports from the Large
Infrastructures for Research, Experimental Development and Innovations projects
“e-Infrastructure CZ — LM2018140” and e-INFRA CZ (ID:90140).



Summary

In materials science, understanding friction between surfaces is challenging, as it
calls for a multiscale approach. Yet, finding ways to control the friction at the
nanoscale is a growing necessity for the fabrication and operation of optimal nano-
engineered devices.

Throughout this thesis, the author demonstrates how the use of external electric
fields and contaminant molecules can influence the frictional behaviour of MX,
Transition Metal Dichalcogenides. The study is based on Density Functional Theory
calculations and phonon spectrum analysis of the considered materials. Electronic
descriptors allow us to describe the changes in the electronic structures, while we
quantify the dynamical response in terms of atomic participations to the vibrational
behavior. We present the theoretical tools and the methodology used, along with
the computational details.

Three distinct investigations are described in the Results part. The first study
examines the effect of an electrostatic field on the frictional properties of the ma-
terial. The analysis shows that a specific charge accumulation within the material
favors the relative layer sliding, hence reduces the nanoscale friction. A second
study discusses the effect of the intercalation of Ny and CO, contaminants on the
same materials, and how the valence band is correlated to the layer-layer frictional
response. Finally, the third study shows how the insertion of an Ny contaminant
molecule in the interlayer region of the systems can stabilise the frictional response
of the materials exposed to an electrostatic field.

The obtained results constitute guidelines on how to select proper fields and
contaminants to design new tribological materials with a customized frictional re-

sponse.



Souhrn

Pochopeni jevu tfeni mezi dvéma materialy je v oboru materidlového inzenyrstvi
naro¢né, protoze vyzaduje velmi komplexni piistup. Pro vyrobu a provoz nan-
otechnologickych zafizeni je tfeba stale vice Tesit zpiisoby Tizeni tfecitho procesu v
nanométitku.

Tato prace je zaméfena na studium vlivu vnéjsich elektrickych poli a vlivu pii-
tomnosti cizich Céastic na treci vlastnosti materidlii na bazi dichalkogenidi pie-
chodovych kovi MX,. Analyzy jsou zaloZeny na vypoctech metodou teorie funkcionalni
hustoty (DFT) a na studiu fononovych spekter téchto materiala. S vyuzitim elek-
tronickych deskriptorti je mozné popsat zmény elektronickych struktur a zéroven
kvantifikovat jejich dynamickou odezvu ve smyslu prispévku jednotlivych atomu do
vibrac¢nich spekter. Préace prezentuje pouzité teoretické nastroje, metodiku vypocti
a dalsi detaily.

Praktickd cést prace je ¢lenéna do tfech casti. V prvni ¢asti jsou popsany
vysledky studia vlivu elektrostatického pole na tfeci vlastnosti materidlu. Tato
analyza ukéazala, ze akumulovany mérny naboj v materialu zlepsuje skluz vrstev,
coz vede ke snizeni tfeni v nanoméritku. Druha ¢ést je zamétfena na vliv interkalace
cizich ¢astic (Ny a CO3) do MX, materidlu a déle na korelaci vlastnosti valen¢nich
pési s tfenim mezi jednotlivymi vrstvami materidlu. Posledni ¢ast popisuje vliv
molekuly Ny vlozené mezi vrstvy materidlu MX, na zlepSeni a stabilizaci tfecich
vlastnosti materidlu v pritomnosti vnéjsiho elektrostatického pole.

Vysledky této prace prinaseji uceleny postup volby vhodnych elektrostatick-
ych poli a cizich ¢astic pri vyvoji novych tribologickych material s rizenou tieci

odezvou.



Contents

summar

(1__Introductionl

Ab 1nitio: principles and methods|

[3.1 Quantum model|. . . . . . ...

[3.4  Density functional theory|. . . . . . . .. ... .. ...
[3.4.1 'The Kohn-Sham Equations|. . . . . . ... ... . ... ...
[3.4.2  Practical implementation of the DF'l' equations| . . . . . . .

[3.5 Crystal structure and Brillouin zone|. . . . . . . . .. ... ... ..

[3.5.1 Parallelization of the computations| . . . . . ... ... ...

Methodology|

4.1 Electron density analysis| . . . . . . . ... ... ...

[4.2.1 The dynamical matrix{ . . . ... ... .. ... .......
[4.2.2  Imaginary frequencies and instabilities| . . . . . . . ... ..
[4.2.3  Cophonicity| . . . . . . . . .. ...

4.3 Sliding-related vibrational modes in a crystal . . . . . . ... .. ..

4.4 'The modern theory ot polarization| . . . . .. ... ... ... ...

[4.5.2  Density Functional Perturbation Theory calculations| . . . .

10

15
15
17
18

20
20
23
25
27
28
30
34
38

40
40
42
44
45
45
46
48
o1
92
23



CONTENTS

4.6 CI-NEB method and energy barrier| . . . . . . ... ... ... ... 53
M7 Softwarel . . . . . .. 54
4.8 Benchmarkl . . . ... ... oo 55
4.9 Computational details] . . . . ... .. ... ... ... ....... 55

5B the el < Reld he irnsic Trction — l
[ metal dichalcogenides| 58

6 Effect of noninteracting intercalants on layer exfoliation in transi- |

[ tion metal dichalcogenides| 68

o it Fthe sl F . el T

| fields on the nanoscale friction in transition metal dichalcogenides| 77

I8 Conclusions| 86

[List of publications| 88




Chapter 1
Introduction

In 2004, the experimental proof of the achievability of creating free-standing graphene
layers |1] started a new era in materials science. Graphene is the first representative
compound of a new class of materials possessing extraordinary different properties
compared with those with conventional bulk. It exibits strong anisotropy [2| and
reduced dimensionality, the latter yielding singular quantum effects and outstand-
ing mechanical properties |3, 4|. This made it a prime candidate in many fields of
applications. For example, graphene filled into polymer matrices can significantly
increase the mechanical resistance to shear stress [5|. Single-layer graphene elec-
trodes are used to develop new organic n-type FET transistors (OFETSs) based on
Chemical Vapor Deposited graphene sheets [6]. Since then, the search of atomi-
cally thin materials “beyond graphene” have been fruitful. Several non-graphene
elemental 2D-analogs, like silicene |7] and phosphorene [8], have been successfully
produced. Many other compounds, that have been predicted or synthesized in
atomically thin form, were later introduced in this expanding list [9]. Thousands
of 2D materials have been proposed by computational studies [10]|, while dozens of
them have already been synthesized. So far, 15 groups of compounds have been
distinguished, depending on the possible applications (Figure 1.1)). Apart from their
mechanical, optical and electronic properties, 2D materials are interesting also for
their applications in biology [11] and in tribology [12} |13].

Tribology is the science of friction, wear and lubrication, focusing on phenomena
occurring at the contact zone between two surfaces in relative motion. Despite the
fact that tribological contacts are responsible for about 23% of the world’s total
energy consumption [14], friction phenomena are still not well understood at the
nanoscale; a total control of the tribological processes is then paramount for a
sustainable worldwide development [15]. Many 2D materials are excellent solid

lubricants, and are used in a range of applications where pressure or temperature
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conditions exclude the use of fluids [16] [17]. The idea is to create a coating at
the surface of contact between the moving parts of a device, using low friction
compounds. Unfortunately, due to mechanical pressure, these materials can wear

out very rapidly, often preventing their use at large scales.

The knowledge of the frictional behavior of 2D materials is also of utmost impor-
tance when designing microscale devices that operate at nanoscale precision, such
as nanogenerators and Micro/Nano Electro Mechanical Systems (MEMS/NEMS)
[18, [19]. Because of their size, such devices often require the use of atomically
thin layers of material to favor the motion of some parts and extend their life-
time. These layers can be obtained from the bulk material in several ways, such as
adhesive-tape technique or chemical exfoliation with ion intercalation 21} 22],
to name a few. Developing such methods requires a precise understanding of the
frictional behavior of materials down to the nanoscale; however, the microscopic
mechanisms determining how the single layers are separated from the bulk material

remain unclear.

Among the 2D compounds, the Transition Metal Dichalcogenides (TMDs) are a
family of materials that have shown a wide range of applicability in the last decade.
The TMD structure consists of hexagonally-ordered planes of M cations (transition

metal), inserted between two hexagonally-ordered planes of X anions (chalcogens).

11



CHAPTER 1. INTRODUCTION

Figure 1.2: Model structure of the hexagonal P63/mmec 2H polymorph of the MX,
crystal. The a, b, c vectors represent the crystallographic axes, indicating the cell
relative orientation. M stands for transition metal atom, X for chalcogen atom.
The parallel layers are bounded by weak van der Waals forces. (a) View of the
interlayer plane; (b) top view of the plane perpendicular to the lattice vector c.

This layered motif produces X-M-X “sandwiches”, held together by weak van der
Waals forces and yielding a lamellar structure (Figure 1.2)). This type of structure
is responsible for their lubricating properties, by allowing the parallel sliding of
one layer with respect to the other. In passing, we mention that they have other
applications such as in photovoltaic devices, lithium ion batteries, hydrogen evo-
lution catalysis, transistors, photodetectors, DNA detection, and memory devices
[23 [24] 25, [26], [27] [28] 29} [30]. If one considers heterostructures, the chemical and
structural complexity is increased even more. The alternation of strong intralayer
covalent bonds and weak van der Waals interlayer coupling makes it relatively easy
to manipulate layers or 2D flakes and to vertically stack them, in order to build
devices for different applications [2, [31]: the number of possible combinations then
becomes virtually infinite (Figure 1.3)).

The focus of this work is on the tribological properties of prototype materials,
which originates from the sliding between layers at the atomic scale. The inves-
tigated materials are transition metal dichalcogenides with general stoichiometry
MX, . The theoretical description of friction in this regime is challeng-
ing, as the electronic structure plays an important role, either directly contributing
to the energy dissipation or indirectly when determining the geometry of the inter-
face. Quantum mechanical computational methods cannot reach the timescale of
sliding events and effectively explore out-of-equilibrium phenomena, like the stick-
slip motion . Approaches found in the literature rely on parameterised clas-

12
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Figure 1.3: (a) Schematic illustrations of prototypical 2D materials ranging from
metallic to insulating. FEach layer can be seen as a building block for fabrica-
tion of complex 2D van der Waals heterojunctions. (b) Schematic diagram of a
general 2D vdW “LEGO®” heterostructure. (c) Photoexcited carrier dynamics in
a heterostructure made of h-BN/G/WSe2/G/h-BN. Pulsed-laser excitation gener-
ate excitons (electron-hole pairs), separated and transfered to the graphene elec-
trodes. (d) h-BN/Graphene/TMD /h-BN device created by sandwiching the mono-
layer TMD and graphene between two multilayer h-BN flakes. Picture adapted

form Ref. .

sical potentials (Force Fields) and classical Molecular Dynamics (MD) simulations
able to investigate systems and timescales far larger than their quantum counter-
parts , 7 or they estimate the frictional behavior from equilibrium properties,
like phonon-spectrum based descriptors . The latter will be the one that

interests us the most here.

The question to formulate is the following: can we develop a procedure in order
to have a deeper understanding of the entanglement between the electro-dynamic
features of TMD systems and their nanofrictional response? Among all the studies
dealing with TMDs, only a few of them were devoted to the tribological aspects
involved in these materials , . A few studies showed how to modify the fric-
tional behaviour between TMD layers by means of external load or charge injection
[41], [36], [42]. Yet, further investigations of the consequences of the electro-phonon

coupling is necessary.

In the thesis presented here, we also consider the presence of an electrostatic
field and how it affects the layer sliding events. Some anterior theoretical studies

have dealt with the effect of electric fields on the optical, electric or vibrational

13



CHAPTER 1. INTRODUCTION

characteristics of MoS, [43, 44, |45]. A first experimental study has shown that
electric fields can be used to change the frictional properties. On KBr or NaCl sur-
faces, it was shown that selective excitations of mechanical resonances reduced the
friction force in particular ranges of field and load, perpendicular to the direction of
sliding [46]. In 2015, an experimental work proposed a method for the manipulation
of free-standing atomic layers of MoS; using an Atomic Force Microscope (AFM)
tip to create an in-plane potential gradient [47]. In 2019, an experimental result
showed that the friction between an AFM tip and flakes of 2D MoS, decreases with
the application of an in-plane potential gradient [33]. In this context, the present
theoretical work aims to provide guidelines for the development of new protocols
using the electrostatic field as a knob to adjust the frictional behavior of TMDs.
By investigating how the mode frequencies change the electro-vibrational coupling,
we will be able to identify the nanoscale contributions to the macroscopic frictional

properties and finally design new TMDs with a targeted tribological response.

14



Chapter 2
Simulations and scales

In this chapter, we briefly mention the main types of numerical methods used to
simulate physical systems. These methods vary with the scale of the problem,
and rely accordingly on classical or quantum descriptions. As such, some methods
are more adapted to describe sliding events at the macroscopic scale (involving
billions of atoms), or to bridge the gap between the micro and the macroscopic
scale (mesoscopic scale), e.g. the Finite Elements Methods (FEM). While they are
suitable for studying structural material deformations, they fail to give a proper
description at the nanoscale. Nonetheless, in the context of NEMS/MEMS design,
a complete theoretical description of the system with atomic details is necessary.
The electronic structure indeed plays a direct role in the friction response, or an
indirect one by influencing the geometry at the interface. This is where ab initio
techniques must be used; however, these methods cannot be employed to simulate
timescales of about 2 ns or system sizes of approximately 40 nm, because they
are computationally very demanding. Molecular Dynamics approaches are able to
treat much larger systems and timescales, and have the advantage of having a high
scalability; the price to pay is the loss of the electronic detail and the description of
the quantum effects. The various techniques and their associated time and length
scales used to study the tribological response are summarized in [Figure 2.1l For

the systems discussed herein, the quantum mechanical treatment is mandatory.

2.1 Finite Elements

In order to understand and quantify the friction response occurring in continu-
ous media, i.e., those where the atomic detail is not relevant, the Finite Elements
Method (FEM) [49] is one of the numerical frameworks that is used. According to

the kind of mechanical equations to solve (elliptic, hyperbolic or parabolic), it can
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Figure 2.1: Diagram highlighting the general use of models developed in tribology
as a function of time- and length-scale. Developing predictive tools in tribology
calls for multiscale approaches. Figure reproduced from Ref.

be necessary to vary the numerical procedures. The FEM procedure steps can be

summarized as:

e Discretize the space by using a linear piece-wise approximation, hence the use

of “finite elements”; numerically, this implies the choice of a mesh.

e Select functions to interpolate the field variables over the element. Often,
polynomials are selected as interpolation functions. The degree of the poly-

nomial depends on the number of nodes assigned to the element.

e Find the element properties. The matrix equation for the finite element should
be established by relating the nodal values of the unknown function to other

parameters. The used approaches can be of variational kind or of the Galerkin

kind .

e Assemble the element equations to find the global equation system for the
whole solution region. It requires the combination of local element equations
for all the elements used for the discretization. Element connectivities are

used for the assembly process and boundary conditions are imposed.

The principle of energy minimization, like in other frameworks, is central here [51].
The idea is that when a boundary condition is applied to the system (like a force

for example), of all the possible configurations that the system can take, only the
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CHAPTER 2. SIMULATIONS AND SCALES

configuration corresponding to a minimum of the energy can be considered to be the
actual solution. For example, a multiscale model and study of roughness and friction
between multilayer surfaces was made possible using FEM, allowing to predict the
static friction coefficient, and taking into account the roughness of the contact area,
the latter never being perfectly flat [39]. The time scales accessible with FEM allow
for the study of the wear and abrasion at the interface between two “real sized”
surfaces of coating, that is, following the sliding event across a distance up to the
order of the mm. For example, it is possible to simulate a scratch sliding test on a
CrAlSiN film, over a distance of few hundreds of pm and at speeds of about a tenth
of ms™ [52], or the tribological properties (friction coefficient and abrasive wear)

of aluminum oxide nano-layers [53].

2.2 Molecular Dynamics

When the details of the electronic structure are not important for our purposes and
we need to look at the system behavior with atomic detail, Molecular Dynamics
methods are used. These methods allow simulations of systems involving up to
one million atoms [54, 55, 56|, but this comes at a computational cost. The other
factor increasing the computational cost of an MD simulation is the size of the time
step. In liquids and solids, if one wants to simulate the dynamics of the system, it
is necessary to track the vibrational motion of atoms. This limits the time steps
to the order of the femtosecond, which means that thousands of those time steps
are required to simulate a picosecond of a real life event. These constraints on the
number of atoms and time steps have lead to a lot of research and development
for optimizing MD simulations for use on high performance computing clusters.
Software packages such as NAMD [57] and LAMMPS [58] are optimized to scale
the computation with an increasing number of cores |59).

More specifically, MD is a computer simulation technique relying on parame-
terized classical potentials, commonly referred to as Force Fields (FF) [60]. The
time evolution of a set of interacting particles is described by integrating Newton’s
equations of motion

F, = m;a; (2.1)

where F; is the force acting on a particle ¢ with mass m;, generating an acceleration
a;. The equations of motion can be rewritten under the form of the Hamiltonian

equations:

{ g=9% ={q,H} 22)

17



CHAPTER 2. SIMULATIONS AND SCALES

with “{-,-}” the Poisson brackets, and H the Hamiltonian

H=3% > +U(q) (2.3)

Qmi

containing the kinetic and the potential energy of the system. Here, q; corresponds
to the generalized coordinates of the atom ¢ and p; to its conjugate momentum.
The integration of the equations of motion calls for the use of efficient algorithms,
such as the Verlet or “leap frog” ones [61]. The time evolution of a system of
interacting particles requires i) a set of initial conditions of all the particles in
the system (initial positions and velocities), and i) the interaction potential from
which the forces among all the particles are derived. The computation of the forces
acting on each particle is the most time consuming part of the MD computation.
An appropriate description of a given system necessitates a model that takes into
account as many interactions existing in the system as possible. The result of
this process is the creation of the force field. The force field is a collection of
equations and associated constants designed to reproduce molecular geometries and
properties of test structures (e.g., electrostatic interactions, van der Waals forces
and bond stretching). Depending on the kind of system, the need to simulate a
large number of atoms can be overcome by using periodic boundary conditions: the
system is described by a repeating unit formed by a minimal number of atoms. This
description assumes that all the atoms in the images of the repeating unit move in
exactly the same way.

The main weakness of MD is the limitation to a classical description of a system,
that is not able to take into account the quantum effects of the atomic structure.
Another weakness is represented by the non-versatility of the force fields: they are
not able to properly describe systems different than those for which they have been
designed. In other words, the transferability of the force fields is nearly absent.
The definition of a force field can be made by using ab initio methods, in which the
transferability of the description of the interactions is guaranteed in almost all the

cases.

2.3 Ab initio

The term “ab initio” is a latin term meaning “from the beginning”. It refers to meth-
ods that calculate the observables of a system by relying on basic and established
laws of nature, without additional assumptions or special models in the form of ad

hoc parameters. The electronic structure of a system, whether it be a molecule or

18



CHAPTER 2. SIMULATIONS AND SCALES

Table 2.1: Scalability in the hierarchy of common ab initio methods approximating
the solution of the electronic SE. The scalability is expressed with respect to the
order of the number of atoms M or of the number of basis functions N.

method  number of atoms number of basis functions

CCSDT O(M?) O(N?®)
CCSD(T) O(M7) O(NT)
CCSD O(M?®) O(N®)
MP?2 O(M?) O(N?)
HF O(M?) O(N*)
DFT O(M?) O(N?)

a crystal, is described by the quantum mechanics (QM). In this framework, one
of the possible states of a system of N electrons is described by a wave function
(WF) ¢(ry,ra, -+ ,ry,t), depending on the time ¢, the general coordinates r;, and
fulfilling the many-body Schrédinger equation (SE). This equation is the back bone
of quantum physics theory as we will see in [chapter 3

The SE can be analytically solved only for a few systems with a single electron
(hydrogenic atoms) while, for large systems, it is necessary to approximate the solu-
tion numerically. The simplest approach used in the hierarchy is the Hartree—Fock
(HF) method, which describes the electron-electron interactions with a mean-field
approach, as introduced by Hartree [62]. The electron-correlation effects are ne-
glected in this approach; they are considered in several extensions of it, namely the
post-HF and Density Functional Theory (DFT) methods. Among the most promi-
nent examples of post-HF methods are perturbative approaches (e.g. MP2) or the
coupled-cluster(CC) expansion [63]. Yet, these methods lack efficiency in terms
of scalability. In this context, scalability refers to the ability of a computational
technique to transpose its efficiency to a scaled-up system. In our case, a “large sys-
tem” is a system that contains ~ 300 atoms. Even the simplest HF method scales
generally as O(M?), with M being the number of atoms (Table 2.1)). Finally it is
apparent that DFT provides a better scalability than the post-HF techniques. It is
worth mentioning that the Car-Parrinello approach manages to combine molecular
dynamics and density-functional theory, extending and integrating the applicability
of both methods [64]. The principles behind the various ab initio methods will be

treated in the next chapter.
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Chapter 3
Ab initio: principles and methods

As stated in the previous chapter, the investigation of the electronic structure of
materials commands going beyond classical mechanics. In this chapter, we intro-
duce the reader to some basic principles of quantum mechanics. This allows us to
detail the theory providing basic approximations of the solution of the Schrodinger
equation, such as the Hartree and the Hartree-Fock methods. Those are the starting
point for the development of more elaborate ab initio frameworks, and historically

led to the development of the Density Functional Theory.

3.1 Quantum model

The dynamic evolution of a system is described by the time dependent Schrédinger

equation
(e, 1) = (e, 1)0(r, ) (3.1)

where (r,t) is the wave function describing the system at the time t and space
position r, and H (r,t) is the Hamiltonian operator representing the total energy of
the system. In the present work, we will study systems in which the total energy
is constant; therefore, the corresponding Hamiltonian is time independent and the

Schrodinger equation assumes the eigenvalue-eigenvector equation form

H(r)y(r) = Ev(r) (3.2)

where F is the energy eigenvalue corresponding to the eigenfunction (r), solution

of the equation. can be written as
Hv) = Elv) (3:3)

20



CHAPTER 3. AB INITIO: PRINCIPLES AND METHODS

by using the Dirac notation [65].

As in classical mechanics, the Hamiltonian is generally written as

~ A ~

H=T+YV, (3.4)

which is the sum of the kinetic (7') and the potential (V') operators, respectively,
associated with the kinetic and the potential energy of the system. The solution of
Equation 3.2 allows access to the expectation value of any physical quantity of the
system such as the energy, or the probability density of the presence of a particle.
Unfortunately, we are only able to obtain the exact solution of the Schrodinger
equation for the case of hydrogen-like atoms, by considering the Coulombic inter-
action between the protons in the nucleus and the only electron bound to it, and
neglecting the spin-spin coupling. This is due to the functional form of the Hamil-
tonian H , which becomes overly complicated when we consider atoms with more
than one electron or forming molecules or crystals. These cases are termed many
body problems, and the search for the solution of the relative SE requires approx-
imations. The general expression for the Hamiltonian of an ordinary many body
atomic system is

Hyp =To 4+ Von + Ve + T + Vn_n (3.5)

where:
e T, is the kinetic energy of the electrons,
° Ae_ ~ is the potential acting on the electrons due to the nuclei,
e V. . is the electron-electron interaction,
e Tl is the kinetic energy of the nuclei, and

e Vy_n is the nucleus-nucleus interaction.

More explicitly:

A Z e2 Z de
Hi = —
tot Z, Z|rl—r]+Z2M Z‘R R5|
X %,_/
Te Ve—N Ve—e TN VNfN
(3.6)

where summations run on «, 8 atoms, and ¢, j electrons. Z, is the atomic number
of the a-th ion, while e is the elementary charge.
The Born-Oppenheimer approximation [66] provides a widely used first simpli-

fication to the many body problem: since the inertia of the nuclei is far larger than
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CHAPTER 3. AB INITIO: PRINCIPLES AND METHODS

that of the electrons (m,, 2 1836 m,), we can consider that the electrons are moving
in a potential created by the nuclei which are at rest in the reference frame of the
laboratory. The separability of the variables allows us then to split the eigenvalues

problem into two eigenvalue-eigenvector equations

N

Hothe(r) = [Ty 4 Ve + Vot (r) = Ectbe(r) (3.7)

for the electrons, and:
[T + Van + EcJo(R) = E¢(R) (3.8)

for the nuclei.
The electronic Hamiltonian ﬁe from [Equation 3.7 can be rewritten as
1 ALz
A
=—§ZV3+ZZT -2 (3.9)
ij

T
i=1 j>1i i=1 A=1 A

where atomic units have been used for simplicity. The r;; and ry4; terms stand
for the distance between electron 7 and j, and the distance between atom A and
electron i, respectively. N indicates here the total number of electrons, while M
is the total number of atoms. The last term V,,_. depends on the electric charge

carried by the atom, denoted by the atomic number Z 4.

We see from that solving the electronic Schrodinger equation[Equa-]
gives us the potential energy E, felt by the nuclei. Since the potential V;,_,,

can be seen as an “offset” that can be computed classically, and 7T, can be ne-
glected in this approximation, solving the many-body problem reduces to solving
the electronic equation for any given position of the ions.

Historically, the Hartree approximation aims to solve the problem by writing
the electronic Wave Function (WF) as a product of monoelectronic WFs. The
interaction between electrons is replaced by an interaction of each electron with a
mean potential created by all the other electrons surrounding it. The problem is
then solved by using the variational principle. This approach is incomplete yet, as
it does not take into account the antisymmetry of the electronic WF, a consequence
of the fermionic nature of the electrons (Pauli’s principle) [67, 68]. The Hartree-
Fock approximation, later introduced, aimed to correct this. However, it does not
take into account the correlation effects of the electrons’ motion: since the spatial

separation between the electrons is not accurately described, so is the Coulombic
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repulsion between them [69]. When the correlation effects are small compared to
the exchange effects, the Hartree-Fock approximation gives good results; otherwise,
this description is not sufficient. This problem was tackled by the introduction of
post-HF and DFT methods.

3.2 Hartree method

The Hartree method |70] is the simplest type of ab initio calculation of the electronic
structure. It is based on a single particle picture: the assumption is to consider that
electrons occupy single particle orbitals. Instead of considering an electronic WF
which includes all the electrons as a whole, the idea is to consider that the electrons
are all living in the middle of a mean potential, created by themselves. Each electron

then contributes to this potential and interacts with the others through it. The

ansatz for the many-electron WF, solution of [Equation 3.15| is that it is simply a

product of these single electronic WFs, or Hartree states:

Y = P1(r1)ha(ra)..hn(ry), (3.10)

where r; refers to generalized coordinates that can include spatial and also spin
degrees of freedom.

From here, the determination of ¢ relies on the variational principle. The varia-
tional principle states that, for any trial WF, the expectation value of the electronic
Hamiltonian H. is always higher than or equal to the electronic ground state energy
(E[Y] > Eglw)), ie., the lowest energy state. Only when the WF is the one of
the true ground state, the equality is verified. In essence, the variational procedure
consists of improving the quality of the initially guessed WF ¢, by minimizing the
energy E[t]. This is obtained by finding the stationary solution of the equation

(.- E) = [ (Wil - Ewli) =0 (3.11)

which is the solution of the Schrédinger equation for the system of electrons (Equa-
tion 3.7)). Indeed, if we take the functional derivative

3(H.~E) - / o (r) [Hab(r) — Eu(r) (3.12)

we see that the variation is equal to zero when (r) is the solution of the SE. When
considering a system of distinguishable electrons, the general electronic Hamiltonian

has the form of a sum of single particle energy terms of the particles ¢ plus a pair
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interaction term:

2
. p’ 1
d = Ei o T Valr) 43 Z#j Vij (3.13)

with V being the single particle potential and V;; the pair interaction potential

between particles ¢ and j.

If we assume that the eigenstates of the total Hamiltonian can be written as a

product of single particle eigenstates as stated in [Equation 3.10 the quantity to be

stationary is now

> [t + 5 3 [ e (0 e Vi) )
2 (3.14)

-E]] / driy (r;) i (rs),

and then the functional derivative with respect to 7 (r,,) for the m-th particle

gives:

/d3rm< H oy (T, ‘f‘Z/dgrﬂ/J 1) Vi Vi (i)Y (Trr) — E¢m(rm)) 0y, (tm) = 0,
. (3.15)

the factor 1/2 disappearing due to the equality of the second term when m = i and

m = 7. This means that each single particle state must satisfy the Hartree equation:

m¢m ) (Z/dgmﬁ r;) zmwz(rZ)) V(i) = BV (Tm). (3.16)
i#m

We now see in this first attempt that solving the N-particles problem leads to the
reformulation into a set of single-particle equations. These equations are connected

by the interaction between the particles contained in the Hartree potential

Virlen) = [ 37 1) PV = ) (3.7)

through which each m-th particle interacts with the probability density of all the
other particles ¢, with a probability

= (el (3.18)

The potential for a given particle m then depends on the states of all the other
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N — 1 particles; for this reason, it is called a self consistent potential. First, an
initial guess is made for the potential, then the eigenvalue equation is solved, the
density is calculated from the obtained wave function, and a new potential is found.
Such steps are repeated until the wave function obtained in subsequent steps does
not change significantly: in this case, we say that self-consistency is reached. This
set of equations constitutes what we call the self consistent field (SCF) equations.

Let’s summarize the procedure here:
1. guess a set of single particle states 1;,
2. compute the Hartree potential V for each particle by using the states ;,

3. solve the single particle equations by using the Vg obtained the step before,

and

4. if the states obtained at step (3) are different than the states used as a guess

in step (1), use them as a new guess and repeat the procedure.

Of course, many technicalities are applied in the process. An important point is
that the new guess of the states at the beginning of one cycle is a mix of the old
guess and the new solutions |71, 72, 73|. This mix can be obtained by using various
distributions, with the goal to reduce possible numerical oscillations. Although
necessary in most cases, this procedure can be quite resource demanding.

The SCF procedure is a basic scheme that is used in other more sophisticated
methods. However, as we are about to see in the next section, the Hartree method
comes with a serious drawback. By neglecting the spinorial nature (i.e., Pauli
principle) of the electronic WF, it underestimates the value of the energy of a

Fermionic system.

3.3 Hartree-Fock

The Hartree-Fock (HF') method follows the Hartree one, and takes into consideration
the antisymmetry of the Fermionic states while solving the many-body Hamiltonian
[74, 75 [76]. An orbital is a wave description of the size, shape, and orientation of
the region in space that an electron can occupy. The Pauli principle states that
the quantum state of an electronic system is uniquely defined. This means that for
two electrons to occupy the same orbital, i.e., having the same quantum numbers,
they have to possess different spin. This is equivalent writing that the total WF

of a Fermionic system is antisymmetric with respect to the exchange of any pair of
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electrons:

V(X1 X2, ooy Xy oo Xy oy Xv) = (—1)" (X1, X2, o0, Xy, ooy Xy ooy XN) (3.19)

where the index n runs over all N! permutations of the N single-particle states,
and the x; variable incorporates the spatial coordinates and spin for each particle,
that is x; = (r;,04). In the HF scheme, the wave function is approximated with
single electron WFs describing non interacting particles. Here, each single electron
wave function is the product of a spatial wave function of the electron position r
multiplied by a function of the spin component S, thus obtaining the spin-orbital
|1i(x;)) = |&(r;)) |os) [65]. The wave function is then given by a Slater determinant
of N spin-orbitals:

Pr(x1)  Pa(x1) ... Yn(x1)
Pi(x2)  Yo(x2) ... Un(x2)

¢HF:¢(X17X2,...,XN) - \/%

(3.20)

Pi(xn) Ya(xn) .. Un(xn)

where the factor !/vAT ensures the normalization of the many body wave function.
The change of sign of the many-body wave function with the exchange of two
electrons corresponds to the switch of two rows in the determinant. The expectation

value of the energy is

{

Vee|$F) (3.21)

where, again, we have separated the monoelectronic part of the Hamiltonian, hi =
T e+ Vn_e7 from the inter-electron interaction ‘A/e_e. The potential V,_. is the result
of the Coulombic interaction and depends on the distance among the particles. The
use of the variational principle gives us again the set of orbitals that minimize the

energy
E = min (Y| H|p"F) = min (W | by + Ve |0 (3.22)

The Coulomb interaction yields two contributions:

Vo017 = (W1F o [0 = Vil + Bl (329

the first term is the Hartree term, which represents the electrostatic energy of the

charge density while F,[¢] is the exchange integral, also called Fock term. This is a
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contribution to the energy that arises from Pauli’s exclusion principle and it is the

result of the integration over the occupied orbitals:

*

Bis)= AN [ [ BTG

v —r'|

This contribution is orbital dependent. For a system of one electron, the Fock term
is the opposite of the Hartree potential; this is expected, as there is no interaction
V.. between electrons. As the number of electrons grows, the difference between
the Hartree energy and the exact one increases. For first row elements and noble
gases, the HF energy differs from the exact one by 20-40 mHa/electron |77]. This
difference comes from the fact that the correlation between the electrons is not
taken into account. Despite the fact that the HF equations allow us to find a self
consistent set of orbitals in a relatively easy way, the problem that arises now is
the difficulty to quantify this correlation. Several post-HF methods incorporate the
correlation effect 78] 79]; however, perturbative approaches can be computationally
very expensive after the 2" order, and lack scalability. In the next section, we will
see how the Density Functional Theory solves this problem, by defining a systematic

approach for a system of interacting particles.

3.4 Density functional theory

Density Functional Theory was developed while aiming to solve the many-body
problem. It essentially consists of a mapping between a system of interacting elec-
trons into a system of non-interacting ones. Nowadays, it is one of the most widely
used and reliable first principles ab initio techniques in materials science field. The
description of an ensemble of N electrons by using an electronic wave function of
N electrons requires consideration of 3V spatial and N spin coordinates. The cal-
culation of a wave function with 3N 4+ N degrees of freedom implies a relatively
huge computational load, and calls for the need to develop new methods that at-
tain the same results while using a smaller number of variables. In 1964, Pierre
Hoenberg and Walter Kohn introduced the core theorems of the DFT [80]. They
proved that, given a system in a non-degenerate ground state, the system energy,
the wave function and all the other electronic properties are uniquely determined
by the probability density of the electronic ground state, which is a function of only
three spatial coordinates. The electron density p (r), rather than the many-electron
wave function ¢, becomes the central quantity to calculate, in order to access any

observable of the system. The DFT allows us to see the problem from another point
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of view, by focusing on the density of electrons p(r), which becomes the fundamen-
tal variable, instead of the total many-body WF [77]. The standard DFT procedure

to obtain the ground state electronic density po(r) is summarized in |[Figure 3.1}

initial guess |
B o)
e i '\‘

calculation of effective potential

V.,=V fp dr'+Vxc[p(r')]

eff — v e— |
AN i 4
solving Kohn-Sham equations h
—h? )
[2m Vi +Veff] Y= € Y
e
‘\, | ,/"

'

evaluation of electron density
& total energy

Z |1/}1 |-)Etot ( ,)]:...
'

- convergence?

l yes

output quantities

0,(r),E [p,(r)]= forces ,eigenvalues...

no

Figure 3.1: Scheme of the iterative procedure for the determination of the density
po and the physical observables.

3.4.1 The Kohn-Sham Equations

The Hohenberg and Kohn theorem results can be implemented in different ways.
The form created by Khon and Sham [81] casts the problem in a one-body for-
malism and expresses the density p(r) in terms of single-particle orbitals 1;(r); the

problem is then reduced to a set of coupled differential equations that can be solved

iteratively. The kinetic energy term in [Equation 3.7|can be written as Te = TS + Tc,
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where T, is the kinetic energy of a non interacting electronic system |80] and 7,
~T.-T, represents all the correlation effects not included in the non-interacting sys-
tem. Likewise, U = Uy + U,, with Uy being the mean-field Hartree potential of the
electrostatic Coulomb interaction. The main idea of the DFT is to consider that a
system of interacting electrons is equivalent to a system of non-interacting electrons
“seeing” a mean effective potential which is a function of the electron density. This

is condensed by the results of the two Hoenberg and Kohn theorems [80, [77]:

e the ground state properties of a many-electron system are uniquely determined
by an electron density depending only on 3 spatial coordinates; this allows us
to move the study from a 3/N-dimension to a 3-dimension problem where we

aim to find the functional of the density;

e the form of the energy functional of the whole system is minimal for the

ground state electron density po(r).

The mean value of a general observable O is then a functional of the ground-state

electron density:
(Olpo]) = (¥[po]|O1[po)]) (3.25)

which, in the case of the Hamiltonian, is
Elpo] = (U[po]|T + Vear + Vc|¥[po)])- (3.26)

The external potential contribution (¥[po]|Veee|¥[po]), independent of the system,

can be re-written as a functional of pgy

Viweloo) = / Vo ltlpoleldr (3.27)

while the kinetic and exchange-correlation terms are universal, i.e., they have the
same expression whatever the external potential is. The system energy can then be

expressed in the form

Elp(x)] = Fo + / Ve[t plr)dr (3.28)

with Fy; being the universal functional. Finally, according with the second theorem,

the energy of the ground state is written as

Ey = E(po(r)) = min E(p(x)). (3.29)
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The solution of this equation by Kohn and Sham [81] leads to a system of coupled

single particle equations:

( HKS%‘ = &9

< %ff(l‘) = Vemt(r) —+ VH(I') —+ ch<r) (330)

[ p®) =2l

where we have i) the Kohn-Sham states 1, ii) the energies of Kohn-Sham one

electron orbitals, and i) the Kohn-Sham monoelectronic operator Hys
- 1
Hyg = —§v§ + Vear (1) 4+ Vi (r) + Vxo(r). (3.31)

Looking at the form of Hyg, we can see that the right hand side potential terms
can be seen as an effective potential V,¢; depending on the position. In what fol-
lows, we will refer to this effective potential as the Kohn-Sham (KS) potential V.
We finally stress again that the exchange and correlation term Vx¢ is unknown,
and must be approximated. The choice of the approximation is one of the main
difficulties in a material simulation based on the DFT. Energy functionals can be
categorized into non-empirical (formulated only by satisfying some physical rules),
or empirical ones, the latter designed by adding “by hand” some parameters fitted
to known results obtained for properties of some atoms or molecules. As is often
the case in simulations, there is a trade-off to make, between choosing a versa-
tile, widely applicable non-empirical functional, or an empirical functional designed
for computing the properties of a particular type of material with a better preci-
sion, but that will fail when used outside of its range of application. The ratio of
computation time wvs. precision is also an important factor to consider. A useful
categorization of functionals has been proposed by Perdew [82], and is known as
“Jacob’s Ladder” (Figure 3.2). In what follows, we detail the important aspects of
the implementation of a DFT simulation, and discuss the specificities of some of

the most common used exchange-correlation functionals.

3.4.2 Practical implementation of the DFT equations

In [subsection 3.4.1] we saw that the complex problem represented by
has been reformed into the equivalent set of coupled differential equations|(3.30f The
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Exact exchange &
Empirical A exact correlation A Non-empirical

y .| Hybrid-GGA and |, |
'B3LYP, XBLYP.... | hybrid-meta-GGA | PBEO

\ mPWB95 \ meta-GGA \ TPSS \
‘iBLYP, BPS6.... \ GGA 'PW9LPBE,...
LDA \ /

Hartree theory

Figure 3.2:  Schematic diagram of “Jacob’s ladder” detailing the hierarchy of
exchange-correlation functionals proposed by J. P. Perdew. Adapted from [82].

formalism does not provide an explicit analytic form and various approximations
need to be implemented to find a numerical solution of Equations

Choice of the basis set. The unknown Kohn orbitals ¢(r) can be expanded
into a set of known functions and the KS equations can be written in terms of the
expansion coefficients. This possible set of functions is conventionally divided into

two categories: plane-wave and localised basis sets.

In a plane-wave basis set, the density is expressed in terms of periodic and
oscillatory wave functions, forming a complete representation of the Hilbert space.
To obtain the exact WF, an infinite number of basis functions would be necessary
for the basis to be complete. Of course, this is not computationally affordable, and
so the precision of the approximated WF is determined by truncating the basis set
according to appropriate cutoffs. This is the most suitable choice when dealing with
periodic systems [83].

In a localized basis set, the electron density is described in terms of functions
centered on the atomic positions, like Gaussian [84] or Slater-type orbitals [85].
This is the preferred choice when electrons are localized around ions, like in the
case of metal oxides and molecules, where the WF exponentially decays to zero at

large distances from the nuclei.
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Exchange-Correlation Functional and its approximations. As we explained

in

_ 9Exc(r)

section 3.4} the exact form of the exchange-correlation potential Vx¢(r) = Pp()

is not known and so approximations have to be made. The simplest forms of these

approximations are introduced below:

e The Local Density Approximation (LDA) is based on the hypothesis that the

exchange and correlation terms depend only on the local value of the electronic

density p(r). Its expression is:

B2 6() = [ plv)exc (plw))dr (3.2

where exc(p(r)) is the exchange and correlation energy per electron, of a
homogeneous electron gas with density p(r). In this approach, the electronic
density is assumed to be homogeneous; consequently, this is a reliable approx-
imation for isotropic systems and when the electronic density varies weakly.
The LDA performs rather poorly in the study of molecules in which the elec-

tron density can be highly inhomogeneous.

The Generalized Gradient Approximation (GGA) consists in taking into ac-
count the local variations of the electronic density by including its gradient
Vp(r) in the description. The exchange and correlation term is then written

as

EGSA (p(x)) = / p(0)exc (plr), Vo(r)) (3.33)

This is the preferred approximation for systems where the electrons are loosely

localized.

Van der Waals interactions. Van der Waals (vdW) interactions are non-local

and long-range interactions by nature. The long range correlations responsible for

these interactions can be described in several ways:

e By using a self-consistent non-local functional that can be included explic-

itly in the KS equations, thus providing a vdW correction directly from the

electron density; this method is generally computationally expensive [86].

By adding an empirical a posteriori correction to the solution of the KS equa-
tions. In this category there fall the DFT-D methods, namely DFT-D2 [87],
DFT-D3|88] and DFT-D3(BJ) [89]. In these cases, pair-wise terms, and 3-
body corrections like in DFT-D3 and DFT-D3(BJ), are added to the DFT

energy. Since they are independent of the electronic density, these methods
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are called non-self consistent. This represents a relatively light computational
method when compared to a self consistent one, but decouples completely the
vdW description from the electron density. We can here include the maxi-
mally localized Wannier functions (MLWFs) methods. In these, the pair-wise
terms contain the contributions of pairs of MLWFs instead of pairs of atoms.

The vdW-WEF2 [90] and vdW-QHO-WF [91] were both used in this study in
the benchmarking procedure (section 4.8)).

e Meta Generalized Gradient Approximation (meta-GGA): The meta-GGA type
of functionals offer a flexible choice of semi-local forms. The exchange-correlation
energy functionals depend not only on the density p and its gradient, but also

on its second order derivative through the kinetic energy density:

r(r) = 3 SV (3.34)

2

where the sum runs on the occupied orbitals. Largely used meta-GGA func-
tionals are tHCTH [92, 93], TPSS [94] or VSXC [95].

Pseudopotentials. Because of the fact that the nuclei are point-like (positive)
charges, the variation of the potential around them is steep as the density of charges
varies rapidly. This behaviour can become an issue when we need to find a numerical
solution of the problem. Indeed, to describe a rapidly varying function, a huge
number of basis functions is needed. When we are not interested in the behaviour
of the density close to the nuclei, a solution to reduce the number of basis functions
is to use pseudopotentials. The pseudopotential method is based on an ansatz which
separates the total wave function into an oscillatory part and a smooth part, which
is called pseudo wave function. Given the fact that the chemical bonding is mainly
created by valence electrons, while the inner electronic structure is kept unchanged,
it is useful to replace the strong, true potential of the ions by a weaker potential,
that approaches the shape of the true potential for distances larger than the core
radius. The outer valence electrons now feel a flatter, softer mean potential, and

can be described with a smaller number of WFEs.

Throughout this thesis, we use two different types of pseudopotentials, the norm-
conserving [96] and projected augmented wave (PAW) [97| pseudopotentials, as
provided by the ABINIT package [98].

33



CHAPTER 3. AB INITIO: PRINCIPLES AND METHODS

X ! ® O °
e, & & O
® _ e o o o
° + - 0 e o L
® O o o
[ o o [
Basis Bravais lattice Crystal lattice

Figure 3.3: The crystal structure is composed of a basis associated to a space
lattice.

3.5 Crystal structure and Brillouin zone

The quantum theory of crystals was introduced in 1928 by the physicist Felix Bloch
[99, |67]. The fundamental distinction between amorphous solids, like glass and
crystals, is that crystals are formed by the repetition of groups of atoms. Such
a group is called a basis, while a set of mathematical points to which the base is
attached is called lattice [67]. The lattice is described by means of vectors, say aj,
as, az. These vectors are such that the crystal “looks” the same in r and in every

point r’ that is translated from r by a vector T :
r'=r+T (3.35)

with
T = w1a; + ugas + uszas, (336)

and uq,us,u3 being integer coefficients. When the primitive translation vectors a;
describe the smallest building block of the crystal structure, the enclosed volume is

called the primitive cell. One possible choice of primitive cell is the Wigner-Seitz

cell [100|, as illustrated in |[Figure 3.4}

There are only 14 distinct three-dimensional configurations of points used to
describe the orderly arrangement of atoms in a 3-dimensional crystal. They are
called Bravais lattices. These lattices are classified into groups according to their

type of cell. The group corresponding to our TMD structures is the hexagonal one

(Figure 3.5)).

The periodicity of a crystal that we detailed in the beginning of this section
creates an ideal situation for the application of the Fourier transform. According
to the Fourier theorem, any periodic function that is sufficiently continuous can be

decomposed into a series of sinusoidal components, each having a specific amplitude
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e |

Figure 3.4: Wigner-Seitz unit cell for the case of a 2D hexagonal lattice. The
construction is made in 3 steps. Step 1: bisecting lines are drawn to the segments
connecting the origin with the neighboring points. Step 2: these lines shape a
polygon - the Wigner-Seitz unit cell. Step 3: the Wigner-Seitz unit cell is shown in
blue together with lines bisecting segments to more distant lattice points.

and phase coefficient. Since a crystal is invariant under a translation of the form
of T, consequently, any physical property of the system is invariant under such

translation.

Following the reasoning in Ref. [67] as an example, we consider the function
p describing the electron density, such as p(r) = p(r + T). In one dimension, the

expansion of p in a Fourier series gives

p(x) = po + Z {Cpcos(%ﬁ) + Spsm(Q?x )} , (3.37)

p>0

where T is the periodicity, p belongs to Z*, and C,, and S, are real constants named

Fourier coefficients. The condition on the periodicity p(x + T') = p(x) implies that

2mpx s . [ 2mpx s
po + Z {C’pcos< a + 2?) + Spsm(T + 2?)}

p>0

2 2
:p0+z {Cpcos( 7;{)%) —i—Spsin( 7;{%)} :

p>0

(3.38)
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Bravais Parameters Simple (P) Volume Base Face
lattice centered (1) | centered (C) | centered (F)
ay # ax # az
Triclinic a2 # ooz # ag,
ay # ax # az
Qg3 = az = 90°
Monoclinic a2 # 90°
[ ®
ot
ay # ay # az
Orthorhombic gy = (g3 = gy = 90°
ay =ay, # az
Tetragonal a1 = a3 = aay = 90°
ay = dy = dg
Trigonal a1y = a3 = agy < 120°
.
) =a,=az *
Cubic gy = Qg3 = gy = 90°
ay =ay # az
= 120°
Hexagonal g3 = gy = 90° a,

Figure 3.5: The parameters a; correspond to the lattice parameters, while the a;;
correspond to the angle between a; and a; vectors.

Hence, [Equation 3.37| can be rewritten as a series of complex exponentials

o) = 3 ppe ¥ (339
p

where p belongs to Z, and the p, coefficients are complex numbers. Considering the
fact that the function p must be real as it refers to an observable (i.e., the density)
[67], the extension in 3 dimensions gives:

plr) = 3 ppe (3.40)
P

with a suitable choice of the p vectors such that [Equation 3.40|is invariant under

T. How are these vectors p connected to the lattice introduced in [Equation 3.35[

If the vectors a; introduced in [Equation 3.35| are the edges of each identical 3-D

unit cell, with volume L x L x L = L3 (for simplicity), the position r of an atom
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M can be labeled by using the set of unit cell vectors:
r = uja; + usas + uzas, (341)

where now the values of the u; parameters are integers belonging to [—%; %] because
of the periodic boundary conditions. The latter require that the phase of each

allowed plane wave is periodic in the edge of the crystal, i.e., for all p,

eitpar — pilpaz _ gilpas — (3.42)

We then define a new set of vectors b; in this way:

_ ag Xasg
by = 27 e

by = 27 —2axaL__ (3.43)

la1-(azxa3)]

_ al Xag
bs = 27T\a1~(a2><a3)|

where |a; - (ay X a3)| is the unit cell volume, here equal to L3. This set of new
vectors defines a basis in the reciprocal space, and the reciprocal lattice is defined
as:

q = u1b; + usby + uzbs. (3.44)

If the a; vectors are primitive vectors of the crystal lattice, then the b; vectors are
the primitive vectors of the corresponding reciprocal lattice. Both the real and the

reciprocal space are connected by the Fourier transform.

We showed in [Equation 3.44] that the q vectors describe the primitive cell of

the reciprocal lattice; as a consequence, the electron density at this position sees a
translational invariance: the p and q vectors are therefore equivalent. This theo-
retical consideration can be verified experimentally: as a matter of fact, the X-ray
diffraction pattern of a crystal represents the reciprocal lattice of the crystal itself
[67].

The electronic, vibrational and magnetic properties that occur in a crystal have
the same symmetry of the crystal. At the beginning of this section, we discussed
the importance of defining the primitive cell of a crystal, since it contains all the
properties of the structure under study. The Brillouin zone (BZ) is defined as the

primitive cell of the reciprocal space: in this respect, it corresponds to the primitive
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I

Figure 3.6: Brillouin zone of the hexagonal lattice: the red lines join the high-
symmetry points (I';, A, M...); the b; labels indicate the reciprocal vectors.

cell of the direct lattice. For this reason, the study of the crystalline system can be
restricted to the study of the BZ. This simplification is a consequence of the form of
the wave function within a periodic potential. The Bloch theorem states that,
in the presence of a periodic potential, the electronic wave function in a crystal can

be written as
Ty (r) = up(r)e’™r (3.45)

where the function wuy has the periodicity of the crystal . I[Equation 3.45implies

that, if a vector k’ falls outside the first Brillouin zone, it can be remapped into it

as k = k' + G, with G being a reciprocal lattice vector, and where k falls inside
the BZ. The geometry of our interest has the symmetries of the hexagonal Bravais
lattice; the corresponding Brillouin zone is represented in where the high

symmetry points are also reported.

3.5.1 Parallelization of the computations

We have seen that the DFT is a technique that allows us to solve the Schrodinger
equation at a reduced computational cost. However, numerical modeling of systems
with hundreds of atoms, involving surface reconstruction , and/or vdW
interactions, which is our case, can be too long to be performed on a desktop
workstation. The parallelization of ab initio software is indeed necessary.

In plane-wave based ab initio codes, most of the computational cost is taken
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by eigensolvers, used for iterative diagonalization of the Hamiltonian matrix, and
Fast Fourier Transform (FFT) libraries, that allows for switching from the real
to reciprocal space 103, 104]. Efficient parallelization during this steps of the
procedure is then needed. When structuring a parallel code, the goal is to avoid
computational bottlenecks, i.e., situations in which the flow of the computation
is slowed down at a single or several particular steps. As the size of the system
increases, the impact of the bottlenecks becomes more and more significant. The
way to solve this problem is to partition the data over the different computing cores.
In ABINIT, the WE of the system 1, x is Fourier-expanded as

Yk = Y Cni( G, (3.46)
G

and during the SCF loop the data partitioning is done with respect to the different
k-points, the blocks of bands n, and the spatial partitioning in the Fourier space of

plane-wave coefficients ¢, x [105].
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Chapter 4

Methodology

In order to perform this study, we used a set of descriptors and theoretical frame-
works that allowed us to individuate the subtle interplay of the electronic and the
dynamic features of the system, and hence, to characterize the frictional response

at the nanoscale.

4.1 Electron density analysis

The electron density is the central quantity determining all the properties of the
system. It measures the probability of finding an electron at a specific point in
space. If U is the wave function solution of the Schrodinger equation, the charge

density p is defined as |¥|? over the whole space.

Electron Localisation Function. The Electron Localisation Function (ELF)

[106] is a dimensionless measure of how localized the electronic density is:

1
(1+52)

and it can assume values between 0 and 1. The quantity D(r) represents the

ELF(r) = (4.1)

electron localization

1 [Vp(r)P?
8 p(r)
and depends on the electron charge density p(r). The ratio in [Equation 4.1 is

made with respect to D°(r) that refers to the electron localization of the homo-

D(r) =7(r) (4.2)

geneous electron gas. Consequently, a value of ELF = 1/2 corresponds to the one

of the electron gas. A value of ELF = 1 corresponds to a perfect localization. In

40



CHAPTER 4. METHODOLOGY

Equation 4.2 7 refers to the kinetic energy density

rlr) = 5 32 3 ) Vsl (13

that depends on the gradient of the WF ,,;, components and the Fermi distribution
f.

Density of States and atom-projected Density of states. The density of
states (DOS) [67] is the number of states that are accessible to the system per
energy unit. The atom-projected DOS measures how an atom or a group of atoms
participate in the formation of the DOS; it is calculated by projecting the wave

function onto hydrogen-like functions centered at the atomic site.

Orbital Polarization. The orbital polarization [107| represents the relative elec-
tron occupancy of two orbitals. It is defined for two sets of atomic orbitals a and b

as:
Ng — Ny

Ng + Np

Pa,b = (44)

where n, and n;, are the occupation numbers of the respective orbitals. P, is a
measure of the excess of charge occupation in the orbital a compared to the one in
b. By selecting the sets of orbitals corresponding to particular regions of the space,

it is possible to investigate the nature of the charge transfers within the system.

Bond Covalency. The covalency of a bond is a measure of the amount of charge
density shared between two atoms when forming the bond. Among the existing
definitions, we adopt the one based on the atom-projected density of states as in
the following [108].

The center of mass of an atomic orbital |n, [, m;, ms; > of an atom A in the range

energy [Ey, E1] is defined as

El A
Eintmy.m> (E)IE
em™(n, 1, my,my,) = EOEI [t > (E) (45)

A 7
FEo g|n,l,ml,m5> <E)dE

where gﬁ‘z Lompma> 1S the contribution of the atomic orbital |n, [, m;, ms > of the atom
A to the total density of state of the solid g(E):

IE)=3>" D it (E). (4.6)

TL,l mp,ms
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The bond covalency is then defined as
Cap = —|em™ — em?|, (4.7)

which is a measure of the overlap of the charge density formed by the A and B
atoms. With this definition, the greater the value of C4 g, the higher the overlap,
the larger the covalent character of the A-B bond. According to this definition, the

bond covalency is indicated in units of energy.

4.2 Phonons

In the previous chapter, we discussed the electronic structure inside the material.
We will now see how we can use the vibrational excitations of the crystal as a way
to predict the frictional behaviour, after introducing the notion of phonons.

A phonon is a collective excitation of a periodic, elastic arrangement of atoms
or molecules in condensed matter. We have seen in that the crystal
periodicity is defined by the primitive cell, the smallest unit needed to generate the
infinite lattice by translation. In the following, we use the index [ to label each
cell, and the vector r; to identify its position. If there are N atoms per cell, their

equilibrium positions will be specified by the set of vectors r?:

rgz =TI+ 1'27 (4.8)

withk =1,...,Nand [l =1,2,.... At time ¢, the xk-th atom within the [-th primitive
cell, will be at the position r(t).

For a general conservative system close to the equilibrium, the potential energy V'
of a system that is subjected to a small elastic deformation can be Taylor expanded
If

we consider all the atoms and all the possible directions of oscillations, the expansion

up to the second order in the time-dependent displacement u,;(t) = 1.y (t) — 19,

reads

Vv e S (5r) 43S S ) (%) (1)

kKl a=1 Kl KU a=1 =1 KU
(4.9)

where the Greek letters are the Cartesian indices and the derivatives are evaluated
at the equilibrium.
At the equilibrium, the first derivative is equal to zero and so the first order

term vanishes. Vj is a constant that can be set to zero by shifting the reference
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energy. This is equivalent to saying that the elastic response is a linear function of

the force |67]. The potential energy then reads:

ZZZZU% Vag (Kl K1 )ug () (4.10)

kl k'l a=1 p=1

Vap(kL Kl = (L) (4.11)

with

ou,ou’,,
We can then define the force constant matrix as
Vin (kL E'T) Vig(kl, k') Vis(kl, K1)

V(kl, &) = | Var(kl, ') Vag(kl, K'l")  Vas(kl, K'l') (4.12)
Va1 (kL K'Y Vae(kl, K'l) Vis(kl, K'T")

where each element corresponds to the interaction constant between the x-th and

the x’-th atoms in the [-th and I’-th cell, respectively.

If we consider p,; and m, respectively as the momentum and the mass of the

atom k in the unit cell replica [, the Hamiltonian of the harmonic crystal can be

H= Z 21;;; Z Z u,, V(kl, &'y (4.13)

skl K

written as

and the force applied on the atom is of the spring type. As a consequence, the

equation of motion for the atom x reads [109)

d
unl = — ZV lil :‘il u,{/l/ (414)

lll

with the solution )

ul(q,j) = \/Weﬁ(q,j)

which is a plane wave characterized by the wavevector q, the polarization vector

ei(q-rnliwq,jt) (415)

e, and oscillation frequency wq ;. At each wave vector g, the index j = 1,....,3N
identifies the vibrational mode; such vibrational modes are termed phonons. It is
important to stress that for each wavevector q, there are 3N different modes of
vibration characterized by a displacement direction e, and an oscillation frequency

w.

43



CHAPTER 4. METHODOLOGY

4.2.1 The dynamical matrix

When using [Equation 4.15] as a solution of the equations of motion [£.14] we obtain

the eigenvector-eigenvalue equation

1 .
2 ) — 111\ iq(r;—r, .
wlien(a ) =Y 4/ V(kl, K1)ei 0] e,
qi]e ( 7j) K TNt [ <I€ K )6 ]e (q7j)

/1
- ; Tt

where the summation runs over all the unit cells. By writing [Equation 4.16| as

1
2 e (g i) =S "4/ F..(q)ew(q, j 417
Wy j€x(d, ) Eﬁ, — (a)ew(q,7), (4.17)

it becomes apparent that the matrix IF is the Fourier transform of the force constants

(4.16)

Z V(Hl, /i/l/)eiq(rl/rz)(q>] en/(q, j)
l/

and contains the interactions between all the possible couple of atoms. For a given

vibration (q, j), if we combine the 3-dimensional polarization vectors e, (q, 7) into a

3N-dimensional polarization vector e(q, j), in matrix notation [Equation 4.17| reads

wgse(a,j) = [MF(q)M]e(q, j) = D(a)e(q. j) (4.18)

where M is the mass tensor, containing the masses of all the atoms. This is an
eigenvalue-eigenvector equation. The squares of the frequencies wq ; are the eigen-

values, and the e(q, j) are the eigenvectors of the dynamical matriz
D(q) = MF(q)M, (4.19)

that contains the information about the dynamics of the crystal, i.e., how the atoms

are moving relatively to each other. Diagonalizing D(q) gives the values of the

2 -
q?j

at each g-point of the Brillouin zone in order to obtain a complete description of

frequencies w; ; and the eigenvectors e(q, j). The [Equation 4.18 must be solved

the atomic motions. The whole 3 N-dimensional set of atomic displacements u; can
then be written as a linear combination of the eigenvectors e(q, j) of the dynamical
matrix D [109]:

1 )
= — Me(q, j)e'(@m1Hwast) 4.20
l \/N Zq: EJ: Qan (q ]) ( )

where the normal coordinates (Qq ; are coefficients that account for the oscillation
amplitude of each particular mode (q, 7). Their value depends on the temperature

of the system and have to be determined by using statistical methods.
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4.2.2 Imaginary frequencies and instabilities

In the analysis of the phonon spectrum, the value of the frequencies gives us impor-

tant insights on the stability of the system. Given the definition of the dynamical

q,] —q,]°

This has the following physical interpretation. As seen above, the dynamical matrix

matrix (Equation 4.19)), the eigenvalues w; ; are real quantities and w} ; = w

is constructed from the force constant matrix which, in turn, is built with the second
derivative of the potential energy with respect to the displacements. Consequently,
the phonon frequencies are a measure of the curvature of the surface of the poten-
tial energy about an equilibrium configuration: if they are positive, the curvature is
positive, so the energy increases quadratically (V' o Qg,j> when atoms are slightly
displaced towards the direction corresponding to the associated eigenvector. If the
system is at its ground state, or at a local minimum of the potential energy surface,
the eigenvalues have to be greater than zero. On the contrary, imaginary frequen-
cies, for which w?h ; < 0, indicate that the energy decreases quadratically along the
atom displacements represented by the eigenvector: the reference configuration is
unstable with respect to such displacements and corresponds a saddle point of the
energy. For convenience of representation in w;(q) band dispersion plots, imaginary

frequencies are reported as negative numbers rather than imaginary ones.

4.2.3 Cophonicity

The cophonicity metric |[110] is a lattice dynamic descriptor that we use to parame-
terize the atomic type and its effect on the vibrational properties, and to connect the
latter to the electronic features of the system. The cophonicity C,,(A-B) measures
the relative atomic contributions to a specific range of phonon eigenfrequencies and
it is defined in the following way. Let us consider a set of two interacting atoms

A and B. By analogy with the center mass of an atomic orbital (section 4.1]), we
introduce the center mass CM* of the phonon DOS projected on the atom A,

g (w): o
CMA - Joy wgt (w)dw
D gAw)dw

The integral over the frequency w in the denominator expresses the contribution of

(4.21)

the atom A to the total phonon density of states.

The relative position of the center mass of g (w) with respect to the center mass
of gB(w) is given as:
Con(A-B) = CM* —CM?®, (4.22)
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the units being the same as those of the frequency w. A positive (negative) sign
of C,n(A-B) implies that the A (B) atom contributes more to the high frequency
modes of the specified range. The closer |Cp;,(A-B)| is to zero, the more A and B
contributions to the frequency band are mixed. In this case we can say that the
two atoms have the same weight in the determination of the modes specific to the
considered energy range. As we will see in the results part (chapter 5), the value
depends on the frequency range [wp,w:], which is selected according to the part of

the phonon spectrum that we want to investigate.

4.3 Sliding-related vibrational modes in a crystal

Friction is the result of the interactions resisting the relative motion of neighboring
atoms; it is therefore important to distinguish the various contributions at the
nanoscale. The microscopic friction is defined as the friction created at the atomic
scale by the relative motion of adjacent atom layers. It includes the presence of
structural irregularities, such as dislocations and layer truncations, that exist in a
non-ideal crystal. If the structure is free from defects and irregularities, and the
microscopic friction is due to only to the local electronic (depending on the atomic
types) and structural features (geometry), it is termed as intrinsic friction |37]. In
the following discussion, we will focus on the intrinsic friction and will refer to it
simply as “friction”. The dynamical process of friction occurring during the motion
of two adjacent layer planes of atoms can be studied by detailing the interaction
of such planes in translation on top of each other. However, since this is a time
dependent process, the study of it would require long ab initio dynamic simulations
which are very demanding in terms of computational resources. As an alternative,
we choose to analyse the vibrational contributions of the atoms to the intrinsic
friction; in this respect, several previous studies on similar TMD materials already
observed that specific low frequency phonon modes are directly related to the sliding

of adjacent layers 110, 137].
As a first approximation, friction can be described as a harmonic restoring force

f, that follows Hooke’s law
f=—-Cr=muw’r, (4.23)

with = being the relative layer displacement, m the mass of the system, C' the
force constant, and w a characteristic frequency. A translation in space can be de-
scribed as a particular linear combination of atomic displacements, mathematically
represented by the phonon eigenvectors. Since at each g-point the set of eigendis-

placements constitutes a basis for the Cartesian components of the atomic positions,
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there is then a one-to-one correspondence between the Cartesian and the phonon
description of the sliding event. The phonons that have the largest component in the
linear combination representing the layer sliding are called sliding-related phonons.
At a constant system energy, the lower the frequency of these modes, the higher
the amplitude of the corresponding atomic displacement. When the displacement
is associated to a layer sliding (translation), high amplitudes correspond to large
shifts of one layer with respect to another adjacent one. A lower frequency then
corresponds to a facilitated sliding. Consequently, it was shown that the transla-
tion, hence the intrinsic friction, can be finely tuned by acting on these particular
sliding related modes [110]|. In such a study, the projection of the components of
the displacement vectors showed that there were only a few of these sliding related
modes. A sliding-related phonon mode may be responsible of pure rigid layer trans-
lations or of layer shifts combined with intralayer motions, like stretching and/or
bending of the atomic bonds. Such layer shifts can occur along directions either
parallel or orthogonal to the MX, sheets; the former are associated with the layer
sliding (shearing modes), the latter correspond to variations of the interlayer dis-
tance (breathing modes). Indeed, like at the macroscopic scale, the intensity of the

friction at the nanoscale depends on the interplane distance.

Using a standard convention, the labels of the modes are specified by increasing
integers, corresponding to dispersion branches with increasing frequencies. As an
example, the I'(4) mode corresponds to the 4th branch at the I" point of the recipro-
cal lattice. The frequency of the I'(5) is higher or equal (because of the degeneracy
in our case) to the one of I'(4), and the frequency of I'(6) is higher than those of the
previous modes. At the I' point, the shearing modes are the 4th and 5th modes,
and are related to rigid sliding along the a and b crystallographic axes, while the 6th
mode is a breathing mode . When following the acoustic branches from
the I' point towards the A point, we can see that the rigid sliding-related modes in
I' continuously transform into composite modes at the A point. These modes also
contribute to the sliding as they describe shifts between the layers, also including
intralayer displacements. The goal here is to find a way to modify the frequency
of these identified sliding modes, by acting on the electronic structure with a fine

engineering of the cation environment or with the use of external electrostatic fields.
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Figure 4.1: Identification of the phonon modes associated to the sliding. The
notation I'(4—5) A(1—4) is used to signify the range of modes that are degenerated.
(a) Phonon band structure of MoSs computed along the path connecting the high
symmetry points in the first Brillouin zone. (b) Rigid sliding modes I'(4 — 5) and
(c) breathing mode I'(6). (d) A(1 —4) and (e) A(5 — 6) composite sliding modes
at the A point. Blue arrows symbolize interlayer displacements while red arrows
indicate intralayer displacements.

4.4 The modern theory of polarization

Finite-field calculations in periodic insulators is not a trivial technical task, as it
has been difficult to correctly define the polarization in extended solids, even con-
ceptually.

In a molecule, the dipole moment d of a collection of charges ¢; at the positions

r; is defined as:

The difficulty arises when dealing with periodic boundary conditions in the presence
of an electric field. In a periodic system, the usual way to define a quantity is to
express it as this quantity per unit volume, or unit mass. The quantity is then
evaluated in the unit cell and normalized over the cell volume. In our case, the
electric polarization should be represented by the electric dipole moment per unit
cell. For the sake of the example, let us write the case of a finite number of point

charges in a 1—D system:
1
P = - 189, 425
aZi 7% (4.25)

the units being charge per unit length. As it is apparent in [Figure 4.2] the choice
of the unit cell becomes critical, as two equally valid unit cells can have completely

opposite orientations of the polarization. Here for the cell on the left P = 1/2e,,
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Figure 4.2: Two different choices of representative unit cells, indicated by the
dashed lines, in a one-dimensional chain of alternating anions and cations. a is the
lattice constant. Though both are valid, the unit cells present opposite polariza-
tions.

while for the cell on the right P = —1/2¢é,. Therefore, the polarization defined in
[Equation 4.25| cannot be applied to periodic systems.

This ambiguity requires a reformulation of the expression for the polarization. This
was done by Stengel and coworkers [111] in 2009, with their Modern Theory of
Polarization (MTP). When an external electric field is applied to a non polar bulk
material (like a TMD) along a specific direction, a change of the polarization can
occur. Such change is a quantity that can be measured, using the Sawyer-Tower

method [112], for example in the case of the spontaneous polarization of a fer-

roelectric. Let’s now rewrite [Equation 4.25| in the more realistic hypothesis of a

continuous electronic charge density en(r):

1
P = 9 /dren(r)r (4.26)

where the number density n(r) is calculated as a sum over the occupied states:

occ

n(r) =Y [a(r). (4.27)

The issue here lies in the fact that the position operator appearing in [Equation 4.26|

is not compatible with the Born-von Karman boundary conditions. In a cell with
lattice vectors a; (i = 1,2, 3), the latter requires that ¥ (r) = ¥ (r + m;a;) for a set
of integers m;. Moreover, an operator is supposed to map a function of this Hilbert
space into a function belonging to the same space. It is trivial to show that, if ¢(r)
is periodic, ri)(r) is not, and so r is not a viable operator in infinite solids [113]. As
we will see below, r is replaced by a Berry-phase expression. This removes possible
potential discontinuities and the mathematical difficulties created by the unbound
nature of the electric perturbation term.

Under the effect of a finite electric field E, the total energy of the crystal to
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minimize is [111]

E=Ey,— QP -E (4.28)

with Fy being the ground state energy obtained in the absence of the electric field,
P the total polarization containing an ionic and an electronic contributions, and
2 the volume of the unit cell. The electronic part can be computed following the
Modern Theory of Polarization. In the MTP, the change in the electric polarization
per unit volume that is induced by an adiabatic change in the crystalline potential

v, 1s written as

e >
AP = —dA, 4.2
A ul (4.20)

1

the parameter A describing a continuous path in the space of the Khon-Sham Hamil-

tonians [114]. From [Equation 4.26 and the expresion of n(r), the derivative with

respect to A writes as:

(4.30)

dP e"“’ W dy)
ﬁ —— <w’ d)\>+CC

At the first order of the perturbation theory, the ket is approximated as

m#n

plugging it into [Equation 4.30| yields

_ QZZ<¢‘I.‘¢ ><¢ v,\‘w> (4.32)

— €
n m#n m

which is the expression of the variation of the polarization due to a variation of
the crystalline potential. From the commutation relation with the Hamiltonian,

r, H)\] = ZTZ—’p, the non diagonal terms can be rewritten as

ieh (Vx| p|Un,)

meS) €, — €m

(4.33)

leading to:

E - ieh oce Z <w)\‘p|w)\><¢)\ dvy |w)\> e (434)

B (En_e )2

A\ m.Q
It should be noted that this quantity doesn’t depend on the cell, nor on the phase

n  m#n

chosen for the Bloch function. It uniquely specifies the macroscopic polarisation

change due to an adiabatic change of the crystal potential.
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From this, it can be shown that the change in polarization AP can be written

as a sum of ionic and electronic terms [113]:

AP = AP, + AP, (4.35)

The ionic contribution can be computed classically, by considering ions as classical

point charges eZ,, summed over the cell,
€ on
Pion(M) = 5 >z, (4.36)
I

while P,; is computed as a Berry phase, meaning that it is a gauge invariant phase
of the WF [115]:

PulN) =~y [ k3 (] Vi), (4.3

where e is the electron charge, the factor 2 accounts for the spin, and the u),
represents the periodic part of the Bloch function. The WF derivatives are finally
computed by using a finite-difference scheme, so that a coherent phase relationship

between the k-points may be ensured.

4.5 Computing the response to an electrostatic field

The implementation of the modern theory of polarization in the ABINIT software is

based on two methods which are available to us:

e The finite electric field technique, that has the advantage of being very general
and easy to implement. It also allows to use the exchange-correlation energy

functionals already available for zero-field ground-state calculations.

e The density functional perturbation theory (DFPT) approach, which offers
a more systematic way to compute nonlinear response functions. By using
the perturbation theory, it is possible to obtain analytic expressions of the

derivatives of the energy with respect to electric fields up to any order.

We will now briefly see the details of both methods.
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4.5.1 Finite electric field calculations

The concept behind the constant electric field method, as in the ABINIT implemen-

tation, relies on the direct minimization of the electric enthalpy functional F:
F(E)=FEgs —QE-P, (4.38)

defined for a finite electric field E and depending on the internal coordinates through
the internal energy Fig and the polarization P [111]. The subtlety here is that a

new functional F is introduced for convenience:

F-v-Yg.p
45 (4.39)
=F - —E%
8m

As seen in [Equation 4.39, F and F differs only by a function of E, and consequently

yield the same equilibrium state for a fixed value of E, which is the case we are
considering here. The electric displacement D = E + 47P, rather than the electric
field E or the polarization P, becomes the fundamental electrical variable. F is
chosen to be the energy functionals for fixed electric field condition. By analogy,

the internal energy U (D), defined as
0 2

is chosen for a fixed displacement field condition. The minimization of the functional

F is performed using the preconditioned conjugate-gradient algorithm [116]. At the

minimum, [Equation 4.3§ gives the values of the energy and the polarization of the

material at a fixed field. The Hellman-Feynman theorem is then used to compute
the forces at a non-null field. In this way, the force on an atom along a direction can
be computed as the sum of the standard Hellmann-Feynman term with no electric
field plus a term arising from the ionic contribution [116} |117]|. The force felt by an

atom k in a given direction « expresses as

OFks

fﬁ,a = - a)\k,a

+ eZ,E,, (4.41)

with A being a continuous parameter. The stresses can be computed as a function

of the electronic and ionic Berry phases terms summed over all the directions [116].
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4.5.2 Density Functional Perturbation Theory calculations

A perturbation theory of the static response of insulating crystals to homogeneous
electric fields integrating the MTP [114] has been implemented in the ABINIT soft-
ware [118], later followed by the PAW extension [119] that we also use in this study.
Performing phonon computations with this method is faster than the finite electric
field method. However, the ABINIT implementation of the calculation of the forces
on the atoms with the DFPT in the presence of a finite electric field presents some
bugs when used in a multicore environment; in this case, only a serial calculation
gives reliable results. Nonetheless, due to the computational requirements of our
calculations, we needed to exploit the parallelization features of ABINIT to obtain
the results in a reasonable time. For this reason, we made use of the finite electric
field method our simulations. The bug was found during this present study together

with the joint effort of ABINIT team.

4.6 CI-NEB method and energy barrier

To study the energy barrier preventing the sliding of one layer on top of the other we
use the climbing image nudged elastic band (CI-NEB) method. The CI-NEB method
[120] is a modification of the nudged elastic band (NEB) [121] that allows to find
minimum energy paths between an initial state and a final one, both corresponding

to energy minima. In the present section we introduce the basics of these methods.

In the NEB method, an elastic band with N + 1 images is expressed as a set of
vectors R containing the geometrical positions of every atoms, [Rg, R1,Ra, ..., Ry,
with Ry and Ry corresponding to the fixed geometric configurations realizing the
initial and final minima, respectively. Since a first order saddle point is an energy
maximum along one direction and an energy minimum along all the other directions,
finding saddle points generally involves the simultaneous maximization of one degree
of freedom and minimization of the other degrees of freedom. This is done by
optimizing a set of intermediate images along the geometrical path. These images
correspond to states created by the sliding of one layer on top of each other. Each
image finds its lowest energy possible while maintaining equal spacing to neighboring
images. The constraining is done by adding spring forces along the band between
images, hence the total force acting on an image is the sum of the spring force
along the local tangent F? || and the true force perpendicular to the local tangent
VE(R)|.:

Fi = F|| = VE(R))|. (4.42)
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where F is the energy of the system, depending on the atomic coordinates.

The spring force has the simple form:
F7|) =k (Rip1 — Ri| — Ry — Ria|) - 7 (4.43)

where k is the force constant and 7; the normalized local tangent vector at image
1. The particularity of the NEB method is that during the minimization, at each
image, the true force and the spring force are decomposed into these components
parallel and perpendicular to the hyper-tangent between the images. Introducing
only the perpendicular component of the true force, and only the parallel component

of the spring force ensures that:
e the spring forces do not interfere with the convergence of the elastic band.

e the true force does not affect the distribution of images along the minimum

energy path.

This choice for the force projection is referred to as “nudging”. An optimization
algorithm is then used to move the images according to the value of the force.
Excluding a lucky scenario, none of the images lands on the saddle point and thus
the saddle point energy needs to be estimated by interpolation.

In the CI-NEB method, the specificity is that the highest energy image is driven
up to the saddle point. First, a few iterations using the regular NEB are performed,
and the image with the highest energy is identified. Then the value of the true force
at this image 7,,,, along the tangent is inverted, meaning that the total force acting

on this image is now

F - _VE(R‘ZmaaL) + 2VE(R’Lmax)|J~ (444)

Tmax

The energy of the image i,,,, is maximized (hence “climbing”) along the elastic
band, and minimized in all other directions. The importance of the other images
in the band is that they allow to define the one degree of freedom for which a
maximization of the energy is performed. When this image converges, it will be at

the exact saddle point, realizing the maximum of the energy along the path.

4.7 Software

In this study we use the ABINIT package |98| to perform ab initio simulations within

the DFT framework. The PHONOPY software [122] is used as a post processing tool
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to calculate the phonon spectrum for a subsequent analysis of the frequencies and
the eigendisplacements. All the pristine TMD compounds here examined have the
symmetry of the P63/mmc space group (#194), while the structures containing a
molecule have the symmetry of the P1 space group (#1). In both PHONOPY and
ABINIT, the crystal symmetries are exploited in order to reduce the computational

load.

4.8 Benchmark

We stated in [subsection 3.4.2] that ad hoc parameters can suffer from a lack of

transferability. It is then necessary to perform a benchmark on the fundamental
input parameters (e.g., energy cutoff, BZ sampling and vdW correction) in order to
reproduce the experimental structure as close as possible. We report the result of the
benchmarking in and compare it to experimental data [123, 124} |125] |126],
127, 1128|. The vdW-WF2 [90] and vdW-QHO-WF [91] van der Waals corrections
tend to overestimate the volume of the cell. The vdW-DFT-D3(BJ) [89], based
on the Becke-Jonhson method [129|, gives the most accurate description, and is
selected to carry on the calculations in the presence of a finite field. It is worthy
to mention that the vdW-DFT-D2 correction [87] has given satisfying results for
the ground state calculation of similar TMDs [110, |130]. However, at the time of
this study, the implementation of the latter in the ABINIT code does not include
the parameterisation for the tungsten atom, and therefore cannot be used for our

purposes.

4.9 Computational details

We focus here on 6 different M X5 prototypes of layered TMDs with M = Mo, W
and X = S, Se, Te. The plane defined by the a and b lattice vectors and separating
the two layers of the bulk M X5 structure is considered as our sliding plane. The
exchange-correlation functional used is the Perdew-Burke-Ernzerhof [131] derived
within the Generalized Gradient Approximation. As stated in the previous section,
we use the vdw-DFT-D3(BJ) correction to account for vdW interactions. The choice
is made after benchmarking and comparison of the simulations with the geometrical
data obtained experimentally for the respective compounds. We perform Density
Functional Theory calculations with a plane-wave energy cutoff set to a minimum of
18.4 Ha. The Brillouin zone is sampled with a minimum of 7x 7 x5 k-mesh divisions.

We consider that we achieve convergence of the electronic distribution when the

95



CHAPTER 4. METHODOLOGY

Table 4.1: Geometry parameters obtained by using the PBE functional with various
choices of vdW corrections. The best correspondence with the experimental data is
obtained by using the long range dispersion correction vdW-DFT-D3. For all the
structures, the symmetry space group is P63/mmec (symmetry table number 194).
Angles between the primitive vectors are a=90°; 5=90°; v=120 °.

Experimental data

M X
System a= ¢ r oy =z x Yy z
MoS[123| 3.1610 12.2950 Vs % Wi Vs % 0.6275
MoSe,[124] 3.2880 12.9300 0 0 % Vs % 0.1220
MoTe,|125] 3.5170 13.9490 s % Wi s % 0.6250
WS, [126] 3.1532  12.2401 s % Vi s % 0.6225
WSe,|127] 3.2860 12.9800 ¥ s Va s % 0.1200
WTe,|128] 3.4910 14.3100 Vs % Vi Vs % 0.6210
vdW-WE2

M X
System a= c x Yy z Ty z
MoS, 3.1910 13.7735 Vs Y Y Vs % -0.1365
MoSe, 3.5775 12.9097 Vs % Y s % -0.1277
MoTe, 3.5203 14.3680 s % Y s % -0.1195
WS, 3.1778 12.4191 Vs % Ya Vs % -0.1237
WSe, 3.4297 13.0040 Vs Y5 Y Vs % 0.3741
WTe, 3.5203 14.3680 Vs % Vs Vs % -0.1226
vdW-QHO-WF

M X
System a="b c r Yy =z xr Yy z
MoS, 3.1906 14.1619 s % Y s % -0.1395
MoSe, 3.5775 12.9097 Vs % Ya Vs % -0.1277
MoTe, 3.5189 13.9530 Vs Y Y Vs % -0.1195
WS, 3.1913 13.9849 Vs % Vi Vs % -0.1376
WSes 3.4956 13.3404 Vs % Y s % 0.3703
WTe, 3.5203 14.3680 s % Y s % -0.1226
vdW-DFT-D3(BJ)

M X
System a = c r oy =z x oy z
MoS, 3.1556 12.2368 Vs % Wi Vs % -0.1220
MoSe, 3.2862 12.8660 s % Y s % 0.3801
MoTe, 3.5172 13.8237 Vs % Y s % 0.3816
WS, 3.1601 12.2401 s % Y s % 0.3787
WSe, 3.2885 12.9228 s % Y s % -0.1196
WTes 3.5197 13.8306 Vs % Y Vs % 0.3819
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difference of the total energy calculated between two subsequent Self Consistent
Field cycles occurs twice in a row to be less than 107'2 Ha. The electrostatic field
is applied perpendicular to the sliding plane, along the ¢ crystallographic axis. The
electric field values range from 0 to 0.0025 a.u., which correspond to a range of 0 to
~ 1.28 V/nm. For some of the prototypes, at some values of the field, we observe
some unstable displacements. The latter can be removed only by changing the value
of the field. For this reason, the values of the field used can vary depending on the
type of system.
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Chapter 5

Effect of the electric fields on the
intrinsic friction in transition metal

dichalcogenides

During this PhD study, we completed three core investigations, each representing a
different angle of approach in controlling the nanotribological behaviour of TMDs.
In the present chapter, we propose a case study of the effect of an electrostatic field
on the nanoscale frictional properties. The article reporting this study is mentioned
in Ref. [132]; in what follows, we summarize the methodology and the main results.

We begin the study by optimizing the 6 selected prototypes by using the lattice
data cited in [section 4.§] in the absence of any field. We then apply an electrostatic
field along an axis orthogonal to the atom layers. The impact on the systems can
be seen at various structural levels. First, the ground state geometry of the starting
point was modified: as shown in the largest volume variation is found
for the MoSey, MoTey, and WSe, systems, mainly due to the change in the length
of the c lattice vector; this is expected, since such crystallographic axis is parallel
to the direction of the applied field E. It is important to note that the range of
values of the electric field is not common for all the systems. Some structures
become unstable when the field value reaches a certain threshold depending on the
chemical composition.

Regarding the phonon spectrum, we observe that an increase of the field pro-
duces a general hardening of the modes along the I'-A linear path; at the same time,
some sliding branches are softened and may become unstable beyond some critical
field value F (E = |E|), depending on the system. This is what is observable when

we consider the average frequency w as a function of E (Figure 5.2): the MoS,,
WS, and WTe, systems are the most stable ones against large field perturbations
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Figure 5.1: The effect of the electric field on the lattice parameters of the model
systems is visible here: (a) lattice constants a and b, (b) lattice constant ¢, (c) cell
volume. Values relative to MoS; and WS, systems are almost identical. Lines are
a guide for the eye.

while, in the remaining compounds, some of the sliding modes become unstable
already at £ = 0.5 x 10 a.u. The dependency of each sliding and breathing mode
frequency as a function of the field is reported in [Figure 5.3 where we plotted the
phonon band structures for each system. We can see the appearance of branches
with negative frequencies upon the activation of the field. As stated in [section 4.3
the frictional force is directly related to the frequency of the sliding modes. There
is no clear relation between the magnitude of the field, the phonon frequency, and
the atomic types. This shows that the coupling between the electronic structure

and the dynamical response of the system is not trivial.

In order to disentangle the contribution of the two responses, we quantify how
the electronic charge redistributes across the structure under the effect of the field.
To this end, we use the orbital polarization descriptor defined in [section 4.1 We
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Figure 5.2: Average frequency as a function of the applied electrostatic field. Insta-
bilities arise when the field magnitude is above a threshold value. Lines are a guide
for the eye.

consider the p, , p, and p, orbitals centered at the anion sites, and the ¢y, and the
ey orbitals centered at the cation sites, in order to calculate the following polariza-
tions: Py, p,» Ppowes Ppyper Prageegr Pdyo_od.s . We do not notice any
significant change in the relative occupation of the p, with respect to the p, orbital
with the presence of the field. The fluctuation around zero of P,, ,, indicates that
the electrons are equally distributed between the two orbitals. This behaviour is
expected given the symmetries present in the a, b plane; similarly, we observe the
same trend both for P, , and P, ,. orbital polarizations (Figure 5.4(b-c)). The

negative values of P, ,,. and P imply an excess of electrons along an axis orthog-

DPy,Pz
onal to the layers at the anion site. This excess remains nearly constant regardless
the value of the applied field. When looking into the relative occupation of the ¢y,
and e, orbitals, in the MoSe,, MoTey and WSe, systems, we notice that an increase

of the field induces a transfer of electrons towards the e, orbitals (Figure 5.4{(d)),

in detail from the d,2_,2 to the d,2 orbital (Figure 5.4(e)). This denotes a charge
transfer along an axis orthogonal to the a, b plane and passing through the cation

sites. On the contrary, in the MoSs, WSs, and WTe, systems the variation of the

field leaves almost unchanged both the P, . and Pdmz,yz,dzz polarizations.

The transfer can be visualized by looking into the projections of selected charge

density differences p(E) (Figure 5.5)

p(E) = p(E) = p(0), (5.1)

where p(F) is the charge density of the optimized structure in the presence of non-
null field E, and p(0) is the charge density relative to the structure relaxed in the
absence of field. The red lobes, that point along the e-direction orthogonal to the
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layer planes, represent the portion of space where an accumulation of charge occurs

when compared to the null-field case.

At this point, the present analysis suggests that the applied field induces an ac-
cumulation of charge along the ¢ direction in the MoSes, MoTes and WSe, systems.
The result is a significant variation of the ¢ lattice constant (Figure 5.1) and the

consequent instability of the sliding modes .

It was shown [133] that the covalency of the M—X bonds in TMDs can be affected
by the changes in the charge distribution. A quantification of the effect of the field on
the bonds is here necessary. We then calculate the bond covalency C) x introduced
in [section 4.1} The relation between Cyy,x and the polarization of the d orbitals is
then plotted in[Figure 5.6l In MoS,, MoSes and MoTe, systems, the bond covalency
is nearly constant despite the large variation of the orbital polarizations; in WS, and
WSe, systems, the covalent character of the bond is more sensitive to the charge
rearrangement. In the case of the WTey compound, the variation of the orbital
polarization is too small to induce significant changes in the bond covalency. This
shows that there is no trivial relation connecting the mode eigendisplacements and
frequency (and consequently, the atomic motions) and the covalency, the orbital

polarizations, and the atomic types forming the structure.

That being said, the interatomic forces, that determine the dynamic response of
a system, are imposed by the type of atoms and the geometry shaping the electronic
environment. The values of the mode frequencies of the system are determined by
the interatomic force constant tensor that is involved in the dynamical matrix.
It is then necessary to find a way to parameterize the effect of the atomic type

on the coupling between the electronic and the atomic structure. The use of the

cophonicity metric C,,(M-X) introduced in [subsection 4.2.3| can then help us to

quantify such effect.

The cophonicity values that we obtained in absence of electrostatic field are
similar to those realized previously in finite n-layered TMDs [37]. We compute
Cprn(M-X) in the frequency range including the sliding-related modes, and plot its
evolution with the field, and its connection to the modes frequency in [Figure 5.7
What we observe is that the cophonicity is nearly constant for low values of the
electric field, i.e., when the system is still stable. In this respect, we can consider it
as an intrinsic characteristic of the stable system. For each system, there is a critical
electric field beyond which the cophonicity deviates significantly from the value at
zero field. Over this threshold, the structure becomes highly unstable against the
sliding and breathing distortions. This corresponds to a more pronounced relative
layer motion than what is observed for low values of the field field. In[Figure 5.7(b),
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we see that in general the systems are stable when the C,,(M-X) is close to zero.
Let us illustrate the meaning of this result: if the overall layer displacement is
formed by atomic motions in which the M and X atoms move on average at the
same velocity, the sliding is favored at low electric field values; on the contrary,
higher field values require that cations and anions move at a very different velocity
in order to produce easy gliding of the layers. The present case study could be
extended by considering different geometric configurations, corresponding to other
local energy minima. This would allow access to a more complete set of values for

the electric field, facilitating the identification of additional parameters.
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Figure 5.3: Phonon dispersion of I' — A modes for each of the studied MX, systems.
The set of electric field values is different for each system, due to instabilities shown
by the negative frequencies (see discussion above). For an optimal visualization of
the band structures, all the values are collected in the same legend.
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Figure 5.4: Orbital polarization of the MXy systems as a function of the electric
field. An increase of the field magnitude induces a charge transfer along the direction
orthogonal to the lattice planes. Legend is common to all the subplots; lines are a
guide for the eye.
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Figure 5.5: Projections of the charge density difference onto a plane orthogonal to
the (110) crystallographic direction and containing the M cations: (a) MoSs, p(1.5);
(b) MoSes, p(2.0); (c) MoTeq, p(0.5); (d) WSa, p(1.5); (e) WSez, p(1.5); (f) WTe,,
p(0.08). The charge difference values are represented (red = highest, blue = lowest)
by a RGB color gradient.
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Figure 5.6: M-X bond covalency as a function of the d orbitals: (a) Py, ., and (b)
szz,yz,dzz orbital polarizations. Depending on the system, the charge rearrange-
ment does not affect the covalent character of the bond. The legend is common to

both subplots.
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Figure 5.7: (a) Cophonicity of the M-X pair as a function of the electric field. (b)
Average frequency as a function of the cophonicity. The legend is common to both
plots.
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Chapter 6

Effect of noninteracting intercalants
on layer exfoliation in transition

metal dichalcogenides

In this chapter, we present the conclusions of a second investigation on the tribo-
logical behaviour of TMDs at the nanoscale, and how it relates to the predictability
of exfoliation processes. The latter correspond to the separation of the layers as a
consequence of the combined action of external forces acting along the shear and
vertical directions with respect to the layer plane. More specifically, in this type of
situation, the external forces overcome the internal vdW forces that bind the layers
together. The consequence is a relative motion of the plane of atoms, that can be
a sliding motion if the resulting force component tangent to the surface is non null.

As we explained in [section 4.3] phonon modes are related to these atomic mo-
tions, as any atomic displacement can be described using an appropriate linear
combination of phonon eigendisplacements [134, 135]. As these eigendisplacements
constitute a complete basis, the description of the atomic motions in the system is
complete. There is then an equivalency between the real description of the atomic
motions, using a set of Cartesian vectors, and the “mode” description. The phonon
eigenvectors that represent a relative layer displacements in the direction parallel
to the layer planes are naturally called “sliding modes”.

Furthermore, another type of displacement relates to the exfoliation process.
During the sliding, the overlap between the electronic densities around the atoms
increases in the interlayer region. Due to the Coulomb interaction and the Pauli
exclusion principle, a repulsive force emerges. When the relative motion of the
layer in the direction perpendicular to the sliding plane is allowed, the resultant

of the repulsive forces will push away the layers from each other. The resulting
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@

Figure 6.1: Schematic view of a Z-MX, model geometry; the Z molecule stands
for Ny or COy molecule. It shows how the valence band width can be a suitable
parameter to follow the effect of molecular intercalation of inert molecules on TMD
friction properties. Each M cation coordinates six X anions via covalent bonds
formes MX layers; (a) side view of the layer, the Z molecule sits in the interlayer
gap and influence the van der Waals forces binding the layers together (b) top view
of the plane perpendicular to the lattice vector c.

increasing separation will allow for an easier sliding, and then exfoliation. On
the other hand, if the interlayer distance was nearly fixed as a result of the layer
adhesion, the repulsive force would oppose the lateral sliding. Consequently, phonon
modes that represent a relative layer displacement perpendicular to the sliding plane
are related to the sliding, and called “breathing modes”. If one wants to enhance the
exfoliation of layered materials, the control of friction at the atomic scale is therefore
fundamental. This work is an opportunity for the reader to better comprehend the
efficiency of our method in breaking down and describing the exfoliation dynamics,
scenarios commonly seen in experimental studies. It constitutes the subject of an
article published in the Physical Review Applied journal .

Exfoliation methods based on intercalation of inert molecules have been regarded
as an efficient way to reduce several layered compounds into thin sheets . This
study focuses on how inert molecules Z can change the tribological properties of
TMD layers when intercalated in the interlayer gap . The molecule is
introduced in the interlayer gap of a 2 x 2 x 1 supercell of the pristine geometry. The
choice for the exchange-correlation potential and the vdW correction is the same as
specified in as well as the energy and force tolerance for the convergence.

The cutoff energy for the plane wave basis is set equal to 25.7 Ha and we sample
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the Brillouin zone by using a 7 x 7 x 5 Monkhorst-Pack division.

As in the previous study, the first step is to observe how the general geometry
of the system is impacted by the intercalation of the molecule. For fixed M and
X atomic species, the a and b lattice parameters are not affected by the type of
contaminant. The main variation is observed for the c crystallographic axis which
is responsible for the increase in volume. There is no significant difference when
comparing the cases with the two different molecules (Figure 6.2)).

One quantity that is highlighted is the width of the valence band. Despite the
fact that the valence-band width is not correlated with the geometry of the cell, the
length of the lattice vectors and the system volume (Figure 6.3(a)), it decreases when
the value of Z is going from 0 (i.e., the pristine structure) to Ny, and finally CO,
independently of the chemical composition of the MX, layers. As a general trend,
an increase of the valence-band width corresponds to higher sliding and breathing
frequencies. This result suggests that narrowing the valence band would be a good
way to reduce the lateral friction and the layer adhesion, and consequently allow

an easier layer exfoliation.

We show that the inert intercalant molecule determines the width of the valence
band, although it does not interact with the atoms of the layers. The valence-band
width seems to correlate with the vibrational properties related to the intrinsic
friction: small width values correspond to small interlayer binding forces, hence
to reduced friction and easy layer sliding and separation. This result allow us to
make predictions on the behavior of the system during a sliding event, in which the
system is out of equilibrium. Such a prediction is made from the extraction of the

system’s properties at the equilibrium.

In order to test the efficiency of such a prediction, and the reduction of the
adhesion force between the layers, it is necessary to look at the sliding barriers. For
each Z-MX, system, a guess is built for a possible sliding path, i.e., a set of 11
geometrical configurations ), starting from the optimized geometry and
considering the distortions induced by the I'(4 — 5) modes corresponding to a rigid
sliding. The set of eigenvectors is chosen in a way derived from the normal-mode
transition approximation method (NMTA), described in Ref. [42]. The path is then
relaxed without any constraint on the ionic positions or the volume of the cell. To
this aim, we use the CI-NEB method [121] presented in [section 4.6|and implemented
in the VASP software [120].

The order of magnitude of the potential energy barriers A Ey,, associated to the

relative layer sliding is comparable with those obtained in a previous study using
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the NEB method [42]. We then define the average friction force as

AEiba'r

Afp = ——
I ARNEp

(6.1)

where A Ey,, is the difference between the energy of ground state and the maximum
energy value realized along the path; ARxygpp measures the displacement of the

atoms during the sliding:

N
ARypp = \| > R§, —RE, (6.2)
k=1

where R represents the position of the x-th atom in the configuration corresponding

K

& the position of the same atom in the maximum

to equilibrium geometry and R
energy configuration.

In a similar way, we estimate the adhesion force. As in the previous step, we
consider a new set of geometric configurations, starting from the equilibrium geom-
etry. This time, the geometric configurations correspond to the situation where the
distance between the two layers is progressively increased along the c-axis direction
as shown in [Figure 6.4(b). For each configuration, we fix the lattice parameters
and the positions of the M cations, and optimize the coordinates of the remaining
atoms. By following the evolution of the system energy as a function of the in-
terlayer distance, we observe an asymptotic behaviour. This ensures that the last
configuration corresponds to non-interacting (separated) layers. Analogously as for

f#r, we can define the average adhesion force f,q as

AFEge,
ARsep

Jaa = (6.3)
where AE,,, is the difference between the energy of the ground state and the last
configuration, while AR,,, corresponds to the interlayer distance. We see that, in
a way similar to what is observed for the sliding and breathing frequencies, large
values of the frictional and adhesion forces correspond to large values of the band
width (Figure 6.5).

Finally, since both lateral friction and adhesion forces appear during the exfo-

is a natural choice to

.. . . +
liation process, considering an average force fu,. = %

quantify the force resisting the exfoliation; analogously, we consider the average

frequency wype = M In general, both quantities increase with the value of the

valence-band width [Figure 6.6

According to these results, we believe that the valence-band width is a useful
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descriptor to parameterize the forces opposing the layer exfoliation in the presence
of inert intercalated molecules. Future studies, in which the presented analysis
method is applied on more inert species and geometries, should be considered in

order to further confirm these conclusions.
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Chapter 7

Effect of the simultaneous use of
contaminant and electrostatic fields
on the nanoscale friction in

transition metal dichalcogenides

This work was made in collaboration with the VASP team of Vienna university,
who are implementing the force calculation within the PAW formalism and in the
presence of an electric field; in this collaboration, we provided this case study. It
intends to show how the simultaneous use of electric field and proper choice of
contaminant molecules can lower the intrinsic friction.

We build our geometric models starting from the hexagonal P63/mmec crystalline
MX, compounds as reference structures, and choosing M=Mo, W and X=S, Se, Te
as before. We consider 2x2x1 supercells and introduce one Ny molecule in the
interlayer gap (Figure 7.1]). The choice of Ny is made considering that it is the most
abundant molecule in ordinary tribological working conditions. The introduction of
the Ny molecule reduces the symmetries of the reference structures, as specified in
the previous chapter; in fact, all the model geometries present the symmetries of the
triclinic P1 space group. The DFT calculations are performed using the Perdew-
Burke-Ernzerhof (PBE) energy functional used before [131], and implemented in
the VASP software. The Van der Waals interactions are taken into account by using
the Grimme correction [87]. We sample the Brillouin zone with a minimum of a
3 x 3% 3 k-point mesh with a plane wave cutoff of 500 eV. We use the diffraction data
specified in to initiate atomic and lattice structural relaxations, while the
forces are minimized using a 0.5 meV A~ tolerance.

The analysis starts again by the geometric features of the systems. We notice
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b
cAa
Figure 7.1: (a) lateral and (b) c-axis view of the model structure of MX,; TMD
compounds with an Ny molecule, inserted as an impurity.
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Figure 7.2: Average frequency w as a function of the applied electric field F.

that the presence of the Ny molecule in the interlayer region does not affect the
topology of the system. The isotropy of the inner electronic environment between
the layers is preserved; consequently the response of the system along the a and b
lattice directions is homogeneous (Figure 7.3|(a-b)), which is coherent with what was
observed in the first study, since the field is also applied along the ¢ axis. Along
this direction, the crystal is more sensitive to the field variation (Figure 7.3(c)),
resulting in an increase of the cell volume as shown in [Figure 7.3|(d).

When looking into the average frequency w, we first observe that the frequencies
of the sliding-related modes generally decrease for E < 0.01eV/ A1 when the field is
switched on (Figure 7.2|). The variation range of w depends mostly on the chemical
composition. The average frequency of the No-WTe, system is less sensitive to the
intensity variation of the field; the opposite holds for the No-MoSe; and No—MoTe,
systems. The change in the cell volume can be partially responsible for the change
of the phonon frequencies , but there is no direct relation between the average
frequency w and the lattice parameters.

The frequency w is determined by the atomic types and the interatomic in-
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teractions within the crystal, which settle the dynamic features and the electronic
density. To understand the subtle connection between w and the interatomic effects,
it is necessary to look extensively into the electronic distribution and its relation to
the phonon behaviour. As before, we compare the variations of the different polar-
izations as a function of F; this gives us the preferential distribution of the electrons
as a function of the field. By selecting the same set of orbitals as in the previous
studies described in and [chapter 6] we observe the same low sensitivity
of Py, p, to the field (Figure 7.4(a)). This, again, accounts for the symmetry of the
system response along the directions parallel to the a, b plane. At fixed M and X
species, Py, ». and P, ;. have similar values, and the No-W'Te, system is the one
displaying the less variation. The negative values of P, ;. and P, ,. indicate an
excess of charge along an axis orthogonal to the layer plane and passing through
the anionic sites (Figure 7.4(b-c)). However, the variation at E # 0 is small sitting
at about 1%. When looking at the region around the cations, we see that the P, .
orbital polarization is more sensitive to the field than Pio s The positive value
of P,,, ., indicates an excess of electron charge off the c-axis (Figure 7.4[(d-e)). At
the M cation, there is no accumulation of charge along an axis parallel to the field.
Globally, the field effect on the relative occupation of the orbitals is weak. This
response is different than what we observed in the same pristine systems without
any contaminants (chapter 5]). The main indication from this different outcome
is that the molecule stabilizes the inner electronic distribution of the layers, and

makes it less sensitive to the variations of the field.

Despite the fact that the field does not significantly affect the electronic dis-
tribution, yet there are still some changes in the sliding-related frequencies. The
relative occupation of ¢y, against ey, affects the sliding-related frequencies in various
ways, depending on the atomic type of the cation. When the field is switched on,
low w frequencies are reached at critical values of P, ., in the Ny-MoX, systems

(Figure 7.5((a)); in the No—-WX, systems instead, the low values correspond to an
overpopulation of the e, orbital compared to the ¢y, (Figure 7.5(b)). The informa-
tion obtained with the orbital polarization analysis is incomplete in the sense that

we don’t know how it translates into changes of the nature of the M-X bonds.

We provide the analysis of the bond covalency Chx calculated in terms of
atomic contributions to the density of states . The small variations of
the orbital polarizations do not have a significant impact on the covalent character
of the bond, which is nearly constant with the field. Despite that, such small
variations induce a different relation between w and C); x depending on the atomic

type of the cation. Interestingly, at small field values, low w frequencies are realized
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at low covalency values in the No—MoX, systems, as we see in [Figure 7.5(c). This
corresponds to a more ionic Mo-X bond character; for the No-WX, systems, we

observe an opposite behaviour (Figure 7.5(d)).

The pieces of information gathered so far can be condensed as such: the external
variation of the applied electric field induces subtle perturbations to the electronic
distribution. Such modification changes the interatomic forces which, in turn, de-

termine the final values of the phonon frequencies and the associated displacements,

as they intervene in the definition of the dynamical matrix (subsection 4.2.1]). The

electronic and dynamical features are then coupled together by non-trivial relations.

The cophonicity metric descriptor (subsection 4.2.3)) is the tool that allows us

to parameterize such coupling. We observe that the cophonicity is nearly constant
with the field at a constant chemical composition (Figure 7.6(a)), unlike what we
found in the pristine systems without contaminants in [chapter 5. This means that
the molecule also stabilizes the dynamic features of the system against the field
perturbation. In detail, the small perturbations induced by the field into the elec-
tronic distribution affect the atomic participation to only few sliding-related phonon
bands. This is highlighted when we consider how the cophonicity varies with the
Py, ¢, orbital polarization (Figure 7.6(b-c)): in general, the larger the charge un-
balance between the fy, and e, orbitals, the larger the anion contribution to the
sliding motion. This means that the charge redistribution induced by the field gives
rise to an effective ionic mass, which is in general different to than the one of the

unperturbed system, and changes with the value of the field.

The impact of this effective mass on the overall atomic displacement pattern is
now analysed. We consider the atomic participation to the phonon band dispersion
along the linear path I'-A in the irreducible Brillouin zone. At each g-point along the
path, the atomic character of the j-th band is defined according to the components
of the eq; eigenvector. For example, a (q,j) phonon mode is of M-character if
the largest ey ; eigenvector components are those corresponding to the M atoms.
For instance, in the No—MoSe system, the general character of the sliding-related
modes is of mixed Mo- and Se-kind at small fields, while the Mo-character becomes
predominant at £ = 0.03 eV /A (a—d)). Looking at the No—WSe, system,
we observe that the bands at about 1 THz show a Se-character at £ = 0.0 and
0.03 eV/A~!, while for intermediate fields both ions contribute in a similar way
(Figure 7.7(e-h)).

By studying the combined effect of an electrostatic field and the presence of
a small inert molecule as a contaminant on the nanoscale frictional properties in

TMDs, we showed that the insertion of Ny molecules in the interlayer region stabi-
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lizes the nanotribological response of the system against the perturbations induced
by an applied electrostatic field. The present results constitute a starting point:
future studies involving different kinds of contaminants and relative concentrations,
along with different field orientations, will be necessary in order to design new

tribological materials with a tuned frictional response.
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respectively. The field magnitude modifies the effective mass of the ions, hence the

character of the sliding-related phonon bands.
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Chapter 8
Conclusions

Throughout this thesis, we investigated the frictional properties of lamellar materi-
als at the nanoscale. For this aim, we considered six transition metal dichalcogenides
prototypes as a case study.

We first simulated the effect of an electrostatic field on the nanoscale frictional
properties. We showed that the application of an electrostatic field along an axis
orthogonal to the atom layers induces a transfer of charge along the same axis;
this transfer does not affect significantly the covalent character of the bond, but
it modifies the interatomic forces. The consequence of this modification is the
softening of the sliding modes, until the systems become unstable when the field
reaches a critical value, specific to the chemical composition. The cophonicity metric
shows that large differences between the cation and anion velocities lead to strongly
unstable phonon modes, and a lower intrinsic friction.

We then contributed to a second study of the nanotribological response of the
very same materials under the introduction of inert contaminants in the interlayer
environment. This work showed that the inert intercalant molecule determines
the width of the valence band. The valence-band width seems to correlate with the
vibrational properties related to the intrinsic friction: small width values correspond
to small interlayer binding forces, and consequently to reduced friction and easy
layer sliding and separation. Similar correlation is found with the friction and the
adhesion forces: the larger the valence band width, the larger the forces. Since such
forces arise during the exfoliation process, such results then suggest that a suitable
tuning of the value of the band width may be one way to assist the exfoliation in
similar systems. The presented analysis protocol can be used in systematic studies
on the frictional response in the presence of inert intercalated species. This would
help to define the potentiality and the limitations of the valence-band width as a

friction indicator.

86



CHAPTER 8. CONCLUSIONS

We finally studied the combined effect of an electrostatic field and a contaminant
to the layer sliding. We showed that the insertion of Ny molecules in the interlayer
region stabilizes the response of the system against the perturbations induced by
the application of an electrostatic field.

The lowest values of the field are compatible with those already used in experi-
mental studies of similar materials, and can be used to constraint future experiments
[138]. These conclusions represent a theoretical procedure for future investigations
aiming to parameterize the triboresponse of 2D materials to electric fields. It is
also a starting point for further studies where different directions of the field other
than that orthogonal to the atomic layers are considered. More generally, the
present study can be used to predict the preferential electronic redistribution in
nanomechanical devices. This may help to understand how to avoid or use metal-
to-insulator transitions within the material during working conditions [139], as well
as how to act to locally optimize the electric transport.

The results obtained by comparing different chemical compositions, geometries
and directions of the applied electric field can be used to suggest how to select proper
fields and contaminants to design new tribological materials with a customized
frictional response. Such a study is already planned by taking into consideration
bilayer heterostructures, and will allow to predict behavior and control parameters
useful for thin films manipulation.

Finally, our methodology could be extended to consider the effect of finite tem-
peratures, and used in the aim to control the friction between nanocontacts (typi-
cally a tip against a surface). In fact, in a dry environment, thermal vibrations can
increase the friction; it was shown that, in this case, the friction can be reduced
by enforcing the mechanical resonances of the sliding system perpendicular to the
contact plane [140]. By selecting in detail the modes to enforce, our method could

be used in this type of stick-slip motion studies.
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