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A B S T R A C T

This thesis addresses three topics related to feedback manipulation through
shaping force fields: position measurement, modeling of force fields, and
force model inversion through distributed optimization. The first two topics
focus specifically on dielectrophoresis. The third topic covers manipula-
tion using more general force fields. The thesis presents a new sensor for
measuring the 3D positions of micro-objects in real time with sufficient
accuracy for feedback control. It also introduces a control-oriented model
of dielectrophoretic force that can be evaluated in real time and thus is
suitable for feedback control. This model is verified through experiments.
The thesis proposes a distributed optimization algorithm based on ADMM
for finding electric potentials that produce a desired dielectrophoretic force
field, a process called model inversion. The distributed algorithm can be
applied to manipulation using other physical force fields and is tested on
dielectrophoresis, magnetophoresis, and acoustophoresis. Additionally, the
thesis presents a compact dielectrophoretic manipulation platform that
incorporates the proposed position sensor, dielectrophoretic model, and
optimization-based model inversion, as well as the capability to observe
manipulated objects using lensless digital holography.

keywords

distributed manipulation, distributed optimization, alternating direction
method of multipliers, micro-manipulation, feedback manipulation, dielec-
trophoresis, digital holography
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A B S T R A K T

Tato práce se zabývá třemi tématy souvisejícími se zpětnovazební manipu-
lací prostřednictvím tvarování silových polí: měřením polohy, modelováním
silového pole a inverzí modelu síly prostřednictvím distribuovaného opti-
malizace. První dvě témata jsou věnována specificky dielektroforetickému
silovému poli. Poslední téma je věnováno obecnějším silovým polím. V této
práci je představen a otestován nový senzor pro měření 3D poloh mikro
objektů. Senzor měří polohy v reálném čase a s dostatečnou přesností pro
zpětnovazební řízení. Dále je navržen a experimenty ověřen zjednodušený
model dielektroforetické síly. Na rozdíl od jiných dostupných modelů je
navržený model reprezentován výrazem, který lze vyhodnotit v reálném
čase, což činí tento model vhodným pro zpětnovazební řízení. Tato práce
také navrhuje distribuovaný optimalizační algoritmus založený na ADMM
pro řešení problému nalezení elektrických potenciálů takových, že jsou
vyvinuty požadované dielektroforetické síly v určitých bodech manipu-
lačního prostoru. To se nazývá inverze modelu, protože dielektroforetický
model vytváří síly na základě potenciálů, ne naopak. Stejný distribuovaný
algoritmus lze aplikovat i při manipulaci jinými fyzikálními silovými poli.
V práci je tento algoritmus testován na manipulaci pomocí dielektroforézy,
magnetoforézy a akustoforézy. Nakonec je představena nová kompaktní
platforma pro manipulaci pomocí dielektroforézy. Platforma kombinuje
navržený senzor polohy, model dielektroforézy a inverzi modelu založenou
na optimalizaci. Kromě toho platforma poskytuje také možnost pozorování
manipulovaných objektů založenou na bez-objektivové digitální holografii.

klíčová slova

distribuovaná manipulace, distribuovaná optimalizace, alternating direction
method of multipliers, micro-manipulace, zpětnovazební manipulace, die-
lektroforéza, digitální holografie
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thank Krištof Pučejdl for the SK8O project2. If I had to pick one project
unrelated to this thesis I truly enjoyed working on, this would be it. Without
Krištof, the project would not have come into existence. I cannot name all
members of the AA4CC group I was part of during my studies, so to those
of you who did not find your name here, thank you for the collaboration! It
was fun. You all helped me move forward. I am also thankful to my family,
Saša and Filípek, for their patience and understanding while I worked on
my papers and thesis in the evenings. Thank you all for your help and
support.

1 Interactive Christmas tree driving through Prague streets https://youtu.be/bqqmBAz4INo

Christmas Ballance https://youtu.be/xpeEB2v42HQ

Ball in hoop educational model https://youtu.be/484GN4KBQnc
2 SK8O robot https://youtu.be/07z1FbjhixM

xi

https://youtu.be/bqqmBAz4INo
https://youtu.be/xpeEB2v42HQ
https://youtu.be/484GN4KBQnc
https://youtu.be/07z1FbjhixM




C O N T E N T S

1 Introduction 1

2 Twin-beam real-time position estimation of micro-objects in 3D 11

3 Green’s function-based model of DEP 21

4 ADMM for distributed manipulation 43

5 Compact DEP manipulation platform 81

xiii





1
I N T R O D U C T I O N

There is a theory which states that if ever anyone
discovers exactly what the Universe is for and why it is
here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable. There is
another theory which states that this has already
happened.

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

Manipulation by shaping force fields sounds strange and hard to grasp.
But in fact, when we have a small ball on a sheet of paper, we can shape
the force field in which the ball lives just by shaping the paper (see Fig. 1.1).
When we make a valley next to the ball, the ball naturally goes down the
value to its lowest point. When we reshape the paper so that the lowest
points move from the ball, the ball follow it. In layman’s terms, the topic of
this thesis is how to shape the force field in time so that the ball gets from
point A to point B in space.

In this thesis, we1 deal with this topic in a rather holistic approach. We
talk about modeling physical force fields, sensors, and algorithms. More
specifically, we discuss more general force fields than the one acting on a
ball when the sheet of paper the ball lies on is curved; we talk about force
fields created by various physical phenomena, but with the main focus
being on dielectrophoretic (DEP) force field (more on that in a moment). We
do not use our eyes to see where the manipulated object (e.g., ball) is; we
use position sensors. We do not use our hands to shape the force fields as we
did in the ball on a sheet of paper example; we use an array of actuators to
shape the force fields. Each actuator can contribute to the force field; hence
the resulting force field is given by contributions from all actuators in the
actuator array. Lastly, we do not use our brains to decide how to move our
hands to shape the force field so that the ball moves toward the desired
position; we use distributed optimization to decide what is the best way how

1 As the author of this thesis, I use the plural person we in the introduction. That has two
reasons. Either I mean you and me, as I guide us together throughout what to expect from
this thesis. Or, I use plular because I collaborated on all of the results of this thesis with my
colleagues; Thus, I cannot say "I came with this and that result". We came up with the result.

1



2 introduction

Figure 1.1: A ball rolling down a curved sheet of paper.

to command the actuators so that the manipulated object moves toward the
desired position.

We pay special attention to micro-manipulation2 by DEP, and more
specifically, to feedback micro-manipulation by DEP. That is because the
topics covered by this dissertation thesis are motivated by a research project
on distributed manipulation by DEP. Nevertheless, one of the contributions
—an algorithm for distributed optimization—steps out of this application
area and is also applicable to manipulation by other physical force fields.

The rest of this introduction is devoted to a brief description of what can
be found in the following chapters, what problems the chapters solve, and
what are the contributions of the chapters. Each chapter corresponds either
to an accepted, or even published journal paper, or a paper in preparation
for submission.

In a nutshell, there must be a sensor when there is feedback. Thus, we
discuss what kinds of sensors can be found in the literature and what
limitations they have. Then, we explain why there is a need for a simple-
enough model of DEP force in feedback DEP micro-manipulation, why it is
necessary to compute its inversion, and how distributed optimization can
help us do so. Lastly, we describe a compact manipulation platform that
is a sort of culmination of all previous chapters because it integrates their
results into one.

2 It is called micro-manipulation by DEP because one can typically manipulate only objects no
larger than a few tens or hundreds of micro-meters by DEP.
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Figure 1.2: A sketch of micromanipulation by DEP. The microparticles are dis-
persed in a pool with deionized water. The electric field around the
microparticles is shaped by application of varying potentials on the
parallel electrodes bellow the microparticles.

distributed manipulation by shaping force fields

When an object is exposed to a non-zero net force, it accelerates in the
direction of the force. Thus, we can move the object by shaping the force
field surrounding it. When the force field is shaped by some actuators
distributed in space, we talk about distributed manipulation.

There are many principles used in distributed manipulation. Let us men-
tion a few. Tiny devices can be used to create mechanical force acting
on manipulated objects. An array of omnidirectional wheels can be used
to move objects. By shaping the electric field, one can induce a dielec-
trophoretic force moving the manipulated object (dielectrophoresis). Ultra-
sonic waves generated by ultrasonic transducers can also be used to move
objects (acoustophoresis). Similarly, electromagnets can shape a magnetic
force field to move objects (magnetophoresis). In this thesis, we encounter
only dielectrophoresis, magnetophoresis, and acoustophoresis. However, as
already mentioned, we mainly talk about DEP micro-manipulation.

DEP is a physical phenomenon enabling us to develop a force on polariz-
able particles by shaping the surrounding electric field. The electric field
is usually created and shaped by the application of varying potentials on
electrodes nearby the manipulated objects. As DEP can manipulate objects
without any contact, it is especially well suited for contact-less manipulation
in biology or medicine. An example of a very simple manipulation platform
is sketched in Fig. 1.2.
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Distributed manipulation platforms can be either sensorless or equipped
with sensing capabilities. When there is no sensor, the controller does not
know the position of the manipulated objects and can only "blindly" rely
on some precomputed actions. When there is a sensor, and the controller
reshapes the force field based on the currently sensed positions of the
manipulated objects, we talk about feedback distributed manipulation. In this
thesis, we discuss only feedback-distributed manipulation.

Without feedback, the micro-manipulation by DEP is mostly limited either
to single-object manipulation or to separating objects of two or more classes.
However, when we add feedback to DEP micro-manipulation, we gain the
capability of parallel multi-object manipulation. Unfortunately, feedback
also increases the complexity of the control system because we need a
position sensor, and we also need to evaluate a DEP force model. That is
because a digital control system works with some finite sampling periods,
within which the work is structured into stages. The stages are depicted in
Fig. 1.3. In each sampling period, the control system measures the positions
of manipulated objects. Based on the measured positions and some reference
positions, the control system computes forces acting on the manipulated
objects such that the objects move toward the reference positions. Having
the desired forces, the control system solves an optimization problem where
it optimizes the actuators’ commands (based on a force model) so that the
desired forces are generated. That’s the role of the force controller block.
Then, the control system applies the optimized actuator commands and the
cycle repeats in the next control period.

Let us discuss the specifics of position measurement in manipulation by
DEP and how this thesis contributes to this field.

position sensing

For feedback micro-manipulation by DEP, we need to measure the position
of micro-sized objects with accuracy in tens of micrometers. We need to
measure the position in real time and do so frequently (at least 10 Hz)
and with low latency. In addition, the manipulated objects can move in
3D. They move in the plane of the electrode array, but they also levitate
above the electrode array (see Fig 1.2). When we evaluate the DEP force
model, we must feed it with a full 3D position. If the levitation height was
unknown, the manipulation accuracy would deteriorate. Thus, the position
should be sensed in 3D. This requirement by itself eliminates conventional
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Figure 1.3: Block diagram of manipulation platform based on feedback force-
field shaping. Individual blocks are highlighted by a specific color or
a combination of colors if a chapter of this thesis is devoted to them.
The whole diagram is bounded by the yellow rectangle because all
blocks appear in Chapter 5.

microscopes—because these can measure the position only in 2D—and calls
for some other kind of sensor.

We mention two ways to measure the positions of micro-objects in 3D:
confocal microscopy and digital holography. Confocal microscopy measures
the position in 3D by physically moving the optical apparatus of the mi-
croscope. The motion is typically slow, so it cannot be used to measure the
position in real time for the purpose of feedback manipulation. In contrast,
digital holography does not involve any physical motion. The 3D positions
of objects can be extracted by digital processing of one captured image only.
This is due to the fact that holograms do not capture only the 2D position
(as conventional microscopes do), but they also encode the levitation height
of the objects. Nevertheless, extracting information about the levitation
height is computationally demanding, so these methods are also unsuitable
for real-time use. Since no suitable sensor was found in the literature, a new
one must be developed.

A novel method for measuring the 3D positions of micro-objects is
sketched in Fig. 1.4 and described in detail in Chapter 2. This method
uses twin-beam illumination. The manipulated objects are illuminated from
above by two light sources that are mutually shifted. Thus, each manip-
ulated object has two "shadows", which are also mutually shifted. The
shadows are captured by an image sensor placed under the manipulated
objects. The 3D positions of the manipulated objects can be extracted from
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Manipulated object
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Light sources

Figure 1.4: A principal sketch of the twin-beam position measurement method.

the locations of the captured shadows by image processing. This method
runs in real time and requires only a very cost-effective and compact hard-
ware setup. The method is further improved in Chapter 5 so that it not only
measures 3D positions but also provides images that look like they were
captured by a microscope.

Having a position sensor, we can move on to the force model. In fact,
why exactly do we need it?

dep model

In manipulation by DEP, the position of the manipulated objects is con-
trolled by changing the surrounding force field. The force field is shaped
by electrical potentials at electrodes (or by some other actuator commands
in the case of some other force fields). We cannot directly set the force field,
we must do so by changing the potentials, and for that, we need a force
model relating the potentials with the generated force field. As already
mentioned, we, in fact, use the model in an optimization problem every
control period. Therefore, the model must be simple enough so that it is
cheap to evaluate and can be used in real time.

Unfortunately, a commonly used model of DEP is far from being simple
and cheap to evaluate. The model is a partial-differential equation (PDE)
with mixed boundary conditions. Such models are usually hard to solve
analytically to closed-form solutions. The DEP model is no different and
must be solved numerically. Thus, an exact closed-form model relating the
potentials to the generated DEP force is out of our reach.
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In Chapter 3, a new approximate control-oriented model of DEP force is
introduced. It uses a numerical solution of some base problems and Green’s
functions to approximate the original PDE (with mixed boundary conditions)
by one (with Dirichlet boundary conditions) that has a closed-form solution.
The closed-form solution is simple enough to be evaluated in real time, and,
at the same time, it is accurate enough to be used for control purposes.

Now we have a DEP force model that can be used in real time. How do
we use it to generate the desired forces outputted by the position controller
(see Fig 1.3)?

distributed optimization

The DEP force model described in the previous section outputs DEP force
for given potentials. However, we need the opposite for control purposes.
We need to determine the potentials for a given desired DEP force. Sadly,
the model cannot be trivially inverted; there is no way to get a closed-form
expression for the inverted model. Thus we pose the problem of the model
inversion as an optimization problem where the objective is to minimize
the difference between the generated and desired forces, and the decision
variables are the potentials.

The model-inversion optimization problem, unfortunately, turns out to
be non-convex and thus not easily solvable. Furthermore, the optimization
problem gets harder to solve with the growing number of manipulated
objects and actuators. To make the problem easier to solve and increase the
scalability and robustness of the distributed manipulation platforms, we
propose to decompose the optimization problem into several sub-problems
that are solved in coordination.

Chapter 4 proposes a distributed optimization algorithm to solve the
model-inversion problem. The main idea behind the decomposition can
be described rather simply. The optimization problem is decomposed by
manipulated objects. Each manipulated object is viewed as a virtual agent
that optimizes only the force acting on itself and for that, it uses only
actuators in its neighborhood. Since there can be two or more agents
using the same actuators, they must reach a consensus on the actuator
commands. We use the Alternating Direction Method of Multipliers ADMM for
the formulation of the consensus problem. Even though we focused on DEP
in the last two sections, the proposed distributed algorithm is applicable to a
broader class of force fields than just to DEP. The algorithm was numerically
tested on dielectrophoresis, magnetophoresis, and acoustophoresis.
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compact dep manipulation platform

Feedback manipulation by DEP with the proposed twin-beam position mea-
surement method requires only relatively simple and compact hardware: an
electrode array, some electronics for setting the potentials at the electrodes,
a lensless image sensor, two light sources and a computer. This point is
proven by a compact manipulation platform presented in Chapter 5, the
last chapter of this thesis.

The manipulation platform is shown in Fig. 1.5. It measures the 3D po-
sitions of micro-objects by using the twin-beam measurement method. It
uses digital holography to display the objects and Nvidia Jetson AGX for
efficient image processing (both object tracking and digital holography).
The manipulation are is approximately 1 mm × 1 mm. That is given by the
currently used electrode array having 56 electrodes. However, the electrode
array can be easily replaced by a larger one, and also the electronics for gen-
erating the electrical potentials are designed so that larger electrode arrays
are supported. The manipulation platform without the computer fits in a
box of size 95 mm × 91 mm × 147 mm. We demonstrated by experiments
that the manipulation platform is capable of independent positioning of
multiple objects and that it can position objects in 3D.

contribution

Let us summarize the main contributions of this thesis. This thesis is
mainly motivated by one specific application domain: feedback manipu-
lation through shaping dielectrophoretic force fields. Thus also, the main
results of this thesis apply to this domain. Nevertheless, they are not limited
to this specific domain. We developed a novel position sensor for dielec-
trophoretic manipulation platforms. We also developed a novel control-
oriented model of dielectrophoretic force. In addition, we developed a
novel distributed optimization algorithm solving the problem of finding
electric potentials such that a desired dielectrophoretic force field is devel-
oped. Lastly, we developed a novel compact dielectrophoretic manipulation
platform.

All contributions—except the compact manipulation platform—were
published in peer-reviewed journals. A paper describing the manipulation
platform is, at the time of writing this thesis, in preparation for submission
to a peer-reviewed journal.
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Figure 1.5: Compact DEP manipulation platform with the top part detached.
The hardware setup without the computational unit fits within a box
95 mm × 91 mm × 147 mm.

organization of the thesis

Each chapter in this is a reprint of a journal paper that was either already
published (Chapters 2 to 4) or in preparation for submission (Chapter 5).
This thesis is organized as follows. Chapter 2 describes a novel method for
measuring the positions of spherical objects with a diameter in the range of
tens of micrometers in real time. Chapter 3 proposes a closed-form model
of dielectrophoretic force that is suitable for control purposes. Chapter 4

introduces a distributed optimization algorithm solving the force model in-
version problem emerging in feedback distributed manipulation. Chapter 5

describes a DEP manipulation platform that integrates all actuators, sensing,
and associated electronics into one compact setup that is also cost-effective.





2
T W I N - B E A M R E A L - T I M E P O S I T I O N E S T I M AT I O N O F
M I C R O - O B J E C T S I N 3 D

Various optical methods for measuring positions of micro-objects in 3D
have been reported in the literature. Nevertheless, majority of them are not
suitable for real-time operation, which is needed, for example, for feedback
position control. In this paper, we present a method for real-time estimation
of the position of micro-objects in 3D; the method is based on twin-beam
illumination and it requires only a very simple hardware setup whose
essential part is a standard image sensor without any lens. Performance
of the proposed method is tested during a micro-manipulation task in
which the estimated position served as a feedback for the controller. The
experiments show that the estimate is accurate to within ∼3 µm in the
lateral position and ∼7 µm in the axial distance with the refresh rate of
10 Hz. Although the experiments are done using spherical objects, the
presented method could be modified to handle non-spherical objects as
well.

This chapter was published in:
Gurtner, M. & Zemánek, J. Twin-beam real-time position estimation of
micro-objects in 3D. Measurement Science and Technology 27, 127003 (2016)

11
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2.1 introduction

Estimation of positions for micro-objects in 3D is of great interest in many
research domains. In microfluidics, a velocity profile of the fluid can be
measured by tracking micro-objects suspended in the fluid [2]. For example,
blood flow, which could indicate circulatory diseases, can be determined
by measuring blood cells’ trajectories [3]. Similarly, an analysis of motion
of bubbles in air-water mixture can be carried out [4]. In microbiology,
trajectories of sperm cells can be used to determine their motility [5].

There are many ways how to estimate 3D position of micro-objects.
Confocal microscopy can be used for 3D position estimation [6], but it provides
only a very limited time resolution since it involves hardware motion. A
variety of methods are based on digital holography [7] where the position
is estimated computationally; for a review, see [8]. These methods are
either based on fitting the micro-object’s hologram to a model describing
the appearance of the hologram parametrized by the axial distance [2, 9],
or on back-propagation of the hologram [10, 11]. Fitting the observed
holograms to the model provides very accurate estimates of the position
(up to nanometer resolution), but it is computationally very demanding
and the holograms have to be captured with very high resolution—this is
usually achieved by an objective lens which results in reduced observable
area. Back-propagation allows us to estimate the axial distance of a micro-
object by identification of the distance for which the back-propagated
hologram fits to the image of the micro-objects. The back-propagation itself
is not computationally demanding, but—with the exception of the method
described in [12]—it has to be carried out several times. Another approach
is to use multiple light sources and subsequently illuminate the micro-
objects under different angles [13, 14]. Then the individual micro-object’s
“shadows” on the image sensor are shifted with respect to each other and
this shift corresponds to the axial distance of the micro-object.

The majority of methods estimating the position of micro-objects are
intended for an analysis of the motion and rely on off-line processing of
the recorded data. However, when it comes to feedback position control,
one needs to know the positions of the manipulated micro-objects in real-
time. Hence, we were motivated to develop a novel method especially
suitable for real-time processing and micro-manipulation applications. This
method is based on twin-beam illumination and it needs only a very
cost-effective and compact hardware setup. The setup consists of two light
sources simultaneously illuminating the micro-objects and a standard image
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sensor (no lens is necessary) capturing the “shadows”, or more precisely
interference patterns, from the micro-objects. The position of a micro-object
is computationally estimated from the lateral shift of the corresponding
interference patterns. The presented method is tested using a reference
measurement from another camera during a micro-manipulation task.

2.2 hardware setup

Before we delve into the description of the proposed method, we describe
the hardware setup (see figure 2.1). The objects to be tracked are polystyrene
spherical micro-objects of diameter 50 µm and they are suspended in wa-
ter contained in a 2 mm deep pool above an electrode array. The micro-
objects are manipulated through the phenomenon known as dielectrophore-
sis—application of different potentials on the electrodes generates a force
acting on the micro-objects [15]. Light sources are red (625 nm) and green
(525 nm) LEDs which are butt-coupled to plastic optical fibers (500 µm in
diameter). The tips of the fibers are placed so, that the light from the red
LED illuminates the micro-objects from above and the light from the green
LED falls under approximately 45°. The tips of the fibers are approximately
6 cm above the pool. Since the light is partially coherent—spatially due to
the diameter of the optical fibers and temporally due to the bandwidth
of the LEDs—it forms interference patterns on the image sensor (e-Con
Systems, See3CAM_10CUG, 1.3 megapixels, 3.75 µm pixel size) which is
approximately 1.5 mm below the micro-objects. The image sensor is cooled
by a Peltier cooler to avoid heating-up the water in the pool which would
cause undesired heat-driven currents. In our case, the lateral position of the
micro-objects is restricted by the size of the electrode array to approximately
1.5 mm × 1.5 mm and the axial distance by dielectrophoresis to maximum
levitation height of 200 µm above the electrode array. For the calibration of
the method and validation purposes, there is also a side-view camera that
allows us—in a very limited depth of field—to see the micro-objects in the
pool from aside.

2.3 working principle

The principle of the proposed method is depicted in figure 2.1. As the micro-
objects are illuminated by one source from the top and by the other one
from the side, there are two interference patterns on the image sensor under
each micro-object. These two interference patterns are laterally shifted with
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Figure 2.1: Diagrams (a) of the hardware setup and (b) of the working principle.
PDMS is an abbreviation of polydimethylsiloxane.

respect to each other and this shift corresponds to the axial distance of the
micro-object. Because the wavelengths of the LEDs were chosen so that they
match the peaks in the sensitivity of the red and green channels of the image
sensor, the red and green channels contains only interference patterns from
the perpendicular and oblique illumination, respectively (see figure 2.2).
If we assume that the micro-objects are illuminated by planar waves and
neglect the refraction of light, the dependence of the axial distance of the
micro-objects on the lateral shift is simply given by

h = d
1

tan θ
, (2.1)

where h is the axial distance of a micro-object from the image sensor, d is
the lateral shift of its interference patterns in the captured image and θ is
the angle of the oblique incidence (see figure 2.1(c)).

Nevertheless, the tips of the optical fibers behave more like sources of
spherical waves and the refraction of light clearly occurs since the light
propagate through several different media on the way from the tips to
the image sensor. The assumption of planar wave illumination is a good
approximation if the tips of the optical fibers are sufficiently far away
from the micro-objects and the lateral shift of the interference patterns is
measured close enough to the micro-objects—ideally in the same medium
to avoid the additional refraction of light. However, putting farther the light
sources would enlarge the hardware setup and would require more energy
for the same intensity of light incident on the image sensor. Putting the
image sensor closer to the micro-objects is also rather difficult because that
would mean making the electrode array and the supporting microscope
glass thinner. To overcome this, side-marks are placed along the electrodes
(see figure 2.2) which allows us to find a transformation from the image
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Figure 2.2: Demonstration of the principle of the proposed method. (a) Illustra-
tion of the electrode array with the side-marks. Images (b) and (c) are
red and green channels of a cut-out of a captured image and they
contain only interference patterns from perpendicular and oblique
illumination, respectively. The images contain shifted interference pat-
terns from the electrode array and one micro-object. (d-e) Blown-up
regions of the green channel for a micro-object located at different
levitation heights as it is shown from the side view in (f-g). The in-
terference pattern of the micro-object (d) is shifted with respect to (e)
and this shift corresponds to the difference in the axial distance of
the micro-object.

coordinate system to the electrode array coordinate system. This way we
can effectively measure the lateral shift at the level of the electrode array,
which is very close to the micro-objects. Hence, we significantly reduced
the influence of refraction of light and the influence of the non-planar
illumination.

We assume that the transformations from the red and green channels
(image coordinate systems) to the electrode array coordinate system can
be described by a projective transformation [16]. That is, for the red channel,
image coordinates (xim, yim) are transformed to electrode array coordinates
(xel, yel) by the following relationxelw

yelw

w

 = HR

xim

yim

1

 , (2.2)
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where HR ∈ R3×3. The same relation applies for the green channel, only
the transformation matrix differs.

This is where the side-marks are useful; in order to determine the pa-
rameters of the projective transformation, one needs at least four pairs of
corresponding points in both coordinate systems [16]. Relative positions of
side-marks in the electrode array coordinate system are known and posi-
tions of several—for robustness, more than the needed four—side marks in
the image coordinate systems are provided by a user. Therefore, such trans-
formation parameters can be found and we can transform the positions of
interference patterns to the electrode array coordinate system and measure
their lateral shift there.

Now, we identify the precise locations of individual interference patterns
and pair the patterns corresponding to the same micro-particle in the
red and green channels. At the initial stage, approximate positions of the
interference patterns from the perpendicular illumination (red channel) are
provided by the user. Since the axial distance of the micro-objects is limited
to a very narrow range, the mutual position of the interference patterns
from the perpendicular and oblique illumination differs only slightly (up
to 14 pixels). Thus, given the position of interference patterns from the
perpendicular illumination the approximate position of the corresponding
interference patterns from the oblique illumination can be calculated. To
refine the approximate positions, the color channels are back-propagated
to a distance where the interference patterns focus to a point. We do this
because it is easier to determine a precise location of a focused point
than of a larger interference pattern. The back-propagation is carried out
by calculating the Rayleigh-Sommerfeld diffraction integral [17] which is
numerically done by the following relation

Iz(xim, yim) = F−1 {H−z( fx, fy)F {I(xim, yim)}
}

, (2.3)

where (xim, yim) are the image coordinates, ( fx, fy) are the spatial frequen-
cies, I is the original image, Iz is the image back-propagated to a distance z,
F and F−1 are Fourier and inverse Fourier transformations, respectively,
and

Hz( fx, fy) =


exp

(
i2πz n

λ

√
1 −

(
λ fx

n

)2
−
(

λ fy
n

)2
)

,
√

f 2
x + f 2

y ≤n
λ ,

0, otherwise,
(2.4)

is Fourier transform of the Rayleigh-Sommerfeld propagator, where λ is the
wave length of the illuminating light and n is the refractive index. Despite
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Figure 2.3: Back-propagation of an interference pattern from a micro-sphere:
Images (a) and (b) show the dependence of radial intensity of the
interference pattern from perpendicular and oblique illumination,
respectively, on the back-propagation distance. Images (c) and (e) dis-
play raw interference patterns from perpendicular and oblique illumi-
nation, respectively, and (d) and (f) shows their back-propagation to a
distance where they are focused to a point. Units of back-propagation
distance correspond to the fixed refractive index.

the fact that the light propagates through several media on the way from
the microparticle to the image sensor, we use a fixed value of the refractive
index to make the back-propagation computationally faster.

The back-propagation is illustrated in figure 2.3. For each light source, we
can separately fix a back-propagation distance for which all the interference
patterns are focused to a point, no matter where the micro-objects are
located.

The position of focused interference patterns is estimated by computing
the center of mass of a small region around the approximate position (the
position in the previous frame or, at the initial stage, the position given
by the user). To make the estimate more accurate, the center of mass is
calculated for regions of successively smaller sizes. This eliminates the
influence of the surrounding specks.

What remains to be done is to identify the constant 1/tan θ in (2.1). For
this purpose we have the side-view camera in the hardware setup. The
side-view camera allows us to measure the levitation height (axial distance)
of micro-objects within a limited depth of field directly (see figure 2.2 (f-g)).
We manipulate a micro-object to several levitation heights and measure
those heights and lateral shifts of the corresponding interference patterns.
The constant 1/tan θ is then identified by fitting (2.1) to the set of measured



18 twin-beam real-time position estimation of micro-objects in 3d

0 20 40 60 80 100
200

400

600

800

1000

1200
X

 p
os

iti
on

 [
7

m
]

0 20 40 60 80 100

Time [s]

-10

0

10

E
rr

or
 [7

m
] 0 20 40 60 80 100

40

60

80

100

120

140

160

Le
vi

ta
io

n 
he

ig
ht

 [
7

m
]

0 20 40 60 80 100

Time [s]

-20

0

20

E
rr

or
 [7

m
]

200 400 600 800 1000 1200

X position [7m]

40

60

80

100

120

140

160

Le
vi

ta
tio

n 
he

ig
ht

 [
7

m
]

Estimated
Reference

Figure 2.4: Comparison of the estimated positions by the proposed method with
the reference measurements obtained by the side-view camera.

points. This calibration has to be done only once for the hardware setup
then the side-view camera is not needed any more.

2.4 experimental results

To validate the performance of the proposed method we manipulate a micro-
object (polystyrene microsphere with 50 µm in diameter) along a figure
eight trajectory and compare the position estimated by the proposed method
with the reference measurement obtained from the side-view camera with
accuracy ∼0.25 µm. The proposed method is implemented in Simulink.
The estimation is carried out in real-time at 10 Hz on an ordinary PC
(Intel Core i7, 8 GB RAM) and it is used in the feedback loop of the control
algorithm described in [18]. The estimation algorithm itself takes only 40 ms,
the remaining 60 ms is taken by the control algorithm and the execution
overhead. The comparison is displayed in the form of graphs in figure 2.4
and in the form of video (containing also the side-view) in attached file
Movie 1. The side-view camera enables us to measure only one coordinate
of the lateral position, but from the method of estimation, the estimate in the
other coordinate has necessarily the same accuracy. The standard deviation
of the error in x-coordinate is 2.41 µm (0.6 px) and in the levitation height
6.64 µm. Even though the experiment is performed with only one micro-
object, there is no obstacle preventing exploiting the proposed method for
tracking of several micro-objects. Such an experiment is shown in attached
file Movie 2.
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2.5 discussion and conclusion

We have developed a simple novel method for real-time estimation of
position of spherical micro-objects. The method requires only a very simple,
cost-effective and compact hardware setup. We demonstrated the accuracy
to be within ∼3 µm in the lateral position and ∼7 µm in the axial distance.
Since the accuracy depends on precise localization of the interference
patterns it can be improved by using an image sensor with smaller pixels.
On the other hand, this usually reduces an observable area. Furthermore, we
successfully used the method for real-time manipulation of a micro-object.
Despite the fact that the method is developed for transparent spherical
micro-objects, it can be potentially extended to track non-spherical and/or
opaque micro-objects as well. The only thing that would have to change is
the localization procedure for the interference patterns, because they might
not focus to a point any more. Concerning limitations of the proposed
method, if the micro-objects are in contact or located at the same lateral
position (they lie along the same axial line) it might be difficult to track
them with the current system.
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3
G R E E N ’ S F U N C T I O N - B A S E D C O N T R O L - O R I E N T E D
M O D E L I N G O F E L E C T R I C F I E L D F O R
D I E L E C T R O P H O R E S I S

In this paper, we propose a novel approach to obtaining a reliable and
simple mathematical model of a dielectrophoretic force for model-based
feedback micromanipulation. Any such model is expected to sufficiently
accurately relate the voltages (electric potentials) applied to the electrodes
to the resulting forces exerted on microparticles at given locations in the
workspace. This model also has to be computationally simple enough to
be used in real time as required by model-based feedback control. Most
existing models involve solving two- or three-dimensional mixed boundary
value problems. As such, they are usually analytically intractable and
have to be solved numerically instead. A numerical solution is, however,
infeasible in real time, hence such models are not suitable for feedback
control. We present a novel approximation of the boundary value data
for which a closed-form analytical solution is feasible; we solve a mixed
boundary value problem numerically off-line only once, and based on
this solution we approximate the mixed boundary conditions by Dirichlet
boundary conditions. This way we get an approximated boundary value
problem allowing the application of the analytical framework of Green’s
functions. Thus obtained closed-form analytical solution is amenable to
real-time use and closely matches the numerical solution of the original
exact problem.

This chapter is reproduced from Gurtner, M., Hengster-Movric, K. & Hurák,
Z. Green’s function-based control-oriented modeling of electric field for
dielectrophoresis. Journal of Applied Physics 122, 054903 (2017), with the
permission of AIP Publishing.
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3.1 introduction

Since H. Pohl coined the term dielectrophoresis (DEP) and started studying
this phenomenon in the 1950s and 1960s [2, 3], DEP has proved an efficient
tool for transportation, separation, and characterization of microparticles
such as biological cells (see Refs. [4, 5] for a recent survey and compre-
hensive introduction). More often than not, DEP is used to manipulate
ensembles of large numbers of microparticles; it is these applications—
without the need of adjusting the DEP force field in real time—where DEP
reached a very mature state and is commercialized (for instance by ApoCell,
Inc. [6]). However, recently some attempts were successful to use DEP in
a feedback control scheme for a high accuracy noncontact manipulation
of a single microparticle [7–10]; these developments can be viewed as a
reopening of the topic first started in the 1990s [11]. The technology has
also boosted development in this area; there are reported CMOS chips
integrating both actuation and sensing and thus enabling individual and
independent manipulation of thousands of cells [12]. This technology has
later also been commercialized by Silicon Biosystems as a commercial prod-
uct called DEPArrayTM. As opposed to DEP tweezers where DEP is used
just to attract a microparticle and a human manipulates with it [13, 14],
these non-contact tweezers are usually based on a feedback control scheme,
typically invoke an automatic visual tracking and can manipulate with
more microparticles simultaneously. The feedback control, in turn, requires
a sufficiently accurate mathematical model of the underlying physical phe-
nomenon of DEP. The relationship between the voltages applied to the
microelectrodes and the DEP force exerted on a microparticle located at
a given position needs to be evaluated periodically as the microparticle
moves around the workspace. Sampling periods on a time-scale of few tens
of milliseconds or even a few milliseconds are not unusual. The commonly
used approaches to modeling DEP—which are based on numerical solution
of the corresponding Boundary Value Problem (BVP), typically using Finite
Elements Method (FEM) or Method of Moments (MOM)—are not feasible in
real time. It is possible to precompute and store these solutions in a com-
puter memory (as reported in Ref. [7]) but this approach imposes stringent
requirements on the volume of data stored. There are approaches described
in the literature that provide analytical solutions [15–17]; however, they are
only usable for simple electrode arrays and fixed harmonic voltage signals
applied to the electrodes while the feedback control requires the ability to
change the voltages in real time.
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In this paper, we propose a modeling methodology that provides a com-
putationally simple yet sufficiently accurate model of a DEP force for the
purposes of feedback micromanipulation. We propose to combine numeri-
cal and analytical approaches to modeling of DEP. Existing models of DEP
usually involve a numerical solution of an analytically intractable mixed
Boundary Value Problem (mBVP) for the potential in the workspace. As the
numerical solution is infeasible in real time and might be too large for
storing in a computer memory, it is desirable to find a closed-form approxi-
mate analytical expression for the potential. To find such an expression, we
solve numerically the original mBVP. Based on this numerical solution, we
approximate the mBVP by a BVP for which the closed-form solution can be
found by Green’s functions. Using the approximate closed-form expression
for the potential we obtain a model of DEP force that is computationally
effective and requires almost no memory space. The numerical solution
of the mBVP needs to be computed off-line and only once. Thus the high
computational burden associated with the numerical solution is carried
out off-line and the feedback control system uses only the approximate
closed-form analytical solution in real time.

The paper is organized as follows. In Section 3.2, we briefly present the
commonly used dipole model of DEP and show what prevents its direct use
in feedback micromanipulation. In Section 3.3 we propose a control-oriented
model derived from the dipole model by Green’s functions. Experimental
verification of the viability of the proposed model is provided in Section 3.4.
The paper concludes with Section 3.5 where the main contributions of this
paper are discussed.

3.2 feedback manipulation by dielectrophoresis

A great advantage of feedback manipulation by DEP, in contrast to the
conventional use of DEP, is that it allows one to manipulate individual
microparticles. Nevertheless, this comes with the cost of higher computa-
tional demands on the control system because the voltages applied to the
electrodes cannot be precomputed anymore and have to be adjusted in real
time as required by the feedback loop.

We can explain this with an aid of Fig. 3.1 depicting the scheme of
feedback manipulation by DEP. The measured position of the microparticle
is subtracted from the required position. The deviation is fed to a control
system that calculates a DEP force needed to reduce this deviation—to steer
the microparticle towards the required position. Therefore, the voltages
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Figure 3.1: A block diagram of feedback manipulation by DEP.

on electrodes are required to generate such a force. Such voltages are
then applied to the electrodes and the generated DEP force acts on the
microparticle moving it towards the required position. The new position
is then measured and the whole cycle is repeated. The crucial part of this
algorithm is hidden in the control system where, in order to compute the
voltages generating the desired DEP force, a model relating the voltages to
the DEP force has to be used in real time [7].

Nevertheless, exact DEP models are rather complicated to use in real
time. For instance, the widely used dipole model has the following form:
time-averaged dielectrophoretic force acting on a homogeneous spherical
particle in a harmonic field is [18]

⟨FDEP(t)⟩ = π εmr3
(

Re{K(ω)}∇|E|2 + 2Im{K(ω)}

×
(

E2
x∇φx + E2

y∇φy + E2
z∇φz

) )
, (3.1)

where εm is the permittivity of the surrounding medium, r is the par-
ticle’s radius, K(ω) is a frequency dependent constant known as Clau-
sius–Mossotti factor, E = [Ex, Ey, Ez] is the amplitude of the harmonic
electric field Re{E eiωt}, the phase of the electric field is denoted by φa, a ∈
{x, y, z} and finally, Re{·} and Im{·} denote real and imaginary parts of a
complex number, respectively. For brevity, the spatial dependence is omitted
in the notation.

According to (3.1), to determine the DEP force due to applied voltages to
electrodes, one needs to know the electric field E. The electric field E is given
by E = −∇ϕ, where the potential ϕ is calculated from Laplace equation
∇2ϕ = 0 with mixed boundary conditions. Orienting the reference frame so
that the electrodes lie in the x-y plane and manipulated objects are situated
above it, the domain is defined by the half-space z > 0. The boundary
conditions are given by the voltages applied to the electrodes (Dirichlet
boundary condition) and a zero-flux condition in the normal direction to the
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electrode plane in the intervening space between the electrodes (Neumann
boundary condition) [15]. This BVP is analytically intractable and can be
solved only approximately by numerical solvers. Since the control algorithm
is supposed to run in real time and the calculation of the DEP force must
not take more then a few milliseconds, solving on-line this exact BVP
numerically is infeasible.

A partial remedy to this issue is to express explicitly the dependence of
FDEP on the voltages applied to the electrodes. By superposition, we express
the net potential ϕ(x, y, z) as a weighted sum of normalized contributions
from individual electrodes. That is,

ϕ(x, y, z) =
n

∑
i=1

uiϕi(x, y, z), (3.2)

where n is the number of electrodes, ui serves as a scaling factor given by
voltage on ith electrode, ϕi is the contribution to the net potential from the
ith electrode when 1V is applied to it while the remaining electrodes are
grounded. Now, to determine the net potential ϕ(x, y, z), we have to solve n
BVPs (∇2ϕi = 0, i = 1, . . . , n) that are still analytically intractable, but that
do not change with the voltages applied to the electrodes.

One can solve each of these BVPs numerically on a grid of points in
advance, store the solution and use it as a look-up table in real time.
Nevertheless, this lookup table grows unacceptably large. As an example, let
the microparticles be manipulated within an area of size 1500 µm × 300 µm.
If we grid this area equidistantly with points separated by 5 µm, we obtain
300 × 300 × 60 = 5, 400, 000 points. Naïve implementation of this approach
would thus require to store [Ex, Ey, Ez] and their relevant partial derivatives

[ ∂Ex
∂x , ∂Ex

∂y , ∂Ex
∂z , ∂Ey

∂y , ∂Ey
∂z ] for each point in order to evaluate FDEP and all that

is only for one electrode.
The volume of the data needed to be stored can be reduced by a method

introduced by Kharboutly et al. [19]. They use a so-called Boundary Element
Method and instead of storing directly the derivatives of the potential in
points spread throughout all the domain, they store precomputed surface
charge density in a grid on electrodes. In real time, when it is required to
compute the DEP force at a point, the surface charge density is numerically
integrated to calculate the electric field and its derivatives at that point and
that allows the computation of the DEP force. Nevertheless, for the previous
case that still means that a large portion—depending on what extent of the
electrode plane is occupied by the electrodes—of 300× 300 = 90, 000 points
have to be stored. Furthermore, the reduction in the volume of data comes
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at the cost of higher computational complexity because all the stored data
points are needed for evaluation of (3.1).

In this paper, we propose a different approach. We approximate the
previously mentioned, analytically intractable boundary value data so that
a closed-form approximated solution can be found.

3.3 green’s functions for modeling of dielectrophoresis

The solution of the Laplace equation in a half-space domain, which is
the case here, with Dirichlet conditions only can be transformed into an
integration by use of the Green’s theorem. The derivation can be found in
Ref. [17] and the resulting formulas are

ϕ(x, y, z) =
z

2π

∞∫∫
−∞

h(x′, y′)

[(x − x′)2 + (y − y′)2 + z2]
3/2 dx′dy′ (3.3)

for a 3D case and

ϕ(x, z) =
z
π

∫ ∞

−∞

h(x′)
(x − x′)2 + z2 dx′ (3.4)

for the 2D case where one axis, in our case y, is redundant, meaning the
electrode array has infinitely long electrodes along y axis. The functions
h(x, y) and h(x) are Dirichlet boundary conditions that represent values of
the potential on the electrode plane, that is ϕ(x, y, 0) and ϕ(x, 0), respectively.
Thus, to obtain a closed-form description of the potential—and subsequently
also of the DEP force—one only needs to compute the integral (3.3) or (3.4).
However, in order to achieve that, it is necessary to know h(x, y) (or h(x))
and that means also the potential on the electrode plane in the intermediate
space between the electrodes where the mixed boundary conditions impose
a zero normal flux. Furthermore, functions h(x, y) or h(x) have to be such
that the evaluated integral (3.3) or (3.4) is expressible as a closed-form
expression containing only elementary functions; only then is the solution
for the potential applicable in real-time feedback control.

To determine the values of the potential on the electrode plane in between
the electrodes, various approximations of the decay of the potential away
from the electrode can be found in the literature [15–17]. Nevertheless, they
are all designed only for interdigitated electrode arrays. For more complex
electrode array designs, they are either inapplicable or the integrals (3.3)
and (3.4) are analytically intractable for the approximation of the potential
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and have to be solved numerically. Then, however, formulating the solution
of the BVP as an integration loses meaning since both the new and the
original problem have to be solved numerically.

In this paper, instead, we numerically solve the original BVP with mixed
boundary conditions. In order to obtain h(x, y) (or h(x)), we approximate
this numerical solution on the electrode plane (i.e. on the boundary of the
domain) by an analytical model. As we require the integrals (3.3) and (3.4) to
be expressible in closed form, we restrict the class of approximating models
to piece-wise polynomial models in the 2D case and piece-wise constant
models in the 3D case. Having the approximation of the potential on the
electrode plane, an approximate closed-form expression for the potential
in the half-space domain is obtained by evaluating the integral (3.3) (or
(3.4)). Thus, by (3.1) and (3.2), we also get a model of DEP suitable for
feedback control. Note, that the numerical solution is needed only to derive
the control-oriented DEP model; the numerical solution is computed only
once and off-line. Therefore, all the heavy computational burden is carried
off-line and the control system uses the computationally more efficient
model in real time.

It is worth mentioning that since the potential—as the solution of the
Laplace equation—is a harmonic function, it is infinitely differentiable [20].
Furthermore, due to the Maximum principle [20] the error of the approxi-
mated potential diminishes as one moves further away from the electrodes.
Thus, the accuracy of the model can be controlled by the accuracy of the
approximation of the potential on the boundary of the domain.

In the remainder of the paper, we apply the described methodology to
two electrode arrays.

3.3.1 Example 1: Interdigitated Electrode Array

Let us consider an electrode array with (2n + 1) electrodes, the single
electrode width b and center-to-center distance between the electrodes d
(see Fig. 3.2(a)). We assume that the electrodes are infinitely long and thus
drop the dependence on the y coordinate altogether.

We decompose the net potential by (3.2) into a weighted sum of normal-
ized contributions ϕi from individual electrodes. Furthermore, we assume
that the potential contribution ϕi is shift-invariant for a shift d along the x-
axis. That means the potential contribution ϕi is identical for each electrode
up to a shift. Mathematically,

ϕi(x, z) = ϕi±1(x ± d, z), i = −n + 1, . . . , n − 1. (3.5)
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Figure 3.2: Interdigitated electrode array: (a) a side-view diagram and (b) an
approximation of the boundary conditions. The black rectangles
represent electrodes and the shaded rectangles on the left and right
represent the possibly added grounding plates.

Clearly, this assumption does not hold for the electrodes close to the perime-
ter of the electrode array. For instance, the potential contribution ϕn(x, z)
(i.e. from the electrode on the perimeter) decays more quickly towards the
(n − 1)th electrode, which is grounded, than towards the other side, where
there is no grounded plate near. Nevertheless, this issue can be resolved
(and the assumption (3.5) justified) by manufacturing grounding plates
along the perimeter.

As a result of the assumption (3.5), we have to compute the integral (3.4)
only for one ϕi(x, z), e.g. ϕ0(x, z). The remaining potential contributions
are determined simply by shifting, that is ϕi(x, z) = ϕ0(x + id, z) with
i ∈ {−n, . . . , n}, and the net potential is then given by (3.2). Nevertheless,
to compute (3.4) for ϕ0(x, z), we need to know h(x) := ϕ0(x, 0) while
the values of ϕ0(x, 0) are known only on the electrodes and unknown on
the rest of the bottom boundary. To overcome this problem, we solve the
original Laplace equation with mixed boundary conditions numerically by
Finite Element Method (FEM) in COMSOL Multiphysics. Then, we take the
values of the potential on the bottom boundary (i.e. z = 0) between the 0-th
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electrode and its left adjacent electrode and fit a polynomial p(x) to these
values. The polynomial approximation of h(x) is

h̃(x) =



p(x) x ∈
[
− d − b

2 ,− b
2
)
,

1 x ∈
[
− b

2 , b
2
]
,

p(−x) x ∈
( b

2 , d + b
2
]
,

0 otherwise.

(3.6)

Specifically, for an electrode array with parameters d = 2b = 200 µm,
we fitted a third-order polynomial to the FEM solution and the fitted
polynomial is

p(x) = 1.36 × 10−6x3 + 4.34 × 10−4x2 + 5.15 × 10−2x + 2.59, (3.7)

where x is in micrometers.
The FEM solution together with the polynomial approximation is dis-

played in Fig. 3.2(b). Apparently, the polynomial approximation describes
the FEM solution very accurately. However, one should not overlook the
small humps in the gaps between the electrodes, which are completely
omitted by the approximation.

With h̃(x) approximating ϕ0(x, 0) we can compute the integral (3.4) and
obtain an approximate closed-form solution for ϕ0(x, z). Then, by (3.5)
and (3.2) we get the net potential ϕ(x, z) for any choice of electrode poten-
tials ui. Thus, we can compute the electric field intensity and the pertaining
DEP force. We do not present the evaluated integral here, because it is
rather lengthy and it would not serve any purpose. Nevertheless, it is
crucial to mention that the evaluated integral is indeed expressible as a
closed-form expression containing only elementary functions and thus it is
easily applicable in real time.

To validate the proposed model, we compare DEP force fields computed
by (3.1) for the potential obtained by numerical solution of the original BVP
with mixed boundary conditions and for the potential obtained by solution
of the approximated BVP. The comparison is shown in Fig. 3.3 (Multimedia
view) . The comparison is carried out for an electrode array with nine
electrodes (n = 4), with grounded perimeter (also visible in the figure)
and with the single electrode width b = 100 µm and the distance between
the electrodes d = 200 µm. The remaining parameters are: r = 25 µm,
εm = 7.08 × 10−10 F m−1 and K(ω) = −0.4618 − 0.1454i. As usual for the
standing wave DEP, the harmonic signal applied on all electrodes has the
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Figure 3.3: A component-wise comparison of DEP force fields computed for
interdigitated electrode array (d = 2b = 200 µm) numerically by FEM
and analytically based on the approximate closed-form solution for
the potential. The force fields are computed for the height of 120 µm
above the electrode array. The applied potentials are indicated above
the electrodes represented by the black rectangles. (Multimedia view)



3.3 green’s functions for modeling of dielectrophoresis 31

same frequency and phase. Since it is rather inconvenient to compare the
vector fields, the comparison is done for one particular height above the
electrodes (120 µm) and for varying potentials on the electrodes.

3.3.2 Example 2: Four-Leaf Clover Electrode Array

In the second example, we show a related approach how to approximate
the values of the potential on the electrode plane for a more complex
electrode array shown in Fig. 3.4(a). It consists of four quadrants and allows
manipulation of microparticles in all three directions above the electrode
array, as it was experimentally verified [21]. The width of the electrodes
is b = 50 µm and the center-to-center distance between the electrodes is
d = 100 µm. We assume that the electrodes extend to infinity at one end.

Along similar lines as in Example 1, based on the superposition prin-
ciple (3.2) we express the net potential as a weighted sum of normalized
contributions ϕi from individual electrodes and make a similar assumption
that the normalized contributions are identical up to a shift and/or rotation
with respect to each other; for instance, for electrodes with indexes ranging
from 1 to 7 (the indexes are shown in Fig. 3.4(a)), it holds that

ϕi+1(x, y, z) = ϕi(x − d, y + d, z), (3.8)

where d is the center-to-center distance between the electrodes.
Again, thanks to this assumption, we need to compute the integral (3.3)

only for one ϕi(x, y, z). In this case, we choose ϕ44(x, y, z) because it is close
to the center of the sector and, analogously to the previous example, the
assumption (3.8) holds best for the electrodes in the center.

It remains to find the approximation of h(x, y) := ϕ44(x, y, 0). In order
to do that, we approximate the FEM solution for ϕ44(x, y, 0) shown in
Fig. 3.4(b). This time, however, the integral (3.3) is analytically intractable
for h(x, y) being polynomial or even linear—we are unable to express the
integral in closed form for anything other than for constant boundary
condition. Thus, instead of using a polynomial or linear approximation,
the desired shape of the potential is constructed from blocks. Initially, we
approximate the boundary condition in the roughest possible way; we
assume that the potential between the electrodes drops immediately to zero
as one moves away from the electrode (see Fig. 3.5(a)). Then summing the
“scaled” and “shifted” versions of this boundary condition (see Fig. 3.5(b))
approximately gives the desired shape (see Fig. 3.5(c)).
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Figure 3.4: Four-leaf clover electrode array: (a) a top-view diagram and (b) FEM
solution for the normalized potential contribution from one electrode.
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Figure 3.5: An approximation of the desired shape of the bottom boundary
condition (z = 0) for the four-leaf clover electrode array: (a) one
block approximation, (b) staircase approximation and (c) boundary
condition obtained by FEM. Black rectangles represent electrodes.
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Let us begin with the one-block approximation. We define the block
boundary condition for one-side infinitely long electrode as

h0(x, y) =

1 x ≤ 0 and y ∈
[
− b

2 , b
2

]
,

0 otherwise,
(3.9)

where b is the width of the electrode. The staircase approximation of the
desired shape is then obtained by

h̃(x, y) =
N

∑
i=1

αi h0

(
x − (βi − 1)b

2
,

y
βi

)
, (3.10)

where N is the number of blocks, αi determines the height of the block and
βi is a scaling parameter, meaning that βi = 2 scales the block so that it is
twice as wide as the original electrode. Notice, that we assumed that the
potential decays identically along the x and y axes and thus the coefficients
βi determine not only the width but simultaneously also the shift of the
blocks along the x axis.

Given the FEM solution for mixed boundary conditions, the coefficients
αi and βi in (3.10) can be determined by solving the following optimization
problem

min
αi ,βi∈R,i=1,...,N

∥h̃(x0, y)− ϕFEM(x0, y, 0)∥2 (3.11)

subject to:
N

∑
i=1

αi = 1,

βi ∈ [1, 3], i = 1, . . . , N,

where ϕFEM(x, y, z) is the FEM solution. Note that the 2-norm above mea-
sures the size of a function of the real y variable, but in the numerical
optimization we are only able to consider samples of y, which is not en-
coded in the optimization problem statement for the sake of simplicity. With
the assumption that the potential decays identically along x and y axes,
both αi and βi can be determined from a y-z cross-section of ϕFEM(x, y, 0),
we fixed x to be a negative constant value x0. For instance, the red curve
in Fig. 3.5(a) represents ϕFEM(x0, y, 0) for x0 = −200 µm. The coefficients
αi have to sum up to one because only then is the height of the piled up
blocks equal to one. We assume that d = 2b and thus restrict the coefficients
βi to the interval [1, 3] because then the blocks cannot be narrower than the
electrode and they cannot interfere with other electrodes. Even though the
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Figure 3.6: A comparison of individual components of DEP force fields calcu-
lated for the four-leaf clover electrode array with single electrode
width b = 50 µm and center-to-center distance between the electrodes
d = 100 µm. The force fields are calculated numerically by FEM and
analytically based on the approximate closed-form solution for the
potential. The force fields are computed for the height of 120 µm
above the electrode array. The numerical values inside the electrodes
represent applied potentials in volts. (Multimedia view)
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Figure 3.7: Photo of the apparatus used for the experimental verification of the
proposed control-oriented model of DEP.

optimization task is not convex, it still provides very good results when
given a good initial guess. For the initial guess, we let βi grow linearly from
1 to 3 and set αi to be proportional to ∂

∂y ϕFEM(x0, y, 0). Figure 3.5(b) shows
results of the optimization process for N = 10.

Having the approximation of the boundary condition h̃(x, y), one can
calculate the integral (3.3) and obtain a closed-form solution for ϕ44(x, y, z).
Instead of using the boundary condition h̃(x, y) composed of several blocks
directly, due to linearity of the integral, we can use the one-block boundary
condition h0(x, y), calculate the integral (3.3) and compose the closed-form
approximation for ϕ44(x, y, z) in the same way as h̃(x, y) is itself composed.
This is exactly how we proceed. Substitution of h0(x, y) into the integral (3.3)
gives

ϕi0(x, y, z)=
z

2π

b
2∫

− b
2

0∫
−∞

1

((x−x′)2+(y−y′)2+z2)
3/2 dx′dy′. (3.12)

Again, we do not present the evaluated integral since one can easily
compute it in Mathematica, Maple, Matlab or any another computer al-
gebra package. Nevertheless, we emphasize that the evaluated integral is



3.4 experimental verification 37

expressible in closed form usable in real time. The approximate closed-form
solution for ϕ44(x, y, z) is then obtained as

ϕi(x, y, z) =
N

∑
i=1

αi ϕi0

(
x − (βi − 1)b

2
,

y
βi

, z
)

. (3.13)

Similarly, as in the 2D case, we do not compare the potentials directly
because what we are interested in are the DEP force fields derived from the
potentials. Since from the visualization point of view it is rather inconve-
nient to directly compare 3D force fields, we compare their components
separately. The comparisons were carried out for the same parameters as in
Example 1 and they are shown in Fig. 3.6 (Multimedia view). Fig. 3.6 shows
a comparison carried out for randomly varying potentials on the electrodes.
Based on this comparison, the force field computed by the proposed ap-
proximate closed-form model is seen to match that computed based on the
FEM solution.

3.4 experimental verification

To verify the applicability of the proposed DEP model, we used it in an
experiment where a 50 µm polystyrene microsphere was manipulated by
a control system with a feedback loop. The goal of the control system is
to steer the microsphere along a reference trajectory. The microsphere was
suspended in water contained in a pool above an interdigitated electrode
array with six electrodes and d = 2b = 200 µm (see Fig. 3.2(a)). A detailed
description of the control and measuring system can be found in Ref. [7] and
in Ref. [22], respectively. Figure 3.7 displays a photo of the hardware setup.
Figure 3.8 shows reference and measured trajectories of the microsphere. In
addition, the figure also displays the potentials applied to the electrodes
in order to steer the microsphere along the reference trajectory. These
potentials were computed in real time by the control system based on
the proposed DEP model. It is noteworthy, that in Ref. [7] a numerical
solution taking approximately 1 GB of memory space was used to calculate
DEP force in real time, whereas here the DEP model is represented by a
closed-form analytical expression that takes almost no memory space and
is computationally efficient.
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Figure 3.8: Experimental verification of the proposed model of DEP in an experi-
ment where a microsphere is steered along a reference trajectory. Only
the transverse coordinate (i.e. x) is shown. The colors at electrode lo-
cations show what potentials were applied to the electrodes at a given
time. Notice that x axis here is time and thus any vertical cut shows
what potentials were applied to the electrodes at the corresponding
time.

3.5 discussion

Although the presented approach to modeling of dielectrophoresis is
demonstrated on the dipole approximation of the microparticles, it can
also be applied to more complex and accurate multipole approximations;
no modification would be needed because multipole approximations only
require higher derivatives of the potential and our proposed approxima-
tion calculates an infinitely differentiable closed-form approximation of the
potential. Even though we demonstrate the approach on two concrete elec-
trode array designs, it can also be used for other planar designs exhibiting
similar symmetry; two such examples are shown in Fig. 3.9. Note that full
analytical solutions for exact boundary conditions are not possible in such
cases.

3.6 conclusion

The major benefit of our approximate modeling methodology for a dielec-
trophoretic force presented here is that in comparison with the standard
analytical or FEM-based (numerical) approaches it yields a mathematical
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(a) (b)

Figure 3.9: Some other electrode array designs in the literature [8, 19] for which
the proposed modeling methodology is also applicable.

model of DEP whose application is feasible in real time (e.g. in cycles of a
few milliseconds or so) on a common laboratory PC, and yet the accuracy of
the model is sufficient for the purposes of feedback micromanipulation. This
methodology combines numerical and analytical models so that the compu-
tational burden associated with the calculation of the numerical solution is
carried out off-line and based on this numerical solution an approximated
closed-form and easy-to-calculate—or briefly control-oriented—model is
derived. This approach allows us to derive a control-oriented model for a
broader category of electrode array designs than other approaches used in
modeling of DEP.
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4
A D M M - B A S E D D I S T R I B U T E D C O N T R O L F O R
D I S T R I B U T E D M A N I P U L AT I O N B Y S H A P I N G P H Y S I C A L
F O R C E F I E L D S

This paper proposes an algorithm for decomposing and possibly distribut-
ing an optimization problem that naturally emerges in distributed manip-
ulation by shaping physical force fields through actuators distributed in
space (arrays of actuators). One or several manipulated objects located
in this field can "feel the force" and move simultaneously and indepen-
dently. The control system has to produce commands for all actuators so
that desired forces are developed at several prescribed places. This can
be formulated as an optimization problem that has to be solved in every
sampling period. Exploiting the structure of the optimization problem is
crucial for platforms with many actuators and many manipulated objects,
hence the goal of decomposing the huge optimization problem into several
subproblems. Furthermore, if the platform is composed of interconnected
actuator modules with computational capabilities, the decomposition can
give guidance for the distribution of the computation to the modules.
We propose an algorithm for decomposing/distributing the optimization
problem using Alternating Direction Method of Multipliers (ADMM). The
proposed algorithm is shown to converge to modest accuracy for various
distributed platforms in a few iterations. We demonstrate our algorithm
through numerical experiments corresponding to three physical experimen-
tal platforms for distributed manipulation using electric, magnetic, and
pressure fields. Furthermore, we deploy and test it on real experimental
platforms for distributed manipulation using an array of solenoids and
ultrasonic transducers.

This chapter is reproduced from Gurtner, M., Zemánek, J. & Hurák, Z.
ADMM-based distributed control for distributed manipulation by shaping
physical force fields. International Journal of Robotics Research. As of December
2022, the paper is accepted but has not been published yet. (2022).
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4.1 introduction

Research in manipulation by actuators distributed in space, also known
as distributed manipulation, was triggered by a seminal paper by [2]. Dis-
tributed manipulation can be carried either through mobile actuators [3,
4] or through actuators fixed in space where the actuators are used to
shape a physical field surrounding the manipulated objects. We focus on
platforms with actuators fixed in space. Various principles have been used
in distributed manipulation through physical field: MEMS actuators [2],
dielectrophoresis [5], acoustophoresis [6], electroosmosis [7], magnetophore-
sis [8], and omnidirectional wheels [9] Even though distributing not only
the actuators in space but also the control algorithm is beneficial, little
attention has been paid to it so far.

Early distributed manipulation platforms were sensorless. To mention
a few, [10] used an array of oscillating micro-structures for actuation, ar-
rays of microfabricated nozzles were used by [11] and [12], ultrasonic
micro-actuators were reported [13], and magnetically controlled flaps were
documented [14]. The absence of sensors entails that the control strategies
must be open-loop and thus precomputed. Some authors refer to distributed
manipulation platforms as programmable force fields [15, 16]. More on the
open-loop strategies for distributed manipulation can be found in [2, 17–19].
As [20] and [21] argue, open-loop strategies tend to be slow and, in some
cases, even unstable.

More recent publications introduce platforms with sensing capabilities
and feedback control [9, 20, 22, 23]. When feedback control is employed,
the control system solves the problem of commanding individual actuators
so that forces with required directions and magnitudes are exerted at the
current locations on the manipulated object(s). This problem can often be
cast as a (possibly nonconvex) optimization problem where the goal is
to minimize the deviation between the exerted and desired forces [5, 6].
Pseudoinverse was used to find the currents flowing through coils around
the manipulation area with one or several microrobots [24, 25]. Matrix
inversion [9] enabled control an array of omni-directional wheels [26].
Independent manipulation of multiple robots requires local controllability
of the field, but a global signal can be used if they respond differently [27].

Distributed manipulation platforms using feedback control can be di-
vided into those with centralized [9, 11–13, 20], distributed [22, 23] and (fully)
decentralized control. In a centralized control scheme, there is one place where
all the measured information is collected and processed and from which
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commands to all the actuators are issued. In a distributed control scheme, the
computation is spread (distributed) among some local units with sensing
and computational capabilities (typically modules with one or several actu-
ators). Decentralized control scheme could be viewed as an extreme version
of the distributed one in that no interaction/communication between the
units/modules is present [28]. Distributing the control logic (or computa-
tions) among the local units (modules) is advantageous because it removes
the need for a central unit and makes the distributed manipulation platform
modular and possibly also more scalable.

Even if ultimately the control computation is distributed among the
actuator modules, it is also possible to view each manipulated object (or
a group of objects) as a virtual agent, and these agents then collaborate
on attaining the goal set for the control system. The agents are virtual in
the sense that they only serve as a basis for decomposing the original full
problem to several smaller ones to be distributed to several computational
modules. This is the approach we adopt in this paper.

In particular, in this paper we adapt Alternating Direction Method of Multi-
pliers (ADMM) [29, 30] for distributing the control in distributed manipula-
tion. That is, ADMM is used to distribute the computation of the commands
for the actuators. ADMM is a popular method used in convex optimiza-
tion for its simplicity and applicability to a wide range of problems. Even
though ADMM is a first-order method and has only a linear convergence
rate [31], empirical evidence shows that it usually converges in a few tens
of iterations to a modest accuracy [30]. Hence, ADMM is often used in
situations where one needs a good-enough solution in a limited amount of
time. This is perfectly aligned with the requirements of distributed control
for distributed manipulation, where the optimization problem has to be
solved repeatedly with a period as short as a few milliseconds.

Optimization problems in distributed manipulation may be nonconvex,
and ADMM may diverge for nonconvex problems. Nevertheless, one can
find many successful applications of ADMM to nonconvex problems in
the literature, ranging from matrix completion [32–34], phase retrieval [35],
polynomial optimization [36], compressive sensing [37], computer graph-
ics [38] and image restoration [39], to name a few. These applications have
driven a search for the conditions under which ADMM converges when
applied to nonconvex problems [40, 41]. We show that ADMM applied to
nonconvex problems emerging in distributed manipulation also converges
in practice.
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Contribution

Distributed manipulation through an actuator array calls for finding actu-
ator commands for given desired forces. In contrast to the results in the
literature, where this problem is usually solved as a single optimization
problem, we propose a decomposition of the underlying numerical opti-
mization, which allows for distribution of the computation to modules. To
the best of our knowledge, the idea of viewing the manipulated objects
as virtual agents and distributing the optimization problem related to the
computation of commands for the actuators is novel. The computation can
then run on (local) actuator modules, which allows for easy, and virtually
unlimited, expansion of the platform. But even if centralized computation
is still used, the proposed decomposition of the optimization problem is
beneficial for larger platforms—its solution converges faster. Furthermore,
we solved the underlying optimization subproblem of the ADMM problem
only approximately so that the proposed distributed optimization algo-
rithm runs efficiently in real time. Finally, we also show by experiments
that the modified ADMM converges in practice even for a specific class of
nonconvex problems.

Organization of the paper

The paper is organized as follows. The following section Control for Dis-
tributed Manipulation presents the control problem emerging in distributed
manipulation by shaping a force field through a fixed actuator array. It also
concisely introduces ADMM and proposes an algorithm for distributing
the control problem by ADMM. In the subsequent section Experiments,
we numerically and experimentally validate the proposed algorithm by
applying it to three distributed manipulation platforms based on different
physical principles.

Mathematical Notation

We use [N] to denote the set [N] := {1, . . . , N}, where N ∈ N, and |Q| to
denote the cardinality of a set Q. We use xI to denote the vector composed
of components from x with indices in I ⊂ N. For instance, when I = {1, 3}
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then xI = [x1, x3]
T. Euclidean norm of a vector x is denoted by ∥x∥2.

Function IQ denotes the indicator function for a set Q:

IQ(x) =

0, x ∈ Q,

∞, x /∈ Q.
(4.1)

Matrix I is the identity matrix of appropriate dimensions. Operator [x]ba
clips the scalar x to the interval [a, b]. The Jacobian of a function f : Rn →
Rm will be denoted by Df ∈ Rm×n, or simply D, when it is clear from
the context with respect to which function f the Jacobian is computed.
Operator ⌈x⌉ rounds x to the closest integer larger than or equal to x.

4.2 control for distributed manipulation

Distributed manipulation deals with situations where an array of spatially
distributed actuators is commanded to steer one or several objects. More
specifically, here we restrict ourselves to the case where each actuator
contributes to the force acting on a manipulated object (or to the physical
field from which the force is derived), and the contribution decays with the
distance between the actuator and the manipulated object. Thus, the net
force exerted on the object is composed from the contributions of individual
actuators in the object’s vicinity.

The aim of the control system is to get the objects into desired locations
or steer them along desired trajectories. In every control period, the control
system measures positions of the manipulated objects and computes the
commands for the actuators so that the objects move towards the desired lo-
cations. It is worth emphasizing that what we call actuators could be viewed
as local contributors to the global force field. For instance, commanded
electric currents through solenoids give rise to magnetic force field and
amplitudes [8] or phase shifts [5] of voltage signals applied to microelec-
trode arrays give rise to dielectrophoretic force field. This position feedback
control loop is structured such that first the control system computes a
suitable force moving a given manipulated object towards the desired loca-
tion and then it finds the commands for the actuators (contributors to the
global force field) exerting this suitable force. The control system’s structure
is shown in Fig. 4.1. The computation of the suitable force is a task for a
position controller (even a PID controller often suffices). In this paper, we
focus on the problem of computing the values of actuators’ commands such
that the required suitable forces are developed at objects’ positions. This
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Figure 4.1: Block diagram of the system and the controller. The position con-
troller sets desired forces for each object according to the reference
and measured positions. Optimization block then finds actuator com-
mands according to the desired forces and current positions.

task is performed by a component labeled Optimization and marked red in
the control diagram.

We assume that a mathematical model relating the actuators commands
and the developed force field is available. However, the inversion—that is, a
model that takes the required forces as the input and produces the actuator
commands—is unavailable and must be computed numerically. For N
objects to be manipulated in m dimensions (either 2D or 3D), the inversion
of the force model can be formulated as the following optimization problem:

minimize
u∈Rn

1
2

N

∑
i=1

∥Fi − f (u,xi)∥2
2, (4.2)

subject to u ≤ u ≤ u,

where Fi ∈ Rm is the required net force acting on the ith manipulated
object. Function f : Rn × Rm → Rm is smooth (possibly nonconvex) and
represents the force model, that is, it outputs the force acting on an object at
position xi ∈ Rm for values of the actuators’ commands u ∈ Rn. Scalars u
and u represent minimum and maximum limits for the values of actuators’
commands, respectively. The elements of vector u are the values of the
individual actuators’ commands. We assume the same upper and lower
limits for all actuators for notational simplicity; nevertheless, the proposed
algorithms work for varying limits as well. Throughout this paper, we
consider spherical objects, so we do not aim on controlling their orientation.
Nevertheless, if orientation is to be controlled, the problem (4.2) can be
extended to include the desired moment.

Optimization problem (4.2) can be solved either in a centralized fashion—
the problem is solved as whole at one computational unit—or, as we pro-
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Figure 4.2: Decomposition strategies. An illustrative example shows three balls
on a manipulation platform divided into four hardware modules.

pose, it can be decomposed to several smaller optimization problems. The
decomposition has the advantage that one can distribute the computational
load to several computational units (be it several threads at one compu-
tational core, more computational cores, or more networked computers).
We propose to decompose (4.2) into smaller problems in which only those
actuators are involved that can significantly contribute to the force acting
on a manipulated object.

To clarify possible variants of control schemes for distributed manipu-
lation, let us consider an illustrative example in Fig. 4.2. It shows three
manipulated objects on a manipulation platform consisting of four hard-
ware modules, each module containing possibly several actuators. In cen-
tralized control Fig. 4.2a, one optimization problem (OPT1) run by a central
computer (CPU1) finds control commands leading to the desired forces
exerted on all three objects. Optimization can be broken into subproblems
so that each subproblem corresponds to one ball and optimization is only
performed over the control commands for actuators in the vicinity. Even
if the subproblems (OPT1–3) run on the same central computer (CPU1)
Fig. 4.2b, for example, in separate threads, the decomposition can improve
overall performance. If the modules have computational power (CPU1–4),
they can solve subproblems (OPT1–2) assigned to them and the controller
is (spatially) distributed Fig. 4.2c.



50 admm for distributed manipulation

Figure 4.3: A motivating example of a distributed manipulation system. In the
left figure, the intensity of the red color visualizes the decaying
magnitude of the attractive force field generated by the top-right
actuator. In the right figure, actuators that can significantly contribute
to the force acting on the green and yellow manipulated objects are
bounded by the green and yellow color, respectively.

Next, we show by an example why it is advantageous to decompose (4.2).
Then, we briefly review ADMM and show how to use it for decompos-
ing (4.2). Finally, we describe how the decomposed problems can be effi-
ciently solved.

4.2.1 Motivating example

An example of a distributed manipulation system—inspired by the Mag-
Man platform described later in the experimental section of the paper—is
depicted in Fig. 4.3. The system consists of a 3 × 3 matrix of identical actu-
ators and two manipulated objects. The actuators can generate only force
fields that attract the objects to their centers. The net force acting on an
object is given by the sum of forces contributed by individual actuators.
The figure shows that the top-right actuator can contribute significantly to
the force acting neither on the first nor the second manipulated object. In
fact, one can effectively use only actuators {4, 5, 7, 8} to manipulate the first
object and actuators {2, 3, 5, 6} to manipulate the second object. Thus, it
makes sense to decompose (4.2) to two smaller optimization problems: first
optimizes over actuators {4, 5, 7, 8} and is responsible for exerting the force
acting on the first object, and second optimizes over actuators {2, 3, 5, 6}
and is responsible for exerting the force acting on the second object. Since
these two optimization problems share actuator number 5, they need to be
solved collaboratively.
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4.2.2 Alternating Direction Method of Multipliers (ADMM)

ADMM is a first-order method solving optimization problems of the fol-
lowing form:

minimize
u,y∈Rn

f (u) + g(y), (4.3)

subject to u− y = 0,

where f , g : Rn → R ∪ {∞} are closed proper convex functions. ADMM
introduces (scaled) dual variable z and proceeds in iterations according to
the following update rules:

uk+1 := proxλ f

(
yk − zk

)
, (4.4a)

yk+1 := proxλg

(
uk+1 + zk

)
, (4.4b)

zk+1 := zk + uk+1 − yk+1, (4.4c)

where k is an iteration index and the proximal operator proxλ f : Rn → Rn

of a function f is defined as follows

proxλ f (v) := arg min
x

(
f (x) + (1/2λ)∥x− v∥2

2

)
, (4.5)

with a scaling parameter λ > 0.
The parameter λ in (4.4) can be viewed as a tuning parameter influencing

the practical convergence rate. Nevertheless, ADMM is proven to converge
to a minimizer for every λ > 0 under very mild assumptions [30].

4.2.3 Decomposition

As we mentioned, due to the decaying contribution, only those actuators
in the vicinity of an object can significantly contribute to the force acting
on the object. Thus, it makes sense to decompose the optimization prob-
lem (4.2) to N smaller optimization subproblems (one per manipulated
object) where each of these subproblems involves only those actuators that
can significantly contribute to the force acting on the manipulated object at
hand. Therefore, we can view manipulated objects as virtual agents that set
the commands only for the neighboring actuators so that a required force
is exerted. A conflict may occur when two agents use the same actuators;
hence, the agents have to cooperate. The resulting problem is often called
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Figure 4.4: An example showing how the global decision vector u is distributed
as local copies ûi to the agents. The depicted case corresponds to the
previously described motivation example.

a global consensus problem. We could as well assign each manipulated ob-
ject to the closest computational module and decompose the optimization
problem (4.2) so that each subproblem treats the objects assigned to the
same module. For ease of exposition, we followed the former approach.
In the remainder of this subsection, we adapt the approach to the global
consensus problem presented by [30] and [29].

To reformulate (4.2) to a distributed optimization problem, we first de-
compose the optimization problem by making local copies of the decision
vector u (one copy for each agent). Let us denote the local copy corre-
sponding to the ith agent by ûi. Since only actuators in the vicinity of the
manipulated object can significantly contribute to the force acting on it,
ûi contains only components of u corresponding to these actuators. Let
Ci ⊆ [n] denote the set of indices of actuators used by the ith agent. Then,
each component of ûi ∈ R|Ci | corresponds to one component in uCi , where
uCi is a vector containing elements of u with indices from Ci. A simple
example showing how the decision variable u is copied to local copies ûi is
shown in Fig. 4.4. Since we will frequently need a mapping between local
and global indices in the following text, let us define a function g = Gi(k)
that gives the global index g for a local index k of the ith agent. In other
words, (ûi)k corresponds to (u)g where g = Gi(k). Returning to the exam-
ple shown in Fig. 4.4, the third component of the local copy û2 corresponds
to the fifth component of the global decision vector u and thus G2(3) = 5.
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Having the local copies ûi, the centralized optimization problem (4.2) can
be decomposed to

minimize
ûi∈R|Ci | , i=1,...,N

1
2

N

∑
i=1

∥Fi − fi(ûi,xi)∥2
2, (4.6)

subject to (û1, . . . , ûN) ∈ Q,

where function fi is the relation between the actuators used by the ith agent
and the exerted force acting on the ith object and Q encodes the condition
on the global consensus and feasibility of local copies of the decision vector,
that is

Q := {(û1, . . . , ûN) | u ≤ ûi ≤ u and (4.7)

(ûi)k = (ûj)l if Gi(k) = Gj(l)}.

One can view (4.6) as N independent optimization problems which are
coupled together by constraining the local decision vectors ûi to lie in Q.
By defining functions

φi(ûi) =
1
2
∥Fi − fi(ûi,xi)∥2

2 (4.8)

and using the indicator function we can convert the constrained prob-
lem (4.6) to the following unconstrained one:

minimize
ûi∈R|Ci | , i=1,...,N

N

∑
i=1

φi(ûi) + IQ(û1, . . . , ûN) (4.9)

which is of the same form as optimization problem (4.3)—the sum ∑N
i=1 φi(ûi)

corresponds to function f and the indicator function IQ to function g—and
thus this problem can be solved by ADMM.

4.2.4 Inexact ADMM for distributed manipulation

Applying update rules of ADMM (4.4) to the decomposed optimization
problem (4.9), we get

ûk+1
i := proxλφi

(yk
i − zk

i ), (4.10a)

(yk+1
1 , . . . ,yk+1

N ) := proxIQ(û
k+1
1 + zk

1, . . . , ûk+1
N + zk

N), (4.10b)

zk+1
i := zk

i + ρ (ûk+1
i − yk+1

i ). (4.10c)
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Note that we added a parameter ρ scaling the update of the dual variable z.
For the convex case, this is unnecessary as classical ADMM is used with
ρ = 1. Nevertheless, in the case of ADMM applied to nonconvex problems,
changing the value of ρ may significantly improve the number of iterations
needed to attain a modest accuracy (as shown by [32–34]). Moreover, even
in the convex case, one often observes faster convergence for ρ > 1. Notice
that (4.10a) and (4.10c) are decoupled—to compute ûk+1

i and zk+1
i we need

only the variables directly available to the ith agent—and can be solved by
each agent independently, whereas to compute yk+1

i in (4.10b), each agent
needs to gather information from other agents; what information exactly,
will be described in the end of this section.

Now, we describe how to efficiently compute individual update rules
in (4.10). Update rule (4.10c) is trivial; hence, let us discuss (4.10a) and (4.10b).
To compute ûk+1

i in (4.10a), each agent has to solve a possibly nonconvex
optimization problem—as we stated at the beginning, φi can be nonconvex—
and that can be computationally prohibitive. Thus, we propose to compute
proxλφi

only approximately. First, we rewrite the proximal operator proxλφi
to the following incremental form

proxλφi
(v) = v + ∆v∗, (4.11)

where v is a shorthand for yk
i − zk

i and where

∆v∗ = arg min
∆v

(
φi(v + ∆v) + (1/2λ)∥∆v∥2

2

)
. (4.12)

Now, we focus on ∆v∗ which, after substitution for φi, is

∆v∗ = arg min
∆v

(
1
2
∥Fi − fi(v + ∆v,xi)∥2

2 +
1

2λ
∥∆v∥2

2

)
. (4.13)

Since (4.13) is a nonlinear least-squares problem with a regularization
term, we can take some inspiration from Levenberg-Marquardt algorithm [42]—
an algorithm commonly used for nonlinear least squares problems. In this
algorithm, one linearizes function fi, solves the standard linear least-squares
problem and repeats these two steps until convergence. We do the same,
but instead of iterating until convergence, we stop after one iteration. This
is motivated by the real-time iteration scheme often used in numerical
optimal control [43]. The underlying assumption is that the optimization
problem (4.2) does not change much in time—the positions of the objects
and the required forces vary slowly—and thus if we initialize the current
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optimization problem by the solution of the previous one, one iteration
should suffice to obtain a reasonably good solution.

The linearized model of fi is

fi(v + ∆v,xi) ≈ fi(v,xi) +Dfi(v,xi)∆v. (4.14)

Subsequently we will use D instead of Dfi (the Jacobian of fi) to simplify
the notation. With linearized fi, optimization problem (4.13) turns to

∆ṽ∗ = arg min
∆v

(
1
2

∆vT
(
DTD+

1
λ
I

)
∆v (4.15)

+ (fi −Fi)
T D∆v

)
,

where ∆ṽ∗ is the approximate solution of (4.13) and where we dropped
the explicit dependence on v and xi, for simplicity. Readily, the solution
of (4.15) is given by the solution of the following system of equations(

DTD+ 1/λ I
)

∆ṽ∗ = −DT (fi −Fi) . (4.16)

Having ∆ṽ∗, the proximal operator proxλφi
in (4.10a) can be approxi-

mated by
proxλφi

(v) ≈ v + ∆ṽ∗. (4.17)

Now, let us turn our attention to the proximal operator proxλIQ in the
second equation of ADMM (4.10). It is a well-known property of proximal
operators of indicator functions that they simplify to Euclidean projec-
tions [29]. In the case of the set Q, the projection is given by local averaging
and clipping of local copies corresponding to the same component of the
global decision vector. Formally, this is expressed as follows

(
yk+1

i

)
j
=

 1
|NGi(j)|

∑
Gi(j)=Gi′ (j′)

(
ûk+1

i′

)
j′
+
(
zk

i′

)
j′

u

u

, (4.18)

where Ng := {i ∈ [N] | g ∈ Ci}. In words, Ng is the set of agents using the
actuator with the global index g.

To evaluate (4.18), each agent needs to communicate with all agents
it shares some actuators with; hence, the ith agent communicates to the
agents with identifiers from the set Mi := {j ∈ [N] \ {i} | Ci ∩ Cj ̸= ∅}.
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Algorithm 1: Inexact ADMM-based algorithm for distributing the
control in distributed manipulation.

1 Initialize û0
i ,y0

i , z0
i ∈ R|Ci | and Mi for all i ∈ [N]. Set k = 0.

2 repeat
3 Solve for all i ∈ [N](

DT
i Di + 1/λ I

)
∆ṽ∗i = −DT

i (fi −Fi) , (4.20)

where Di = Dfi and fi are evaluated at yk
i − zk

i .
4 Update

ûk+1
i = yk

i − zk
i − ∆ṽ∗i . (4.21)

5 Each agent sends MSGi to all agents in Mi.
6 Update yk+1

i by (4.18);
7 Update zk+1

i by (4.10c);
8 until termination;

This can be implemented in various ways, depending on the communication
interface. For instance, the communication graph can be established at the
beginning of the control period, when each agent can broadcast the global
indices of the actuators it uses. All other agents receive this message and
add the sending agent’s id to Mi if they share an actuator. When (4.18)
needs to be evaluated, each agent sends the following message to all agents
in Mi:

MSGi :=
(
Ci, ûk+1

i + zk
i

)
. (4.19)

The message contains vector ûk+1
i + zk

i and the global indices Ci of its
individual components, that is all the necessary information for comput-
ing (4.18).

Inexact ADMM for distributed manipulation is summarized in Algo-
rithm 1. If the required forces Fi do not change abruptly in time, one can
achieve faster convergence by warm-starting y0

i and z0
i , that is by initial-

izing these vectors by their final values from the previous control period.
It is important to note that we assume synchronous and a reliable com-
munication link, that means, the agents go through steps in Algorithm 1

synchronously and no message is lost.
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4.2.5 Efficient inexact ADMM for distributed manipulation

Using Algorithm 1 brings the following trade-off. Each agent either uses as
few actuators as it needs to exert the required force; then, the exerted force
may differ from the predicted one by the model fi, as there are might be
some significantly contributing and yet unconsidered actuators nearby used
by other agents (this is demonstrated by the first numerical experiment in
Fig. 4.7). Alternatively, each agent uses all actuators that can contribute to
the exerted force acting on the manipulated object; then, the optimization
problems could be large and thus more computationally demanding. To
mitigate this trade-off, we propose Algorithm 2.

Algorithm 2 differs from Algorithm 1 in optimizing over a smaller set
of actuators than it considers in the force model fi. Specifically, each agent
considers a set of all actuators that can significantly contribute to the force
acting on the manipulated object—these actuators have indices in the set
Ci—but optimizes only over a smaller set of actuators, with indices in
Di ⊆ Ci, that is sufficient to generate the required force. The assignment
of the actuators to the sets depends on the actuator’s distance from the
object. For example, in the DEP system, Di includes actuators within a
circle of radius three times bigger than the actuator pitch, and Ci five times
bigger. Thus, the accuracy of the predicted force is given by the set Ci and
the time needed to solve (4.22) is mainly given by the size of Di. Also, in
Algorithm 2 agents send messages to a smaller set of agents M′

i than in
Algorithm 1. The set of agents the ith agent communicates to is now defined
as M′

i := {j ∈ [N] \ {i} | Di ∩ Cj ̸= ∅}.

Note on convergence

Despite the observed good behavior of the proposed algorithms (as re-
ported in the following section), the proof of convergence remains to be
found. [40] proved convergence of ADMM in the form of (4.10) to a local
minimum when the following conditions are met: φi are Lipschitz contin-
uous, the optimization problem (4.2) is bounded, λ is large enough, and
ρ = 1/λ. However, the proof of convergence by [40] relies on the proximal
operators being computed exactly, whereas, for time efficiency, we com-
pute proxλφi

only approximately. Nevertheless, we can report that we did
not encounter a single setup where—for properly chosen and fixed λ and
ρ—the proposed algorithm diverged. Moreover, the proposed algorithm
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Algorithm 2: Efficient inexact ADMM-based algorithm for distribut-
ing in control in distributed manipulation.

1 Initialize û0
i ,y0

i , z0
i ∈ R|Ci | and M′

i for all i ∈ [N]. Set k = 0.
2 repeat
3 Solve for all i ∈ [N](

DT
:,Di

D:,Di
+ 1/λ I

)
∆ṽ∗i = −DT

:,Di
(fi −Fi) , (4.22)

where D:,Di is the matrix composed of columns of the Jacobian
Dfi with indices from Di. D:,Di and fi are evaluated at yk

i − zk
i .

4 Update (
ûk+1

i

)
Di

=
(
yk

i

)
Di

−
(
zk

i

)
Di

− ∆ṽ∗i . (4.23)

5 Each agent sends MSGi to all agents in M′
i.

6 Update yk+1
i by (4.18);

7 Update zk+1
i by (4.10c);

8 until termination;

commonly converges to a modest accuracy in a few iterations, as shown in
section Experiments.

To measure the convergence in the numerical experiments, we define the
following local convergence measure, which combines convergence of both
primal and dual variables,

γk
i :=

∥∥∥∥∥
[
yk+1

i − yk
i

zk+1
i − zk

i

]∥∥∥∥∥
2

2

. (4.24)

The global convergence measure is defined as the average of the local ones,
that is:

γk :=
1
N

N

∑
i=1

γk
i . (4.25)

Stopping criterion

The proposed algorithms are designed for real-time applications, and thus
the most straightforward and yet reasonable stopping criterion is to stop
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Figure 4.5: Photos of experimental platforms used for demonstration of the
proposed algorithms.

after a fixed number of iterations. If sufficient accuracy is achieved in fewer
iterations, then there is no benefit in doing the remaining iterations as in
real-time applications, we care about the worst-case scenario. Nevertheless,
if there is a need to terminate the algorithm earlier than after a maximum
number of iterations, one can solve the consensus problem [44] also for
the local convergence measures γk

i and terminate the algorithm when a
consensus on γk is reached and its value is sufficiently low.

4.2.6 Efficient Implementation

The most computationally demanding part of the proposed algorithms is
solving the system of linear equations (4.20) in Algorithm 1 (or (4.22) in
Algorithm 2)1; hence, we focus on the efficient implementation of this part
here. We discuss only the case of Algorithm 1, but the same applies to
Algorithm 2.

We need to solve the following linear system efficiently(
DT

i Di + 1/λ I
)

∆ṽ∗i = −DT
i (fi −Fi) . (4.26)

The matrix (DT
i Di + 1/λ I) is necessarily positive definite and thus, one

might think of using Cholesky factorization for solving (4.26) which has
O(|Ci|3) computational complexity. A better approach is to use the so-called
push-through identity2 [[]p. 332]Boyd2018Introduction for the equation

∆ṽ∗i = −
(
DT

i Di + 1/λ I
)−1

DT
i (fi −Fi) . (4.27)

1 In fact, the evaluation of the function fi and the Jacobian Dfi might be expensive as well, but
as this depends solely on the force model (and not on the proposed algorithm) we do not
discuss this issue here.

2 A special case of Woodbury matrix identity.
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which gives us

∆ṽ∗i = −DT
i

(
DiD

T
i + 1/λ I

)−1
(fi −Fi) . (4.28)

Notice that now we need to compute the inversion of a much smaller
m × m matrix instead of the original |Ci| × |Ci| matrix (|Ci|, as the number
of actuators, is significantly larger than the number m of components of the
acting force). Matrix

(
DiD

T
i + 1/λ I

)
can be expressed as ĀTĀ where

Ā =

[
DT

i

1/
√

λI

]
(4.29)

and thus we can express (4.28) as

∆ṽ∗i = −DT
i

(
R̄TR̄

)−1
(fi −Fi) , (4.30)

where R̄ is the R matrix from the QR factorization of Ā. Computing R̄

by Householder QR factorization requires 2(m + |Ci|)m2 FLOPS (ignor-
ing non-dominant terms). Since we assume |Ci| > m, the computational
complexity of computing R̄ is O(|Ci|m2). The most computationally de-
manding operation in (4.30) is computing R̄ and thus we can infer that the
computational complexity of computing ∆ṽ∗i is O(|Ci|m2). That is better
than O(|Ci|3) needed by Cholesky factorization. The complexity grows only
linearly with the number of used actuators. Note that when the Jacobian Di
is independent of ∆v (which is the case for the magnetophoresis platform
described in the experimental section), matrix R̄ can be computed during
the initialization phase of Algorithm 1.

4.3 experiments

We tested Algorithm 2 on distributed platforms using three different
physical phenomena of actuation: manipulation through electric field
(dielectrophoresis), magnetic field (magnetophoresis), and pressure field
(acoustophoresis). For each platform, we experimentally found the param-
eters λ and ρ resulting in fast convergence, showed the practical conver-
gence rate, and also demonstrated the proposed algorithm by numerical
simulations. Presented results consider only the time needed for computa-
tion and disregard other implementation aspects, such as communication.
For the platforms utilizing magnetophoresis and acoustophoresis, we also
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deployed the algorithm to real hardware setups and report real exper-
iments. Photos of the platforms are displayed in Fig. 4.5, and a video
capturing the numerical simulations and real experiments is available
at https://youtu.be/P6HzgRZ4wuA. Both the position controller and posi-
tion measurement run on a central computer. Objects’ positions are mea-
sured using a camera and object detection is based on color and shape.
Description of the platforms and experiments follows3.

4.3.1 Dielectrophoresis

Dielectrophoresis (DEP) is a physical phenomenon in which a force is
exerted on a polarizable object by shaping the surrounding electric field.
The electric field is shaped by changing alternating voltages applied to
electrodes in the vicinity of the manipulated objects. In case of a phase-shift
control [5], the model of the DEP force acting on a spherical object is given
by

fDEP(u,x) =

c
T Ψx c+ sT Ψx s+ cT Ωx s

cT Ψy c+ sT Ψy s+ cT Ωy s

cT Ψz c+ sT Ψz s+ cT Ωz s

 (4.31)

where Ψa, Ωa ∈ Rn×n, a ∈ {x, y, z}; vectors c and s denote cosine and
sine of the actuators’ commands u, that is c = [cos(u1), . . . , cos(un)]T and
s = [sin(u1), . . . , sin(un)]T. Even though not explicitly stated, matrices Ψa
and Ωa depend on the position of the object. Here, the actuators’ commands
u represent phase shifts of voltages applied to the electrodes. Phase shifts
are, by principle, unlimited and thus u = ∞ and u = −∞. The derivation of
the force model can be found in the Appendix A.1 and more on feedback
manipulation by DEP in [5] and [45].

The numerical experiments were carried out with several spherical objects
located above a 16× 16 matrix electrode array. The objects were polystyrene
spheres with 50 µm in diameter, the electrodes were squares with the width
of 50 µm, and the inter-electrode gap of 50 µm. Use of similar electrode
arrays can be found in the literature [46, 47]. The sets Ci and Di are given
by all electrodes lying inside the circle centered at the ith object’s position
and with radii 550 µm (≈ 5.5 electrodes) and 300 µm (≈ 3 electrodes),
respectively.

3 The code implementing the numerical experiments in this section is available at https:

//github.com/martingurtner/DistCtrl4DistMan.jl.

https://youtu.be/P6HzgRZ4wuA
https://github.com/martingurtner/DistCtrl4DistMan.jl
https://github.com/martingurtner/DistCtrl4DistMan.jl
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Figure 4.6: (Dielectrophoresis) The convergence of Algorithm 2 for varying values
of λ and ρ. The optimization is stopped after 25 iterations.

The results are summarized in Fig. 4.6 and Fig. 4.7. First, we varied
parameters λ and ρ and for each pair we solved 500 randomly generated
optimization problems (4.6) with five objects by Algorithm 2. The heatmap
in Fig. 4.6a visualizes the mean of γk (the global convergence measure)
over the experiments after 25 iterations. Based on this experiment, we fixed
λ = 10000 and ρ = 0.0001 as the values for which the algorithm converges
the fastest. Convergence measure γk of individual experiments (in grey) and
also the mean convergence (in red) for the fixed parameters are plotted in
Fig. 4.6b. Figure 4.7 displays solutions of two randomly generated problems.
The top figure in Fig 4.7 demonstrates the advantage of Algorithm 2 over
Algorithm 1. Both algorithms optimize over the darker tone actuators, but
Algorithm 2 also considers the lighter tone actuators in the force model;
this helps Algorithm 2 to achieve better accuracy of the exerted force while
keeping low computational complexity.

In contrast to magnetophoresis and acoustophoresis, we did not have
a large enough (in terms of the number of actuators) dielectrophoretic
manipulation platform at our disposal to test the proposed algorithm on
real hardware.

4.3.2 Magnetophoresis

Magnetophoresis is a physical phenomenon enabling manipulation of fer-
omagnetic objects by shaping the surrounding magnetic field. Here, we
consider an optimization problem emerging in the modular planar ma-
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Figure 4.7: Solutions of two instances of the distributed optimization problem.
The desired and developed forces are visualized by red and yellow
lines, respectively. Furthermore, the green lines show the developed
forces when Algorithm 1 (instead of Algorithm 2) is used. Electrodes
used by each agent are visualized by the agent’s color while they
have either a darker tone if they are also optimized over or a brighter
tone if they are considered in the force model but not optimized over;
the distinction should be clear from the experiment in the bottom.
Algorithm 2 considered only the darker tone actuators.
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nipulation platform called MagMan. This platform manipulates steel balls
by changing currents flowing through the windings of coils arranged in
a regular grid under the balls. For a more detailed description, see [8]
and [48].

For MagMan platform, the magnetic force acting on a steel ball can be
approximately modeled by

fMAG(u,x) = GTu, (4.32)

where G is a m × n matrix with n being the number of coils and m = 2
(since the ball’s motion is restricted to a plane). Even though not explicitly
stated, the matrix G depends on the position x of the ball. Actuators’
commands u correspond to the currents via an invertible nonlinear map
representing quadratic relation between the current and the force; thus,
we optimize u and assume that one can always compute the currents by
inverting the nonlinear map. We consider u normalized; hence we set u = 0
and u = 1. A derivation of this model can be found in [8].

For numerical experiments, we used the parameters of the force model (4.32)
identified in [8] for a 20 mm ball in diameter. Here, we defined the sets Ci
and Di as the sets containing all coils within the circles centered at the ith
object’s position and with radii 75 mm (≈ 3 coils) and 50 mm (≈ 2 coils),
respectively.

Similarly to the DEP platform, also here we applied Algorithm 2 to
randomly generated problems to find parameters λ and ρ resulting in a fast
convergence rate. For each pair of λ and ρ we generated 1000 problems (4.6)
with the force model (4.32), with five steel balls, and with a 8 × 8 coil array.
Figure 4.8a displays a heatmap visualizing the resulting mean convergence
measure γ25 over these experiments. Based on these experiments, we fixed
the parameters to λ = 1.3 and ρ = 1.5. Figures 4.9 show solutions of two
randomly generated problems. It is worthy of note that, as opposed to
the DEP platform, here, the optimization problem (4.6) is convex; thus,
convergence to a global solution is ensured.

Furthermore, we deployed Algorithm 2 in the same setup to the real
MagMan platform. Since the platform is currently lacking the distributed
sensing capability, the algorithm was executed at a central node Raspberry
Pi 3B+. Every 20 ms, the position control system computes the forces needed
to move the balls towards the reference positions. Algorithm 2 was executed
to solve the optimization problem of finding such actuator commands that
these forces are developed. The algorithm was stopped after 25 iterations,
which took approximately 1 ms. Figure 4.10 shows an experiment with six
balls steered along circular trajectories.
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Figure 4.8: (Magnetophoresis) The convergence of Algorithm 2 for varying values
of λ and ρ. The optimization is stopped after 25 iterations.

4.3.3 Acoustophoresis

In acoustophoresis, one can manipulate objects by shaping the surrounding
acoustic pressure field. Platforms using this principle are presented in [49]
and [6]. Here, we consider manipulation due to the generation of a high-
pressure region near the manipulated object to which the object reacts by
moving to a lower pressure region. The acoustic pressure field is shaped by
an array of ultrasonic transducers. Thus, the goal of the control system is
to excite the transducers so that high-pressure points of certain values are
generated at certain positions.

As with the DEP, also here we consider the phase-shift control: only
the phases of the driving signals are optimized over. The model of the
amplitude of the pressure at a point is given by

|p(u,x)|2 = cT M1 c+ sT M1 s+ cT M2 s, (4.33)

where M1,M2 ∈ Cn×n are matrices dependent on the position x of the
pressure point, vectors c and s denote cosine and sine of the actuators’ com-
mands u, that is c = [cos(u1), . . . , cos(un)]T and s = [sin(u1), . . . , sin(un)]T,
and u represents the phase shifts. A more detailed description of the model
can be found in Appendix A.2 and in [6].

The optimization problem for this specific manipulation platform has the
following form

minimize
u∈Rn

N

∑
i=1

∥|p(u,xi,p)|2 − Pi∥2
2, (4.34)
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Figure 4.9: Solutions of two instances of the distributed optimization problem.
The desired and developed force are visualized by red and yellow
lines, respectively. Coils used by each agent are visualized by the
agent’s color while they have either a darker tone if they are also
optimized over or a brighter tone if they are considered in the force
model but not optimized over.
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the MagMan platform from
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Figure 4.10: Manipulation of six balls by MagMan platform along circular trajec-
tories.
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where xi,p is the position and Pi is the desired value of the ith high-pressure
point to be generated. There is one additional step in contrast to the previous
two platforms. We do not optimize the desired forces set by a position
controller directly. We first need to compute the desired pressure points
based on the desired forces. This step is described in detail in [6].

The numerical experiments were conducted for a 16 × 16 array of 10 mm
ultrasonic transducers; hence n = 256. The sets Ci and Di are given by
all transducers lying inside the circles centered at the ith pressure point’s
position and with radii 65 mm (≈ 6.5 transducers) and 45 mm (≈ 4.5 trans-
ducers), respectively. All pressure points are generated at fixed distance of
65 mm from the array of transducers along the vertical axis of the array.

The results of numerical experiments are displayed in Fig. 4.12 and
Fig. 4.11. Similarly to the two previous platforms, at first, we varied pa-
rameters λ and ρ and for each pair, we solved 1000 randomly generated
distributed optimization problems with five pressure points by Algorithm 2.
The heatmap in Fig. 4.12a visualizes the resulting mean of convergence
measure γ25. Based on this data, we fixed λ = 10000 and ρ = 0.0001. Mean
convergence measure and convergence measure of individual experiments
for these fixed parameters are shown in Fig. 4.12b. Figure 4.11 documents an
experiment we conducted on a real acoustophoretic manipulation platform
consisting of a 16 × 16 array of ultrasonic transducers. We manipulated
three objects along predefined trajectories by generating a high-pressure
point for each object. The values and positions of high-pressure points were
determined by a position controller described in [6]. Phase shifts resulting
in generating the desired high-pressure points were determined by Algo-
rithm 2 with the same parameters as we used in the numerical experiments.
Similarly to the magnetic platform, for the lack of the distributed sensing
capability, the control system ran at a central node Raspberry Pi 4, and the
control period was 40 ms.

4.3.4 Centralized vs distributed

One of the major advantages of the proposed distributed algorithm is
increased scalability of solving the optimization problem (4.2). To prove this
point, we compared the proposed distributed algorithm with a centralized
version in two scenarios: computation in threads at one computational node
and fully parallelized computation. We generated a set of optimization
problems (4.2) with increasing complexity—the number of manipulated
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Figure 4.11: Measured and reference trajectories of three manipulated spherical
objects are shown. These trajectories were obtained by conducting
an experiment on a real acoustophoretic manipulation platform.
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Figure 4.12: (Acoustophoresis) The convergence of Algorithm 2 for varying val-
ues of λ and ρ. The optimization is stopped after 25 iterations.
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objects and actuators—and solved them both by the proposed distributed
algorithm and by a centralized algorithm.

We used Algorithm 1 as the distributed algorithm with parameters λ
and ρ specified for each platform in the preceding sections. We did not
use the more efficient Algorithm 2 to make the comparison fairer as the
centralized algorithm cannot make use of non-optimized actuators that
are considered in the force model. To solve the problems in a central-
ized fashion, we used the projected Levenberg-Marquardt algorithm [50]
with the same damping factor λ as was used in the distributed version.
Projected Levenberg-Marquardt algorithm proceeds iteratively. In each iter-
ation, the optimization problem is linearized, solved without constraints on
the decision variables, and then the solution is projected onto the feasible
set defined by the constraints on the decision variables; this makes the
projected Levenberg-Marquardt algorithm probably the most similar cen-
tralized algorithm to our proposed distributed algorithm. Since the number
of agents compared to the number of actuators is relatively small even for
the centralized algorithm, we also used the push-through identity for solving
the linearized problem efficiently in the projected Levenberg-Marquardt
algorithm. The centralized algorithm optimized all actuators in the array,
whereas the distributed one, considering all subproblems, optimized only
actuators with indices from

⋃N
i=1 Ci (actuators that are close enough to

at least one of the manipulated objects). This potentially could make the
comparison unfair as the centralized algorithm solves larger optimization
problems (optimizes more actuators). Nevertheless, we designed the opti-
mization problems in the comparisons so that the set

⋃N
i=1 Ci is close to the

set of all actuators. This is done through uniform distribution of positions
of the manipulated objects and array size dependent on the number of
manipulated objects. The size of the actuator array was set to ⌈Nk⌉ × ⌈Nk⌉,
where N is the number of agents and k is a chosen number of actuators per
agent. The positions of agents were drawn from the uniform probability
distribution over the actuator array; hence the density of agents over the
actuator array was, on average, the same. The algorithms did not have any
iteration count limit and were stopped when the following condition was
met:

1
N ∑

i=1...,N
∥Fi − fi(ûi,xi)∥2

2/∥Fi∥2
2 < ϵ,

where ϵ is a chosen threshold. The experiments were run on a laptop Apple
Macbook Air M1 with 8 GB of RAM.
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To set the expectations, we mention that the projected Levenberg-Marquardt
algorithm converges locally quadratically [50] whereas ADMM converges
only linearly [31]. Thus the centralized algorithm finds a better solution in
fewer iterations. On the other hand, the centralized algorithm solves larger
problems (both in terms of the number of actuators and required forces
to satisfy) in each iteration, and thus each iteration takes more time. Since
the complexity of solving the linear system of equations in the projected
Levenberg-Marquardt is cubic, one could expect that the slowly converg-
ing ADMM will outperform the centralized algorithm for large enough
problems.

Experiment where the subproblems of the distributed algorithm are
solved at one computational unit but in separate threads (see Fig. 4.2b) is
summarized in Fig. 4.13 (a,c,e). The time needed for solving each problem
was measured as wall-clock time. That is, the sub-problems ran in parallel,
but the concurrency is limited by the number of threads the processor can
process at one time. One can see that the proposed distributed algorithm
scales better and outperforms the centralized algorithm for large enough
optimization problems. Nevertheless, the number of agents the proposed
distributed algorithm needs to outperform the centralized one is relatively
large. Similarly, the number of actuators per agent must be relatively large
so that the distributed algorithm outperforms the centralized one. The
latter can be explained by the fact that more actuators per agent results
in the object being farther apart. Thus, the actuators needed to generate
the required force are not shared, it is easier to reach consensus, and the
algorithm converges faster to a local optimum. In contrast, the centralized
algorithm cannot take any advantage of the objects being farther apart; it
simply optimizes more actuators; the optimization problem is larger and
thus converges slower to a local optimum.

The simulation of a fully distributed experiment is summarized in
Fig. 4.13 (b,d,f). Here, the subproblems of the distributed algorithm are also
solved in separate threads. Nevertheless, the time needed to solve each sub-
problem is measured separately, and the maximum time is compared to the
time needed to solve the centralized variant. This way, we simulate a fully
distributed deployment of the algorithm where each subproblem would
be solved by a separate computational unit (see Fig. 4.2c). Apparently, the
proposed distributed algorithm outperforms the centralized one even for a
very low number of agents and a very low number of actuators per agent.
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(a) Magnetophoresis: one computa-
tional node
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(b) Magnetophoresis: fully parallel
computation
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(c) Dielectrophoresis: one computa-
tional node
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(d) Dielectrophoresis: fully parallel
computation
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(e) Acoustophoresis: one computa-
tional node

5 10 15
25

30

35

40

45

50

55

60

−0.8

−0.4

0

0.4

0.8

(t
₁-

t₂)
/t

₁

Number of agents

N
um

be
r 

of
 a

ct
ua

to
rs

 p
er

 a
ge

nt

(f) Acoustophoresis: fully parallel com-
putation

Figure 4.13: Scalability of the proposed distributed algorithm in comparison to
a centralized algorithm. The contour maps visualize a normalized
difference in solution time t1 of the proposed distributed algorithm
with the solution time t2 of the centralized algorithm. The red-tone
colors mark problem instances for which the proposed algorithm
was faster, the blue-tone colors mark problem instances for which the
centralized algorithm performed better, and the white color marks
the edge cases for which both algorithms performed the same.
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4.4 conclusion

We introduced algorithms distributing an optimization problem emerg-
ing in distributed manipulation: computing commands for actuators such
that some desired forces are exerted at given positions. The algorithms
decompose this optimization problem into several smaller optimization
problems; each is responsible for exerting a desired force acting on one
manipulated object or for exerting desired forces acting on several objects.
These smaller optimization problems are then solved collaboratively so
that the resulting actuators’ commands are not in conflict. The proposed
algorithms enable making the distributed manipulation platforms modular
and scalable as the need for a central coordinating node is eliminated; the
actuators’ commands can be computed distributively on individual actuator
modules the distributed manipulation platform consists of. We used the
proposed algorithms for computing actuator commands for distributed
manipulation platforms utilizing three different physical phenomena of
actuation (dielectrophoresis, magnetophoresis, and acoustophoresis), and
we believe it can be adapted to other platforms as well. The future research
will focus on improving the convergence rate by using accelerated variants
of ADMM and on finding proof of convergence.
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appendix

a.1 DEP force model

Components of the DEP force consist of two contributions:

FDEP,a = FcDEP,a + FtwDEP,a, a ∈ {x, y, z}, (4.35)

where FcDEP,a and FtwDEP,a are forces exerted due to so-called conventional
and traveling wave DEP, respectively. These forces can be modeled by the
following relations

FcDEP,a = 2 kr u
HΛaΓTu, (4.36a)

FtwDEP,a = ı ki u
H
(

ΛaΓT − ΓΛT
a

)
u, (4.36b)



74 admm for distributed manipulation

where ı =
√
−1, kr and ki are scalars, Λa, Γ ∈ Rn×3 are matrices depending

on the object’s position, u represents the voltage signals applied to the
electrodes (more on that later) and uH is the Hermitian transpose of u.
Detailed derivation of (4.36) can be found in [8].

Defining a matrix ADEP,a as

ADEP,a = 2 kr ΛaΓT + ı ki

(
ΛaΓT − ΓΛT

a

)
, (4.37)

we get a quadratic relation for the DEP force

FDEP,a = uH ADEP,a u, a ∈ {x, y, z}. (4.38)

The input variable can be the amplitude, phase-shift control or combina-
tion of both. When phase-shift control is used, only the phases of the voltage
signals applied to the electrodes change, that is u(θ) = U[eıθ1 , . . . , eıθn ]T, U
is the amplitude of the voltage signals and θ = [θ1, . . . , θn]T is the vector of
phase shifts.

To get rid of the complex numbers in (4.38), we can rewrite each quadratic
form to

uH ADEP,a u = cT Ψa c + sT Ψa s + cT Ωa s, (4.39)

where c = [cos θ1, . . . , cos θn]T and s = [sin θ1, . . . , sin θn]T and

Ψa = 2 U2 kr ΛaΓT, (4.40)

Ωa = 2 U2 ki

(
ΓΛT

a − ΛaΓT
)

. (4.41)

Therefore, the DEP model we used in this paper is

fDEP(θ) =

cT Ψx c + sT Ψx s + cT Ωx s

cT Ψy c + sT Ψy s + cT Ωy s

cT Ψz c + sT Ψz s + cT Ωz s

 . (4.42)

a.2 Acoustic Pressure model

The model of the magnitude of the acoustic pressure field is given by a
sum of contributions from individual ultrasonic transducers. In case of
phase-shift control, the sum is

|p(θ,x)| =
∣∣∣∣∣ n

∑
i=1

ai(x)ejθi

∣∣∣∣∣ , (4.43)
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where | · | denotes the magnitude of a complex number, x is the position of
the pressure point, ` = [θ1, . . . , θn]T are the phase shifts of signals exciting
individual transducers and constants ai(x) ∈ C are given by the distance of
the pressure point x in space from the transducer, by the directivity of the
transducer and by nominal power of the transducer (for details, see [51]).
For brevity, we will omit the explicit dependence on x and θ where the
dependence is obvious.

Let us define a vector a = [a1, . . . , an]T and vector u = [eiθ1 , . . . , eiθn ]T.
Then (4.43) can be rewritten to

|p|2 = uH āaT u, (4.44)

where ā is a vector of complex conjugated components of a. To get
rid of the complex numbers, we define vectors c and s as cosines and
sines of the components of θ, that is c = [cos(θ1), . . . , cos(θn)]T and s =
[sin(θ1), . . . , sin(θn)]T. Then, one can easily show, that (4.44) can be rewrit-
ten to

|p|2 = cT M1 c+ sT M1 s+ cT M2 s, (4.45)

with matrices M1 and M2 defined as follows

M1 =
[
ar ai

] [aT
r

aT
i

]T

, (4.46)

M2 =
[
ar ai

] [0 −2

2 0

] [
aT

r

aT
i

]T

, (4.47)

where ar and ai are the vectors of real and imaginary parts of components
of a, respectively.
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5
C O M PA C T D I E L E C T R O P H O R E T I C F E E D B A C K
M A N I P U L AT I O N P L AT F O R M

Despite the popularity of the concept of a lab on a chip, many research
solutions published in this domain seem to rely on the concept of a chip
in a lab instead – they depend on bulky and expensive versatile laboratory
instrumentation. While for some laboratory applications this is not an issue,
it does impede further development of truly portable lab-on-a-chip appli-
cations. This particularly holds for some microfluidic and electrokinetic
feedback (micro)manipulation applications, wherein the measurements of
position of the manipulated particles are periodically obtained from images
acquired using bulky and expensive microscopes and cameras. In this paper
we demonstrate a novel contactless (micro)manipulation device capable of
controlled motion of micrometer-size objects in 3D that does not need a
microscope, even though a visual feedback control loop is closed. Although
it does not constitute a solution fully encapsulated in a single chip, it does
offer better portability than some lab-tied solutions. The device utilizes the
phenomenon of dielectrophoresis as the actuation mechanism. In particular,
dielectrophoretic force field above a planar microelectrode array is shaped
by changing the phase shift of voltages applied on to the individual elec-
trodes. The inline digital holography with partially coherent light sources
as the mechanism for displaying the manipulated objects. Furthermore,
the twin-beam method is used to measure the position of the manipulated
objects in 3D (and the full 3D is needed for dielectrophoresis since particles
levitate above the electrode array). Thanks to digital holography, the device
has a relatively large field of view (compared to conventional miscroscopes)
and needs neither lenses nor lasers (no need for bulky and expensive optical
components). An experimental demonstration of manipulation of up to
eight particles is documented in the paper.

This chapter is based on Gurtner, M. et al. Compact Dielectrophoretic
Feedback Manipulation Platform. In prepraration. (2022)
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5.1 introduction

Non-contact manipulation of micro-sized objects is essential in many ap-
plications since the ability to position and orient micro-objects is naturally
required for many tasks, from analyzing biological samples to assembling
artificially-made components into functional units. Various approaches
based on optical, electrical, magnetic and acoustic forces have been success-
fully used [2].

In this paper, we focus on manipulation by dielectrophoresis (DEP). DEP is
a physical phenomenon where a force acts on a polarizable object surronded
by a spatially varying electrical field. By shaping the electrical field both in
space and time, the position of a manipulated object can be controlled. DEP
has the advantage of being relatively simple from an instrumental point of
view since it needs only relatively simple hardware. Only some electrodes
and some circuitry setting the electrical potentials on the electrodes are
needed. See [3, 4] for a survey of applications of DEP.

Traditionally, DEP is used in an open-loop setup; positions of the manipu-
lated objects are not measured and the electrical potentials are precomputed
so that a desired goal is satisfied. Open-loop DEP platforms can, for in-
stance, be used to separate objects with different electrical properties. When
feedback is added, one gains the possibility to control the position of in-
dividual manipulated objects, but that is at the price of complicating the
hardware setup because a position sensor must be added. Typically, the
position of manipulated objects is measured by bulky microscopes.

We demonstrate a platform which is compact and allow parallel cell po-
sitioning in a large manipulation area in 3D. This is achieved by combining
dielectrophoresis with digital inline holographic microscopy for imaging
the manipulated objects in a large manipulation area and with twin-beam
method for measuring position of the manipulated objects in 3D. Digital
holographic microscopy eliminates the need for the bulky and costly optics
by processing thr captured holograms so that they look as if they were cap-
tured by a misroscope after the processing. Twin-beam [5] method works so
that the manipulated objects are illuminated from different angles by two
light sources. There are two shadows under each manipulated object. One
shadows is used to determine the position of the manipulated object in 2D
and the mutual distance of the shadows decodes the position of the object
in the remaining third dimension. The setup is compact and cost-effective.
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5.2 methods

Experimental setup

The render of the hardware setup is shown in Fig. 5.1. All the black parts
are 3D printed. The top black part is detachable and houses two illumi-
nation sources: LEDs with 50 µm to 100 µm apertures filtering the emitted
light. One LED is Würth Elektronik 150060GS75000 (green, 515 nm) and
it illuminates the manipulated objects straight from the top. The second
LED is Würth Elektronik 150060RS75000 (red, 630 nm) and it illuminates
the manipulated objects under the angle of 30°. This top part attaches to the
rest of the setup via 3D printed locks. Straight under the green illumination
source, there is an electrode array etched in indium-tin-oxide coated glass
substrate. A 3D printed pool 10 mm × 10 mm × 3 mm is glued to the top
of the electrode array. The pool is filled with deionized water, contains
the manipulated objects and is covered by a cover glass from the top to
prevent any optical distortion due to uneven water surface. An image sensor
without any lenses (Leopard Imaging LI-IMX477-MIPI-M12 camera module,
1.55 µm pixel size, 4056 pixel × 3040 pixel resolution) is placed right below
the electrode array. The wavelengths of the green and red LEDs were chosen
so that they are close to the peak sensitivities of the green and red color
channels of the image sensor. Thus the leaks to other color channels are min-

Figure 5.1: Hardware setup without the NVidia Jetson AGX computer and a
power supply: (a) render of the hardware setup with the top part de-
tached, (b) side cross-sectional view of the upper part. The hardware
setup fits within a box 95 mm × 91 mm × 147 mm.
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Figure 5.2: Principal schematics of the hardware setup.

imal and the green and red color channels of the recorded image contains
mainly interference patterns from the green and red LEDs, respectively. To
reduce heating of the manipulated objects by the image sensor in operation,
we air cool the image sensor by a fan placed right below it. The electrode
array is connected by spring-loaded connectors to a driving circuitry which
consist of an open-design FPGA-based generator1 outputting 56 square
waves of frequency 300 kHz with real-time adjustable phase shifts (with
resolution of 1°) and an amplifier board amplifying the generated signals
from 3.3 V to 16 V which are then connected to the electrode array. The
amplifier board needs external 16 V power supply. Both the camera and
the generator are connected to NVIDIA Jetson AGX Xavier: a computer
suitable for demanding image processing applications.

Since no objective lenses (commonly used in conventional microscopes)
are used in the hardware setup, the usual limit on the size of the Field-of-
View (FOV) is eliminated an the size of the FOV is given by the size of the
image sensor. In our setup, the FOV can be as large as 6.29 mm × 4.7 mm.

A principal sketch of the whole hardware setup is displayed in Fig. 5.2.
The camera is connected via the MIPI CSI-2 camera interface to the Jetson
Xavier computer. The manipulated objects are tracked in the captured
images with the frame rate of 30 frames per second. The positions of the
manipulated objects are sent to the control system which computes the
phase shifts of the voltage signal applied to the electrodes in such a way
that the manipulated objects move towards some desired positions. The
phase shifts are then sent to the signal generator via serial interface with
the baud rate of 115200 baudrate.

1 https://github.com/aa4cc/fpga-generator
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Image reconstruction and object tracking

Images captured by the camera module serve two purposes: displaying the
objects and measuring their position. To properly describe the image pro-
cessing algorithms used for either of the two purposes, it is first necessary
to introduce some basic concepts.

The hardware setup utilises incoherent lensfree in-line digital holog-
raphy [6]. Due to the partial-coherent light source, the captured image
contains interference patterns from the manipulated objects in the pool
(see Fig. 5.3(a)). These patterns can be numerically reconstructed to images
of the objects as they would appear in a conventional microscope (see
Fig. 5.3(b, d) for comparison). To reconstruct the image, we back-propagate
the captured light wave by computing the Rayleigh-Sommerfeld diffraction
integral [7]. This computation is numerically done as follows

Iz(xim, yim) = F−1 {Hz( fx, fy)F {I(xim, yim)}
}

, (5.1)

where (xim, yim) are the image coordinates, ( fx, fy) are the spatial frequen-
cies, I is the captured image, Iz is the image back-propagated to a distance
z, F and F−1 are Fourier and inverse Fourier transformations, respectively,
and

Hz( fx,fy)=
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(5.2)

is Fourier transform of the Rayleigh-Sommerfeld propagator, where λ is
the wave length of the incident light wave and n is the refractive index2.

For the purpose of displaying, the captured images should be processed
in such a way, so that the observed objects are easily discernible from their
surroundings and so that the resulting image is, if possible, not affected by
any artifacts. However, since the image sensor captures only the amplitude
of the incident light wave, the phase has to be either estimated [6, 8, 9] or
considered constant throughout the image, in which case the presence of
twin-image artifacts deteriorates the quality of the reconstructed images. A
useful property of the Rayleigh-Sommerfeld diffraction is that it is easily
reversible. After calculating the back-propagation of the captured image,
the result can then be easily propagated back to its original axial plane

2 Even though the light wave travels through several media between the objects and the image
sensor, we consider the refractive index constant to simplify the computation.
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Figure 5.3: Image reconstruction of the green color (straight illumination) channel
(a) and (b) display cutouts of the captured and back-propagated
images, respectively. (c) then shows the same area of the image with
phase reconstructed. Finally, (d) shows the area of the electrode array
captured by a microscope (Olympus BX-FM, 10× magnification lens).

by calculating (5.1) of the result with a complex conjugate of the used
propagator. To reduce the impact of twin-images and, therefore, provide
clearer reconstructions for displaying we utilize an iterative phase recon-
struction method [10] which allows us to iteratively estimate the phase of
the holograms. The method in question approaches phase reconstruction as
an inverse problem regularized by sparsity and positivity constraints. The
optimization strategy is then facilitated by an accelerated proximal gradient
method [11]. Each iteration of used method starts by back-propagating the
captured image to the axial plane in which the reconstruction is desired,
where the constraints are imposed, and then propagates the constrained
reconstruction back to the plane of the hologram. Since the reconstruction
algorithm computes Fast Fourier Transform—which are most efficient for
image resolutions that are powers of two—we run the phase reconstruc-
tion algorithm only on a 2048 × 2048 pixel cutout equivalent to FOV of
3.17 mm × 3.17 mm of the captured image which is further down scaled to
1024 × 1024 pixels. The down scaling is used to reduce the computational
time required to reconstruct the phase of one captured image. The algorithm
provides satisfactory results even for a low number of iterations. The results
after only 3 iterations of the used algorithms are comparable to the images
captured by a conventional microscope (see Fig. 5.3(c-d) for comparison).
For one down scaled color channel, 3 iterations of the phase reconstruction
algorithm take ∼30 ms. The reconstruction algorithm is implemented in
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CUDA. The size of FOV can be increased if longer computational times are
not an issue.

To measure the position of the objects in 3D, we utilize a twin-beam
method [5]. For the control purpose, we are specifically interested in mea-
suring the positions in an electrode array coordinate frame. The position
is measured in two steps: first, the position in the electrode array plane is
measured; then, the position along the axis perpendicular to the electrode
array is measured.

The position of an object in the electrode array plane is related by ho-
mography to the pixel position of the object in the image from the straight
illumination. The homography is estimated by relating known positions of
the corners of the electrodes in both pixel and electrode array coordinates.

The position of an object along the axis perpendicular to the electrode
array (i.e. the levitation height) is computed based on the mutual distance
of positions of the object in both color channels (for details, see [5]). The
levitation height is then given by

h = d
1

tan θ
, (5.3)

where θ is the angle of the oblique and straight illumination sources (in our
case, 30°).

For both steps, we first need to find the pixel positions of the object in
both color channels. Raw captured images are not suitable for tracking the
objects as the objects’ holograms interfere with the electrodes’ holograms
and thus they change depending on where they are located with respect
to the electrode array. Therefore, before finding the pixel positions, the
objects in both color channels are reconstructed by using a simple back-
propagation. The manipulated objects in the reconstructed images can be
found and tracked by many standard image processing techniques. We
tested two: (1) finding a regional minimum closest to the previous object’s
position in a blurred image and (2) tracking with Siamese networks [12].
The major advantage of the former is that it is highly parallelizable and thus
the number of tracked objects is virtually unlimited. The disadvantage is
that is applicable only to objects that are regular in shape and appear darker
in the reconstructed image. The Siamese networks works well for arbitrary
objects but the cost is that one can track a limited number of objects due to
the large computational burden. We used the regional-minimum algorithm
in the experiment section of this paper.
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Object manipulation

The objects are manipulated by phase-shift feedback control, an approach
introduced by Zemánek et al. [13]. The phase-shifts of sinusoidal voltage
signals applied on the electrodes are computed through numerical opti-
mization such that some desired dielectrophoretic forces are exerted on the
manipulated objects. To optimize the voltage signals one needs a model
of the dielectrophoretic force. The model relates the voltage signals and
object positions to the dielectrophoretic force acting on the objects. This
is where knowing the levitation height of the objects is useful; it not only
adds one degree of freedom when controlling the object positions but it
also allows us to more precisely optimize the voltage signals because if the
levitation height was unknown it would have to be somehow estimated (as,
for instance, in Zemánek et al. [13]). The desired dielectrophoretic forces
are determined by a positional controller so that the manipulated objects
move towards some desired positions.

In addition to Zemánek et al. [13], we also add an artificial repulsive
force to avoid collisions of the particles and to avoid particles leaving the
manipulation area. The net repulsive force for one particle is given by a
sum of repulsive forces from all other particles and from the boundaries.
The repulsive force between particles decays quadratically with the distance
between the particles.

In contrast to [13], the signal generator used in the hardware setup allows
finer resolution in the phase shifts, and thus we can consider the phase
shifts continuous and use the Levenberg-Marquardt method to optimize
the phase shifts instead of the simulated annealing used in [13], which is
suitable to discrete optimization values. The control system runs at 30 Hz
and is capable of manipulating up to 10 objects.

5.3 results and discussion

To demonstrate the capabilities of the proposed device, we manipulated
polystyrene particles of diameter 50 µm immersed in deionized water in the
pool (see Fig. 5.1). We used the same four-sector electrode array as in [13],
only with more electrodes. Each sector contained 14 parallel electrodes
which were 50 µm wide and 50 µm apart from each other. In total, the
electrode array has 56 electrodes. We chose this particular electrode array
layout because, as the authors in [13] argue, it allows object manipulation
in arbitrary direction in the area where the sectors meet; nevertheless,
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Figure 5.4: Snapshot of the manipulation area. Few electrodes are highlighted
by blue color. The black square bounds an area where a net force
(dielectrophoretic + sedimentation force) aiming in any direction can
be exerted on the particles.

other layouts can be used in the proposed device as well. A reconstructed
captured image with highlighted electrodes and manipulated objects is
shown in Fig.5.4.

Even though we demonstrate the manipulation capabilities only with
polystyrene particles, other researchers used the same manipulation princi-
ple (DEP) to manipulate living cells [14, 15].

Multi-object independent manipulation

An example of manipulating particles from some random initial positions
to some predefined constant positions is displayed in Fig. 5.5. It took 20 s to
manipulate the particles from the initial position to the final position. Even
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Figure 5.5: Manipulating the particles from some random initial positions to
predefined required constant positions (marked by blue circles).

(a) Rotating circle (b) Counter-rotating cir-
cles

(c) Rotating line

Figure 5.6: Long-exposure snapshots of experiments where the particles were
steered along three trajectories.

though some particles had colliding straight paths from the initial position
to the final position, the control system could handle this situation.

Figure 5.6 shows experiments where the particles were manipulated so
that they tracked some moving reference positions: in Fig. 5.6a, they all
followed one large circle; in Fig. 5.6b, half of the particles followed a large
clockwise rotating circle and the other half followed a smaller counter-
clockwise rotating circle; and in Fig. 5.6c, the particles were positioned
along a line which rotated in a clockwise direction. The maximum velocity
of the moving reference position was 50 µm s−1 and the control system was
able to track this reference. To visualize the motion of the particles, all
snapshots in Fig. 5.6 were modified in post processing so that they look like
long-exposure snapshots.
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Figure 5.7: Separation of objects of two categories. Objects of the same type
were labeled as red or blue. The control system was able to move the
red-labeled and blue-labeled objects to the top-right and bottom-left
corners, respectively, in 6 s.

The capability of independent objects manipulation allows separation of
the objects. This is demonstrated by an experiment shown in Fig 5.7. We
artificially divide particles into two categories: blue and red. The particles
were initially spread over the manipulation area. The task was to move the
blue particles to the lower-left half-plane and the red particles to the upper-
right half-plane. This was accomplished in 6 s. The particle crossing the
center of the electrode array moved with the average speed of 130 µm s−1.

Single object height control

The capability of the platform to control the levitation height of the objects
is presented by the experiment in Fig. 5.8. Single particle was steered along
a circular trajectory. Initially, the levitation height was set to 150 µm above
the electrode array. Then, the reference levitation height was changed to
200 µm. You can see, that the particle followed the reference trajectory in
all three dimensions for both reference levitation heights.

conclusion

In this paper, a novel contactless (micro)manipulation device is demon-
strated that is capable of controlled motion of micrometer-size objects in
3D without the need for a microscope. The device utilizes the phenomenon
of dielectrophoresis as the actuation mechanism, and inline digital hologra-
phy with partially coherent light sources as the mechanism for displaying
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Figure 5.8: Controlling the height experiment. The measured position is repre-
sented by blue lines and the reference position is visualized by dashed
black lines.

the manipulated objects. The twin-beam method is used to measure the
position of the manipulated objects in 3D. Thanks to digital holography,
the device has a relatively large field of view and needs neither lenses nor
lasers, making it more portable than some lab-tied solutions. The capabil-
ities of the proposed manipulation platform were demonstrated through
parallel multi-object manipulation, object separation, and height control
experiments.
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