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1 Introduction

Mathematical modeling of systems and processes is an essential tool used in
science and engineering from its very beginning. Newton’s laws are an example
for a model. They describe the motion of bodies such as the various bodies
in the solar system: the Sun, the planets and their moons. Models are used
extensively in all branches of science and engineering, which raised to the term
model-based engineering. the fitting of the model to the actual physical system
takes a central position, which systems engineers refer to as system identifica-
tion, and it gained a lot of attention until quite recently in control engineering.
the development of model-based control is originated in 1960’s and it is one of
the mile-stones in control. Before that time, most of control design strategies
had been based either on heuristic methods (Ziegler-Nichols method for tuning
of PID controller parameters) or on system properties obtained via simulation
or measurement (impulse response, Bode graph). Since 1960’s, a huge develop-
ment of control techniques employing the model of the controlled process has
been recorded and hand in hand with this development, system identification
became a more important part of control theory. Nowadays, system identifica-
tion is an indispensable part of modern control theory and covers a wide range
of problems and approaches to their solution. Moreover, the progress in system
identification is still under pressure, since the growing requirements on control
naturally reflect into the growing demands on the model. Details about the
history of system identification can be found in Gevers [2006].

Model is an image of the real process that represents its properties essential
to the application and that behaves within a given context similar to the real
process. There is, however, a plenty of choices for the modeling itself (a de-
scription of the model, a model structure or a model order), which affect the



resulting model and its properties. Therefore, there can be several models of the
same process, each describing the process in a different way, hence the model
of the process is by no means unique. As the model is used for a subsequent
control, it is obvious that it should reflect only those properties of the system,
which are important from the control point of view. In addition, the model
should also be of a sufficient quality to be suitable for a control. the model
parameters estimate is computed from measured input and output data and
since these measurements record both wanted and unwanted process behavior,
it is therefore very suitable to analyse the data and extract the appropriate
portion of information from them.

One of the most used signal analysis had been introduced by French math-
ematician and physicist Jean Baptiste Joseph Fourier (x1768; f 1830) and, in
his honor, has been called Fourier Transform (FT). Fourier analysis reflects the
time domain into the frequency domain and results in frequency spectra of the
time-varying signal. the natural disadvantage of this transform is the fact, that
one domain disables detection of important phenomena in the second domain
and vice versa - one is not possible to detect important time instants from the
frequency spectra as well as to specify main frequencies (or harmonic functions)
from the time domain. Many years after Fourier, Hungarian electrical engineer
and physicist Denis Gabor (x1900; 1 1979) comes up with Short-Time Fourier
Transform (STFT), where the FT of the signal is applied within the given
time-window only. STFT is thus trade-off between the time and the frequency
signal description, however, its limiting factor is type and mainly fixed size
of time-window. As a next logical step, STFT with time-varying window has
been inspected what laid the fundamental idea of Wavelet Transform (WT).
WT analyses the signal from both time and frequency points of view. In prin-
ciple, WT is similar to STFT. the main difference is that the time-window is
not fixed, but scaled across the levels of WT.

1.1 Motivation

Wavelet transform, from its pure essence, brought a lot of possibilities into the
science. As every new mathematical tool, it introduced a new way of describing
of some parts of the nature and enabled to mathematically formulate some
scientific problems. As was already mentioned, the main advantage of WT is
its possibility to analyse the signal in both time and frequency domains. This



is, actually, not only the advantage, but simultaneously quite important feature
and it should be understood correctly. Wavelet analysis arose from STFT by
generalization of the time-window onto wavelets, which is well localised both
in time and frequency. It consequently means that instead of the signal being
described as a function of either time or frequency, it can be viewed in both
time and frequency simultaneously. Analysis in time proceeds by shifting the
wavelet along the time axis and analysis in frequency proceeds by scaling the
wavelet.

This dual time-frequency approach to signal analysis is, of course, counter-
balanced by more complicated mathematical background, however, just thanks
to this duality WT found a way to plenty of real applications as one of the most
convenient mathematical instrument. As WT serves mainly as a tool for signal
analysis, typical ways of its utilization belong into the signal processing, namely
i) detection of signal discontinuities, ii) trend detection, iii) detection of self-
similarities, iv) particular frequency detection, v) signal suppression, vi) signal
denoising and vii) data compression. Although these above-mentioned ways
are widely known and used, applications of WT are not limited to them at
all. the analysis itself is not the only new product of wavelet research, but the
wavelet functions as well. There are many kinds of wavelet functions each of
them possess several desired and useful properties. Thus the signal analysis
does not have to be the only purpose of utilizing of wavelets. Additionally, as
time went on, it showed up that one can look at the wavelets from several dif-
ferent points of view. While classical approaches to wavelets are via functional
analysis or vector spaces theory, other concepts were proposed, e.g. through
theory of frames in vector spaces, set theory or theory of finite elements.

As was mentioned above, wavelets with their characteristic properties have
number of possible applications in many diverse fields, usually those closely
related to the scientific research and development. Some obvious applications
are biological signals analysis (EEG, EKG), analysis of seismic activity and
prediction of earthquakes, analysis of sounds, multidimensional signal analysis
together with data compression often applied to image processing as specific
representative, analysis and attempts to predict the behavior of stock market,
financial data analysis, etc. This all denote the capabilities of WT and wavelets
themselves and predict them great importance in the future. However, despite
the apparent strength of WT, it is still not used as much and as frequently as
it can be and as it deserves.



2 State of the art

Until recently, wavelet theory has not been extensively applied to many theo-
retical and practical problems belonging to the system identification so much.
However, there are several papers which deal with application of wavelets in this
field. Almost all of that applications exploit the superior properties of wavelet
analysis or are at least based on some specific property of the particularly
used wavelet function - both cases have already been discussed in Chapter 1.
Moreover, absolute majority of that applications deal with a specific wavelet
function only and do not consider general wavelet function.

2.1 Wayvelet transform in linear system identifi-
cation

2.1.1 2" order systems identification

Starting with simple Linear Time-Invariant (LTT) systems, one of the first
attempts was to estimate oscillatory properties of a system like natural fre-
quency, damping and stiffness. Ruzzene et al. [1997] proposed a wavelet based
estimation method for the system of several interconnected oscillatory 2"¢ or-
der systems. For the estimation, the Morlet’s wavelets were used because of
their advantage of simple mathematical formulation.

Next, Boltezar and Slavic [2004] being inspired by the previous paper solved
a similar problem, but with the help of parametrized Gaussian windows instead
of Morlet’s wavelet. The idea of wavelet edges showing the importance of par-
ticular wavelet coefficients was utilized, however, usual method based on ordi-



nary edge-effect (Staszewski [1998]) was shown to be unsuitable. The authors
thus came up with three new approaches to the edge-effect, all improving the
proportionality between the wavelet coefficients and the analysed signal.

2.1.2 Wavelet analysis of system relevant signals

Another method of employing wavelets for system identification is to apply
the WT to the system relevant signals. Such a general characterization is used
intentionally, since there are several different utilisations of wavelet analysis for
system inputs, outputs or states across the literature.

Luk and Damper [2006] exploited one of the fundamental properties of
wavelets - their mutual orthogonality - to design a suitable system input. It
yields the inverse WT of the system’s impulse response. The mutual orthog-
onality of wavelet functions plays an important role also in the Serban [2007],
where the authors took advantage of this property to decompose the input and
output of the system into more signals, each lying in specific frequency range.
Several models thus could be identified each describing a distinct part of the
overall dynamics. Morlet’s wavelets were used.

The ability of removing noise has also found attention: Wang et al. [2010]
denoised system input and output to suppress the high frequency content of
data to improve the accuracy of parameter estimation.

At last, a general framework of applying the WT on system inputs and out-
puts should be mentioned, see e.g. Erlicher and Argoul [2007]. This framework
does not, actually, contain any specific procedure at all, but represents the nat-
ural way of utilization of WT. It is used across different applications of WT no
matter the problem specification or complexity. A quite surprising fact is that
not only are advantages of wavelets the reason for using the WT for improving
either the identification method or the resulted model, but also endeavour or
enthusiasm are other frequently occurred reasons for using of WT. In general,
the later reasons are usual for investigating a new way or trying to look at the
problem from a different point of view. Indeed, those reasons are not explicitly
mentioned in any paper, however it is important human nature which forces us
to do so even without any well-founded reason.



2.1.3 Wavelet as modulating functions

When studying the WT applications for linear systems identification one should
not forget to pay attention to the relationship of wavelets and modulating
functions. The basic principle of applying modulating function for system
identification is well established topic and firstly was suggested by Shinbrot
[1954]. A great summarizing study about the usage of the modulating functions
on the system identification has been performed in triplet Preisig and Rippin
[1993a,b,c].

A few years later, one of the first attempts to employ wavelet function as
a modulating function was doubtless Kosanovich et al. [1995]. The Poisson
wavelet was used here, which is derived from the Poisson probability density
function being a kernel of Poisson transform. Note that Poisson wavelet is
neither compactly supported nor orthogonal, thus can not be considered as
a real wavelet or modulating function, although the previous related work of
Kosanovich had shown that Poisson wavelet complies any of wavelet properties.
However, when approximating the exponential, one obtain a function which
satisfies desired properties. Consequential work Ramarathnam and Tangirala
[2009] analyses the use of Poisson wavelet in more details. Preisig came back
to wavelets as modulating functions in Preisig [2010], where he discussed the
suitability of input signal for further purpose of system identification. There is
however no general interconnection of wavelets and modulating functions, but
the utilizing multi-wavelets as modulating functions only.

2.1.4 Linear time-varying system identification

When going through the number of publications concerning this theme, for ex-
ample Doroslovacki et al. [1998], we can get the impression of existence the only
one way of exploiting wavelets for LTV system identification. Namely, vary-
ing parameters are generally considered as n-dimensional functions so they can
be expressed as a linear combination of suitable n-dimensional basis functions
- wavelet functions in this case. Wavelets are used because of their supe-
rior selectivity in frequency domain, because of their inherent orthogonality
and because of very large foundation of wavelet functions. Such an approach
transforms time-varying system parameters into time-invariant coefficients of
parameters approximation via wavelets. Therefore the whole problem becomes
time-invariant as well and is solvable as a classical linear system identification



problem. This idea could be improved by using a shift-scale plane analysis
Staszewski [1998], wherein the problem of the proper wavelet selection is ad-
dressed.

At first sight, the method could seem as quite simple compared to the
obtained result. However, there is one big obstacle which the user should
take care when employing this technique. The wavelet functions are square-
integrable functions, therefore in discrete-time space even compactly supported
functions. It consequently means that any their linear combination has also
compact support, so the linear approximation of varying parameter as well.
This is probably the biggest defect of the method and its main limiting fac-
tor for being used for prediction of evolution of system parameters. On the
other hand, parameters approximation via wavelets provides us with an insight
into the time-frequency parameters behavior and further analysis can disclose
partial relations among parameters development and adjoining events. The
discussed method is demonstrated mainly on simulation case studies across the
publications, but there are few of them applying it in practise, for instance
in biomedical engineering for EEG analysis Wei et al. [2008] or on analysis of
hysteretic behavior Chang and Shi [2010].

2.2 Wayvelet transform in nonlinear system iden-
tification

The procedures of using wavelets on linear processes treated in the previous sec-
tion are applicable for the identification of non-linear processes as well. There
are few different methods of utilizing wavelets which, though regarded as gen-
eral methods, belong rather into the non-linear section Sjoberg et al. [1995].

One of them is applying wavelet functions for a support vector machine
algorithm as admissible support vectors. Wen et al. [2005] proposes a wavelet
support vector machine with reproducing wavelet kernel especially for the iden-
tification of nonlinear dynamic or approximating a non-linear function. The
main advantages of using wavelets here are their compactness, orthogonality
and a good reproducibility of wavelet kernel. Moreover, wavelet kernel usually
performs much faster learning in comparison to standard neural networks or
fuzzy logic Li and Liu [2006].

Another approach employs wavelet function as a sigmoid function within



a neural network, then called wavelet network Zhang and Benveniste [1992].
A lot of publications have been published on this theme, for more details, the
reader is referred to Ghanem and Romeo [2001].

2.3 Extensions of wavelet transform

2.3.1 Advanced wavelets

As time went on, the wavelet theory recorded further development and exten-
sion. For instance, new “families” of wavelet functions have been discovered and
the wavelet theory has been established for non-orthogonal wavelet functions.
Therefore, apart from the simple wavelet analysis, the bi-orthogonal wavelets
Ho and Blunt [2003], wavelet frames Sureshbabu and Farrell [1999] or multi-
wavelets Strang and Strela [1994] can be possibly used for system identification.

As the reader probably mentioned, many wavelet applications have ex-
ploited wavelets with an explicit mathematical description. Using of just these
wavelets is not surprising. Since it is a common practise to use impulse or step
functions (or their combination, e.g. pseudo-random binary signal) as a system
input, the wavelet analysis of such signals can be mathematically derived only
in case of wavelets with any mathematical expression. One can have a different
point of view as well - when the user has a possibility to design the system input
(e.g. performing a simulation), exploiting these wavelets can be advantageous
due to the results in the form of direct mathematical formulae. The benefit
is apparent: case study independent direct equations for parameters estima-
tion. On the other hand, many models are still computed as case specific or
under process. Therefore it is not desired to derive any general results at all,
but rather to sketch a basic invention and derive its elementary properties like
asymptotic properties, reproducibility, etc.



3 Aims of the Thesis

The thesis is entitled Discrete Wavelet Transform in Linear System Identifi-
cation and since it is a very general topic, it had to be studied before the
work on thesis started. The theory of linear system identification became very
important when the model-based control theory has arisen and is now widely
used in practise. Next, a search for a good models that are suitable for control
applications yields the fact that both academicians and engineers develop or
adapt the identification methods for their specific application. An alternative
to developing new theories is to combine seemingly unrelated theories thereby
adding new components to the identification procedures and adding new views
on the involved theories.

Therefore, the main theme of the thesis lies in the interconnection of wavelet
theory and theory of linear system identification. The goals are split into the
following subjects:

1. To perform a comprehensive survey of the methods of exploiting the
wavelet transform for system identification.

2. To find and describe a suitable way of incorporation of wavelet transform
into the problem of general single-input single-output linear system iden-
tification. Analyse the method and demonstrate it on a suitable example.

3. To extend the method to multivariable systems. Analyse the method and
demonstrate it on a suitable example.

4. To investigate and find the utilization of wavelet transform within the
continuous-time linear system identification. The discussion on imple-
mentation issues must be included.



4 Methods

Here, the basic idea of incorporation of the wavelet transform into the system
identification is introduced. Fore more details, please, see the thesis itself.

4.1 Incorporation of wavelets into system iden-
tification

The discrete wavelet transform can be understood as a frequency filtering.
Moreover, there is the proposition, which gives the conditions for the filter-
ing to be used directly on input-output data while also directly affecting the
prediction error. This proposition however required the predictor to be linear
in parameters, therefore a well-known ARX (Auto-Regressive with eXternal
input) structure has been chosen. The predictor for ARX model structure is

of the form
ny

Ng
Gl —1,0) = =S argFy®) + S brg Fu() (4.1)
k=1 k=0
and is linear in unknown parameters ay, bx. This equation can be rewritten as
gt —1,0) = 2" ()0,

where z(t) = [—y(t —1),...,—y(t — na),u(t),...,u(t —ny)]" is the vector of
data measured up to time ¢t and 0 = [ay,...,an,,bo, .. .,bnb}T is the vector
of unknown parameters. Expressing this equation for all measured data and
concatenating them, we obtain the set of equations Y'(t,0) = Z(t)§. The
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solution Oy of the equation Y (t,6) = Z(t)# can be easily obtained as a solution
to the optimization problem

N 5 )
O = arg min % 3 1 [Y(t) Y, 9)] = (27w zw)] 2T WY (). (4.2)

2
t=1

Y (t) is vector of measured outputs compound in the same way as Y (t,0), see
e.g. Ljung [1999].

The wavelet coefficients are to be evaluated as an inner product of the time
signal and even shifts of the wavelet filters. On the ¢?(Zy) space, the inner
product can be written as a vector multiplication. If z and Ry are vectors,

then for the coefficients of the wavelet transform of the signal z the following
holds

2% ¢ = (z, Rup) = (Rip, 2) = (Rip)” Z = (Rip)” 2. (4.3)

For simpler notation, let us consider real valued wavelet filters, what gives us

(Rpz)" = (Riz)". The obtained form can be directly used for incorporation of
wavelet transform into the system identification (SID) problem. Note that the
complex conjugate is applied on a wavelet filter. Specifically, the columns of the
data matrices Y, Z represent mutually shifted input and output signals. Each
of them can be transformed by wavelets. Since the wavelet transform is linear,
the problem can be written as a multiplication with an appropriate matrix 7'
The problem is thus transformed onto the problem of minimizing [TY — TZ 0]2,
where the matrix T = T'(p, 1, P) contains all possible shifts of wavelet filters
©, 9 at all applied levels P C {1,...,p} and we will call it “wavelet matrix”. By
adding some user defined weighting matrix W, the final optimization problem

1S
N

O = argmin % ; % (WTY — WTZ6)* (4.4)
and is still solvable via ordinary least squares. When orthogonal wavelets are
used, the energy of the transformed signal is preserved in both time and fre-
quency domains by virtue of Parseval’s theorem. Hence error minimization in
either domain would give the solution of the same quality Mukhopadhyay et al.
[2010].

Notice that transformed prediction error 7Y — T Z6 can be understood in 2
possible ways, which both are mathematically identical. The first point of view
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is transforming data stored within Y, Z, thus analysing their time-frequency
properties. The second point of view is transforming just the prediction error
as T(Y — Z#), hence analysing the time-frequency properties of the prediction
error with no notion of the data themselves.

Also, at first look, there seems to be a better way of input-output data
filtering (transforming), namely to transform input-output data first and then
use it for creating of the matrices Y, Z. However, when transforming the data
first, we obtain wavelet coefficients corresponding to wavelet filters shifted by
even number of samples and they do not preserve the time-structure of the
data anymore. Therefore, the consequently created matrices Y, Z would have
a spoiled structure.

4.2 Wavelet matrix T

Let the measured data be of length D and n, be an order of an estimated
model. From the structure of Z it turns out that the length of input-output
data for analysis is equal to the dimension of the column space of Z, that is
N =D —n, + 1, what is desired to be the power of 2. There are two possible
points of view on the basic principle of wavelet analysis:

1. Both the approximations and the details of the analysed data are kept of
length N (by making use of the upsampling operator) and scaled wavelet
filters , _

g1 = 2501(271), vy =240, (278), tEN

are used. Then the length of wavelet filters at the jt* level is L; =271,
and the shift at this level is s; = 2i—1gy =927,

2. On the other hand, the lengths of both approximations and details at
all levels are decreased and the analysis is always performed by the same
filters ¢1,11. Consequently, the length at each level is L and shift S
(generally S = 51 = 2).

Since the analysed data need not be of length 2P for any p € N, the latter
approach is more convenient for further use. Based on that, data of length N
is decomposed into the approximations and the details, both of length N/2. As
we do not assume periodically extended vectors, the dimension of the subspaces
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will be in our applications always less than N/2. The dimension depends not
only on the data length but on the length of basic wavelet filter L as well,
since N > L + 2k has to hold, where k£ € Ny is maximum possible number of
the shifts of the wavelet filter of the length L at the particular analysis level.

Under these assumptions, the data of length N; = IV is decomposed into

the approximations and the details, both of length No = 1 + LN 1= LJ, where

| z] denotes the integer part of z. This formula can be written recursively as

N: — L
Nmzlﬂ i J (45)

as long as the data are long enough for analysis at the next level. Then the num-
ber of iterations is maximum level p of wavelet analysis. With the knowledge of
p and individual lengths N;, j = 1, ..., p the wavelet matrix 7' can be computed
as (see the thesis)

(0
Ry
I 0 _ T Roin. . —
T, = TR , where T; = |- J D(w) _ P (4.6)
Pt Tj.4(p) ¥
Rap
Ro(ny -1 |

It is obvious that the wavelet filters have to be replenished onto the length of

J J

N;. The unit matrix I has now the size ZNi X Z N;, matrix TJ has size
i=2 i=2

2Nj41 x Nj and finally, the whole wavelet transform matrix is



4.3 Weighting matrix W

The weighting matrix W is a user-defined, diagonal matrix with its elements as
weighting coefficients for the particular wavelet filters given by their shift and
scale. Several approaches to the weighting of wavelet functions were discussed
within the thesis.

4.4 Asymptotic properties of the estimate

The convergence of the estimate of the ARX model parameters via wavelets
and its quality are investigated in the thesis.

Since the noise e(t) is correlated with regressor Z (measured data) for the
ARX model structure, the estimate of parameters is biased and the following
convergence limit holds:

lim Oy = 6" + lim E{(ZTTTW?TZ)""(WTZ)Te}. (4.8)
N —o00 N—oo

Concerning the quality of the parameters estimate, the variance of the fre-
quency function estimate (in case of an open-loop) at certain frequency was in
the thesis proved to be

-1

p+1
A n o, w
VarG(w, 0n) =~ N o) Z V' (j , (4.9)
where v(t) = H(q,0y)e(t) is filtered noise, where (power) spectra of the re-
sponse y(t) = G(z)u(t) of the system G(z) on the input u(t) is ®y(w) =
P, (w)|G(e™)|? and where
: V()
V()= ——t— 4.10

is the normalized weight for the j*" level analysis, V (k) is k" element of the vec-
tor of weights from which the matrix W is constructed.
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4.5 Wayvelets for multivariable systems

Although there are number of possible descriptions of LTI systems, two of
them are much more frequently used then the others: a state space system
description and a transfer function description. The choice of description can
be largely assumed as a part of choice of appropriate model structure. There
are also some typical SID methods for usual multivariable model structures: the
already mentioned prediction error method for the transfer function description
and Subspace State Space System IDentification (4SID) method (sometimes
just called “subspace” method) for the system in a state space description.
Moreover, these methods can be extended to be able to handle the constraints
on unknown parameters Privara et al. [2010, 2012].

In the thesis, possible incorporation of wavelet transform into the identi-
fication of multivariable systems is investigated. A condition on system iden-
tification which enables the incorporation of the discrete WT (DWT) into it
method was already revealed. That condition is a suitable expression of the
identification problem so that a time-structure of measured data is preserved
so that the DWT! (DWT!) can be applied. Realize that when this structure
is broken, the DWT can still be applied, but the meaning of filtering as well
as time and frequency localisation are completely lost and the DWT becomes
just a transformation tool with no interpretation.
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D Results and conclusion

The thesis presented a new approaches to utilization of the wavelet transform in
the field of system identification. Since the wavelet transform as a mathematical
tool serves mainly for signal analysis both in time and frequency domains, the
algorithm introduced in the thesis represents a natural way of interconnection
of discrete wavelet theory and theory of system identification. This approach
is based mainly on favourable properties of wavelet basis functions and brings
several advantages:

1. The set of wavelet basis functions at all possible levels (i.e. all scales
of one particular couple of wavelet basis functions - father and mother
wavelets) forms a set of filters. This set then covers the whole frequency
range determined by the properties of analysed signal, more specifically,
by its length and a sampling time.

2. Due to theoretical restrictions, orthogonal wavelets have compact sup-
port thus simple structure. Consequently, all convolutions are exactly
computable, thus no information carried in signal is lost.

3. Some wavelet filters are orthogonal in time and complementary in fre-
quency domains, therefore each filter extracts the specific portion of infor-
mation from the signals without any duplicity. This fact also contributes
to numerical conditioning of the identification algorithm.

4. Moreover, there are several kinds of wavelet basis functions (wavelet fa-
milies) with different time or frequency properties. Most of them satisfy
the necessary conditions given by the wavelet theory, however, there are
also some kinds of wavelet functions, which do not. These exceptions
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are covered by theory of wavelet frames, which is generalization of the
wavelet theory and is built on the theory of Riesz’s basis.

5. Once implemented, this method is quite generic and intuitive, while the
design of appropriate linear filters could be quite time consuming. In
addition, this provides the user with a big advantage in real problems,
where the frequency characteristics of the system to be identified is not
known a priori. The satisfactory results could be acquired by tuning of
weights only, which corresponds to some knowledge of the system. On
the other side, the implementation itself requires deeper understanding
to wavelet theory.

At the beginning, the thesis discusses the possibilities of incorporation of
wavelet transform into the system identification in the form of a comprehensive
study. Then, a general concept of the incorporation of wavelets was introduced.
At first, the method was derived for simple SISO systems as well as its asymp-
totic properties were discussed. Regarding the asymptotic properties of the
proposed methods, the results were derived based on properties of the PEM
for identification of ARX model. Further on in the thesis, the proposed concept
was extended on firstly for MISO and then for MIMO systems. The algorithms
for all parts were implemented and their performance was demonstrated on
case studies at the end of appropriate chapters. Finally, a detailed analysis of
the utilizing the wavelets as modulating functions were elaborated.

Although the wavelets are used, in principle it still is proper selection and
(pre)filtering of data with all its pros and cons. There are mainly 2 ways where
the methods from the thesis can be employed with advantages:

a) A sufficiently accurate model is required, well describing the system’s
behaviour at particular frequency ranges.

b) The only submodel is identified (the lowest order model as possible) which
takes into account behaviour on required frequency ranges. It includes
ability to identify slow or fast subsystems of singularly perturbed system

as well as to do model reduction for identification for control.

Indeed, both ways can be linked together.
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5.1 Fulfillment of the objectives

Here a short note on fulfilment of the aims from Chapter 2 is provided.

v/ To perform a comprehensive survey of the methods of exploiting the
wavelet transform for system identification. — This objective was com-
pleted and described in Chapter 3.

v/ To find and describe a suitable way of incorporation of wavelet trans-
form into the problem of general single-input single-output linear system
identification. Analyse the method and demonstrate it on a suitable ex-
ample. — This objective was satisfied by development and description
of the algorithm, its implementation and demonstration on an example.
All is stated within Chapter 6. This is the main part of the author’s
publications Vana and Preisig [2012]; Vana et al. [2011].

v/ To extend the method to multivariable systems. Analyse the method and
demonstrate it on a suitable example. — This objective was handled in
several points of view on multivariable systems description. The ways
of incorporation of wavelet transform into multivariable system identi-
fication was described and demonstrated within the Chapter 7. This
objective was also partially described in Vana and Preisig [2012]; Vana
et al. [2011], partially since at that time, the work on the objective was
still in progress.

v/ To investigate and find the utilization of wavelet transform within the
continuous-time linear system identification. The discussion on imple-
mentation issues must be included. — This objective was satisfied by the
Chapter 8, where the modulating function method primarily designed for
continuous-time system identification were shown to be a great alterna-
tive for utilization of wavelets within system identification.

All the algorithms implemented within this work are available on the en-
closed CD. Moreover, the reader can find there those examples used within
case studies, which are not adherent to any coordination with some commer-
cial company.
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5.2 Notes on benefits and usefulness of the thesis

The thesis provides several points of view on wavelets, what enables the reader
to understand both the wavelets and mutual consequences between wavelets
and system identification more deeply. However, for a really deep understand-
ing to both theories, the reader is referred to an appropriate literature, since
the thesis states the necessary basics only. A lot of consequences of theories
of wavelet transform and of system identification are very intuitive, hence are
simply applicable in different fields.

Except the algorithms described in the thesis, the interconnection of theories
of both wavelet transform and system identification can be considered as an
indisputable contribution of the thesis. Nowadays, there are lot of distinct (not
only mathematical) tools serving to some purpose, which are well-known and
widely used only in some particular branch, however very seldom elsewhere. It
is therefore very important not only to develop some new methods (approaches,
algorithms, etc.), but also to look for them within different fields. This is also
a strong reason for doing it even in situations where no new results can be
obtained, since using of tools which are “new” in particular field can always
show new analogies.
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6 Summary

The thesis presents several approaches to system identification in which wavelet
transform is employed for both single and multivariable system identification
enabling selection of the particular frequency range of interest. We will show
the use of wavelet filters with a property of superior selectivity in frequency
domain and having compact support in time domain, which, in turn, influ-
ences an accurate implementation. These properties provide the user with
possibility of measured data analysis in frequency domain without any loss of
information. Consequently, selection of a proper filter allows the user to iden-
tify the system on a desired frequency range or to identify a number of systems
for distinct frequency ranges. This is specifically convenient for the systems
with dominant modes, such as singularly perturbed systems. The possibility
of selection of a specific frequency range can be utilized for application-based
identification and consequent control, when only a limited frequency range is
required. Moreover, the thesis treats the possibility of applying the wavelets
within continuous-time system identification.

Next, the thesis provides several points of view on wavelets, what enables
the reader to understand both the wavelets and mutual consequences between
wavelets and system identification more deeply. A lot of consequences of theo-
ries of wavelet transform and of system identification are very intuitive, hence
are simply applicable in different fields.

Except of the algorithms described in the thesis, the interconnection of
theories of both wavelet transform and system identification is the main con-
tribution of the thesis. Nowadays, there are lot of distinct highly professional

31



tools, which are well-known and widely used by people from some particular
branch only. It is therefore very important not only to develop new methods,
but also to look for suitable methods across different scientific fields. There
is a strong reason for doing it even in situations where no new results can be
obtained, since using of tools which are “new” in particular field can always
show new analogies and links.
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7 Resumé

PredloZena disertacni prace pojednéava o piistupech k modelovani a identifikaci
jedno- i vicerozmérnych systémi, pii nichz se da s vyhodami vyuzit vinkové
transformace jakozto nastroje, jenz diky svym vlastnostem mimo jiné uziva-
teli umoznuje zamérit se na konkrétni frekvenéni vlastnosti naméfenych dat.
V praci je ukdzano pouziti vinkovych filtri, jenz maji velmi dobré selekéni
vlastnosti ve frekvenéni oblasti a kone¢ny defini¢ni obor v ¢asové oblasti, ktery
pfimo ovliviiuje vypocetni presnost algoritmu. Obé zminéné vlastnosti umoz-
nuji uzivateli analyzovat namérena data ve frekvenéni oblasti beze ztraty in-
formacniho obsahu dat. Disledkem toho je, Ze vybérem vhodnych vinkovych
filtri muze uzivatel identifikovat parametry modelu pouze na zakladé vybra-
nych frekvencénich vlastnosti naméienych dat nebo také vytvofit vice dil¢ich
modeli, kazdy popisujici modelovany systém na jiném frekvenénim rozsahu.
Takovyto pristup k modelovani je vhodny napf¥. pro modelovani systémi s né-
kolika vyznamnymi mody. Samotna moznost volby specifického frekvenéniho
rozsahu vyuzitém pro modelovani je s vyhodami pouzitelna pii identifikaci sys-
tému v inZenyrské praxi, kde model dobfe popisujici pouze vyznamné mody
systému muze byt jednoduchym a zaroven naprosto dostate¢nym pro nasledné
Fizeni.

Tato disertacni prace navic ukazuje vlnkovou transformaci, jeji bazové funkce
a vlastnosti z nékolika thli pohledu, coz ¢tenari umoznuje detailni pochopeni
nejen samotné vinkové transformace, ale i jejich souvislosti s teorii identifikace
systému. Mnoho souvislosti téchto dvou teorii jsou ve své podstaté velmi intu-
itivni a mohou tak byt jednodusSe pfenositelné mezi riznymi védeckymi obory.

33



Nejenom algoritmy popsané v této praci, ale i vzajemné propojeni obou
teorii vlnkové transformace a identifikace systému je jednim z hlavnich pfinosii
této disertacni prace. V dneSni dobé existuje velmi mnoho raznych profesio-
nalnich vypocetnich programi, jenz jsou velmi znamé a Siroce pouzivané lidmi
napii¢ védeckymi obory a dokonce i mimo akademicky svét. Bohuzel, mnoho
velmi silnych matematickych nastroji (metod, postupt, p¥istupt, algoritmi
apod.) v téchto programech implementovanych je dob¥e znamo a Siroce pou-
zivano pouze ve specifické komunité lid{ sdilejicich pifibuzny obor. Mimo tuto
komunitu je pouziti vySe zminénych nastroji spise vyjimkou. Je proto velmi
dtlezité nejen vyvijet nové metody, ale i hledat vhodné, jiz vyvinuté, metody
napii¢ védeckymi obory. Pro takové hledani je velmi silny divod i v pripadech,
kdy z principu nemohou z nového spojeni teorii vzejit lepsi vysledky. Timto
diavodem jsou zfejmé nové pohledy na prislusné teorie a popis novych ana-
logii mezi nimi. I tyto malé st¥ipky mohou byt inspirujici a vést k vétsim a
dalekosahlejsim vysledkim.
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