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Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Control Engineering

Karlovo náměst́ı 13
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Abstract

Lightweight structures are increasingly installed in aerospace and automotive
industries, stimulated by economic constraints and stringent emission standards.
These lightweight structures are usually lightly damped and therefore prone to
vibrating. Structural vibrations are detrimental to the safety and life-cycle of
the mechanical structures, calling for effective vibration reduction techniques. In
parallel, rapid advances and integration of computing, communication and smart
sensing technologies have motivated deployment of small-size, low-cost sensing
devices equipped with embedded processors and communication capabilities.
The emerging networked control systems (NCS) provide a promising design
paradigm for vibration control algorithms. In this envisioned paradigm, decision-
making process is delegated to intelligent agents which are facilitated by an
array of actuators and sensors deployed throughout the structures.

This dissertation is dedicated to adapting the networked or distributed
control concept specifically for vibration reduction of spatially distributed
damping systems, i.e. flexible structures. Four decentralized approaches for
distributed/cooperative observers over directed graph topology are developed.
The first approach assumes that the information of graph topology is perfectly
known to each agent. The second approach works independent of any specific
graph topology and is only for locally detectable systems. The third approach
does not require the exact information of graph topology as well, and can
work for both locally detectable and undetectable systems. In the fourth
approach, an observability decomposition is firstly applied locally at each agent,
and parameters of the cooperative observers are designed in observable and
unobservable subspaces, respectively. This approach can also be developed
without the exact information of the graph topology. In particular, compared
with centralized approaches in the literature, the four decentralized approaches
have a few appealing features. Firstly, it is robust, to a certain degree, against
graph reconfigurations. Secondly, the decentralized approaches have flexibility
in integrating redundant sensors into the network. Thirdly, the computational
complexity in designing the variables is reduced. The performance of proposed
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iv ABSTRACT

cooperative observers and controllers is examined with numerical simulations,
where a smart flexible beam is considered. An experimental case study with a
piezoelectric actuated composite plate is presented to validate the developed
algorithms in real-time. This dissertation also performs a preliminary research
on distributed homogeneous sensor fusion over the network. Inspired by the
Bayesian-based fusion, variances of measurement noises are incorporated into
the edge weight design of the network. The fusion performance is examined
with numerical experiments. The steady-state expected values and variances of
the state estimates of all the nodes in the network agree well with the analytical
results.

Keywords: distributed control, networked control, state estimation, graph
topology, cooperative control, flexible structures, vibration reduction, sensor
fusion



Abstrakt

Lehké konstrukce jsou stále častěji instalovány v leteckém a automobilovém
průmyslu, kde jsou stimulovány ekonomickými omezeními a přísnými emisními
normami. Tyto lehké konstrukce jsou obvykle lehce tlumené, a proto jsou
náchylné k vibracím. Strukturální vibrace poškozují bezpečnost a životnost
mechanických konstrukcí. a proto vyžadují efektivní techniky snižování vibrací.
Současný rychlý pokrok a integrace výpočetních, komunikačních a inteligentních
snímacích technologií byly motivací k nasazení malých a levných snímacích
zařízení vybavených vestavěnými procesory s komunikačním rozhraním. Takto
vznikající síťové řídicí systémy poskytují slibnou koncepci návrhu algoritmů pro
řízení potlačení vibrací. V tomto předpokládaném paradigmatu je řídicí proces
přenesen na inteligentní agenty, kteří jsou vybaveny řadou ovladačů a snímačů
rozmístěných po celé flexibilní struktuře.

Tato práce se zabývá přizpůsobením současné koncepce síťového nebo distribuo-
vaného řízení a její aplikací pro redukci vibrací prostorově rozložených tlumených
systémů, tj. flexibilních struktur. Práce uvádí čtyři decentralizované přístupy,
které navrhují distribuované/kooperativní pozorovatele implementované na
grafech s orientovanou topologií . První přístup předpokládá, že informace o
topologii grafů jsou každému agentovi zcela známy. Druhý přístup pracuje
nezávisle na topologii grafů a je určen pouze pro lokálně detekovatelné
systémy. Třetí přístup nevyžaduje přesné informace o topologii grafů a může
pracovat jak s lokálně detekovatelnými, tak s nedetekovatelnými systémy.
Ve čtvrtém přístupu je nejprve aplikován lokální rozklad pozorovatelnosti u
každého agenta a parametry kooperativních pozorovatelů jsou pak navrženy
v pozorovatelných a nepozorovatelných podmnožinách. Tento přístup lze také
použít bez přesných informací o topologii grafu. Zejména v porovnání se
současnými centralizovanými přístupy mají navrhované čtyři decentralizované
přístupy několik zajímavých rysůvlastností. Pokud jde o rekonfiguraci grafů,
jsou, do jisté míry robustní. Dále j sou také flexibilní v případě integrace
redundantních senzorů do sítě. V neposlední radě snižují výpočetní složitost
při návrhu parametrů. Účinnost navrhovaných kooperativních pozorovatelů

v



vi ABSTRAKT

a řídicích prvků je ověřena numerickými simulacemi na modelu flexibilního
nosníku. V práci je zahrnuta experimentální studie s piezoelektricky ovládanou
kompozitní deskou pro ověření vyvinutých algoritmů v reálném čase. Tato
disertační práce provádí předběžný výzkum v oblasti distribuované homogenní
fúze senzorů v v síti. Na základěe Bayesovské fúze jsou odchylky měření zahrnuty
v návrhu hodnot hran v síti. Účinnost fúze je ověřena numerickými experimenty.
Očekávané hodnoty ustáleného stavu a odchylky odhadů stavů všech uzlů v síti
se shodují s výsledky analýzy.

Klíčová slova: distribuované řízení, síťová kontrola, odhad stavu, topologie
grafů, kooperativní řízení, flexibilní struktury, redukce vibrací, senzorová fúze



Beknopte samenvatting

Lichtgewichtstructuren worden steeds meer geïnstalleerd in de ruimtevaart
en automobiel industrie omwille van economische beperkingen en strikte
emissienormen. Deze lichtgewichtstructuren zijn gewoonlijk licht gedempt
en daardoor vatbaar voor trillingen. Structurele trillingen zijn echter schadelijk
voor de levenscyclus en de veiligheid van de mechanische structuren en vragen
om effectieve technieken voor vibratiereductie. Tegelijkertijd is het mogelijk
om goedkope en kleine meettoestellen te produceren die beschikken over
ingebouwde reken en communicatiemogelijkheden, omwille van de vooruitgang in
rekenkracht, communicatie en slimme sensor technologie. De opkomende netwerk
controlesystemen (NCS) verschaffen een veelbelovend ontwerp paradigma
voor vibratie controle algoritmes. In dit paradigma wordt de besluitvorming
gedelegeerd over verschillende intelligente eenheden verspreid over de volledige
structuur die elk beschikken over een serie actuatoren en sensoren.

Dit proefschrift is toegewijd op het aanpassen van de netwerk en gedistribueerde
controle concepten toegespitst op vibratie reductie bij ruimtelijk gedistribueerde
gedempte systemen, nl. flexibele structuren. Vier gedecentraliseerde
benaderingen voor gedistribueerde/coöperatieve waarnemers in directionele
grafiek topologie zijn ontwikkeld. De eerste benadering veronderstelt
dat de informatie van de topologische graaf is perfect gekend door elke
waarnemer . De tweede benadering werkt onafhankelijk van de grafiek
topologie en enkel voor lokaal detecteerbare systemen. De derde benadering
werkt ook zonder de informatie over de grafiek topologie voor zowel lokaal
detecteerbare als niet-detecteerbare systemen . Bij de vierde benadering is
een observeerbaarheidsdecompositie eerst lokaal toegepast op elke waarnemer
waarbij de parameters van de coöperatieve waarnemers respectievelijk zijn
ontworpen in observeerbare en niet-observeerbare deelruimten. Deze aanpak
kan ook ontworpen worden zonder de exacte informatie over de grafiek topologie.
De vier gedecentraliseerde benaderingen hebben een aantal aantrekkelijke
eigenschappen in vergelijking met de gecentraliseerde benaderingen die te vinden
zijn in de literatuur. Ten eerste zijn deze, tot op zekere hoogte, meer robuust
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tegen herconfiguraties van de graaf. Ten tweede zijn de gedecentraliseerde
benaderingen meer flexibel bij het integreren van redundante sensoren in het
netwerk. Ten derde is de computationele complexiteit voor het design van
de variabelen gereduceerd. De performantie van de voorgestelde coöperatieve
waarnemers en controllers is onderzocht aan de hand van numerieke simulaties
waarbij een slimme flexibele balk is verondersteld. Een experimentele case
studie met een piëzo-elektrische aangedreven composiet plaat is voorgesteld
om de ontwikkelde algoritmes te valideren in real-time. Dit proefschrift omvat
ook een preliminair onderzoek naar gedistribueerde homogene sensor fusie over
een netwerk. Geïnspireerd door de Bayesian-gebaseerde fusie zijn variaties
van de meetruis opgenomen in het gewicht toegekend aan de lijnen van het
netwerk . De fusie performantie is onderzocht aan de hand van numerieke
experimenten. Deze experimenten wijzen uit dat de verwachte steady-state
waarden en varianties van de toestand schattingen van alle knooppunten van
het netwerk goed overeen komen met de analytische oplossing.

Trefwoorden: gedistribueerde controle, netwerk controle, toestand schatting,
grafiek topologie, coöperatieve controle, flexibele structuren, vibratie reductie,
sensor fusie
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ARE Algebraic Riccati Equation
CPS Cyber Physical Systems
CT Continuous-time
DT Discrete-time
FE Finite Element
FEM Finite Element Method
FRF Frequency Response Function
LMI Linear Matrix Inequality
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
MIMO Multi-Input Multi-Output
NCS Networked Control Systems
NLMI NonLinear Matrix Inequality
PDE Partial Differential Equation
PID Proportional Integral Derivative
ZOH Zero-Order Hold
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Nomenclature

⊗ Kronecker product
, Defined as
t Continuous time variable or discrete time index
1p, 1p A vector of dimension p with all entries equal 1
R Set of real numbers
C Set of complex numbers
R+ Set of positive real numbers
Ip An identity matrix of dimension p× p
I Identity matrix of compatible dimension
G Graph
V Set of agents
A Adjacency matrix
A ∈ Rm×n Real matrix A of dimensions m× n
A ∈ Cm×n Complex matrix A of dimensions m× n
T ∗ Hermitian transpose of matrix T
L Laplacian matrix
Gp Pinning matrix
D In-degree matrix
F , Fi Communication matrix
Ni Set of neighbors of agent i
0 A zero matrix with a compatible dimension
0m×n A zero matrix with dimension m× n
λ(A) Eigenvalue of A
Re(λ) Real part of λ
|V| Cardinality of the set V
‖A‖∞ Induced ∞-norm of A
‖A‖2 Euclidean norm of matrix A
‖A‖max Max norm of matrix A, = maxi,j |aij |
Oi Observable set of agent i
Dj Converse observable set of state-group j
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Oi Unobservable set of agent i
Dj Converse unobservable set of state-group j
Csyn Synchronizing region
Θqφ Piezoelectric coupling matrix
Θφφ Piezoelectric capacity matrix
X ∼ N(X0, P ) Random variable X is subject to normal distribution

with expected value X0 and covariance matrix P
< X >,E(X) Mean value or expectation of X
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Chapter 1

Introduction

Have you ever observed flocking of birds during migration seasons (Figure 1.1a)?
Can you guess what a flock of birds could share in common with vibratory
structures such as the Eiffel Tower, NASA space satellites and future Airbus
fuselages (Figure 1.1b - 1.1d)? Well, so distinct are these objects that one may
deem it not a straightforward (or not even a rational) question to answer. But
what if we, human beings, render these vibratory structures with innumerable
actuators and sensors, and further delegate decision-making tasks to intelligent
agents with communication capabilities? Slightly this envisaged deployment
commences to shed some light on the similarity or at least comparability between
the flock of birds and the vibratory structures.

The flocking of birds is just a subclass of swarm behavior in animals where the
aggregate entities move into the same direction while each individual entity only
interacts locally with others and with their environment. In fact, if designed well,
those intelligent agents augmented with actuators and sensors would exhibit
similar collaborative behavior to reach system-wide goals like disturbances
rejection on flexible structures. This type of systems falls into the category of
distributed/cooperative/networked control systems. In contrast to conventional
multi-input-multi-output control, there is no one single central controller in
charge. Instead, various distributed intelligent agents make local decisions
nevertheless in a globally cooperative manner.

This dissertation is dedicated to developing distributed/cooperative/networked
control techniques for vibration reduction of flexible structures. It is motivated in
the next section that the focus of this research will be specifically on distributed
estimation and control problems.

1



2 INTRODUCTION

(a) Flocking of birds (Source: Internet) (b) Eiffel Tower (Source: the author)

(c) Space satallite (Source: NASA) (d) Concept plane of Airbus 2050
(Source: Airbus)

Figure 1.1: Similarities of flocking behavior and envisioned distributed agents
augmented with actuators/sensors on vibratory structures

1.1 Motivation: active distributed control for flexi-
ble structures

Flexible structures are ubiquitous in contemporary societies: lattice towers, truss
bridges, robotic manipulators, vehicle chassis, aircraft fuselages, etc. Mechanical
and structural vibrations could be detrimental to both quality and safety of
the aforementioned civil infrastructures, fabricating machines and consumer
products. Approaches to effectively suppress vibrations are thereby required to
be developed. The traditional passive approach is to adopt passive materials such
as high damping elastomers, chain dampers, tuned liquid dampers and passive
isolators, to attenuate mechanical vibrations [Preumont, 2002]. Nevertheless,
these passive approaches are primarily effective at high frequencies [Fuller and
Von Flotow, 1995]. In consequence, active control techniques utilizing sensors,
actuators and controllers are promoted to suppress low-frequency disturbances
[Reza Moheimani et al., 1997]. In addition, active control is also propelled by
rapid advances in digital signal processing, as well as the downsizing and cost
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reduction of actuators and sensors. Development of active vibration control
systems is a time-consuming synergistic task, since it consists of multiple steps
as pointed out in [Preumont, 2002]: coupled modeling of vibratory structures
actuated by smart materials (e.g. piezoelectric ceramics), model order reduction,
placement of actuators/sensors, control algorithm design, numerical simulation,
real-time controller implementation, etc. Addressing all the topics arising in
the development of active control systems is not the intent of this dissertation,
however. In fact, this dissertation mainly focuses on the control algorithm
design.

Next, it is introduced how the traditional design paradigm of control algorithms
is enriched or reshaped by the emerging distributed/cooperative/networked
control technologies.

1.1.1 A new design philosophy for control algorithms

Active vibration control strategies are divided into feedforward control,
classical feedback control as well as modern feedback control [Alkhatib and
Golnaraghi, 2003; Vasques and Dias Rodrigues, 2006; Amezquita-Sanchez et al.,
2014]. Examples of classical feedback control are positive position feedback,
proportional integral derivative (PID) control, integral force feedback, velocity
feedback etc. Modern feedback control consists of LQR/LQG control, sliding
mode control, H∞ and H2 control, adaptive control, neural network and fuzzy
logic control, etc.

Rapid advances in computing, communication and smart sensing technologies
have motivated deployment of small-size, low-cost sensing devices empowered
with embedded processing and communication capabilities in a wide range of
environments [Estrin et al., 1999; Spencer et al., 2004; Gupta, 2006; Ferrari
et al., 2016]. These technical achievements have attracted researchers from a
variety of disciplines to the emerging field of Networked Control Systems (NCS)
[Wang and Liu, 2008; Bemporad et al., 2010; Lunze, 2014], and its synonymous
Cyber-Physical Systems (CPS) in which cyber networks closely interact with
humans and physical plants [Baheti and Gill, 2011; Lee et al., 2015; Khaitan
and McCalley, 2015].

Networked/distributed control systems exhibit many advantages. First of all,
in contrast to purely decentralized control architectures, communication via a
network provides the potential to improve the overall system performance, since
fusion of global information enables the distributed control stations (agents) to
get deeper insights in the considered plant and thereafter make more intelligent
decisions. Secondly, it allows reducing the implementation costs and complexity:
for a large-scale plant—a large number of system states and inputs/outputs
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or a geographically distributed plant—it might be costly to have a complete
network with all-to-all links [Rao et al., 1993] or send all sensory information
to a central controller, which imposes high requirements on communication
bandwidth. Peer-to-peer network, instead, can mitigate the communication
overhead since each node or agent in the network calculates its outputs based
only on the information from its neighbors and transmits them to its peer nodes.
Physical wires are further eliminated in wireless actuator and sensor networks
[Xia et al., 2011; Wu et al., 2011]. Furthermore, with redundant communication
links, networked/distributed control architecture can add fault-tolerant property
or retain graceful degradation in case some components (like sensors, actuators,
control stations, etc.) fail [Lunze, 2014]. In contrast, a centralized controller
might suffer a potential catastrophic failure, though a fault-tolerant centralized
controller may still outperform a distributed controller. Additionally, networked
systems benefit from flexibility if extra agents can be integrated into the network
in a plug-and-play fashion.

When it comes to active vibration control for spatially distributed damping
systems, i.e. flexible structures, the aforementioned networked/distributed
control architecture has brought a new design philosophy. The designed
control systems need to take the form of distributed architectures: measuring
and computation tasks are delegated to agents which exchange information
with each other; and a centralized controller is absent due to the required
high communication and computation capacity. Moreover, under the
distributed architecture, a centralized design which yields all decision variables
simultaneously is less desired than a decentralized design where decision
variables can be constructed locally at each node or agent. On the one
hand, a centralized design is numerically costly in plants with a large number
of inputs/outputs/states. On the other hand, a centralized design lacks
flexibility, in the sense that all decision variables need to be redesigned, in
reconfigurations of network topology and integration of redundant agents. In
contrast, a decentralized design scales better with a growing number of plant
inputs/outputs/states, and is more adaptive in network reconfigurations and
agent integration.

1.1.2 Distributed estimation and control

Motivated by the forgoing viewpoints, this dissertation is focused on the
distributed estimation and control for flexible structures. A schematic of the
networked architecture is depicted in Figure 1.2. Functions of sensing, actuation,
communicating and computing are all or partly integrated to each agent. Each
agent will locally estimate the plant states based on local measurement and/or
communicated state estimates of neighboring agents. Distributed estimation
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Figure 1.2: Networked architecture equipped with distributed actuators and
sensors over a large-scale plant.

algorithms boil down to the design of Luenberger-like observer gains for the
local measurements, and communication gains for the broadcasted neighboring
estimates. Once the distributed state estimation problem is solved, observer-
based controllers need to be designed to close the loop for stabilization.

1.2 Thesis contributions

This dissertation is dedicated to developing techniques on distributed estimation
and control for spatially distributed flexible structures which can be described
to a high degree of accuracy by linear-time-invariant (LTI) dynamics. The
contributions of this dissertation are summarized in Subsection 1.2.1-1.2.2.

1.2.1 Decentralized design of cooperative observers

The distributed estimation problem is solved by the design of cooperative
observers. Each observer updates its local estimates of the plant states based
on its local measurement as well as the communicated state estimates from its
neighboring nodes in the network. Four different decentralized design methods
for cooperative observers are proposed over directed graphs. The first three
methods are developed by generalizing prior results in the literature which are
restricted to undirected graphs, to directed graphs, using generalized Lyapunov
functions for the convergence analysis. The fourth method proposes a novel
decentralized design for cooperative observers, where state estimation problems
are solved in observable and unobservable subspaces, respectively.
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1.2.2 Distributed sensor fusion for static noisy signals

Inspired by the traditional Bayesian sensor fusion, three novel algorithms are
proposed in distributed homogeneous sensor fusion for estimation of a constant
scalar. Measurement noises are taken into account in the fusion algorithms.
The considered sensor network is composed of two sets of nodes: the sensing
nodes, which perform the measuring task, and the non-sensing nodes, which
mediate between the sensing nodes. The evolution dynamics of the expected
values and estimation error covariances throughout the network is analyzed,
which is confirmed by extensive numerical experiments.

1.3 Outlines

This dissertation is organized as follows. Chapter 2 presents the mathematical
preliminaries on graph theory and cooperative control theory. Chapter 3
proposes four decentralized approaches for cooperative observers. Chapter 4
deals with the design of feedback control laws for the distributed agents. Chapter
5 gives an experimental case study of distributed estimation and control for a
piezoelectric actuated composite panel. Chapter 6 introduces the consensus-
based distributed homogeneous sensor fusion for static noisy signals. Concluding
remarks and recommendations for future research are given in Chapter 7.



Chapter 2

Preliminaries on Cooperative
Control

This chapter presents mathematical preliminaries on graph theory and
cooperative control theory. The intent of this chapter is to lay the theoretical
foundations for later chapters.

2.1 Graph theory and Kronecker product

A directed graph (or digraph) [Bondy and Murty, 2008] G = (V, E) consists
of a set of nodes V , {1, 2, ..., p}, a set of edges E ⊂ V × V. An edge (i, j) is
graphically depicted by an arrow with the head node i and the tail node j,
indicating that the information flows from node j to node i. The associated
adjacency matrix A = [aij ] of G is defined such that each entry aij is the weight
associated with the pair (i, j) and aij = 1 if (i, j) ∈ E ; aij = 0, otherwise. Only
simple graphs are considered, namely, aii = 0,∀ i ∈ V. The set of neighbors
of node i is denoted as Ni , {j|(i, j) ∈ E}. Define the in-degree of node i as
di ,

∑p
j=1 aij and in-degree matrix as D , diag{di}. The graph Laplacian

matrix is then defined as L = [lij ] , D −A. Namely,

lij =
{
di, i = j,

−aij , i 6= j.

7
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As a consequence of its construction, 0 is the eigenvalue of L with the
corresponding eigenvector 1p, namely, L1p = 0 · 1p. The eigenvalues are
labeled in an ascending order of their real parts

0 = λ1 ≤ Re(λ2) · · · ≤ Re(λp).

A sequence of successive edges in the form of {(i, k), (k, l), · · · , (m, j)} is a
directed path from node j to node i. A directed tree is an acyclic digraph with
a root node such that there is a unique directed path from that root node to
every other node in the directed tree. A directed spanning tree of G is a directed
tree that contains all the nodes of G. A directed forest is a disjoint union of
directed trees. A spanning forest of G is a directed forest that contains all the
nodes of G. A graph H is a subgraph of G if V(H) ⊆ V(G), E(H) ⊆ E(G) and
A(H) is a restriction of A(G) [Bondy and Murty, 2008].

Remark 2.1. If for each pair (i, j) ∈ E, there also exists (j, i) ∈ E, meaning
that for each edge (i, j), agent i and j communicate the information with each
other, then the graph G is undirected. An undirected graph can be viewed as a
special case of a directed graph, in which A = AT and L = LT .

Definition 2.2. A digraph G is strongly connected if any node in G can be
reached from any other nodes.

Lemma 2.3 ([Qu, 2009]). 0 is a simple eigenvalue of L if and only if the
corresponding graph G contains a directed spanning tree.

Lemma 2.4 ([Qu, 2009; Zhang et al., 2012]). If G is strongly connected, then
there exists w ∈ Rp, w = [w1, w2, . . . , wp]T > 0 such that LTw = 0 and
wT1p =

∑p
i wi = 1; moreover, let W = diag{wi}, then L′ = WL+ LTW is a

positive semidefinite matrix and has a simple zero eigenvalue with corresponding
eigenvector 1p.

Remark 2.5. In fact, as pointed out in [Zhang et al., 2012], L′ = WL+LTW
is a Laplacian matrix for an undirected graph G′ = (V, E ′) with the associated
adjacency matrix A′ = [a′ij ], where a′ij = a′ji = wiaij + wjaji.

The Kronecker product of matrices A ∈ Rm×n and B of arbitrary dimension is
defined as

A⊗B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB


having the properties:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), if A and C, B and D, are compatible;
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(A⊗B)T = AT ⊗BT ;

A⊗ (B + C) = A⊗B +A⊗ C, if B and C are compatible;

(A⊗B)−1 = A−1 ⊗B−1, if both A and B are invertible.

2.2 Cooperative control

Cooperative control problems can be classified in two ways: leaderless consensus
and leader-following consensus [Zhang et al., 2012]. For leaderless consensus,
distributed control protocols are designed such that all the nodes synchronize to
the same unprescribed dynamics; while for leader-following consensus, a leader
node is assigned and all the other nodes would synchronize to the dynamics of
the leader node. Consider a group of p identical agents with dynamics

ẋi(t) = Axi(t) +Bui(t), ∀ i ∈ V, (2.1)

where xi ∈ Rn is the state vector for agent i, ui ∈ Rm is the control input vector
which represents how agent i communicates the information with its neighboring
agents, A and B are time-invariant matrices of compatible dimensions. It is
assumed that (A,B) is stabilizable. Distributed control protocol ui, i ∈ V,
needs to be designed to realize leaderless or leader-following consensus. The
protocols can either be static or have internal states. In the following, it is
assumed that each xi, i ∈ V, can be measured and communicated, therefore
only static control protocols are introduced.

2.2.1 Leaderless consensus

The objective of leaderless consensus is to design ui, i ∈ V, such that

lim
t→∞

(xi(t)− xj(t)) = 0, ∀ i, j ∈ V. (2.2)

For leaderless consensus, each control protocol ui is a function of weighted local
neighborhood error

∑
j∈Ni

aij(xj − xi), where aij is the entry of adjacency
matrix A. Let ui, i ∈ V, be designed as [Li et al., 2010]

ui(t) = cF
∑
j∈Ni

aij [xj(t)− xi(t)], (2.3)

where F ∈ Rm×n is the feedback matrix, c > 0 is a constant coupling gain. c is
separated from F to provide an additional design degree of freedom.
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With protocol (2.3), the dynamics of (2.1) becomes

ẋi(t) = Axi(t) + cBF

p∑
j=1

aij [xj(t)− xi(t)]. (2.4)

Let x = [xT1 , xT2 , · · · , xTp ]T , then

ẋ(t) = [Ip ⊗A− cL ⊗ (BF )]x(t). (2.5)

To see how the leaderless consensus can be reached, together with w in Lemma
2.4, define

ei = xi −
p∑
j=1

wjxj = xi − (wT ⊗ In)x,

and
e = [eT1 , eT2 , · · · , eTp ]T .

The dynamics of ei reads

ėi(t) = ẋi(t)− (wT ⊗ In)ẋ(t)

= Axi(t) + cBF

p∑
j=1

aij [xj(t)− xi(t)]− (wT ⊗ In)ẋ(t)

= A[ei(t) + (wT ⊗ In)x(t)] + cBF

p∑
j=1

aij [ej(t)− ei(t)]− (wT ⊗ In)ẋ(t)

= A[ei(t) + (wT ⊗ In)x(t)] + cBF

p∑
j=1

aij [ej(t)− ei(t)]

− (wT ⊗ In)[Ip ⊗A− cL ⊗ (BF )]x(t)

= Aei(t) + cBF

p∑
j=1

aij [ej(t)− ei(t)] +A(wT ⊗ In)x(t)

− (wT ⊗A)x(t) + c[(wTL)⊗ (BF )]x(t).
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Noticing wTL = 0T , one has

ėi(t) = Aei(t) + cBF

p∑
j=1

aij [ej(t)− ei(t)] +A(wT ⊗ In)x(t)− (wT ⊗A)x(t)

= Aei(t) + cBF

p∑
j=1

aij [ej(t)− ei(t)] + (1⊗A)(wT ⊗ In)x(t)− (wT ⊗A)x(t)

= Aei(t) + cBF

p∑
j=1

aij [ej(t)− ei(t)].

(2.6)

Therefore,
ė(t) = [Ip ⊗A− cL ⊗ (BF )]e(t). (2.7)

The following lemma constructs the relationship between the leaderless consensus
objective (2.2) and the dynamics (2.7).

Lemma 2.6 ([Li et al., 2010], Corollary 1). When L has a directed spanning
tree, the protocol (2.3) achieves the objective (2.2) if and only if all matrices
A− cλi(L)BF , i = 2, · · · , p, are Hurwitz.

The proof is sketched as follows. The equivalence between the leaderless
consensus objective (2.2) and the dynamics (2.7) is proved first. If the matrix
[Ip⊗A−cL⊗(BF )] is Hurwitz, then lim

t→∞
ei(t) = 0, ∀ i ∈ V ; hence lim

t→∞
xi(t) =

lim
t→∞

(wT ⊗ In)x(t),∀ i ∈ V; therefore ∀ i, j ∈ V, lim
t→∞

(xi(t) − xj(t)) = 0. If
∀ i, j ∈ V , lim

t→∞
xi(t) = lim

t→∞
xj(t) = x̄(t), then ∀ i ∈ V , lim

t→∞
ei(t) = lim

t→∞
[xi(t)−∑p

j=1 wjxj(t)] = x̄(t)−
∑p
j=1 wj x̄(t) = 0, indicating the matrix [Ip ⊗A− cL⊗

(BF )] is Hurwitz. Next the stability of (2.7) is analyzed. A Schur triangulation
[Horn and Johnson, 2013] of L is performed with a unitary matrix T ∈ Cp×p

such that
T =

[
wT

Tp−1

]
, T−1 =

[
1p Yp−1

]
,

where Tp−1 ∈ C(p−1)×p and Yp−1 ∈ Cp×(p−1). There exist Tp−1 and Yp−1 such
that

TLT−1 = TLT ∗ = U =
[

0 01×(p−1)
0(p−1)×1 Up−1

]
,

where Up−1 = Tp−1LYp−1 ∈ R(p−1)×(p−1) is an upper triangular matrix
with nonzero eigenvalues of L along the diagonal. With ẽ = (T ⊗ In)e =
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[ẽT1 , ẽT2 , · · · , ẽTp ]T , from (2.7) one has

˙̃e(t) = (T ⊗ In)ė(t)

= (T ⊗ In)[Ip ⊗A− cL ⊗ (BF )]e(t)

= (T ⊗ In)[Ip ⊗A− cL ⊗ (BF )](T ∗ ⊗ In)ẽ(t)

= (T ⊗ In)(Ip ⊗A)(T ∗ ⊗ In)ẽ(t)− c(T ⊗ In)[L ⊗ (BF )](T ∗ ⊗ In)ẽ(t)

= [(Ip ⊗A)− cU ⊗ (BF )]ẽ(t)

=


A 0 · · · 0
0 A− cλj(L)BF · · · ?
... 0

. . . ...
0 0 · · · A− cλk(L)BF

 ẽ(t).
(2.8)

Note that

ẽ1 = (wT ⊗ In)e =
p∑
i

wiei =
p∑
i

wi(xi −
p∑
j=1

wjxj)

=
p∑
i

wixi − (
p∑
i

wi)
p∑
j=1

wjxj ≡ 0.

Hence the stability of (2.7) is determined by the matrices A − cλi(L)BF ,
i = 2, · · · , p. Thereby one has Lemma 2.6.

2.2.2 Leader-following consensus

Let the leader dynamics be

ẋ0(t) = Ax0(t), (2.9)

where x0 ∈ Rn is the state vector. The objective of leader-following consensus
is to design ui such that

lim
t→∞

(xi(t)− x0(t)) = 0, ∀ i ∈ V. (2.10)

For leader-following consensus, each control protocol ui is a function of weighted
local neighborhood error

∑
j∈Ni

aij(xj −xi) and weighted pinning error gi(x0−
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xi), where gi ≥ 0 is the pinning gain for agent i. Let ui, i ∈ V, be designed as
proposed in [Zhang et al., 2011]

ui(t) = cF [
p∑
j=1

aij(xj(t)− xi(t)) + gi(x0(t)− xi(t))], i ∈ V, (2.11)

where c > 0 is a constant coupling gain, F ∈ Rm×n is the feedback matrix.

To reach leader-following consensus, the graph G needs to satisfy the following
intuitive assumption.

Assumption 2.7. The graph G contains a spanning tree with the root node, ir,
pinned by the leader, i.e. gir > 0.

Definition 2.8 ([Qu, 2009; Lewis et al., 2014]). A square matrix is an M-
matrix if all its off-diagonal elements are non-positive and all its eigenvalues
have positive real parts.

Let Gp = diag{gi} be the pinning matrix, the following lemma states that the
pinned Laplacian matrix L+Gp is an M-matrix.

Lemma 2.9 ([Li et al., 2010], Lemma 5). With Assumption 2.7, Re(λi(L +
Gp)) > 0 for all i ∈ V.

With protocol (2.11), the dynamics of (2.1) becomes

ẋi(t) = Axi(t) + cBF

p∑
j=1

aij(xj(t)− xi(t)) + cgiBF (x0(t)− xi(t)). (2.12)

Let x = [xT1 , xT2 , · · · , xTp ]T , then

ẋ(t) = [Ip ⊗A− c(L+Gp)⊗ (BF )]x(t) + c[Gp ⊗ (BF )](1p ⊗ x0). (2.13)

Define ξi = xi − x0, and ξ = [ξT1 , ξT2 , · · · , ξTp ]T , then

ξ̇(t) = [Ip ⊗A− c(L+Gp)⊗ (BF )]ξ(t). (2.14)

The following lemma builds up the relationship between the leader-following
consensus problem and the dynamics (2.14).

Lemma 2.10 ([Zhang et al., 2011]). With Assumption 2.7, the protocol (2.11)
achieves the objective (2.10) if and only if all matrices A − cλi(L + Gp)BF ,
i = 1, 2, · · · , p, are Hurwitz.
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The proof can be constructed following a similar step as in [Fax and Murray,
2004], performing a Schur triangulation of (L + Gp) with a unitary matrix
T̃ ∈ Cp×p,

T̃ (L+Gp)T̃−1 = T̃ (L+Gp)T̃ ∗ = Ũ ,

where Ũ ∈ Rp×p is an upper triangular matrix with eigenvalues of (L + Gp)
along the diagonal. With ξ̃ = (T̃ ⊗ In)ξ, one has

˙̃ξ(t) = (T̃ ⊗ In)ξ̇(t)

= (T̃ ⊗ In)[Ip ⊗A− c(L+Gp)⊗ (BF )]ξ(t)

= (T̃ ⊗ In)[Ip ⊗A− c(L+Gp)⊗ (BF )](T̃ ∗ ⊗ In)ξ̃(t)

= (T̃ ⊗ In)(Ip ⊗A)(T̃ ∗ ⊗ In)ξ̃(t)− c(T̃ ⊗ In)[(L+Gp)⊗ (BF )](T̃ ∗ ⊗ In)ξ̃(t)

= [(Ip ⊗A)− cU ⊗ (BF )]ξ̃(t)

=


A− cλi(L+Gp)BF ? · · · ?

0 A− cλj(L+Gp)BF · · · ?
... 0

. . . ...
0 0 · · · A− cλk(L+Gp)BF

 ξ̃(t).
(2.15)

Thereby one has Lemma 2.10.

2.2.3 Synchronizing region

Definition 2.11 ([Li et al., 2010]). Consider the protocol (2.3) (or (2.11))
for dynamics (2.1) (or (2.1) and (2.9)), the synchronizing region is a complex
region defined as

Csyn , {s = σ + jω ∈ C|A− sBF is Hurwitz}. (2.16)

Remark 2.12. If c, L and F are designed such that cλi(L) ∈ Csyn, i = 2, · · · , p,
then the protocol (2.3) achieves the objective (2.2) for dynamics (2.1). If c, L,
Gp and F are designed such that cλi(L+Gp) ∈ Csyn, i = 1, 2, · · · , p, then the
protocol (2.11) achieves the objective (2.10) for dynamics (2.1) and (2.9).

It can be observed that the design of graph-related parameters c, L, Gp and the
plant-related parameter F are interdependent. This is not desired for system
design, as the control protocol (2.3) and (2.11) succeeding in one graph topology
may fail in another. In other words, the design is sensitive to communication
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graph variations. Furthermore, such a feature makes the protocol design rather
difficult for imperfectly known graphs. Hence it is desirable to have a large or
an unbounded synchronizing region Csyn to yield a sufficient robustness margin
for potential graph variations.

To this end, one straightforward LQR-based approach is proposed by [Zhang
et al., 2011]. The main idea is to decouple the design of F from the dedicated
communication graph topology. The feedback matrix F is designed as

F = R−1BTP, (2.17)

where the matrix P = PT � 0, P ∈ Rn×n is the unique solution of the algebraic
Riccati equation

ATP + PA+Q− PBR−1BTP = 0, (2.18)

herein Q = QT � 0, Q ∈ Rn×n, is the matrix penalizing the states and the pair
(
√
Q,A) is observable, where

√
Q
T√

Q = Q, R = RT � 0, R ∈ Rn×n, is the
matrix penalizing the control inputs.

The full statement of the lemma is elaborated below. It provides a sufficient
condition to reach leaderless and leader-following consensus.

Lemma 2.13 ([Zhang et al., 2011]). Let the matrix F be designed as (2.17),
satisfying (2.18). Then the control protocol (2.3) achieves (2.2) for dynamics
(2.1) if

c ≥ 1
2Re(λ2(L)) ; (2.19)

the control protocol (2.11) achieves (2.10) for dynamics (2.1) and (2.9) if

c ≥ 1
2Re(λ1(L+Gp))

. (2.20)

Lemma 2.13 can be proved with the stability analysis of the matrix pencil

A− sBF = A− (σ + jω)BF.

Based on Lyapunov stability theory, A− sBF is Hurwitz if and only if there
exists a positive definite matrix P ∈ Rn×n such that

(A− sBF )∗P + P (A− sBF ) ≺ 0.

With (2.17) and (2.18), the above condition is equivalent to

−Q+ (1− 2σ)PBR−1BTP ≺ 0.



16 PRELIMINARIES ON COOPERATIVE CONTROL

If σ = Re(s) > 1/2, the above inequality would hold. Hence the rendered
synchronizing region Csyn is unbounded

Csyn , {s = σ + jω ∈ C|σ > 1/2}.

Considering Lemma 2.6 and Lemma 2.10, one has Lemma 2.13.

Corollary 2.14. When (A,B) is controllable and (
√
Q,A) is observable, and c

satisfies relevant conditions in Lemma 2.13, the dynamics of leaderless consensus
(2.7) and leader-following consensus (2.14) can be granted with a prescribed
convergence rate γ > 0, via replacing A with Â = A+ γI in (2.18).

The proof for leader-following consensus is sketched as follows. From Lemma
2.10 one knows that the convergence rate of (2.14) is indicated by Re(λ(A−
cλ(L + Gp)BF )). If A is replaced by Â = A + γI in (2.18) and c satisfies
(2.20), then Re(λ(Â − cλ(L + Gp)BF )) < 0. Since Â − cλ(L + Gp)BF and
A − cλ(L + Gp)BF share the same eigenvectors, thereby Re(λ(A − cλ(L +
Gp)BF )) = Re(λ(Â − cλ(L + Gp)BF )) − γ < −γ. The proof for leaderless
consensus can be reasoned in a similar manner.

2.3 Summary

In this chapter, necessary preliminaries on graph theory are first elaborated.
Subsequently, the cooperative control problem is briefly reviewed. Cooperative
control problems are categorized into leaderless consensus and leader-following
consensus problems. Necessary and sufficient conditions on distributed control
protocols are stated in Lemma 2.6 and Lemma 2.10 for leaderless consensus
and leader-following consensus, respectively. Finally the synchronizing region
method is introduced to provide a tractable approach to separate the control
protocol design from the dedicated graph topology. Several results presented in
this chapter will be used in the following chapters.



Chapter 3

Cooperative Observer Design
for Flexible Structures

This chapter is devoted to the design of cooperative observers for flexible
structures. To construct appropriate models for the observer design, state-space
modeling for flexible structures is introduced first. Thereafter the cooperative
observer design is addressed. Four decentralized approaches are developed in
this chapter, focusing on different types of systems and problems. Finally,
numerical simulations are carried out to testify the efficacy of all the design
methods, where a model of a representative piezo-actuated flexible structure is
considered.

3.1 Flexible structure modeling

The physical systems under study in this dissertation are spatially distributed
damping systems, or simply ‘flexible structures’. System identification is one
way to represent the dynamics of flexible structures, though a real physical
plant with instrumented actuators and sensors is required a priori. First-
principle modeling can be used instead to represent the dynamics before a real
prototype is built. Generally, to represent the dynamics of flexible structures
with first-principle methods is a complicated task including procedures like
‘idealization’, ‘discretization’ and ‘solution’, as shown in Figure 3.1 [Felippa,
2004]. Idealization is the process to construct a mathematical model as an
abstraction of the physical system under study. The constructed mathematical
model is often constituted by coupled partial differential equations (PDEs)

17
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in space and time subject to boundary conditions. Since the mathematical
abstraction has infinite number of degrees of freedom, a practical way to deal
with it is to create a spatially discretized model. The finite element method
(FEM) is one of the most widely used discretization techniques. The main idea
behind FEM is to divide the mathematical model into disjoint components of
simple geometry called finite elements, whose responses are expressed in terms
of a finite number of degrees of freedom characterized as the value of unknown
functions at a set of nodal points. The assembling response of all elements is
considered as the dynamics of the discrete model. The detailed procedure and
discrete solutions for FEM have been reported in numerous literature [Larson
and Bengzon, 2013; Petyt, 2010; Long et al., 2009] and are beyond the scope of
this dissertation. It is assumed that the detailed Finite Element (FE) model of
flexible structures is given a priori.

Figure 3.1: An overview of physical simulation steps [Felippa, 2004].

Consider a flexible structure expressed in nodal coordinates as follows{
[M ]q̈(t) + [D]q̇(t) + [K]q(t) = Luu(t),
yi = Cviq̇(t), i = 1, 2, · · · , p.

(3.1)

Herein q ∈ Rnd is the nodal displacement vector, q̇ ∈ Rnd is the nodal velocity
vector, q̈ ∈ Rnd is the nodal acceleration vector, u ∈ Rm is the control input
vector, yi ∈ Rpi is i-th the velocity output vector, [M ] ∈ Rnd×nd is the mass
matrix, [D] ∈ Rnd×nd is the Rayleigh damping matrix [Preumont, 2002], [K] ∈
Rnd×nd is the stiffness matrix, Lu ∈ Rnd×m is the input matrix, Cvi ∈ Rpi×nd

is the location matrix for yi, and each entry of Cvi is either 0 or 1.

The natural frequencies and modal shapes can be calculated by solving the
following equation

([K]− ω2
i [M ])φi = 0. (3.2)

The ordered solutions are ω1 ≤ ω2 · · · ≤ ωnd
and the corresponding modal

shapes are denoted by φ1, φ2, · · · , φnd
, respectively. Let Φ = [φ1, φ2, · · · , φnd

] ∈
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Rnd×nd be the matrix of modal shapes. Note that nd can be large due to
the dedicated FEM technique. For control design, it is necessary to further
reduce the dimension of the model from the FEM-based model. Order reduction
techniques are widely reported in the literature, see [Besselink et al., 2013],
for example. Here the mode displacement method in [Besselink et al., 2013] is
adopted. Specifically, consider the coordinate transformation

q = Φrqm, (3.3)

where qm = [qm1, qm2, · · · , qmr]T ∈ Rr, Φr = [φ1, φ2, · · · , φr] ∈ Rnd×r is a
matrix containing the first r columns of matrix Φ, and usually r � nd.

Let x =
[
qm
q̇m

]
∈ R2r, (3.1) can be written into state-space representation{

ẋ(t) = Ax(t) +Bu(t),
yi(t) = Cix(t),

(3.4)

where

A =
[

0r×r Ir
−(ΦTr [M ]Φr)−1ΦTr [K]Φr −(ΦTr [M ]Φr)−1ΦTr [D]Φr

]
∈ R2r×2r,

B =
[

0r×m
(ΦTr [M ]Φr)−1Lu

]
∈ R2r×m,

Ci = CviΦr
[
0r×r Ir

]
=
[
0r×r CviΦr

]
∈ Rpi×2r.

To proceed, the technique in [Gawronski, 2004] is adopted in order to obtain a
modal state-space representation. There exists a permutation matrix T ∈ R2r×2r

such that x = Tz, where z = [qm1, q̇m1, qm2, q̇m2, · · · , qmr, q̇mr]T . The modal
state-space representation is{

ż(t) = Ãz(t) + B̃u(t),
yi(t) = C̃iz(t), i = 1, 2, · · · , p,

(3.5)

herein Ã = TTAT ∈ R2r×2r, B̃ = TTB ∈ R2r×m and C̃i = CiT ∈ Rpi×2r.

In the state-space representation (3.5),

C̃i =
[
(0 Cviφ1) (0 Cviφ2) · · · (0 Cviφr)

]
(3.6)

and Ã is in a block diagonal form,

Ã = diag{Ami} =


Am1

Am2
. . .

Amr

 , (3.7)
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herein
Ami =

[
0 1
−ω2

i −2ξiωi

]
, (3.8)

where ξi is the i-th modal damping ratio.

Sensors and actuators are placed at flexible structures such that the following
two assumptions are satisfied.

Assumption 3.1 (Global observability). The pair (C̃, Ã) is observable, where
C̃ = [C̃T1 , C̃T2 , · · · , C̃Tp ]T .

Assumption 3.2 (Global controllability). The pair (Ã, B̃) or equivalently
(A,B) is controllable.

Next section is dedicated to the design of cooperative observers. The design of
observer-based controllers will be detailed in Chapter 4.

3.2 Cooperative observers

3.2.1 A literature survey

Consensus and cooperation of networked dynamic agents

The research of cooperative observers can be traced back to consensus and
cooperative control problems of networked dynamic agents [Olfati-Saber and
Murray, 2003, 2004]1, where ‘consensus’ means that the states of all the agents
converge to the same quantity. Algebraic graph theory [Bondy and Murty, 2008]
plays a crucial role in the convergence analysis of the consensus algorithms.
As mentioned in the previous chapter, consensus problems can be classified
into leaderless consensus as studied in [Ren et al., 2007], and leader-following
consensus as considered in [Hong et al., 2006; Chen et al., 2007; Hong et al.,
2008]. Most of early works in literature focus on single or double integrator
dynamics [Ren et al., 2005], while general linear dynamics is considered in [Li
et al., 2010], where observer-type consensus protocols based on relative output
measurements between neighboring agents are proposed. With general linear
dynamics, if full state information can be communicated among neighboring
agents, the aforementioned observer-type consensus algorithms reduce to static
protocols. Additionally in [Li et al., 2010], a concept of synchronizing region (or
consensus region) is introduced as a measure for the robustness of the protocol

1In distributed computing of computer science, consensus problems are addressed earlier,
see [Kshemkalyani and Singhal, 2008; Lynch, 1997].
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against graph variations and as a basis for the protocol design. Along this
line, unbounded synchronizing regions are rendered in [Zhang et al., 2011] with
an LQR-based design, which indicates a relatively good robustness against
variations of the communication graph.

Consensus-based distributed estimation in sensor networks

Extensive research on consensus of multi-agent systems has promoted the
development of distributed estimation in sensor networks [Xiao et al., 2005;
Olfati-Saber and Shamma, 2005; Olfati-Saber, 2005; Spanos et al., 2005a,b;
Carli et al., 2008]. [Olfati-Saber, 2005] proposes a distributed Kalman filtering
scheme consisting of low-pass and band-pass consensus filters for fusion of sensor
and covariance data, and local Kalman filters for the innovation update and the
time update. Compared to early works [Xiao et al., 2005; Spanos et al., 2005a,b],
a distinct feature in [Olfati-Saber, 2005] is that consensus filtering is performed
at the same rate as the local Kalman filtering, which consequently mitigates
the communication overhead. Later, low-pass and band-pass consensus filters
are replaced by high-pass consensus filters in [Olfati-Saber, 2007] to extend the
applicability of [Olfati-Saber, 2005] from homogeneous to heterogeneous sensor
fusion. Along this line, convergence properties regarding local estimates of state
and estimation error covariance matrix are further analyzed in [Kamgarpour
and Tomlin, 2008].

Design of cooperative observers: centralized approach over undirected/di-
rected graphs

Noticeably, a new type of continuous-time consensus-based distributed Kalman
filters is introduced as well in [Olfati-Saber, 2007] with heterogeneous
measurements over undirected sensor networks, where the state estimate
of every node is innovated by both the aggregated sensor data and the
broadcasted state estimates from its neighboring nodes. The rational of
sharing state estimates between neighboring nodes is to improve coherence
of all the estimates in sensor networks and mitigate poor estimation of some
local nodes due to large measurement noises or limited observability issues.
This type of architecture evokes fruitful follow-up research [Millán et al.,
2012; Matei and Baras, 2012; Zhang et al., 2015a,b; Orihuela et al., 2015;
Liu et al., 2016], where a local Luenberger-like observer2 is combined with
consensus of neighboring state estimates. This type of state estimators are

2The Luenberger-like observer here means that the structure of the observer in question is
similar to that of a traditional Luenberger observer, yet slightly different due to the additional
consensus term.
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referred to as cooperative observers in this dissertation. [Millán et al., 2012]
studies distributed estimation problem for a discrete-time linear-time-invariant
(LTI) process with network-induced delays and packet dropouts, where packet
dropouts are considered as extended delays and a sufficient condition for observer
convergence in the form of nonlinear matrix inequalities (NLMIs) is proposed
by Lyapunov–Krasovskii functional analysis. [Matei and Baras, 2012] assumes
that the consensus weights for the neighboring state estimates are given and
provides a test for the existence of Luenberger-like observer gains in terms
of feasibility of linear matrix inequalities (LMIs), and a design algorithm for
distributed observers is also presented by solving a suboptimal problem. In
[Zhang et al., 2015a], a sufficient and necessary condition for convergence of
the estimation error covariances is provided based on LMIs, while a critical
limitation of this work is that the process needs to be locally observable at each
sensor node. Distributed filtering under random communication link failures is
studied in [Zhang et al., 2015b], where distributed algebraic Riccati equations
are used to analyze the convergence of estimation error covariances and the
convergence condition is given in terms of LMIs at the end. [Orihuela et al.,
2015] addresses distributed estimation and regulation problem for discrete-time
LTI processes over directed graphs, and the design of all parameters is cast
as an optimization problem subject to NLMIs, hence allowing one to trade off
regulation performance against control effort. [Liu et al., 2016] tackles the design
of cooperative observers under arbitrarily large time delays over undirected
sensor networks.

Design of cooperative observers: decentralized approach over undirected
graphs

It is worth mentioning that most existing works on cooperative observers
rely on centralized design, i.e. all parameters (local Luenberger-like observer
gains and consensus gains, etc.) are determined simultaneously. Centralized
design can easily lead to numerical feasibility issues as the dimension of the
state and number of nodes (i.e. the size of the network) grows. Recently,
researchers start to investigate decentralized design of cooperative observers
[Zhu et al., 2014, 2015; Liu et al., 2015; Kim et al., 2016]. On the one hand,
decentralized design can possibly mitigate the computation load in large-scale
sensor networks, consequently yielding better scalability property. On the other
hand, decentralized design introduces potential flexibility in reconfiguration
of network topology and integration of redundant sensors. A sufficient and
necessary condition for the existence of cooperative observers for continuous-
time LTI plants is established in [Zhu et al., 2014], where a decentralized design
technique is obtained. Following the spirit of [Zhu et al., 2014], observer-based
regulation/stabilization of continuous-time LTI plants is addressed in [Zhu et al.,
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2015], and cooperative observer design for a class of continuous-time plants with
nonlinear dynamics is studied in [Liu et al., 2015]. A novel decentralized design
of cooperative observers is proposed in [Kim et al., 2016], where for each sensor
node, the local Luenberger-like observer gain is designed to address the state
estimation in the detectable subspace; while the consensus gain is designed
to manipulate the state estimation convergence mainly in the undetectable
subspace.

3.2.2 Problem statement: decentralized design of coopera-
tive observers over directed graphs

The listed works regarding decentralized construction of cooperative observers
in [Zhu et al., 2014, 2015; Liu et al., 2015; Kim et al., 2016] are all
focusing on undirected graph topology, which is rather restrictive in real-world
applications since communication can be unidirectional among sensor nodes due
to communication constraints or power-saving considerations. The rest of this
section would be mainly focused on decentralized design of cooperative observers
over directed graph topology, based on the prior results in the aforementioned
literature in Subsection 3.2.1.

As depicted in Figure 1.2, each observer is incorporated into a local intelligent
center called agent. The set of agents is denoted as V = {1, 2, · · · , p}, the set
of edges is denoted as E . The formed digraph is G = (V, E) with the associate
adjacency matrix A = [aij ]. Observers are designed without applying any
control actions on the plant, i.e. let u = 0 in (3.5). The dynamics of the
autonomous plant is {

ż(t) = Ãz(t),
yi(t) = C̃iz(t), i ∈ V.

(3.9)

The cooperative observers are in the structure of
˙̂zi(t) = Ãẑi(t) + Li(yi(t)− ŷi(t)) + Fi · (

∑
j∈Ni

aij(ẑj(t)− ẑi(t)))

ŷi(t) = C̃iẑi(t)
, i ∈ V,

(3.10)
herein ẑi ∈ R2r is the state vector of observer i, Fi ∈ R2r×2r is called
communication matrix in this dissertation, it is a consensus weighting matrix
for the local neighborhood difference

∑
j∈Ni

aij(ẑj(t) − ẑi(t)), Li ∈ R2r×pi is
the Luenberger-like observer gain matrix.
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The observation error for observer i is denoted by δi = ẑi − z, and the errors of
all observers are grouped in the vector δ:

δ =
[
δT1 δT2 · · · δTp

]T
. (3.11)

Proposition 3.3. The dynamics of δ is given by

δ̇ = Aεδ, (3.12)

where Aε = diag{Ã− LiC̃i} − F · (L ⊗ I2r), and F = diag{Fi}.

Proof. From (3.9) and (3.10), the dynamics of δi can be derived as

δ̇i = (Ã− LiC̃i)δi + Fi
∑
j∈Ni

aij(δj − δi). (3.13)

The proof is immediately completed when stacking the dynamics of all the
δi, i = 1, 2, · · · , p, together.

The objective is to design {Li} and {Fi} in a decentralized manner on a network
graph G such that the states of all the observers converge to the plant states

lim
t→∞

(ẑi(t)− z(t)) = 0, for any z(0), ẑi(0), and any i ∈ V. (3.14)

In other words, the problem is to design {Li} and {Fi} for each single sensor node
on some directed graph G to yield a Hurwitz matrix Aε in (3.12). Generally,
the dedicated network graph G also affects the performance of cooperative
observers, but in contrast to {Li} and {Fi}, it is not treated as a design variable
in this dissertation. Either it is completely known a priori or it is unknown but
fulfills some necessary graph connectivity requirements.

Note that this chapter mainly focuses on the convergence analysis of the
cooperative observers, therefore process and measurement noises are neglected.

3.2.3 Contributions

Four decentralized designs of cooperative observers over directed graphs are
proposed in this chapter. The 1st scheme assumes that the global information of
the graph topology is known to each local agent. There are no local detectability
or observability constraints imposed. The 2nd scheme is developed for systems
in which the global information of the graph topology is unknown to each local
agent. This scheme requires local detectability, which means all the unstable
states should be observable from the local measurements. The convergence
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rate of this scheme can be limited since mostly the system is not locally
observable (but still locally detectable). The 3rd scheme is developed without
the global information of the graph topology as well, and it has a broader
class of applications compared to the 2nd scheme, since it can be adopted for
systems which are not locally detectable. Finally, the 4th scheme is developed
by first applying a local observability decomposition, and then designing the
parameters in observable and unobservable subspaces, respectively. This scheme
can be developed without knowing the exact graph topology, and does not
impose conditions of local detectability/observability. More importantly, the
convergence rate can be tuned to be arbitrarily fast in theory. An overview of
the four design schemes is shown in Figure 3.23. The computational complexity
in terms of the number of decision variables is compared quantitatively after
the elaboration of the four schemes.

directed graph topology

known ?

 

is arbitrarily fast 

convergence rate

required ?

scheme 1 Y

N

scheme 3
(3.2.6)

N

loc. detec.?
   (3.2.5)
scheme 2

N

Y

scheme 4
(3.2.7)

Y

(3.2.4)

Figure 3.2: Flowchart of four schemes on decentralized design of cooperative
observers.

3When the system is locally detectable, scheme 3 can also be adopted. In the flowchart,
this is omitted to emphasize the difference between scheme 2 and scheme 3.
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3.2.4 Scheme 1: decentralized design for globally observable
systems with complete information of graph topology

This subsection presents a decentralized way to construct cooperative observers
on strongly connected digraphs, where the graph information is completely
known to each sensor node. The decentralized design is basically a generalization
of results in [Zhu et al., 2014] on directed graphs. In [Zhu et al., 2014],
the following lemma plays an important role in the convergence analysis
of cooperative observers. It will also serve as a crucial tool in the later
generalization.
Lemma 3.4 ([Zhu et al., 2014]). Let D = diag{D1, D2, · · · , Dp}, where Di ∈

Rn×n is symmetric for i = 1, 2, · · · , p, such that
p∑
i=1

Di ≺ 0. Let L = LT be

the Laplacian matrix of an undirected graph G and P ∈ Rn×n � 0, then for
γ > max{0, λD/κ(1− ρ)2},

D − γL ⊗ P ≺ 0.

Herein λD is the maximum eigenvalue of D, κ is the smallest nonnegative
eigenvalue of L ⊗ P , and ρ ∈ (0, 1) is some constant.

Lemma 3.4 is used for the generalized results stated in the following theorem,
where a key step in the generalization is the selection of a new Lyapunov
function, compared with [Zhu et al., 2014].
Theorem 3.5. Under Assumption 3.1, select M = [M1,M2, · · · ,Mp] such that
Ã−MC̃ is Hurwitz, where Mi ∈ R2r×pi . On a strongly connected digraph G,
in (3.10) let Li = 1

wi
Mi, where wi is defined in Lemma 2.4, Fi = γI with a

sufficiently large γ, for all i ∈ V, then the convergence of cooperative observers
is asymptotically achieved as expressed in (3.14).

Proof. Since Ã−MC̃ Hurwitz, there exists P = PT � 0, P ∈ R2r×2r such that

(Ã−MC̃)TP + P (Ã−MC̃) ≺ 0.

Denote the local observation error with δi = ẑi − z and the total observation
error with δ = [δT1 , δT2 , · · · , δTp ]T . Based on Lemma 2.4, one knows that L′ =
(WL + LTW ) � 0, where W = diag{wi}. Define the Lyapunov function
candidate V (δ) =

∑p
i=1 wiδ

T
i Pδi. The time derivative of V is

V̇ (δ) = δT [Ω− γL′ ⊗ P ]δ, (3.15)

herein Ω = diag{Ω1,Ω2, · · · ,Ωp}, and

Ωi = wi[(Ã− LiC̃i)TP + P (Ã− LiC̃i)] = ΩTi .
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Noticing Li = 1
wi
Mi and

∑p
i=1 wi = 1, one has

p∑
i=1

Ωi = [(Ã−MC̃)TP + P (Ã−MC̃)] ≺ 0.

Based on Lemma 3.4, one knows that if

γ > γ = max{0, λΩ/κ
′(1− ρ′)2},

then Ω − γL′ ⊗ P ≺ 0, where λΩ is the maximum eigenvalue of Ω, κ′ is the
smallest non-negative eigenvalue of L′ = (WL+ LTW ) and ρ′ ∈ (0, 1) is some
constant. Hence V̇ (δ) < 0,∀ δ 6= 0.

Remark 3.6. Theorem 3.5 provides a particular way to construct cooperative
observers (3.10), where the threshold γ = max{0, λΩ/κ

′(1 − ρ′)2} may be
conservative. A more practical procedure is as follows: find a matrix M such
that the matrix (Ã−MC̃) is Hurwitz, then with Li = (1/wi)Mi and Fi = γI,
where γ is sufficiently large such that Aε in (3.12) is Hurwitz. This approach is
decentralized in the sense that the parameters of all the agents are not designed
simultaneously. However, note that this approach is not purely decentralized,
since each agent still needs the global knowledge of graph topology G and the
global output matrix C̃. In view of (3.12), to improve the convergence rate,
intuitively one can select M such that the real parts of eigenvalues of (Ã−MC̃)
are more negative. The other parameter affecting the convergence rate is γ,
though its effect is not straightforward, one can tune γ to a suitably large value
to yield a good convergence rate.

Remark 3.7. The result of [Zhu et al., 2014] remains a special case of Theorem
3.5. To see this, when the graph G is undirected, L = LT , one has 0 = LTw =
Lw, hence wi = 1/p, i = 1, 2, · · · , p. The design parameters reduce to Li = pMi,
Fi = γI, which are exactly the results of [Zhu et al., 2014].

As mentioned in Remark 3.6, the proposed method still needs the global
knowledge of graph topology to calculate 1

wi
. On the one hand, this requirement

makes the method difficult to apply when the (large-scale) graph topology is
unknown to each local sensor node; on the other hand, it renders the method
possibly sensitive to topology variations incurred by communication link failures
or simply topology reconfiguration in implementation phases. Thereby a method
independent of the specific graph topology is proposed in the following.
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3.2.5 Scheme 2: decentralized design for globally observable
locally detectable systems with incomplete information
of graph topology

In this part, it is assumed that the graph information is unknown to each sensor
node, hence the approach to be developed must be independent of the specific
graph topology for reaching convergence (3.14). This property will ensure better
robustness against graph variations compared to the method in Theorem 3.5.

As mentioned in Subsection 3.2.1, [Olfati-Saber, 2007] proposes a new type
of continuous-time distributed Kalman filters for a linear time-varying system
perturbed by both process and measurement noises, and the local estimation of
each node is innovated by both the aggregated sensor data and the communicated
state estimates. Despite that the considered graph in [Olfati-Saber, 2007] is
restricted to be undirected, a nice feature of those distributed Kalman filters
is that the design of the observer gain matrix {Li} and the communication
matrix {Fi} are completely separated from the detailed graph topology G. It is
worth to investigate whether a similar separation feature can be obtained for
directed graphs as well. By selecting an appropriate Lyapunov function, one
will see that the adapted design technique for the steady-state version of the
distributed Kalman filter can indeed be directly applied to the LTI process (3.9)
over more general strongly-connected directed graphs. However, it should
be pointed out that the algebraic Riccati equations (AREs) involved in the
generalized design are adopted solely to ensure convergence of the (noise-free)
cooperative observers. Therefore the given matrices in each ARE do not have
the meaning of noise spectral density and each positive definite solution loses
the meaning of estimation error covariance.

To ensure that the algebraic Riccati equation at each node is solvable, the
system requires the following local detectability.
Assumption 3.8 (Local detectability). Each pair (C̃i, Ã), ∀ i ∈ V, is detectable.
Namely, all the unstable states of the system lie in the observable subspaces of
each agent.

In general, local detectability is a strong assumption. Nevertheless, Assumption
3.8 inherently holds for flexible structures since there are no unstable states in
the system due to the physical damping.

Next, the theorem originating from [Olfati-Saber, 2007] is restated on more
general strongly-connected directed graphs, followed by its proof.
Theorem 3.9. Under Assumption 3.8, in (3.10) let

Li = P̃iC̃
T
i R̃
−1
i , Fi = γP̃i, (3.16)
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where γ ≥ 0 and P̃i � 0 is the unique solution of the following algebraic Riccati
equation

ÃP̃i + P̃iÃ
T + Q̃− P̃iC̃Ti R̃−1

i C̃iP̃i = 0, (3.17)

herein Q̃ � 0, the pair (
√
Q̃, ÃT ) is observable, and R̃i � 0. If G is strongly

connected, then the objective stated in (3.14) is achieved.

Proof. Consider the local observation error δi = ẑi − z and denote the total
observation error with δ = [δT1 , δT2 , · · · , δTp ]T . Based on Lemma 2.4, one knows
that (WL+LTW ) � 0, where W = diag{wi}. Consider the Lyapunov function
candidate V (δ) =

∑p
i=1 wiδ

T
i P̃
−1
i δi ≥ 0, where P̃i is the solution of (3.17), the

time derivative of V is derived as

V̇ (δ) =
p∑
i=1

wiδ
T
i Λiδi + 2γ

p∑
i=1

p∑
j=1

aijwiδ
T
i (δj − δi)

= δTΛδ − γδTΨLδ,

(3.18)

where
Λ = diag{wi[(Ã− LiC̃i)T P̃−1

i + P̃−1
i (Ã− LiC̃i)]}

and
ΨL = (WL+ LTW )⊗ I2r � 0.

With (3.17) and Li = P̃iC̃
T
i R̃
−1
i , it can be derived that

Λ = diag{−wi(P̃−1
i Q̃P̃−1

i + C̃Ti R̃
−1
i C̃i)} ≺ 0.

Note that Λ − γΨL ≺ −γΨL � 0, hence V̇ (δ) = δT (Λ − γΨL)δ < 0, for all
δ 6= 0.

Remark 3.10. The proposed method does not require knowing the global
structure of the network i.e. the exact graph G, when designing {Li} and
{Fi}. Compared to [Olfati-Saber, 2007], the key step in generalizing the result
on directed graphs is the selection of an adapted Lyapunov function. To ensure
that the unique solution of (3.17) is positive definite, the pair (

√
Q̃, ÃT ) needs to

be observable. Q̃ � 0 is necessary for the Lyapunov stability analysis. A natural
choice of Q̃ is simply an identity matrix. From the proof, one can see that γ can
be zero in principle. Indeed if Assumption 3.8 is satisfied, the convergence can
be always achieved no matter γ = 0 or γ > 0. In fact, if the system is locally
observable to each sensor node, the communication of state estimates is even
cumbersome. However, in most cases, the dynamics of flexible structures is not
locally observable but only locally detectable. This necessitates the communication
of state estimates, which can possibly facilitate the convergence rate of estimation
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error in the unobservable subspace of each sensor node. In view of (3.12), to
improve the convergence rate of state estimation, intuitively, one can design a
Hurwitz matrix (Ã − LiC̃i) with larger stability margin via tuning Q̃ and R̃i,
though this improvement can be ultimately limited by the local unobservability of
each node. The value of γ affects the convergence rate as well, though its effect
is not straightforward, one can tune γ to a suitably large value to yield a good
convergence rate.

The method in Theorem 3.9 is restricted to locally detectable systems, i.e.
each agent necessarily observes all the unstable system states. Indeed, the
flexible structures are inherently locally detectable systems. For the sake of
completeness, however, a decentralized design explicitly for locally undetectable
systems is considered in the following.

3.2.6 Scheme 3: decentralized design for globally observable
locally undetectable systems with incomplete informa-
tion of graph topology

In this part, a decentralized approach over directed graphs is developed, which
explicitly considers locally undetectable systems. The overall graph topology is
not necessary known to each sensor node. The development is based on prior
results of [Kim et al., 2016], which is restricted to undirected graphs.

As mentioned in Subsection 3.2.1, [Kim et al., 2016] partially decomposes the
design of Luenberger-like observer gain and consensus gain in detectable and
undetectable subspaces, respectively. Therefore, the technique can be applied
on plants which are locally undetectable to sensor nodes (but still globally
detectable/observable to the overall aggregated sensor nodes).

Specifically, for each node i, i ∈ V, there exists an orthonormal matrix that
transforms the system dynamics (3.9) into a Kalman observability decomposed
form [Hespanha, 2009, Theorem 16.2]4. With a few additional matrix
manipulation, one can carry out the detectability decomposition. Specifically,
there exists an orthonormal matrix Ji ∈ Rn×n such that with z = Jiz̃i, the
system dynamics (3.9) turns into

˙̃zi = JTi ÃJiz̃i =
[
Aid 0
Air Aid̄

]
z̃i,

yi = C̃iJiz̃i =
[
Cid 0

]
z̃i, i = 1, 2, · · · , p,

(3.19)

4Here (3.9) should be considered as the state-space representation of a more general system
rather than only dynamics of flexible structures.
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where the pair (Cid, Aid) is detectable and the matrix Aid̄ is absent or not
Hurwitz. In (3.10), the observer gain Li is designed as

Li = Ji
[
LTid 0T

]T
,

where Lid is selected such that the matrix Aid − LidCid is Hurwitz. And Fi is
designed as

Fi = γF̃−1
i (ki).

Herein, γ ∈ R+, F̃i(ki) , Ji

[
kiMid 0

0 I

]
JTi � 0, where Mid = MT

id � 0 is the
unique solution to the following algebraic Lyapunov equation

(Aid − LidCid)TMid +Mid(Aid − LidCid) = −I. (3.20)

The sufficient condition for the convergence of cooperative observers is proposed
in a theorem in [Kim et al., 2016], and this theorem is restated here with its
proof omitted.

Theorem 3.11 ([Kim et al., 2016]). If G is undirected and connected and
Assumption 3.1 is satisfied, then the convergence (3.14) is achieved if ki and γ
are chosen large enough such that{

(ki − β
θ(ε̄) )(γ − β̄

2λ2
) > β̄2p2

2λ2θ(ε̄) ,

ki ≥ 1, γ > β̄
2λ2

,
,∀ i ∈ V, (3.21)

where ε̄ ∈ (0,
√

2) is some positive constant, βi , 2‖Air‖2 + ‖AT
id̄

+ Aid̄‖,

β̄ = max
i∈V

βi, β =
p∑
i=1

βi, λ2 is the smallest positive eigenvalue of L, and

θ(ε̄) = 1
2 (1− (1− ε̄2

2 )2).

In the following, with a Lyapunov function different from [Kim et al., 2016], the
convergence analysis is generalized on strongly connected directed graphs.

Theorem 3.12. Suppose G is directed and strongly connected and Assumption
3.1 is satisfied, W = diag{wi} and wi are defined as in Lemma 2.4, then the
convergence (3.14) is achieved if ki and γ are chosen large enough such that{

(ki − β′

wθ(ε̄′) )(γ − β̄′

2λ′
2
) > β̄′2p2

2wλ′
2θ(ε̄′) ,

ki ≥ 1, γ > β̄′

2λ′
2
,

,∀ i ∈ V, (3.22)

where ε̄′ ∈ (0,
√

2) is some positive constant, βi , 2‖Air‖2 + ‖AT
id̄

+ Aid̄‖,

β̄′ = max
i∈V

wiβi, β′ =
p∑
i=1

wiβi, λ′2 is the smallest positive eigenvalue of L′ =

WL+ LTW , w = min
i∈V

wi, and θ(ε̄′) = 1
2 (1− (1− ε̄′2

2 )2).
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Proof. Let the local observation error be denoted by δi = ẑi − z and the total
observation error be denoted by δ = [δT1 , δT2 , · · · , δTp ]T . Based on Lemma 2.4,
WL + LTW � 0, where W = diag{wi}. Considering the Lyapunov function
candidate V (δ) =

∑p
i=1 wiδ

T
i F̃i(ki)δi, the time derivative of V is

V̇ (δ) =
p∑
i=1

δTi Ξiδi + 2γ
p∑
i=1

p∑
j=1

aijwiδ
T
i (δj − δi)

=
p∑
i=1

δTΞδ − γδTΨLδ,

(3.23)

where Ξi = wi(Ã−LiC̃i)T F̃i(ki)+wiF̃i(ki)(Ã−LiC̃i) and Ξ = diag{Ξ1,Ξ2, · · · ,Ξp},
and ΨL = (WL+LTW )⊗I2r = L′⊗I2r � 0, the rest of the proof is trivial.

Remark 3.13. Compared to the method in Theorem 3.9, the method in
Theorem 3.12 can be applied to not only locally detectable systems but also
locally undetectable systems. The exact thresholds for ki and γ in (3.22) are in
fact related to the dedicated graph G. However from a practical point of view,
one can choose sufficiently large ki and γ such that (3.22) is satisfied for a large
class of G. Therefore the dedicated graph G is not necessarily known to each
sensor node.

Remark 3.14. Let δi = Jiδ̃i, from (3.13) one can derive that ˙̃δi =[
Aid − LidCid 0

Air Aid̄

]
δ̃i + JTi

[
(γ/ki)M−1

id 0
0 γI

]∑
j∈Ni

aij(JTi Jj δ̃j − δ̃i). It

can be observed that how γ and ki affect the convergence rate of δ̃i is not
straightforward.

Remark 3.15. When considering flexible structures which are inherently locally
detectable, the detectability decomposition is unnecessary. Specifically in this
case, Ji = I, ∀ i ∈ V, Aid = Ã, Aid̄ = ∅, C̃i = Cid, Li = Lid, Fi = γ

ki
M−1
id .

The aforementioned design is consequently simplified, and (3.22) is reduced to
ki ≥ 1 and γ > 0. In view of (3.12), to yield a good convergence of states’
estimation, intuitively one can select Li such that the matrix (Ã − LiC̃i) is
sufficiently stable, though this improvement might be ultimately limited due to
local unobservability of each agent. As for γ/ki, its effect on the convergence
rate is not straightforward, one can possibly improve the convergence rate by
tuning γ/ki to a suitable value.
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3.2.7 Scheme 4: decentralized design based on local observ-
ability decomposition with incomplete information of
graph topology5

The previous methods in Subsection 3.2.5 and 3.2.6 can achieve convergence
of cooperative observers for flexible structures, since flexible structures are
inherently locally detectable systems in the sense that each pair (C̃i, Ã) is
detectable. However, locally detectable systems are not necessarily locally
observable systems in which each pair (C̃i, Ã) is observable. In fact, in most
cases, the system is not locally observable for each sensor node. If the system is
not locally observable, the forgoing two methods can be severely restricted in
improving the convergence rate. A decentralized design which can handle locally
unobservable systems to (arbitrarily) improve convergence rates is therefore
proposed next. The general idea is to separate the observable modes from the
unobservable modes for each agent, and solve state estimation problems in the
observable and the unobservable subspaces, respectively.

Consider (3.5)-(3.7) and define S , {1, 2, · · · , r}. Let zj =
[
qmj q̇mj

]T ∈
R2, j ∈ S, be the state group. Each velocity output vector yi ∈ Rpi can be
expressed as yi = C̃iz =

r∑
j=1

C̃ijzj , and

C̃ij = [0pi×1 Cviφj ], C̃i =
[
C̃i1, C̃i2, · · · , C̃ir

]
, (3.24)

where Cvi is the output location matrix in (3.1) with elements equal to either 1
or 0, φj is the j-th modal vector.
Proposition 3.16. For each agent i, by a pure state-group permutation, (3.5)
can be transformed into an observability decomposed form, with the system matrix

and the output matrix in the form of
[
Aio

Aiō

]
and

[
Cio 0

]
, respectively.

Moreover, the state group zk is unobservable from the measurement yi if and
only if C̃ik = 0.

Proof. Ã has eigenvalues λi, λ∗i = −ξiωi±jωi
√

1− ξ2
i , i = 1, 2, · · · , r, with the

corresponding eigenvectors ϑi, ϑ∗i ∈ C2r, where ϑi is a vector with all elements
equal to zero except the (2i − 1)-th one which is 1 and the 2i-th one which
is −ξiωi + jωi

√
1− ξ2

i . In addition, λi and λ∗i are the conjugate eigenvalues
of Ami in (3.7). Based on Popov-Belevitch-Hautus test [Hautus, 1970], if the
eigenvalues of Ã, λk, is unobservable from yi, then

Rank(
[
Ã− λkI
C̃i

]
) < 2r,

5Early results have been published in [Zhang et al., 2017b]
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hence (Ã − λkI)ϑk = 0, and C̃iϑk = 0. Notice that C̃iϑk = C̃ik(1,−ξkωk +
jωk

√
1− ξ2

k)T = (−ξkωk + jωk
√

1− ξ2
k)Cviφk. Therefore C̃iϑk = 0 =⇒

Cviφk = 0, indicating C̃ik = 0. Similarly, if the conjugate eigenvalue λ∗k
is unobservable, one can get C̃ik = 0 as well. On the other hand, if C̃ik = 0,
i.e. Cviφk = 0, then there exists an eigenvector ϑk 6= 0 such that C̃iϑk = 0,

hence
[
Ã− λkI
C̃i

]
ϑk = 0, therefore λk is an unobservable eigenvalue. Similarly,

if C̃ik = 0, one can deduce that λ∗k is an unobservable eigenvalue as well.
Therefore C̃ik = 0⇐⇒ λk and λ∗k are unobservable eigenvalues. Note that λk
and λ∗k are conjugate eigenvalues of Amk. By inspecting each C̃ij , with pure
state-group permutation, the system matrix Ã and the output matrix C̃i in (3.5)

can be transformed into
[
Aio

Aiō

]
and

[
Cio 0

]
, respectively. All eigenvalues

of Aio are observable, and all eigenvalues of Aiō are unobservable. Given that
the dynamics of state group zk is described by Amk, it is trivial to see that zk
is unobservable from the measurement yi if and only if C̃ik = 0.

Remark 3.17. Proposition 3.16 holds due to the special form of the system
matrix (3.7) and the particular choice of the measurements, velocity outputs.
Generally it does not hold, but for the important class of systems describing
flexible structures this indeed holds.

Definition 3.18. The observable set of agent i, i ∈ V, denoted as Oi, is the
set of indices of the state groups which are observable from yi. The unobservable
set of agent i, i ∈ V, denoted as Oi, is the set of indices of the state groups
which are unobservable from yi.

Remark 3.19. From Proposition 3.16, one can see that Oi = {j ∈ S|C̃ij 6= 0},
and Oi = {j ∈ S|C̃ij = 0}.

Definition 3.20. The converse observable set of state group zj , j ∈ S, denoted
as Dj, is the set of agents where zj are observable. The converse unobservable
set of state group zj , denoted as Dj , is the set of agents where zj is unobservable.

Remark 3.21. From Proposition 3.16, one can see that Dj = {i ∈ V|C̃ij 6= 0}
and Dj = {i ∈ V|C̃ij = 0}.

Example 3.22. Consider a case shown in Table 3.1. For agent 1,
‖C̃11‖, ‖C̃12‖ 6= 0, hence O1 = {1, 2}, O1 = ∅. With similar analysis, one
knows O2 = {1}, O2 = {2}; O3 = {2}, O3 = {1}. For state group z1,
‖C̃11‖, ‖C̃21‖ 6= 0, hence D1 = {1, 2}, D1 = {3}. Similarly, for state group z2,
D2 = {1, 3}, D2 = {2}.

Remark 3.23. Note that Definition 3.18 and Definition 3.20 are conjugate:
j ∈ Oi ⇐⇒ i ∈ Dj ; j ∈ Oi ⇐⇒ i ∈ Dj.
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Table 3.1: Value of ‖C̃ij‖ for Example 3.22

state group z1 state group z2
agent 1 1 0.5
agent 2 1 0
agent 3 0 1

Remark 3.24. According to Assumption 3.1, the following holds,

O1 ∪ O2 ∪ · · · ∪ Op = S,

O1 ∩ O2 ∩ · · · ∩ Op = ∅.

The digraph G, formed by all the agents, is required to fulfill the following
assumption.
Assumption 3.25 (Graph requirements). The communication graph G satisfies
the following condition: for any j ∈ S, the subgraph Gj, formed by the nodes
belonging to Dj, has outgoing edges pinning into all the roots of a spanning
forest of the subgraph Gj, formed by the nodes belonging to Dj.
Example 3.26. Consider the case in Example 3.22 again. For j = 1, subgraph
G1 is formed by nodes belonging to D1 = {1, 2}; subgraph G1 is formed by
nodes belonging to D1 = {3}. Hence either agent 1 or agent 2 needs to send
information to agent 3. For j = 2, subgraph G2 is formed by nodes belonging
to D2 = {1, 3}; subgraph G2 is formed by nodes belonging to D2 = {2}. Hence
either agent 1 or agent 3 needs to send information to agent 2. Therefore, a
graph topology depicted in Figure 3.3 fulfills the graph requirements stated in
Assumption 3.25.

Figure 3.3: An admissible graph for Example 3.26.

Remark 3.27. Note that general directed graphs are considered here and a
strongly connected graph is a special case of graphs satisfying Assumption 3.25;
whereas many existing results [Olfati-Saber et al., 2007; Zhu et al., 2014] focus
only on undirected graphs.

Similar to the internal states of the plant z = [zT1 , zT2 , · · · , zTr ]T , the states of
each observer are divided accordingly into r groups

ẑi =
[
ẑTi1 ẑTi2 · · · ẑir

]T ∈ R2r,∀ i ∈ V, ẑij ∈ R2,∀ j ∈ S. (3.25)
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From Proposition 3.16, one knows that the states of each observer i ∈ V can
be rearranged such that the new state vector ẑnewi is a tandem of observable
state vector ẑio ∈ Rnio , containing zij , for j ∈ Oi and unobservable state vector
ẑiō ∈ Rniō , containing zij , for j ∈ Oi. Specifically for ẑi, there is a permutation
matrix Ti ∈ R2r×2r such that

ẑnewi =
[
ẑTio ẑTiō

]T = Tiẑi.

Correspondingly, under the new coordinates, the new system and the output
matrices become 

TiÃT
−1
i = TiÃT

T
i =

[
Aio

Aiō

]
,

C̃iT
T
i =

[
Cio 0pi×niō

]
.

(3.26)

Remark 3.28. After this permutation of state groups, each observer is in a
observability decomposed form [Hespanha, 2009]. Since the pair (Cio, Aio) is
observable, a Luenberger-like observer can be designed for ẑio, relying only on
the local measurement yi to estimate the corresponding part of the plant states.

However, to make the state ẑiō converge to the corresponding unobservable part
of system states, the local measurements are to no avail, so the observer i needs
information from its peers in the communication network. Each component
of ẑiō is treated individually, namely, the dynamics of each zij for j ∈ Oi is
considered. The dynamics of each observer i ∈ V is decomposed in the form of

˙̂zio(t) = Aioẑio(t) + Lio(yi(t)− ŷi(t)),
˙̂zij(t) = Aj ẑij(t) + cjFj(

∑
k∈Ni

aik(ẑkj(t)− ẑij(t))), j ∈ Oi,

ŷi(t) =
∑
j∈Oi

Cij ẑij(t) = Cioẑio(t).
(3.27)

Herein Lio is the observer gain matrix, cj > 0 is the scalar coupling gain, and
Fj ∈ Rnj×nj is the communication matrix. For the observer i, Lio, {cj} and
{Fj}, j ∈ Oi are the parameters to be designed. The rationale of decomposing
the dynamics of each observer in such a way as shown in (3.27) is to allow for a
decentralized design later.

Remark 3.29. In (3.27), cj and Fj can take a more general form reflected by
the notation cij and Fij . However with the first subscript omitted here, different
observers share some of the design parameters. For example, if Oi ∩ Ok 6= ∅,
then for j ∈ Oi ∩ Ok, observer i and k will share the same parameters cj, Fj.
The motivation for omitting the first subscript is to adopt the synchronizing
region method for the decentralized design as illustrated later in this subsection.
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For system integration, it is worth to explicitly link (3.10) with (3.27) via the
following equations

Li = TTi

[
Lio

0niō×pi

]
, (3.28)

Fi = TTi

[
0nio×nio 0nio×ni0̄

0ni0̄×nio
Ni

]
Ti, (3.29)

where Ni = diag{cjFj}, j ∈ Oi.

For convergence analysis, define the observation error of observer i for the state
group zj as

δij , ẑij − zj . (3.30)

For observer i, stack all the δij with j ∈ Oi together, denote them as δio. These
are the observation errors of observer i for all the state groups zj which observer
i estimates locally.

Proposition 3.30. The dynamics of δio, i ∈ V, is

δ̇io = (Aio − LioCio)δio. (3.31)

Proposition 3.31. For j ∈ Oi, the dynamics of δij is

δ̇ij = Ajδij + cjFj [
∑
k∈Ni

aik(δkj − δij)]

= Ajδij + cjFj [
∑
k∈Ni,

k∈Dj

aik(δkj − δij) +
∑
k∈Ni,
k∈Dj

aik(δkj − δij)]

= Ajδij + cjFj [
∑
k∈Dj

aikδkj −
∑
k∈Ni

aikδij ] + cjFj
∑
k∈Dj

aikδkj .

(3.32)

The last term in (3.32) is denoted as

vij = cjFj
∑
k∈Dj

aikδkj . (3.33)

Fixing j, stack all the δij with i ∈ Dj , denoted as δōj ∈ Rnj |Dj |. These are the
observation errors with respect to state group zj for all those observers that do
not estimate zj directly relying on the local measurements but rather on the
information from the communication network.
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Proposition 3.32. The dynamics of δōj , j ∈ S, is

δ̇ōj = (I|Dj | ⊗Aj − cjLj ⊗ Fj)δōj + vj , (3.34)

where vj is a stack of vij with all i ∈ Dj. Lj is obtained via deleting the k-th
row and column from the Laplacian matrix L, for all k ∈ Dj.

Proof. From (3.32), one knows that for i ∈ Dj (or equivalently j ∈ Oi),

δ̇ij = Ajδij + cjFj [
∑
k∈Dj

aikδkj −
∑
k∈Ni

aikδij ] + cjFj
∑
k∈Dj

aikδkj

= Ajδij − cjFj [diδij +
∑
k∈Dj

(−aik)δkj ] + vij .

(3.35)

The coefficients appearing in the term

[diδij +
∑
k∈Dj

(−aik)δkj ],

di and −aik, k ∈ Dj , form the i-th row of L with the ix-th columns removed for
ix ∈ Dj . Fixing j, stacking δij for all i ∈ Dj to construct δōj , one immediately
gets (3.34) from (3.35).

Lemma 3.33. Under Assumption 3.25, Lj constructed in (3.34) is a
nonsingular M-matrix.

Proof. From the original graph G, a group of nodes (i ∈ V, i ∈ Dj) is excluded.
The effect of the excluded nodes on the remaining ones, as reflected by Lj ,
is the same as if the remaining nodes were pinned by a single leader, with
appropriately summed pinning gains6. In the latter instance, the pertaining
pinned Laplacian matrix is a nonsingular M-matrix if the single leader pins into
all the roots of a spanning forest [Wu, 2008]. In the former and original instance,
this condition is equivalent to that the excluded group of nodes pinning with
their outgoing edges into all roots of the spanning forest of the subgraph Gj ,
formed by the nodes belonging to Dj . According to Assumption 3.25, Lj is a
nonsingular M-matrix.

Proposition 3.34. Aε in (3.12) is Hurwitz iff the dynamics of δio, ∀ i ∈ V,
and δoj , ∀ j ∈ S, are asymptotically stable.

6All incoming edges aik, k ∈ Dj , of a pinned node i, are summed as if originating from a
single pinning leader, namely,

∑
k∈Dj

aik.
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Proof. The result can be easily proved by noticing that the components of δ
include all the components of δio,∀ i ∈ V, and δoj ,∀ j ∈ S, and vice versa.

The following theorem proposes a decentralized design of the parameters for all
the observers to estimate the plant states when no controls or their estimates
are applied.

Theorem 3.35. Under Assumption 3.1 and Assumption 3.25,

1) let each Lio, i ∈ V, be selected such that the matrix Aio − LioCio is Hurwitz;

2) let Fj = R̂−1
j P̂j , i ∈ S, where P̂j = P̂Tj � 0 ∈ Rnj×nj is the unique positive

definite solution of the following control algebraic Riccati equation

ATj P̂j + P̂jAj − P̂jR̂−1
j P̂j + Q̂j = 0, (3.36)

where Q̂j � 0 ∈ Rnj×nj , R̂j � 0 ∈ Rnj×nj are given, and the pair (
√
Q̂j , Aj) is

observable;

3) let cj , j ∈ S, satisfy the condition:

cj ≥
1

2λRj

, j ∈ S, (3.37)

with λRj
= mink Re(λjk), and λj• are the eigenvalues of Lj .

Then with the dynamics of (3.9) and (3.10), lim
t→∞

(ẑi(t)− z(t)) = 0, ∀ i ∈ V.

Proof. Since each matrix Aio − LioCio is Hurwitz, the dynamics (3.31) of all
the δio, ∀ i ∈ V, is asymptotically stable.

Under the Assumption 3.1, O1∪O2∪· · ·∪Op = S. Hence all δio, ∀ i ∈ V , consist
of all δkj , where ∀ j ∈ S and ∀ k ∈ Dj . Therefore, vij = cjFj

∑
k∈Dj

aikδkj in
(3.32) vanishes asymptotically in time. Hence the stability of δōj is determined
by the matrix I|Dj | ⊗Aj − cjLj ⊗ Fj in (3.34).

Based on Lemma 3.33, Lj is a nonsingular M-matrix, hence satisfying
preconditions on pinned Laplacian matrices for leader-following consensus
in Lemma 2.9. According to Lemma 2.10 and Lemma 2.13, the matrix
I|Dj | ⊗ Aj − cjLj ⊗ Fj for all j ∈ S is Hurwitz, if all Fj , j ∈ S, are designed
based on (3.36) and all cj , j ∈ S, satisfy (3.37). Therefore the dynamics of δōj
for all j ∈ V is asymptotically stable.

Given that the dynamics of both δio,∀ i ∈ V , and δoj ,∀ j ∈ S, is asymptotically
stable, according to Proposition 3.34, Aε is Hurwitz. This completes the
proof.
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Remark 3.36. Theorem 3.35 provides a decentralized design to yield a Hurwitz
matrix Aε. To improve the convergence rate of observation error δ, the
convergence of δio and δōj can be addressed instead. For dynamics of δio, Lio
can be constructed through pole-placement method, placing all the eigenvalues of
(Aio −LioCio) to the left of eigenvalues of Aio. For dynamics of δōj , in view of
(3.34), (3.36), (3.37) and Corollary 2.14, its convergence rate can be guaranteed
by replacing Aj with Aj + γjI in (3.36), where γj > 0, and cj should be set
sufficiently large.

Remark 3.37. In Theorem 3.35, (3.36), (3.37) are chosen with an eye towards
the synchronizing region familiar from cooperative control theory. The aim
in cooperative control is to render matrices like Aε Hurwitz. However that
can not be generally achieved by straightforward classical pole-placement if the
graph is allowed to vary or is imperfectly known. Synchronizing region approach
achieves asymptotic stability while providing a certain level of robustness to
varying graphs. Namely, the subsystems, whose dynamics is denoted with Ajs,
are considered separately from the detailed graph topology. In particular, the
distributed gains Fj and cj designed in (3.36) and (3.37), respectively, yield an
unbounded synchronizing region, allowing for a wide class of communication
graphs. Hence this design can handle less-than-perfectly reliable graphs, with
possible agent or link failures. Conventional pole-placement would generally not
result in these specific properties.

Practicality issues

In the practical design, one may encounter several issues with the developed
decentralized design, and some of practical issues are thereby addressed more
clearly in the following.

• In practical design, it may happen that for agent i, the magnitude of some
‖C̃ij‖ is nonzero but quite small, hence the corresponding state group zj
is difficult to observe. This may yield a Lio with large-amplitude entries.
One realistic approach to tackle this to consider those states corresponding
to small ‖C̃ij‖ as being in the unobservable set Oi. Such terms would
only introduce a small vanishing disturbance which a properly designed
asymptotically converging observer is robust to [Khalil, 2002]. In such a
case, after the design of distributed observers, it needs to be checked if
the resulting matrix Ã− LiC̃i is still Hurwitz. If it is not Hurwitz, then
Lio in (3.31) should be reselected7.

7For example, if Lio is constructed by pole-placement method, then the eigenvalues of
(Aio − LioCio) should be set closer to the imaginary axis than the original design.
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• The instance in which an observer i with all ‖Cij‖, j ∈ S, relatively large
does not cause problems for the forgoing approach. This only means
that the observer i can estimate all the plant states based on its local
measurements yi. It sends its state estimates to the network, but does
not receive any state estimates from the network.

• Theorem 3.35 also allows some agent i to have Cij = 0, with all j ∈ S. In
this case that agent does not have a local sensing device and reconstructs
all the states based only on the information from the network. It would
serve as a linking node or a router node in the network, and possibly as
an actuator as well.

3.2.8 Computational reduction compared to a centralized
method

The decentralized approaches developed in Subsection 3.2.4 - 3.2.7 reduce the
computational effort compared to the centralized design in e.g. [Orihuela
et al., 2015]. The computational complexity is compared in terms of number of
decision variables. The considered plant is some flexible structure expressed in,
for example, (3.9).

Centralized method

The computational complexity of the centralized method (without controller
design) in [Orihuela et al., 2015] is

O(2r2p2 + 2r
p∑
i=1

pi +
p∑
i=1

di). (3.38)

The number of decision variables grows quadratically with the number of modes,
r, and the number of agents, p, and grows linearly with the dimension of the
total outputs,

p∑
i=1

pi, and the number of the total communication links,
p∑
i=1

di.
Next it will be shown that the decentralized schemes have less decision variables
to design given the same plant and graph topology.
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Scheme 1

The computational complexity for scheme 1 is

O(2r
p∑
i=1

pi) +O(p), (3.39)

where the first term is linked to the centralized observer gain M , and the second
term is linked to the zero left eigenvector of the the Laplacian matrix L. The
complexity grows linearly with the number of modes, r, the dimension of the
total outputs,

p∑
i=1

pi, and the number of agents, p.

Scheme 2

The computational complexity of each agent in scheme 2 is

O(2r2 + r). (3.40)

It grows quadratically with the number of the modes, r. Note that the scalar
γ in this scheme is practically selected as a suitable positive number, hence
computationally neglectable.

Scheme 3

The computational complexity of agent i in scheme 3 is

O(2r2 + r) +O(2r · pi). (3.41)

The first term is related to the communication gain, and the second item is
related to the local observer gain. The complexity grows quadratically with the
number of the modes, r, and linearly with the dimension of the local output, pi.

Scheme 4

In scheme 4, the computational complexity for agent i, i ∈ V, is

O(n2
io) + niō

2 O(3) ≤ O(4r2). (3.42)

The first term is related to the local observer gain design in observable subspaces,
and the second term is related to niō

2 algebraic Riccati equations for 2×2 matrices.
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Note that, in practice, the design of cjs in (3.37) is to choose a sufficiently large
number, hence its computational cost is negligible. The conservative upper
bound of the complexity of each single agent in scheme 4 grows quadratically
with the number of the modes, r, and is independent of the total agent number,
p. In practice, due to local unobservability of each agent in most cases, nio can
be much smaller than 2r, therefore the complexity is generally overestimated.

3.3 Numerical simulations

In this section, simulations are performed with the four decentralized methods
in Subsection 3.2.4 - Subsection 3.2.7.

3.3.1 Numerical model

A clamped aluminum beam with surface-bonded piezoelectric actuators is
considered as the representative smart flexible structure. The distribution of the
piezoelectric actuators and sensors on the beam is depicted in Figure 3.4. The
parameters of the smart flexible structure are shown in Table 3.2. A detailed FE
model of the smart flexible structure is built using a procedure similar to the one
in [Zhang et al., 2016]. The beam is divided into 100 elements equidistantly. The
dynamics of the sensors is neglected. The piezoelectric actuators are polarized
in the thickness direction and the electric field is assumed to be constant along
the thickness of the actuator. The equation of motion of the smart flexible
structure is derived using the Hamilton principle, yielding

[M ]q̈(t) + [D]q̇(t) + ([Ks]−ΘqφΘ−1
φφΘT

qφ)q(t) = −Θqφu(t) (3.43)

where q denotes the nodal displacement vector, consisting of transverse
displacement and rotation of cross-section of all the “nodes” [Petyt, 2010],
[D], [M ] and [Ks] are the damping matrix, mass matrix and stiffness matrix,
respectively. Θqφ and Θφφ are the piezoelectric coupling matrix and the
piezoelectric capacity matrix, respectively, u is the input vector of voltages
driving the piezoelectric actuators. The Rayleigh damping is

[D] = η[M ] + ζ[Ks], (3.44)

where the values of η and ζ are listed in Table 3.2. The constructed FE model
is cross-validated using LMS Samcef Field®, a commercial FEM solver suite
from Siemens PLM Software. Velocities are considered as the measured outputs

y(t) = Cviq̇(t), i = 1, 2, 3, 4, (3.45)
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1  2  3  4

Sensor

0.5 m

0.165 m
0.25 m

0.335 m

0.42 m

 4 3 21

Actuator

0.475 m

Figure 3.4: A piezoelectric actuated beam clamped at both ends, four piezo
actuators are distributed along the beam.

Table 3.2: Parameter table

Parameter Denotation Value
beam length 0.5 m
beam width 0.03 m
Poisson ratio 0.33
beam thickness 0.003 m
beam density 2700 kg/m3

E Young’s Modulus 69× 109Pa
ω1 1st resonance frequency 2π × 18.5 rad/s
ω2 2nd resonance frequency 2π × 52 rad/s
ω3 3rd resonance frequency 2π × 104.2 rad/s
ω4 4th resonance frequency 2π × 176.2 rad/s
ω5 5th resonance frequency 2π × 270.5 rad/s
ω6 6th resonance frequency 2π × 380.9 rad/s
η Rayleigh damping coefficient 0.112
ζ Rayleigh damping coefficient 2.769× 10−7

actuator type PZT 5H
actuator size 0.03× 0.03m2

actuator thickness 0.001m

where Cvi is the location matrix for each measurement channel. In practice,
velocity information can be obtained by numerical integration of band-pass
filtered outputs of accelerometers.

The first 6 vibration modes are extracted via the mode displacement method
with the coordinate transformation [Besselink et al., 2013]

q = Φ6qm,
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herein Φ6 stands for the first 6 columns of Φ, where Φ is the matrix of the
ordered natural mode shapes. Let

x =
[
qTm q̇Tm

]T
,

the dynamics of the piezoelectric actuated beam expressed by (3.43) and (3.45)
can be written into state-space representation{

ẋ = Ax+Bu,

yi = Cix,
(3.46)

where

A =
[

06×6 I6
−(ΦT6 [M ]Φ6)−1ΦT6 [Kaug]Φ6 −(ΦT6 [M ]Φ6)−1ΦT6 [D]Φ6

]
,

B =
[

06×4
−(ΦT6 [M ]Φ6)−1Θqφ

]
, Ci = CviΦ6

[
06×6 I6

]
,

and [Kaug] = [Ks]−ΘqφΘ−1
φφΘT

qφ.

To demonstrate the fidelity of the truncated model, the magnitude-frequency
response from Actuator 1 to Sensor 1 of the FE model and the truncated
(reduced) model is shown in Figure 3.5.

As introduced previously, A is block-diagonalized mode-wisely, by putting
z = T−1x in the form

z =
[
(qm1, q̇m1), · · · , (qm6, q̇m6)

]T =
[
zT1 , · · · , zT6

]T
. (3.47)

The modal state-space representation is{
ż(t) = Ãz(t) + B̃u(t),
yi(t) = C̃iz(t), i ∈ V,

(3.48)

herein Ã = TTAT ∈ R12×12, B̃ = TTB ∈ R12×4 and C̃i = CiT ∈ R1×12. The
detailed matrices are given in Appendix A.1.

In particular, Ã = diag{A1, A2, · · · , A6} with

Ai =
[

0 1
−ω2

i −2ξiωi

]
,

ωi and ξi are the i-th modal frequency in rad/s and modal damping ratio,
respectively.
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The communication graph topology assigned for the four agents is shown in
Figure 3.6. It satisfies Assumption 3.25. The corresponding Laplacian matrix is

L =


1 0 0 −1
−1 1 0 0
0 −1 2 −1
0 0 −1 1

 .
One positive zero left eigenvector (wTL = 0T ) is

wT = 1
5[1, 1, 1, 2].

All the numerical simulations in this chapter are run in the MATLAB/Simulink
environment, considering a reduced-order model which consists of the first 6
vibration modes. The initial condition of the plant states is arbitrarily chosen
as z(0) = [0.005, 1, 0.005, 1, 0, 1, 0, 1, 0, 1]T . All initial states of the observers are
set to zero.
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Figure 3.5: Magnitude-Frequency response from Actuator 1 to Sensor 1,
comparison between the high-fidelity FE model and the reduced-order model.

For a good estimation performance, the observation errors δ in (3.12) need to
converge fast enough. Consequently, the real parts of all the eigenvalues of Aε
need to be sufficiently negative. If δ is desired to converge to e−7 = 0.09% of
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1 2 3 4

Figure 3.6: Communication topology.

its initial value within 0.4s, then a threshold can be set for the real parts of
eigenvalues of Aε, as shown below.

|Re(λ(Aε))| ≥ 7/0.4 = 17.5. (3.49)

3.3.2 Scheme 1

Scheme 1 is the design approach based on Theorem 3.5. First, find aM ∈ R12×4

such that the matrix (Ã−MC̃) is sufficiently Hurwitz. The matrix M is given
in the Appendix A.2. In (3.10), let Li = 1

wi
Mi, Fi be chosen as Fi = 250I (i.e.

with a sufficiently large scalar γ = 250), where i = 1, 2, 3, 4, and Mi is the i-th
column of the matrix M . The rendered Aε in (3.12) has all its eigenvalues with
real parts less than −30. From (3.49), its convergence time is expected to be
0.4×17.5

30 ' 0.23 seconds. The local observation errors δi = ẑi − z, i = 1, 2, 3, 4
together with the zoomed-in views focusing on the beginning are depicted in
Figure 3.7. It can be observed that the errors converge to zero at the end, and
the convergence time is indeed around 0.2 seconds. The simulated and the
estimated responses are further compared in Figure 3.8, from which one can see
that the estimation behaviors are in line with the observation errors in Figure
3.7.
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Figure 3.7: Scheme 1: the state observation error of agents, converging to zero
within 0.4 seconds, different color indicates different state.
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Figure 3.8: Scheme 1: comparison between the simulated natural response yi
(dash-dot line) and the estimated response ŷi (—).
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Reconfiguration of graph topology

From its construction of cooperative observers, one can see that the convergence
of scheme 1 under a reconfigured communication graph topology is not
guaranteed. However, it is still interesting to see how the estimation performance
gets affected in case of graph variation. As an example, keep all the designed
parameters unchanged, but update the graph to the one shown in Figure
3.9. Under the reconfigured graph topology, the simulated and estimated
measurements are depicted in Figure 3.10, respectively. Compared with Figure
3.8, the estimation performance is not really degraded. This ‘robustness’ may
come from the conservativeness of the Lyapunov-based method in construction
of cooperative observers in scheme 1.

Figure 3.9: Reconfigured comunication topology.
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Figure 3.10: Scheme 1 under graph reconfiguration: the simulated natural
response yi (dash-dot line) and the estimated response ŷi (—). The estimation
performance is quite similar to Figure 3.8, which is possibly attributed to the
conservativeness of the Lyapunov-based construction.
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3.3.3 Scheme 2

Scheme 2 is the design approach based on Theorem 3.9. Li and Fi are
constructed based on (3.16), with γ = 0.01 and P̃i the solution of (3.17)
with Q̃ = I12 and R̃i = 0.1 for i = 1, 2, 3, 4. The rendered Aε in (3.12) has
all its eigenvalues with real parts less than −20. From (3.49), its convergence
time is expected to be 0.4×17.5

20 ' 0.35 seconds. The local observation errors
δi = ẑi − z, i = 1, 2, 3, 4, are depicted in Figure 3.11. Indeed, the convergence
time is longer than Scheme 1, when comparing with Figure 3.7. The simulated
measurements and the estimated responses are also compared, as shown in
Figure 3.12, which are consistent with the error trajectories in Figure 3.11.
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Figure 3.11: Scheme 2: the state observation error of agents, converging to zero
within 0.4 seconds, different color indicates different state.
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Figure 3.12: Scheme 2: comparison between the simulated natural response yi
(dash-dot line) and the estimated response ŷi (—).

Comparison with purely decentralized estimation

Since the design can be neatly divided into construction of local observer
matrices {Li} and communication matrices {Fi}. The estimation performance
of purely decentralized observers (γ = 0) and distributed/cooperative observers
(γ = 0.01) can be compared. The results are shown in Figure 3.13, the faster
convergence rate justifies the contribution of cooperative observers through
communication matrices {Fi}.
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Figure 3.13: Convergence rate comparison between purely decentralized
estimation and distributed estimation with scheme 2.

Reconfiguration of graph topology

Since the design parameters {Li} and {Fi} are independent from specific
graph topology, scheme 2 therefore works under incomplete information of
communication graph topology or reconfiguration of graph topology, as long as
the graph topology satisfies Assumption 3.1. The updated graph topology is
the same as in scheme 1, shown in Figure 3.9. Under the reconfigured graph
topology, the simulated and the estimated measurements are depicted in Figure
3.14, respectively. Compared with Figure 3.12, the estimation performance is
not substantially changed.
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Figure 3.14: Scheme 2 under graph reconfiguration: comparison between the
simulated natural response yi (dash-dot line) and the estimated response ŷi
(—). Compared with Figure 3.12, the estimation performance is not affected.

Integrating an extra agent to the network

This simulation scenario is to present how to integrate extra sensors to the
network with only a small number of additional parameters to design. Consider
adding an additional agent 5 with sensing capability into the well-established
network. The sensor is added to measure the location 0.20m from the left
clamped end in Figure 3.4. The augmented graph is depicted in Figure 3.15.

1 2 3 4

5

Figure 3.15: Communication topology, after adding agent 5.

All the previously designed parameters remain unchanged. L5 and F5 are



54 COOPERATIVE OBSERVER DESIGN FOR FLEXIBLE STRUCTURES

constructed based on (3.16) and (3.17), where γ and Q̃ should keep the same
value as before, γ = 0.01, Q̃ = I12. With R̃5 = 0.1, L5 and F5 are constructed.
The 2-norm of observation error for each agent is presented in Figure 3.16. One
can see that the observers errors of the added agent converge to zero within 0.4
seconds. Furthermore, the estimation performance of the original four agents
are not critically influenced. This scenario reveals some flexibility in integrating
extra (redundant) observers into the network: besides that the computation
load for the extra observer(s) is mild, the total estimation performance can be
possibly retained after the integration.
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Figure 3.16: Convergence of ‖δi‖2, where δi = ẑi − z, i = 1, 2, · · · , 5, after
integration of agent 5.

3.3.4 Scheme 3

Scheme 3 is the design approach based on Theorem 3.12. As pointed out in
Remark 3.15, the detectability decomposed form (3.19) is granted by nature
(Ji = I) with Aid = Ã, Aid̄ = ∅, Cid = C̃i. Li = Lid is selected such that the
matrix Ã − LiC̃i is sufficiently stable. The matrices Li for i = 1, 2, 3, 4 are
given in Appendix A.3. Fi = γ/kiM

−1
id , where ki = 1, i = 1, 2, 3, 4, γ = 50,

and Mid is the solution of the Lyapunov equation (3.20). The rendered Aε in
(3.12) has all its eigenvalues with real parts less than −18. From (3.49), its
convergence time is expected to be 0.39 seconds. The local observation errors
δi = ẑi − z, i = 1, 2, 3, 4, are depicted in Figure 3.17. The simulated and the
estimated responses are also compared, as shown in Figure 3.18.
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Figure 3.17: Scheme 3: the state observation error of agents, converging to zero
within 0.4 seconds, different color indicates different state.
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Figure 3.18: Scheme 3: comparison between the simulated natural response yi
(dash-dot line) and the estimated response ŷi (—).
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Reconfiguration of graph topology

When ki ≥ 1 and γ > 0, the designed parameters {Li} and {Fi} are independent
from specific graph topology. Similar to scheme 2, scheme 3 also works under
incomplete information of communication graph topology or reconfiguration
of graph topology, as long as the graph topology satisfies Assumption 3.1.
Under the reconfigured graph topology shown in Figure 3.9, the simulated
measurements and estimated measurements are presented in Figure 3.19.
Compared with Figure 3.18, the estimation performance is not substantially
changed.
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Figure 3.19: Scheme 3 under graph reconfiguration: comparison between the
simulated natural response yi (dash-dot line) and the estimated response ŷi
(—). Compared with Figure 3.18, the estimation performance is not affected.

Integrating an extra agent to the network

This simulation scenario is to present how to integrate extra sensors to the
network with only a small number of additional parameters to design. Consider
adding the agent 5 at the same position as in scheme 2. The augmented graph
is the same as depicted in Figure 3.15.

All the previously designed parameters remain unchanged. L5 = L5d is selected
such that the matrix Ã− L5C̃5 is sufficiently stable. The matrix L5 is given in
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Appendix A.3. F5 = γ/k5M
−1
5d , where γ should take the previous value γ = 10,

k5 = 1, and M5d is the solution of the Lyapunov equation (3.20). The 2-norm
of observation error for each agent is presented in Figure 3.20. One can see
that the observers errors of the added agent converge to zero within 0.4 seconds.
Furthermore, the estimation performance of the original four agents are not
critically influenced. Similar to Scheme 3, this scenario reveals some flexibility
in integrating extra (redundant) observers into the network: 1) the computation
load for the extra observer(s) is mild; 2) the total estimation performance can
be possibly retained after the integration.
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Figure 3.20: Convergence of ‖δi‖2, where δi = ẑi − z, i = 1, 2, · · · , 5, after
integration of agent 5.

3.3.5 Scheme 4

Scheme 4 is the design approach based on Theorem 3.35. The 2-norms of Cij
for i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6 are depicted in Figure 3.21. According
to Proposition 3.16, the observable set for each agent should be uniquely
determined. However, as pointed out in ‘Practicality issues’ of Subsection
3.2.7, when the magnitude of some ‖Cij‖ is relatively small, one can treat the
corresponding state group as being in the unobservable set Oi, as long as the
condition O1 ∪O2 ∪ · · · ∪Op = S still holds. This treatment will only introduce
small vanishing disturbances [Khalil, 2002] to the Luenberger-like observers.

The observable set for each agent is heuristically allocated as follows

O1 = {1, 2}, O2 = {1, 3}, O3 = {1, 2}, O4 = {4, 5, 6}.
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Figure 3.21: ‖Cij‖2, i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6.

Obtaining Lj , j ∈ S is straightforward; for example, for j = 3, D3 = {2}, by
eliminating the 2nd row and the 2nd column from L, one gets

L3 =

1 0 −1
0 2 −1
0 −1 1

 .
L1o, L2o, L3o, L4o are here designed based on pole-placement method such that
(Aio − LioCio) is sufficiently stable, their values are listed in Appendix A.4.
F1, F2, F3, F4, F5, F6 are designed based on (3.36): for j = 1, 2, 3, 4, 5, 6, Q̂j = I2,
R̂j = 100, and Aj replaced by Aj + 20I. In (3.37), λR1

= λR2
= λR4

= λR5
=

λR6
= 1; λR3

= 0.3820. All {cj} are chosen as cj = 10 to provide sufficient
robustness margin against possible variations of graph topology. Lis and Fis
are constructed based on (3.28) and (3.29), respectively. The rendered Aε in
(3.12) has all its eigenvalues with real parts less than −19. From (3.49), its
convergence time is expected to be 0.37 seconds. The local observation errors
δi = ẑi − z, i = 1, 2, 3, 4, are depicted in Figure 3.22. The errors converge to
zero within 0.4 seconds. The simulated and the estimated responses are further
compared in Figure 3.23. It should be re-emphasized here that, in theory, the
convergence rate can be arbitrarily fast, by increasing the threshold in designing
{Lio} and {Fj}.
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Figure 3.22: Scheme 4: the state observation error of agents, converging to zero
within 0.4 seconds, different color indicates different state.
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Figure 3.23: Scheme 4: comparison between the simulated natural response yi
(dash-dot line) and the estimated response ŷi (—).
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Failure of communication link 4 −→ 3

To demonstrate that the proposed decentralized approach is robust against
communication failures to a certain degree, a link failure is considered from
agent 4 to agent 3. From Figure 3.6 one knows that the remaining graph still
satisfies Assumption 3.25. The local observation error δi = ẑi − z, i = 1, 2, 3, 4
is given in Figure 3.24. Compared with Figure 3.11, no critical degradation
in terms of convergence time is observed, indicating the robustness property
of the decentralized design. It is natural to deduce that the more redundant
communication links there are, the more robust the networked control system
will be.
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Figure 3.24: State observation errors of agents, after a communication link
failure; no critical degradation is observed compared with Figure 3.11.

Reconfiguration of graph topology

To highlight that the proposed decentralized design is adaptive in reconfiguration
of graph topology. As long as the reconfigured graph topology satisfies
Assumption 3.25, the design parameters of cooperative observers can remain
the same as the original design. The updated graph topology is shown in
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Figure 3.9. Under the reconfigured graph topology, the simulated measurements
and estimated measurements are presented in Figure 3.25. The estimation
performance is comparable with the resultsin Figure 3.23.

t [s]
0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

1

0 0.02 0.04

-0.2

-0.1

0

0.1

0.2

t [s]
0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4
2

0 0.02 0.04

-0.2

-0.1

0

0.1

0.2

t [s]
0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4
3

0 0.02 0.04

-0.2

-0.1

0

0.1

0.2

t [s]
0 0.1 0.2 0.3 0.4

-0.04

-0.02

0

0.02

0.04

0.06
4

0 0.02 0.04

-0.02

0

0.02

0.04

Figure 3.25: Under graph reconfiguration: comparison between the simulated
natural response yi (dash-dot line) and the estimated response ŷi (—).

Integrating an extra agent to the network

The augmented graph is depicted in Figure 3.15. Only parameters of agent 5
needs to be designed. The 2-norms of Cij for j = 1, 2, 3, 4, 5, 6 are depicted in
Figure 3.26. The observable set for agent 5 is allocated as O5 = {1}. L5o is
designed based on pole-placement method, whose value is given in Appendix A.4.
Note that even though the graph topology has changed, ci for i = 1, 2, 3, 4, 5, 6
still satisfy the condition (3.37), since their values are initially chosen large
enough. L5 and F5 are constructed based on (3.28) and (3.29), respectively.
The 2-norm of observation error for each agent is presented in Figure 3.27. One
can see that the observers errors of the added agent converge to zero within 0.4
seconds. Furthermore, the estimation performance of the original four agents
are retained. In this scenario, the only parameter to design is L5o. This reveals
some flexibility in integrating extra (redundant) observers into the network: 1)
the computation load for the extra observer(s) is mild; 2) the total estimation
performance can be possibly retained after the integration. Note that, the
norms of all the errors stay close to each other along the time history, exhibiting
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certain degree of coherence. This is mostly probably due to the communication
terms between cooperative observers.
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Figure 3.26: Profile of ‖C5j‖2, j = 1, 2, 3, 4, 5, 6, the observable set for agent 5
is assigned as O5 = {1}.
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Figure 3.27: Convergence of ‖δi‖2, where δi = ẑi − z, i = 1, 2, · · · , 5, after
integration of agent 5.

Distributed estimation with more agents

This simulation scenario is to verify the proposed distributed estimation
scheme on a more complex directed graph, specifically one comprising 11
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agents. The sensors are distributed on the beam with the nodal index
5, 15, 25, 35, 45, 50, 60, 70, 80, 90, 95, respectively. The observable sets
are allocated as: O1 = {5, 6}, O2 = {1, 2, 3, 4}, O3 = {1, 2}, O4 ∼ O7 = {1},
O8 = {1, 2}, O9 = {1, 2, 3}, O10 = {1, 2, 3, 4, 5, 6}, O11 = {5, 6}. The graph
topology is shown in Figure 3.28, and it can be easily verified that it satisfies
Assumption 3.25. As shown in Figure 3.29, convergence of estimates of all the
11 agents to the true states verifies the efficacy of the decentralized design on
this more complex graph topology. Note that the graph in Figure 3.28 is more
general, or less restrictive, than strongly connected graphs, therefore adding
redundant edges on this graph would strengthen its connectivity and facilitate
convergence of states of cooperative observers.

Figure 3.28: A graph topology with more agents.
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Figure 3.29: Convergence of ‖δi‖2, where δi = ẑi − z, i = 1, 2, · · · , 11.

3.4 Summary

State-space modeling of flexible structures based on FE models is firstly
presented in this chapter. Cooperative observers for distributed state estimation
are then introduced, where each cooperative observer builds up the state estimate
based on both its local measurements and the communicated state estimate
from its neighboring observers. Four schemes are developed for the decentralized
construction of the cooperative observers. The first scheme assumes that the
global information of the graph topology is known to each local agent. The
second scheme is for locally detectable systems, where the design is independent
from the dedicated graph topology. The third scheme can be applied to both
locally detectable and locally undetectable systems, where each local agent does
not require knowing the exact information of the global graph topology. The
fourth scheme is for systems without the exact information of graph topology,
where due to the local observability decomposition, no requirements of local
observability/detectability are imposed, and the convergence rate can be tuned
arbitrarily fast. Extensive simulation results of all the four schemes are presented
for state estimation of a flexible beam model.



Chapter 4

Observer-based Controller
Design

The previous chapter proposes decentralized designs for cooperative observers
without any acting controls, resulting in a Hurwitz matrix Aε in (3.12). In this
chapter, controls are added back into the design. In other words, dynamics (3.5)
instead of (3.9) is considered.

The structure of agent i, consisting of both a cooperative observer and a
controller, is in the form of

˙̂zi(t) = Ãẑi(t) + Li(yi(t)− ŷi(t)) + Fi · (
∑
k∈Ni

aik(ẑk(t)− ẑi(t)) + B̃Ûi(t),

ŷi(t) = C̃iẑi(t),
Ûi(t) = Kẑi(t),
ui(t) = Kiẑi(t).

(4.1)
It is considered that the controller in each agent generates an observer-based
local control action, ui(t), for the plant as shown in the last equation of (4.1).
Herein Ki ∈ Rmi×n is the local feedback matrix to be designed for agent i.
Ûi(t) ∈ Rm is the estimation, by agent i, of the overall control actions applied
to the plant, and it is constructed based on the local state estimate ẑi:

Ûi(t) = Kẑi(t),

where K ∈ Rm×n is the global feedback matrix, and

K =
[
KT

1 KT
2 · · · KT

p

]T
. (4.2)

65
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This chapter is dedicated to the design of feedback matrix K, such that lim
t→∞

(ẑi(t)− z(t)) = 0, for all i ∈ V,
lim
t→∞

z(t) = 0.
(4.3)

The main results regarding the design of observer-based control laws are first
presented, followed by numerical simulations where the closed-loop performance
is evaluated.

4.1 Main results

4.1.1 Interdependence on K

Proposition 4.1. When controls are applied, the dynamics of the global
observation error δ for all agents, defined in (3.11), is given by

δ̇ = (Aε +Bε(K))δ, (4.4)

where Aε is defined in (3.12), Bε(K) = Ip ⊗ B̃K + 1p ⊗Υ(K), and

Υ(K) =
[
−B̃1K1 −B̃2K2 ... −B̃pKp

]
.

Proof. From (3.5) and (4.1), the dynamics of δi = ẑi − z can be derived as

δ̇i = (Ã− LiC̃i)δi + Fi
∑
j∈Ni

aij(δj − δi) + B̃Kδi −
p∑
j=1

B̃jKjδj . (4.5)

The proof is immediately completed when stacking the dynamics of all the δi,
i ∈ V, together.

Remark 4.2. When there are no control actions, the error dynamics is given
by (3.12), which is here considered as the nominal case. Note that if K = 0,
Bε(K) = Ip ⊗ B̃K + 1p ⊗Υ(K) = 0. As shown in (4.4), the mismatch between
the real control actions u and the estimated control actions Ûi, i ∈ V, generates
a perturbation for the dynamics of observation error δ.

From (3.5) and (4.1), express ẑi as (z + δi), the dynamics of z is derived as

ż = Ãz +
p∑
i=1

B̃iKi(z + δi) = (Ã+ B̃K)z −Υ(K)δ. (4.6)
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Define the augmented state vector ξ = [zT , δT ]T . Based on (4.6) and Proposition
4.1, the closed-loop dynamics of ξ is derived as

ξ̇ =
[
Ã+ B̃K −Υ(K)

0 Aε +Bε(K)

]
ξ. (4.7)

The closed-loop dynamics (4.7) is a hierarchical system, it is asymptotically
stable if both (Aε +Bε(K)) and (Ã+ B̃K) are Hurwitz.

Remark 4.3. Dynamics of (4.7) indicates that the separation principle fails to
hold in the distributed observer and controller design. The matrix K influences
the dynamics of both observers and controllers.

4.1.2 A heuristic approach

In this part, a heuristic approach will be developed. Note that eigenvalues of
Aε +Bε(K) are continuous functions of K, i.e. λ(Aε +Bε(K)). When K = 0
and Aε is designed Hurwitz based on Theorem 3.5, Theorem 3.9, Theorem 3.12
or Theorem 3.35, then the real parts of the eigenvalues, Re(λ(Aε +Bε(K))) =
Re(λ(Aε)) < 0. Hence, in principle any matrixK stabilizing the pair (Ã, B̃) with
a sufficiently small ‖K‖ can yield a Hurwitz matrix (Aε+Bε(K)). Heuristically,
one could follow the following procedures

1) stabilize (Ã, B̃) by state feedback design such as the pole-placement
method, LQR method, etc.

2) check the eigenvalues of (Aε +Bε(K)). If the eigenvalues of (Aε +Bε(K))
is not sufficiently to the left of the imaginary axis, return to step 1) and
reduce ‖K‖ accordingly.

In the following, an LQR-based stabilizing method is presented. Let K =
−R−1B̃TP, and P = PT � 0 ∈ Rn×n is the unique solution of the following
algebraic Riccati equation

ÃTP + PÃ+Q−PB̃R−1B̃TP = 0 (4.8)

and Q � 0 ∈ Rn×n,R � 0 ∈ Rm×m are given matrices.

By tuning Q and R, ‖K‖ can be limited to a safe range such that K could
stabilize the closed-loop dynamics (4.7).

Remark 4.4. In view of dynamics (4.7), to yield a good damping performance,
the real parts of the eigenvalues of (Ã + B̃K) should be sufficiently negative,
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which may result in a large ‖K‖. This should not severely deteriorate the
convergence rate of the estimation error, determined by the real parts of the
eigenvalues of (Aε + Bε(K)). Hence the heuristic approach is basically an
iterative trial-and-error approach to yield a satisfactory closed-loop performance.

4.2 Numerical simulations

In this section, observer-based controllers are designed for the same flexible
beam model as in Chapter 3 and cooperative observers are designed based on the
four schemes proposed in Section 3.3, respectively. The same feedback matrix K
are designed for all the four schemes based on the heuristic approach introduced
in Section 4.1, where Q and R in (4.8) are assigned as Q = I12,R = 3× 10−5I4.
In view of (4.7), one can see that, like the conventional observer-based controller
design, a good damping performance requires sufficiently fast convergence
rate of both the estimation errors and the plant states. Here the obtained
matrix K has been verified to yield a good convergence rate for the closed-loop
dynamics (4.7) with four different Aε designed in Chapter 3. Depending on the
particular approach used in constructing the cooperative observers, the closed-
loop simulations are divided into four schemes accordingly. The closed-loop
simulations of the four schemes are not supposed for comparison, but rather
mainly to demonstrate the effectiveness of the observer-based controllers in
reducing vibrations of the flexible beam.

4.2.1 Scheme 1

With the cooperative observers designed in Scheme 1 of Chapter 3, control
actions are applied in this subsection. To demonstrate the damping performance,
measurements in the open and the closed loop are compared in Figure 4.1. The
vibration level at the 4th second for the controlled beam is much smaller than
that of uncontrolled beam. The slow decay of the measurement signals for the
open-loop case is due to the inherent low damping of the flexible beam. The
convergence time for the closed-loop system is around 3 seconds. The transient
voltages which drive the piezoelectric actuators are shown in Figure 4.2, from
which one can see that the maximal voltage level is around 300 volts. To reduce
the convergence time, one may choose a smaller R than 3 × 10−5I4, which
will most likely end up with a higher voltage level. To examine the damping
effect in frequency domain, an external force disturbance is considered on the
beam at position 0.15m from the left, and the FRFs are extracted based on
Welch’s averaged periodogram method [Welch, 1967]. FRFs from the external
disturbance to y1 in open- and closed-loop are shown in Figure 4.3, and FRFs
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from the external disturbance to y4 in open and closed loop are shown in Figure
4.4. The damping effect can be clearly observed for all the considered 6 modes.
For y2 and y3, obvious damping effect is also observed, though the corresponding
FRFs are neglected here.
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Figure 4.1: Comparison of measurement signals in time-domain between open-
(dash-dot line) and closed-loop (—) under Scheme 1.
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Figure 4.2: Piezoelectric actuation voltages of Scheme 1.
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Figure 4.3: FRFs from the external disturbance to y1 under Scheme 1.



NUMERICAL SIMULATIONS 71

101 102

M
ag

n
it

u
d

e[
d

B
]

-80

-60

-40

-20

0

20

No control
With Control

[Hz]
101 102

P
h

as
e[

d
eg

]

-200

-100

0

100

200

Figure 4.4: FRFs from the external disturbance to y4 under Scheme 1.



72 OBSERVER-BASED CONTROLLER DESIGN

4.2.2 Scheme 2

With the cooperative observers designed in Scheme 2 of Chapter 3, control
actions are applied. To demonstrate the damping performance, measurements
in the open and the closed loop are compared in Figure 4.5. The vibration level
of the controlled beam is reduced considerably compared with its uncontrolled
counterpart. The convergence time for the closed-loop system is around 3
seconds. The transient voltages driving the piezoelectric actuators are shown in
Figure 4.6. The maximal voltage level is around 200 volts. Similar to Scheme 1,
to reduce the convergence time, one may choose a smaller R than 3× 10−5I4,
which will most likely end up with a higher voltage level. To examine the
damping effect in frequency domain, the external force disturbance is considered
at the same positions as in Scheme 1. FRFs from the external disturbance to y1
in the open and the closed loop are shown in Figure 4.7, and FRFs from the
external disturbance to y4 in the open and the closed loop are shown in Figure
4.8. The damping effect can be observed for both channels for the considered 6
modes.
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Figure 4.5: Comparison of measurement signals in time-domain between open-
(dash-dot line) and closed-loop (—) under Scheme 2.
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Figure 4.6: Piezoelectric actuation voltages of Scheme 2.
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Figure 4.7: FRFs from the external disturbance to y1 under Scheme 2.
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Figure 4.8: FRFs from the external disturbance to y4 under Scheme 2.

4.2.3 Scheme 3

With the cooperative observers designed in Scheme 3 of Chapter 3, control
actions are applied. To demonstrate the damping performance, measurements
of the open- and the closed-loop system are compared in Figure 4.9. The
vibration level of the controlled beam is reduced compared with its uncontrolled
counterpart. The convergence time for the controlled beam is around 3 seconds.
The transient voltages driving the piezoelectric actuators are shown in Figure
4.10. The maximal voltage level is around 200 volts. As stated in previous
schemes, to reduce the convergence time, one may choose a smaller R than
3 × 10−5I4, which will most likely end up with a higher voltage level. To
examine the damping effect in frequency domain, the external force disturbance
is considered at the same positions as in Scheme 1. FRFs from the external
disturbance to y1 in the open and the closed loop are shown in Figure 4.11,
and FRFs from the external disturbance to y4 in the open and the closed loop
are shown in Figure 4.12. The damping effect can be clearly observed for the
considered 6 modes.
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Figure 4.9: Comparison of measurement signals in time-domain between open-
(dash-dot line) and closed-loop (—) under Scheme 3.
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Figure 4.10: Piezoelectric actuation voltages of Scheme 3.
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Figure 4.11: FRFs from the external disturbance to y1 under Scheme 3.
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Figure 4.12: FRFs from the external disturbance to y4 under Scheme 3.
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4.2.4 Scheme 4

With the cooperative observers designed in Scheme 4 of Chapter 3, control
actions are applied. To demonstrate the damping performance, measurements
in the open and the closed loop are compared in Figure 4.13. The vibration of
the controlled beam is substantially reduced compared with its uncontrolled
counterpart. And the convergence time of the controlled beam is around 3
seconds. The transient voltages driving the piezoelectric actuators are shown in
Figure 4.14. The maximum required voltage is around 200 volts. As stated in
previous schemes, to reduce the convergence time, one may choose a smaller R
than 3× 10−5I4, which will most likely end up with a higher voltage level. To
examine the damping effect in frequency domain, the external force disturbance
is considered at the same positions as in Scheme 1. FRFs from the external
disturbance to y1 in the open and the closed loop are shown in Figure 4.15, and
FRFs from the external disturbance to y4 in the open and the closed loop are
shown in Figure 4.16. The damping effect can be clearly observed for all the
considered 6 modes.

It is worth to mention here that, due to the fact that estimation problems are
solved separately in observable and unobservable subspaces, one may selectively
improve the damping effect for a particular vibration mode. For example,
suppose that one wants to provide more damping for the 6th mode. Given that
the converse observable set of state-group 6 is D6 = {4}, one can design L4o
in such a way that the real parts of the eigenvalues corresponding to the 6th
mode are placed further to the left than its original design, and in (3.36), A6 is
replaced by A6 + γ6I with a larger γ6 than its original design.
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Figure 4.13: Comparison of measurement signals in time-domain between open-
(dash-dot line) and closed-loop (—) under Scheme 4.
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Figure 4.14: Piezoelectric actuation voltages of Scheme 4.
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Figure 4.15: FRFs from the external disturbance to y1 under Scheme 4.
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Figure 4.16: FRFs from the external disturbance to y4 under Scheme 4.
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4.2.5 A state-of-the-art design in literature

In this subsection, a design technique in [Orihuela et al., 2015] is applied for
vibration reduction of the considered beam. Its simulation results serve as a
benchmark performance. The closed-loop system is implemented in a distributed
way as in Scheme 1 - Scheme 4. However, its design process is centralized since
all the parameters are designed simultaneously. The detailed modeling and
problem formulation are elaborated in Appendix B.

Measurements in the open- and the closed-loop systems are compared in Figure
4.17. The controlled beam is clearly damped comparing with its uncontrolled
counterpart. The convergence time for the controlled beam is around 3 seconds.
The transient voltages driving the piezoelectric actuators are shown in Figure
4.18. The maximum required voltage is around 300 volts. To examine the
damping effect in frequency domain, an external force disturbance is considered
at the same positions as in Scheme 1. FRFs from the external disturbance
to y1 in open- and closed-loop are shown in Figure 4.19, and FRFs from the
external disturbance to y4 in the open and the closed loop are shown in Figure
4.20. It can be observed that all the considered 6 modes are clearly damped.
The state-of-the-art design provide a better performance than Scheme 1 to
Scheme 4. However, this does not mean that a centralized design can always
outperform the decentralized designs, since each scheme has its own ad-hoc
tuning parameters. It is rather difficult, if not impossible, to perform a fair
comparison between all the schemes. Obviously, with comparable performance,
decentralized designs have some distinct advantages which a centralized design
fails to provide, as elaborated in Chapter 3.
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Figure 4.17: Comparison of measurement signals in time-domain between open-
(dash-dot line) and closed-loop (—) with the design technique in [Orihuela et al.,
2015].
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Figure 4.18: Voltages applied on the piezoelectric actuators.

101 102

M
ag

n
it

u
d

e[
d

B
]

-60

-40

-20

0

20

40

No control
With Control

[Hz]
101 102

P
h

as
e[

d
eg

]

-150

-100

-50

0

50

100

Figure 4.19: FRFs from the external disturbance to y1 under the simultaneous
design.
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Figure 4.20: FRFs from the external disturbance to y4 under the simultaneous
design.
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4.3 Summary

In this chapter, the design of observer-based control laws is addressed. As the
separation principle fails to hold in the nascent distributed/networked control
architecture, a heuristic approach is proposed to partially separate the two
design problems. Observers are designed in Chapter 3, while the feedback matrix
K is designed in a trial-and-error style in this chapter. Numerical simulations
are given to examine the closed-loop damping performance in both time- and
frequency domain. In addition, the simulation with a simultaneous design based
on a state-of-the-art technique in literature is also presented.



Chapter 5

An Experimental Study with
a Composite Plate

This chapter presents experimental results of vibration reduction for a
composite plate. The experiments include data-driven state-space identification,
distributed algorithm design, off-line simulation, and real-time algorithm
implementation. Due to limited resources and time, only the distributed
estimation design of Subsection 3.2.5 is experimentally validated.

5.1 Introduction to the experimental setup

The experimental setup consists of a data acquisition system, a real-time
control prototyping system, and a test article. The data acquisition system
is composed of LMS SCADAS hardware and LMS Test.Lab software. The
purpose of the data acquisition system is to extract frequency responses, through
measuring the sensor signals while exciting the composite plate with a PiezoDrive
TD250 voltage amplifier which has a gain of 25V/V . The real-time control
prototyping system is composed of a real-time simulator dSPACE SCALEXIO
with DS6001 Processor Board, dSPACE LabBox with DS6101 Multi-I/O Board,
PiezoDrive TD250 voltage amplifier, PCB signal conditioners 480C02 and
dSPACE ConfigurationDesk 5.5, dSPACE ControlDesk 5.6, facilitated with
MATLAB/SIMULINK R2015a. The test article is a composite plate bonded
with MFC actuators and PCB accelerometers. A schematic of the experimental
setup is shown in Figure 5.1.
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Figure 5.1: A schematic of the experimental setup.

5.2 Data-driven modeling

The composite plate, hanging in a free boundary condition, is shown in Figure
5.2. Two MFC actuators and two PCB accelerometers are mounted on the plate.
In Figure 5.2, the actuators and sensors are labeled with corresponding agent
indexes. The graph topology of the 3 agents is shown in Figure 5.3. Agent 1
includes only one actuator; Agent 2 includes one actuator and one sensor; Agent
3 includes only one sensor. Together with PiezoDrive TD250, LMS SCADAS is
used to excite the MFC actuators and further to acquire measurement data from
the PCB accelerometers. During the data acquisition, the sampling rate is set
to 1024 Hz with a resolution of 0.125 Hz, and Hanning windows are added for
signal conditioning. The FRFs of the composite plate are extracted with LMS
Test.Lab. Based on the extracted FRFs in LMS Test.Lab, the prediction error
minimization method is used in MATLAB for state-space estimation, where
dynamics between 120 Hz and 300 Hz is of interest for distributed control
algorithm design. The considered dynamics consists of 6 vibration modes.

The constructed state-space models together with the FRFs extracted in
Test.Lab are shown in Figure 5.4 - Figure 5.7. The natural frequencies and
modal damping ratios of the estimated state-space model are compared with
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PolyMAX estimation [Peeters et al., 2004] in Table 5.2. Approximately, the
constructed state-space model fits well with the 6 modes of interest, except a
relative large discrepancy in estimating the 3rd modal ratio. Since data-driven
modeling is not the focus of this dissertation, the state-space model of the
composite plate is considered acceptable for the algorithms design.

MFC 1

MFC 2

PCB 3

PCB 2

Figure 5.2: The test article: a composite plate bonded with MFC piezo actuators
and PCB accelerometers.

Table 5.1: Parameter table of the test article

Description Value
length 0.503 m
width 0.4 m
thickness 0.0025 m
density 1500 kg/m3

Young’s Modulus E2 7.868 GPa
Young’s Modulus E3 110.15 GPa
MFC 1, 2 type M2814-P1
PCB 2 type 356A02/LW139907
PCB 3 type 356A02/LW166870
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Figure 5.3: Graph topology of the 3 agents.
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Figure 5.4: State-space model estimation from u1 → y2.
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Figure 5.5: State-space model estimation from u1 → y3.
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Figure 5.6: State-space model estimation from u2 → y2.
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Figure 5.7: State-space model estimation from u2 → y3.

Table 5.2: Modal parameter comparison between MATLAB ssest and PolyMAX
estimation method within [120Hz, 300Hz].

ssest estimation PolyMAX estimation
ω1 2π × 146.448 rad/s 2π × 146.380 rad/s
ω2 2π × 194.823 rad/s 2π × 194.737 rad/s
ω3 2π × 197.198 rad/s 2π × 196.649 rad/s
ω4 2π × 216.132 rad/s 2π × 214.466 rad/s
ω5 2π × 254.752 rad/s 2π × 254.457 rad/s
ω6 2π × 275.668 rad/s 2π × 275.589 rad/s
ξ1 0.29% 0.29%
ξ2 0.19% 0.25%
ξ3 0.03% 0.20%
ξ4 0.49% 0.48%
ξ5 0.26% 0.31%
ξ6 0.18% 0.18%
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5.3 Off-line simulation

The constructed state-space model (Â, B̂, Ĉ, D̂) has a feed-through term D̂
due to the acceleration outputs. Distributed algorithms developed in this
dissertation are for systems without feed-through terms, hence a state-space
model with corresponding velocity outputs needs to be constructed. Suppose
the state-space model with velocity outputs is expressed as{

ẋ = Âx+ B̂u,

yv = Ĉvx,
(5.1)

then the state-space model with acceleration outputs at the same locations can
be derived as {

ẋ = Âx+ B̂u,

y = ẏv = Ĉvẋ = ĈvÂx+ ĈvB̂u = Ĉx+ D̂u.
(5.2)

Hence the state-space model with velocity outputs (Â, B̂, Ĉv) can be represented
as (Â, B̂, ĈÂ−1)1. The matrices are given in Appendix C. The distributed
estimation algorithm in Subsection 3.2.5 is developed for the constructed state-
space model. In (3.10), let Fi = γP̃i with γ = 5 and let P̃i be the solution
of (3.17) with Q̃ = 1000I12 and R̃i = 10−4 for i = 1, 2, 3. The rendered Aε in
(3.12) has all its eigenvalues with real parts less than −12. From (3.49), its
convergence time is expected to be 0.4×17.5

12 ' 0.58 seconds. For distributed
controller design, in (4.8), Q and R are assigned as Q = 1000I12,R = 0.01I2.
The dedicated signal processing to extract velocity information in real-time
testing is illustrated in Section 5.4. For the off-line simulation, the fundamental
simulation step is set as Ts = 10−4s which is equal to the sampling period of
the real-time experiment, and external disturbances are applied to MFC 1.2

Due to large measurement noises observed in the experimental setup, to improve
the signal-to-noise ratio (SNR), only sinusoid signals with resonance frequencies
are applied to MFC 1 as the external disturbances. A sine-wave with amplitude
of 125 V and frequency of 275.6 Hz is applied to the composite plate through
MFC 1. After reaching the steady state, signals in a period of 0.2s are examined.
The simulated signals y2 and y3 in open- and closed loop are presented in Figure
5.8, in which the damping effect can be cleared observed in the controlled
composite plate. The simulated control signals u1 and u2 are depicted in Figure
5.9. The control signals are within the range of ±50 volts.

1Note that ĈvB̂ = ĈÂ−1B̂ = D̂ holds automatically since the estimated state-space model
with acceleration outputs, denoted by (Â, B̂, Ĉ, D̂), has zero DC gains. The static gain matrix
can be expressed as Ĉ(sI − Â)−1B̂|s=j0 + D̂ = −ĈÂ−1B̂ + D̂ = 0.

2MFC 1 is also the control channel of agent 1, hence in closed-loop, the actual voltage
applied to MFC is the sum of external disturbances and control signals of agent 1.
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Figure 5.8: Comparison of simulated signals y2, y3 in the open (dashed line)
and the closed loop (—).
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Figure 5.9: Simulated signals u1 and u2.



REAL-TIME TESTING 93

5.4 Real-time testing

To extract velocity information, signals of accelerometers are first filtered by a
bandpass filter with ωL = 120 Hz and ωH = 300 Hz, and a differentiator at
0 Hz is added to remove the accelerometer offset. The filtered signal is then
integrated to yield velocity signals. As in the off-line simulation, a sine-wave
with amplitude of 125 V and frequency of 275.6 Hz is applied to the composite
plate through MFC 1. The same distributed algorithm developed in off-line
simulation is downloaded to dSPACE SCALEXIO for real-time implementation,
with a sampling frequency of 10 kHz. After getting steady state, signals in a
period of 0.2s are examined with dSPACE ControlDesk. The real signals y2
and y3 in open- and closed loop are presented in Figure 5.10, where obvious
vibration reduction can be observed. The real-time damping performance is
quite similar to that of the simulated case in Figure 5.8. The actual control
signals u1 and u2 are depicted in Figure 5.11. The control signals are within
±50 volts and are approximately in line with the simulated case shown in Figure
5.9.
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Figure 5.10: Comparison of real-time signals y2, y3 in the open (dashed line)
and the closed loop (—).
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Figure 5.11: Control signals u1 and u2 in real-time.

5.5 Summary

An experimental study with 3 agents for a composite plate is presented in
this chapter. State-space identification is first performed based on the data
acquisition for the composite plate. One specific distributed algorithm is
developed for the state-space model. Off-line simulation results with the
developed distributed algorithm are then presented. Finally the model-based
distributed algorithm is downloaded to the simulator to regulate the composite
plate in real-time. Experimental results approximately agree with the off-line
simulations and demonstrate the effectiveness of the distributed algorithm in
vibration reduction.



Chapter 6

Distributed Homogeneous
Sensor Fusion1

This chapter serves as a preliminary study for distributed estimation under
more practical scenarios: measurements are corrupted by noises. Consider the
state-space model (3.9) with measurement noises:{

ż(t) = Ãz(t) + B̃u(t),
yi(t) = C̃iz(t) + vi, i = 1, 2, · · · , p,

(6.1)

Then the effect of vi, i = 1, 2, · · · , p, should be reflected in the design
of Luenberger-like observer gain Li and the communication matrix Fi in
cooperative observers (3.10). Intuitively, if yi is corrupted by large noises
vi, then Li should be small in norm sense, and the state estimate ẑi need to
rely more on the neighboring estimates, indicating a large Fi in norm sense.

As a preliminary step, a much simplified problem is considered in this chapter,
that is z(t) in (6.1) reduces to a constant scalar z0, and C̃i in (6.1) reduces to
1 or 0. Note that if C̃i = 0, then node i is a router node, which implies that
vi = 0.

1Most contents of this chapter have been published in [Zhang et al., 2017a]
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6.1 Introduction

Prior results

Related works on consensus-based distributed sensor fusion may be found in
[Xiao et al., 2005; Olfati-Saber and Shamma, 2005]. [Xiao et al., 2005] considers
distributed estimation of unknown parameters, whose linear measurements are
corrupted by independent Gaussian noises. Sensory data, covariance data as
well as output matrices2 are communicated between neighboring nodes, where
Maximum-degree weights and Metropolis weights are considered, respectively.
In that scheme, all the local estimates of each node converges to the maximum
likelihood estimate (or equivalently Bayesian estimate in that case). [Olfati-
Saber and Shamma, 2005] proposes a consensus filter which is a dynamic version
of the average-consensus algorithm introduced in [Olfati-Saber and Murray,
2003]. The consensus filter can be implemented to track the average of a static
or dynamical signal measured by sensor networks. However, the covariance
data of the measurement noises are not exploited in that scheme, though it is
demonstrated that the noise propagation is reduced in the network.

Contributions of the proposed fusion algorithms

The fusion algorithms proposed in this chapter is to estimate an unknown
scalar quantity, whose measurements are corrupted by independent Gaussian
white-noise processes. The fusion scheme differs from the aforementioned works
in several aspects:

• First of all, router nodes are allowed in the sensor networks. These types
of nodes are necessary in at least two situations: 1) when the distances
between two sensing nodes are beyond the communication range; 2) when
the node is deployed at locations having poor observability for sensing yet
good controllability for actuation.

• Secondly, inspired by the Bayesian estimation in batch measurements
processing, the inverses of the variances of the measurement noise terms
are taken as reliability indicators in the communication weights design.
In this way, poor measurements can be isolated from the fusion network
to some extent.

• In addition, in contrast with [Xiao et al., 2005], consensus algorithms are
performed at the same rate with the measurements, and consequently the

2If the unknown parameter is a scalar, then all the output matrices are 1, and are not
necessary to be communicated.
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measuring data is continuously fed into the fusion network during the
whole estimation process. Intuitively, the more sensor data are used, the
better estimation performance can be achieved.

• Finally, the evolution dynamics of expected values and covariances
throughout the whole network are analyzed explicitly. Once the edge
weights are designed, the steady-state error covariance matrices can be
calculated immediately, which can be done before the real implementation
of fusion algorithms.

One fusion algorithm for continuous-time processes is proposed in Section 6.3
and two fusion algorithms for discrete-time processes and are proposed in Section
6.4. Numerical experiments are demonstrated in Section 6.5, which indeed show
that the steady-state estimate of each sensing/non-sensing node enjoys a smaller
error variance than the standard Bayesian estimate.

6.2 Fusion architecture and notations

Sensing node

Nonsensing node

𝑖

𝑘
𝑗

𝑔𝑖𝑗
𝑎𝑖𝑘 ℎ𝑗𝑖

Figure 6.1: Distributed fusion architecture.

The considered fusion schematic is presented in Figure 6.1. There are two sets
of nodes, namely, sensing nodes which perform the measurements and router
nodes or non-sensing nodes which mediate between the sensing nodes. The set
of non-sensing nodes is denoted as Ns , {n1, n2, · · · , n|Ns|}; while the set of
sensing nodes is denoted as Se , {s1, s2, · · · , s|Se|}. The network formed by
non-sensing nodes is represented by a directed graph G = (Ns, E) which consists
of a set of non-sensing nodes Ns, a set of edges E ⊂ Ns ×Ns. The associated
adjacency matrix is A = [aij ]. As defined before, the in-degree of node i is
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di =
∑|Ns|
j=1 aij , in-degree matrix as D = diag{di} and the graph Laplacian

matrix is L = D −A.

It is assumed that there exist positive pinning weights and feedback weights
between sensing nodes and non-sensing nodes. The pinning weight from sensing
node j ∈ Se to non-sensing node i ∈ Ns is denoted by gij . Similarly, the
feedback weight from non-sensing node i ∈ Ns to sensing node j ∈ Se is denoted
by hji. It is also assumed, however, there is no communication between sensing
nodes. This assumption is adopted only for the mathematical simplicity, and
adding edges between sensing nodes is not an issue in principle.

Define the following two sets of neighbors.

Definition 6.1. The set of neighbors of a non-sensing node, i ∈ Ns, is defined
as ηi , {j ∈ Se|gij 6= 0}.

Definition 6.2. The set of neighbors of a sensing node, j ∈ Se, is defined as
ζj , {i ∈ Ns|hji 6= 0}.

The following three mild assumptions are presumed in this chapter.

Assumption 6.3. Each sensing node sends information to some or all non-
sensing nodes.

Remark 6.4. This assumption is not strictly necessary for the fusion algorithms
developed in later sections. However, it totally makes sense if a sensing node
transmits its estimation to the network of non-sensing nodes.

Assumption 6.5. The graph G, formed by non-sensing nodes only, has a
spanning tree and its root, ir, has access to some or all of the sensing nodes,
i.e. ηir 6= ∅.

Assumption 6.6. Each sensing node j, j ∈ Se, receives feedback from the
network of non-sensing nodes, i.e. ζj 6= ∅.

The quantity to be measured is a constant scalar z0 ∈ R. The dynamics (6.1)
is reduced to ż0(t) ≡ 0 with the measurement model for the sensing node j,
j ∈ Se being

yj(t) = z0 + vj(t). (6.2)
Herein t denotes either continuous time variable or discrete time index. vj
is a Gaussian white-noise process with zero mean and variance of σ2

j . It is
assumed that measurement noises from different channels are independent. Let
v(t) =

[
v1(t), v2(t), · · · , v|Se|(t)

]T . The covariance matrix is

E[v(τ)v(t)T ] =
{
Rδ(t− τ), continuoust-time,
Rδτt, discrete-time,
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where R = diag{σ2
1 , σ

2
2 , · · · , σ2

|Se|}, and δ(·) is a Dirac delta function and δτt is
a Kronecker delta function.

6.3 Fusion network in continuous-time

This section proposes the distributed fusion algorithm in continuous-time. A
motivating lemma regarding the Bayesian estimation is introduced below.

Lemma 6.7. For the measurement model (6.2), the optimal non-recursive
Bayesian estimate of z0 is

ẑfused(t) =

∑
j∈Se

(yj(t)/σ2
j )

1/σ̂2 , (6.3)

where 1
σ̂2 =

∑
m∈Se

1
σ2

m
. The expected value < ẑfused >= z0, and the variance

var(ẑfused(t)) = σ̂2.

It is worth to recall the appealing properties of this optimal estimator [Lewis
et al., 2007]. 1) it provides an unbiased estimate of z0. 2) it yields a variance
smaller than that any individual sensor can achieve. 3) it is consistent with
the reliability of each sensor: when σ2

j →∞, which indicates a rather poorly
measured signal yj , then the resulting estimate ẑfused is less dependent on ξj ;
on the other hand, when σ2

j → 0, which indicates that yj is of high accuracy,
then the resulting ẑfused is approximately equal to yj . 4) When all σjs are
equal, the estimate is nothing but the sample mean ẑfused =

∑
j∈Se

yj/|Se|.

Now consider the distributed fusion architecture. Similar to [Olfati-Saber and
Shamma, 2005], each consensus filter is endowed with state. For the non-sensing
node i, the state is denoted by Xi, and for sensing node j, the state is denoted
by Zj . The dynamics of sensing node j, j ∈ Se, is designed as

Żj(t) =
1
σ2

j

1/σ̂2 [yj(t)− Zj(t)] +
( 1
σ̂2 − 1

σ2
j
)/
∑
l∈ζj

hjl

1/σ̂2

∑
l∈ζj

hjl[Xl(t)− Zj(t)]. (6.4)

The first term is the innovation from its own measurement which is penalized
with 1/σ2

j , inspired by the standard Bayesian estimation (6.3). The second
term is the consensus innovation from neighboring non-sensing nodes, and the
consensus weights are reflected by the fact that the network of non-sensing
nodes receives the information from all the other sensing nodes.
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The dynamics of non-sensing node i, i ∈ Ns, is designed as

Ẋi(t) =
∑
k∈Ns

aik[Xk(t)−Xi(t)] + 1∑
j∈ηi

gij
1
σ2

j

∑
j∈ηi

gij
σ2
j

[Zj(t)−Xi(t)], (6.5a)

or Ẋi(t) =
∑
k∈Ns

aik[Xk(t)−Xi(t)]. (6.5b)

(6.5a) is for i that receives information from neighboring sensing nodes, i.e.
ηi 6= ∅. The weight in the second term is again learnt from the standard
Bayesian estimation (6.3). (6.5b) is for i that does not receive information from
neighboring sensing nodes, i.e. ηi = ∅.

Let
X(t) =

[
XT

1 (t), XT
2 (t), · · · , XT

|Ns|(t)
]T

and
Z(t) =

[
ZT1 (t), ZT2 (t), · · · , ZT|Se|(t)

]T
.

The dynamics in matrix form is{
Ẋ(t) = −(L+ Î)X(t) +GZ(t)
Ż(t) = HX(t)− IZ(t) + Λ1|Se|z0 + Λv(t)

(6.6)

Herein Î = diag{Iii}, where Iii = 1 if ηi 6= ∅ and Iii = 0 otherwise, G =
[Gij ] ∈ R|Ns|×|Se|, where Gij = gij

σ2
j
/
∑
j∈ηi

gij

σ2
j

for i with ηi 6= ∅ and Gij = 0

otherwise, H = [Hji] ∈ R|Se|×|Ns| with Hji = (1 − σ̂2

σ2
j
)hji/

∑
i∈ζj

hji and Λ =

diag{Λi} ∈ R|Se|×|Se| with Λi = σ̂2

σ2
i
. Note that by definition G1|Se| = Î1|Ns|,

H1|Ns| = (I − Λ)1|Se|.

The dynamics of Y (t) =
[
X(t)T Z(t)T

]T is

Ẏ (t) = ΦcY (t) +Bc1|Se|z0 +Bcv(t),

where Φc =
[
−(L+ Î) G

H −I

]
, Bc =

[
0
Λ

]
.

Proposition 6.8. Under Assumption 6.5 - 6.6, Φc is Hurwitz.
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Proof.

Φc =
[
−(L+ Î) G

H −I

]
=
[
−(L+ Î) G

H Λ− I

]
−
[
0 0
0 Λ

]

= −(
[
L+ Î −G
−H −Λ + I

]
+
[
0 0
0 Λ

]
).

View
[
L+ Î −G
−H −Λ + I

]
as the Laplacian matrix of the augmented graph G̃

formed by sensing nodes and non-sensing nodes, and
[
0 0
0 Λ

]
as the pinning

matrix. With Assumption 6.5 and Assumption 6.6, there exists a spanning
tree in G̃ and its root is pinned by z0, hence it can be deduced that all the
eigenvalues of the matrix Φc have negative real part [Li et al., 2010, Lemma
5].

Theorem 6.9.

lim
t→∞

Y (t) = lim
t→∞

[
X(t)
Z(t)

]
∼ N(

[
1|Ns|
1|Se|

]
x0, Pc),

where Pc = PTc is the solution of the continuous-time Lyapunov equation
ΦcPc + PcΦTc +BcRB

T
c = 0.

Proof. The dynamics of the mean value < Y (t) > is
< Ẏ (t) >= Φc < Y (t) > +Bc1|Se|z0

= Φc < Y (t) > +
[
0 0
0 Λ

] [
1|Ns|
1|Se|

]
z0.

(6.7)

Define δ(t) =< Y (t) > −
[
1|Ns|
1|Se|

]
z0, then

δ̇(t) =< Ẏ (t) >= Φc < Y (t) > +
[
0 0
0 Λ

] [
1|Ns|
1|Se|

]
z0

= Φc(δ(t) +
[
1|Ns|
1|Se|

]
z0) +

[
0 0
0 Λ

] [
1|Ns|
1|Se|

]
z0

= Φcδ(t) + (Φc +
[
0 0
0 Λ

]
)
[
1|Ns|
1|Se|

]
z0

= Φcδ(t)−
[
L+ Î −G
−H −Λ + I

] [
1|Ns|
1|Se|

]
z0.

(6.8)
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Note that
[
L+ Î −G
−H −Λ + I

] [
1|Ns|
1|Se|

]
z0 = 0, hence

δ̇(t) = Φcδ(t). (6.9)

Given that Φc is Hurwitz, lim
t→∞

δ(t) = 0, namely,

lim
t→∞

< Y (t) >=< lim
t→∞

Y (t) >=
[
1|Ns|
1|Se|

]
z0. (6.10)

The steady-state covariance matrix can be derived based on the Lyapunov
equation regarding the steady-state version of the continuous-time Kalman
Filter in absence of observer gain [Lewis et al., 2007]. Hence one has[

X(∞)
Z(∞)

]
∼ N(

[
1|Ns|
1|Se|

]
z0, Pc).

6.4 Fusion network in discrete-time

This section proposes two distributed fusion algorithms in discrete-time.

6.4.1 Filtering algorithm

The dynamics of the sensing node j ∈ Se is designed as

Zj(t+ 1) = 1
2[Zj(t) +

yj(t)
σ2

j

1/σ̂2 +
( 1
σ̂2 − 1

σ2
j
)/
∑
l∈ζj

hjl

1/σ̂2

∑
l∈ζj

hjlXl(t)]. (6.11)

This algorithm is named ‘filtering algorithm’ due to the fact that the sensing
node j stores the state of current step Zj(t), and it contributes 50% of the
next-step estimate Zj(t + 1). The second term in the square bracket is the
innovation from its own measurement which is penalized with 1/σ2

j , inspired by
the standard Bayesian estimation (6.3). The third term in the square bracket is
the consensus innovation from neighboring non-sensing nodes, and the consensus
weights are reflected by the fact that the network of non-sensing nodes receives
the information from all the other sensing nodes.
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The dynamics of the non-sensing node i ∈ Ns is designed as

Xi(t+ 1) = 1
1 + di + 1[Xi(t) +

∑
k∈Ns

aikXk(t) + 1∑
j∈ηi

gij
1
σ2

j

∑
j∈ηi

gij
σ2
j

Zj(t)],

(6.12a)

or Xi(t+ 1) = 1
1 + di

[Xi(t) +
∑
k∈Ns

aikXk(t)].

(6.12b)

(6.12a) is for i that receives information from neighboring sensing nodes, i.e.
ηi 6= ∅. The weight of the third term in the square bracket is learnt from
the standard Bayesian estimation (6.3). (6.12b) is for i that does not receive
information from neighboring sensing nodes, i.e. ηi = ∅.

Remark 6.10. The consensus algorithms in (6.11) and (6.12) take the spirit of
the ‘nearest neighbor rule’ in coordination of multi-agent systems in [Jadbabaie
et al., 2003], which is not necessarily the fixed-step discretization of dynamics
(6.4) and (6.5).

Let
X(t) =

[
XT

1 (t), XT
2 (t), · · · , XT

|Ns|(t)
]T

and
Z(t) =

[
ZT1 (t), ZT2 (t), · · · , ZT|Se|(t)

]T
.

The dynamics expressed in matrix form is{
X(t+ 1) = (I +D + Î)−1[(I +A)X(t) +GZ(t)],
Z(t+ 1) = (I + I)−1[HX(t) + IZ(t) + Λ1|Se|z0 + Λv(t)].

(6.13)

Define Y (t) ,
[
X(t)T Z(t)T

]T , and the dynamics of Y (t) is

Y (t+ 1) = Φ1Y (t) +B11|Se|z0 +B1v(t), (6.14)

where

Φ1 =
[
I +D + Î 0

0 I + I

]−1 [
I +A G
H I

]
, B1 =

[
0

Λ/2

]
. (6.15)

Proposition 6.11. Under Assumption 6.5 - 6.6, Φ1 is Schur stable.
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Proof. According to Gershgorin’s circle theorem [Horn and Johnson, 2013], all
the eigenvalues of Φ1 lie inside or on the unit circle. Furthermore, the only
possible eigenvalue on the unit circle equals 1. Suppose 1 is the eigenvalue of
Φ1, the matrix

I − Φ1 =
[
I +D + Î 0

0 I + I

]−1 [
Î + L −G
−H I

]
is then singular. Equivalently, the matrix[

Î + L −G
−H I

]
is singular. On the other hand, notice that[

Î + L −G
−H I

]
=
[
Î + L −G
−H I − Λ

]
+
[
0 0
0 Λ

]
.

View the matrix [
Î + L −G
−H I − Λ

]
as the Laplacian matrix of the augmented graph G̃ formed by sensing nodes
and non-sensing nodes, and the matrix[

0 0
0 Λ

]
as the pinning matrix. With Assumption 6.5 and Assumption 6.6, all the roots
of the spanning forest in G̃ are pinned by z0, hence it can be deduced that the
matrix [

Î + L −G
−H I

]
has all the eigenvalues with positive real part [Li et al., 2010, Lemma 5 ], which
is a contradiction to that the matrix[

Î + L −G
−H I

]
is singular. Hence 1 is not the eigenvalue of Φ1, and all the eigenvalues of Φ1
lie inside the unit circle.

Theorem 6.12.

lim
t→∞

Y (t) = lim
t→∞

[
X(t)
Z(t)

]
∼ N(

[
1|Ns|
1|Se|

]
z0, P1),
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where P1 = PT1 is the unique solution of the discrete-time Lyapunov equation
Φ1P1ΦT1 +B1RB

T
1 −P1 = 0, and R is the covariance matrix of the noise vector

v.

Proof. The dynamics of the mean value is
< Y (t+ 1) >= Φ1 < Y (t) > +B11|Se|z0

= Φ1 < Y (t) > +
[
0 0
0 Λ/2

] [
1|Ns|
1|Se|

]
z0

=
[
I +D + Î 0

0 I + I

]−1 [
I +A G
H I

]
< Y (t) > +

[
0 0
0 Λ/2

] [
1|Ns|
1|Se|

]
z0

=
[
I +D + Î 0

0 I + I

]−1

(
[
I +A G
H I

]
< Y (t) > +

[
0 0
0 Λ

] [
1|Ns|
1|Se|

]
z0).

Define
e(t) =< Y (t) > −

[
1|Ns|
1|Se|

]
z0,

then

e(t+ 1) =< Y (t+ 1) > −
[
1|Ns|
1|Se|

]
z0

=
[
I +D + Î 0

0 I + I

]−1

(
[
I +A G
H I

]
< Y (t) > +

[
0 0
0 Λ

] [
1|Ns|
1|Se|

]
z0)

−
[
1|Ns|
1|Se|

]
z0

=
[
I +D + Î 0

0 I + I

]−1

(
[
I +A G
H I

]
(e(t) +

[
1|Ns|
1|Se|

]
z0))

+
[
I +D + Î 0

0 I + I

]−1 [
−I −D − Î 0

0 −I − I + Λ

] [
1|Ns|
1|Se|

]
z0

=
[
I +D + Î 0

0 I + I

]−1

(
[
I +A G
H I

]
e(t) +

[
−L− Î G
H −I + Λ

] [
1|Ns|
1|Se|

]
z0).



106 DISTRIBUTED HOMOGENEOUS SENSOR FUSION

Note that [
−L− Î G
H −I + Λ

] [
1|Ns|
1|Se|

]
z0 = 0,

hence

e(t+ 1) =
[
I +D + Î 0

0 I + I

]−1 [
I +A G
H I

]
e(t) = Φ1e(t).

Since Φ1 is Schur stable, lim
t→∞

e(t) = 0, therefore

lim
t→∞

< Y (t) >=< lim
t→∞

Y (t) >=
[
1|Ns|
1|Se|

]
z0.

The dynamics of the covariance matrix is

PY (t+1) =< (Y (t+ 1)− < Y (t+ 1) >)(Y (t+ 1)− < Y (t+ 1) >)T >

=< (Φ1(Y (t)− < Y (t) >) +B1v(t))(Φ1(Y (t)− < Y (t) >) +B1v(t))T >

= Φ1 < (Y (t)− < Y (t) >)(Y (t)− < Y (t) >)T > ΦT1 +B1 < v(t)v(t)T > BT1

= Φ1PY (t)ΦT1 +B1RB
T
1 .

When Φ1 is Schur stable, the covariance matrix for signal Y (t) evolves to a
constant matrix P1, satisfying

P1 = Φ1P1ΦT1 +B1RB
T
1 . (6.16)

Hence
[
X(∞)
Z(∞)

]
∼ N(

[
1|Ns|
1|Se|

]
z0, P1).

Remark 6.13. The steady-state of Y (t) provides an unbiased estimate of z0.
Note that the property

< Y (∞) >=
[
1|Ns|
1|Se|

]
z0

is independent of any uncertainties in sensor noise variances. The influence of
uncertainties in sensor noise variances on the covariance matrix is preliminarily
analyzed below. Suppose the actual sensor noise variances are R + δR, with the
network edge weights retained, one has

P1 + δP1 = Φ1(P1 + δP1)ΦT1 +B1(R+ δR)BT1 . (6.17)

When designing Φ1 such that ‖Φ1‖2 < 1, one has

‖δP1‖2 ≤
‖B1‖22

1− ‖Φ1‖22
‖δR‖2. (6.18)

Therefore the influence is bounded by a factor of ‖B1‖22
1−‖Φ1‖22

.
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Remark 6.14. Note also that if ‖B1‖22
1−‖Φ1‖22

< 1, with similar analysis as in
Remark 6.13, one can conclude that all the entries of P1 is less than the smallest
noise variance due to the fact ‖P1‖max ≤ ‖P1‖2. This may shed light on the
edge weights design to yield an as small as possible ‖B1‖22

1−‖Φ1‖22
.

Remark 6.15. Since variances of measurement noises are incorporated into
the edge weights design for the consensus algorithm, R and P1 are not linearly
dependent in (6.16). Φ1 isolates the network from poor measurements, as shown
in the simulation scenario in Subsection 6.5.4.

6.4.2 Non-filtering algorithm

The dynamics of the sensing node j ∈ Se is designed as

Zj(t+ 1) =
yj(t)
σ2

j

1/σ̂2 +
( 1
σ̂2 − 1

σ2
j
)/
∑
l∈ζj

hjl

1/σ̂2

∑
l∈ζj

hjlXl(t) (6.19)

This algorithm is named ‘non-filtering algorithm’ due to the fact that, in contrast
with (6.11), the sensing node j does not store its current state to contribute to
its next-step estimate update. The dynamics of non-sensing nodes is the same
as in the previous scheme, given by (6.12). The dynamics in matrix form is
thereby {

X(t+ 1) = (I +D + Î)−1[(I +A)X(t) +GZ(t)],
Z(t+ 1) = HX(t) + Λ1|Se|z0 + Λv(t).

(6.20)

The dynamics of Y (t) =
[
X(t)T Z(t)T

]T is

Y (t+ 1) = Φ2Y (t) +B21|Se|z0 +B2v(t),

where Φ2 =
[
I +D + Î 0

0 I

]−1 [
I +A G
H 0

]
, B2 =

[
0
Λ

]
.

Proposition 6.16. Under Assumption 6.5 - 6.6, Φ2 is Schur stable.

Proof. Similar to the proof of Proposition 6.11.

Theorem 6.17.

lim
t→∞

Y (t) = lim
t→∞

[
X(t)
Z(t)

]
∼ N(

[
1|Ns|
1|Se|

]
z0, P2),

where P2 = PT2 is the unique solution of the Lyapunov equation

Φ2P2ΦT2 +B2RB
T
2 − P2 = 0.
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Proof. Similar to the proof of Theorem 6.12.

6.5 Numerical experiments

This section presents several simulation scenarios carried out in the MAT-
LAB/Simulink environment. Both discrete-time and continuous-time processes
are considered. As an example, a ∆-shape filtering architecture is studied,
as shown in Figure 6.2. The pinning gains are g11 = g22 = g33 = 1, the
feedback gains are h11 = h22 = h33 = 1. This experimental setup satisfies
Assumption 6.5 and Assumption 6.6. The measurement noises are zero-mean
random variables with variances: σ2

1 = 0.05, σ2
2 = 0.02, σ2

3 = 0.005. The
constant quantity z0 = 1. The error variance of the optimal Bayesian estimate
is σ̂2 = 1/( 1

σ2
1

+ 1
σ2

2
+ 1

σ2
3
) = 0.0037.

Sensing node

Non-sensing node

1

2
3

2

3

1

Figure 6.2: Graph topology of the filtering network used in numerical simulation.

6.5.1 Fusion network in continuous time

The total simulation time is 1000 seconds. In Simulink, blocks ‘Band-Limited
White Noise’ are used to introduce white-noise processes into the continuous
system. Configurations for the white-noise blocks are given in Appendix D.1.
The fusion performance is depicted in Figure 6.3. After approximately 40
seconds, the estimates of sensing and non-sensing nodes converge to a relatively
small neighborhood around z0 = 1. The estimation trajectories of the sensing
nodes are more rugged than those of the non-sensing nodes. The covariance
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matrix Pc is calculated via solving the Lyapunov equation

ΦcPc + PcΦTc +BcRB
T
c = 0.

The covariance matrix Pc is
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Figure 6.3: Distributed sensor fusion performance in continuous time process.
Left column: state estimates of non-sensing nodes (blue —) vs. z0 (black – –);
right column: state estimates (red —) of sensing nodes vs. z0 (black – –).

Pc = 10−4 ×


2.960 2.429 2.874 3.046 2.003 2.734
2.429 3.021 2.354 2.400 3.613 1.396
2.874 2.354 4.120 2.204 2.125 5.905
3.046 2.400 2.204 4.192 1.905 1.551
2.003 3.613 2.125 1.905 6.373 0.844
2.734 1.396 5.905 1.551 0.844 15

 .

The steady-state variances of X1, X2, X3, Z1, Z2, Z3 are calculated based on
random signals between 50s and 1000s: var(X1) = 2.523 × 10−4, var(X2) =
3.054 × 10−4, var(X3) = 3.061 × 10−4, var(Z1) = 3.747 × 10−4, var(Z2) =
6.986× 10−4, var(Z3) = 15× 10−4, which are approximately consistent with
the entry Pc(1, 1), Pc(2, 2), Pc(3, 3), Pc(4, 4), Pc(5, 5), Pc(6, 6), respectively. It
is interesting to observe that all the entries of Pc are smaller than the smallest
noise variance σ2

3 = 0.005. In fact, they are even smaller than the error variance
of the optimal Bayesian estimate σ̂2 = 0.0037.
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6.5.2 Filtering scheme in discrete time

The simulation step Ts = 0.001s and the simulation time is 20 seconds.
In Simulink, blocks ‘Random Number’ are used to generate measurement
noises, and their configurations are given in Appendix D.2. The estimates and
measurements are depicted in Figure 6.4. The results are consistent with the
conclusion in Subsection 6.4.1 that the scheme provides an unbiased estimate.
Moreover, the estimates of all the sensing nodes have smaller variances than are
their raw measurements. The covariance matrix P1 is calculated via solving the
Lyapunov equation Φ1P1ΦT1 +B1RB

T
1 − P1 = 0. The covariance matrix P1 is
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Figure 6.4: Distributed sensor fusion performance by filtering algorithm. Left
column: state estimates of non-sensing nodes (blue —) vs. z0 (black – –); right
column: measurements (gray —) and state estimates (red —) of sensing nodes
vs. z0 (black – –).

P1 = 10−4 ×


1.365 1.003 1.171 1.294 0.776 0.752
1.003 1.406 0.891 0.993 1.465 0.342
1.171 0.891 2.249 0.820 0.767 2.266
1.294 0.993 0.820 2.104 0.762 0.397
0.776 1.465 0.767 0.762 3.393 0.222
0.752 0.342 2.266 0.397 0.222 9.587

 .

The steady-state variances of x1, x2, x3 are calculated based on the last 5000
samples (the last 5 seconds): var(X1) = 1.3769×10−4, var(X2) = 1.4565×10−4,
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var(X3) = 2.2677× 10−4, var(Z1) = 2.0992× 10−4, var(Z2) = 3.1759× 10−4,
var(Z3) = 9.0803× 10−4, which are consistent with the entry P1(1, 1), P1(2, 2),
P1(3, 3), P1(4, 4), P1(5, 5), P1(6, 6), respectively. It is interesting to observe that
all the entries of P1 are smaller than the smallest noise variance σ2

3 = 0.005,
and the error variance of the optimal Bayesian estimate σ̂2 = 0.0037.

6.5.3 Non-filtering scheme in discrete time

The simulation step Ts = 0.001s and the simulation time is 20 seconds. The
configurations for Simulink blocks ‘Random Number’ are the same as in the
previous filtering scheme. The fusion performance is depicted in Figure 6.5. The
results reveal the fact that scheme provides an unbiased estimate. Moreover,
the estimates of all the sensing nodes have smaller variances than are their raw
measurements. The covariance matrix P2 is calculated via solving the Lyapunov
equation

Φ2P2ΦT2 +B2RB
T
2 − P2 = 0.

The covariance matrix P2 is
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Figure 6.5: Distributed sensor fusion performance by non-filtering algorithm.
Left column: state estimates of non-sensing nodes (blue —) vs. z0 (black – –);
right column: measurements (gray —) and state estimates (red —) of sensing
nodes vs. z0 (black – –).
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P2 = 10−4 ×


1.967 1.200 1.229 1.427 0.932 0.545
1.200 2.122 0.965 1.265 1.239 0.268
1.229 0.965 4.159 0.918 0.911 0.485
1.427 1.265 0.918 4.430 0.905 0.295
0.932 1.239 0.911 0.905 8.267 0.204
0.545 0.268 0.485 0.295 0.204 27.714

 .

The steady-state variances of x1, x2, x3, z1, z2, z3 are calculated based on the
last 5000 samples (the last 5 seconds): var(X1) = 1.9723 × 10−4, var(X2) =
2.1811× 10−4, var(X3) = 4.1942× 10−4, var(Z1) = 4.3778× 10−4, var(Z2) =
8.1443× 10−4, var(Z3) = 2.5291× 10−3, which are consistent with the entry
P2(1, 1), P2(2, 2), P2(3, 3), P2(4, 4), P2(5, 5), P2(6, 6), respectively. It can be
observed that all the entries of P2 are smaller than the smallest noise variance
σ2

3 = 0.005, and the error variance of the optimal Bayesian estimate σ̂2 = 0.0037.

6.5.4 Filtering scheme with poor measurements

In this secnario, it is assumed that sensor 3 has poor measurement accuracy.
To emphasize it, it is set that σ2

3 = 2. The sensor fusion performance of the
filtering algorithm is presented in Figure 6.6. It can be observed that the
network functions well, and moreover despite of its local poor accuracy, sensing
node 3 still yields a satisfactory estimate thanks to the feedback from the rest
of the network.
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Figure 6.6: Poor measuring from sensor 3 with σ2
3 = 2. Left column: state

estimates of non-sensing nodes (blue —) vs. z0 (black – –); right column:
measurements (gray —) and state estimates (red —) of sensing nodes vs. z0
(black – –).

6.5.5 Filtering scheme on slowly-varying signals

Though the algorithms proposed in this chapter are focused on constant scalar
signals, they can also track slowly-varying signals. Since, as proved in [Olfati-
Saber and Shamma, 2005], the consensus-based network serves as a low-pass
filter, as long as the signal to be tracked is within the ‘bandwidth’ of the filter,
the sensor fusion performance can be guaranteed. To demonstrate such ability,
the filtering algorithm is applied to track a sine-wave signal. The magnitude
versus frequency response of the consensus-based filter from z0(t) to Y (t) are
shown in Figure 6.7. Given that the bandwidth of the consensus filter is around
3 Hz, a sine-wave signal with frequency content of 1 Hz is considered in the
simulation: z0(t) = sin(2πt). The tracking and fusion performance is presented
in Figure 6.8. It can be seen that estimates of all the nodes track the dynamical
signal quite well, yet with smaller variances than the raw measurements.
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Figure 6.7: Magnitude-frequency response of the consensus-based low-pass filter:
from z0(t) to Y (t).
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Figure 6.8: Tracking and sensor fusion performance of the distributed filter for
slowly-varying signal (black – –) z0(t) = sin(2πt): state estimates of non-sensing
nodes (blue —); state estimates of sensing nodes (red —); measurement signals
(gray —).
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6.6 Summary

In this chapter, one continuous-time consensus fusion algorithm and two discrete-
time fusion algorithms are proposed. The considered network is composed of two
sets of nodes: sensing nodes which perform the measuring task and non-sensing
nodes which mediate between the sensing nodes. Inspired by the Bayesian rule,
variances of measurements are incorporated into the edge weight design, giving
rise to variance-dependent consensus algorithms. The evolution dynamics of
expected value and covariance throughout the whole network is derived. The
fusion performance is examined via numerical simulations. The simulation under
one poor measurement indicates that the distributed sensor fusion network is
somewhat robust to outliers of variances. Though the quantity to be tracked is
a constant scalar, through simulation, the capability of tracking slowly-varying
signals is also demonstrated, if the frequency contents of the signals are within
the bandwidth of the network filters.





Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

In this dissertation, distributed estimation and control algorithms are designed
for a class of spatially interconnected systems, particularly for flexible structures.
In the framework of distributed/networked/cooperative observers, each observer
estimates the system states via two information sources: one is the local
measurement and the other one is the communicated state estimates from
the neighboring nodes. Four decentralized approaches are developed for the
construction of cooperative observers. Computational reduction is further
analyzed quantitatively. Numerical simulations are carried out for four types of
cooperative observers to verify their efficacy, and relevant robustness against
graph reconfiguration and flexibility in redundant sensor integration. Hereafter,
the observer-based control laws are designed, where a heuristic approach
is proposed to partially separate the interdependent design of distributed
estimation and control algorithms. The closed-loop damping performance
is examined via simulations in both time domain and frequency domain.
An experimental study with a composite plate is elaborated to validate the
effectiveness of the distributed estimation and control algorithms in vibration
reduction. As a preliminary study, the dissertation further develops distributed
sensor fusion algorithms for static or slowly-varying signals whose measurements
are corrupted by independent Gaussian noises.

Specifically, four decentralized schemes have been developed in Chapter 3, to

117
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construct the cooperative observers over directed graphs. The first scheme
assumes that the exact graph topology is known to each agent. The second
scheme does not necessarily require knowing the specific graph, this brings
robustness under graph reconfigurations. It is restricted to systems which are
locally detectable for each agent. The third scheme works also without the exact
knowledge of global graph topology. Compared with the second scheme, it can
also deal with locally undetectable systems. The fourth scheme is developed by
first applying a local observability decomposition for each agent, followed by
solving state estimation in observable and unobservable subspaces, respectively.
Due to the local observability decomposition, the convergence rate of state
estimation errors can be tuned arbitrarily fast. In theory, the fourth scheme can
work under more general directed graphs of which strongly connected graphs are
only subsets. Numerical simulations of all the four schemes with a representative
smart flexible beam model are finally presented to demonstrate the estimation
performance as well as relevant versatilities of the four design schemes.

The design of observer-based control laws is addressed in Chapter 4. Separation
principle in the traditional observer-based controller design fails to hold in
the distributed estimation and control architecture studied in this dissertation.
To tackle this issue, a heuristic approach is proposed, where the cooperative
observers are designed based on the schemes in Chapter 3, while the feedback
matrices are designed thereafter to stabilize the augmented closed-loop dynamics.
Numerical simulations are performed to demonstrate the damping performance
of the developed distributed estimation and control algorithms.

In Chapter 5, an experimental case with a composite plate is studied. Data-
driven modeling is used to construct the state-space model, based on which 3
cooperative observers with feedback control algorithms are designed. Firstly,
damping performance of the distributed estimation and control algorithms is
examined in off-line simulations first. Real-time damping performance is then
validated by loading the algorithms in a real-time simulator.

Finally, to account for noises in measurements, a preliminary study on
distributed homogeneous sensor fusion is carried out in Chapter 6. Inspired by
Bayesian estimation in batch measurements, variances of measurement noises
are incorporated in the design of edge weights for the communication network.
One fusion algorithm for continuous-time processes and two fusio algorithms for
discrete-time processes are developed. Numerical experiments are performed to
verify the fusion performance, where the expected value and error variances of
the estimates of all the nodes are fairly consistent with the analytical results.
Though the quantity to be tracked is a constant scalar, it is also demonstrated by
a numerical experiment that the fusion algorithms can also track slowly-varying
signals.
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7.2 Recommendations for ongoing research

There are several aspects need to be further explored, and they are recommended
below.

7.2.1 Network-induced problems

This dissertation has presented the state-of-the-art approaches to design
networked observers such that they can cooperate with each other to estimate
the real plant states. However, all the analysis is based on ideal network
connectivity, though several approaches possess robustness against mild graph
variations. The rigorous treatment of network-induced issues such as time delay,
random package dropouts, etc. has not been addressed in the scope of current
research. For real-world applications of such networked control systems, these
issues need to be investigated explicitly to avoid critical downtime.

To evaluate the limits of the developed cooperative observers in case of
communication delay, consider the following time-delay model

Time-delay

˙̂xi(t) = Ãx̂i(t) + Li(yi(t)− ŷi(t)) + Fi · (
∑
j∈Ni

aij(x̂j(t− τ)− x̂i(t))), (7.1)

where τ denotes the communication delay. The estimation of scheme 1 to scheme
4 in Chapter 3 is examined under different time delays. Their performance is
depicted in Figure 7.1 - Figure 7.4. It can be observed that scheme 2 and scheme
4 are less sensitive to communication delays than the other two schemes. It is
reported that a typical communication latency of Bluetooth 4.0 is around 3 ms,
this motivates the necessity of developing more robust estimation algorithms
under large time delays.
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Figure 7.1: Estimation performance of scheme 1 under different time delays.
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Figure 7.2: Estimation performance of scheme 2 under different time delays.



RECOMMENDATIONS FOR ONGOING RESEARCH 121

Time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

||/
||

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

= = 0 ms
= = 0.1 ms
= = 0.5 ms
= = 1 ms

Figure 7.3: Estimation performance of scheme 3 under different time delays.
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Figure 7.4: Estimation performance of scheme 4 under different time delays.
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Random link failures

To evaluate the limits of developed cooperative observers in case of random
communication link failures, consider the graph topology in Figure 3.6. It
is assumed that there is a detection mechanism for link failures: once the
agent detects the link failure, the contribution from that channel is set to zero.
Suppose each link has an identical failure probability, denoted as p. If p = 0,
then all the links are reliable; if p = 1, then all the links are lost, yielding a
purely decentralized architecture. The estimation performance of cooperative
observers under different values of p is examined through fixed-step simulations
and presented in Figure 7.5 - Figure 7.8. For scheme 1, up to p = 95%, the
estimation performance is not critically degraded. For scheme 2, up to p = 70%,
the estimation performance is not critically degraded. For scheme 3, up to
p = 50%, the estimation performance is not critically degraded. It is interesting
to observe that when all the links are lost (p = 100%), its performance is better
than p = 80% and p = 90%. For scheme 4, up to p = 95%, the estimation
performance is not critically degraded.
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Figure 7.5: Estimation performance of scheme 1 under link failures.
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Figure 7.6: Estimation performance of scheme 2 under link failures.
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Figure 7.7: Estimation performance of scheme 3 under link failures.
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Figure 7.8: Estimation performance of scheme 4 under link failures.



RECOMMENDATIONS FOR ONGOING RESEARCH 125

7.2.2 Distributed sensor fusion for dynamical noisy signals

The main focus of cooperative observer design in this dissertation is their
convergence of state estimation error. Design of cooperative observers
considering measurement noises is addressed only for a scalar signal in Chapter
6, as a preliminary study. Future research need to focus on dynamical signals
with internal states.





Appendix A

Appendix of Chapter 3

A.1 State-space matrices of the beam model

System matrix

Ã = diag{Ai} with

A1 =
[

0 1
−13490.6113 −0.2225

]
, A2 =

[
0 1

−106856.9048 −1.4918

]
,

A3 =
[

0 1
−428419.2001 −5.8638

]
, A4 =

[
0 1

−1225402.6067 −16.6908

]
,

A5 =
[

0 1
−2887959.2003 −39.1192

]
, A6 =

[
0 1

−5727693.3495 −78.0709

]
.
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Input matrix

B̃ =



0 0 0 0 0
181.0351 0.0075 0.0119 0.0075 −0.0041

0 0 0 0 0
557.5057 0.0880 0.0000 −0.0880 −0.0331

0 0 0 0 0
369.4049 0.0673 −0.2778 0.0682 0.2138

0 0 0 0 0
419.6450 0.4582 −0.0020 −0.4551 0.6202

0 0 0 0 0
−1076.6692 −1.1655 1.1939 −1.1671 1.0496

0 0 0 0 0
989.3053 0.6776 0.0043 −0.6855 1.2755



.

Output matrix

C̃ =



0 0 0 0
0.1295 0.1654 0.1295 0.0061

0 0 0 0
0.0613 −0.0000 −0.0613 −0.0064

0 0 0 0
0.0116 −0.0420 0.0117 0.0083

0 0 0 0
0.0209 −0.0001 −0.0208 0.0097

0 0 0 0
−0.0243 0.0250 −0.0244 0.0123

0 0 0 0
0.0056 0.0000 −0.0057 0.0129



T

.
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Output matrix after integrating an additional sensor

C̃ =



0 0 0 0 0
0.1295 0.1654 0.1295 0.0061 0.1543

0 0 0 0 0
0.0613 −0.0000 −0.0613 −0.0064 0.0452

0 0 0 0 0
0.0116 −0.0420 0.0117 0.0083 −0.0223

0 0 0 0 0
0.0209 −0.0001 −0.0208 0.0097 0.0355

0 0 0 0 0
−0.0243 0.0250 −0.0244 0.0123 −0.0033

0 0 0 0 0
0.0056 0.0000 −0.0057 0.0129 −0.0242



T

.

A.2 Matrices of Scheme 1

The matrix M is selected as

M =



−3.7473 −4.0271 −3.6842 −0.3732
482.8346 543.9777 473.0900 38.4300
−2.0021 0.0678 2.0400 0.6936

2193.5596 −32.3855 −2165.7108 −376.1393
0.9109 1.9744 0.4840 −0.6075

1497.8684 −5669.6071 1488.1803 1474.5809
−2.4569 0.2706 2.1270 0.1918

6713.9126 13.2317 −6563.2854 3110.4499
1.6592 −2.0634 1.4991 −0.1395

−8781.1472 8303.9565 −8355.5022 4216.2634
−0.8565 −0.2134 1.5059 −1.1522

7308.8992 −691.1281 −5930.7669 16062.9443



.
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A.3 Matrices of Scheme 3

L1d =



−2.2951
1128.0177
−4.5881

2871.5675
−2.9989

5654.2767
−2.1733

9883.2619
4.2964

−13507.8451
−3.1424

11115.5964



, L2d =



−4.6599
1026.1323

0.0209
−26.3462

3.2252
−6038.5411

0.0732
−299.8995
−3.4946

14310.7604
−0.0257
107.9632



,

L3d =



−2.2946
1128.0334

4.5845
−2872.1780
−3.0106

5656.8997
2.1682

−9879.1428
4.2862

−13519.9152
3.1637

−11182.6411



, L4d =



1.0360
2279.5037
−1.9399
−6245.1354

1.9486
12216.2375

0.7849
20084.0233
−2.5107

29892.6499
−9.1102

35499.1317



,

L5d =



−3.0819
1102.9403
−3.8873

2965.4553
2.3277

−6025.3268
−4.0954

9521.4569
1.6376

−7578.0079
4.1553

−18338.4370



.
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A.4 Matrices of Scheme 4

L1o =


0.02517
315.0583
−0.7892

1265.0010

 , L2o =


−0.1371
241.8374
0.2573

−1758.5556

 ,

L3o =


0.0252

315.0337
0.7893

−1265.1519

 , L4o =


0.0843

2417.8815
0.0134

3326.2530
−0.1876

6344.7416

 ,

L5o =
[

0.1923
257.8704

]
.
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Appendix of Chapter 4

Model discretization and problem formulation

The continuous-time (CT) FE model (3.46) is discretized via zero-order hold
(ZOH) method with a time step Ts = 1/5000s. The discrete-time (DT) state-
space model is in the form of{

x(t+ 1) = Adx(t) +
∑4
i=1Bdiui(t),

yi(t) = Cdix(t), i = 1, 2, 3, 4,

herein t is the discrete-time index. The FRFs of the CT and DT model from
Actuator 1 to Sensor 1 are shown in Figure B.1. The dynamics of agent i,
i = 1, 2, 3, 4, is in the form of

x̂i(t+ 1) = Adx̂i(t) +BdÛi(t) + Li(yi(t)− ŷi(t))
+
∑
j∈Ni

aij(x̂j(t)− x̂i(t)),
ŷi(t) = Cdix̂(t),
Ûi(t) = Kx̂i(t).

(B.1)

Herein Bd = [Bd1, Bd2, Bd3, Bd4], Ûi(t) = Kx̂i(t) is the estimation of the whole
control actions applied on the beam. Each observer corrects its state estimates
based on its local measurements and the state estimates of neighboring agents.
With the state estimation error of agent i denoted by ei(t) = x(t)− x̂i(t), the
cost function is given as

J =
∞∑
t=0

xT (t)Qxx(t) +
∞∑
t=0

4∑
i=1

[eTi (t)Qiei(t) + uTi (t)Riui(t)] (B.2)
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Figure B.1: Bode plot of CT and DT model from Actuator 1 to Sensor 1

Qx, Qi, Ri are positive definite matrices. The distributed estimation and control
optimization problem can be formulated as

minimise
P,{Li},{Ki},{aij}

J

subject to


x(t+ 1) = Adx(t) +

∑4
i=1Bdiui(t),

yi(t) = Cdix(t), i = 1, 2, 3, 4,
ui(t) = Kix̂i(t), i = 1, 2, 3, 4,

(B.3)

and i = 1, 2, 3, 4,
x̂i(t+ 1) = Adx̂i(t) +BdÛi(t) + Li(yi(t)− ŷi(t)) +

∑
j∈Ni

aij(x̂j(t)− x̂i(t)),

ŷi(t) = Cdix̂i(t),
Ûi(t) = Kx̂i(t),

(B.4)
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Sub-optimization

With Schur complement method and Lyapunov stability analysis, the
optimization problem (B.3) can be reformulated as follows (see [Orihuela et al.,
2015] for more details):

minimise
P,{Li},{Ki},{aij}

α

subject to α > 0,

P = PT � 0,

P ≺ αI,
−P ΩT I K̄T

∗ −P−1 0 0
∗ ∗ −Q−1 0
∗ ∗ ∗ −R−1

 ≺ 0,

(B.5)

where

Ω =

Ad +BdK | Υ
−−−− −− −−−−

0 | Γ

 ,
Υ =

[
−Bd1K1 −Bd2K2 −Bd3K3 −Bd4K4

]
,

Γ = (diag{Ad − LiCdi}) + I4 ⊗ (BdK) + 14 ⊗Υ− L⊗ I12,

Q =
[
Qx 0
0 diag{Qi}

]
, R = diag{Ri}, K̄ =

[
K diag{Ki}

]
.

The last constraint is a nonlinear matrix inequality (NLMI) due to the existence
of P−1. At the cost of reducing feasible set, the NLMI can be replaced with an
additional given scalar variable β0 > 0

α < β0,


−P ΩT I K̄T

∗ − 1
β0
I 0 0

∗ ∗ −Q−1 0
∗ ∗ ∗ −R−1

 ≺ 0. (B.6)

In (B.2), let Qx = 100I, Qi = 100I, and Ri = 1 × 10−4, i = 1, 2, 3, 4. In
(B.6), let β0 = 1× 1010. With the convex optimization solver CVX [Grant and
Boyd, 2014, 2008], the problem (B.5) is solved, yielding the sub-optimal sets
{Li}, {Ki} and {aij}. The solver yields the following communication weights:
a14 = 0.4427, a21 = 0.4293, a32 = 0.3148, a34 = 0.2778, a43 = 0.4511.
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System matrix

Â = diag{Âi} with

Â1 =
[
−3.1597 1732.0685
−1732.0685 −3.1597

]
, Â2 =

[
−4.2190 1600.6479
−1600.6479 4.2190

]
,

Â3 =
[
−2.6390 920.1541
−920.1541 −2.6390

]
, Â4 =

[
−6.6683 1357.9836
−1357.9836 −6.6683

]
,

Â5 =
[
−2.3175 1224.1062
−1224.1062 −2.3175

]
, Â6 =

[
−0.4162 1239.0332
−1239.0332 −0.4162

]
.

Input matrix

B̂ =



−0.0643 0.0581 0
−0.1918 0.1863 0
0.0406 −0.0201 0
0.0246 −0.0116 0
−0.0656 −0.0021 0
−0.0283 −0.0012 0
−0.0087 −0.0112 0
−0.0049 −0.0081 0
−0.0459 0.0079 0
0.0486 −0.0067 0
0.0001 −0.0003 0
0.0033 −0.0020 0



.
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Output matrix

Ĉv =



0 0.0030 0.0030
0 0.0058 0.0058
0 −0.0035 0.0088
0 −0.0006 0.0017
0 −0.0010 −0.0110
0 −0.0002 −0.0031
0 0.0084 −0.0052
0 −0.0028 0.0012
0 −0.0011 −0.0051
0 0.0035 0.0084
0 −0.0083 −0.0020
0 −0.0035 −0.0036



T

.
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Appendix of Chapter 6

D.1 Configurations for continuous-time processes

The parameters for the ’Band-Limited White Noise’ block are configured below.

For measurement noise v1: ‘Noise Power’ is set as σ2
1 , ‘Sample Time’ is set as

1× 10−4, ‘Seed’ is set as 0.

For measurement noise v2: ‘Noise Power’ is set as σ2
2 , ‘Sample Time’ is set as

1× 10−4, ‘Seed’ is set as 2× 106.

For measurement noise v3: ‘Noise Power’ is set as σ2
3 , ‘Sample Time’ is set as

1× 10−4, ‘Seed’ is set as 4× 106.

D.2 Configurations for discrete-time processes

The ‘Seed’ of the ‘Random Number’ block for v1, v2 and v3 is 0, 100000
and 200000, respectively. Parameters ‘Variance’ and ‘Sample Time’ are
straightforward to set.
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