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Abstract 
 
This habilitation thesis is focused on advanced algorithms for control and systems design 
problems and their application in various industries. Namely, two new polynomial 
factorization solvers are presented first, with direct impact towards audio compensation 
devices design. In addition, results related to biomedical research and the aerospace area are 
presented. 
 
 
Anotace 
 
Předkládaná habilitace pojednává o pokročilých algoritmech z oblasti teorie systémů a návrhu 
řízení a jejich aplikacích. Dva nové algoritmy pro polynomiální faktorizace s aplikacemi 
v audio oblasti, jsou prezentovány v prvním přiloženém článku. Další články se pak týkají 
aplikací metod řízení a systémů v oblastech biomedicíny a leteckého a kosmického výzkumu.  
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Numerical algorithms for polynomial plus/minus factorization

M. Hromčı́k1,*,y and M. Šebek2

1Department of Control Engineering, Faculty of Electrical Engineering, Center for Applied Cybernetics,
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SUMMARY

Two new algorithms are presented in the paper for the plus/minus factorization of a scalar discrete-time
polynomial. The first method is based on the discrete Fourier transform theory (DFT) and its relationship
to the Z-transform. Involving DFT computational techniques and the famous fast Fourier transform
routine brings high computational efficiency and reliability. The method is applied in the case study of H2-
optimal inverse dynamic filter to an audio equipment. The second numerical procedure originates in a
symmetric spectral factorization routine, namely the Bauer’s method of the 1950s. As a by-product, a
recursive LU factorization procedure for Toeplitz matrices is devised that is of more general impact and
can be of use in other areas of applied mathematics as well. Performance of the method is demonstrated by
an l1 optimal controller design example. Copyright # 2006 John Wiley & Sons, Ltd.
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KEY WORDS: polynomial design methods; numerical algorithms; polynomial factorizations

1. INTRODUCTION

This paper describes a new method for the plus–minus factorization of a discrete-time
polynomial. Given a polynomial in the z variable,

pðzÞ ¼ p0 þ p1zþ p2z
2 þ � � � þ pnz

n

without any roots on the unit circle, its plus/minus factorization is defined as

pðzÞ ¼ pþðzÞp�ðzÞ ð1Þ
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where pþðzÞ has all roots inside and p�ðzÞ outside the unit disc. Clearly, the scalar plus/minus
factorization is unique up to a scaling factor.

Polynomial plus/minus factorization has many applications in control and signal
processing problems. For instance, efficient algebraic design methods for time-optimal
controllers [1], quadratically optimal filters for mobile phones [2, 3], and l1 optimal
regulators [4], to name just a few, all recall the þ=� factorization as a crucial computational
step.

2. EXISTING METHODS

In any case, the plus/minus factors for n55 cannot be achieved by a finite number of
algebraic operations. This conclusion is due to the Galois’s theorem stating that the roots of
a polynomial of degree greater or equal to five cannot be expressed in a closed form. Therefore,
all numerical algorithms for plus/minus factorization are iterative in nature and give just
an approximation to the genuine factors. Some existing approaches to this problem are
mentioned in this section.

The most natural way is based on the computation of polynomial roots. Having determined
the roots r1; r2; . . . ; rn of pðzÞ via any standard procedure for polynomial roots [5] and
considering that pðzÞ=0 for all jzj ¼ 1 by assumption, one can divide the roots into two groups
Rþ ¼ fri : m$ðriÞ ¼ 0; jri j51g;R� ¼ fri : m$ðriÞ ¼ 0; jri j > 1g: Clearly, Rþ and R� are the sets
of roots of pþðzÞ and p�ðzÞ; respectively.

Performance of this procedure heavily hinges on the accuracy of the computed polynomial
roots. If these roots are distinct and separated enough, standard numerical routines [5] can
determine them with good precision. However, it is well known that the relative accuracy of a
computed root decreases as its multiplicity grows [5], and so does the accuracy of the spectral
factor thus obtained.

In addition, if the degree of the involved polynomial is high, say over 50,
the very computation of the spectral factor coefficients is problematic due to rounding
errors. It means that even if the desired roots of the spectral factor are evaluated with good
accuracy, its particular coefficients, which are typically required in applications, are not
accurate.

An alternative algorithm relies on polynomial spectral factorization and greatest polynomial
divisor computation. If qðzÞ is the spectral factor of the symmetric product pðzÞpðz�1Þ then the
greatest common divisor of pðzÞ and qðzÞ is obviously the plus factor of pðzÞ: The minus factor
can be derived similarly from pðz�1Þ and qðz�1Þ: As opposed to the previous approach based on
direct roots computation which typically makes problems for higher degrees and/or roots
multiplicities, this procedure relies on numerically reliable algorithms for polynomial spectral
factorization [6, 7]. Unfortunately, the polynomial greatest common divisor computation is
much more sensitive. As a result, both these techniques do not work properly for high degrees
(say over 50).

In this report, we will introduce a completely new approach to the problem, inspired by our
work on efficient algorithms for polynomial spectral factorization, see [7]. It is based on the
discrete Fourier transform theory (DFT) theory and provides both a fruitful view on the
relationship between DFT and the Z-transform theory, and a powerful computational tool in
the form of the fast Fourier transform (FFT) algorithm.
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3. DISCRETE FOURIER TRANSFORM

If p ¼ ½ p0; p1; . . . ; pN � is a vector of complex numbers, then its direct DFT is given by the vector
y ¼ ½ y0; y1; . . . ; yN �; where

yk ¼
XN
i¼0

pie
�jð2pk=Nþ1Þi ð2Þ

The vector y is called the image of vector p: Conversely, if y ¼ ½y0; y1; . . . ; yN � is given, then its
inverse DFT recovers the original vector p ¼ ½p0; p1; . . . ; pN �; where

pi ¼
1

N þ 1

XN
k¼0

yke
jð2pi=Nþ1Þk ð3Þ

DFT is of great interest in various engineering fields. For its relationship to Fourier series of
sampled signals, DFT is frequently used in signal processing. One of the experimental
identification methods employs DFT as well [8]. The close relationship of DFT to interpolation
is also well known and was used recently to solve some tasks of the polynomial control theory
[9] and to treat robustness analysis problems of certain kind [10].

For numerical computation of DFT, the efficient recursive FFT algorithm was developed by
Cooley and Tukey in 1965 [11]. If the length of the input is a power of two, a faster version of
FFT (sometimes called radix-2 FFT) can be employed [11]. In general, the FFT routine features
a highly beneficial computational complexity and involves OðN logðNÞÞ multiplications and
additions for a vector of length N:

Thanks to the importance of DFT mentioned above, the FFT algorithms are naturally
available as built-in functions of many computing packages (Matlab

TM; Mathematica
TM;

etc.). This is another good reason for employing the procedure proposed in this paper.

4. PLUS/MINUS FACTORIZATION AND DFT

4.1. Theory

Given a polynomial

pðzÞ ¼ p0 þ p1zþ � � � þ pdz
d

non-zero for jzj ¼ 1; we first apply a direct degree shift to arrive at a two-sided polynomial

*pðzÞ ¼ p0z
�d þ � � � þ pdz

d�d

where d is the number of roots of pðzÞ lying inside the unit circle. Now, instead of solving
Equation (1), we look for *pþðzÞ ¼ *pþ0 þ *pþ1 z

�1 þ � � � þ *pþd z
�d and *p�ðzÞ ¼ *p�0 þ *p�1 zþ � � � þ

*p�d�dz
d�d such that

*pðzÞ ¼ *pþðzÞ*p�ðzÞ ð4Þ

Relationship between the pairs *pþ; *p� and pþ; p� are obvious.
In order to solve Equation (4), logarithm is applied. As *pðzÞ; *pþðzÞ and *p�ðzÞ are all analytic

and non-zero in 1� e5jzj51þ e the logarithms exist. Let us denote them as ln *pðzÞ ¼
nðzÞ; ln *pþðzÞ ¼ xþðzÞ; ln *p�ðzÞ ¼ x�ðzÞ: Here nðzÞ; obtained from the given *pðzÞ; is a Laurent
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infinite power series

nðzÞ ¼ � � � þ n1zþ n0 þ n�1z
�1 þ � � �

It can be directly decomposed,

nðzÞ ¼ xþðzÞ þ x�ðz�1Þ

with power series

xþðzÞ ¼ xþ0 þ xþ1 z
�1 þ � � � ¼

n0

2
þ n�1z

�1 þ � � � ; x�ðzÞ ¼ x�0 þ x�1 zþ � � � ¼
n0

2
þ n1zþ � � � ð5Þ

analytic for 1� e5jzj and 1þ e > jzj; respectively.
At this time, the necessity of the degree shift yielding the two-sided polynomial *p can be

explained. According to the Cauchy’s theorem of argument [12], the curve pðzÞ for jzj ¼ 1
encircles the origin in the complex plane as many times as is the number of roots of pðzÞ lying in
the complex unit disc. Hence, the logarithms cannot be applied directly as its imaginary part,
reading the phase of pðzÞ; would not be continuous. An easy solution to avoid this situation is to
move the desired number of roots of pðzÞ from infinity to zero by performing proper degree shift.

Once xþðzÞ and x�ðzÞ are computed, the plus/minus factors *pþ; *p� are recovered as

*pþ ¼ ex
þðzÞ ¼ *pþ0 þ *pþ1 z

�1 þ � � � ; *p� ¼ ex
�ðzÞ ¼ *p�0 þ *p�1 zþ � � �

Since xþðzÞ is analytic in 1� e5jzj; so is *pþðzÞ and hence it can be expanded according to (3).
Moreover, as a result of exponential function, *pþðzÞ is non-zero in 1� e5jzj: In other words, it
has all its zeros inside the unit disc and is therefore Schur stable. Note also that *pþðzÞ has to be a
(finite) polynomial of degree d (due to the uniqueness of the solution to the problem which is
known to be a polynomial) though nðzÞ is an infinite power series. Similar reasoning proves the
*p� factor desired properties.

4.2. Numerical algorithm

Numerical implementation follows the ideas considered above. A polynomial pðzÞ is represented
by its coefficients pi; i ¼ 0 . . . r or, equivalently, by function values Pk in the Fourier
interpolating points gk; k ¼ �R . . . 0 . . .R; where R5d; g ¼ ejð2p=ð2Rþ1ÞÞ: Accordingly, a power
series can be approximated by a finite set of its coefficients or by its values in a finite number of
interpolation points on the unit circle. Some operations of the procedure, namely the
decomposition of nðzÞ into xþðzÞ and x�ðzÞ; are performed in the time domain (operations on
coefficients), while the others (evaluation of logarithmic and exponential functions) are executed
in the frequency domain (operations with values over jzj ¼ 1). Mutual conversion between the
two domains is mediated by the shifted discrete Fourier transform operator defined as

Xk ¼
XR
i¼�R

xig
�ki; xi ¼

1

2Rþ 1

XR
k¼�R

Xkg
ki

which approximates the Z-transform by dealing with �R4i4þ R instead of infinite �15i
5þ1 and with z ¼ gk;�R4k4þ R instead of continuum z ¼ ejf;�p4f4þ p:

The accuracy of the results depends on the number of interpolation points 2Rþ 1 involved in
the computation. This number can be considered as a simple tuning knob of the computational
process.
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Then, the resulting numerical routine looks as follows:

Algorithm 1: Scalar discrete-time plus–minus factorization
Input: Scalar polynomial

pðzÞ ¼ p0 þ p1zþ � � � þ pdz
d ; non-zero for jzj ¼ 1

Output: Polynomials pþðzÞ and p�ðzÞ; the plus and minus factors of pðzÞ:
Step 1: Choice of the number of interpolation points. Decide about the number R: R

approximately 10–50 times larger than d is recommended up to our practical experience.
Step 2: Degree shift. Find out the number d of zeros of pðzÞ inside the unit disc. A modification

of well-known Schur stability criterion can be employed, see [13] for instance.
Having d at hand, construct a two-sided polynomial *pðzÞ as

*pðzÞ ¼ pðzÞz�d ¼ p0z
�d þ � � � þ pdz

d�d ¼ *p�dz
�d þ � � � þ *p0 þ � � � þ *pd�dz

d�d

Step 3: Direct FFT (I). Using the FFT algorithm, perform direct DFT, defined by (2), on the
vector

p ¼ ½ *p0; *p1; . . . ; *pd�d; 0; 0; . . . ; 0; *p�d; . . . ; *p�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2Rþ1

�

In this way, the set P ¼ ½P0;P1; . . . ;P2R� of the values of *pðzÞ at the Fourier points is obtained.
Step 4: Logarithmization. Compute the logarithms Ni ¼ lnðPiÞ of all particular Pi’s and form

the vector N ¼ ½N0;N1; . . . ;N2R� of them. Ni’s thus obtained are the values of the function
nðzÞ ¼ lnð*pðzÞÞ at related Fourier points on the unit complex circle.

Step 5: Inverse FFT (I). To get the vector n ¼ ½n0; n1; . . . ; nR; n�R; . . . ; n�1�; containing the
coefficients of the two-sided polynomial nðzÞ ¼ n�Rz

�R þ � � � þ n�1z
�1 þ n0 þ n1zþ � � � þ nRz

R

approximating the power series of lnðmðzÞÞ for the given R; perform inverse DFT, defined by (3),
on the vector N using the FFT algorithm.

Step 6: Decomposition. Take the ‘causal part’ xþ of n : xþ ¼ ½n0=2; n1; . . . ; nR�: Similarly,
construct x� as x� ¼ ½n0=2; n�1; . . . ; n�R�:

Step 7: Direct FFT (II). Evaluate xþðzÞ ¼ n0=2þ n1z
�1 þ � � � þ nRz

�R at the Fourier points
by applying direct FFT on the set xþ and get Xþ ¼ ½Xþ0 ; . . . ;X

þ
R �: Proceed with x�ðzÞ in obvious

way.
Step 8: Exponential function. To get the plus/minus factors, the exponential functions *pþ

ðzÞ ¼ ex
þðzÞ and *p�ðzÞ ¼ ex

�ðzÞ remain to be evaluated. First, we compute the values of *pþðzÞ and
*p�ðzÞ at the Fourier points: *Pþ ¼ ½eX

þ
0 ; . . . ; eX

þ
R �: Similar steps apply for the minus part.

Step 9: Inverse FFT (II). Finally, the coefficients *pþ ¼ ½*pþ0 ; . . . ; *p
þ
R � of *p

þðzÞ are recovered by
inverse FFT performed on the vector *Pþ: The resulting approximation to the plus factor *pþðzÞ
then equals *pþðzÞ ¼ *pþ0 þ *pþ�1z

�1 þ � � � þ *pþ�dz
�d: Proceed with the minus part accordingly.

Step 10: Finalization. Convert the plus–minus factors *pþðzÞ and *p�ðzÞ of *pðzÞ into the desired
factors of pðzÞ using the following formulas:

p� ¼ *p�; pþ ¼ *pþ$

where the star stands for discrete-time conjugate, z! z�1:

Note that one obtains R coefficients of *pþ and *p� in Step 9. However, pþðzÞ being the plus
factor of pðzÞ is known to be of degree d only and only the first dþ 1 coefficients of *pþðzÞ should
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be significant as a result while the remaining ones should be negligible. As the number R
increases, these values theoretically converge to zero indeed since the formulas of DFT become
better approximations to the Z-transform definitions.

5. RADIX-2 MODIFICATION OF THE ALGORITHM

The basic version of the routine proposed above is based on the shifted discrete Fourier
transform. This modification of DFT appears useful during the derivation of the Algorithm 1
due to its more transparent relationship to the spectral theory. It can be easily transformed to
the standard DFT as it is defined in the Section 3, simply by reordering related vector entries
(see Steps 2 and 4 of Algorithm 1). However, 2Rþ 1 interpolation points are used for the FFT
algorithm and unfortunately this number is always odd and cannot equal any power of two.
Therefore, the radix-2 fast version of the FFT routine cannot be addressed. Nevertheless, this
slight drawback can be easily avoided if the periodicity of direct and inverse DFT formulas is
taken into account. Basically, one can construct the initial set as

½ *p0; *p1; . . . ; *pd�d; 0; 0; . . . ; 0; *p�d; . . . ; *p�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2R

�

which has a power-of-two entries in total. The Algorithm 1 remains valid also in this case with
2Rþ 1 replaced by 2R and Rþ 1 by 2R�1; respectively, up to one point: in Step 6, the
decomposition reads xþ ¼ ½n0=2; n1; . . . ; nR=2� instead of xþ ¼ ½n0=2; n1; . . . ; nR�: This minor
modification of the proposed method further increases its efficiency since the powerful radix-2
FFT can be called.

6. COMPUTATIONAL COMPLEXITY

Thanks to the fact that the FFT algorithm is extensively used during the computation, the
overall routine features an expedient computational complexity.

Provided that the above modifications of the computational procedure are considered,
namely if the resulting number of interpolation points is taken as a power of two, the fast radix-
2 FFT can be employed. In this case, ðR log2 RÞ=2 multiplications and R log2 R additions are
needed to evaluate either direct or inverse DFT of a vector of length R [11]. Let us suppose in
addition that computing the logarithm or exponential of a scalar constant takes at most k
multiplications and l additions. Then the particular steps of the modified Algorithm 1 involve
ðR log2 RÞ=2 multiplications and R log2 R additions (Steps 3, 5, 7 and 9), and kR multiplications
and lR additions (Steps 4 and 8), respectively. Hence the overall procedure consumes

4
R logR

2
þ 2kR ¼ 2R logRþ 2lR

complex multiplications, and

4R logRþ 2lR

complex additions. By inspecting the above formulas one can see that asymptotically the
proposed method features OðR logRÞ complex multiplications and additions.
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7. UPGRADING LOUDSPEAKERS DYNAMICS

An original approach has been published by Sternad et al. in [14] on how to improve the
performance of an audio equipment at low additional costs. The authors use the linear-
quadratic-gaussian (LQG) optimal feedforward compensator technique to receive an inverse
dynamic filter for a moderate quality loudspeaker. By attaching a signal processor implementing
this filter prior to the loudspeaker, the dynamical imperfections of the original device are
eliminated and the overall equipment behaves as an apparatus of a much higher class. To learn
more about this research and to get some working examples, refer [15] (Figure 1).

Unlike their predecessors, the authors try to modify the sound over the whole range of
frequencies. Such a complex compensation fully employs the increasing performance of signal
hardware dedicated to CD-quality audio signals, and at the same time calls for fast and reliable
factorization solvers [14]. We believe our new algorithm will significantly contribute to this goal.

The loudspeaker dynamics is considered in the form of an auto regressive model with external
input (ARX) model

yðtÞ ¼ z�k
BðzÞ
AðzÞ

uðtÞ

Since the impulse response is rather long for a high sampling frequency (CD-quality standard
of 44 kHz was used), both the numerator and denominator of the model are of high orders,
say 1–500.

The model has an unstable inverse in general since some of its zeros may lie outside the unit
disc. Hence, a stable approximation has to be calculated to be used in the feedforward structure.
The authors recall the LQG theory and seek for a compensating filter

uðtÞ ¼
QðzÞ
PðzÞ

wðtÞ

such that the criterion J ¼ E½jyðtÞ � wðt� dÞj2 þ rjuðtÞj2� is minimized.
For broadband audio signals, the optimal filter is given in the form

uðtÞ ¼
Q1ðzÞAðzÞ

bðzÞ
wðtÞ

where b results from the spectral factorization

bbn ¼ BBn þ rAAn

and Q1 is the solution of a subsequent Diophantine equation

zk�dBnðzÞ ¼ rbnðzÞQ1ðz�1Þ þ zLnðzÞ

see [14] (Figure 2).

Hi-fi systemInverse system

Figure 1. Pre-filter compensation scheme (adopted from [14]).
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As for the spectral factor computation, the authors employ the Newton–Raphson iterative
scheme [6] in the cited work [14]. According to their results and our experience, this method has
been probably the best available procedure for scalar polynomial spectral factorization so far
[15, 16]. This method works quite well also for high degrees of involved polynomials in contrast
to the straightforward way of computing and distributing the roots of BBn þ rAAn:

Let us perform a benchmark experiment to compare the existing approach and our newly
proposed algorithm for particular numerical data kindly provided by Mikael Sternad and
colleagues from the University of Uppsala. Up to now, two models of the loudspeakers
dynamics have been sent to us for testing purposes and the results related to the more complex
one are presented in the following.

The data in concern are given as follows. The numerator BðzÞ ¼ B0 þ B1z
�1 þ � � � þ B250z

�250

is an unstable polynomial of degree 250, AðzÞ is stable of degree 90, and k ¼ 160: Taking r ¼ 0;
the spectral factorization of mðzÞ ¼ BðzÞBnðzÞ ¼ m250z

�250 þ � � � þm0 þ � � � þm250z
250 is to be

performed. In this special case, the spectral factor xðzÞ of mðzÞ can be effectively constructed as

xðzÞ ¼ BþðzÞðB�ðzÞÞnz�k

where Bþ;B� are the plus and minus factors of B; respectively, and k is the degree of B�:
All presented experiments were realized on a PC computer with Pentium III=1:2 GHz

processor and 512 MB RAM, under MS Windows 2000 in MATLAB, version 6.1.
Results of this experiment for various values of the parameters N are summarized and related

in Table I. Namely, the computational time and accuracy of results are of interest. To obtain the
former characteristic, the MATLAB abilities were employed (the built-in functions tic/toc).
The computational error is defined here as the largest coefficient of the expression BþB� � B;
evaluated in the MATLAB workspace, divided by the largest coefficient of B (all in absolute
value).

Figure 2. Optimal filtering problem setup (adopted from [14]).

Table I. Accuracy and efficiency of compared algorithms.

Time (s) Accuracy

FFT(14) 0.23 6:28� 10�3

FFT(15) 0.45 2:52� 10�8

FFT(16) 0.89 4:65� 10�11

FFT(17) 1.75 2:40� 10�12
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These tests prove the power of the new algorithm in such tough examples. Neither of the two
procedures described in Section 2 can factor this large polynomial. Direct roots evaluation
method, based on the standard MATLAB function roots, gives totally meaningless results
(accuracy of 1043) while the routine based on spectral factorization fails due to numerical
problems with greatest common polynomial divisor evaluation (polynomial toolbox function
r div was used [16]).

8. DISCUSSION

The success in modifying a selected numerical procedure, originally developed for polynomial
spectral factorization, to handle the non-symmetric plus/minus decomposition suggests that
other well-known spectral factorization routines might work well in the non-symmetric context
as well. Actually, we decided to go this way and succeeded in adapting a classical polynomial
spectral factorization routine, the Bauer’s algorithm [17], for the plus/minus case. Our results
are presented in subsequent paragraphs.

9. BAUER’S METHOD FOR SPECTRAL FACTORIZATION

F. I. Bauer published his method for spectral factorization of a discrete-time scalar polynomial
as early as in 1955, see [17, 18]. The procedure is based on the relationship between polynomials
and related infinite Toeplitz-type Sylvester matrices.

9.1. Algebra of Sylvester matrices

Given a two-sided polynomial pðzÞ ¼ p�mz
�m þ � � � þ p0 þ � � � þ pnz

n; we define its Sylvester
companion matrix TN

p of order N;

N5maxðn;mÞ

as an N �N square matrix constructed according to the following scheme:

TN
p ¼

p0 p1 . . . pn 0 . . . 0

p�1 p0 p1 . . . pn
. .
. ..

.

..

.
p�1

. .
. . .

. . .
.

0

p�m
..
. . .

.
pn

0 p�m
. .
. ..

.

..

. . .
. . .

. . .
. . .

.
p1

0 � � � 0 p�m . . . p�1 p0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA
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To show the relationship between the polynomial algebra and the algebra of Sylvester
matrices, let us consider two simple polynomials p1ðzÞ ¼ 3z�1 þ 2þ z and p2ðzÞ ¼ z�1 þ 3: Their
companion matrices of order four read, respectively

T4
p1
¼

2 1 0 0

3 2 1 0

0 3 2 1

0 0 3 2

0
BBBBB@

1
CCCCCA

T4
p2
¼

3 0 0 0

1 3 0 0

0 1 3 0

0 0 1 3

0
BBBBB@

1
CCCCCA

Their sum p3ðzÞ ¼ p1ðzÞ þ p2ðzÞ equals

p3ðzÞ ¼ 4z�1 þ 5þ z

and its companion matrix can be computed as direct sum of related companion matrices
T4
p1
;T4

p2
:

T4
p3
¼

5 1 0 0

4 5 1 0

0 4 5 1

0 0 4 5

0
BBBBB@

1
CCCCCA

Similarly, their product p4 ¼ p1p2 ¼ 3z�2 þ 11z�1 þ 7þ 3z has a companion matrix

T4
p4
¼ T4

p1
T4
p2
¼

7 3 0 0

11 7 3 0

3 11 7 3

0 3 11 6

0
BBBBB@

1
CCCCCA

9.2. Bauer’s method for spectral factorization

As we have illustrated above, finite-dimensional matrices are sufficient to accommodate ‘finite’
algebraic problems. On the other hand, if we do not restrict to finite dimensionality of related
matrices, transcendent problems, including spectral factorization, involving polynomials can be
resolved by this approach as well.

We will illustrate the Bauer’s spectral factorization method by means of a simple example. An
interested reader can find detailed description in the original work [17] or, alternatively, in the
survey paper [19].

NUMERICAL ALGORITHMS 795

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:786–802

DOI: 10.1002/rnc



Given pðzÞ ¼ 2z�1 þ 5þ 2z; its companion matrix of order five reads

Tp ¼

5 2 0 0 0

2 5 2 0 0

0 2 5 2 0

0 0 2 5 2

0 0 0 2 5

0
BBBBBBBB@

1
CCCCCCCCA

As p is symmetric and positive definite on the unit circle its spectral factor x exists such that

x$x ¼ p

holds and x is stable. The spectral factor coefficients can be approximated using the Cholesky
factorization of Tp:

Tx ¼

2:236 0:8944 0 0 0

0 2:049 0:9759 0 0

0 0 2:012 0:9941 0

0 0 0 2:003 0:9985

0 0 0 0 2:001

0
BBBBBBBB@

1
CCCCCCCCA

The diagonals of Tx obviously converge to the genuine spectral factor coefficients: xðzÞ ¼ 1þ 2z:
An interesting feature of this routine is that particular columns of Tx can be computed

iteratively, using only latest preceding column and the coefficients of pðzÞ; see [19] for details. As
a result, the final algorithm is favourably memory efficient. Mainly for this reason the method is
still quite popular in spite of the fact that some later approaches, see e.g. [20, 21], provide a faster
rate of convergence.

10. PLUS/MINUS FACTORIZATION VIA BAUER’S APPROACH

A modification of the Bauer’s method for the non-symmetric polynomial plus/minus
factorization is worked out in this section.

10.1. LU factorization

As we have shown in Section 9.1, algebra of companion matrices is not limited to the symmetric
case. Also, the matrix theory provides useful factorization techniques for non-symmetric
matrices along with stable and efficient procedures for their computation.

Bauer’s method calls for the Cholesky factorization to get the desired spectral factor. This
routine assumes the input matrix to be symmetric and positive definite which is the case of the
spectral factorization problem. However, if we aim at modifying the method in order to capture
the non-symmetric plus/minus factorization case, we need to leave this concept and employ
another technique since the companion matrix is no longer symmetric.
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The Cholesky factorization decomposes the input matrix into a product of two matrices
basically that are upper and lower triangular, respectively. Considering this observation, the
most natural alternative for the non-symmetric plus/minus case seems to be the LU-
factorization concept.

Definition 10.1 (general LU-factorization)
LU factorization expresses any square matrix A as the product of a permutation of a lower
triangular matrix and an upper triangular matrix,

A ¼ LU

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is an
upper triangular matrix.

The permutations are necessary for theoretical reasons in the general case. For instance, the
matrix

0 1

1 0

 !

cannot be expressed as the product of triangular matrices without interchanging the two rows.
However, the special band structure of the companion matrices can be exploited to show that
the permutations are not necessary and the factorization can be expressed simply as a product of
a lower and an upper triangular matrix.

Lemma 10.1
Given a scalar discrete-time two-sided polynomial pðzÞ with roots not lying on the unit circle, its
companion matrix can be factored in the form Tp ¼ LU; where L and U are lower and upper
triangular matrices, respectively.

Proof
If a (possibly two-sided) polynomial p is non-zero at the unit circle then the principal minors of
its companion matrix are known to be non-zero, see the reasoning in [19]. Further, according to
[22], Theorem 3.2.1, a matrix A has the desired lower–upper triangular factorization if its all
principal minors are non-zero. Combining these two observations, we arrive at the statement of
the lemma. &

Following Lemma 10.1, a new algorithm for polynomial plus/minus factorization is suggested in
the next subsection.

10.2. Plus/minus factorization algorithm

Given a (scalar, one-sided) polynomial

pðzÞ ¼ p0 þ p1zþ � � � þ pdz
d

non-zero for jzj ¼ 1; we first apply a direct degree shift to arrive at a two-sided polynomial

*pðzÞ ¼ p0z
�d þ � � � þ pdz

d�d
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where d is the number of roots of pðzÞ lying inside the unit circle. Now, instead of solving
Equation (1), we look for *pþðzÞ ¼ *pþ0 þ *pþ1 z

�1 þ � � � þ *pþd z
�d and *p�ðzÞ ¼ *p�0 þ *p�1 zþ � � � þ

*p�d�dz
d�d such that

*pðzÞ ¼ *pþðzÞ*p�ðzÞ ð6Þ

Relationship between the pairs *pþ; *p� and pþ; p� are obvious.
Having composed the companion matrix TN

*p of sufficiently high order N; its LU factorization
is performed. An approximation to the plus and minus factors of *p can then be read from the
last column of the L and U factors, respectively, similarly to the spectral factorization case.

The degree shift yielding the two-sided polynomial *p is necessary to assure the correct
decomposition of *p into stable and antistable parts. If the shift were not performed or were
different from d; the decomposition would still work in principle, however, the strict stability
and antistability of particular factors would be lost.

Detailed description of the resulting algorithm follows.

Algorithm 2: Scalar discrete-time plus/minus factorization
Input: Scalar polynomial
pðzÞ ¼ p0 þ p1zþ � � � þ pdz

d ; non-zero for jzj ¼ 1:
Output: Polynomials pþðzÞ and p�ðzÞ; the plus and minus factors of pðzÞ:
Step 1: Choice of the companion matrix size. Decide about the number N: N approximately

10–50 times larger than d is recommended up to our practical experience.
Step 2: Degree shift. Find out the number d of zeros of pðzÞ inside the unit disc. A modification

of the well-known Schur stability criterion can be employed, see [13] for instance.
Having d at hand, construct a two-sided polynomial *pðzÞ as

*pðzÞ ¼ pðzÞz�d ¼ p0z
�d þ � � � þ pdz

d�d

¼ *p�dz
�d þ � � � þ *p0 þ � � � þ *pd�dz

d�d

Step 3: Construction of TN
*p : Following the Section 4.8.1, construct the Sylvester companion

matrix related to *p of order N:
Step 4: LU decomposition of TN

*p : Perform the LU decomposition of TN
*p :

TN
*p ¼ LU

L and U are lower and upper triangular matrices, respectively.
Step 5: Construction of polynomial factors. Columns of the L and U matrices contains a non-

zero vector l; u of length dþ 1 and d � dþ 1 lying under and above the main diagonal,
respectively. Take the last full column l ¼ ½l0; l1; . . . ; ld� to create the plus factor of pðzÞ as

pþðzÞ ¼ l0 þ l1zþ � � � þ ldz
d

The minus factor is constructed in a similar way using the last vector u:

11. EXAMPLE

To illustrate the usefulness of polynomial plus/minus factorization and to demonstrate the
power of the proposed algorithm at the same time, we will discuss the l1 optimal control
problem.
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l1 optimization is a modern design technique, see [23] for a survey. The design goal lies in
minimizing the l1 norm of a closed-loop transfer function. Such a way, the magnitude of
measured output signal is minimized with respect to bounded, yet persistent input disturbances.
l1 optimal controllers have already found an application in some irrigation channel regulation
problem, see [24] for instance.

Quite recently a new method has been suggested by Z. Hurák et al. for the computation of an
l1 optimal discrete-time single-input single-output compensator, see [4]. Unlike their
predecessors, the authors rely on the transfer function description purely and carefully exploit
the algebraic structure of the problem. The resulting algorithm is given in [4] along with the
following example.

Let us compute a feedback controller that minimizes ‘1 norm of the sensitivity function for a
plant described by

Gðz�1Þ ¼
bðzÞ
aðzÞ
¼
�45� 132z�1 þ 9z�2

�20� 48z�1 þ 5z�2

The solution consists of the following computational steps:

1. plus/minus factorization of aðz�1Þ ¼ aþðz�1Þa�ðz�1Þ and bðz�1Þ ¼ bþðz�1Þb�ðz�1Þ:
2. Find the minimum degree solution to aðz�1Þx0ðz�1Þ þ bðz�1Þy0ðz�1Þ ¼ 1:
3. Find a solution to a�ðz�1Þb�ðz�1Þxðz�1Þ þ yðz�1Þ ¼ aðz�1Þx0ðz�1Þ of given degree of yðz�1Þ

and with minimum jj : jj1 norm.
4. The optimal controller is given by

Cðz�1Þ ¼
aþðz�1Þbþðz�1Þy0ðz�1Þ þ aðz�1Þxðz�1Þ
aþðz�1Þbþðz�1Þx0ðz�1Þ � bðz�1Þxðz�1Þ

The first step can be efficiently and reliably performed using Algorithm 2. We take
small-size Sylvester matrices first for illustrative purposes, say N equal to 4: Ta and Tb read,
respectively

Ta ¼

�48 5 0 0

�20 �48 5 0

0 �20 �48 5

0 0 �20 �48

2
666664

3
777775

Tb ¼

�132 �45 0 0

9 �132 �45 0

0 9 �132 �45

0 0 9 �132

2
666664

3
777775
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and their LU factorization gives rise to

Tþa ¼

1 0 0 0

0:4167 1 0 0

0 0:3993 1 0

0 0 0:4003 1

2
666664

3
777775

T�a ¼

�48 5 0 0

0 �50:083 5 0

0 0 �49:997 5

0 0 0 �50

2
666664

3
777775

and

Tþb ¼

1 0 0 0

�0:06818 1 0 0

0 �0:06663 1 0

0 0 �0:06667 1

2
666664

3
777775

T�b ¼

�132 �45 0 0

0 �135:1 �45 0

0 0 �135 �45

0 0 0 �135

2
666664

3
777775

These matrix factors give a fair approximation to aþ; a�; bþ; b� polynomials:

aþ ¼ 0:40003z�1 þ 1; a� ¼ �49:997z�1 þ 5

bþ ¼ � 0:067z�1 þ 1; b� ¼ �135z�1 � 45

To get more accurate results, N is increased. Taking N ¼ 20 yields perfectly accurate results,

aþ ¼ 2=5z�1 þ 1; a� ¼ �50z�1 þ 5

bþ ¼ � 1=15z�1 þ 1; b� ¼ �135z�1 � 45
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12. LU FACTORIZATION OF TOEPLITZ MATRICES

The LU decomposition can be performed via standard routines, see [22] for instance,
implemented in standard packages such as LAPACK or commercial MATLAB. Nevertheless,
thanks to the strong structurality of involved Toeplitz matrices, dedicated efficient routines for
their LU factorization can be developed.

We assume the L and U factors in special forms depicted in Figure 3. Analysing the product
LU; the procedure given in the figure in the form of a MATLAB pseudocode can be developed
to receive subsequent iterations of l and u vectors.

13. CONCLUSIONS

A new method for the discrete-time plus/minus factorization problem in the scalar case has been
proposed. The new method relies on numerically stable and efficient FFT algorithm. Besides its
good numerical properties, the derivation of the routine also provides an interesting view into
the related mathematics, combining the results of the theory of functions of complex variable,
the theory of sampled signals, and the discrete Fourier transform techniques. The suggested
method is employed in a practical application of improving the quality of a hi-fi system.

Encouraged by the success in modifying a spectral factorization algorithm for the plus/minus
factorization case, we decided to re-visit another classical spectral factorization routine, namely

Figure 3. Algorithm diagram.
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the Bauer’s method of the 1950s. This idea has proved fruitful and our efforts resulted in
another plus/minus factorization routine. As a by-product, a recursive LU factorization
procedure for Toeplitz matrices has been developed that has a more general impact and can be
of use in other areas of applied mathematics as well. Performance of the method was
demonstrated by an l1 optimal control system design example.
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Complete Fast Analytical Solution of the Optimal
Odd Single-Phase Multilevel Problem

Petr Kujan, Member, IEEE, Martin Hromčík, and Michael Šebek, Senior Member, IEEE

Abstract—In this paper, we focus on the computation of optimal
switching angles for general multilevel (ML) odd symmetry wave-
forms. We show that this problem is similar to (but more general
than) the optimal pulsewidth modulation (PWM) problem, which
is an established method of generating PWM waveforms with
low baseband distortion. We introduce a new general modulation
strategy for ML inverters, which takes an analytic form and
is very fast, with a complexity of only O(n log2 n) arithmetic
operations, where n is the number of controlled harmonics. This
algorithm is based on a transformation of appropriate trigonomet-
ric equations for each controlled harmonics to a polynomial system
of equations that is further transformed to a special system of
composite sum of powers. The solution of this system is carried out
by a modification of the Newton’s identity via Padé approximation,
formal orthogonal polynomials (FOPs) theory, and properties of
symmetric polynomials. Finally, the optimal switching sequence
is obtained by computing zeros of two FOP polynomials in one
variable or, alternatively, by a special recurrence formula and
eigenvalues computation.

Index Terms—Composite sum of powers, formal orthogo-
nal polynomials (FOPs), multilevel (ML) inverters, Newton’s
identities, optimal pulsewidth modulation (PWM) problem,
Padé approximation, polynomial methods, selected harmonics
elimination.

I. INTRODUCTION

THE optimal multilevel (ML) or pulsewidth modulation
(PWM) problem, sometimes called the selected harmonic

elimination (SHE) problem, is an established method for gen-
erating ML waveforms with low baseband distortion. The prin-
cipal problem is to determine the switching times (angles) to
produce the baseband and to not generate specific higher order
harmonics. This way, it is possible to separate the undesirable
highest harmonics.

The optimal ML problem offers several advantages com-
pared to traditional modulation methods [1]–[4]. This approach
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allows better performance with low switching frequency, direct
control over output waveform harmonics, and the ability to
leave untouched harmonics divisible by three for three-phase
systems.

Up to now, a lot of different perspectives were proposed.
All the methods assume quarter symmetry, and all formula-
tions result in the Fourier series representation for different
waveforms. The principal problem lies in solving a multivariate
trigonometric system of equations or, after substitution for
Chebyshev polynomials, in solving a multivariate polynomial
system of equations. There are several techniques of how to
solve them.

The most effective method for single-phase quarter-
symmetric inverter is described in [5]–[7]. This method is based
on trigonometric identity for cosine function where the original
trigonometric system is transformed to a polynomial system
of specific structure leading to the polynomial system of sum
of odd powers. The problem results in the construction of a
special set of one variable polynomials and computation of their
zeros. These polynomials are formal orthogonal (FOPs), and a
recurrence formula is derived for them. The solution is based
on diagonal Padé approximation. In the case of single-phase
inverter for a given modulation index,1 one or no solution exists.
An exact algorithm with a small complexity O(n log2 n) was
found. The main result of this paper is, in fact, a generalization
of this work for general odd symmetry ML waveforms.

Three-phase inverter systems pose a very interesting topic
with many industrial applications. In the three-phase connec-
tion, all harmonics divisible by three are ignored as they are
automatically canceled in the electric system. This is a more
complicated problem because a special structure of the system
of equations is damaged. One unique, several different, or no
solution exists for a given modulation index. From these, only
one solution is selected—the one that minimizes other undesir-
able and uncontrolled higher harmonics. For more details, see
[8]–[11]. These papers also rely on the conversion to a system
of polynomials using trigonometric identities. This system of
polynomials is solved by the Gröbner basis theory or by the
elimination method based on computation of resultants [10]. In
addition, a substitution for elementary symmetric polynomials
or power sums is applied in [9] and [10]. Applicability of this
method is restricted to say five odd harmonics because an ap-
propriate system for a higher number of eliminated harmonics
is too large, and its solution is extraordinarily time consuming.
Nevertheless, fast analytical methods similar to the algorithms

1This is basically the ratio of the first harmonic to the amplitude of one level
of an ML waveform.

0278-0046/$26.00 © 2010 IEEE
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Fig. 1. (a) Frequency spectrum of a separated baseband signal. The baseband
can be recovered by an LPF. (b) Principal scheme for the optimal PWM or ML
problem.

for single-phase systems presented further in this paper seem to
appear soon (see [12] for some first results).

Other methods presented in the literature dealing with the
system of polynomial equations are numerical iterative routines
[13], genetic algorithms [14], optimization theory [15]–[18],
homotopy and continuation [19], or a predictive control algo-
rithm [20].

Applications of the optimal ML or PWM problem cover the
control of large electric drives, power electronics converters,
active harmonic filters, control of (micro) electromechanical
systems, or digital audio amplifier. Implementation of fast
and efficient algorithms proposed in this paper on dedicated
hardware, e.g., digital signal processors, opens a possibility
of a more effective on-the-fly realizations and more accurate
and faster solutions. It can result in increasing fuel or power
efficiency and better performance (see [21]).

II. OPTIMAL ML PROBLEM

A key issue in the optimal ML problem is the determination
of the switching times (angles) to produce the signal portion
(baseband) and to not generate specific higher order harmonics
(guard band or zero band). This spectral gap separates the
baseband, which has to be identical to the required output
waveform, from an uncontrolled higher frequency portion. The
required output signal can be recovered by means of an analog
low-pass filter (LPF) with a cutoff frequency in the guard band.
The procedure is depicted in Fig. 1.

Methods described in this section are based on exploiting
appropriate trigonometric transcendental equations that define
the harmonic content of the generated periodic ML waveform
p(t), which is equal to the required finite frequency spectrum
of f(t). The main problem lies in solving these systems of
equations.

The solution of the optimal ML problem is a sequence of
switching times α� = (α1, . . . , αn). This sequence is obtained
from the solution of the following system of equations:

ap0(α) = af 0 (1a)

apk(α) = af k

bpk(α) = bf k

}
for all k ∈ HC (1b)

apk(α) = 0
bpk(α) = 0

}
for all k ∈ HE (1c)

subject to 0 < αi < T (1d)

where α = (α1, . . . , αn) are unknown variables, ap0 and apk,
bpk are the zeroth and kth cosine and sine Fourier coefficients
of the generated waveform p(t), respectively, and af 0 and af k,
bf k are the zeroth and kth cosine and sine Fourier coefficients
of the required output waveform f(t). HC is the set of con-
trolled harmonics, and the number of elements is nC . HE is the
set of eliminated harmonics, and the number of elements is nE .
The number of equations is n = 1 + 2(nC + nE).

If only one solution α of (1) exists, then it is the optimal
solution, and α� = α. If the solutions of (1) are α1, . . . , αm,
m > 1, then the optimal solution α� is chosen as the minimizer
of the total harmonic distortion (THD), i.e.,

α � = arg min
α={α1,...,αm}

THD(α) (2)

where

THD(α) (in percent) = 100

√√√√√√
∑n+N

i=nc+1

(
api

(α)+bpi
(α)

i

)2
∑nc

i=1

(
api

(α)+bpi
(α)

i

)2 .

(3)

If no solution of (1) is found, then the optimal solution α � is
computed as a general minimization problem, i.e.,

α � = arg min
α

√∑
k∈HE

(
apk(α) + bpk(α)

)2
subject to (1a) and (1b). (4)

In the rest of this paper, we focus on single-phase odd ML
and bilevel PWM waveforms, which lead to a special structure
of (1), with only one solution satisfying the condition (1d). The
solution of (1) is then found by an analytical procedure.

III. SWITCHING WAVEFORMS

We will show by analysis of different ML waveforms
(general, odd, even, half-wave, quarter-wave and bilevel, three-
level) that an effective (analytical) solution is possible for wave-
forms with odd and quarter-wave symmetry only. The Fourier
series of these waveforms are odd and, therefore, contain sine
coefficients only (the zeroth harmonic and cosine coefficients
are equal to zero). The sine and cosine Fourier coefficients are
included in other cases, and therefore, it is not possible to make
simplifying arrangements for an effective solution.

The optimal PWM problem for a quarter-symmetric three-
level inverter is solved in [5] and [6]. This waveform gener-
ates only odd sine harmonics, and only the first harmonic is
controlled. In this paper, we present solutions for more general
odd ML waveforms, which generate all (odd as well as even)
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Fig. 2. General odd multilevel (seven-level) waveform.

sine harmonics. Therefore, our approach covers the solution of
the quarter-symmetric PWM and ML problem, and it is more
general. Furthermore, the first few nc harmonics are controlled.

A. General Odd ML Waveform

The Fourier series of a T periodic general odd ML waveform
p(t) with amplitude A (see Fig. 2) is sine, i.e.,

p(t) ∼
∞∑

k=1

bk sinωkt (5)

where

bk =
2A

kπ

(
(−1)k+1on −

n∑
i=1

(−1)i cos ωkαi

)
,

k = 1, 2, 3, . . . . (6)

The unknown switching times α = (α1, . . . , αn) are sub-
ject to 0 < α1 < α3 < · · · < α2�n/2�−1 < T/2 (�n/2� ris-
ing edges) and 0 < α2 < α4 < · · · < α2�n/2� < T/2 (�n/2�
falling edges), and ω = 2π/T is the angular frequency. The
integer n is the number of switching times in the half period,
and on is the odd parity test described by

on =
1 − (−1)n

2
=
{

0, for even n,
1, for odd n.

(7)

The number of levels is equal to

2 max
i=1,...,n

|Λi| + 1 (8)

where

Λ1 = M(a1) Λi+1 = Λi + M(ai+1) i=1, . . . , n − 1

(a1, . . . , an) = sort<(α1, α2, . . . , αn) (9)

M(ai) =
{

1, ai ∈ α2j−1

−1, ai ∈ α2j . (10)

In the following, we describe some special cases:

1) proper odd ML waveform: (2�n/2� + 1)-level waveform
with n switching times in the half period, satisfying the
condition α2�n/2�−1 < α2 (see Fig. 3);

2) proper three-level waveform: only 0 and +A levels in
the half period, satisfying the condition 0 < α1 < α2 <
α3 < · · · < αn (see Fig. 4);

Fig. 3. Odd proper multilevel waveform.

Fig. 4. Odd proper three-level waveform.

3) bilevel waveform: has a slightly different Fourier se-
ries expansion and is therefore described separately in
Section III-B.

For the sequel, we put T = 2π and ω = 1 for simplicity.
Then, all solutions αi are transformed back to the original
period by a substitution αi 	→ αiT/(2π).

For further generalization and simplification of the nota-
tion, we introduce (6) and (27) for the bilevel waveform (see
Section III-B) in the following form:

bk(α) = Ak

(
Bk + Ck

n∑
i=1

(−1)i cos(kαi)

)
,

k = 1, 2, . . . . (11)

The parameters for 2π periodic odd ML waveform are

Ak =
2A

kπ
Bk = (−1)k+1on Ck = −1. (12)

According to the previous analysis of the optimal ML prob-
lem then, for a single-phase system, the controlled harmon-
ics of the output ML waveform p(t) are bpk

, k ∈ HC =
{1, 2, . . . , nC}, and the eliminated harmonics are bpk

, k ∈
HE = {nC + 1, nC + 2, . . . , nC + nE}. Thus, we have

bpk
(α) = Ak

(
Bk + Ck

n∑
i=1

(−1)i cos(kαi)

)
= bfk

,

k = 1, 2, . . . , nc (13a)

bpk
(α) = Bk + Ck

n∑
i=1

(−1)i cos(kαi) = 0,

k = nc + 1, nc + 2, . . . , n (13b)

subject to

0 < α1 < α3 < · · · < α2�n/2�−1 < π (13c)

0 < α2 < α4 < · · · < α2�n/2� < π (13d)
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where α = (α1, . . . , αn) are unknown variables (switching
times), n = nC + nE , Ak, Bk, and Ck are set according to
(12), and bfk

, k = 1, 2, . . . , nC , on the right-hand side (RHS)
of the equations are real numbers defining the required signal
f(t) (baseband frequency spectrum). The integer nE defines
the number of zero harmonics in the guard band.

1) Polynomial Equations: In this section, we convert the
trigonometric equations in (13) to polynomial equations and
simplify them. According to the trigonometric identity for
multiple angles of cosine

cos(kαi) = Tk(cos αi). (14)

We substitute by Chebyshev polynomial Tk of the first kind
(see, e.g., [22, p.771] or [5]) and convert the kth harmonic of
(11) to multivariate polynomials, i.e.,

bpk
(x) = Ak

(
Bk + Ck

n∑
i=1

(−1)iTk(xi)

)
(15)

in variables (x1, . . . , xn) = x. The dependence between xi and
αi is given by

αi = arccos xi, i = 1, . . . , n. (16)

According to (13c) and (13d)

− 1 < xn < · · · < x4 < x2 < 1

− 1 < xn−1 < · · · < x3 < x1 < 1. (17)

Thus, the trigonometric system (13) is transformed to a
polynomial system, i.e.,

bpk
(x) = Ak

(
Bk + Ck

n∑
i=1

(−1)iTk(xi)

)
= bfk

,

k = 1, 2, . . . , nc (18a)

bpk
(x) = Bk + Ck

n∑
i=1

(−1)iTk(xi) = 0,

k = nc + 1, nc + 2, . . . , n

subject to (17) (18b)

where the variables are (x1, . . . , xn) = x. This polynomial sys-
tem (18) can be re-solved using existing methods, such as the
Gröbner basis approach, elimination based on resultants, and
other algorithms (see [23] and [24]). Note that the polynomials
in this system are partially symmetric. It means that we can
arbitrarily permutate variables x2i or x2i−1 and the function
bpk

(x) is left unchanged.
However, the following steps show how the system of equa-

tions in (18) [respectively (15)] can be further simplified by
conversion to a new linear system in new variables. These new
variables are composite sums of powers and create new polyno-
mial system of equations. We present new effective algorithm
for this system, which is much more effective compared to
direct application of standard polynomial methods to (18).

From (15), the expression
∑n

i=1(−1)iTk(xi) for odd k reads

n∑
i=1

(−1)iTk(xi) = −
k+1
2∑

j=1

tk,2j−1

n∑
i=1

(−1)i+1x2j−1
i

= −
k+1
2∑

j=1

tk,2j−1p2j−1, k is odd

where tk,2j−1 is the (2j − 1)th coefficient of x2j−1 in the
Chebyshev polynomial of degree k, and p2j−1 are composite
sums of powers (new unknown variables) for which the follow-
ing identity holds:

p2j−1 =
n∑

i=1

(−1)i+1x2j−1
i

=x2j−1
1 − x2j−1

2 + · · · + (−1)n+1x2j−1
n ,

j = 1, 2, . . . . (19)

Then, one can write (15) in the following form:

bp2i−1(p1, p3, . . . , p2i−1)

= A2i−1

⎛⎝B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1

⎞⎠ ,

i = 1, . . . , �n/2�. (20)

Similarly, for even k, we have

bp2i
(p2, p4, . . . , p2i)

= A2i

⎡⎣B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠⎤⎦ ,

i = 1, . . . , �n/2� (21)

where

p2j =
n∑

i=1

(−1)i+1x2j
i

=x2j
1 − x2j

2 + · · · + (−1)n+1x2j
n , j = 1, 2, . . . .

(22)

Finally, we apply back substitution to (18) having the follow-
ing polynomial system of equations:

bp2i−1(p) = A2i−1

⎛⎝B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1

⎞⎠
= bf2i−1 , i = 1, 2, . . . ,

⌈nc

2

⌉
(23a)

bp2i
(p) = A2i

⎡⎣B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠⎤⎦
= bf2i

, i = 1, 2, . . . ,
⌊nc

2

⌋
(23b)
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bp2i−1(p) = B2i−1 − C2i−1

i∑
j=1

t2i−1,2j−1p2j−1 = 0,

i =
⌈nc

2

⌉
+ 1, . . . ,

⌈n
2

⌉
(23c)

bp2i
(p) = B2i − C2i

⎛⎝(−1)ion +
i∑

j=1

t2i,2jp2j

⎞⎠ = 0,

i =
⌊nc

2

⌋
+ 1, . . . ,

⌊n
2

⌋
(23d)

where p = (p1, p2, . . . , pn) are unknown variables. Because
HC = {1, 2, . . . , nC} and HE = {nC + 1, nC + 2, . . . , nC +
nE}, n = nC + nE , the previous system is linear and of n
equations with n unknown variables p1, . . . , pn. Now, if we
separate unknowns p1, . . . , pn on the left-hand side (LHS) of
(23), then the new RHS for b′fi

are

− 1
C2i−1

(
bf2i−1

A2i−1
− B2i−1

)
− (−1)ion − 1

C2i

(
bf2i

A2i
− B2i

)
B2i−1

C2i−1

− (−1)ion +
B2i

C2i
.

The itemized form of (23) for an ML waveform [parameters
Ai, Bi, and Ci are (12)] for n = 6 and nC = 3 reads

⎡⎢⎢⎢⎢⎢⎣
t1,1

0 t2,2 0
t3,1 0 t3,3

0 t4,2 0 t4,4

t5,1 0 t5,3 0 t5,5

0 t6,2 0 t6,4 0 t6,6

⎤⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

p6

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

πbf1
2A

πbf2
A

3πbf3
2A
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

The system of equations in (23) is a special linear system
where tk,i on the LHS are the ith coefficients of the k degree
Chebyshev polynomial of the first kind, and on the RHS, there
are b′fi

and zeros. According to Gauss–Banachiewitz decompo-
sition for orthogonal Chebyshev polynomials (for more details,
see [25]), the solution of (23) for the general ML waveform is

p2i = on + 2−2i+1 π

A

K∑
j=1

(
2i

i − j

)
j bf2j

, (25a)

K :=
{

i, . . . i < �nc/2�
�nc/2�, . . . i ≥ �nc/2� ;

i = 1, 2, . . . , �n/2� (25b)

p2i−1 = − on + 2−2i+1 π

A

K∑
j=1

(
2i − 1
i − j

)
(2j − 1) bf2j−1 ,

(25c)

K :=
{

i, . . . i < �nc/2�
�nc/2�, . . . i ≥ �nc/2� ;

i = 1, 2, . . . , �n/2�. (25d)

Fig. 5. Odd bilevel PWM waveform.

The number of operations is O(nnC) only, instead of the
standard recursive procedure for solution of triangular linear
system (23), which takes O(n2) operations, and it is moreover
not necessary to generate and store in memory the coefficients
of Chebyshev polynomials ti,j . For example, in the converter
problem, where nC = 1 (only the first harmonic is controlled),
the number of operations is linear compared to quadratic.

To sum up, the problem of optimal ML, namely, the solution
of trigonometric system (13) or polynomial system (18), was
converted to a more simple solution of system of composite
sum of powers (19) and (22), which is in compact form, i.e.,

pj = xj
1 − xj

2 + · · · + (−1)n+1xj
n, j = 1, 2, . . . , n

subject to (17) (26)

where pj are easily solved according to (25), and unknowns
are x = (x1, x2, . . . , xn). The effective solution for this special
polynomial system of composite sum of powers is described in
Section IV. The unknown switching times αi are then obtained
according to (16).

B. Odd Bilevel PWM Waveform

The Fourier series of T periodic odd bilevel PWM waveform
p(t) with amplitude A (see Fig. 5) is sine with the following
coefficients:

bk =
4A

kπ

(
on+k +

n∑
i=1

(−1)i cos(ωkαi)

)
,

k = 1, 2, . . . , (27)

where 0 < α1 < α2 < · · · < αn < T/2 are the unknown
switching times.

The parameters according to (11) are

Ak =
4A

kπ
Bk = on+k Ck = 1 (28)

and the composite sum of powers is

p2i = on − 2−2i π

A

K∑
j=1

(
2i

i − j

)
j bf2j

,

i = 1, 2, . . . , �n/2� (29a)

p2i−1 = on+1 − 2−2i π

A

K∑
j=1

(
2i − 1
i − j

)
(2j − 1) bf2j−1 ,

i = 1, 2, . . . , �n/2� (29b)
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where K and K are according to (25d) and (25b). The inequal-
ity condition for variables xi is

−1 < xn < xn−1 < · · · < x2 < x1 < 1. (30)

IV. COMPOSITE SUM OF POWERS

As shown in Section III-A1, the solution of the optimal odd
ML problem depends only on computation of the composite
sum of powers (26). The itemized form is

x1 − x2 + · · · + (−1)n+1xn = p1 (31a)

x2
1 − x2

2 + · · · + (−1)n+1x2
n = p2

...

xn
1 − xn

2 + · · · + (−1)n+1xn
n = pn (31b)

subject to (17) for optimal ML problem or

subject to (30) for optimal bilevel PWM problem

(31c)

where the RHS are real numbers according to (25) for the
general odd ML waveform, or (29) for the odd bilevel PWM
waveform. Note that this system is very similar to standard
power sums

∑n
i=1 xk

i = pk, k = 1, . . . , n, that are easily solv-
able by the Newton’s identity (see [24] and [26]).

For the following steps, it is better to focus on the following
configuration of the power sums:

pj(y1, . . . , yn) =
k∑

i=1

yj
i −

n∑
i=k+1

yj
i , j = 1, . . . , n (32)

where k ≤ �n/2�. When k > �n/2�, we can multiply the
equation system in (32) by −1 and convert it to the case
k < �n/2�. This form in (32) can be obtained by resorting
variables in (31). The polynomials pj(y1, y2, . . . , yn) in (32)
are partially symmetric because the power sums

∑k
i=1 yj

i and∑n
i=k+1 yj

i are symmetric polynomials (see [24]) in variables
y + = (y1, . . . , yk) and y − = (yk+1, . . . , yn) separately. Then,
we have

pj(y1, . . . , yk, yk+1, . . . , yn)

= pj

(
yπ1(1), . . . , yπ1(k), yπ2(k+1), . . . , yπ2(n)

)
(33)

where (yπ1(1), . . . , yπ1(k)) and (yπ2(k+1), . . . , yπ2(n)) are arbi-
trary permutations of y + and y −, respectively. Therefore, the
total number of solutions is k!(n − k)!. All of them are com-
binations of two sets coming from permutations of elements of
vectors y + and y −.

Equation (31) is converted to (32) in the following way. If n
is an even integer, then n/2 variables with positive sign and
the same number with negative sign are in (31). Therefore,
converting to (32) is accomplished by introducing the following
new variables:

y+ = (y1, y2, . . . , yk) = (x1, x3, . . . , x2k−1) (34a)

y− = (yk+1, yk+2, . . . , y2k) = (x2, x4, . . . , x2k) (34b)

where k = n/2. If n is odd, then �n/2� + 1 variables with
positive sign and �n/2� variables with negative sign are in
(31). Therefore, conversion similar to the case with n even
leads to k > �n/2�, which is not in agreement with condition
k ≤ �n/2� of (32). Therefore, each equation in (31) must be
multiplied by −1, and for that reason, the signs of RHS of
(32) must be changed, i.e., pi 	→ −pi. Then, the following
substitution can be done:

y + = (y1, y2, . . . , yk) = (x2, x4, . . . , x2k) (35a)

y − = (yk+1, . . . , y2k+1) = (x1, x3, . . . , x2k+1) (35b)

where k = �n/2�.
The solution x1, . . . , xn of the optimal odd ML problem is

obtained as follows. From all solutions of (32), only one is
chosen—the one that is in agreement with (31c), which means
that all elements y + and y − are real numbers strictly inside
the interval (−1, 1). When no such solution exists, then none
of the switching sequences allows us to generate the required
harmonics (e.g., this situation arises when we require high first
harmonic for low amplitude of ML waveform for a given n).
As all elements y + and y − can be permuted, the elements of
y + and y − are reindexed so that for y +, −1 < yk < · · · <
y1 < 1 holds, and for y−, −1 < yn < · · · < yk+1 < 1 holds.
Therefore, according to (34) for even n and (35) for odd
n, we have (x1, . . . , xn) = (y1, yk+1, y2, yk+2, . . . , yn, yk)
and (x1, . . . , xn) = (yk+1, y1, yk+2, y2, . . . , yk, yn), respec-
tively. Finally, the condition (31c) for x must hold.

A. Solving Composite Sum of Powers

In this section, the algorithm for solving the composite sum
of powers in (32) is described. The solution is inspired by
[5] and [6], where a special case of quarter-symmetric three-
level inverter problem is studied. The problem was also tackled
in [27] and [28], the authors, however, did not use the Padé
approximation and the theory of FOPs that play a crucial role
in the analytical solution of the whole problem. The other
applications of solving composite sum of powers are in coding
theory and geometric optics. We will find the exact solution as
the set of roots of the following two polynomials:

Vk(y) =
k∏

i=1

(y − yi)

= yk + vk,k−1y
k−1 + · · · + vk,0 (36)

Wn−k(y) =
n−k∏
i=1

(y − yi+k)

= yn−k + wn−k,n−k−1y
n−k−1 + · · · + wn−k,0.

(37)

Then, let us do a logarithmic derivative of

Vk(y)
Wn−k(y)

=
∏k

i=1(y − yi)∏n−k
i=1 (y − yi+k)

(38)
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to get

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

k∑
i=1

1
y − yi

−
n−k∑
i=1

1
y − yi+k

. (39)

The expansion of 1/(y − z) at y = ∞ is the series∑∞
j=0 zj/yj+1. Then, we have

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

∞∑
j=0

p+
j

yj+1
−

∞∑
j=0

p−j
yj+1

. (40)

where p+
j =
∑k

i=1 yj
i , p−j =

∑n−k
i=1 yj

i+k and pj = p+
j − p−j .

Thus, we get

V ′
k(y)

Vk(y)
−

W ′
n−k(y)

Wn−k(y)
=

∞∑
j=0

pj

yj+1
. (41)

By integrating, (41) we get

Vk(y)
Wn−k(y)

= y2k−ne

(
−
∑∞

j=1

pj

jyj

)
= f(y). (42)

The series expansion of f(y) leads to the Padé
approximation.

B. Padé Approximation

In this section, we will find the unknown coefficients of
polynomials Vk(y) and Wn−k(y) according to the theory of
Padé approximation (for more details, see [29] and [30]). We
rewrite (42) in the following way:

Vk(y)
Wn−k(y)

+ O(y−n+k−2)

=
(

1
y

)n−2k
(

μ0 + μ1
1
y

+ μ2

(
1
y

)2

+ · · ·
)

= f(y), y → ∞ (43)

where the RHS of (43) is the series expansion of f(y) at
infinity. In this case, the expansion of function f(y) contains
the negative powers of y.

We consider the following form:

Ṽk(y)

W̃n−k(y)
+ O(yn+1) = y2k−nf(y−1)

= e

(
−
∑∞

j=1

pj
j yj
)

= F (y), y → 0

(44)

where Ṽk(y) = ykVk(y−1) and W̃n−k(y) = yn−kVn−k(y−1)
(this is only reversion of polynomial coefficients). Therefore,
we solve (44) [instead of solving (43)] as the problem of Padé
approximation with the following notation:

[k/n − k]F (y) =
Ṽk(y)

W̃n−k(y)
=

Ṽ
[k,n−k]
k (y)

W̃
[k,n−k]
n−k (y)

(45)

of the function

F (y) = e

(
−
∑∞

j=1

pj
j yj
)

= e

∑∞
j=1

cjyj

at y → 0, where cj = −pj

j
. (46)

The solution of the original problem in (43) is then ob-
tained by reversing the coefficients of polynomials Ṽk(y) and
W̃n−k(y).

Now, it is necessary to solve the series expansion of the
function F (y) at y = 0 in the form

F (y) =
∞∑

i=0

μiy
i = μ0 + μ1y + μ2y

2 + · · · . (47)

The direct solution is carried out according to [31, Ch. 4.7,
exercise 4] and reads

μ0 = 1, μk = −1
k

k∑
j=1

pjμk−j , k = 1, 2, . . . . (48)

In the case of the optimal odd ML problem (or odd bi-level
PWM problem), two eventualities can occur (see Section IV).
The first is for odd n and k = �n/2�, and the second is for even
n and k = n/2. Both cases will be described separately.

Equation (44), after cross multiplication, gives

Ṽ
[k,n−k]
k (y) = W̃

[k,n−k]
n−k (y)F (y) + O(yn+1) (49)

and a detailed form of the previous equation, considering (47),
leads to

(ṽk,kyk + ṽk,k−1y
k−1 + · · · + ṽk,0) − O(yn+1)

=(w̃n−k,n−kyn−k + w̃n−k,n−k−1y
n−k−1 + · · · + w̃n−k,0)

× (μ0 + μ1y + μ2y
2 + · · ·). (50)

First, let us consider the following cases.
n Is an Odd Number and k = �n/2�: The problem of the

shifted diagonal Padé approximation, i.e.,

[k, k + 1]F (y) =
Ṽ

[k,k+1]
k (y)

W̃
[k,k+1]
k+1 (y)

(51)

is solved. Equating the coefficients of yk+1, . . . , y2(k+1)+1 in
(50) leads to the following linear system:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk+1

μ1 . .
. ...

... . .
.

μ2k+1

μk+1 · · · μ2k+1 μ2(k+1)

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

w̃k+1,k+1

...
w̃k+1,1

w̃k+1,0

⎤⎥⎥⎥⎦=

⎡⎢⎢⎣
0
...
0

K̃k

⎤⎥⎥⎦
(52)

where w̃k+1,0 is coefficient of y0 of polynomial W̃
[k,k+1]
k+1 (y),

and due to definiteness and the condition that wk+1,k+1 = 1,
we put w̃k+1,0 = 1, and K̃k will be a nonzero constant. The last
equation of the system in (52) is reduced. Therefore, we solve
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the linear system with a Toeplitz structure (Hankel matrix) of
size (k + 1) × (k + 1) as follows:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk

μ1 . .
. ...

... . .
.

μ2k−1

μk · · · μ2k−1 μ2k

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k+1,k+1

w̃k+1,k

...
w̃k+1,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−μk+1

−μk+2

...
−μ2k+1

⎤⎥⎥⎦ .

(53)

From the found solution W̃
[k,k+1]
k+1 (y), the polynomial

W
[k,k+1]
k+1 (y) is recovered by reversing the coefficients. Alter-

natively, the solution can be obtained as the solution of the
following linear system:⎡⎢⎢⎢⎣

μ0 μ1 · · · μk+1

μ1 . .
. ...

... . .
.

μ2k+1

μk+1 · · · μ2k+1 μ2(k+1)

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎣

w̃k+1,0

...
w̃k+1,k

w̃k+1,k+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
0
...
0

Kk

⎤⎥⎥⎦
(54)

where wk+1,k+1 is equal to 1.

Unknown polynomial coefficients of V
[k,k+1]
k (y) are ob-

tained from the known polynomial coefficients of W̃
[k,k+1]
k+1 (y)

as follows:

⎡⎢⎢⎣
ṽk,0

ṽk,1

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 . . . 0 μ0
...

... . .
.

. .
.

μ1

0 0 . .
.

. .
. ...

0 μ0 μ1 . . . μk

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

w̃k+1,k+1

w̃k+1,k

...
w̃k+1,1

w̃k+1,0

⎤⎥⎥⎥⎥⎦ (55)

equating coefficients of x0, x1, . . . , xk in (50). Obviously,
w̃k+1,0 = 1, μ0 = 1, and ṽk,0 = 1. Therefore, the previous
matrix equation is simplified to⎡⎢⎢⎣

ṽk,1

ṽk,2

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k+1,k

w̃k+1,k−1

...
w̃k+1,1

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(56)

The polynomial V
[k,k+1]
k (y) can be constructed analogously

from the found solution Ṽ
[k,k+1]
k (y) by reversing coefficients

or by the following linear system:

⎡⎢⎢⎣
vk,k−1

vk,k−2

...
vk,0

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

wk+1,1

wk+1,2

...
wk+1,k

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(57)

n Is an Even Number and k = n/2: The procedure is similar
to the previous case. The diagonal Padé approximation, i.e.,

[k, k]F (y) =
Ṽ

[k,k]
k (y)

W̃
[k,k]
k (y)

(58)

is solved. The coefficients of W̃
[k,k]
k (y) are due to⎡⎢⎢⎢⎣

μ1 μ2 · · · μk

μ2 . .
. ...

... . .
.

μ2k−2

μk · · · μ2k−2 μ2k−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k,k

w̃k,k−1

...
w̃k,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−μk+1

−μk+2

...
−μ2k

⎤⎥⎥⎦
(59)

equating the coefficients of yk+1, yk+2, . . . , y2k+1 in (50). The
coefficients of Ṽ

[k,k]
k (y) are obtained as follows:⎡⎢⎢⎣

ṽk,1

ṽk,2

...
ṽk,k

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 . . . 0 μ0
... . .

.
. .

.
μ1

0 . .
.

. .
. ...

μ0 μ1 . . . μk−1

⎤⎥⎥⎥⎦ ·
⎡⎢⎢⎣

w̃k,k

w̃k,k−1

...
w̃k,1

⎤⎥⎥⎦+

⎡⎢⎢⎣
μ1

μ2
...

μk

⎤⎥⎥⎦ .

(60)

C. Family of FOPs

According to the theory of Padé approximation, V (y) and
W (y) are FOPs, and therefore, related formulas and theorems
can be applied (see, e.g., [30], [32], and [33] for references).

1) Three-Term Recurrence Formula for W (y) and V (y):
n is an odd number and k = �n/2�: According to

[32, p. 101] with (51) we have

[k/k + 1]F (y) =
Ṽ

[k,k+1]
k (y)

W̃
[k,k+1]
k+1 (y)

=
Q̃

(0)
k+1(y)

P̃
(0)
k+1(y)

(61)

where P̃
(0)
k+1(y) = yk+1P

(0)
k+1(y

−1), and Q̃
(0)
k+1(y) =

ykQ
(0)
k+1(y

−1). The polynomial P
(0)
k+1(y) is an FOP of the

first kind with respect to the linear functional L(0)[yi] = μi,
where μi is generated according to (48). The polynomial
Q

(0)
k+1(y) is the associated FOP (sometimes called the

polynomial of the second kind) to P
(0)
k+1(y). Thus, according

to (61), W
[k,k+1]
k+1 (y) = P

(0)
k+1(y), V [k,k+1]

k (y) = Q
(0)
k+1(y), and

we can write the following three-term recurrence formulas:

W
[−2,−1]
−1 (y) = 0 W

[−1,0]
0 (y) = 1 (62a)

W
[i−1,i]
i (y) = (y + Bi)W

[i−2,i−1]
i−1 (y) − CiW

[i−3,i−2]
i−2 (y)

i = 1, 2, . . . , k + 1, . . . (62b)

where

Bi = −
L(0)

[
y
(
W

[i−2,i−1]
i−1 (y)

)2]
Ki−1

Ci =
Ki−1

Ki−2
(63a)

Ki =
i∑

j=0

μi+jwi,j . (63b)

The linear moment functional L(0)[·] in (63a) of arbitrary poly-
nomial Z(y) =

∑n
i=0 ziy

i is solved according to L(0)[Z(y)] =∑n
i=0 ziμi, where L(0)[yi] = μi and wi,j are the coefficients of
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W
[i−1,i]
i (y) =

∑i
j=0 wi,jy

j . Note that the constant Ki in (63b)
is the same as the constant in (54).

The polynomial V
[k,k+1]
k (y) is associated FOP to

W
[k,k+1]
k+1 (y), and therefore, we have

V
[−1,0]
−1 (y) = − 1 V

[0,1]
0 (y) = 0 (64a)

V
[i,i+1]
i (y) = (y + Bi)V

[i−1,i]
i−1 (y) − CiV

[i−2,i−1]
i−2 (y),

i = 1, 2, . . . , k, . . . (64b)

where Bi and Ci are identical to (63).
n is an even number and k = n/2: Similarly as above, we

have the following equation for (58):

[k/k]f (y) =
Ṽ

[k,k]
k (y)

W̃
[k,k]
k (y)

= μ0 + y
Q̃

(1)
k (y)

P̃
(1)
k (y)

(65)

where P̃
(1)
k (y)=ykP

(1)
k (y−1), and Q̃

(1)
k (y)=yk−1Q

(1)
k (y−1).

The polynomial P
(1)
k (y) is the adjacent FOP of the first kind

with respect to the linear functional L(1)[yi] = L(0)[yi+1] =
μi+1, where μi is generated according to (48). The poly-
nomial Q

(1)
k (y) is the associated adjacent FOP to P

(1)
k (y).

Thus, according to (65) W
[k,k]
k (y) = P

(1)
k (y), Ṽ

[k,k]
k (y) =

μ0P̃
(1)
k (y) + yQ̃

(1)
k (y), and therefore, we can write the follow-

ing three-term recurrence formula for W
[i,i]
i (y):

W
[−1,−1]
−1 (y) = 0 W

[0,0]
0 (y) = 1 (66a)

W
[i,i]
i (y) = (y + Bi)W

[i−1,i−1]
i−1 (y) − CiW

[i−2,i−2]
i−2 (y),

i = 1, 2, . . . , k, . . . (66b)

where

Bi = −
L(1)

[
y
(
W

[i−1,i−1]
i−1 (y)

)2]
Ki−1

Ci =
Ki−1

Ki−2
(67a)

Ki =
i∑

j=0

μi+j+1wi,j (67b)

where the linear moment functional L(1)[·] in (67a) of ar-
bitrary polynomial Z(y) =

∑n
i=0 ziy

i is solved according to
L(1)[Z(y)] =

∑n
i=0 ziμi+1, and wi,j are the coefficients of

W
[i,i]
i (y) =

∑i
j=0 wi,jy

j .
Finding a recurrent formula for the polynomial Vk(y) is

more difficult due to the fact that V
[k,k]
k (y) is not an as-

sociated FOP to W
[k,k]
k (y). From (65), we know, however,

that Ṽk(y) = μ0P̃
(1)
k (y) + yQ̃

(1)
k (y). We apply “tilde nota-

tion” (reversion of coefficients) on both sides of the equa-

tion ˜̃V [k,k]

k (y) = μ0
˜̃
P

(1)

k (y) + ỹQ̃
(1)

k (y) and get V
[k,k]
k (y) =

μ0P
(1)
k (y) + Q

(1)
k (y). Thus, the recursion for V

[k,k]
k (y) is a

composition of P
(1)
k (y) and Q

(1)
k (y), where Q

(1)
k (y) is the asso-

ciated FOP to P
(1)
k (y), with the following three-term recurrence

formula:

Q
(1)
−1 (y) = − 1 Q

(1)
0 (y) = 0 (68a)

Q
(1)
i (y) = (y + Bi)Q

(1)
i−1(y) − CiQ

(1)
i−2(y),

i = 1, 2, . . . , k, . . . (68b)

where Bi and Ci are due to (67). The recurrence formula for
P

(1)
k (y) is given by (66), where P

(1)
k (y) = W

[k,k]
k (y). There-

fore, we have

V
[i,i]
i (y) = μ0

(
(y + Bi)P

(1)
i−1(y) − CiP

(1)
i−2(y)

)
+ (y + Bi)Q

(1)
i−1(y) − CiQ

(1)
i−2(y)

= (y + Bi)
(
μ0P

(1)
i−1(y) + Q

(1)
i−1(y)

)
− Ci

(
μ0P

(1)
i−2(y) + Q

(1)
i−2(y)

)
= (y + Bi)V

[i−1,i−1]
i−1 (y) − CiV

[i−2,i−2]
i−2 (y),

i = 1, 2, . . . , k, . . . (69)

where Bi and Ci are according to (67), and the initial condi-
tions are

V
[−1,−1]
−1 (y) =μ0P

(1)
−1 (y) + Q

(1)
−1 (y) = 1 · 0 + (−1) = −1

V
[0,0]
0 (y) =μ0P

(1)
0 (y) + Q0(y)(1) = 1 · 1 + 0 = 1.

2) Determinantal Formulas for W (y) and V (y): According
to [32, Ch. 2], one can write the following determinantal
formulas for polynomials W (y) and V (y).

n is an odd number and k = �n/2�: We have

W
[k,k+1]
k+1 (y)

=Dwk+1det

⎡⎢⎢⎢⎢⎢⎣
μ0 μ1 . . . μk μk+1

μ1 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk μk+1 . . . μ2k−1 μ2k

1 y . . . yk yk+1

⎤⎥⎥⎥⎥⎥⎦ (70)

V
[k,k+1]
k (y)

=Dvk
det

⎡⎢⎢⎢⎢⎢⎣
μ0 μ1 . . . μk−1 μk

μ1 . .
.

. .
.

μk+1

... . .
.

. .
. ...

μk−1 μk . . . μ2k−2 μ2k−1

0 1 . . .
∑k−1

i=0μiy
k−i−1

∑k
i=0μiy

k−i

⎤⎥⎥⎥⎥⎥⎦
(71)

where Dwk+1 and Dvk
are normalization factors so that

W
[k,k+1]
k+1 (y) and V

[k,k+1]
k (y) are monomials, and the moments

μi are generated according to (48).
n is an even number and k = n/2: We have (72)–(73),

shown at the bottom of the next page, where Dwk
and Dvk

are

normalization factors so that W [k,k]
k (y) and V

[k,k]
k (y) are mono-

mials, and the moments μi are generated according to (48).
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TABLE I
PARTIAL RESULTS FOR AN ILLUSTRATIVE EXAMPLE WHERE nC = 3, nE = 13, A = 2.3, AND (bf1 , bf2 , bf3 ) = (−2, 0.5, 1)

Fig. 6. Solution of an illustrative example.

3) Eigenvalues Formulation: The solution of composite
sum of powers is the set of zeros of polynomials W (y) and
V (y). As these are FOPs, it is possible to obtain these zeros as
eigenvalues of a special matrix (see [32, p. 79]) by

Jk+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

−B1 1 0 . . . 0

C2 −B2 1
. . .

...

0 C3 −B3
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 Ck+1 −Bk+1

⎤⎥⎥⎥⎥⎥⎥⎦ (74)

where Bi and Ci are computed according to (63). Thus, for odd
n, we have

W
[k,k+1]
k+1 (y) = det(yIk+1 − Jk+1)

V
[k,k+1]
k (y) = det(yIk − J ′

k) (75)

Fig. 7. All intervals of optimal ML solutions for increasing A versus THD (in
percent): n = 16 and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

where J ′
k is the matrix obtained by suppressing the first row and

the first column of Jk+1. Therefore, the zeros of W
[k,k+1]
k+1 (y)

are the eigenvalues of Jk+1, and the zeros of V
[k,k+1]
k (y) are

the eigenvalues of J ′
k.

4) Other Orthogonal Properties—The Zeros: The position
of zeros of (classical) orthogonal polynomials has very im-
portant properties. Each n-degree polynomial in an orthogonal
sequence has all n of its roots real from interval (a, b), distinct,
and strictly inside the interval of orthogonality. The roots of
each polynomial lie strictly between the roots of the next higher
degree polynomial in the sequence. This interesting property
can be partially employed in a numerical iterative search algo-
rithms for the zeros in recurrence algorithm—for the choice of
the initial iteration in Newton’s method.

Not all nice properties extend to FOPs nevertheless. In par-
ticular, the zeros of FOPs need not be simple or even real. For

W
[k,k]
k (y) = Dwk

det

⎡⎢⎢⎢⎢⎢⎣
μ1 μ2 . . . μk μk+1

μ2 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk−1 μk+1 . . . μ2k−1 μ2k

1 y . . . yk−1 yk

⎤⎥⎥⎥⎥⎥⎦ (72)

V
[k,k]
k (y) = Dvk

det

⎡⎢⎢⎢⎢⎢⎣
μ1 μ2 . . . μk μk+1

μ2 . .
.

. .
.

μk+2

... . .
.

. .
. ...

μk−1 μk+1 . . . μ2k−1 μ2k

1 y + μ1 . . .
∑k−1

i=1 μiy
k−i−1

∑k
i=1 μiy

k−i

⎤⎥⎥⎥⎥⎥⎦ (73)
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Fig. 8. All possible configurations of optimal ML waveforms for increasing amplitude: A, n = 16 and (bf1 , bf2 , bf3) = (−2, 0.5, 1).

FOPs, the following holds nevertheless: if L[·] is defined, then
for all k ≥ 0, 1) Pk and Pk+1 have no common zeros, 2) Qk

and Qk+1 have no common zeros, and 3) Pk and Qk have no
common zeros.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

Let us consider the optimal ML problem with controlled
harmonics (bf1 , bf2 , bf3) = (−2, 0.5, 1), fixed n = 16, and am-
plitude A = 2.3. The partial results of computation for this
specific n and A are shown in Table I (the line 2: power sums
pi, 4: moments μi, 6: the coefficients of FOPs W and V ,
8: the zeros W and V , 10: result—switching times αi, 12:
test—the required frequency spectrum of the ML waveform
bpi

computed from αi and THD). Fig. 6 depicts the obtained
solution for the ML problem.

The following figures illustrate complete solution of ML
problem where n and A are varying. Fig. 7 depicts increasing

Fig. 9. All isolated optimal ML (five-level) solutions for increasing n versus
THD (in percent): A = 2.3 and (bf1 , bf2 , bf3) = (−2, 0.5, 1).

amplitude A (in steps of 10−4) and fixed n = 16 versus THD
(in percent) (N = 20). The solution is in 14 intervals for the
amplitude A, where the ML problem has a solution (no other
amplitude A solves this ML problem for n = 16), and Fig. 8
shows all switching configurations for all these intervals.
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Fig. 10. All possible configurations of optimal ML waveforms for different n : A = 2.3 and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

Fig. 11. Complete optimal ML solutions (bf1 , bf2 , bf3 ) = (−2, 0.5, 1) for
varying n and A versus THD (in percent).

Fig. 12. Optimal ML with minimal THD (in percent): A = 0.7, n = 96,
number of levels = 11, THD = 0.125%, and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

Fig. 9 depicts increasing number of switching n and fixed
A = 2.3 versus THD. The first nine isolated solutions are given
in Fig. 10.

Fig. 13. Optimal bilevel waveform: A = 3, n = 10, THD = 11.96%, and
(bf1 , bf2 , bf3) = (−2, 0.5, 1).

Fig. 14. Complete optimal bilevel solutions, varying n and A versus THD (in
percent) and (bf1 , bf2 , bf3 ) = (−2, 0.5, 1).

The complete solution (n is from 4 to 100, and A is from
0.05 to 10, with step 0.05) is visualized in Fig. 11, where a
varying amplitude A and number of switching n versus THD
are visualized. Fig. 12 show the ML signal with minimal THD.
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Fig. 15. Experimental results: output voltage (switching waveforms and filtered waveforms) and its spectrum. Baseband portion is bf1,2,3 = (1.5,−0.6, 1.2)
and eliminated harmonics (zero band) are 4, 5, 6, . . ., 36. (a) and (b) Five-level waveform. (c) and (d) Bilevel waveform.

The results for the bilevel waveform (there is different solv-
ing procedure, see Section III-B) are depicted in Fig. 13, and
the complete solution is in Fig. 14. We can see that there exist
solutions in all cases (unlike ML), but THD is much worse in
the ML case.

The Mathematica2 package (all algorithms described in this
paper) with other simulations and demo examples can be down-
loaded from the authors’ webpages [35].

VI. EXPERIMENTAL RESULTS

To verify the performance of the proposed algorithms, an
experimental setup was built in the laboratory. It is composed of
the Agilent 33120A waveform generator with related software
Agilent IntuiLink WaveForm Editor installed on a laboratory
personal computer.

In the experimental example, we solve the optimal five-level
and bilevel problems for bf1,2,3 = (1.5,−0.6, 1.2) and n = 36
with a frequency of 50 Hz and A = 1.5 V and A = 3 V, respec-
tively. According to proposed algorithms, we obtain the switch-
ing times α = (0.000373, 0.000533, . . . , 0.009668, 0.009784)
and α = (0.000279, 0.000502, . . . , 0.009533, 0.009725), re-
spectively. The offline fast Fourier transform (FFT) analysis
of the experimental data shows that the THDs are 1.25% and
5.43.%, respectively, which are slightly larger than the theo-
retical values of 1.08% and 5.21.%, respectively, for given A.
The solution is depicted in Fig. 15. Subsequently, the switching
output waveform is filtered by the low-pass Butterworth filter

2The Mathematica Web pages are in [34].

(switched capacitor filter Maxim MAX291, eighth order), and
the filtered output corresponds to the required baseband.

VII. CASE STUDY: ACTIVE FILTERS

The main goal of active filters is the cancellation of noise
or distortion of harmonic signals. These undesirable effects are
consequences of disturbances or nonlinearities of load (see [36]
and [37] for more details).

Let us consider the simplified principal scheme according
to Fig. 16(a). The basic principle of active filters is based on
generating harmonic signals with an amplitude opposite that of
the undesirable harmonics so that they are canceled in total.
This suitable signal is then generated as a filtered PWM or ML
waveform that is easily and efficiently realizable.

Active filters are installed in a wide range of industrial and
nonindustrial applications (pulp and paper facilities, chemical
plants, steel plants, car industry, and banks or telecommu-
nication centers due to the large number of computers and
Uninterruptible Power Supply (UPS) systems).

Numerical Example

Let us consider electrical power grid f = 50 Hz and
compensate the harmonic distortion caused by a set of
drives. The fundamental harmonic in a power grid is
deviated strongly by the odd3 saw signal and in addition
amplified tenth and fifteenth harmonics. The signal, which

3If the analyzed signal is not odd, we can make odd extension and use our
approach.
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Fig. 16. (a) Diagram illustrating components of the connected active filter
with waveforms showing cancellation of harmonics from load. (b) Fundamental
harmonic and deviated fund. Harmonic in a power grid. (c) Spectrum of a
deviated fundamental waveform.

Fig. 17. Restored fundamental harmonic, filtered optimal odd, and filtered
quarter-symmetric PWM waveform.

is biased, is depicted in Fig. 16(b). Its frequency amplitude
spectrum a1, . . . , a20 is depicted in Fig. 16(c), and it is
(250.1, 47.7, 31.8, 23.9, 19.1, 15.9, 13.6, 11.9, 10.6, 50.3, 8.7,
8.0, 7.3, 6.8,−40.6, 6.0, 5.6, 5.3, 5.0, 4.8, . . .).

It is desirable to suggest appropriate switching
(α1, . . . , α220) of the odd bilevel PWM waveform so that
after its filtration, we get harmonic signal with reverse
amplitude spectrum (b1, b2, . . . , b20, b21, . . . , b220) =
(−30.1,−47.7, . . . ,−4.8, 0, . . . , 0). In this operation, we
restrict the first 20 harmonics only, and the following 200
harmonics are zeroed. The nullity of higher harmonics is given
because of consequent filtering (we use the Chebyshev filter
of the fourth order with cutoff frequency fc = 23f ) of the odd
bilevel waveform. The solution is depicted in Fig. 17. The
solution obtained by a numerical algorithm for quarter-wave
signals (see [5]) is also displayed in the figure. Apparently, the
improvement in quality of filtration due to the results for odd

harmonics presented in this paper is considerable compared
to [5], where only quarter-symmetric waveforms are studied.
The THD of odd symmetric waveform is 2.75% compared
to the quarter symmetric 18.3% (the even harmonics are
uncontrolled).

VIII. COMPLEXITY OF THE OPTIMAL ODD ML PROBLEM

The complexity analysis of the optimal odd ML problem
follows. Solving the RHS of the system of composite sum
of powers pi [see (23)] takes O(nnC) number of operations.
The moments μi are computed in O(n2) operations according
to (47), but a significantly faster algorithm can be found. We
can, for instance, use the fast Newton iteration method that
takes only O(n log n) operations (this method employs an FFT
technique for polynomial multiplication) (see [38] and [39]).
The computation of Hankel linear system takes O(n log2 n)
number of operations (superfast algorithm; see [40] and [41])
or we can use the well-known Levinson–Durbin algorithm
with complexity O(n2) operations. The calculation of matrix
equation with a triangular Hankel matrix takes O(n log n) op-
erations (see [40]). It is somewhat more intricate to establish the
complexity for computations of the zeros of polynomials V (y)
and W (y) because many algorithms of different complexity are
available. For example, the algorithm based on computing the
eigenvalues of the companion matrix takes O(n3) operations.
In contrast, the combination of three-term recurrence algorithm
(which takes O(n2) operations), employing the property of
interlacing the zeros (if it is possible, but this property is
not always guaranteed for FOPs), and the iterative Newton
algorithm leads to a linear number of operations—we easily
compute the zeroes in every step. Hence, the highest possible
number of operations is considered during the computation of
the recurrence formula.

It is important to mention that the solution of the Hankel
system is ill-conditioned for high n, which restricts the com-
putation in double precision real arithmetic. Therefore, either
of the polynomials V (y) and W (y) is also ill-conditioned, and
computation of their roots is difficult from numerical point of
view. By using extended precision arithmetic, the range of n
can be enlarged. However, we show that the solution can also be
expressed as the solution to a Padé approximation problem and,
consequently, introduce FOPs. Numerically stable algorithms
using properties of FOPs should therefore exist and are subject
to research now.

For a special case of the quarter-symmetric waveforms [5],
it is possible to adopt these results and devise the solution of
system of sums of odd powers that is needed for the solution of
this problem. It is sufficient to put the odd harmonics equal to
zero and compute the polynomial W (y) only. Such a solution
was described in [5] and [6], and our procedures cover their
solution for nC = 1 as a special case.

IX. CONCLUSION

Efficient algorithms for the optimal odd ML problem in the
single-phase connection have been developed and studied in
this paper. In Section III, we revealed that an efficient analytical
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solution can be found only for odd and quarter-wave symmetric
waveforms with arbitrary number of levels. The quarter-wave
symmetric case is solved in [5] and [6]. Therefore, we concen-
trated on more general odd symmetry waveforms, including all
harmonics.

Both cases lead to the solution of special systems of com-
posite sum of powers that are derived from generalization of
the Newton’s identity. We formulated and solved the prob-
lem via Padé approximation. The optimal switching times are
the zeros of shifted diagonal Padé approximation polynomials
[k, k + 1]F (y) = V

[k,k+1]
k (y)/W

[k,k+1]
k+1 (y) for an odd number

of switching n and diagonal Padé approximation [k, k]F (y) =
V

[k,k]
k (y)/W

[k,k]
k (y) for an even n. Due to the connection

between the theory of Padé approximation and FOPs, we
demonstrated that V (y) and W (y) are FOPs, and we formu-
lated other methods for the solution of the optimal odd ML
problem. Namely, we derived an appropriate three-term recur-
rence formula, a determinantal formula, and a formulation via
eigenvalue computation. The obtained polynomials are FOPs.

The results are summarized as follow.

1) After variable transformations, the solution of the optimal
odd ML problem is given by the zeros of two polynomials
W (y) and V (y) that are suitably sorted.

2) The polynomials W (y) and V (y) are given by the shifted
diagonal Padé approximation

[k, k + 1]f (y) = V
[k,k+1]
k (y)/W

[k,k+1]
k+1 (y)

= exp

⎛⎝− ∞∑
j=1

pj

j
yj

⎞⎠ = F (y) (76)

for odd n and by the diagonal Padé approximation

[k, k]f (y) = V
[k,k]
k (y)/W

[k,k]
k (y) = F (y)

for even n, where pj =
∑k

i=1 yj
i −
∑n

i=k+1 yj
i , j =

1, . . . , n, is computed according to (25) for ML and (29)
for the bilevel odd waveform.

3) The polynomials V (y) and W (y) also give the solution
of a Padé approximation and therefore constitute a set
of FOPs, where the polynomial V

[k,k+1]
k (y) is the as-

sociated polynomial (or polynomial of the second kind)
to W

[k,k+1]
k+1 (y) (polynomial of the first kind) for odd

n. In the case of even n, the polynomials V
[k,k]
k (y) and

W
[k,k]
k (y) are deduced from the adjacent family of FOPs

V
(1)[k,k+1]
k (y) and W

(1)[k,k+1]
k+1 (y).

4) The solution to the optimal ML problem can be obtained
through the following:
a) the Hankel system in (53) and (56) for odd n and

in (59) and (60) for even n: the complexity of a fast
algorithm being O(n log n2);

b) the simple three-term recurrence relationship in (62)
and (64) for odd n and in (66) and (69): the complexity
being O(n2) operations;

c) the determinants of special polynomial matrices in
(70) and (71) for odd n and in (72) and (73) for
even n;

d) the eigenvalues of special matrices in (74) and (75) for
odd n.

It is also important to stress that our solution is consistent
with the solution of [5] in the case of waveforms with quarter
symmetry.

At the end of this paper, a numerical example and ex-
perimental verification results are presented. The numerical
example illustrates a complete solution of the ML and bilevel
PWM problem and the presented exact results could not be
obtained without our fast analytical methods. Experimental re-
sults verified our expected behavior of optimal ML and bilevel
PWM problem. An active filter case study then illustrates an
advantage of our approach compared to an existing analytical
scheme for quarter-symmetric waveforms.
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a Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstı́ 13, CZ-12135, Prague 2, Czech Republic
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a b s t r a c t

The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of

many degrees, for this reason it can be a convenient approach for the construction of space all-sky X-ray

monitors. We present preliminary results of tests of prototype lobster eye X-ray optics in quasi parallel

beam full imaging mode conducted using the 35 m long X-ray beam-line of INAF-OAPA in Palermo

(Italy). X-ray images at the focal plane have been taken with a microchannel plate (MCP) detector at

several energy values from 0.3 to 8 keV. The gain, the field of view and the angular resolution have been

measured and compared with theoretical values.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The lobster eye (LE) [1,2] is a grazing incidence reflective
optics. In particular, the Schmidt design [2] uses two orthogonal
sets of reflecting surfaces, each set focusing in one direction. One
potential area of application is on future space all-sky monitors
[3–5].
2. Tested lobster eye

In the experiments reported here, a prototype lobster eye
called P-25 (Fig. 1) has been used. This LE manufactured in Rigaku
Innovative Techonologies Europe s.r.o., Prague, Czech Republic
consists of 2�60 flat reflecting plates coated by gold of RMS
microroughness 1 nm. The plates have dimensions 24�24 mm2,
thickness 0.1 mm. Average spacing between the plates is 0.3 mm.
The LE has 250 mm focal length and it is designed for optimal
efficiency at 1 keV photon energy.
ll rights reserved.

x: +420 2 2491 8646.
3. Experimental setup

The X-ray imaging tests were performed in the 35 m long
X-ray beam-line in INAF-OAPA, Palermo, Italy [6,7]. The X-ray
tube with exchangeable targets and filters is installed at one end
of the vacuum pipe. The LE P-25 and the microchannel plate
(MCP) detector [8] were installed on remote controlled position-
ing devices inside a vacuum test chamber located at the opposite
side of the pipe (Fig. 2). Used MCP detector was in Chevron
configuration with resistive anode encoder and front plate coated
with KBr (Quantar Technology Inc., Santa Cruz, CA, USA) with
40 mm active diameter, and 100 mm FWHM spatial resolution. LE
could be rotated around vertical (yaw angle) and horizontal (pitch
angle) axis. The MCP could be translated in all basic three
directions X, Y and Z (focus adjustment). For the measurements,
six fluorescent energy lines have been chosen: 0.28, 0.93, 1.5, 2.9,
4.5 and 8.0 keV.
4. Results

Image, as focal cross with bright center typical for LE has been
obtained (Fig. 3).

www.elsevier.com/locate/nima
dx.doi.org/10.1016/j.nima.2010.06.157
mailto:tichyvl1@fel.cvut.cz
dx.doi.org/10.1016/j.nima.2010.06.157


Fig. 1. Lobster eye P-25.

Fig. 2. Lobster eye and MCP on positioning devices.

Fig. 3. Image with centered optics.

Fig. 4. Limiting positions in ‘‘yaw’’ angle.

Table 1
Gain at various energies.

Energy (keV) 0.28 0.93 1.5 2.9 4.5 8.0

Gain 7872 5871 7571 2671 2771 1171

Gain as function of energy
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Fig. 5. Gain as function of incoming beam energy.
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Fig. 7. Gain as function of incoming beam angle at energy 930 eV.
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Scanning in ‘‘yaw’’ angle, we have found limiting positions
when one arm of the focal cross vanishes (Fig. 4). The measured
angular width between these positions is 2.970.11, this value can
be considered as the field of view (FOV). It is determined only by
LE geometry and it does not depend on the energy.

The optical axis of the LE was considered as the middle
position between the mentioned limiting values. In this position,
FWHM of the central peak is always in the range 12–130 (arcmin).
The measured gain, estimated by the ratio of the flux in the square
of size 300 mm (size of chambers of LE) around peak, and incident
flux onto the LE, is shown in Table 1 and Fig. 5 for the different
investigated photon energies.

The angular resolution can be estimated summing profile of
focal cross along the one line with the same data shifted to
simulate resulting image of two point sources. Searching for
position, when intensity between peaks of the sum falls to 80% of
intensity of lower peak, value 13710 was estimated as spatial
resolution of tested LE at energy 930 eV (Fig. 6). The gain has been
measured at various yaw angles within the FOV. Results are
shown in Fig. 7.
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In the paper [1], relations for estimation of gain and spatial
resolution are published. There, it is supposed LE is accurately
manufactured from ideally thin and ideally reflecting mirrors
(a photon energy is not taken into account there). The relations
give spatial resolution of this LE as 5.50 and gain as 1736.
5. Conclusions

A prototype lobster eye P-25 was tested in the X-ray vacuum
beam-line at INAF-OAPA. The measured FWHM spatial resolution
is approximately 2 times larger than theoretical value. This is
caused probably by small deformations of plates (they are not
ideally flat) and some manufacturing aberrations. The gain vs.
yaw angle shown in Fig. 7 is indicative that the LE is assembled a
little asymmetric. Estimated gain is approx. 20� smaller than
mentioned value 1736, however this value is estimated for ideal
LE assembled from ideally reflecting and ideally thin mirrors.
Preliminary computations based on simulations, give gain around
760 for photons of energy 930 eV. In that simulations, thickness of
mirrors and their reflectivity for this energy have been taken into
account. Other decrease of gain is caused mainly by unflatness of
mirrors and other manufacturing aberrations. More detailed
analysis of the problem will be the subject of an another paper.
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a  b  s  t  r  a  c  t

The  main  contribution  of the  paper  is in formulating  the  problem  of  detection  of brain  regions  struc-
ture  within  the  framework  of  dynamic  system  theory.  The  motivation  is to  see if  the  mature  domain
of  experimental  identification  of dynamic  systems  can provide  a methodology  alternative  to  Dynamic
Causal  Modeling  (DCM)  which  is  currently  used  as an  exclusive  tool  to estimate  the  structure  of  intercon-
nections  among  a given  set of  brain  regions  using  the  measured  data  from  functional  magnetic  resonance
imaging  (fMRI).  The  key  tool  proposed  for modeling  the  structure  of  brain  interconnections  in  this  paper
is  subspace  identification  methods  which  produce  linear  state-space  model,  thus  neglecting  the  bilinear
ubspace identification methods
ynamic Causal Modeling

MRI
CM

term  from  DCM.  The  procedure  is  illustrated  using  a simple  two-region  model  with  maximally  simplified
linearized  hemodynamics.  We  assume  that  the underlying  system  can  be modeled  by  a set  of linear  dif-
ferential equations,  and  identify  the  parameters  (in  terms  of state  space  matrices),  without  any  a  priori
constraints.  We  then  transform  the  hidden  states  so  that  the  implicit  state  matrix  has  a form  or  structure
that  is  consistent  with  the generation  of  (region-specific)  hemodynamic  signals  by  coupled  neuronal

states.

. Introduction

Nowadays, inference about connectivity or coupling among
rain regions, using fMRI, usually rests upon some form of Dynamic
ausal Modeling (DCM). DCM uses Bayesian techniques to identify
he underlying neuronal system in terms of coupling parameters.
rucially, one has to specify prior constraints on the sparsity or form
f the connections and then test different models (forms) of connec-
ivity. In this paper, we work on a more efficient, direct approach.
CM is used to compare mathematical models with and with-
ut specific connections which entails fitting or inverting different
odels and then comparing their evidence. It is a methodology
hich enumerates possible models first, and then tests their valid-

ty using the conventional tools for testing statistic hypotheses [5].
he identification can take a considerable amount of time, espe-
Please cite this article in press as: J. Nováková, et al., Dynamic Causal Mo
Control (2011), doi:10.1016/j.bspc.2011.07.002

ially when one compares large numbers of models.
The main contribution of our work is to estimate the full con-

ectivity of any DCM (under linear and first order assumptions) in

Abbreviations: BOLD, blood oxygenation level-dependent; DCM, Dynamic Casual
odeling; MRI, magnetic resonance imaging; fMRI, functional MRI; SPM, Statistical

arametric Mapping.
∗ Corresponding author at: Department of Control Engineering, Faculty of Electri-

al  Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague
,  Czech Republic. Tel.: +420 2 2435 7648.

E-mail address: tauchjan@fel.cvut.cz (J. Nováková).

746-8094/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.bspc.2011.07.002
© 2011 Elsevier Ltd. All rights reserved.

a way  that is extremely efficient. This may  be especially useful in
the context of DCM, because recent developments in model com-
parison allow one to evaluate the evidence of reduced models (in
which some connections are omitted) given the estimates of a full
model [9].

The basic idea behind our approach is to estimate the signifi-
cance of interconnections among the brain regions by identifying
the coupling among the states of an underlying linear state-space
model. This is done by finding the state matrices describing the
dynamics of neuronal states through the measured hemodynamic
responses, using conventional linear system identification tech-
niques. However, these methods do not apply constraints on the
form of the state matrix. We  finesse this problem by modeling the
data with a number of hidden states that is greater than the num-
ber of observed brain regions. We  then find a transformation of the
hidden states that conforms to the known expected block structure
of the state matrix appropriate for our problem. This transforma-
tion relies on the numerically reliable Schur decomposition of the
original state matrix and related eigen decompositions. We  can
then interpret the transformed states in terms of neuronal and
hemodynamic states. The transformed state matrix gives direct
information on couplings between particular neuronal states,
and also defines the mapping from neuronal to hemodynamic
deling and subspace identification methods. Biomed. Signal Process.

subsystems.
The structure of the paper is a follows. In the next section we

give some overview of DCM analysis. In the third section we present
our alternative methodology. The fourth section brings a simple

dx.doi.org/10.1016/j.bspc.2011.07.002
dx.doi.org/10.1016/j.bspc.2011.07.002
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:tauchjan@fel.cvut.cz
dx.doi.org/10.1016/j.bspc.2011.07.002
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nput signals – a representative of a predefined model.

omputational example. The paper is concluded with a summary
nd a list of open problems.

.1. Overview of DCM analysis

Dynamic Causal Modeling (DCM) is a statistical technique
or detection of interconnections among selected brain regions
2,5,12,14].  DCM assumes a bilinear model in the form (1) and
he interconnections among brain regions are qualitatively and
uantitatively characterized by its parameters (note the presence
f so-called modulatory inputs that modulate interconnections
irectly).

˙ (t) =

⎛⎝A +
M∑

j=1

uj(t)Bj
m

⎞⎠ x(t) + Bu(t), y(t) = Cx(t) + Du(t) (1)

here A is effective connectivity matrix for interconnections
mong regions, Bj is effective connectivity matrix encoding the
hanges in intrinsic connections induced by jth modulatory input
j, and matrix B representing strength of extrinsic inputs leading
irectly to brain regions, see Fig. 1. DCM procedure then combines
he bilinear neuronal model (1) of interacting regions with the bio-
hysical model by Friston, based on principles of the hemodynamic
odel and balloon model [7] which describes how the unmeasured
euronal activity in a given brain region is transformed into the
emodynamic responses measured by the fMRI. The input signal is
enerally a deterministic on-off function representing stimulation
rocess

The first two steps of DCM analysis are selection of several
rain regions, described by coordinates of voxel (volumetric pixel)
luster, and definition of inferences (hypotheses) about the region
nteractions which will be confronted with real fMRI data in the sta-
istical hypothesis-testing manner. The hypotheses usually result
rom clinical experience and empirical knowledge of a neurologist,
rained in functional brain organization. The necessity to rely on an
xpert in this step can be regarded as a drawback of this method
nd full enumeration of all possible interaction structures is combi-
atorially prohibitive. The final step – testing statistical hypotheses
can be computationally very demanding, it can easily take up to
Please cite this article in press as: J. Nováková, et al., Dynamic Causal Mo
Control (2011), doi:10.1016/j.bspc.2011.07.002

 few days on a regular PC.
The DCM procedure is implemented in the SPM (Statistical

arametric Mapping) toolbox for Matlab [20], a popular tool for
rocessing fMRI data. In addition, the toolbox also contains a sim-
Fig. 2. Brain dynamics system structure – two types of dynamics, at first faster
dynamics, slower dynamics forms output BOLD signal in each activated brain region.

ulator for characteristic time series generated by several activated
brain regions.

2. Systems identification approach to detection of brain
region interconnection

2.1. Definition of the dynamic system

The main goal of this section is to define the complex dynamic
system represented by selected brain regions within the context of
the systems theory, and to cast it as a task for system identification
procedures.

The system, as interpreted by the systems theory, is a complex
object consisting of interconnected subsystems and components
which transforms inputs into outputs and this transformation can
be characterized by a mathematical model, usually in the form
of differential equations. The input stimulus signals that enter
into the brain system reflect the particular fMRI based neurologi-
cal experiment, and can be modeled as rectangular signals (on/off
or active/inactive) as they correspond to hand motion, pictures
projection, electrical stimulation, etc. The measured outputs are
BOLD signals which are usually visualized as volumetric 3D plots.
They can also be viewed as rectangular for which at every time
instance the measured value assumes a shape of a 3-dimensional
array (cube). Hence the input–output behavior of the brain system
can be measured experimentally. However the system is charac-
terized by specific intrinsic structure comprised of two  different
parts called neurodynamics and hemodynamics, see Fig. 2. The
input (stimulus) signals enter the faster dynamics (neurodynamics)
representing the intrinsic interconnections among brain regions.
Neurodynamics could be modeled by several first order systems,
each corresponding to a given brain region and their intrinsic con-
nections as is done by DCM in fact [5].  The neuronal response of
every brain region is only observed in the fMRI data after passing
through the slower hemodynamics part, which can be modeled as a
simple system (filter) for each brain region separately. In contrast to
the nonlinear balloon model used within DCM, higher order hemo-
dynamic linear filters (at least order two) are necessary to capture
the oscillatory behavior as shown in the next section. The structure
is revealed in Fig. 3 for a simple case.

The task of brain regions structure detection has now been
formulated as a system identification problem. All the input and
output signals are measured, we can therefore apply classical black-
box identification methods used commonly in diverse industries
[1,8,10,15,18].

2.2. fMRI data fitting by subspace methods

We now proceed to application of subspace identification meth-
ods for simulated fMRI data. First we  model the hemodynamic
response only. The function spm dcm create from SPM toolbox
[20] can be used to generate such a realistic data set. Crucially,
the method requires having more states corresponding to the
deling and subspace identification methods. Biomed. Signal Process.

neuronal dynamics than there are outputs corresponding to the
hemodynamics, see Fig. 4. For the purpose of numerical simula-
tions we generated data by convolving boxcar stimulus functions
with canonical hemodynamic response functions and added white

dx.doi.org/10.1016/j.bspc.2011.07.002
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aussian observation noise of various amplitudes. The details of
hese simulations are provided in the figure legend.

We focused on subspace N4SID identification methods imple-
ented in System Identification Toolbox for Matlab (version
Please cite this article in press as: J. Nováková, et al., Dynamic Causal Mo
Control (2011), doi:10.1016/j.bspc.2011.07.002

007b) [19]. Subspace methods combine results of systems theory,
eometry and numerical linear algebra [4,11].  They seem suitable
or our task especially for their fine numerical reliability for MIMO
ystem identification. In addition, they give rise to models in the

ig. 4. fMRI data fitting for data with different parameters – A (SNR = 50, number of sampl
 (SNR = 50, number of samples = 64) – 6th order model, D (SNR = 1, number of samples = 
onnected first order systems. Each region has also own hemodynamics represented

state-space form directly. We  have used this identification method
for hemodynamics modeling of a single region by fitting to fMRI
data simulated by SPM toolbox. The simulation experiments were
carried out for various combinations of important data parameters
deling and subspace identification methods. Biomed. Signal Process.

(number of samples, signal-to-noise ratio) and we proved appli-
cability of subspace identification methods for fitting simulated
fMRI data by linear dynamic higher-order models (discrete-time
domain, sampling period 1.7 s, see [17] for details), see Fig. 4. The

es = 256) – 3rd order model, B (SNR = 1, number of samples = 256) – 6th order model,
64) – 8th order model. For more details see [17].

dx.doi.org/10.1016/j.bspc.2011.07.002
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ubspace identification proves useful here and fits successfully
he simulated data by the identified linear model as is shown at
he first triplet of pictures; just for the last data set with smaller
ignal-to-noise ratio and number of samples the model is not able
o fit data sufficiently. We  can summarize that subspace iden-
ification methods are a promising technique for hemodynamic
esponse fitting. We  attempt to extend the identification proce-
ure to the whole system including neurodynamics too in the next
ection.

It should be also noted that an alternative approach to the con-
entional identification methods is Volterra series approach, which
xpresses the output signal as a nonlinear convolution of the inputs.
n fact, it is an input–output description of a system without the
ecessity of characterizing the state variables. In spite of this, the
olterra series are able to characterize the effective connectivity by

he constituent Volterra kernels, see [6] for details. In comparison
ith Volterra series modeling, subspace identification methods rely

ompletely on the linear systems theory and methods and produce
inear state space description, featuring state variables as crucial
lements for our procedure of brain regions structure detection.

.3. Identification procedure for brain system structure

Subspace identification methods return a linear state space
odel (2).  The matrix A represents the dynamics, B is related to

he inputs and C characterizes the outputs. The matrix D indicates
irect connection from input to output in general. Choosing the

inear model (2) instead of the bilinear model (1) for brain region
ystem description is intentional, ignoring so-called modulatory
nputs illustrated in Fig. 1 is motivated by simplicity. The hid-
en states x include certain transformation of all the neuronal and
emodynamic states in our model. This means the number of hid-
en states is much greater than the number of observations y (and
hat C is not a square matrix).

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2)

If we had the state space description in suitable form we could
ee intrinsic connections among selected brain regions directly.
nfortunately matrices A, B and C as a result of subspace meth-
ds are usually full and inappropriate to the specific structure of the
rain system. Apparently it is necessary to transform the state space
odel into a realization reflecting separation of neurodynamics and

emodynamics. Matrix D of identified state space description is
ero because there is no direct connection from input to output.

One way to enforce this structure into the state space realization
s a similarity transformation with a suitable transformation matrix

 as in (3).

new = T−1AT, Bnew = T−1B, Cnew = CT, Dnew = D. (3)

These transformed matrices correspond to a transformation
f variables in the form x = Txnew, where xnew become our new
esirable states that can be interpreted directly as neuronal and
emodynamic ones. The next section illustrates construction of the

 matrix in a simple case which corresponds to the special brain
tructure according to Fig. 3.

. Example

We consider a system including one input (stimulus) signal, two
Please cite this article in press as: J. Nováková, et al., Dynamic Causal Mo
Control (2011), doi:10.1016/j.bspc.2011.07.002

rain regions and two output (BOLD) signals, see Fig. 3. The output
lters for hemodynamics modeling are considered as first order
ystems only for this moment (note that it does not fully correspond
o orders necessary to model accurately hemodynamic filters as
 PRESS
sing and Control xxx (2011) xxx– xxx

identified in the Section 2.2, so it is not possible to use SPM toolbox
as the data generator, and we  use the generator (5) instead).

The subspace identification methods yield the full matrices A,
B, and C, see (4).  The matrix D is zero (no direct throughputs are
present in the system considered).

A =

⎛⎜⎝ a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

⎞⎟⎠ B =

⎛⎜⎝ b1
b2
b3
b4

⎞⎟⎠
C =

(
c1 c2 c3 c4
c5 c6 c7 c8

)
(4)

A =

⎛⎜⎝ e1 0 g1 0
0  e2 0 g2
0 0 e3 c12
0 0 c21 e4

⎞⎟⎠ B =

⎛⎜⎝ 0
0
1
1

⎞⎟⎠ C =
(

1 0 0 0
0 1 0 0

)
(5)

However, the desired form is in (5).  This form reveals the specific
structure of the brain system with the neuronal dynamics affected
directly by the inputs and the hemodynamics projected immedi-
ately into the measured outputs. Matrix A contains the eigenvalues
e1, e2 and the gain coefficients g1, g2 defining the hemodynamic
SISO filters associated to a particular brain region. The lower right
submatrix represents the (much faster) neurodynamics. The coef-
ficients c12 and c21 are the crucial parameters which determine
the intrinsic neuronal interconnections between the two modeled
brain regions. The matrix B represents the structure of inputs and
matrix C corresponds to the structure of outputs, in agreement with
Fig. 3.

3.1. Similarity transformations

This section describes the sequence of similarity transforma-
tions steps leading from the full state-space model (4) to the
structured form realization (5) from which the coupling param-
eters c12 and c21 can be detected. We  consider a system with one
input and two  brain regions, each modeled by first order dynamics
and with corresponding two  output BOLD signals. Each similarity
transformation follows the conventional rule (3).

The first step is Schur decomposition applied to the identified
dynamic matrix A. It yields zero elements under the main diago-
nal on which the eigenvalues are displayed. These are then ordered
to separate the eigenvalues of hemodynamics (slow) and neuro-
dynamics (fast). The subsequent steps are devised to impact the
remaining parts of state space description and to preserve the effect
of the previous transformation steps. In this way, the eigenvectors
of a selected submatrix of the new dynamic matrix A are calculated
and used for diagonalization of the submatrix representing hemo-
dynamics filters, and the null space of output matrix C is used for
zeroing its selected elements. We  also use inverse submatrix for
adjustment of parts concerning gain coefficients of output (hemo-
dynamic) filters. All steps are detailed in a Matlab pseudocode-form
below, and are illustrated by a numerical example in the next
section.
»[T1,A1] = schur(A)

»[T2,A2] = ordschur(T1,A1,[1,2,3,4])

»G2 = ss(T2\A*T2, T2\B, C*T2, 0);

»[t1,aj1] = eig(G2.a(1:2,1:2));

»C2 = G2.c*blkdiag(t1,eye(2));

»T3 = T2*blkdiag(t1,eye(2))*[eye(4,2), null(C2)];

»G3  = ss(T3\G2.a*T3, T3\G2.b, G2.c*T3, 0);
deling and subspace identification methods. Biomed. Signal Process.

»t2 = inv(G3.a(1:2,3:4));

»T4 = [eye(2) zeros(2);zeros(2) t2];

»G4 = ss(T4\G3.a*T4, T4\G3.b, G3.c*T4, 0);

Note that the transformation matrix T1 resulting from the
Schur decomposition is applied to identified dynamic matrix A

dx.doi.org/10.1016/j.bspc.2011.07.002
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Fig. 5. Step response of identified transformed system and original system for the
data generation are the same.

space identification techniques applied to the measured (simulated
respectively) fMRI data combined with a similarity transforma-
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nd the Matlab function ordschur is able to sort eigenvalues on
he main diagonal, so we obtain new state space description G2
ith dynamic matrix G2.a containing separated hemodynamic and
eurodynamic eigenvalues.

The next transformation with the matrix T3 includes null space
f output matrix C2, and the eigenvectors of the hemodynamic
art of matrix G2.a are used as well. The hemodynamic part of the
ynamic matrix G2.a is now diagonal due to appropriate eigenvec-
ors application, the input matrix G2.b is also modified (zeroing of
alues representing input to the hemodynamic filters). The trans-
ormation also ensures zeroing of values representing output from
eurodynamic part in the matrix G2.c. We  can see that there is
o external input into the hemodynamic filters, only from the
eurodynamic part, and there is no measured output from the
eurodynamic part, which is desirable.

The last important transformation step is G3.a adjustment, and
e namely want to impact the submatrix related to the hemo-
ynamic filters. So we  apply transformation matrix T4 including

nverse of a submatrix of G3.a to diagonalize appropriate subma-
rix. So the almost final result of these transformation steps is the
ynamic matrix G4.a with eigenvalues and gains of hemodynamic
lters in the upper part, and the submatrix concerning neurody-
amics at the bottom which contains interconnections between
wo regions on the next diagonal. Matrices G4.b and G4.c are also

odified according to the form in (5) and they reflect brain system
tructure (no external input into hemodynamic filters, no external
utput from the neurodynamic part).

.2. Numerical example

Data for the identification procedure were generated using the
ystem (6) with structure according to Fig. 3.

A =

⎛⎜⎜⎜⎝
−1 0 1 0

0 −2 0 2

0 0 −10 0

0 0 5 −10

⎞⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎝
0

0

1

1

⎞⎟⎟⎟⎠
C =

(
1 0 0 0

0 1 0 0

)
(6)

Matrices (7) illustrate the state space description of a system
ith two regions modeled by first order systems, one input and two

utputs, as identified by a subspace identification method [3,4,11]
mplemented in the functions of System Identification Toolbox for

atlab.

A =

⎛⎜⎜⎜⎝
−2.36 12.22 −7.52 −11.40

−4.91 −5.06 7.07 4.15

3.14 −0.13 −2.18 −3.02

−0.09 12.61 −8.61 −13.39

⎞⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎝
3.15

−1.22

0.38

3.44

⎞⎟⎟⎟⎠
C =

( −1.16 0.20 −0.27 1.16

−1.79 0.50 0.14 1.80

)
(7)

Particular similarity transformation steps described in Section
.1 leading to state space description (5) were applied. The final
esult reflecting the desired structure is in (8).  We  can also see at
ig. 5 that step response of transformed system is the very same as
Please cite this article in press as: J. Nováková, et al., Dynamic Causal Mo
Control (2011), doi:10.1016/j.bspc.2011.07.002

tep response of the data generator. Therefore we did not change
he input–output response of the originally identified system by
imilarity transformation and we found one of the equivalent state
ealization that reveal coupling structure between neurodynamics
Fig. 6. Diagram of the final detected connections.

and hemodynamics.

A =

⎛⎜⎜⎜⎝
−0.999 0 0.999 0

0 −2.001 0 2.001

0 0 −10.071 −0.021

0 0 4.988 −9.986

⎞⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎝
0

0

1.001

0.999

⎞⎟⎟⎟⎠
C =

(
1 0 0 0

0 1 0 0

)
(8)

Here the (4, 3) element of the matrix indicates a significant con-
nection between the two  regions, that would be visualized in the
DCM diagrams style as in Fig. 6.

4. Conclusions and open problems

In this paper we  proposed to formulate the task of detection
of brain regions structure within the well-established and mature
framework of system identification as a promising alternative to
Dynamic Causal Modeling which is based on statistical hypothesis-
testing. The motivation for developing this alternative approach
comes from the need to reduce the computational burden so
that the fMRI data can be processed in real-time. We  proposed
a concrete computational procedure based on the popular sub-
deling and subspace identification methods. Biomed. Signal Process.

tion which enforces the structure into the problem (this structure
accounts for the separation of dynamics into the neuronal and
hemodynamic part). The procedure was demonstrated by a simple
simulation example.

dx.doi.org/10.1016/j.bspc.2011.07.002
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Surely the proposed and demonstrated method simplifies the
roblem a lot by the assumption of a linear model: the bilin-
ar terms in the neuronal dynamics considered within the DCM
ramework are neglected here because modification of subspace
dentification techniques for bilinear models does not appear to be
traightforward and is subject to further research.

The model of hemodynamics is also considered as an LTI model
lthough currently some nonlinear models (such as the balloon
odel) are used within the fMRI community. In addition, the pro-

edure is fully functional for first order hemodynamic filters only. It
as observed though that when using system identification tech-
iques to some fMRI data generated by the SPM toolbox, every
utput hemodynamics filter should be modeled as at least a sec-
nd order system with complex conjugate eigenvalues, reflecting
he oscillatory response [17]. The similarity transformations then
ecome more complicated and the procedure proposed in this
aper cannot handle it at this moment
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A new approach to optimal placement of sensors (OSP) in mechanical structures is

presented. In contrast to existing methods, the presented procedure enables a designer

to seek for a trade-off between the presence of desirable modes in captured measure-

ments and the elimination of influence of those mode shapes that are not of interest in a

given situation. An efficient numerical algorithm is presented, developed from an

existing routine based on the Fischer information matrix analysis. We consider two

requirements in the optimal sensor placement procedure. On top of the classical EFI

approach, the sensors configuration should also minimize spillover of unwanted higher

modes. We use the information approach to OSP, based on the effective independent

method (EFI), and modify the underlying criterion to meet both of our requirements—to

maximize useful signals and minimize spillover of unwanted modes at the same time.

Performance of our approach is demonstrated by means of examples, and a flexible

Blended Wing Body (BWB) aircraft case study related to a running European-level FP7

research project ‘ACFA 2020—Active Control for Flexible Aircraft’.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Optimal sensor placement (OSP) in mechanical systems and structures has become a popular and frequently discussed
research topic during last 10 years. Applications cover modeling, identification, fault detection, and active control of such
systems as bridges [9,8], rail wagons [14], large space structures [15]. The goal is to tell the designers of the whole
mechanical system where displacement, force, inertial acceleration, or other sensors are to be installed so that they are as
informative as possible.

Various approaches have been developed. We will mention two in brief. The former, information based approach, is
based on the analysis of the output shape matrix. An iterative elimination algorithm, denoted as EFI (for ‘‘Effective
Independence’’) has been developed that repeatedly deletes the lines of the initial, full output shape matrix with lowest
amount of information, measured by either the trace or determinant of an underlying Fischer information matrix. See [4]
for more detailed treatments and [9,8,15] for some case studies.

An alternative approach is based on the idea of maximizing the energy of the underlying modes in the optimally placed
sensors. Related procedures lead to optimization problems over output Gramians of the system [16].

Both these approaches are applied on pre-selected modes of interest. For instance, in an active damping application for
a transport vehicle, see a recent report [14], the bandwidth and thus implied modes are defined according to some comfort
standards and considerations regarding impact of particular modes on the loads induced in the structure. Typically, a few
ll rights reserved.
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lower modes are selected as a result of such analysis. Resulting optimal sensors selection is subsequently called, with only
those pre-selected modes in mind.

However, also those not-considered, typically mid- or high-frequency modes are still present in the process and, if
excited by disturbances or the control action, they can influence the active damping system behavior in an unexpected
manner. This phenomenon, denoted as spillover, cannot be captured directly by the two existing approaches mentioned
above. Although some procedures have been developed that address these issues, see e.g. [17], they are based on advanced
signal processing (filtering) of the measured signals and do not suggest how to modify the sensor positions themselves
accordingly.

And it is exactly the problem that this paper is focused on. The aforementioned information approach is taken as the starting
point. The underlying criterion is modified so that the influence of desirable modes is maximized, and those unwanted modes
are minimized in the observations at the same time, see Section 2. The result is a compromise where suitably chosen simple
weights serve as a tuning knob for the designer. A related numerical procedure is then developed, based on the EFI approach, in
Section 3. Two examples are presented in Section 4 where one can appreciate the intuitively expected placements and study
the influence of tuning. Further, a case study related to a large flexible BWB aircraft and its active vibration control system is
presented in Section 5. Conclusions and suggestions for further research then follow in Section 6.

2. The effective independence method (EFI)

Optimal sensors placement techniques are extensively discussed in papers [2–9]. A short overview of the EFI method
follows in this section, adopted from [9,8].

The aim of the EFI method is to select measurement positions that make the mode shapes readings of interest as
linearly independent as possible. The method originates from the estimation theory and is based on maximization of
related Fisher information matrix, measured by its determinant or trace. That is in fact equivalent to minimization of the
condition number of the information matrix related to selected sensors. The number of sensors is iteratively reduced from
an initially large candidate set by removing those sensors which contribute least of all the candidate position to the linear
independence of the target mode readings. In the end, the remaining sensors are delivered as the optimal sensor set. As a
useful guideline to stop the iterative removing process, the determinant of the Fisher information matrix can be plotted
with respect to the number of sensors; if a considerable drop is identified, further reduction should be considered
with care.

2.1. Structural model

The sensor placement problem can be investigated from uncoupled modal coordinates of governing structural
equations as follows:

€qiþM�1
i � Ci � _qiþM�1

i � Ki � qi ¼M�1
i �F

T
i � B0 � u ð1Þ

y¼F � qþE¼
XN

i ¼ 1

qi �FiþE ð2Þ

where qi is the ith modal coordinate and is also the ith element of the vector, q, in the 2nd equation, Mi, Ki and Ci are the
corresponding ith modal mass, stiffness and damping matrix, respectively, F is the mode shape matrix with its ith column
as the ith mass-normalized mode shape, B0 is simply a location matrix formed by ones (corresponding to actuators) and
zeros (no load), specifying the positions of the force vector u. y is a measurement column vector indicating which positions
of the structure are measured, and E is a stationary Gaussian white noise with zero mean and a variance of s2.

2.2. Method principle

From the output measurement, the EFI algorithm analyzes the covariance matrix of the estimate error for an efficient
unbiased estimate of the modal coordinates as follows [5,6,2,3,7,9]:

E½ðq�q̂Þ � ðq�q̂ÞT � ¼
@y

@q

� �T

� ½s2��1 �
@y

@q

� �" #�1

¼Q�1
ð3Þ

where Q is the Fisher information matrix, s2 represents the variance of the stationary Gaussian measurement white noise E
in (2), E denote the mean value, and q̂ is the efficient unbiased estimate of q. Maximizing Q over all sensor positions will
result in the best state estimate of q. C denotes the eigenvectors matrix of Q and l is related diagonal eigenvalue matrix.
The EFI coefficients of the candidate sensors are computed by the following formula:

ED ¼ ½F �C� � ½F �C� � l
�1
� 1 ð4Þ

where � represents a term-by-term matrix multiplication, and 1 is an n�1 column vector with all elements of 1. ED’s
entries are the EFI indices, which evaluate the contribution of all candidate sensor locations to the linear independence of
Please cite this article as: T. Hanis, M. Hromcik, Optimal sensors placement and spillover suppression, Mech. Syst. Signal
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the target modes measurement. Simple selection procedure is then employed to sort the elements of the ED vector, and to
remove its smallest entry at a time and also related candidate sensor, giving rise to a reduced mode shape matrix F. The ED

coefficients are then updated according to the new modal shape matrix, and the process is repeated iteratively until the
number of remaining sensors equals a preset value. The remaining lines of the F matrix (or related EFI indices) define the
optimal measurement locations.

3. The effective independence method with modified criterion

The main result of the paper is presented in this section. We develop a numerical scheme for OSP, based on the EFI
method, such that the spillover [10–13] of unwanted higher modes is minimized.

3.1. Method principle

The modified criterion is based on the EFI reasoning presented above. Main task of the pure EFI is just to maximize
information on desired modes through optimal configuration of sensors (measurements) expressed by the Fisher
information matrix (FIM), or its trace or determinant respectively. The modified criterion we propose reads

JMEFI ¼ aJEFIþð1�aÞJSNR ð5Þ

with optimum

JnMEFIða0Þ ¼ max
½i,j,k�2O
a ¼ a0
½aJEFI þð1�aÞJSNR �

ð6Þ

where

JEFI ¼ trðQm
½i,j,k�Þ ð7Þ

with optimum

JnEFI ¼ max
½i,j,k�2O

trðQm
½i,j,k�Þ ð8Þ

stands for the standard EFI part (maximize the information content for those desirable modes), and

JSNR ¼
trðQm

½i,j,k�Þ

trðQn
½i,j,k�Þ

ð9Þ

with optimum

JnSNR ¼ max
½i,j,k�2O

trðQm
½i,j,k�Þ

trðQn
½i,j,k�Þ

" #
ð10Þ

is a newly added term to penalize the unwanted mode shapes in sensor readings. O is the set of all candidate triples of
sensors (we are considering three sensors to be selected to simplify indexing). Qm

½i,j,k� is the Fisher information matrix (see
(3)) for mth modes (those to be captured), where Qn

½i,j,k� is the Fisher information matrix for the unwanted modes. Note that
maximizing (9) increases information about the desirable modes in the measurements (maximizing numerator of (9) and
simultaneously suppresses the unwanted modes influence (minimizing denominator of (9).

The coefficient a 2 ð0;1Þ serves as a tuning parameter and defines the relative importance of each part of the criterion.
Selection of the parameter a is problem-dependent. However, although it is not possible to give a generally valid value for
a, its influence for particular data can be investigated by means of related SNR-plots as explained in Example 1 in detail,
see Section 4).

The ratio part in JSNR however becomes problematic as both terms in trðQm
½i,j,k�Þ=trðQn

½i,j,k�Þ approach zero (near the nodes
of both desirable and unwanted mode shapes) which leads to irrelevant results. This unintended behavior is suppressed by
applying a suitable mapping function on trðQm

½i,j,k�Þ and trðQn
½i,j,k�Þ to assure for reasonably high information content (those

degenerated, almost 0
0 candidates, are effectively discriminated). A suitable mapping function can take the following form,

for example (see also Fig. 1):

f ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þtnÞ

n
p

ð11Þ

3.2. Modified EFI algorithm

Now we have an accordingly modified criterion. Next task is to modify the EFI heuristic in a very similar manner, to
arrive at a tractable numerical scheme for the problem. Critical part of EFI method is in evaluation of ED vector (see (4)), so
the modified evaluation takes the following shape:

EDMðaÞ ¼ aEDþð1�aÞEDSNR
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ED ¼ ½F �C� � ½F �C� � l
�1
� 1

EDSNR ¼
½Fm
�Cm
� � ½Fm

�Cm
� � lm�1

� 1

½Fn
�Cn
� � ½Fn

�Cn
� � ln�1

� 1
ð12Þ

Note that potential numerical issues near the node points are covered by the mapping function (11) applied on ED and
EDSNR vector.

4. Example

Let us consider a flexible system with two modes of interest depicted in Fig. 2. Its structural equations read

1 0

0 1

� �
� €qþ

0:1 0

0 0:1

� �
� _qþ

0:1 0

0 0:1

� �
� q¼FT

� I33�33 � u ð13Þ

y¼F � q ð14Þ
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FT
¼

0 0:0998 0:1987 0:2955 0:3894 0:4794 0:5646 0:6442 . . .

0 0:0000 0:0000 0:0000 0:0001 0:0006 0:0033 0:0123 . . .

�

0:7174 0:7833 0:8415 0:8912 0:9320 0:9636 0:9854 0:9975 . . .

0:0361 0:0870 0:1780 0:3161 0:4947 0:6899 0:8637 0:9752 . . .

0:9996 0:9917 0:9738 0:9463 0:9093 0:8632 0:8085 0:7457 . . .

0:9957 0:9197 0:7672 0:5758 0:3864 0:2297 0:1193 0:0532 . . .

0:6755 0:5985 0:5155 0:4274 0:3350 0:2392 0:1411 0:0416

0:0198 0:0059 0:0013 0:0002 0:0000 0:0000 0:0000 0:0000

�

In this case it is fairly intuitive to decide by common sense where sensors should be placed if we want to maximize
measurement of the first mode and reduce the second one. One can see results of the classical EFI approach in Fig. 6,
related to the EFI criterion (7). It is clear that the EFI approach gives rise to sensors configuration optimal to fit the desired
mode (first one), but spillover of the second one is huge. Measured energy of both modes (required ERQ and not required
ENOTRQ) is printed in upward (Fig. 6). The signal to noise ratio coefficient (defined in dB units) was evaluated to represent
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Fig. 7. BWB visualization.
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spillover. SNR is defined by the following form:

SNR¼ 20 � log10
ERQ

ENOTRQ

� �
ð15Þ

Spillover reduction of the unwanted mode can be achieved by our modified criterion (see (5)). First, one has to select
the a-value properly in the modified criterion (5). The dependencies of the captured energy of wanted modes (ERQ) and of
the captured energy of unwanted modes (ENOTRQ) on a are depicted in Fig. 3. The optimal selection of the a value is at the
point where ERQ is large and ENOTRQ is still sufficiently small. In our case, the suitable range for a is apparently the 0.2–0.3
interval, and the value of 0.25 is therefore selected.
Fig. 8. Shape of first mode.

Fig. 9. Shape of second mode.
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Fig. 10. Shape of first (blue o) and second (green o) modes and sensors reference positions with zero deflection (black x). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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Having a, we can proceed with the modified criterion (5) and related modified EFI algorithm of Section 3.2. Results are
presented in Fig. 4. One can see that spillover of the second mode with respect to the first mode is reduced if the sensors
are selected according to the proposed criterion (5), and that the measurement of the useful mode is still at a good level. In
addition, the suggested modified EFI algorithm appears to be an efficient approach to solve the problem (5)—mind the
modes symmetry and compare (4) (modified EFI algorithm) and Fig. 5 (optimum of (5) found by ‘‘brute force’’—in this
particular very simple case it is feasible to exploit all the sensors combinations and select the true optimum, at the cost of
high computational burden though).

For completeness, the standard EFI approach results for three sensors are given in Fig. 6. Obviously, first mode is
captured very well (which is good), nevertheless, the second mode is not attenuated at all (it is not a part of the problem
formulation for the standard EFI approach).
Fig. 11. Shape of third mode.

Fig. 12. Shape of fourth mode.
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Fig. 13. Shape of third and fourth modes and sensors reference positions with zero deflection (black x).
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5. Case study

ACFA 2020 is a collaborative research project funded by the European Commission under the seventh research
framework programme (FP7). The project deals with innovative active control concepts for ultra efficient 2020 aircraft
configurations like the blended wing body (BWB) aircraft (see Fig. 7). The Advisory Council for Aeronautics Research in
Europe (ACARE) formulated the ‘‘ACARE vision 2020’’, which aims for 50% reduced fuel consumption and related CO2

emissions per passenger-kilometer and reduction of external noise. To meet these goals is very important to minimize the
environmental impact of air traffic but also of vital interest for the aircraft industry to enable future growth. Blended Wing
Body type aircraft configurations are seen as the most promising future concept to fulfill the ACARE vision 2020 goals
because aircraft efficiency can be dramatically increased through minimization of the wetted area and reducing of
structural load and vibration by active damping in an integrated control law design (adopted from [1]).

The ability to distinguish between particular modes in measurement simply by optimization of appropriate sensor
configuration is critical in this application due to the presence of more flexible modes in a narrow frequency range of
0–10 Hz. We cannot therefore rely on signal processing (filtering), and we have to think of a smart sensors configuration
instead.
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Fig. 14. Optimal sensor positions.
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web version of this article.)
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The most significant modes of the aircraft are first symmetrical and anti-symmetrical wing bending modes (in
frequency first and second modes). Shape of the first and second aircraft mode modeled in ANSYS can be seen from Figs. 8
and 9. The target mode shapes of these modes are plotted in Fig. 10. For all next considerations we will assume these
modes to be controlled and then we need to maximize information content of these modes in measurement.

The second symmetrical and anti-symmetrical modes, also called engine modes (in frequency thirrd and fourth modes)
are considered as a non-controlled modes and we need to minimize information content of these modes in measurement.
Shape of the third and fourth aircraft modes modeled in ANSYS can be seen from Figs. 11 and 12 and the target mode
shapes are plotted in Fig. 13.

Results of optimization for case of first and second modes as required versus third and fourth modes to be rejected are
plotted in Fig. 14. One can see that information content of required modes captured by this configuration of sensors is
thousand times higher than information content of not-required modes (SNR approach 56 dB).

Selected sensors are superimposed into target mode shapes. One can see from Fig. 15 that higher deflections of wings
during first symmetrical and anti-symmetrical bending modes are at more outboard positions. On the other hand, the
nodes (zero deflection of wings due to particular mode) of the second symmetrical and anti-symmetrical wing bending
modes are situated in the second third of wing lengths as can be seen from Fig. 16. Sensors location optimization therefore
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Fig. 16. Optimal sensor positions (red squares) plotted in not-required modes shapes (third mode shape—blue o and fourth mode shape—green o) and

sensors reference positions with zero deflection (black x). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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results in positions near the most outboard nodes of the not-required modes.
The case of two highest modeled modes to be rejected is considered next. Last two modes in this case can be considered

as a ‘‘high frequency noise’’ with defined spatial distribution to be filtered out by our OSP method. The 29th and 30th
target mode shapes are plotted in Fig. 17.

Optimal sensors placement for the case of first symmetrical and anti-symmetrical modes versus last two symmetrical
and anti-symmetrical modes is plotted in Fig. 18. Similarly as in the previous case, the most outboard sensors are involved
due to nodes of not-required modes, but now also sensors in rear fuselage are selected. This behavior can be explained by
comparison of target mode shapes plotted in Figs. 10 and 17. One can see a diving aircraft tail in case of first symmetrical
wing bending mode and the fuselage rotation along longitudinal axis in the case of first anti-symmetrical wing bending
mode (Fig. 10). On the other hand no deflection of fuselage occurs in 29th and 30th symmetrical and anti-symmetrical
wing bending modes. This can also be seen from comparison of selected sensor sets superimposed into target mode shapes
of required modes (Fig. 19) and undesirable modes (Fig. 20).
6. Conclusions

Novel approach to optimal sensors placement which takes into account the spillover issues has been presented in this
paper. The information based approach was adapted, and a related effective algorithm was developed from the standard
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EFI procedure. Performance of the algorithm was assessed by means of a simple example and a Blended-Wing-Body
aircraft case study.
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