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Abstract
This thesis studies the problem of parameter estimation, model identi-
�cation and state estimation for underactuated bipedal walking robots.
Two main results were developed. The �rst result is a novel identi�cation
method suited for this problem. The second result is the extension of
existing algorithms for state estimation to the case of the hybrid model
of an underactuated walking robot.
The identi�cation method takes advantage of the linear structure of the
model with respect to estimated parameters. The resulting estimator
is calculated iteratively and maximizes the likelihood of the data. The
method was tested on both simulated and experimental data. Simulations
were carried out for an underactuated walking robot with a distance me-
ter to measure absolute orientation. Laboratory experiments were carried
out on a leg of a laboratory walking robot model equipped with a three-
axis accelerometer and gyroscope to measure absolute orientation. The
method performs favorably in comparison with other benchmark estima-
tion algorithms and both the simulations and the laboratory experiments
con�rmed its high potential for the use in identi�cation of underactuated
robotic walkers.
The state estimators were applied to estimate the absolute orientation
of an underactuated walking robot in the presence of impacts which oc-
cur when the leg of the robot hits the ground. The proposed estimation
scheme was tested on simulations of a 3-link robot and shows that pro-
posed extensions yields improved estimation performance.

Key words: walking robots, maximum likelihood estimation, identi�ca-
tion, state estimation.
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Abstrakt
Prezentovaná dizerta£ná práca sa zaoberá ²túdiom problému odhadu pa-
rametrov, identi�kácie modelu a odhadu stavu pre podaktuované dvo-
jnohé krá£ajúce roboty. Boli dosiahnuté dva hlavné výsledky. Prvý výs-
ledok predstavuje novú metódu identi�kácie vhodnú pre tento problém.
Druhý výsledok je roz²írenie existujúcich algoritmov pre odhad stavu neli-
neárnych systémov pre prípad hybridného modelu podaktuovaných krá£a-
júcich robotov.
Navrhnutá identi�ka£ná metóda vyuºíva lineárnu ²truktúru modelu vz-
h©adom k odhadovaným parametrom. Výsledný odhad je po£ítaný itera£-
ne a maximalizuje vierohodnos´ dát. Metóda bola testovaná na simu-
la£ných, ale aj experimentálnych dátach. Simulácie boli vytvorené pre
príklad robota vybaveného laserovým dia©komerom pre meranie absolút-
nej pozície robota. Laboratórne experimenty boli vykonané na nohe la-
boratórneho prototypu krá£ajúceho robota. Robot bol vybavený trojosím
akcelerometrom a gyroskopom pre meranie absolútnej orientácie. V porov-
naní s klasicky pouºívanými algoritmami sa metóda chová ve©mi priaznivo.
Simula£né a laboratórne experimenty potvrdili vysoký potenciál navrhnu-
tej metódy pre odhad parametrov podaktuovaných krá£ajúcich robotov.
Algoritmy pre odhad stavu nelineárnych systémov boli aplikované na úlo-
hu odhadu absolútnej orientácie podaktuovaného krá£ajúceho robota. Na-
vrhnuté roz²írenie rie²i problém nárazu nohy robota na zem. Navrhnutý
prístup bol testovaný na simuláciách robota. Výsledky ukazujú výrazne
vylep²enie odhadu absolútnej orientácie robota.

K©ú£ové slová: krá£ajúce roboty, metóda maximálnej vierohodnosti, iden-
ti�kácia, odhad stavu.
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Acronyms

AO Absolute Orientation
DoF Degree(s) of Freedom
EoM Equation(s) of Motion
EKF Extended Kalman Filter
HEKF Hybrid Extended Kalman Filter
IMU Inertial Measurement Unit
IRC Incremental Rotary Coder
LS Least Squares
MC Monte Carlo
ML Maximum Likelihood
MLE Maximum Likelihood Estimation/Estimate
NaN Not a Number
RLS Recursive Least Squares
UKF Unscented Kalman Filter
WLS Weighted Least squares
WLS-FCD Weighted Least Squares with Filtered Central Di�erences
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1 Introduction

1.1 Motivation

The underactuated robotic walking has been studied intensively during
last decades. The possibility to use a walking like mechanism for trans-
portation in rough terrain, desire to replace humans in hazardous occupa-
tions, possible applications in medicine and other applications make the
bipedal walking a promising �eld that has developed substantially in last
decades. Recent developments in this �eld resulted in increased perfor-
mance of robotic walkers, shifting from slow quasi-static motions to fast
and agile walking and running [Westervelt et al. (2007)]. This resulted
in constructing many new walking prototypes among them the famous
RABBIT [Chevallereau et al. (2003)], MABEL [Grizzle et al. (2009)],
MARLO [Buss et al. (2016)] and other robots which served as testbeds
for developed control algorithms. The shift towards the agile walking has
been accomplished by developing controllers based on the dynamics of
robot instead of heuristics or analysis of static forces. However, utilizing
a controller that takes into the account the dynamics of a walking robot
requires a mathematical model of the dynamics of the robot. Nowadays
e�cient means for determining such models are available using classical
mechanics of rigid bodies, nevertheless, to obtain the parameters describ-
ing the mass distribution, geometry and the friction of the robot joints
is still an open problem. The estimation problem is complicated by the
interaction of the robot with the walking surface which results in hybrid
model of the robot. Additionally, measuring the absolute orientation of
an underactuated bipedal walking robot with respect to the ground is a
nontrivial problem that cannot be solved separately from the parameter
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Chapter 1. Introduction

estimation problem.

Underactuation � an intrinsic property of any agile bipedal walking robot
� occurs whenever the foot of the robot is not �at on the ground. This is
because the contact point between the foot and the ground can be mod-
eled as a pivot point. However, this pivot point is not directly actuated
and it is not possible to place a motor to actuate robot in that point, see
the �g.1.1 and note the underactuated angle q1. All the remaining joints
of the robot can be actuated directly using motors. This fact is closely
related to the problem of model identi�cation. To identify a model of an
underactuated walking robot from measurements obtained during walk-
ing, an information about the absolute orientation of the robot is required.
It is possible to measure all the relative angles between the links of robot
using optical encoders or encoders based on Hall e�ect. These provide
accurate information about relative angles between the links of the robot.
Further, these measurements can be used to obtain information about rel-
ative angular velocities and accelerations between links. However, due to
the underactuation it is not possible to use an encoder to directly measure
the absolute orientation of a walking robot. This information has to be
obtained using di�erent sensors. The human sensory system relies mostly
on the sight and the inner ear. Therefore two basic concepts of the abso-
lute orientation measurement are analyzed, the �rst uses a visual feedback
providing the distance of the robot to a point on the ground. The second
concept uses a gyroscope and an accelerometer. Unfortunately, neither of
such sensors usually provides accurate information, but quite on the con-
trary both approaches to the measurement of the absolute angle are prone
to errors. The distance sensor is prone to transformation errors when the
distance is transformed to the angle. The combination of gyroscopes con-
tain bias errors and the accelerometers are sensitive to vibrations. This
problem further complicates the estimation procedure. Such an unavail-
ability of the absolute orientation measurements and the hybrid nature
of the robot model are the main di�erences which distinguish the prob-
lem of identifying the model of walking robot from a similar problem of
identi�cation of robotic manipulators [Janot et al. (2014a)], [Janot et al.
(2014b)], [Janot et al. (2014c)].
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1.2. State of the art

Figure 1.1 � Schematics of a walking robot.

1.2 State of the art

The problems of model identi�cation and parameter estimation for the
case of walking robots resembles to certain extent the identi�cation and
parameter estimation of models for robotic manipulators. There are sev-
eral features that both problems share. The key principle inherent in both
problems is the possibility to relate the torques of the joint motors with
functions of con�guration angles, associated angular velocities and accel-
erations in linear manner with respect to parameters of robot model. A
robotic manipulator is, however, a fully actuated mechanical chain and
therefore all of the con�guration angles � including the absolute orien-
tation angle � can be accurately measured using encoders. Associated
angular velocities and accelerations can be estimated using �ltered �nite
di�erences. On the contrary, the underactuation of walking robots result-
ing in the unavailability of encoder readings of the absolute orientation
angle and the necessity of measuring the angle using sensors susceptible
to errors complicates the estimation procedure. As a consequence, only

3



Chapter 1. Introduction

in a special case when all the torques are available and all the con�gura-
tion angles are measurable with high precision the model of dynamics of
a bipedal walking robot can be identi�ed using the identi�cation methods
for robotic manipulators. Under such special circumstances both estima-
tion problems are reduced to a linear regression problem and the method
of weighted-least-squares (WLS) can be used to estimate the parameters
of robot. Such a special case can be obtained by building a special walk-
ing platform. However, generally bipedal walking robots posses additional
problems that complicate the use of methods tailored for identi�cation of
manipulator robots and therefore additional problems have to be solved
for successful application of regression methods to parameter estimation
of bipedal robots.

For early works exploiting the linear relationship in parameters between
the torques and positional data see [An et al. (1985)] and [Armstrong
(1987)]. The work [An et al. (1985)] studies the identi�ability of a ma-
nipulator robot without full force/torque sensing. More speci�cally, it
proposes to use ridge regression to cope with unidenti�able parameters.
The work [Armstrong (1987)] studies the design of optimal excitation tra-
jectories for manipulator robot. More recent references on the topic of tra-
jectory optimization for manipulator robots include [Gautier and Khalil
(1991)], [Swevers et al. (1996)], [Swevers et al. (1997)], [Olsen et al.
(2002)], [Capisani et al. (2007)] and many others. The problem of identi-
�ability of the parameters of the dynamical model in the case of walking
robots is similar, however, if an appropriate parametrisation of robot is
used then all of the parameters determining the dynamics are identi�able,
provided the robot is su�ciently excited. The idea of estimating manipu-
lator robot angular velocities and accelerations using numerical derivatives
and exploiting the least-squares method was studied and experimentally
veri�ed also in [Poignet and Gautier (2000)], [Gautier and Poignet (2001)],
[Gautier et al. (2013a)]. To cope with potential correlation induced by
closed-loop control works [Janot et al. (2014b)] and [Janot et al. (2014c)]
propose the use of the Instrumental variable method. Estimating the
parameters of manipulator robots only from torque measurements was
studied in [Gautier et al. (2008)] and [Gautier et al. (2013a)]. Estima-
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1.3. Aim of the Thesis

tion of manipulator robot parameters online was studied in [Poignet and
Gautier (2000)], [Gautier and Poignet (2001)], [Gautier et al. (2013b)].
Many additional important topics related to the manipulator robots iden-
ti�cation were obtained, however, few of them can be directly applied to
identify bipedal walking robots.

Successful identi�cation of walking robots was reported in [El Yaaqoubi
and Abba (2009)], where authors identify the walking robot RABBIT
� both the dynamical model and the ground model. In the work [Park
et al. (2011)] the authors estimate the parameters of robot MABEL. These
works are both based on identi�cation using a walking platform. Further,
the identi�cation is based on series of special experiments to identify the
robot part by part.

1.3 Aim of the Thesis

The aim of the thesis is to study the problem of the model identi�cation
and state estimation of underactuated bipedal walking robots. The main
problems to be solved are:

I. How to estimate the parameters of an underactuated walking robot
model when direct measurement of AO is not available.

II. How to exploit the linear structure of the walking robot model with
respect to the parameters when the measurements related to the AO
are noisy.

III. How to online estimate the AO angle from sensors typically available
for the walking robots.

Both problem I. and II. are solved in the chapter 3. Problem III. is studied
and solved in chapter 4.

The issues I. and II. are solved by a novel method based on the method
of ML. The method takes advantage of the linear structure of the robot

5



Chapter 1. Introduction

model with respect to the parameters. The noise in the measurements
related to the AO of the robot are smoothed iteratively while the qual-
ity of the estimate of the parameters increases. These issues are studied
on two case studies. First study is a based on simulations of a three link
walking robot which uses a laser distance measurement to measure the un-
deractuated angle. This investigation shows that the approach developed
in this article can deal with the measurement errors and performs favor-
ably in comparison with other common estimation methods. The other
study is a laboratory experiment where the parameters of a leg of an un-
deractuated walking robot are estimated and the underactuated angle is
measured using a 3-axis accelerometer and gyroscope LSM9DS1 produced
by the company STMicroelectronics. The experiment shows that assump-
tions of the method proposed in the chapter 3 are valid and that it can
be used in real application.

Problem III. � studied in chapter 4 � is solved by extending the well-
known state estimation algorithms for the case of the hybrid model of the
walking robot. The extended estimators yield excellent performance, even
in the presents of moderate errors in the parameters of the robot model
used for the estimator design. The estimators were tested on simulation
study dealing with feedback control of a 3-DoF walking robot.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 covers necessary background in modeling of walking robots.
It contains the derivation of a complex model containing the legs and
the torso. The matrices of the model can be found in the Appendix.
This model can be used to derive any other models used in the thesis.
Moreover, the classical estimation algorithms � discrete EKF and UKF
� are presented in this chapter. The discrete EKF and UKF algorithms
will be extended to be applicable in the hybrid model of walking robots.

The main contribution of the author is described in the Chapter 3 and
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the Chapter 4.

Chapter 3 deals with the o�ine estimation of parameters of walking
robots. The proposed procedure is general and is explained on a 5-DoF
walking robot. However, for the sake of clarity a simulation example is
presented on the 3-link model of robot. Further, this chapter contains an
experimental study of the performance of this method. The experiments
were carried out on the leg of the prototype walking robot.

Chapter 4 presents the application of the classical estimation algorithms
� the discrete EKF and the discrete UKF � to the hybrid model of
underactuated walking robot. The extension deals with including the im-
pact map in the estimator and using it to improve the estimation of the
absolute orientation of the walking robots. The results are analyzed using
Monte Carlo simulations and show excellent performance of the estima-
tors. Thanks to the incorporating the impact map into the estimation
algorithm the improved performance of the state estimators helps recover
the stable behavior of the closed-loop robot controller.

Chapter 5 concludes the thesis, sums up the contribution of the author
and describes some open problem connected to studied topic.

The Appendix includes the matrices of the 5-link model of a walking robot
and additional equations connected to the robot model.
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2 Preliminaries

2.1 Model of a planar bipedal walking robot

The model for the bipedal robot is depicted on �g. 2.1 with two di�erent
options of con�guration angles. The robot consists of rigid links con-
nected via rotary joints. Each joint is actuated. Two notable features
can be observed � the fact that the model is planar and the fact that
the robot model has point-feet. The choice of point-feet is a common fea-
ture of underactuated walking robots, see [Westervelt et al. (2007)] and
[Chevallereau et al. (2003)], [Grizzle et al. (2009)]. The choice of the
point feet is due to simpli�cation of the gait analysis. Walking can be
de�ned as periodic switching of two phases of the robot � a swing phase
and an impact phase. Swing phase is occurring when one leg is in the air
and the other is on the ground. The leg that is in the air is called the
swing leg and the leg that is on the ground is called the stance leg. It
is assumed that the stance leg does not slip, nor bounce of the ground.
The impact phase occurs when both legs are in contact with the walking
surface. Thanks to the point-feet the robot is underactuated during the
whole swing phase. This fact simpli�es the analysis of the robot gait and
it is the main reason for the choice of point-feet model of the robot. Due to
underactuation it is not possible to easily measure the AO of the robot. As
mentioned before this fact complicates the control and parameter estima-
tion of the robot. However, because the model is planar it is not capable
of 3D motion and if such a model would be built it would not be able to
walk without a platform stabilizing the robot in the lateral direction. The
platform itself can be used to measure the AO. Nevertheless, the planar
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Chapter 2. Preliminaries

Figure 2.1 � Schematics of a 5-link robot with 5Dof. Left: AO angle qa1
with respect to the stance leg. Right: AO angle qa3 with respect to the
torso.

robot is an excellent testbed for testing identi�cation algorithms that do
not utilize the information about the AO from the platform. Further, pla-
nar model includes all the principal challenges inherent in the problem of
the identi�cation of the underactuated walking robots. Therefore, solving
the problem of AO estimation and parameter estimation when AO is not
directly measured is done in 2D as a step towards 3D walking. During 3D
walking robots which would walk freely without the need for support in
the lateral direction. The �gure 2.1 describes two special sets of con�gu-
ration angles. The AO of the robot model depicted in the left part of the
�gure 2.1 is de�ned as the angle between the gravitational vector and the
stance leg. The robot model depicted in the right part of the �gure 2.1
is de�ned as the angle between the gravitational vector and the torso of
the robot. These two ways of de�ning the AO will be used often in this
work and their use is closely connected with the type and the location of
sensors for the measurements of the absolute orientation.

10



2.2. Swing phase

2.2 Swing phase

During the swing phase the stance leg of the robot is rotating around the
pivot point which is the point of contact between the stance leg and the
walking surface. Planar bipedal walking robot can be modeled as a pinned
planar open kinematic chain. The chain consisting of nr rigid links can be
modeled as a mechanical system with nr degrees of freedom. Its motion
can be described by one absolute angle qa and its associated velocity 9qa

and nr � 1 relative angles qri and corresponding nr � 1 angular velocities
9qri . All these angles at a particular time t form a vector of con�guration
angles qptq and together with the vector of angular velocities 9qptq they
constitute the state vector xptq. Torques corresponding to each degree of
freedom are included in the vector τ ptq, vector uptq comprises the actuator
torques. Summarizing,

qptq � rqa, qrT sT , (2.1)

9qptq � r 9qa, 9qrT sT , (2.2)

xptq � rqT ptq, 9qT ptqsT , (2.3)

τ ptq � rτ1ptq, . . . , τnrptqs
T , (2.4)

uptq � ru1ptq, . . . , unr�1ptqs
T . (2.5)

Kinematic chains can be modeled by the Euler-Lagrange's equations of
motion [Landau and Lifshitz (1976)]

d

dt

�
BL

B 9q



�
BL

Bq
� τ , (2.6)

where L denotes the Lagrangian, which equals the di�erence between the
kinetic and the potential energy of considered mechanical system, that is,

L � Kpq, 9qq � V pqq. (2.7)
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Chapter 2. Preliminaries

The kinetic energy of the system can be calculated as the sum of the
kinetic energies of each link,

Kpq, 9qq �
nŗ

i�1

Kipq, 9qq. (2.8)

The kinetic energy of the i-th link is

Ki �
1

2
miv

2
i �

1

2
Ii 9φ

2
i . (2.9)

Symbol mi denotes the mass of the i-th link, inertia of the i-th link is
denoted as Ii and φi denotes the absolute orientation of the i-th link
de�ned with respect to the beginning of the i-th link, positive in the
clock-wise direction. Angles φi expressed in con�guration angles qi for
the particular con�guration angles depicted in the �gure 2.1 are given in
the Appendix. Velocity vector vi of the the i-th link coordinates is de�ned
as

vi �

�
dxci
dt

,
dyci
dt

�
(2.10)

and the square of the velocity vector is equal to

v2
i �

�
dxci
dt


2

�

�
dyci
dt


2

. (2.11)

The location of the CoG in Cartesian coordinates for i-th link is denoted
as xci and yci and is equal to

xci � lci sinpφiq �
i�1̧

j�1

lj sinpφjq (2.12)

yci � lci cospφiq �
i�1̧

j�1

lj cospφjq. (2.13)
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2.2. Swing phase

The potential energy is given as

V pqq �
nŗ

i�1

Vipqq �
nŗ

i�1

mighi. (2.14)

Constant g is the gravity acceleration constant and hi denotes the height
from the ground of the i-th link. Note that the calculated Kinetic energy
will have the following structure

Kpq, 9qq �
1

2
9qTDpqq 9q, Dpqq � DT pqq ¡ 0 (2.15)

and the equations (2.6) will assume the following form [Westervelt et al.
(2007)]

Dpqq:q �Cpq, 9qq 9q �Gpqq � Fpq, 9qq � τ � Bu, (2.16)

where

Gpqq �
BV pqq

Bq
, Cpq, 9qq �

B

Bq
pDpqq 9qq �

1

2
p
B

Bq
pDpqq 9qqqT . (2.17)

Matrix Dpqq is called the inertia matrix, Cpq, 9qq is the matrix of Coriolis
and centrifugal forces, vector Gpqq describes gravity e�ects and vector
Fpq, 9qq contains friction model terms. Matrix B describes how the actu-
ator torques u are generating torques τ . For the case of 5-link robot it is
calculated as

B �

�
Bpφ2 � φ1q

Bq
,

Bpφ3 � φ2q

Bq
,

Bpφ3 � φ4q

Bq
,

Bpφ4 � φ5q

Bq

�
.

(2.18)

The associated state space model can be found using (2.3) and (2.16) as

9x � fpxq � gpxqu, (2.19)
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Chapter 2. Preliminaries

Table 2.1 � Parameters of the nr-link robot

l1, . . . , lnr length of 1st, . . .nrth link [m]
lc1 , . . . , lcnr center of gravity of 1st, . . .nrth link [m]
m1, . . . , mnr mass of 1st, . . .nrth link [kg]
I1, . . . , Inr inertia of 1st, . . .nrth link [kg.m2]

g gravitational acceleration [m.s�2]

where

fpxq �

�
9q

Dpqq�1p�Cpq, 9qq �Gpqq � Fpq, 9qqq

�
, (2.20)

gpxq �

�
0

Dpqq�1B

�
. (2.21)

For matrices D, C, G and B corresponding to various models of planar
bipedal walking robots, see the Appendix. Matrices of the model can
be parametrized by physical parameters of the robot which are listed in
tab. 2.1. An example of de�nitions of lengths of robot links and the
locations of Centers of Gravity (CoG) is depicted in the left part of the
�gure 2.2.

2.3 Impact phase

An impact occurs when the swing leg touches the walking surface. When
the walking surface is rigid, the duration of impact is very short. It is
common to approximate it as being instantaneous. This approximation
leads to replacing the ground reaction forces by impulses, resulting in a
discontinuity of velocity components of the robot state. The result of the
impact model are the new initial conditions from which the single support
model evolves until the next impact [Westervelt et al. (2007)]. Depending
on the assumptions several impact models can be constructed [Babitsky
(1998)], [Brogliato (1999)], [Grizzle et al. (2001)] and [Hurmuzlu and

14



2.3. Impact phase

Figure 2.2 � Left: link lengths, CoG locations and ground reaction forces.
Right: schematics of an unpinned 5-link walking robot with 7 DoF.

Marghitu (1994)]. As long as the assumptions are valid all of them can
be used to derive the impact map. The approach taken in [Grizzle et al.
(2001)] was adopted in this work for several di�erent models of robots.
The motion of the robot is analyzed only for the case that the contact of
the swing leg with the ground results in no rebound and no slipping of
the swing leg, and the support leg naturally lifting from the ground with
no interaction [Hurmuzlu and Marghitu (1994)]. The basic premises in
[Hurmuzlu and Marghitu (1994)] are that

1. the impact takes place over an in�nitesimally small period of time,

2. the external forces can be represented by impulses,

3. impulsive forces may result in an instantaneous change in velocities
of the generalized coordinates, but the positions remain continuous,

4. the torques supplied by the actuators are not impulsional.

15
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To determine the impact forces and the new initial conditions for the single
support phase the so-called unpinned model � depicted in the right part
of the �gure 2.2 � of the robot is necessary. To obtain the unpinned
model, the vector of con�guration angles q is extended with Cartesian
coordinates z1, z2 of an arbitrary point on the robot. For convenience,
this point is chosen to be identical with the end tip of the stance leg. The
resulting model has 7 DoF and can be written as

Depqeq:qe �Cepqe, 9qeq 9qe �Gepqeq � Bτ � δF ext (2.22)

where qe � rqT , z1, z2s
T stands for the extended con�guration vector.

The model 2.22 is integrated over the duration of the impact to obtain
[Hurmuzlu and Marghitu (1994)]

Depqeq
�
9q�e � 9q�e

�
� F ext (2.23)

where F ext �
³t�
t� δF

extpτqdτ is the integral of the contact impulse over
the duration of the impact, 9q�e is the velocity just before the impact and
9q�e is the velocity after the impact. The positions do not change therefore
q�e � q�e .

In order to determine the vectors q�e and F ext additional equations that
describe the contact forces at the contact points are required. The �rst
contact point is between the ground and the supporting leg. As the sup-
porting leg is assumed to detach from the ground with no interaction the
forces acting on this leg are zero. Therefore, the vector F ext will be com-
posed only of the forces acting at the end of the swing leg [Grizzle et al.
(2001)]. The position of the end point of the swing leg will be denoted
as Υ. For the case of 5-link robot with absolute angle de�ned w.r.t the
stance leg or the torso � as depicted on the �gure 2.1 � and parametrized
as depicted in the left part of the �gure 2.2 the vector Υ is given in the
Appendix. The vector of external forces is

F ext � ET

�
FT
FN

�
, (2.24)
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where FT , FN denotes the tangent and normal forces, respectively, acting
at the end of the swing leg. The matrix E is de�ned as

E :�
BΥ

Bqe
. (2.25)

Thus, the system of seven equations 2.23 contains nine unknowns, 9q�e and
FT , FN , vector 9q�e is known since 9q�e � r 9q�T , 9z1, 9z2s and 9z1 � 0, 9z2 � 0,
since the supporting leg acts as a pivot during the swing phase. Additional
set of two equations can be obtained from the assumption that the swing
leg does not rebound nor slip at impact, i.e. pd{dtqΥpqeq �

BΥ
Bqe

9qe � 0,
thus

E 9q�e � 0. (2.26)

As a consequence, the following system of equations�
De �E

E 0

��
9q�e
F ext

�
�

�
De 9q

�
e

0

�
(2.27)

linear in the unknowns 9q�e and F is obtained. Note that F ext � pFT , FN q
T .

The solvability of the (2.27) requires the invertibility of the matrix on the
left hand side. The invertibility of the left hand side matrix follows from
the fact that De is positive de�nite and E has full rank [Grizzle et al.
(2001)]. The solution of the (2.27) yields the vector 9q�e � r 9q�, 9zs and
values 9q� should be used to reinitialize the model. However, before reini-
tialisation a change of coordinates is necessary as the former support leg
is now swing leg and vice versa. The state vector for new swing phase will

be x �
�
q̃T , 9̃qT

�T
. Where q̃ and 9̃q denotes the angles and associated

angular velocities after the impact and relabeling. This operation will be
denoted as

x� � ∆px�q. (2.28)

The extended matrix of the 7DoF model with AO de�ned with respect to
the stance leg required for impact calculation is given in the Appendix.
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The relabeling maps for the 5-link with AO de�ned w.r.t the stance leg
or the torso are given in the Appendix.

2.4 Discrete model of the robot

The prediction of state and measurements between the sampling instant
is based on the discrete model of the robot dynamics and measurements

xptl�1q � fdpxptlq,uptlqq, (2.29)

yptkq � hdpxptkq,uptkqq. (2.30)

The vector �eld fd can be calculated using explicit integration methods.
Using the Euler's method results in fd given as

f eul � xptlq � Tipfpxptlqq � gpxptlqquptlqq, (2.31)

where Ti is the integration duration. Euler's integration method is very
simple. The simplicity of the method results in lower precision of the
method. Therefore, this method has to be applied several times between
the measurement samples. Due to these reasons a more sophisticated
integration method � the method of Rung-Kutta of fourth order � has
been tested. The vector �eld fd for this method is given as

f rk4 � xptlq �
k1

6
�
k2

3
�
k3

3
�
k4

6
, (2.32)

where, provided uptlq is held constant during one sample,

k1 � Tipfpxptlqq � gpxptlqquptlqq,

k2 � Tipfpxptlq �
k1

2
q � gpxptlq �

k1

2
quptlqq,

k3 � Tipfpxptlq �
k2

2
q � gpxptlq �

k2

2
quptlqq,

k4 � Tipfpxptlq � k3q � gpxptlq � k3quptlqq. (2.33)
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Figure 2.3 � Robot model with impact.

Every time the robot's swing leg touches the ground an impact occurs.
To model the impact mathematically it only means that the robot model
is reinitialized with new initial conditions whenever the impact condition
ϕimppx,uq � 0 as shown on �gure 2.3. The condition is usually de�ned
as the height of the end tip of the swing leg.

2.5 Estimation algorithms

2.5.1 Discrete Extended Kalman Filter

The algorithm of the Extended Kalman Filter (EKF) can be used to es-
timate the state of a nonlinear dynamical system [Simon (2006)]. The
algorithm is composed of two steps: the time update step and the mea-
surement update step. During the time update a one step ahead prediction
of the state x̂ptk�1|tkq is calculated. This prediction is updated during
measurement update once a new measurement is available and results in
the corrected estimate x̂ptk�1|tk�1q. The stochastic discrete model of the
walking robot can be written as

xptk�1q � fdpxptkq,uptkq,wptkqq, (2.34)

yptkq � hdpxptkq,uptkq,vptkqq, (2.35)

wptkq � N p0,ΣQq, (2.36)

vptkq � N p0,ΣRq. (2.37)

Vector wptkq is a Gaussian random process representing disturbances act-
ing on the modeled system. Vector vptkq is a Gaussian random process
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representing the measurement noise. Both wptkq and vptkq are uncorre-
lated with each other and their past samples. Matrix ΣQ denotes the
covariance matrix of the random disturbances wptkq acting on the system
and the matrix ΣR stands for covariance of measurement noise vptkq. The
algorithm of the EKF can be summarized in following steps.

1. The EKF �lter is initialized with

x̂pt0q � Erxpt0qs (2.38)

Ppt0q � Erpxpt0q � x̂pt0qqpxpt0q � x̂pt0qqT s (2.39)

2. For k � 1 . . . N carry out following steps.

(a) Calculate Jacobians associated with linearisation of the dynamic
equation of robot.

Fptkq �
Bfd
Bx

����� x�x̂ptk|tkq
w�0

, Lptkq �
Bfd
Bw

����� x�x̂ptk|tkq
w�0

(2.40)

(b) Time update: perform the covariance update and state prediction.

Pptk�1|tkq � FptkqPptk|tkqFptkq
T � LptkqΣQLptkq

T (2.41)

x̂ptk�1|tkq � fdpx̂ptk|tkq,uptkq,0q (2.42)

(c) Calculate Jacobians associated with linearisation of the robot's mea-
surement model.

Hptk�1q �
Bhd
Bx

����� x�x̂ptk�1|tkq

w�0

, Mptk�1q �
Bhd
Bw

����� x�x̂ptk�1|tkq

w�0

(2.43)

(d) Measurement update: calculate the Kalman gain and the current
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measurement estimate

Kptk�1q � Pptk�1|tkqHptk�1q
T pHptk�1qPptk�1|tkqHptk�1q

T�

Mptk�1qΣRMptk�1q
T q�1, (2.44)

ŷptk�1q � hdpx̂ptk�1|tkq,uptk�1q,0q. (2.45)

Perform the correction of the covariance and state estimates using
new measurement.

x̂ptk�1|tk�1q � x̂ptk�1|tkq �Kk�1pyptk�1q � ŷptk�1qq (2.46)

Pptk�1|tk�1q � p1�Kptk�1qHptk�1qqPptk�1|tkq (2.47)

2.5.2 Discrete Unscented Kalman Filter

In comparison with the EKF, the UKF does not require the calculation
of the linearized model of the robot. The algorithm of UKF can be sum-
marized in the following steps.

1. The UKF is initialized by following estimates

x̂pt0q � Erxpt0qs, (2.48)

Ppt0q � Erpxpt0q � x̂pt0qqpxpt0q � x̂pt0qqT s. (2.49)

For k � 1 . . . N carry out following steps.
2. Time update.

(a) Generate sigma points for one-step-ahead state prediction:

xpiqptkq � x̂ptk|tkq � x̃
piqptkq i � 1, . . . , 2n (2.50)

x̃piqptkq �
�a

nPptk|tkq
	T
i

i � 1, . . . , n (2.51)

x̃pn�iqptkq � �
�a

nPptk|tkq
	T
i

i � n� 1, . . . , 2n (2.52)

(b) Propagate sigma points using the robot model (2.29), that is

xpiqptk�1q � fdpx̂
piqptkq,uptkqq. (2.53)
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(c) Calculate one-step-ahead prediction of the state as

x̂ptk�1|tkq �
1

2n

2ņ

i�1

xpiqptk�1q. (2.54)

(d) Estimate the covariance of the one-step-ahead state estimate

Pptk�1|tkq �
1

2n

2ņ

i�1

��
xpiqptk�1q � x̂ptk�1|tkq

	
�
xpiqptk�1q � x̂ptk�1|tkq

	T �
�ΣQ (2.55)

3. Measurement update.

(a) Generate sigma points for the estimation of output:

xpiqptk�1|tkq � x̂ptk�1|tkq � x̃
piqptk�1q i � 1, . . . , 2n (2.56)

x̃piqptk�1q �
�a

nPptk�1|tkq
	
i

i � 1, . . . , n (2.57)

x̃pn�iqptk�1q � �
�a

nPptk�1|tkq
	
i

i � 1, . . . , n (2.58)

(b) Propagate sigma points using the robot measurement model

ypiqptk�1q � hdpx
piqptk�1q,uptk�1qq. (2.59)

(c) Calculate current estimate of the outputs as

ŷptk�1q �
1

2n

2ņ

i�1

ypiqptk�1q. (2.60)

(d) Estimate the covariance of the predicted measurements

Pyptk�1q �
1

2n

2ņ

i�1

��
ypiqptk�1q � ŷptk�1q

	
�
ypiqptk�1q � ŷptk�1q

	T �
�ΣR. (2.61)
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(e) Estimate the cross-covariance between x̂ptk�1|tkq and ŷptk�1q

Pxyptk�1q �
1

2n

2ņ

i�1

��
xpiqptk�1q � x̂ptk�1|tkq

	
�
ypiqptk�1q � ŷptk�1q

	T �
. (2.62)

(f) Perform the measurement update

Kptk�1q � Pxyptk�1qP
�1
y ptk�1q, (2.63)

x̂ptk�1|tk�1q � x̂ptk�1|tkq �Kptk�1qpyptk�1q � ŷptk�1qq,

(2.64)

Pptk�1|tk�1q � Pptk�1|tkq �Kptk�1qPyptk�1qKptk�1q
T .

(2.65)

2.5.3 Hybrid Extended Kalman Filter for parameter esti-

mation

It is possible to estimate both the states x and the parameters β of the
system (2.19) using HEKF. Vector of parameters β can be obtained by
reparametrization of the model as will be seen in the following chapter.
Unknown robot parameters can be considered as state variables and the
state vector can be augmented as

x̄ � rxT ,βT sT . (2.66)

Robot (2.19)and measurement model h are augmented as

x̄ � f̄px̄,u, w̄q �

�
fpxq � gpxqu

0

�
�

�
wx

wβ

�
, (2.67)

yptkq � h̄px̄ptkq, v̄ptkqq. (2.68)

Vectors wx � N p0,Σc
Qq, v̄ � N p0,Σc

Rq , wβ � N p0,Σβq. The state
vector is propagated between the measurements according to augmented
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state equation and the covariance matrix of the estimation error is prop-
agated according to

9P � AP�PA� LΣQLT , (2.69)

where

A �
Bf̄

Bx̄

�����
ˆ̄x�ptk�1q

, L �
Bf̄

Bw

�����
ˆ̄x�ptk�1q

.

The prior state estimate xptk|tk�1q and the prior covariance matrix esti-
mate Pptk|tk�1q are updated at each measurement time tk

K � Pptk|tk�1qH
T pHPptk|tk�1qH

T �MΣRMT q�1 (2.70)

ˆ̄xptk|tkq � ˆ̄xptk|tk�1q �Kpy � h̄pˆ̄xptk|tk�1qqq (2.71)

Pptk|tkq � p1�KHqPptk|tk�1qp1�KHqT

�KMΣRMTKT , (2.72)

where the time indices are dropped to improve the readability.

Hptkq �
Bh

Bx̄

�����
ˆ̄xptk|tk�1q

, Mptkq �
Bh̄

Bv

�����
ˆ̄xptk|tk�1q

.

2.5.4 Recursive Least Squares

The recursive least squares can be implemented as follows.
1. Initialization: Initialize the parameter estimate β̂p0q with some initial
estimate. Initialize the covariance matrix Pp0q of the parameter estimate
β̂p0q.
2. Estimation: For tk � 1 . . . N , perform following:
(a) Calculate the estimated robot joint torques using parameters β̂ptk�1q

τ̂ ptkq � Zpq̂fcdptkq, 9̂qfcdptkq, :̂qfcdptkqqβ̂ptkq, (2.73)
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where Z is the design matrix composed of nonlinear regressors consisting
of the relative and absolute con�guration angles and their �rst and second
derivatives. The q̂fcdptkq stands for digitally �ltered measurements of
qptkq. Vectors 9̂qfcdptkq, :̂qfcdptkq stands for approximations calculated
using central di�erences from the measurements of qptkq.
(b) Calculate the gain matrix Kptkq and update the parameter estimates
and the associated covariance matrix

Kptkq � Pptk�1qZ
T ptkqpZptkqPptk�1qZptkq �Rq�1, (2.74)

β̂ptkq � β̂ptk�1q �Kptkqpyτ ptkq � τ̂ ptkqq, (2.75)

Pptkq � p1�KptkqZptkqqPptk�1qp1�KptkqZptkqq

�KptkqRptkqKptkq. (2.76)

Matrix R � BΣuB
T is of rank 2. Therefore a regularization with some

small number is necessary in order to prevent numerical instability of the
algorithm.
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3 O�ine identi�cation for

bipedal walking robots

This chapter contains the key results of the thesis. In particular, the
following sections describe how it is possible to include inertial measure-
ments or distance measurements in the design matrix of the underlying
regression problem. The regression problem is closely connected to the
problem of the parameter estimation. This chapter also develops the al-
gorithm which removes the noise contained in these measurements and
calculates the parameter estimates. The chapter is organized as follows.
First, the problem of parameter estimation is introduced. Section 3.1
describes the estimation of relative velocities that are required in the as-
sociated calculations. Section 3.2 describes the process of elimination of
the unknown absolute angle from the regression equation. In section 3.3
these results are used to develop the optimization algorithm that estimates
the unknown robot parameters by maximization of the likelihood of the
measured data. In the section 3.4 a simulated example dealing with the
identi�cation of a 3-link robot model is presented. Finally, in the section
3.5 an experiment focused on estimation of parameters of the leg of the
prototype walking robot is given.

Using the link masses, the link inertia, the link lengths and other phys-
ical parameter � described in table 2.1 � to parametrize the motion
equations (2.16) of a mechanical chain is quite natural. For the pur-
pose of parameter estimation it is, however, more advantageous to use a
parametrization that allows a model linear in parameters,

Buptq � τ ptq � Zpqptq, 9qptq, :qptqqβ, (3.1)
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where the matrix Zpqptq, 9qptq, :qptqq can be formed by manipulating the
left-hand side of equation (2.16). The structural identi�ability of param-
eters β can be easily ensured by choosing a parametrization that makes
the corresponding matrix Z of full rank. To be able to exploit the lin-
earity in the parameters, all variables entering the design matrix Z, that
is both relative position and absolute position, must be available. Then
the problem of parameter estimation is reduced to the problem of mul-
tivariate multiple linear regression [Armstrong (1987)]. This case can be
achieved using special platform where the absolute orientation of robot
can be measured with respect to the platform itself. However, a walk-
ing robot freely moving in environment would have to obtain its absolute
orientation using inertial measurements. These measurements, however,
are likely to contain measurement noise. In this chapter the pursued idea
is estimating the parameters in the presence of imperfect knowledge of
absolute orientation from potentially noisy measurements.

3.1 Estimating relative angular velocities and ac-

celerations

A typical situation encountered in practice is that the measurements of
actuator torques and relative angles are available from motor-current sen-
sors and rotary encoders, respectively. The encoder data are usually very
accurate, and after digital �ltering, practically noise free. For dataset
consisting of N samples one obtains

yτ ptkq � τ ptkq � eτ ptkq � Byuptkq, (3.2)

yuptkq � uptkq � euptkq, (3.3)

yrqptkq � q
rptkq, (3.4)

where k � 1 . . . N . Actuator-torques measurement errors euptkq are as-
sumed to be independent, identically distributed, following normal distri-
bution and to have zero mean. That is

EreuptkqeuptkqT s � Σu, (3.5)

28



3.2. Eliminating the dependence on the absolute angle

EreuptkqeuptlqT s � 0 for tl � tk. (3.6)

As a consequence, eτ � N p0,Στ q, where Στ � BΣuB
T . On the other

hand, the angular velocities and accelerations are usually not available,
but in the case of relative angles, they can be estimated from angular data
using central di�erences

9̂qrfcdptkq �
q̂rf ptk � Tsq � q̂

r
f ptk � Tsq

2Ts
, (3.7)

:̂qrfcdptkq �
q̂rf ptk � 2Tsq � 2q̂rf ptkq � q̂

r
f ptk � 2Tsq

4T 2
s

, (3.8)

where q̂rf denotes digitally-�ltered relative angular data, Ts the sampling
rate and the �ltering is used to reduce the noise ampli�cation introduced
by numerical di�erences. By using the estimates (3.7), (3.8) the depen-
dence of (3.1) on relative velocities is e�ectively removed resulting in

Zfcdpq
r
f , qa, 9qa, :qaq � Zpqa, q, 9qa, 9q

r, :qa, :q
rq

����� 9qr� 9̂qrfcdpq
rq

:qr�:̂qrfcdpq
rq

, (3.9)

where the time index was dropped to improve the readability. It can be
seen that the only unknown variables are the absolute angle and its asso-
ciated �rst and second derivatives, since the relative angles are assumed
to be measured.

3.2 Eliminating the dependence on the absolute

angle

There are various sensors that can measure various quantities that are
directly related to the absolute angle. In this work only the distance
from the ground and linear accelerations measured by an accelerometer
combined with gyroscope measurements will be studied. These quantities
can be used to eliminate the dependence on the absolute angle qa and its
derivatives 9qa, :qa from equation (3.1). Achieving this would eliminate the
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remaining unknown variables from the design matrix Z and would allow
the model identi�cation.

3.2.1 Using distance measurement model

Absolute orientation of the walking robot can be inferred from the distance
measurement between some known point on robot and the some point on
the ground. In this work, only �at surface is studied. One way of mounting
the distance measuring sensor is depicted in the left part of �g. 3.1. The
distance meter is rigidly �xed to the stance leg and is pointing towards the
ground. Note that d2 denotes the distance from the point where the stance
leg touches the ground to the sensor location. Value of d2 is known and
constant. The distance d1 is measured by the sensor. Further, the angle
γ3 between the stance leg and the optical axis of the sensor is also known
and constant. In the following text the model of the 5-link robot with
AO referenced to the stance leg will be used to demonstrate derivations
of necessary equations. However, deriving the equations is possible also
using other ways of AO angle de�nition. The underactuated angle qa1 can
be obtained using equations

qa1 �
π

2
� arcsin

�
d1

d3
sinpγ3q



, for d1 ¤

d2

cospγ3q
, (3.10)

qa1 � �
π

2
� arcsin

�
d1

d3
sinpγ3q



, for d1 ¡

d2

cospγ3q
, (3.11)

where

d3 �
b
d2

1 � d2
2 � 2d1d2 cospγ3q. (3.12)

Once the angle qa1 is determined from the distance measurement d1, the
estimates for 9qa1 and :qa1 can be easily calculated using central di�erences.
Using the formulas for the �ltered central derivatives and formulas (3.10),
(3.11) eliminates the dependence on absolute angle and all derivatives
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3.2. Eliminating the dependence on the absolute angle

Figure 3.1 � Left: Laser distance-meter measurements. Right: IMU mea-
surements.

from the design matrix Z resulting in

Zd,fcdpd1, q
rq � Zpqa, qr, 9qa, 9q

r, :qa, :q
rq

����� qa�hdpd1q
9qa� 9̂qafcdpq

aq

:qa�:̂qafcdpq
aq

9qr� 9̂qrfcdpq
rq

:qr�:̂qrfcdpq
rq

, (3.13)

It is assumed that the distance measurements d1 measured by the laser
distance meter are corrupted with noise as in the following model

yd1ptkq � d1ptkq � ed1ptkq, (3.14)

where ed1ptkq � N p0,Σd1q. Measurement errors eτ,d1 � reTτ , e
T
d1
sT are

assumed to be normally distributed with zero mean and to be uncorrelated
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across time. Thus,

Ereτ,d1ptkqeτ,d1ptkq
T s � Στ,d1 �

�
Στ 0

0 Σd1

�
, (3.15)

Ereτ,d1ptkqeτ,d1ptlq
T s � 0 for tl � tk. (3.16)

The covariance of errors ed1 is either constant or dependent on the dis-
tance d1, a typical example is when the error of the distance measurement
grows with the distance. The model for a whole dataset containing only
measurable variables can be written as

yτ,1...N � Zd,fcd,1...N pyd1 ,yqrqβ � eτ,1...N , (3.17)

3.2.2 Using accelerometer and gyroscope model

The model of a simple IMU (Inertial Measurement Unit) composed of two
axis accelerometer and one axis gyroscope is satisfactory for the purposes
of estimation in the case of planar robot. The following model will be
derived for the case when the IMU is located on the torso of the robot,
but it can be easily adapted for di�erent location of the sensor. The axes
of both sensors � accelerometer and gyroscope � are identical and are
denoted as X

2

, Y
2

, Z
2

respectively. Sensors axes X
2

and Y
2

lie in the
plane created by the inertial frame axes X and Y � where the motion of
the robot takes place. Axis Y

2

is aligned with robot's torso and the axis
X

2

is perpendicular to the robot's torso. Axis Z
2

is perpendicular to the
plane X

2

Y
2

and XY .

Axes X
2

and Y
2

are aligned with body coordinate system X
1

Y
1

of the
robot's torso, body coordinate system is not shown in the �g. 3.1 for the
sake of readability. The origin of the body coordinate system X

1

Y
1

lies in
the center of mass of the robot's torso. The origin of the sensor coordinate
system lies in the center of the sensor, see the right part of the �gure 3.1.
Both body coordinate system X

1

Y
1

and sensor coordinate system X
2

Y
2

are rotated in a clock-wise direction by an angle φ3 � q1 � q2 � q3 with
respect to the base inertial coordinate system XY . The output of the
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3.2. Eliminating the dependence on the absolute angle

accelerometer will be the proper acceleration vector aps of the sensor
decomposed into components acting along the accelerometer axes X

2

and
Y

2

. Note that the absolute angles φ, depicted on the �gure 3.1, are given
as

φ �

�
������

φ1

φ2

φ3

φ4

φ5

�
������ �

�
������

q1

q1 � q2

q1 � q2 � q3

q1 � q2 � q3 � q4

q1 � q2 � q3 � q4 � q5

�
������ (3.18)

The acceleration of the accelerometer can be calculated from its XY co-
ordinates

xa � l1 sinpφ1q � l2 sinpφ2q � la sinpφ3q, (3.19)

ya � l1 cospφ1q � l2 cospφ2q � la cospφ3q. (3.20)

By di�erentiating the coordinates of accelerometer the velocities are ob-
tained as

9xa � l1 cospφ1q 9φ1 � l2 cospφ2qp 9φ2q � la cospφ3qp 9φ3q, (3.21)

9ya � �l1 sinpφ1q 9φ1 � l2 sinpφ2qp 9φ2q � la sinpφ3qp 9φ3q, (3.22)

and the second derivatives of positions give the accelerations as

:xa � �l1 sinpφ1q 9φ
2
1 � l1 cospφ1q:φ1 � l2 sinpφ2qp 9φ2q

2�

� l2 cospφ2qp:φ2q � l3 sinpφ3qp 9φ3q
2 � l3 cospφ3qp:φ3q, (3.23)

:ya � �l1 cospφ1q 9φ
2
1 � l1 sinpφ1q:φ1 � l2 cospφ2qp 9φ2q

2�

� l2 sinpφ2qp:φ2q � l3 cospφ3qp 9φ3q
2 � l3 sinpφ3qp:φ3q. (3.24)

De�ne a clock-wise rotation matrix R�pφq and the inverse-clock wise ro-
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tation matrix R�pφq � invpR�pφqq given as

R�pφq �

�
cospφq sinpφq

� sinpφq cospφq

�
, R�pφq �

�
cospφq � sinpφq

sinpφq cospφq

�
.

(3.25)

The acceleration of the accelerometer (mounted on the torso) in the XY
coordinates, given that q and φ are de�ned as on �g. 3.1, can be written
as �

:xa
:ya

�
� R�pφ1ql1

�
:φ1

� 9φ2
1

�
�R�pφ2ql2

�
:φ2

� 9φ2
2

�
�R�pφ3qla

�
:φ3

� 9φ2
3

�

(3.26)

The proper acceleration vector aps of the accelerometer � the acceleration
vector relative to the free fall � is

aps � as � g �

�
:xa
:ya

�
�

�
0

g

�
. (3.27)

The output of the accelerometer will be the proper acceleration a
2

ps of
accelerometer with respect to the inertial frame X

2

Y
2

. Since the inertial
frameX

2

Y
2

is rotated by the angle φ3 in a clockwise direction with respect
to the coordinate frame XY , vector a

2

ps can be calculated by rotating the
vector aps by the angle φ3 in the counter-clockwise direction in order to
obtain the same vector but in di�erent coordinate system. Therefore

a
2

ps � R�pφ3qaps � R�pφ3qpas�gq � R�pφ3q

��
:xa
:ya

�
�

�
0

g

��
(3.28)

and by substituting (3.26) into (3.28) the proper acceleration is obtained
as

a
2

ps � R�pφ3q

�
R�pφ1ql1

�
:φ1

� 9φ2
1

�
�R�pφ2ql2

�
:φ2

� 9φ2
2

�
�
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�R�pφ3qla

�
:φ3

� 9φ2
3

�
�

�
0

g

��
. (3.29)

Noticing that

R�pφ1q � R�pq1q, (3.30)

R�pφ2q � R�pq1 � q2q � R�pq1qR
�pq2q, (3.31)

R�pφ3q � R�pq1 � q2 � q3q � R�pq1qR
�pq2qR

�pq3q, (3.32)

and using the fact that R�pq1qR
�pq2qR

�pq3q � R�pq3qR
�pq2qR

�pq1q,
relation (3.29) can be written as

a
2

ps � R�pq3qR
�pq2ql1

�
:q1

� 9q2
1

�
�R�pq3ql2

�
:q1 � :q2

�p 9q1 � 9q2q
2

�
�

� la

�
:q1 � :q2 � :q3

�p 9q1 � 9q2 � 9q3q
2

�
�R�pq3qR

�pq2qR
�pq1q

�
0

g

�
. (3.33)

From (3.33) it is clear that by a simple manipulation one can obtain the
following relation�

� sinpq1q

cospq1q

�
g �

�
cospq1q � sinpq1q

sinpq1q cospq1q

��
0

g

�
� R�pq1q

�
0

g

�
� h̄a.

(3.34)

where function h̄a is de�ned as

h̄a �

�
h̄a1
h̄a2

�
:� �R�pq3qR

�pq2q

�
a
2

ps �R�pq3qR
�pq2ql1

�
:q1

� 9q2
1

�
�

�R�pq3ql2

�
:q1 � :q2

�p 9q1 � 9q2q
2

�
� la

�
:q1 � :q2 � :q3

�p 9q1 � 9q2 � 9q3q
2

��
. (3.35)

Finally,�
sinpq1q

cospq1q

�
� ha �

�
h1

h2

�
:�

1

g

�
�h̄a1
h̄a2

�
. (3.36)
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The resulting equation (3.36) can be used to calculate the sine and cosine
of the absolute orientation angle q1. Using sinpq1q and cospq1q eliminates
the variable q1 from eq. (3.1) and (3.9), since the variable q1 always ap-
pears in the motion equations as an argument of either sine or cosine.
There still remains, however, the undetermined values of 9q1 and :q1, since
the relative velocities and accelerations can be eliminated using (3.7) and
(3.8). Variables 9q1 and :q1 are required for both calculating (3.36) and
also in (3.1) or (3.9). However, the angular velocity 9q1 of the absolute
orientation angle can be measured using gyroscope. And the angular ac-
celeration :q1 can be calculated � in the case of o�ine estimation � using
�nite di�erences from the gyroscope measurements. After using all these
information, the design matrix Z takes the following form

Za,fcdpa
2

ps, q
r, 9qaq � Zpqa, qr, 9qa, 9q

r, :qa, :q
rq

�����sinpq1q�ha1pa2ps,qr, 9qaq
cospq1q�ha2pa

2

ps,q
r, 9qaq

9qr� 9̂qrfcdpq
rq

:qr�:̂qrfcdpq
rq

:qa�:̂qafcdp 9q
aq

, (3.37)

where

hapa
2

ps, q
r, 9qaq � hpa

2

ps, q
r, 9qa, 9qr, :qa, :qr, q

����� 9qr� 9̂qrfcdpq
rq

:qr�:̂qrfcdpq
rq

:qa�:̂qafcdp 9q
aq

(3.38)

It is assumed that both, the proper acceleration a
2

ps measured by the
accelerometer and the angular velocity 9qa measurements measured by the
gyroscope, are corrupted with noise as in the following model

yaptkq � a
2

psptkq � eaptkq, (3.39)

y
9qaptkq � 9qaptkq � e

9qaptkq. (3.40)

For a compact reference the following vectors are de�ned

yimuptsq � ryaptkq, y 9qaptkqs
T , (3.41)
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3.2. Eliminating the dependence on the absolute angle

eimuptsq � reaptkq, e 9qaptkqs
T , (3.42)

where eimuptkq � N p0,Σaq. Measurement errors eτ,imu � reTτ , e
T
imus

T are
assumed to be normally distributed with zero mean and to be uncorrelated
across time. Thus,

Ereτ,imuptkqeτ,imuptkqT s � Στ,imu �

�
Στ 0

0 Σimu

�
, (3.43)

Ereτ,imuptkqeτ,imuptlqT s � 0 for tl � tk. (3.44)

The model for a whole dataset containing only measured variables can be
written as

yτ,1...N � Za,fcd,1...N pya2ps
,yqr , y 9qaqβ � eτ,1...N . (3.45)

3.2.3 Linear least-squares regression

For the sake of generality following variables are introduced,

yηptkq � ηptkq � eηptkq (3.46)

yαptkq � αptkq. (3.47)

where

yηptkq � ryη1ptkq, . . . , yηnη ptkqs
T , (3.48)

yαptkq � ryα1ptkq, . . . , yηnα ptkqs
T , (3.49)

ηptkq � rη1ptkq, . . . , ηnηptkqs
T , (3.50)

αptkq � rα1ptkq, . . . , αnαptkqs
T , (3.51)

eηptkq � reη1ptkq, . . . , eηnη ptkqs
T . (3.52)

Variable yηptkq stands for measurements of variables ηptkq containing
noise eηptkq. Variable yαptkq stands for measurements of variables αptkq
which are noise-free. The measurement error eηptkq � N p0,Σηq. Mea-
surement errors eτ,η � reTτ , e

T
η s
T are assumed to be normally distributed
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with zero mean and to be uncorrelated across time. Thus,

Ereτ,ηptkqeτ,ηptkqT s � Στ,η �

�
Στ 0

0 Ση

�
, (3.53)

Ereτ,ηptkqeτ,ηptlqT s � 0 for tl � tk. (3.54)

The general model that can accommodate di�erent sensors (distance mea-
surement model or IMU model) can now be written as

yτ,1...N � Zη1...N pη,αqβ � eτ,1...N , (3.55)

where the design matrix Zηpη,αq is given either by the design matrix
based on the distance measurements or by the design matrix based on the
IMU measurements. In the case of distance measurements the only noisy
variable is the distance d1, therefore η � d1. In the case of IMU the noisy
variables are both the accelerations and the angular velocity, therefore
η � rpa

2

psq
T , p 9qa1q

T sT . Since the structure of the identi�ed system can be
described accurately by the Euler-Lagrange equations, it is assumed that
the errors due to unmodeled dynamics can be neglected. If there are any
additional dynamic phenomena like friction or gear dynamics they should
be included in the model. In the case when the absolute orientation
positional data are accurate, the discrepancies in the design matrix as
well as potential correlation due to closed-loop, can both be neglected
and the problem of parameter estimation reduces to the linear regression
problem, similarly as in the case of manipulator robots, see [Poignet and
Gautier (2000)], [Olsen and Petersen (2001)], [Olsen et al. (2002)] and
references therein. In such a case the design matrix Zηpαq is composed
only from accurate measurements and β can be estimated using weighted
least-squares estimator

β̂ � pZTη,1...NWZη,1...N q
�1pZη,1...N

TWy1...N q , (3.56)

The weighting matrix W is equal to

W � Στ b 1N�N , (3.57)
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open-loop noisy data

where the symbol b denotes the Kronecker product. Thanks to elimi-
nation of variables that are usually not measured, the method of linear
least-squares can be used to estimate the parameters of the walking robot.
However, this method does not explicitly account for the measurement
noise in the absolute orientation data and therefore does not provide op-
timal estimates when measurements are noisy. Unfortunately, both the
distance meter and IMU tend to provide measurements corrupted with
noise and simple digital �ltering does not provide optimal results.

3.3 Maximum likelihood estimation of parame-

ters from open-loop noisy data

Due to errors in the noisy measurements yη of the robot's absolute orien-
tation the design matrix

Zηpyη,yαq � Zηpη,αq (3.58)

and the resulting estimate of parameters will be biased. Therefore one
would like to �nd estimates of η̂mleptkq, which most likely correspond to
the values of ηptkq, for k � 1, . . . , N . It is assumed that the error prop-
erties (3.43) are known. To be more speci�c, matrix Στ,η, or matrices
Στ and Ση, are known up to a scalar multiple. Estimates of these matri-
ces can be obtained from specially designed repeated experiments. The
distribution of measurements yτ ptkq and yηptkq is given by multivariate
normal distribution

fpyτ ptkq,yηptkqq �

1a
p2πq2r|Στ,η|

exp

�
�

1

2
eptkq

TΣ�1
τ,ηeptkq



. (3.59)

The likelihood function of measurements yτ ptkq and yηptkq is a function of
τ ptkq and ηptkq and is proportional to (3.59). By using the model (3.55),
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estimator (3.56) one concludes that ` for a whole dataset is given as

`pη1...N q �
k�N¹
k�1

exp

�
�

1

2
eptkq

TΣ�1
τ,ηeptkq



. (3.60)

Maximization of `pη1...N q can be obviously achieved by minimizing the
sum of squares

Spη1...N q �
k�Ņ

k�1

�
eptkq

TΣ�1
τ,ηeptkq

�
. (3.61)

3.3.1 Implementation of the minimization procedure

Minimizing the criterion (3.61) is a nonconvex optimization problem and
therefore the solution has to be sought iteratively. However, the sum
of squares can be calculated extremely e�ciently thanks to utilizing the
WLS estimator in conjunction with the central di�erences. In particular,
this approach does not require to integrate the equations of motion. The
implementation of the identi�cation procedure can be performed using
the following steps, with some small di�erences which depend on whether
the absolute orientation was measured using the distance meter or using
the combination of accelerometers and gyroscopes.

1. Initialization:
(a) Set the iteration counter to i � 1.
(b) For k � 1 . . . N , �lter the actuator torques, relative angles, the quan-
tity η related to the absolute angle:

ûf ptkq � lowpasspyuptkqq, (3.62)

q̂rf ptkq � lowpasspyrqptkqq, (3.63)

η̂f ptkq � lowpasspyηptkqq. (3.64)

(c) For k � 1 . . . N calculate yτ ptkq � Bûf ptkq and form the vector
yτ,1...N .
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open-loop noisy data

(d) Initialize the Maximum Likelihood (ML) estimator of η as

η̂mle,1ptkq � η̂f ptkq, (3.65)

2. Calculation of minimization criterion:
(a) In the case of distancemeter, estimate the angle q̂amleptkq using the
estimate η̂mle,iptkq and for k � 1 . . . N calculate

9̂qamle,iptkq �
q̂amle,iptk � Tsq � q̂amle,iptk � Tsq

2Ts
. (3.66)

In the case of accelerometers and gyroscopes, this step is omitted.
(b) For k � 1 . . . N , calculate the central di�erences based estimate from
the current ML estimate 9̂qamle,iptkq as

:̂qamle,iptkq �
9̂qamle,iptk � Tsq � 9̂qamle,iptk � Tsq

2Ts
. (3.67)

(c) Form the design matrix Zη for each k � 1 . . . N as,

Zηptkq � Zηpη̂mle,iptkq, q̂
rptkqq. (3.68)

(d) Form matrices Z1...N and W and calculate the estimate of parameters
as

β̂ � pZη,1...N
TWZη,1...N q

�1pZTη,1...NWyτ,1...N q. (3.69)

(e) For k � 1 . . . N , calculate the joint torques predicted by the ML esti-
mates

τmle,iptkq � Zηpη̂mle,iptkq, q̂
rptkqqβ. (3.70)

(f) For k � 1 . . . N , calculate residuals

eτ ptkq � yτ ptkq � τmle,iptkq, (3.71)

eηptkq � yηptkq � η̂mle,iptkq. (3.72)

Form the error to be optimized as eptkq � reTτ ptkq, eηptkqs
T . Form the
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sum of squares to be minimized

S �
k�Ņ

k�1

�
eptkq

TΣ�1
τ,ηeptkq

�
. (3.73)

3. Perform Gauss-Newton update:
(a) Form the numerical gradient gmle of S.
(b) Form the numerical Hessian H of S.
(c) Obtain the new ML estimate as

η̂mle,i,1...N � H�1gmle. (3.74)

(d) Increase iteration counter i by one and continue to step 2 or end if a
stopping criterion of the optimization procedure is satis�ed.

The steps (3.a) to (3.d) are only illustrative and can be replaced by a
particular implementation of nonlinear least-squares minimization proce-
dure.

3.4 Application to parameter estimation of a pla-

nar bipedal walking robot

This section studies the simulation example of one of the simplest me-
chanical systems capable of underactuated planar bipedal walking [Grizzle
et al. (2001)]. The robot is composed of three rigid links - two legs and a
torso - connected by two actuated rotary joints. Schematics of robot are
depicted on �g. 3.2. The set of con�guration angles q is composed of one
absolute angle qa1 and two relative angles qr2, q

r
3. It is assumed that the

relative angles would be measured by incremental encoders and that the
absolute orientation of the robot would be obtained by a laser distance
sensor. The distance meter is rigidly �xed to the stance leg and is pointing
towards the ground, see �g. 3.2. Note that d2 denotes the distance from
the point where the stance leg touches the ground to the sensor location.
Value of d2 is known and constant. The distance d1 is measured by the
sensor. Further, the angle γ3 between the stance leg and the optical axis
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walking robot

Table 3.1 � Parameters of the 3-link robot

l1, l2, l3 length of 1st, 2nd and 3rd link [m]
lc1 , lc2 , lc3 center of gravity of 1st, 2nd and 3rd link [m]
m1, m2, m3 mass of 1st, 2nd and 3rd link [kg]
I1, I2, I3 inertia of 1st, 2nd and 3rd link [kg.m2]
τ1, τ2 torque generated by 1st and 2nd motor [N.m]
g gravitational acceleration [m.s�2]

of the sensor is also known and constant. The underactuated angle qa1 can
be obtained using equations

qa1 �
π

2
� arcsin

�
d1

d3
sinpγ3q



, for d1 ¤

d2

cospγ3q
, (3.75)

qa1 � �
π

2
� arcsin

�
d1

d3
sinpγ3q



, for d1 ¡

d2

cospγ3q
, (3.76)

where

d3 �
b
d2

1 � d2
2 � 2d1d2 cospγ3q. (3.77)

Once the angle qa1 is determined from the distance measurements d1, the
estimates for 9qa1 and :qa1 can be easily calculated using central di�erences.
In this simulated study the conversion from d1 to qa1 was omitted for
simplicity and it is assumed that directly qa1 is measurable, thus the fol-
lowing measurement model was used both in the simulations and in the
estimation procedure

yqa1 � qa1 � eqa1 , (3.78)

eqa1 � Np0, σ2
qa1
q, (3.79)

where the variance σ2
qa1

is known. Physical parameters of the robot are
listed in tab. 3.1. Values of physical robot parameters are based on a nu-
merical example of [Grizzle et al. (2001)] where a di�erent parametrization
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Figure 3.2 � Schematics of a 3-link robot.

is used. Parameters are as follows

l1 � 1, l2 � 1, l3 � 0.5,

lc1 � 0.5, lc2 � 0.5, lc3 � 0.2,

m1 � 5, m2 � 5, m3 � 25,

I1 � 0, I2 � 0, I3 � 1.5 .

(3.80)

Lagrangian formalism results in the following model matrices

D�

�
��β1�β2�β3�2β4cr2�2β5cr3, β2�β4cr2, β3�β5cr3

β2�β4cr2, β2, 0

β3�β5cr3, 0, β3

�
��,

C�

�
���β4 9q

r
2sr2�β5 9q

r
3sr3, �β4sr2p 9q

a
1� 9qr2q, �β5sr3p 9q

a
1� 9qr3q

β4 9q
a
1sr2, 0, 0

β5 9q
a
1sr3, 0, 0

�
��,

G�

�
���β6sa1�β7sa�r1,2 �β8sa�r1,3

�β7sa�r1,2

�β8sa�r1,3

�
��, B�

�
��0 0

0 �1

1 1

�
��,
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using the following abbreviations: cr2 � cos pqr2q, cr3 � cos pqr3q, sa1 �

sin pqa1q, sr2 � sin pqr2q, sr3 � sin pqr3q, sa�r1,2 � sin pqa1 � qr2q, sa�r1,3 � sin pqa1 � qr3q.
Substitution

β1 � I1 � l21m2 � l21m3 � l2c1m1, β2 � I2 �m2l
2
c2 ,

β3 � I3 �m3l
2
c3 , β4 � l1lc2m2,

β5 � l1lc3m3, β6 � gpl1m2 � l1m3 � lc1m1q,

β7 � glc2m2, β8 � glc3m3,

(3.81)

makes the model linear with respect to the parameters β. The state space
vector is given as

x � pqr1, q
r
2, q

a
3 , 9q

r
1, 9q

r
2, 9q

a
3q
T . (3.82)

3.4.1 Monte Carlo analysis

Since the measurement of the absolute angle is corrupted with noise, a
Monte Carlo simulations were utilized to analyze the performance of the
estimation algorithms. Four cases with di�erent variance σ2

qa1
were an-

alyzed, see tab. 3.2. Furthermore the case when σ2
qa1

� 10�3 was also
studied. In this case the data begin to be too noisy with respect to their
curvature and the resulting estimates ceases to be reliable due to pre-
mature termination of the optimization procedure. This case is used to
demonstrate the e�ects of local minima. As a validation of proposed es-
timation method a 103 Monte Carlo simulations were performed for each
setting of the variance σ2

qa1
totaling in 4�103 simulations for the four cases

described in the tab. 3.2 and additional 103 simulations were analyzed for
the case when σ2

qa1
equals 10�3. The short duration of the experiments is

due to the open-loop controller and the unstable nature of walking.

The MLE algorithm was compared with the WLS estimator based on the
�ltered central di�erences. Filtering of the absolute angle measurements
yaq1 was realized using Matlab built in function filtfilt which performs
forward and backward �ltering to reduce the distortion of data. The
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Chapter 3. O�ine identi�cation for bipedal walking robots

designed �lter was a Butterworth �lter of 5th order with a half power
frequency, well tuned for each σ2

qa1
separately according to the tab.3.2.

The resulting �ltered data are denoted as q̂a1,f . Relative angular data q
r

were not �ltered, since they are available noise-free. The estimates of
velocities and accelerations are calculated using central di�erences based
on data q̂f � rqrT , q̂af s

T as

9̂qfcdptkq �
q̂f ptk � ncdTsq � q̂f ptk � ncdTsq

2ncdTs
, (3.83)

:̂qfcdptkq �
9̂qfcdptk � ncdTsq � 9̂qfcdptk � ncdTsq

2ncdTs
. (3.84)

Parameter ncd ¥ 1 is related to the number of data samples used in the
central-di�erence approximation of a derivative. Making the parameter
ncd ¡ 1 results in a smoother estimates of the derivatives for the spe-
ci�c values refer to the tab.3.2. This algorithm will be denoted as WLS
with Filtered Central Di�erences (WLS-FCD). The MLE algorithm initial
estimates of angles, angular velocities and accelerations are calculated us-
ing WLS-FCD algorithm. For comparison purposes the Recursive Least
Squares (RLS) and Hybrid Extended Kalman �lter (HEKF) were tested as
well. Their detailed implementation is provided in the chapter 2 describ-
ing preliminaries. The results of all estimation algorithms are summarized
in the tab.3.3. By studying the tab.3.3, one can see that the performance
of the MLE method is superior to all other approaches, especially for
the cases where the noise has larger variance. The RLS method however
works also very well. The problem of HEKF lies in high nonlinearity of
the system and therefore the �lter is often unstable and fails to integrate.

3.5 Parameter estimation of a Leg of Laboratory

Walking Robot

The aim of this section is to verify the proposed estimation procedure,
described in the section 3.3, by estimating parameters of the leg of a pro-
totype underactuated walking robot which was �rmly attached to a rigid
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3.5. Parameter estimation of a Leg of Laboratory Walking

Robot

Table 3.2 � Four studied cases and most relevant parameters

Simulation parameters Case 1 Case 2 Case 3 Case 4

σ2
q1 10�10 10�8 10�6 10�4

σ2
u1 , σ

2
u2 10�1 10�1 10�1 10�1

Sampling Period Ts [s] 0.01 0.01 0.01 0.01
Experiment Duration T [s] 0.68 0.68 0.68 0.68

WLS-FCD parameters

Half-power freq. 1 0.5 0.25 0.1
C.D. samples ncd [-] 2 3 5 7

Table 3.3 � Sample mean and variance of summed squared simulation
errors of the 3-link robot

MLE Case 1 Case 2 Case 3 Case 4
Mean 1.242 1.231 1.195 1.149

Variance 0.009 0.010 0.011 2.567
Failed simulations 0 0 0 2

WLS-FCD Case 1 Case 2 Case 3 Case 4
Mean 1.753 1.884 2.480 6 � 104

Variance 0.016 0.055 5.023 1.9 � 1012

Failed simulations 0 0 0 132
HEKF Case 1 Case 2 Case 3 Case 4
Mean 6.804 214.1 103 196.1

Variance 455.9 107 2 � 108 2.98 � 106

Failed simulations 25 228 246 160
RLS Case 1 Case 2 Case 3 Case 4
Mean 1.245 0.5952 0.5136 7.1788

Variance 0.009 0.0279 0.1169 173.1557
Failed simulations 0 0 0 4
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Chapter 3. O�ine identi�cation for bipedal walking robots

platform. The identi�ed system is depicted in �g. 3.3. The leg consists of
two rigid links and two joints, the joint between the links is actuated, the
other joint is left intentionally unactuated and so it plays the role of the
pivot. Therefore, only one motor is installed and the motor is equipped
with an optical encoder to measure the relative angle q2 between the links.
Further, both joint angles q1 and q2 can be measured using a contactless
hall encoders, which are used in order to provide benchmark measurements
of both the actuated and the underactuated angle. However, these mea-
surements are not used by the parameter estimation procedure. Therefore
this system possesses principal challenges that are characteristic for iden-
ti�cation of underactuated walking robots. Finally, the motor torque τ
is measured using current shunt monitor and the leg is equipped with a
3-axis accelerometer - measuring proper acceleration ax parallel with the
leg link and ay perpendicular to the upper link, both in the sagittal plane
and az in the lateral plane - and a gyroscope - measuring angular veloc-
ity 9q1. The joint angle q1 is de�ned with respect to the horizontal axis
passing through the center of the joint, parallel with the sagittal plane of
the robot. Angle q2 is de�ned as a relative angle between the links. Cor-
responding physical parameters of the robot are listed in the tab. 3.4. A
substitution rendering the model linear in parameters was used resulting
in matrices of the model given by (3.86).

Table 3.4 � Parameters of the 2-link robot leg

l1, l2 length of 1st and 2nd link [m]
lc1 , lc2 center of gravity of 1st and 2nd link [m]
m1, m2 mass of 1st and 2nd link [kg]
I1, I2 inertia of 1st and 2nd link [kg.m2]
µ1, µ2 viscous friction parameters [N.s{m]
µ3, µ4 Coulomb friction parameters [N.s{m]
g gravitational acceleration [m.s�2]
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3.5. Parameter estimation of a Leg of Laboratory Walking

Robot

Figure 3.3 � Photo of the prototype walking robot - front leg is identi�ed.

β1 � m1l
2
c1 �m2l

2
1 � I1, β6 � µ1,

β2 � m2l
2
c2 � I2, β7 � µ2,

β3 � m2l1lc2 , β8 � µ3, (3.85)

β4 � m1lc1 �m2l1, β9 � µ4,

β5 � m2lc2 .

D �

�
β1 � β2 � 2β3 cos pq2q; β2 � β3 cos pq2q

β2 � β3 cos pq2q; β2

�
, (3.86)
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Chapter 3. O�ine identi�cation for bipedal walking robots

C �

�
�2β3 sin pq2q 9q2; �β3 sin pq2q 9q2

β3 sin pq2q 9q1; 0

�
, (3.87)

G �

�
β4g sin pq1q � β5g sin pq1 � q2q

β5g sin pq1 � q2q

�
, (3.88)

F �

�
β6 9q1 � β8signp 9q1q

β7 9q2 � β9signp 9q2q

�
, (3.89)

B �

�
0

1

�
. (3.90)

The absolute orientation angle can be related with measurements using
the accelerometer data ax, ay, angular velocity 9q1 measured by gyroscope
and the angular acceleration :q1 - which can be easily obtained by �ltered
di�erences from 9q1. This results in the following relation

h �

�
sinpq1q

cospq1q

�
�

�
��
ls :q1 � ax,s

g
�ay,s � ls 9q

2
1

g

�
�� . (3.91)

Since sinpq1�q2q � sinpq1q cospq2q�cospq1q sinpq2q and by combining with
the optical incremental encoder measurements of the angle q2 and by ap-
proximating its derivatives 9q2, :q2 using �ltered central di�erences, all the
data required for constructing matrices D, C, G are available. By using
also the torque measurements it is possible to use the MLE method to
estimate parameters β. Table 3.5 shows summed squared errors between
response of simulated model obtained by identi�cation and the real valida-
tion data - not the dataset used for identi�cation. Data were collected at
sampling period of 0.01rss. Three methods were compared, WLS method
based only on Hall sensor measurements for benchmark, then both WLS
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3.5. Parameter estimation of a Leg of Laboratory Walking

Robot

Table 3.5 � Summed squared errors for identi�ed model of the robot leg
simulated on validation data from real laboratory experiment

Method
°
e2
q1

°
e2
q2

°
e2

9q1

°
e2

9q2

WLS-Hall 12.927 17.064 18.284 7.762
WLS-IMU 10.216 19.258 17.341 7.620
MLE-IMU 0.919 1.748 25.927 6.028

and MLE methods based on gyroscope and accelerometer data. It can be
seen that the MLE based model is superior in predicting the angles q1 and
q2, which is exactly what is most important, even in comparison with the
benchmark WLS method based on Hall measurements. The covariance
matrices of data, which are required for algorithm to work, were tuned
manually within several minutes. This further boost the practical useful-
ness of the algorithm. Fig. 3.4a shows ML estimates for accelerometer and
gyroscope data � recall that data related to q2 are accurate and are not
optimized. Fig. 3.4b shows torque prediction for benchmark model and
the MLE model. Note especially excellent quality of the MLE prediction
for the torque τ1 on unactuated joint - which should be zero.
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Figure 3.4 � (a) Accelerometer and gyroscope measurements and their
MLE estimates. (b) Current sensor measurements, WLS model predic-
tions of the current based on hall sensor measurements, MLE based cur-
rent predictions based on accelerometer and gyroscope data.
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4 Online state estimation

Previous chapter was dedicated to the o�ine estimation of the absolute-
orientation angle and parameters of the robot's model. However, when
the absolute orientation is required in a feedback control loop, it is nec-
essary to estimate it online. It will be shown � similarly as in previous
chapter � that various measurement instruments can be used to improve
the absolute orientation estimate. The main problem is to properly de-
tect the impact event. A closely related problem is to achieve a timely
impact by lowering the swing leg at the right moment. Relative angles
in combination with walking robot model provide su�cient information
for estimation of the absolute angle, for experimental veri�cation, see the
work of [Lebastard et al. (2006)]. However for the practical implementa-
tion it must be possible to detect when the swing leg hits the ground and
the impact event occurs. This is due to the hybrid nature of the robot
model. Each time the impact event occurs the impact map is utilized
and the swing phase model is reinitialized with new initial conditions.
Moreover the roles of the legs are swapped. However, if the impact is not
detected, then the model no longer describes the reality and the absolute
angle estimator based on such a model will not work properly.

Apart from the proper detection of the time instant during which the
impact occurs the quality of the absolute angle estimate has direct e�ect
on the stability of the closed loop. Walking gait of the robot is usually
encoded using the absolute angle of the stance leg. For successful walking
the swing leg must be lifted from the ground into the air, high enough
to avoid scu�ng. To initiate the impact, the swing leg must be lowered
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Chapter 4. Online state estimation

Figure 4.1 � Signal �ow of closed-loop control with state estimator.

to hit the ground. Since this motion is usually encoded according to the
absolute angle of the stance leg it is clear that an inaccurate estimate of
the absolute angle leads to premature or delayed impact. This can cause
a loss of robot's momentum and eventually lead to �ipping the robot
backwards and falling on the ground.

Two algorithms that are widely used for state estimation were studied �
the well known Extended Kalman Filter and it's Jacobian-free alternative,
the Unscented Kalman Filter.

The main goal of the estimator is to estimate the absolute orientation
angle from available measurements. Basic signal �ow of the closed-loop
control is shown on the �gure 4.1. From the �gure, it is clear that the
control algorithm is using predicted estimate calculated by the state esti-
mator. The prediction of state and measurements is based on the discrete
model of the robot dynamics and measurements. To detect the Impact
Event (IE) several di�erent sensors can be used. A reliable way how to
detect that the leg is on the ground is to use a contact switches mounted
on the bottom of the legs. An impact usually results is an abrupt change
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of torso angular velocity, this can be measured using a gyroscope mounted
directly on torso, as depicted on �g. 4.2. However, the gait of the robot
can be designed so that the jumps in the velocities are minimized. In
such an event the detection based on the gyroscope might be unreliable.
For methods used to design such a trajectory see [Anderle and �elikovský
(2014)]. Another way of detection is based on the accelerometer mea-
surements. The acceleration of the torso changes dramatically when the
robot swing leg lands on the ground � this leg becomes the new stance
leg and the weight of the robot is shifted to this new stance leg which
acts as a new pivot, see the �g. 4.2. Mathematically this means that the
model of the robot will fail to predict the measurements of the accelerom-
eter. However, the prediction of the acceleration measurements should be
radically improved by using the impact map, that is, by changing the co-
ordinate system and reinitializing the robot's velocities. Mathematically
this condition can be written as

epa � pya � ã
2

psq
T pya � ã

2

psq   pya � a
2

psq
T pya � a

2

psq, (4.1)

where ya denotes the accelerometer measurements, a
2

ps denotes proper ac-
celerations prior to applying the impact map. Vector ã

2

ps denotes proper
accelerations after applying the impact map. Regardless of the impact de-
tection method, it is assumed that the impact will be successfully detected
using sensors. Because the measurements are lagged one sampling time
period, the information about the impact is always available Ts seconds
after the impact has occurred. The model is not used to predict the im-
pact, since this prediction is not reliable. Therefore if the impact occurs,
the one step ahead prediction � calculated during the time update � is
not valid and should be updated once the information about the impact
is available. This update is done prior the measurement update, so that
the measurement update is carried out using valid prediction. The robot
estimator must store the information identifying the swing leg, so that it
is possible to properly assign the encoder readings to the swing leg and
the stance leg. Once the impact is detected, the encoders are reassigned
accordingly.
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Chapter 4. Online state estimation

Figure 4.2 � Robot schematics with change of coordinate system.

4.1 Extended Kalman Filter

The algorithm of the Extended Kalman Filter (EKF) can be used to
estimate the state of a nonlinear dynamical system [Simon (2006)]. For
the application to the walking robot, the estimator must be extended with
the model of impact. The impact map is assumed in following form

x�ptkq � ∆px�ptkq,wIptkqq, (4.2)

where wIptkq P N p0,ΣIq are the random disturbances acting during the
impact, uncorrelated with it's past samples, or with wptkq and vptkq or
their past samples. The closed-loop control based on the EKF can be
summarized in following steps.
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4.1. Extended Kalman Filter

1. The EKF �lter is initialized with

x̂pt0q � Erxpt0qs (4.3)

Ppt0q � Erpxpt0q � x̂pt0qqpxpt0q � x̂pt0qqT s (4.4)

2. For k � 1 . . . N carry out following steps.

(a) Read the measurement yptkq and apply the control uptkq.
(b) Analyze if impact has occurred (using contact switches, gyroscope

or accelerometer). In case impact has occurred, swap the encoder
measurements for the swing leg and stance leg. Update the state
and covariance prediction as

x̂ptk|tk�1q � ∆px̂ptk|tk�1qq (4.5)

Pptk|tkq � FIptkqPptk|tk�1qFIptkq
T � LIptkqΣILIptkq

T .

(4.6)

where

FIptkq �
B∆

Bx

����� x�x̂ptk|tk�1q

w�0

, LIptkq �
B∆

Bw

����� x�x̂ptk|tk�1q

w�0

(4.7)

(c) Calculate Jacobians associated with linearisation of the robot's mea-
surement model.

Hptkq �
Bhd
Bx

����� x�x̂ptk|tk�1q

w�0

, Mptkq �
Bhd
Bw

����� x�x̂ptk|tk�1q

w�0

(4.8)

(d) Measurement update: calculate the Kalman gain and the current
measurement estimate

Kptkq � Pptk|tk�1qHptkq
T pHptkqPptk|tk�1qHptkq

T�

MptkqΣRMptkq
T q�1, (4.9)

ŷptkq � hdpx̂ptk|tk�1q,uptkq,0q. (4.10)
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Chapter 4. Online state estimation

Perform the correction of the covariance and state estimates using
new measurement.

x̂ptk|tkq � x̂ptk|tk�1q �Kkpyptkq � ŷptkqq (4.11)

Pptk|tkq � p1�KptkqHptkqqPptk|tk�1q (4.12)

(e) Calculate Jacobians associated with linearisation of the dynamic
equation of robot.

Fptkq �
Bfd
Bx

����� x�x̂ptk|tkq
w�0

, Lptkq �
Bfd
Bw

����� x�x̂ptk|tkq
w�0

(4.13)

(f) Time update: perform the covariance update and state prediction.

Pptk�1|tkq � FptkqPptk|tkqFptkq
T � LptkqΣQLptkq

T (4.14)

xptk�1|tkq � fdpx̂ptk|tkq,uptkq,0q (4.15)

(e) Calculate new control input uptk�1q.

During experiments it has been found that discretisation of the robot
dynamics by the explicit Runge-Kutta method of fourth order leads to
very complicated Jacobian matrices. And the Runge-Kutta algorithm is
feasible only for the most simple case � a simple inverted pendulum �
for more complex systems � even the two link robot � the Jacobians
in explicit form required for the EKF algorithm are very complex. Also

Jacobians
B∆

Bx
and

B∆

Bw
are of very high complexity, this renders the equa-

tion (4.6) very unpractical. A simple heuristic to circumvent the problem
is to update the covariance Pptk|tk�1q� in the event that the impact was
detected � by a simple rule

Pptk|tk�1q � P̃ptk|tk�1q � cI1, (4.16)

where P̃ptk|tk�1q is obtained by swapping the entries of Pptk|tk�1q accord-
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4.2. Unscented Kalman Filter

ing to the impact change of coordinates, 1 denotes the identity matrix of
appropriate dimensions and cI is a correction factor. A drawback of the
EKF is the inability to use Coulomb friction model due to its discontinu-
ous nature. Nevertheless, the e�ect of the Coulomb friction is signi�cant
only during slow motion of the robot and is not important during agile
walking.

4.2 Unscented Kalman Filter

The algorithm of UKF extended with the impact model can be summa-
rized in the following steps.

1. The UKF is initialized by following estimates

x̂pt0q � Erxpt0qs, (4.17)

Ppt0q � Erpxpt0q � x̂pt0qqpxpt0q � x̂pt0qqT s. (4.18)

For k � 1 . . . N carry out following steps.
2. Read the measurement yptkq and apply the control uptkq.
3. Process IE.

(a) Analyze if impact has occurred (using contact switches, gyroscope
or accelerometer). In case impact has occurred, swap the encoder
measurements for the swing leg and stance leg.

(b) Generate sigma points for the estimation of impact

xpiqptk|tk�1q � x̂ptk|tk�1q � x̃
piqptkq i � 1, . . . , 2n (4.19)

x̃piqptkq �
�a

nPptk|tk�1q
	
i

i � 1, . . . , n

x̃pn�iqptkq � �
�a

nPptk|tk�1q
	
i

i � 1, . . . , n

(c) Propagate sigma points using the robot impact model

x
�piq
b ptk|tk�1q � ∆pxpiqptk|tk�1qq, i � 1, . . . , 2n. (4.20)
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(d) Calculate estimate of the robot state after the impact

x̂�ptk|tk�1q �
1

2n

2ņ

i�1

x�piqa ptk|tk�1q � x
�piq
b ptk|tk�1q. (4.21)

(e) Estimate the covariance of the state estimate after the impact

P�
x ptk|tk�1q � P�

x,aptk|tk�1q �P�
x,bptk|tk�1q �ΣI , (4.22)

P�
x,aptk|tk�1q �

1

2n

2ņ

i�1

��
x�piqa ptk|tk�1q � x̂

�ptk|tk�1q
	

�
x�piqa ptk|tk�1q � x̂

�ptk|tk�1q
	T �

,

P�
x,bptk|tk�1q �

1

2n

2ņ

i�1

��
x
�piq
b ptk|tk�1q � x̂

�ptk|tk�1q
	

�
x
�piq
b ptk|tk�1q � x̂

�ptk|tk�1q
	T �

.

4. Measurement update.

(a) Generate sigma points for the estimation of output:

xpiqptk|tk�1q � x̂ptk|tk�1q � x̃
piqptkq i � 1, . . . , 2n (4.23)

x̃piqptkq �
�a

nPptk|tk�1q
	
i

i � 1, . . . , n (4.24)

x̃pn�iqptkq � �
�a

nPptk|tk�1q
	
i

i � 1, . . . , n (4.25)

(b) Propagate sigma points using the robot measurement model

ypiqptkq � hdpx
piqptkq,uptkqq. (4.26)
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4.2. Unscented Kalman Filter

(c) Calculate current estimate of the outputs as

ŷptkq �
1

2n

2ņ

i�1

ypiqptkq. (4.27)

(d) Estimate the covariance of the predicted measurements

Pyptkq �
1

2n

2ņ

i�1

��
ypiqptkq � ŷptkq

	
�
ypiqptkq � ŷptkq

	T �
�ΣR. (4.28)

(e) Estimate the cross-covariance between x̂ptk|tk�1q and ŷptkq

Pxyptkq �
1

2n

2ņ

i�1

��
xpiqptkq � x̂ptk|tk�1q

	
�
ypiqptkq � ŷptkq

	T �
. (4.29)

(e) Perform the measurement update

Kptkq � PxyptkqP
�1
y ptkq (4.30)

x̂ptk|tkq � x̂ptk|tk�1q �Kptkqpyptkq � ŷptkqq (4.31)

Pptk|tkq � Pptk|tk�1q �KptkqPyptkqKptkq
T (4.32)

3. Time update.

(a) Generate sigma points for one-step-ahead state prediction:

xpiqptkq � x̂ptk|tkq � x̃
piqptkq i � 1, . . . , 2n (4.33)

x̃piqptkq �
�a

nPptk|tkq
	T
i

i � 1, . . . , n (4.34)

x̃pn�iqptkq � �
�a

nPptk|tkq
	T
i

i � n� 1, . . . , 2n (4.35)
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(b) Propagate sigma points using the robot model (2.29), that is

xpiqptk�1q � fdpx̂
piqptkq,uptkqq. (4.36)

(c) Calculate one-step-ahead prediction of the state as

x̂ptk�1|tkq �
1

2n

2ņ

i�1

xpiqptk�1q. (4.37)

(d) Estimate the covariance of the one-step-ahead state estimate

Pptk�1|tkq �
1

2n

2ņ

i�1

��
xpiqptk�1q � x̂ptk�1|tkq

	
�
xpiqptk�1q � x̂ptk�1|tkq

	T �
�ΣQ (4.38)

(d) Reuse the sigma points for the potential estimation of impact and
propagate sigma points using the robot impact model

xpi�qptkq � ∆px̂pi�qptkqq. (4.39)

(b) Propagate sigma points using the robot model (2.29) for potential
estimation of impact

xpiqa ptk�1q � fdpx̂
piqptkq,uptkqq. (4.40)

4.3 Application of EKF and UKF to absolute an-

gle estimation for simulated three-link bipedal

walking robot

This subsection is devoted to a simulation study and comparison of the
EKF and UKF estimation algorithms. Both algorithms were used to
estimate the absolute angle of the three-link walking robot depicted on
the �g. 4.3. The estimation algorithms were tested in closed-loop with
a nonlinear controller. The controller was originally designed in [Grizzle

64



4.3. Application of EKF and UKF to absolute angle

estimation for simulated three-link bipedal walking robot

Figure 4.3 � De�nition of con�guration angles: (Left) EKF/UKF design.
(Right) Controller design.

et al. (2001)]. The controller was adopted here for a three-link model
of walking robot. The parameters of the three-link model are based on
�ve-link laboratory prototype described in [Anderte et al. (2015)]. The
three-link model is composed of two legs and a torso. Due to absence
of knees the robot model is unable to �ex the legs during the walking
cycle. This results in premature contact of the swing leg with the ground.
A solution to this problem was proposed in [McGeer (1990)], where the
author suggests to mount small �aps on the end of each leg, and fold the
�ap of the swing leg to avoid the contact and unfold it when the contact
should be initiated. In the following simulation example the solution based
on foldable �aps is simulated. The three-link model is a simpli�cation of
more complicated model which describes also the movement of knees.
However, three-link model comprises all essential challenges which needs
to be addressed during the design of estimator of the absolute-orientation
angle for a bipedal underactuated walking robot. The key problems that
needs to be addressed are: complicated nonlinear dynamics with fast and
unstable behavior and a hybrid model resulting from contact with the
ground. The estimation of the absolute-orientation angle must be of high
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Table 4.1 � Parameters of the 3-link robot

l1, l2, l3 length of 1st, 2nd and 3rd link [m]
lc1 , lc2 , lc3 center of gravity of 1st, 2nd and 3rd link [m]
m1, m2, m3 mass of 1st, 2nd and 3rd link [kg]
I1, I2, I3 inertia of 1st, 2nd and 3rd link [kg.m2]
τ1, τ2 torque generated by 1st and 2nd motor [N.m]
g gravitational acceleration [m.s�2]

quality since whole motion of the robot is encoded using this information.
An imprecise estimate leads to loss of robot's momentum and eventually
destabilizes the feedback control loop. The closed-loop works with two
sets of con�guration angles. One set � denoted as qo � is de�ned with
respect to sensors and this set is used for the design of EKF and UKF
observers, since the dynamical model based on this con�guration directly
predicts the measurements taken by the sensors. The nonlinear controller
is based on a di�erent set of con�guration angles denoted as qc. This set
results in less complicated matrices of the robot model and the use of the
particular set of con�guration angles results in more natural limit cycle.
Physical parameters of the robot are listed in tab. 4.1. Values of physical
parameters of the robot are given in the following table

l1 � 0.535, l2 � 0.535, l3 � 0.25,

lc1 � 0.2675, lc2 � 0.2675, lc3 � 0.1189,

m1 � 0.4192, m2 � 0.4192, m3 � 1.1646,

I1 � 0.0034, I2 � 0.0034, I3 � 0.0182 .

(4.41)

4.3.1 Measurement and dynamical models used for ob-

server design

Con�guration angles are de�ned by two relative angles qo,r1 , qo,r2 and one
absolute angle qo,a3 . These angles are de�ned in accordance with the sen-
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sors used for measurements. In this simulation example relative angles
qo,r1 , qo,r2 are assumed to be measured using optical incremental sensors.
Angular velocity 9qo,a3 of the torso can be directly measured using a gyro-
scope � which is a part of an IMU mounted on the torso, as depicted on
�g. 4.3. Where limu denotes the length from the hips to the IMU. Finally
the IMU also includes a planar two axis accelerometer which provides the
measurements of the proper acceleration of the torso in the coordinates
of the IMU. Measurement model is given as

yqo,r � q
o,r � eqo,r � rqo,r1 , qo,r2 sT � reqo,r1

, eqo,r2
sT (4.42)

y
9qo,a3

� 9qo,a3 � e
9qo,a3

(4.43)

ya � a
2

ps � ea2ps
� ra

2

ps,x, a
2

ps,ys
T � rea2ps,x

, ea2ps,y
sT . (4.44)

Errors of the measurement are all normally distributed, uncorrelated across
time, eqo,r � N p0,Rrq , e

9qo,a3
� N p0,Rgyroq, ea2ps � N p0,Raccq. The

proper acceleration measured by the accelerometer is obtained using

a
2

ps � R�pϕ3q

�
l1R

�pϕ1q

�
:ϕ1

9ϕ2
1

�
� limuR

�pϕ3q

�
:ϕ3

9ϕ2
3

�
�

�
0

g

��
.

(4.45)

where ϕ1 and ϕ3 are absolute angles de�ned as on the right part of the
�g. 4.3. These angles are de�ned as

ϕ1 � qo,r1 � qo,a3 � π, (4.46)

ϕ2 � qo,r2 � qo,a3 , (4.47)

ϕ3 � qo,a3 . (4.48)

Note that the matrix R�pϕ1q can be written as

R�pϕ1q �

�
cospϕ1q sinpϕ1q

� sinpϕ1q cospϕ1q

�
�
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� �

�
cospqo,r1 q sinpqo,r1 q

� sinpqo,r1 q cospqo,r1 q

��
cospqo,a3 q sinpqo,a3 q

� sinpqo,a3 q cospqo,a3 q

�
.

(4.49)

Matrices R�pϕ3q and R�pϕ3q are given as (3.25). The components of the
proper acceleration obtained in the accelerometer coordinate system X

2

,
Y

2

are obtained by substituting (4.49) and (3.25) into (4.45), resulting in�
a
2

ps,x

a
2

ps,y

�
� �l1

�
cospqo,r1 q sinpqo,r1 q

� sinpqo,r1 q cospqo,r1 q

��
p:qo,r1 � :qo,a3 q

�p 9qo,r1 � 9qo,a3 q2

�
�

� limu

�
:qo,a3

�p 9qo,a3 q2

�
�

�
cospqo,a3 q � sinpqo,a3 q

sinpqo,a3 q cospqo,a3 q

��
0

g

�
. (4.50)

The model of the robot de�ned by con�guration angles qo is given as

Dopq
oq:qo �Copq

o, 9qoq 9qo �Gopq
oq � Bou (4.51)

where the entries of the matrix Do are given as

Do,1,1 � β1,

Do,1,2 � �β4 cospqo,r1 � qo,r2 q,

Do,1,3 � β1 � β5 cospqo,r1 q � β4 cospqo,r1 � qo,r2 q,

Do,2,2 � β2,

Do,2,3 � β2 � β4 cospqo,r1 � qo,r2 q,

Do,3,3 � β1 � β2 � β3 � 2β5 cospqo,r1 q � 2β4 cospqo,r1 � qo,r2 q (4.52)

and the remaining entries are completed by symmetry. The elements of
matrix Co are as follows

Co,1,1 � 0,

Co,1,2 � �β4 sinpqo,r1 � qo,r2 qp 9qo,r2 � 9qo,a3 q,

Co,1,3 � �β5 sinpqo,r1 q 9qo,a3 � β4 sinpqo,r1 � qo,r2 qp 9qo,r2 � 9qo,a3 q

Co,2,1 � β4 sinpqo,r1 � qo,r2 qp 9qo,r1 � 9qo,a3 q,

Co,2,2 � 0,
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Co,2,3 � β4 sinpqo,r1 � qo,r2 qp 9qo,r1 � 9qo,a3 q

Co,3,1 � pβ5 sinpqo,r1 q � β4 sinpqo,r1 � qo,r2 qqp 9qo,r1 � 9qo,a3 q,

Co,3,2 � �β4 sinpqo,r1 � qo,r2 qp 9qo,r2 � 9qo,a3 q,

Co,3,1 � β5 sinpqo,r1 q 9qo,r1 � β4 sinpqo,r1 � qo,r2 qp 9qo,r1 � 9qo,r2 q (4.53)

Vector describing gravity e�ects Go and matrix mapping motor torques
to joint torques Bo are given as follows

Go �

�
�� gβ6 sinpqo,r1 � qo,a3 q

�gβ7 sinpqo,r2 � qo,a3 q

gpβ6 sinpqo,r1 � qo,a3 q � β7 sinpqo,r2 � qo,a3 q � β8 sinpqo,a3 qq

�
�� ,
(4.54)

Bo �

�
���1 0

0 �1

0 0

�
�� . (4.55)

The parameter substitution is identical with (3.81) and is given as

β1 � I1 � l21m2 � l21m3 � l2c1m1, β2 � I2 �m2l
2
c2 ,

β3 � I3 �m3l
2
c3 , β4 � l1lc2m2,

β5 � l1lc3m3, β6 � pl1m2 � l1m3 � lc1m1q,

β7 � lc2m2, β8 � lc3m3,

β9 � m1 �m2 �m3. (4.56)

Note that parameter β9 is used only in the unpinned model of the robot.
The vector �eld corresponding to the continuous state-space model is

fo �

�
9qo

D�1
o p�Co 9q

o �Go �Bouq

�
. (4.57)

The associated EKF and UKF estimators are reinitialized each time an
impact event is detected. The detection itself can be done using several
methods as was written at the beginning of the chapter 4. The impact
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map is calculated as described in section 2.2. The additional entries for
the extended matrix associated with the unpinned 5DoF model of the
3-link robot required for the calculation of the impact map are given as

Doe,4,1 � �β6 cospqo,r1 � qo,a3 q

Doe,4,2 � β7 cospqo,r2 � qo,a3 q

Doe,4,3 � β8 cospqo,a3 q � β6 cospqo,r1 � qo,a3 q � β7 cospqo,r2 � qo,a3 q

Doe,4,4 � β9

Doe,4,5 � 0

Doe,5,1 � β6 sinpqo,r1 � qo,a3 q

Doe,5,2 � �β7 sinpqo,r2 � qo,a3 q

Doe,5,3 � β6 sinpqo,r1 � qo,a3 q � β7 sinpqo,r2 � qo,a3 q � β8 sinpqo,a3 q

Doe,5,5 � β9 (4.58)

and the remaining entries are completed by symmetry. The impact results
in discontinuous change in angular velocities. That is, the state vector
xo,� � rqo,r1 , qo,r2 , qo,a3 , 9qo,r,�1 , 9qo,r,�2 , 9qo,a,�3 sT just before the impact will be
mapped to a new state xo,� � rqo,r1 , qo,r2 , qo,a3 , 9qo,r,�1 , 9qo,r,�2 , 9qo,a,�3 sT , which
represents the state of the robot just after the impact. Finally, the leg
swapping is accomplished by the following transformation

q̃o,r1 � qo,r2 , 9̃qo,r1 � 9qo,r�2 ,

q̃o,r2 � qo,r1 , 9̃qo,r2 � 9qo,r�1 ,

q̃o,a3 � qo,a3 , 9̃qo,a3 � 9qo,a�3 , (4.59)

which essentially states that the relative angles are swapped and the ab-
solute angle remains the same. The relative velocities are swapped ac-
cordingly. The new state vector x̃o � rq̃o,r1 , q̃o,r2 , q̃o,a3 , 9̃qo,r,�1 , 9̃qo,r,�2 , 9̃qo,a,�3 sT

will be used to reinitialize the model for the EKF or the UKF estimator.
Finally, to obtain the state vector in the controller con�guration angles
qc, following transformation is required

qc1 � qo,r1 � qo,a3 � π, 9qc1 � 9qo,r1 � 9qo,a3 ,

qc2 � qo,r2 � qo,a3 � π, 9qc2 � 9qo,r2 � 9qo,a3 ,
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qc3 � qo,a3 , 9qc3 � 9qo,a3 . (4.60)

4.3.2 Dynamical model for controller design

Using the Lagrangian formalism and con�guration angles qc leads to the
following model

Dcpq
cq:qc �Ccpq

c, 9qcq 9qc �Gcpq
cq � Bcu, (4.61)

where u are the torques generated by actuators and the matrices Dc, Cc,
Gc and Bc are de�ned as follows

Dc �

�
�� β1, β4cc�1,2, β5cc�1,3
β4cc�1,2, β2, 0

β5cc�1,3, 0, β3

�
��

Cc �

�
�� 0, �β4sc�1,2 9q

c
2, β5sc�1,3 9q

c
3

β4sc�1,2 9q
c
1, 0, 0

�β5sc�1,3 9q
c
1, 0, 0

�
��

Gc �

�
���gβ6 sin pqc1q

gβ7 sin pqc2q

�gβ8 sin pqc3q

�
�� , Bc �

�
���1 0

0 �1

1 1

�
�� ,

(4.62)

with abbreviations sc�1,2 � sin pqc1 � qc2q , sc�1,3 � sin pqc1 � qc3q, cc�1,2 � cos pqc1 � qc2q

and cc�1,3 � cos pqc1 � qc3q. The vector �elds corresponding to the continuous
state-space model used for controller design is

f c �

�
9qc

D�1
c p�Cc 9q

c �Gcq

�
, gc �

�
0

D�1
c pBcuq

�
. (4.63)

4.3.3 Generating a stable walking gait

A steady robotic walking can be viewed as a periodic motion. A controller
should ensure that the robot enters a stable limit cycle after the transient
dies out. Unfortunately, the analysis of stability of a limit cycles for such a
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complex nonlinear system as a walking robot is not trivial. To simplify the
analysis, the system is linearized using output feedback linearization. This
method requires a special set of outputs to be speci�ed. These outputs
� in robotics also called virtual constraints [Westervelt et al. (2007)]
� are asymptotically zeroed via the feedback resulting in a reduction of
degrees of freedom, which usually also amounts to achieving the desired
control task. The reduced system � called zero dynamics � can be used
to asses the stability of the overall system if certain conditions are met,
for an authoritative account on this method see [A. Isidori (1999)]. The
number of virtual constrains that can be asymptotically satis�ed is equal
to the number of independent actuators. A three-link robot has three DoF
and two actuators, therefore the reduced uncontrollable system has only
one degree of freedom. Based on the zero dynamics and the method of
Poincaré [Khalil (2002)] one can design a feedback controller that forces
the robot to enter a stable limit cycle if the robot has su�cient initial
momentum [Westervelt et al. (2007)], [Grizzle et al. (2001)].

Controller will be designed using qc con�guration angles due to follow-
ing reasons. The matrices of the robot model are less complicated and
the design procedure of the controller is described in detail in detail in
[Grizzle et al. (2001)] for the model de�ned using qc. Moreover, the re-
sulting limit cycle is more natural than the limit cycle generated by the
controller designed in the coordinates of the observer. Also, note that
the parametrisation of the robot model does not change with di�erent
sets of con�guration angles. This shows that identi�cation methods from
section 3 can be used for redesign of the controller.

Virtual constraints encoding a simple walking pattern can be de�ned as

wc :�

�
wc1
wc2

�
:�

�
hc1pq

cq

hc2pq
cq

�
:�

�
qc3 � qc,d3

qc2 � qc1

�
, (4.64)

where the virtual constraints wc are functions of con�guration angles. By
zeroing the constraint wc1 robot will maintain the desired torso orientation
denoted as qa,d3 . Zeroing the second constraint ensures mirroring of the
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legs orientation. Direct computation yields

:wc � L2
fch

c � LgcLfch
cu, (4.65)

where Lfc and Lgc denote Lie derivatives along the vector �elds f c and
gc respectively. By de�ning a decoupling control

vc :� L2
fch

c � LgcLfch
cu (4.66)

and a local co-ordinate transformation

Φpqcq :�

�
��w

c
1

wc2
qc1

�
�� :�

�
��q

c
3 � qc,d3

qc2 � qc1
qc1

�
�� , (4.67)

the system can be written in a decoupled form [Grizzle et al. (2001)]�
:wc

:qc1

�
�

�
vc

ζ0pw
c, 9wc, qc1, 9q

c
1q � ζ1pw

c, 9wc, qc1, 9q
c
1q
Tvc

�
. (4.68)

Where vc denotes the virtual inputs. With the application of following
feedback control

vci �
1

ε

�
�signpε 9qci q|ε 9q

c
i |
α � signpφiq|φi|

α{2�α
	
, (4.69)

where 0   α   1 and

φi � qci � p
1

2
� αqsignpε 9qci q|ε 9q

c
i |

2�α (4.70)

it can be shown that for the design parameters ε � 0.1, α � 0.9, qc,d3 � π{6

and robot model parameters (4.41), the generated limit cycle is stable,
provided robot starts with su�cient momentum.

4.3.4 Simulation results

This subsection contains the simulation results based on the three-link
model described in the section 4.3. The simulation is focused on evaluating
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the performance of the absolute angle estimation using the EKF and UKF
estimation algorithms, described in sections 4.1 and 4.2. The data are
collected during the closed-loop control using the controller described in
subsection 4.3.3. The initial conditions of the robot are set so that it
has su�cient momentum to advance in the forward direction. The initial
state of the EKF and UKF estimators is set so that there is a 10% error
in the estimates of angles and all the estimates of velocities are set to 0.
These initial conditions are set in this way because in order to get the
closed-loop working the robot must be pushed forward and it is usually
not known in advance what the velocities will be. The initial state and
its initial estimate are set to

xpt0q �
�
2.65, 3.43, 0.1, 1.5, �2.5, 0.5

�T
, (4.71)

x̂pt0q �
�
2.38, 3.1, 0, 0, 0, 0

�T
. (4.72)

The initial covariance Ppt0q of the estimate is set to identity matrix of
appropriate dimensions. The duration of the simulation T is set to 5 [s].
During this time the robot makes several steps. The sampling time Ts of
measurements was 0.01, resulting in N � 500 samples per one simulation
run. Integration time Ti for the Euler's method was set to Ti � Ts{8 and
for the Runge-Kutta method to Ti � Ts{2. Four di�erent setups of sensors
are studied. In the �rst setup, only relative angles are available, this
corresponds to use of IRC sensors only. The second setup uses IRC sensors
and additionally also a gyroscope to measure the angular velocity of the
torso. This setup will be denoted as IRC & gyroscope. The third setup
uses IRC sensors and additionally also an accelerometer mounted on the
torso to measure proper accelerations of the torso in it's body coordinates.
This setup will be referred to as IRC & accelerometer. Finally the fourth
setup assumes the usage of all of the previous sensors in conjunction,
that is IRC sensors, the gyroscope and the accelerometer. The setup is
denoted as IRC & IMU. The covariance matrices of measurement errors
for particular sensors were set to

Σirc � 10�1012�2, Σgyro � 10�2, Σacc � 10�212�2, (4.73)
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where Σirc denotes the variance of the error in the measurements of the
IRC sensors. Variance of the gyroscope measurement errors is denoted
as Σgyro. And the variance of the accelerometer measurement errors is
denoted as Σacc. The measurements are generated as described is section
4.3.1. The covariance matrix of the random disturbances acting on the
robot is given by diagonal matrix

ΣQ � diagr10�3, 10�3, 10�3, 10�2, 10�2, 10�2s. (4.74)

The covariance of the impact for the case of the EKF algorithm was
calculated using the heuristic (4.16) with cI � 0.0075 tuned manually.
The performance of the EKF and UKF algorithms was evaluated using
50 MC simulations for each setup of sensors. The following performance
statistics were used for comparison. The vector ¯̄s denotes the sample mean
of total error for each state variable. Vector ¯̄s � r¯̄s1, . . . , ¯̄snxs, where nx
is the number of states. Variable ¯̄s is the average of the summed squared
errors of all simulation runs for a particular sensor setup and is calculated
as

¯̄s �
1

Nmc

Nmç

i�1

s̄i, (4.75)

where Nmc � 50 denotes the number of MC simulation runs, s̄i de-
notes the mean squared error calculated for ith simulation run as s̄i �
1

N

°k�N
k�1 px̂

o,iptkq � x
o,iptkqq

2. The sample covariance corresponding to ¯̄s

is calculated as

Σs �
1

Nmc � 1

Nmç

i�1

ps̄i � ¯̄sqps̄i � ¯̄sqT . (4.76)

Also note that ¯̄s3 denotes the third entry � corresponding to the error
in the AO angle qo,a3 � from the vector ¯̄s. Further, σ2

s,3 corresponds
to the third entry from the diagonal of the matrix Σs and denotes the
sample variance corresponding to ¯̄s3. The tables 4.2 and 4.3 show the
performance statistics of the MC simulations. Table 4.2 contains simu-
lation results when the estimators had perfect knowledge of parameters.
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Table 4.3 contains simulation results corresponding to situation when the
estimators had erroneous parameters of the robot. The errors in the pa-
rameters used by EKF and UKF are used to test the robustness of the
estimation algorithms. Table 4.2 shows that when the model used for es-
timation is known perfectly adding gyroscope or accelerometer has a little
e�ect on the quality of the AO estimate. However, when the model of
the system is not perfectly known, the resulting estimators bene�t from
additional knowledge provided by the gyroscope or the accelerometer, as
can be seen in the table 4.3. It is also observed that the UKF showed very
stable behavior, always providing estimates of the AO. On the other hand
the EKF failed to provide reasonable AO estimates and the closed-loop
became unstable. This behavior was observed only when the parame-
ters of the system used for the time update of the EKF were not known
perfectly. It can be seen, however, that adding additional sensors was
bene�cial for the estimation performance. This shows that by using the
hybrid model in the state estimators improves the estimates signi�cantly.
It also shows that the algorithms of EKF and UKF extended with the
impact model can be used in the closed-loop control of the underactuated
walking robots. Typical plots of the UKF estimator � estimating the
vector xo � are given on the �g. 4.4. The abrupt changes that can be
seen in the plots are due to the impact and relabeling. It can be seen that
the estimation performance is excellent even in the presence of impact.
It should be noted here that without the incorporating the impact to the
estimator, the estimator fails to provide useful estimates.
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estimation for simulated three-link bipedal walking robot

Table 4.2 � Estimation with perfect knowledge of model parameters.

EKF

Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
¯̄s3 5.31� 10�4 1.92� 10�2 1.43� 10�3 1.22� 10�5

σ2
s,3 3.82� 10�10 2.99� 10�3 9.70� 10�5 2.75� 10�12°nx
i�1

¯̄si 2.82� 10�2 7.04� 10�2 5.77� 10�1 1.93� 10�2

trpΣsq 1.74� 10�7 7.23� 10�3 7.40� 100 1.14� 10�8

UKF

Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
¯̄s3 3.70� 10�5 6.85� 10�5 2.13� 10�5 2.42� 10�5

σ2
s,3 6.34� 10�11 3.06� 10�9 4.24� 10�11 4.08� 10�11°nx
i�1

¯̄si 2.20� 10�2 1.73� 10�2 1.94� 10�2 1.72� 10�2

trpΣsq 8.45� 10�10 7.50� 10�9 3.31� 10�5 1.29� 10�9

Table 4.3 � Estimation with 10% errors in model parameters.

EKF

Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
¯̄s3 NaN NaN 1.95� 101 1.29� 101

σ2
s,3 NaN NaN 1.75� 102 1.48� 102°nx
i�1

¯̄si NaN NaN 1.38� 102 7.31� 101

trpΣsq NaN NaN 5.38� 103 1.01� 103

UKF

Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
¯̄s3 3.72� 101 1.67� 100 5.67� 10�1 9.55� 10�1

σ2
s,3 1.70� 103 1.52� 101 2.06� 100 2.17� 101°nx
i�1

¯̄si 3.33� 102 3.86� 101 5.25� 101 4.02� 101

trpΣsq 1.52� 105 4.24� 102 7.47� 102 2.78� 102
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Figure 4.4 � Typical plots of the UKF estimator with perfect knowledge
of parameters, using only IRC measurements of relative angles qo,r1 and
qo,r2 .
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5 Conclusions

This work studies two problems, both closely related to the control of
underactuated walking robots. First studied problem is the o�ine iden-
ti�cation of underactuated walking robot. The second studied problem is
the online estimation of the absolute orientation of the robot.

O�ine experimental identi�cation of underactuated walk-

ing robots

A walking robot is a highly nonlinear dynamical system. However, this
model has a special property that it is linear in parameters � after proper
reparametrization. This property would potentially allow to solve the pa-
rameter estimation problem very easily by transforming it to the problem
of linear regression. However, there are two fundamental problems that
restrict the application of the linear regression methods. The �rst problem
is unavailability of the measurement of the absolute orientation angle in
most bipedal robots. However, some works present a special measurement
apparatus which allows such a measurement. Nevertheless, this appara-
tus restricts the practical usability of such a robot outside the laboratory
[El Yaaqoubi and Abba (2009)], [Park et al. (2011)]. When the absolute
orientation angle of the robot is unknown, the linear regression cannot
be used, since the design matrix required in the algorithm can not be
formed. This problem leads to using measurement instruments like gy-
roscopes and accelerometers or laser distance sensors. The usage of such
sensors is, however, problematic as well since these instruments are likely
to provide noisy measurements. The noisy measurements are again rep-
resenting a problem. The usage of the design matrix containing errors in
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Chapter 5. Conclusions

regressor variables leads to biased estimates of the robot parameters.

Online state estimation for underactuated walking robots

The problem of the absolute angle estimation during the walking was
studied and solved using nonlinear observers converging in �nite time to
avoid the problem of uncertainty of the impact. However this solution
seems to be suboptimal. The reasons are following, the estimate is based
on the robot model, which is likely to be only an approximation to a real
robot. Because of this, the estimate is not perfect and will be a�ected
by the impact. A wrong estimate of the state after the impact is easily
achieved. This error can have a serious e�ect on the performance of the
estimator.

5.1 Contributions of the author

O�ine experimental identi�cation of underactuated walk-

ing robots

The problems restricting the application of the methods of linear regres-
sion to the problem of identi�cation of underactuated walking robots were
solved in the chapter 3 of this work and the results were presented in
[Dolinsky and Celikovsky (2017)]. The exploiting of the linear regression
methods involve solution of the two problems. The �rst problem is how
to include the measurements from the inertial sensors, e.g. gyroscopes
and acceleroemters or the laser distance sensor in the regression matrix.
Otherwise this matrix can not be formed. The required mathematical
relationships were described in the chapter 3 for a complex model of 5-
link planar robot. Based on this model a generalization to other models
is straight forward. The second restriction in the application of the lin-
ear regression methods are the measurement errors of the measurement
instruments, i.e. the gyroscopes, acceleroemters or the laser distance sen-
sor. The measurement errors introduce errors in the regression matrix
and thus results in the biased estimates of the parameters. The errors
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5.2. Open problems

enter the regression matrix in a nonlinear way and therefore the solution
is not straight forward. These errors can be recursively minimized using
the method of ML tailored for the walking robots. This method was for-
mulated and veri�ed using both simulations and laboratory experiments.
The simulations shows that the ML method overperforms the benchmark
algorithms classically used in identi�cation of nonlinear systems. The lab-
oratory experiments show that the method is very promising and results
in very accurate models with excellent prediction capability. Further, the
models can be subsequently used in control, since the key robot parame-
ters required for the controller design can be estimated.

Online state estimation for underactuated walking robots

A solution to more robust estimation of the post-impact state is presented
in the chapter 4 of this work together with the simulation study that shows
that this approach results in increased performance. Two well known esti-
mation algorithms � EKF and UKF � that are capable of incorporating
the measurement noise statistics were extended to be applicable on the
hybrid model of a walking robot. The extension in the EKF is compu-
tationally very ine�cient and a heuristic alternative was proposed. The
algorithm of UKF based on the so-called unscented transformation pro-
vides a better framework to handle the problem of the hybrid nature of
the robot and the extension is much more computationally e�cient than
in the case of EKF. The estimation algorithms were tested using Monte
Carlo simulations. The results show a considerable improvement in the
estimators' performance.

5.2 Open problems

Among the interesting open problems in identi�cation is the e�cient es-
timation from closed-loop data containing noisy measurements of gyro-
scope, accelerometers or distance measuring sensors such as laser sensor
or camera. The estimation from the closed-loop noisy data is a challeng-
ing problem due to correlation between the torque measurements and the
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absolute orientation measurement errors. Another open problem is to es-
timate parameters of the robot during walking on the uneven terrain, in
particular, walking on a slope. This task requires the estimation of both
absolute orientation and the estimation of the slope. Finally, extending
and validating the methods of the o�ine identi�cation utilizing the lin-
ear relationship in parameters during 3D walking is a matter of ongoing
research.
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6 Appendix

6.1 Models of robots

6.1.1 5-link � AO referenced to the stance leg

In this subsection a model for the �ve link planar bipedal robot depicted
on the left part of the �gure 2.1. The AO of the robot is given with
respect to the vertical and the stance leg. The absolute angles φ de�ned
with respect to horizontal and beginning of each link are given as

φ1 � qa1 , (6.1)

φ2 � qa1 � qr2, (6.2)

φ3 � qa1 � qr2 � qr3, (6.3)

φ4 � qa1 � qr2 � qr3 � qr4, (6.4)

φ5 � qa1 � qr2 � qr3 � qr4 � qr5. (6.5)

The entries of the matrices D, C and vector G for the 5DoF 5-link robot
can be obtained using symbolic software. Matrix D is given for the ex-
tended � unpinned � model to allow for the calculation of the impact
map.

D1,1 � I1 � I2 � I3 � I4 � I5 � p2l2lc5m5q cospqr3 � qr4 � qr5q � p2l1l4m5�

2l1lc4m4q cospqr2 � qr3 � qr4q � p2l1l2m3 � 2l1l2m4 � 2l1l2m5�

2l1lc2m2q cospqr2q � p2l1l3m4 � 2l1l3m5 � 2l1lc3m3q cospqr2 � qr3q�

p2l2l3m4 � 2l2l3m5 � 2l2lc3m3q cospqr3q�

p2l1lc5m5q cospqr2 � qr3 � qr4 � qr5q � l21m2 � l21m3 � l21m4 � l22m3�
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l21m5 � l22m4 � l22m5 � l23m4 � l23m5 � l24m5 � l2c1m1 � l2c2m2�

l2c3m3 � l2c4m4 � l2c5m5 � p2l3lc5m5q cospqr4 � qr5q�

p2l2l4m5 � 2l2lc4m4q cospqr3 � qr4q � p2l4lc5m5q cospqr5q � p2l3l4m5�

2l3lc4m4q cospqr4q, (6.6)

D1,2 � I2 � I3 � I4 � I5 � p2l2lc5m5q cospqr3 � qr4 � qr5q � pl1l4m5�

l1lc4m4q cospqr2 � qr3 � qr4q � pl1l2m3 � l1l2m4 � l1l2m5�

l1lc2m2q cospqr2q � pl1l3m4 � l1l3m5 � l1lc3m3q cospqr2 � qr3q�

p2l2l3m4 � 2l2l3m5 � 2l2lc3m3q cospqr3q�

pl1lc5m5q cospqr2 � qr3 � qr4 � qr5q � l22m3 � l22m4 � l22m5 � l23m4�

l23m5 � l24m5 � l2c2m2 � l2c3m3 � l2c4m4 � l2c5m5�

p2l3lc5m5q cospqr4 � qr5q � p2l2l4m5 � 2l2lc4m4q cospqr3 � qr4q�

p2l4lc5m5q cospqr5q � p2l3l4m5 � 2l3lc4m4q cospqr4q, (6.7)

D1,3 � I3 � I4 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q � pl1l4m5�

l1lc4m4q cospqr2 � qr3 � qr4q � pl1l3m4 � l1l3m5�

l1lc3m3q cospqr2 � qr3q � pl2l3m4 � l2l3m5 � l2lc3m3q cospqr3q�

pl1lc5m5q cospqr2 � qr3 � qr4 � qr5q � l23m4 � l23m5 � l24m5 � l2c3m3�

l2c4m4 � l2c5m5 � p2l3lc5m5q cospqr4 � qr5q � pl2l4m5�

l2lc4m4q cospqr3 � qr4q � p2l4lc5m5q cospqr5q � p2l3l4m5�

2l3lc4m4q cospqr4q, (6.8)

D1,4 � I4 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q�

pl1l4m5 � l1lc4m4q cospqr2 � qr3 � qr4q�

pl1lc5m5q cospqr2 � qr3 � qr4 � qr5q � l24m5 � l2c4m4 � l2c5m5�

pl3lc5m5q cospqr4 � qr5q � pl2l4m5 � l2lc4m4q cospqr3 � qr4q�

p2l4lc5m5q cospqr5q � pl3l4m5 � l3lc4m4q cospqr4q, (6.9)

D1,5 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q�

pl1lc5m5q cospqr2 � qr3 � qr4 � qr5q � l2c5m5 � pl3lc5m5q cospqr4 � qr5q�
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pl4lc5m5q cospqr5q, (6.10)

D1,6 � pl2m3 � l2m4 � l2m5 � lc2m2q cospqa1 � qr2q � pl3m4 � l3m5�

lc3m3q cospqa1 � qr2 � qr3q � plc5m5q cospqa1 � qr2 � qr3 � qr4 � qr5q�

pl1m2 � l1m3 � l1m4 � l1m5 � lc1m1q cospqa1q � pl4m5�

lc4m4q cospqa1 � qr2 � qr3 � qr4q, (6.11)

D1,7 � p�l2m3 � l2m4 � l2m5 � lc2m2q sinpqa1 � qr2q � p�l3m4 � l3m5�

lc3m3q sinpqa1 � qr2 � qr3q � p�lc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q�

p�l1m2 � l1m3 � l1m4 � l1m5 � lc1m1q sinpqa1q � p�l4m5�

lc4m4q sinpqa1 � qr2 � qr3 � qr4q, (6.12)

D2,2 � I2 � I3 � I4 � I5 � p2l2lc5m5q cospqr3 � qr4 � qr5q � p2l2l3m4�

2l2l3m5 � 2l2lc3m3q cospqr3q � l22m3 � l22m4 � l22m5 � l23m4 � l23m5�

l24m5 � l2c2m2 � l2c3m3 � l2c4m4 � l2c5m5 � p2l3lc5m5q cospqr4 � qr5q�

p2l2l4m5 � 2l2lc4m4q cospqr3 � qr4q � p2l4lc5m5q cospqr5q � p2l3l4m5�

2l3lc4m4q cospqr4q, (6.13)

D2,3 � I3 � I4 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q � pl2l3m4 � l2l3m5�

l2lc3m3q cospqr3q � l23m4 � l23m5 � l24m5 � l2c3m3 � l2c4m4 � l2c5m5�

p2l3lc5m5q cospqr4 � qr5q � pl2l4m5 � l2lc4m4q cospqr3 � qr4q�

p2l4lc5m5q cospqr5q � p2l3l4m5 � 2l3lc4m4q cospqr4q, (6.14)

D2,4 � I4 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q � l24m5 � l2c4m4 � l2c5m5�

pl3lc5m5q cospqr4 � qr5q � pl2l4m5 � l2lc4m4q cospqr3 � qr4q�

p2l4lc5m5q cospqr5q � pl3l4m5 � l3lc4m4q cospqr4q, (6.15)

D2,5 � I5 � pl2lc5m5q cospqr3 � qr4 � qr5q � l2c5m5 � pl3lc5m5q cospqr4 � qr5q�

pl4lc5m5q cospqr5q, (6.16)

D2,6 � pl2m3 � l2m4 � l2m5 � lc2m2q cospqa1 � qr2q � pl3m4 � l3m5�

lc3m3q cospqa1 � qr2 � qr3q � plc5m5q cospqa1 � qr2 � qr3 � qr4 � qr5q�
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pl4m5 � lc4m4q cospqa1 � qr2 � qr3 � qr4q, (6.17)

D2,7 � p�l2m3 � l2m4 � l2m5 � lc2m2q sinpqa1 � qr2q � p�l3m4 � l3m5�

lc3m3q sinpqa1 � qr2 � qr3q � p�lc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q�

p�l4m5 � lc4m4q sinpqa1 � qr2 � qr3 � qr4q, (6.18)

D3,3 � I3 � I4 � I5 � l23m4 � l23m5 � l24m5 � l2c3m3 � l2c4m4 � l2c5m5�

p2l3lc5m5q cospqr4 � qr5q � p2l4lc5m5q cospqr5q � p2l3l4m5�

2l3lc4m4q cospqr4q, (6.19)

D3,4 � I4 � I5 �m5l
2
4 �m4l

2
c4 �m5l

2
c5 � pl3lc5m5q cospqr4 � qr5q�

p2l4lc5m5q cospqr5q � pl3l4m5 � l3lc4m4q cospqr4q, (6.20)

D3,5 � I5 �m5l
2
c5 � pl3lc5m5q cospqr4 � qr5q � pl4lc5m5q cospqr5q, (6.21)

D3,6 � pl3m4 � l3m5 � lc3m3q cospqa1 � qr2 � qr3q�

plc5m5q cospqa1 � qr2 � qr3 � qr4 � qr5q � pl4m5�

lc4m4q cospqa1 � qr2 � qr3 � qr4q, (6.22)

D3,7 � p�l3m4 � l3m5 � lc3m3q sinpqa1 � qr2 � qr3q�

p�lc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�l4m5�

lc4m4q sinpqa1 � qr2 � qr3 � qr4q, (6.23)

D4,4 � I4 � I5 �m5l
2
4 �m4l

2
c4 �m5l

2
c5 � p2l4lc5m5q cospqr5q, (6.24)

D4,5 � I5 �m5l
2
c5 � pl4lc5m5q cospqr5q, (6.25)

D4,6 � plc5m5q cospqa1 � qr2 � qr3 � qr4 � qr5q � pl4m5�

lc4m4q cospqa1 � qr2 � qr3 � qr4q, (6.26)

D4,7 � p�lc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�l4m5�

lc4m4q sinpqa1 � qr2 � qr3 � qr4q, (6.27)
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D5,5 � I5 �m5l
2
c5 , (6.28)

D5,6 � lc5m5 cospqa1 � qr2 � qr3 � qr4 � qr5q, (6.29)

D5,7 � �lc5m5 sinpqa1 � qr2 � qr3 � qr4 � qr5q, (6.30)

D6,6 � D7,7 � m1 �m2 �m3 �m4 �m5, D6,7 � 0. (6.31)

The remaining entries of the matrix D are completed by symmetry. En-
tries for the matrix C are

C1,1 � p� 9qr3l2lc5m5 � 9qr4l2lc5m5 � 9qr5l2lc5m5q sinpqr3 � qr4 � qr5q�

p� 9qr2l1l4m5 � 9qr3l1l4m5 � 9qr4l1l4m5 � 9qr2l1lc4m4 � 9qr3l1lc4m4�

9qr4l1lc4m4q sinpqr2 � qr3 � qr4q � p� 9qr5l4lc5m5q sinpqr5q � p� 9qr2l1lc5m5�

9qr3l1lc5m5 � 9qr4l1lc5m5 � 9qr5l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q�

p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qr3l2l4m5 � 9qr4l2l4m5�

9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qr2l1l3m4 � 9qr2l1l3m5�

9qr3l1l3m4 � 9qr3l1l3m5 � 9qr2l1lc3m3 � 9qr3l1lc3m3q sinpqr2 � qr3q�

p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q � p� 9qr3l2l3m4 � 9qr3l2l3m5�

9qr3l2lc3m3q sinpqr3q � p� 9qr2l1l2m3 � 9qr2l1l2m4 � 9qr2l1l2m5�

9qr2l1lc2m2q sinpqr2q, (6.32)

C1,2 � p� 9qr3l2lc5m5 � 9qr4l2lc5m5 � 9qr5l2lc5m5q sinpqr3 � qr4 � qr5q�

p� 9qa1 l1l4m5 � 9qr2l1l4m5 � 9qr3l1l4m5 � 9qr4l1l4m5 � 9qa1 l1lc4m4�

9qr2l1lc4m4 � 9qr3l1lc4m4 � 9qr4l1lc4m4q sinpqr2 � qr3 � qr4q�

p� 9qr5l4lc5m5q sinpqr5q � p� 9qa1 l1lc5m5 � 9qr2l1lc5m5 � 9qr3l1lc5m5�

9qr4l1lc5m5 � 9qr5l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q � p� 9qr4l3lc5m5�

9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qr3l2l4m5 � 9qr4l2l4m5 � 9qr3l2lc4m4�

9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q�

p� 9qr3l2l3m4 � 9qr3l2l3m5 � 9qr3l2lc3m3q sinpqr3q � p� 9qa1 l1l3m4�

9qa1 l1l3m5 � 9qr2l1l3m4 � 9qr2l1l3m5 � 9qr3l1l3m4 � 9qr3l1l3m5 � 9qa1 l1lc3m3�

9qr2l1lc3m3 � 9qr3l1lc3m3q sinpqr2 � qr3q � p� 9qa1 l1l2m3 � 9qa1 l1l2m4�
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9qr2l1l2m3 � 9qa1 l1l2m5 � 9qr2l1l2m4 � 9qr2l1l2m5 � 9qa1 l1lc2m2�

9qr2l1lc2m2q sinpqr2q, (6.33)

C1,3 � p� 9qa1 l2lc5m5 � 9qr2l2lc5m5 � 9qr3l2lc5m5 � 9qr4l2lc5m5�

9qr5l2lc5m5q sinpqr3 � qr4 � qr5q � p� 9qa1 l1l4m5 � 9qr2l1l4m5 � 9qr3l1l4m5�

9qr4l1l4m5 � 9qa1 l1lc4m4 � 9qr2l1lc4m4 � 9qr3l1lc4m4�

9qr4l1lc4m4q sinpqr2 � qr3 � qr4q � p� 9qr5l4lc5m5q sinpqr5q � p� 9qa1 l1lc5m5�

9qr2l1lc5m5 � 9qr3l1lc5m5 � 9qr4l1lc5m5�

9qr5l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q � p� 9qr4l3lc5m5�

9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q�

p� 9qa1 l2l4m5 � 9qr2l2l4m5 � 9qr3l2l4m5 � 9qr4l2l4m5 � 9qa1 l2lc4m4�

9qr2l2lc4m4 � 9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qa1 l1l3m4�

9qa1 l1l3m5 � 9qr2l1l3m4 � 9qr2l1l3m5 � 9qr3l1l3m4 � 9qr3l1l3m5 � 9qa1 l1lc3m3�

9qr2l1lc3m3 � 9qr3l1lc3m3q sinpqr2 � qr3q � p� 9qa1 l2l3m4 � 9qa1 l2l3m5�

9qr2l2l3m4 � 9qr2l2l3m5 � 9qr3l2l3m4 � 9qr3l2l3m5 � 9qa1 l2lc3m3 � 9qr2l2lc3m3�

9qr3l2lc3m3q sinpqr3q, (6.34)

C1,4 � p� 9qa1 l2lc5m5 � 9qr2l2lc5m5 � 9qr3l2lc5m5 � 9qr4l2lc5m5�

9qr5l2lc5m5q sinpqr3 � qr4 � qr5q � p� 9qa1 l1l4m5 � 9qr2l1l4m5 � 9qr3l1l4m5�

9qr4l1l4m5 � 9qa1 l1lc4m4 � 9qr2l1lc4m4 � 9qr3l1lc4m4�

9qr4l1lc4m4q sinpqr2 � qr3 � qr4q � p� 9qr5l4lc5m5q sinpqr5q � p� 9qa1 l1lc5m5�

9qr2l1lc5m5 � 9qr3l1lc5m5 � 9qr4l1lc5m5�

9qr5l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q � p� 9qa1 l3lc5m5 � 9qr2l3lc5m5�

9qr3l3lc5m5 � 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qa1 l2l4m5�

9qr2l2l4m5 � 9qr3l2l4m5 � 9qr4l2l4m5 � 9qa1 l2lc4m4 � 9qr2l2lc4m4�

9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qa1 l3l4m5 � 9qr2l3l4m5�

9qr3l3l4m5 � 9qr4l3l4m5 � 9qa1 l3lc4m4 � 9qr2l3lc4m4 � 9qr3l3lc4m4�

9qr4l3lc4m4q sinpqr4q, (6.35)

C1,5 � p�l3lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr4 � qr5q � p�l4lc5m5p 9q

a
1�
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9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr5q � p�l2lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4�

9qr5qq sinpqr3 � qr4 � qr5q � p�l1lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4�

9qr5qq sinpqr2 � qr3 � qr4 � qr5q, (6.36)

C2,1 � p 9qa1 l1l3m4 � 9qa1 l1l3m5 � 9qa1 l1lc3m3q sinpqr2 � qr3q � p 9qa1 l1l2m3�

9qa1 l1l2m4 � 9qa1 l1l2m5 � 9qa1 l1lc2m2q sinpqr2q � p 9qa1 l1l4m5�

9qa1 l1lc4m4q sinpqr2 � qr3 � qr4q � p 9qa1 l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q�

p� 9qr3l2lc5m5 � 9qr4l2lc5m5 � 9qr5l2lc5m5q sinpqr3 � qr4 � qr5q�

p� 9qr5l4lc5m5q sinpqr5q � p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q�

p� 9qr3l2l4m5 � 9qr4l2l4m5 � 9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q�

p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q � p� 9qr3l2l3m4 � 9qr3l2l3m5�

9qr3l2lc3m3q sinpqr3q, (6.37)

C2,2 � p� 9qr3l2lc5m5 � 9qr4l2lc5m5 � 9qr5l2lc5m5q sinpqr3 � qr4 � qr5q�

p� 9qr5l4lc5m5q sinpqr5q � p� 9qr3l2pl3m4 � l3m5 � lc3m3qq sinpqr3q�

p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qr4pl3l4m5�

l3lc4m4qq sinpqr4q � p� 9qr4pl2l4m5 � l2lc4m4q � 9qr3l2pl4m5�

lc4m4qq sinpqr3 � qr4q, (6.38)

C2,3 � p� 9qa1 l2lc5m5 � 9qr2l2lc5m5 � 9qr3l2lc5m5 � 9qr4l2lc5m5�

9qr5l2lc5m5q sinpqr3 � qr4 � qr5q � p� 9qr5l4lc5m5q sinpqr5q � p� 9qr4l3lc5m5�

9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q�

p� 9qa1 l2l4m5 � 9qr2l2l4m5 � 9qr3l2l4m5 � 9qr4l2l4m5 � 9qa1 l2lc4m4�

9qr2l2lc4m4 � 9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qa1 l2l3m4

� 9qa1 l2l3m5 � 9qr2l2l3m4 � 9qr2l2l3m5 � 9qr3l2l3m4 � 9qr3l2l3m5

� 9qa1 l2lc3m3 � 9qr2l2lc3m3 � 9qr3l2lc3m3q sinpqr3q, (6.39)

C2,4 � p� 9qa1 l2lc5m5 � 9qr2l2lc5m5 � 9qr3l2lc5m5 � 9qr4l2lc5m5�

9qr5l2lc5m5q sinpqr3 � qr4 � qr5q � p� 9qr5l4lc5m5q sinpqr5q � p� 9qa1 l3lc5m5�

9qr2l3lc5m5 � 9qr3l3lc5m5 � 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q�

p� 9qa1 l2l4m5 � 9qr2l2l4m5 � 9qr3l2l4m5 � 9qr4l2l4m5 � 9qa1 l2lc4m4�
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9qr2l2lc4m4 � 9qr3l2lc4m4 � 9qr4l2lc4m4q sinpqr3 � qr4q � p� 9qa1 l3l4m5�

9qr2l3l4m5 � 9qr3l3l4m5 � 9qr4l3l4m5 � 9qa1 l3lc4m4 � 9qr2l3lc4m4�

9qr3l3lc4m4 � 9qr4l3lc4m4q sinpqr4q, (6.40)

C2,5 � p�l3lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr4 � qr5q � p�l4lc5m5p 9q

a
1�

9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr5q � p�l2lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4�

9qr5qq sinpqr3 � qr4 � qr5q, (6.41)

C3,1 � p 9qa1 l1l3m4 � 9qa1 l1l3m5 � 9qa1 l1lc3m3q sinpqr2 � qr3q � p 9qa1 l2l4m5�

9qr2l2l4m5 � 9qa1 l2lc4m4 � 9qr2l2lc4m4q sinpqr3 � qr4q � p 9qa1 l2l3m4�

9qa1 l2l3m5 � 9qr2l2l3m4 � 9qr2l2l3m5 � 9qa1 l2lc3m3 � 9qr2l2lc3m3q sinpqr3q�

p 9qa1 l1l4m5 � 9qa1 l1lc4m4q sinpqr2 � qr3 � qr4q � p 9qa1 l2lc5m5�

9qr2l2lc5m5q sinpqr3 � qr4 � qr5q � p 9qa1 l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q�

p� 9qr5l4lc5m5q sinpqr5q � p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q�

p� 9qr4l3l4m5 � 9qr4l3lc4m4q sinpqr4q, (6.42)

C3,2 � p 9qa1pl2l4m5 � l2lc4m4q � 9qr2pl2l4m5 � l2lc4m4qq sinpqr3 � qr4q�

p 9qa1pl2l3m4 � l2l3m5 � l2lc3m3q � 9qr2pl2l3m4 � l2l3m5�

l2lc3m3qq sinpqr3q � p 9qa1 l2lc5m5 � 9qr2l2lc5m5q sinpqr3 � qr4 � qr5q�

p� 9qr5l4lc5m5q sinpqr5q � p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q�

p� 9qr4pl3l4m5 � l3lc4m4qq sinpqr4q, (6.43)

C3,3 � p� 9qr5l4lc5m5q sinpqr5q � p� 9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q�

p� 9qr4pl3l4m5 � l3lc4m4qq sinpqr4q, (6.44)

C3,4 � p� 9qr5l4lc5m5q sinpqr5q � p� 9qa1 l3lc5m5 � 9qr2l3lc5m5 � 9qr3l3lc5m5�

9qr4l3lc5m5 � 9qr5l3lc5m5q sinpqr4 � qr5q � p� 9qa1 l3pl4m5 � lc4m4q�

9qr2l3pl4m5 � lc4m4q � 9qr3l3pl4m5 � lc4m4q � 9qr4l3pl4m5�

lc4m4qq sinpqr4q, (6.45)

C3,5 � p�l3lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr4 � qr5q � p�l4lc5m5p 9q

a
1�

90



6.1. Models of robots

9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr5q, (6.46)

C4,1 � p 9qa1 l3lc5m5 � 9qr2l3lc5m5 � 9qr3l3lc5m5q sinpqr4 � qr5q � p 9qa1 l2l4m5�

9qr2l2l4m5 � 9qa1 l2lc4m4 � 9qr2l2lc4m4q sinpqr3 � qr4q � p 9qa1 l3l4m5�

9qr2l3l4m5 � 9qr3l3l4m5 � 9qa1 l3lc4m4 � 9qr2l3lc4m4 � 9qr3l3lc4m4q sinpqr4q�

p 9qa1 l1l4m5 � 9qa1 l1lc4m4q sinpqr2 � qr3 � qr4q � p 9qa1 l2lc5m5�

9qr2l2lc5m5q sinpqr3 � qr4 � qr5q � p 9qa1 l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q�

p� 9qr5l4lc5m5q sinpqr5q, (6.47)

C4,2 � p 9qa1 l3lc5m5 � 9qr2l3lc5m5 � 9qr3l3lc5m5q sinpqr4 � qr5q � p 9qa1 l2l4m5�

9qr2l2l4m5 � 9qa1 l2lc4m4 � 9qr2l2lc4m4q sinpqr3 � qr4q � p 9qa1 l3l4m5�

9qr2l3l4m5 � 9qr3l3l4m5 � 9qa1 l3lc4m4 � 9qr2l3lc4m4 � 9qr3l3lc4m4q sinpqr4q�

p 9qa1 l2lc5m5 � 9qr2l2lc5m5q sinpqr3 � qr4 � qr5q � p� 9qr5l4lc5m5q sinpqr5q,

(6.48)

C4,3 � p 9qa1 l3lc5m5 � 9qr2l3lc5m5 � 9qr3l3lc5m5q sinpqr4 � qr5q � p 9qa1 l3pl4m5�

lc4m4q � 9qr2l3pl4m5 � lc4m4q � 9qr3l3pl4m5 � lc4m4qq sinpqr4q�

p� 9qr5l4lc5m5q sinpqr5q, (6.49)

C4,4 � � 9qr5l4lc5m5 sinpqr5q, (6.50)

C4,5 � p�l4lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4 � 9qr5qq sinpqr5q, (6.51)

C5,1 � plc5m5p 9q
a
1 l3 � 9qr2l3 � 9qr3l3qq sinpqr4 � qr5q � plc5m5p 9q

a
1 l2�

9qr2l2qq sinpqr3 � qr4 � qr5q � plc5m5p 9q
a
1 l4 � 9qr2l4 � 9qr3l4 � 9qr4l4qq sinpqr5q�

p 9qa1 l1lc5m5q sinpqr2 � qr3 � qr4 � qr5q, (6.52)

C5,2 � plc5m5p 9q
a
1 l3 � 9qr2l3 � 9qr3l3qq sinpqr4 � qr5q � plc5m5p 9q

a
1 l2�

9qr2l2qq sinpqr3 � qr4 � qr5q � plc5m5p 9q
a
1 l4 � 9qr2l4 � 9qr3l4 � 9qr4l4qq sinpqr5q,

(6.53)

C5,3 � plc5m5p 9q
a
1 l3 � 9qr2l3 � 9qr3l3qq sinpqr4 � qr5q � plc5m5p 9q

a
1 l4 � 9qr2l4�
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9qr3l4 � 9qr4l4qq sinpqr5q, (6.54)

C5,4 � pl4lc5m5p 9q
a
1 � 9qr2 � 9qr3 � 9qr4qq sinpqr5q, (6.55)

C5,5 � 0. (6.56)

Vector G describing the gravity e�ects is given as follows

G1,1 � p�glc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�gl4m5�

glc4m4q sinpqa1 � qr2 � qr3 � qr4q � p�gl1m2 � gl1m3 � gl1m4�

gl1m5 � glc1m1q sinpqa1q � p�gl3m4 � gl3m5�

glc3m3q sinpqa1 � qr2 � qr3q � p�gl2m3 � gl2m4 � gl2m5�

glc2m2q sinpqa1 � qr2q, (6.57)

G2,1 � p�glc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�gl4m5�

glc4m4q sinpqa1 � qr2 � qr3 � qr4q � p�gl3m4 � gl3m5�

glc3m3q sinpqa1 � qr2 � qr3q � p�gl2m3 � gl2m4 � gl2m5�

glc2m2q sinpqa1 � qr2q, (6.58)

G3,1 � p�glc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�gl4m5�

glc4m4q sinpqa1 � qr2 � qr3 � qr4q � p�gl3m4 � gl3m5�

glc3m3q sinpqa1 � qr2 � qr3q, (6.59)

G4,1 � p�glc5m5q sinpqa1 � qr2 � qr3 � qr4 � qr5q � p�gl4m5�

glc4m4q sinpqa1 � qr2 � qr3 � qr4q, (6.60)

G5,1 � �glc5m5 sinpqa1 � qr2 � qr3 � qr4 � qr5q. (6.61)

The position of the end point of the swing leg is

Υ1 � z1 � l1 sin pqa1q � l2 sin pqa1 � qr2q�

� l4 sin pqa1 � qr2 � qr3 � qr4q � l5 sin pqa1 � qr2 � qr3 � qr4 � qr5q,

(6.62)
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Υ2 � z2 � l1 cos pqa1q � l2 cos pqa1 � qr2q�

� l4 cos pqa1 � qr2 � qr3 � qr4q � l5 cos pqa1 � qr2 � qr3 � qr4 � qr5q.

(6.63)

The relabeling map can be obtained as

q̃a,�1 � qa,�1 � qr,�2 � qr,�3 � qr,�4 � qr,�5 � π, (6.64)

q̃r,�2 � 2π � qr,�5 , (6.65)

q̃r,�3 � π � qr,�4 , (6.66)

q̃r,�4 � π � qr,�3 , (6.67)

q̃r,�5 � 2π � qr,�2 , (6.68)
9̃qa,�1 � 9qa,�1 � 9qr,�2 � 9qr,�3 � 9qr,�4 � 9qr,�5 , (6.69)
9̃qr,�2 � � 9qr,�5 , (6.70)
9̃qr,�3 � � 9qr,�4 , (6.71)
9̃qr,�4 � � 9qr,�3 , (6.72)
9̃qr,�5 � � 9qr,�2 . (6.73)

6.1.2 5-link with absolute orientation referenced to the

torso

This subsection describes further the model for the �ve link planar bipedal
robot depicted on the right part of the �gure 2.1. The AO of the robot
is given with respect to the vertical and the torso. The absolute angles φ
de�ned with respect to horizontal and beginning of each link are given as

φ1 � qa3 � qr2 � qr1 � π, (6.74)

φ2 � qa3 � qr2 � π, (6.75)

φ3 � qa3 , (6.76)

φ4 � qa3 � qr4, (6.77)

φ5 � qa3 � qr4 � qr5. (6.78)
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The entries of the matrices D, C and vector G for the 5DoF 5-link robot
can be obtained using symbolic software by rederiving the matrices or by
using the canonical change of coordinates. Let q̄ � F be a local change
of coordinates. If the velocities are expressed as 9̄q � BF

Bq 9q then the kinetic
energy of the robot is given � according to [Westervelt et al. (2007)] �
as

K̄pq̄, 9̄qq �
1

2
9̄qT D̄pq̄q 9̄q, (6.79)

where

D̄pq̄q �
BF pqqT

Bq
Dpqq

BF pqq

Bq

�����
q�F�1pq̄q

. (6.80)

The potential energy is

V̄ pq̄q � V pqq

�����
q�F�1pq̄q

. (6.81)

The transformation

�
q̄
9̄q

�
�

�
� F pqq
BF pqq

Bq
9q

�
� (6.82)

is called a canonical change of coordinates. Using (6.80) � (6.82) and
(2.17) one can obtain the matrices D, C and G from matrices derived in
previous subsection for the case of 5-link with AO de�ned with respect to
the horizontal and the stance leg. The relabeling map can be obtained as

q̃r,�1 � qr,�5 , 9̃qr,�1 � 9qr,�5 , (6.83)

q̃r,�2 � qr,�4 , 9̃qr,�2 � 9qr,�4 , (6.84)

q̃a,�3 � qa,�3 , 9̃qa,�3 � 9qa,�3 , (6.85)

q̃r,�4 � qr,�2 , 9̃qr,�4 � 9qr,�2 , (6.86)

q̃r,�5 � qr,�1 , 9̃qr,�5 � 9qr,�1 . (6.87)
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