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Abstract

This thesis studies the problem of parameter estimation, model identi-
fication and state estimation for underactuated bipedal walking robots.
Two main results were developed. The first result is a novel identification
method suited for this problem. The second result is the extension of
existing algorithms for state estimation to the case of the hybrid model
of an underactuated walking robot.

The identification method takes advantage of the linear structure of the
model with respect to estimated parameters. The resulting estimator
is calculated iteratively and maximizes the likelihood of the data. The
method was tested on both simulated and experimental data. Simulations
were carried out for an underactuated walking robot with a distance me-
ter to measure absolute orientation. Laboratory experiments were carried
out on a leg of a laboratory walking robot model equipped with a three-
axis accelerometer and gyroscope to measure absolute orientation. The
method performs favorably in comparison with other benchmark estima-
tion algorithms and both the simulations and the laboratory experiments
confirmed its high potential for the use in identification of underactuated
robotic walkers.

The state estimators were applied to estimate the absolute orientation
of an underactuated walking robot in the presence of impacts which oc-
cur when the leg of the robot hits the ground. The proposed estimation
scheme was tested on simulations of a 3-link robot and shows that pro-

posed extensions yields improved estimation performance.

Key words: walking robots, maximum likelihood estimation, identifica-
tion, state estimation.






Abstrakt

Prezentovand dizertacnd préaca sa zaoberd Stidiom problému odhadu pa-
rametrov, identifikicie modelu a odhadu stavu pre podaktuované dvo-
jnohé kracajuce roboty. Boli dosiahnuté dva hlavné vysledky. Prvy vys-
ledok predstavuje nova metédu identifikicie vhodnt pre tento problém.
Druhy vysledok je rozsirenie existujtcich algoritmov pre odhad stavu neli-
nearnych systémov pre pripad hybridného modelu podaktuovanych kraca-
jacich robotov.

Navrhnuté identifika¢nd metdda vyuZiva linedrnu Struktaru modelu vz-
hladom k odhadovanym parametrom. Vysledny odhad je poé&itany iterad-
ne a maximalizuje vierohodnost dat. Metéda bola testovand na simu-
la¢nych, ale aj experimentilnych datach. Simulacie boli vytvorené pre
priklad robota vybaveného laserovym dialkomerom pre meranie absolut-
nej pozicie robota. Laboratérne experimenty boli vykonané na nohe la-
boratérneho prototypu kracajuceho robota. Robot bol vybaveny trojosim
akcelerometrom a gyroskopom pre meranie absolitnej orientacie. V porov-
nani s klasicky pouzivanymi algoritmami sa metéda chové velmi priaznivo.
Simula¢né a laboratorne experimenty potvrdili vysoky potencial navrhnu-
tej metody pre odhad parametrov podaktuovanych kracajtcich robotov.
Algoritmy pre odhad stavu nelinedrnych systémov boli aplikované na tulo-
hu odhadu absoltutnej orientéacie podaktuovaného kracajaceho robota. Na-
vrhnuté rozsirenie riesi problém néarazu nohy robota na zem. Navrhnuty
pristup bol testovany na simulédcidch robota. Vysledky ukazuju vyrazne
vylepSenie odhadu absolutnej orientécie robota.

KIucove slova: kracajuce roboty, metoda maximalnej vierohodnosti, iden-
tifikacia, odhad stavu.
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AO
DoF
EoM
EKF
HEKF
IMU
IRC
LS
MC
ML
MLE
NaN
RLS
UKF
WLS

Acronyms

Absolute Orientation

Degree(s) of Freedom
Equation(s) of Motion
Extended Kalman Filter
Hybrid Extended Kalman Filter
Inertial Measurement Unit
Incremental Rotary Coder
Least Squares

Monte Carlo

Maximum Likelihood
Maximum Likelihood Estimation/Estimate
Not a Number

Recursive Least Squares
Unscented Kalman Filter
Weighted Least squares

WLS-FCD Weighted Least Squares with Filtered Central Differences
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Il Introduction

1.1 Motivation

The underactuated robotic walking has been studied intensively during
last decades. The possibility to use a walking like mechanism for trans-
portation in rough terrain, desire to replace humans in hazardous occupa-
tions, possible applications in medicine and other applications make the
bipedal walking a promising field that has developed substantially in last
decades. Recent developments in this field resulted in increased perfor-
mance of robotic walkers, shifting from slow quasi-static motions to fast
and agile walking and running [Westervelt et al. (2007)]. This resulted
in constructing many new walking prototypes among them the famous
RABBIT [Chevallereau et al. (2003)], MABEL [Grizzle et al. (2009)],
MARLO [Buss et al. (2016)] and other robots which served as testbeds
for developed control algorithms. The shift towards the agile walking has
been accomplished by developing controllers based on the dynamics of
robot instead of heuristics or analysis of static forces. However, utilizing
a controller that takes into the account the dynamics of a walking robot
requires a mathematical model of the dynamics of the robot. Nowadays
efficient means for determining such models are available using classical
mechanics of rigid bodies, nevertheless, to obtain the parameters describ-
ing the mass distribution, geometry and the friction of the robot joints
is still an open problem. The estimation problem is complicated by the
interaction of the robot with the walking surface which results in hybrid
model of the robot. Additionally, measuring the absolute orientation of
an underactuated bipedal walking robot with respect to the ground is a
nontrivial problem that cannot be solved separately from the parameter



Chapter 1. Introduction

estimation problem.

Underactuation — an intrinsic property of any agile bipedal walking robot
— occurs whenever the foot of the robot is not flat on the ground. This is
because the contact point between the foot and the ground can be mod-
eled as a pivot point. However, this pivot point is not directly actuated
and it is not possible to place a motor to actuate robot in that point, see
the fig.1.1 and note the underactuated angle ¢;. All the remaining joints
of the robot can be actuated directly using motors. This fact is closely
related to the problem of model identification. To identify a model of an
underactuated walking robot from measurements obtained during walk-
ing, an information about the absolute orientation of the robot is required.
It is possible to measure all the relative angles between the links of robot
using optical encoders or encoders based on Hall effect. These provide
accurate information about relative angles between the links of the robot.
Further, these measurements can be used to obtain information about rel-
ative angular velocities and accelerations between links. However, due to
the underactuation it is not possible to use an encoder to directly measure
the absolute orientation of a walking robot. This information has to be
obtained using different sensors. The human sensory system relies mostly
on the sight and the inner ear. Therefore two basic concepts of the abso-
lute orientation measurement are analyzed, the first uses a visual feedback
providing the distance of the robot to a point on the ground. The second
concept uses a gyroscope and an accelerometer. Unfortunately, neither of
such sensors usually provides accurate information, but quite on the con-
trary both approaches to the measurement of the absolute angle are prone
to errors. The distance sensor is prone to transformation errors when the
distance is transformed to the angle. The combination of gyroscopes con-
tain bias errors and the accelerometers are sensitive to vibrations. This
problem further complicates the estimation procedure. Such an unavail-
ability of the absolute orientation measurements and the hybrid nature
of the robot model are the main differences which distinguish the prob-
lem of identifying the model of walking robot from a similar problem of
identification of robotic manipulators [Janot et al. (2014a)], [Janot et al.
(2014b)], [Janot et al. (2014c)].
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Figure 1.1 — Schematics of a walking robot.

1.2 State of the art

The problems of model identification and parameter estimation for the
case of walking robots resembles to certain extent the identification and
parameter estimation of models for robotic manipulators. There are sev-
eral features that both problems share. The key principle inherent in both
problems is the possibility to relate the torques of the joint motors with
functions of configuration angles, associated angular velocities and accel-
erations in linear manner with respect to parameters of robot model. A
robotic manipulator is, however, a fully actuated mechanical chain and
therefore all of the configuration angles — including the absolute orien-
tation angle — can be accurately measured using encoders. Associated
angular velocities and accelerations can be estimated using filtered finite
differences. On the contrary, the underactuation of walking robots result-
ing in the unavailability of encoder readings of the absolute orientation
angle and the necessity of measuring the angle using sensors susceptible
to errors complicates the estimation procedure. As a consequence, only



Chapter 1. Introduction

in a special case when all the torques are available and all the configura-
tion angles are measurable with high precision the model of dynamics of
a bipedal walking robot can be identified using the identification methods
for robotic manipulators. Under such special circumstances both estima-
tion problems are reduced to a linear regression problem and the method
of weighted-least-squares (WLS) can be used to estimate the parameters
of robot. Such a special case can be obtained by building a special walk-
ing platform. However, generally bipedal walking robots posses additional
problems that complicate the use of methods tailored for identification of
manipulator robots and therefore additional problems have to be solved
for successful application of regression methods to parameter estimation
of bipedal robots.

For early works exploiting the linear relationship in parameters between
the torques and positional data see [An et al. (1985)] and [Armstrong
(1987)]. The work [An et al. (1985)] studies the identifiability of a ma-
nipulator robot without full force/torque sensing. More specifically, it
proposes to use ridge regression to cope with unidentifiable parameters.
The work [Armstrong (1987)] studies the design of optimal excitation tra-
jectories for manipulator robot. More recent references on the topic of tra-
jectory optimization for manipulator robots include [Gautier and Khalil
(1991)], [Swevers et al. (1996)], [Swevers et al. (1997)], [Olsen et al.
(2002)], [Capisani et al. (2007)] and many others. The problem of identi-
fiability of the parameters of the dynamical model in the case of walking
robots is similar, however, if an appropriate parametrisation of robot is
used then all of the parameters determining the dynamics are identifiable,
provided the robot is sufficiently excited. The idea of estimating manipu-
lator robot angular velocities and accelerations using numerical derivatives
and exploiting the least-squares method was studied and experimentally
verified also in [Poignet and Gautier (2000)], [Gautier and Poignet (2001)],
[Gautier et al. (2013a)]. To cope with potential correlation induced by
closed-loop control works [Janot et al. (2014b)] and [Janot et al. (2014c)]
propose the use of the Instrumental variable method. Estimating the
parameters of manipulator robots only from torque measurements was
studied in |Gautier et al. (2008)] and |Gautier et al. (2013a)|. Estima-
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tion of manipulator robot parameters online was studied in [Poignet and
Gautier (2000)], [Gautier and Poignet (2001)], [Gautier et al. (2013b)].
Many additional important topics related to the manipulator robots iden-
tification were obtained, however, few of them can be directly applied to
identify bipedal walking robots.

Successful identification of walking robots was reported in [El Yaagoubi
and Abba (2009)], where authors identify the walking robot RABBIT
— both the dynamical model and the ground model. In the work [Park
et al. (2011)] the authors estimate the parameters of robot MABEL. These
works are both based on identification using a walking platform. Further,
the identification is based on series of special experiments to identify the
robot part by part.

1.3 Aim of the Thesis

The aim of the thesis is to study the problem of the model identification
and state estimation of underactuated bipedal walking robots. The main
problems to be solved are:

1. How to estimate the parameters of an underactuated walking robot
model when direct measurement of AO is not available.

II. How to exploit the linear structure of the walking robot model with
respect to the parameters when the measurements related to the AO
are noisy.

ITI. How to online estimate the AO angle from sensors typically available
for the walking robots.
Both problem I. and II. are solved in the chapter 3. Problem III. is studied

and solved in chapter 4.

The issues I. and II. are solved by a novel method based on the method
of ML. The method takes advantage of the linear structure of the robot

5
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model with respect to the parameters. The noise in the measurements
related to the AO of the robot are smoothed iteratively while the qual-
ity of the estimate of the parameters increases. These issues are studied
on two case studies. First study is a based on simulations of a three link
walking robot which uses a laser distance measurement to measure the un-
deractuated angle. This investigation shows that the approach developed
in this article can deal with the measurement errors and performs favor-
ably in comparison with other common estimation methods. The other
study is a laboratory experiment where the parameters of a leg of an un-
deractuated walking robot are estimated and the underactuated angle is
measured using a 3-axis accelerometer and gyroscope LSMIDS1 produced
by the company STMicroelectronics. The experiment shows that assump-
tions of the method proposed in the chapter 3 are valid and that it can
be used in real application.

Problem III. — studied in chapter 4 — is solved by extending the well-
known state estimation algorithms for the case of the hybrid model of the
walking robot. The extended estimators yield excellent performance, even
in the presents of moderate errors in the parameters of the robot model
used for the estimator design. The estimators were tested on simulation
study dealing with feedback control of a 3-DoF walking robot.

1.4 Organization of the Thesis
The rest of the thesis is organized as follows.

Chapter 2 covers necessary background in modeling of walking robots.
It contains the derivation of a complex model containing the legs and
the torso. The matrices of the model can be found in the Appendix.
This model can be used to derive any other models used in the thesis.
Moreover, the classical estimation algorithms — discrete EKF and UKF
— are presented in this chapter. The discrete EKF and UKF algorithms
will be extended to be applicable in the hybrid model of walking robots.

The main contribution of the author is described in the Chapter 3 and
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the Chapter 4.

Chapter 3 deals with the offline estimation of parameters of walking
robots. The proposed procedure is general and is explained on a 5-DoF
walking robot. However, for the sake of clarity a simulation example is
presented on the 3-link model of robot. Further, this chapter contains an
experimental study of the performance of this method. The experiments
were carried out on the leg of the prototype walking robot.

Chapter 4 presents the application of the classical estimation algorithms
— the discrete EKF and the discrete UKF — to the hybrid model of
underactuated walking robot. The extension deals with including the im-
pact map in the estimator and using it to improve the estimation of the
absolute orientation of the walking robots. The results are analyzed using
Monte Carlo simulations and show excellent performance of the estima-
tors. Thanks to the incorporating the impact map into the estimation
algorithm the improved performance of the state estimators helps recover
the stable behavior of the closed-loop robot controller.

Chapter 5 concludes the thesis, sums up the contribution of the author
and describes some open problem connected to studied topic.

The Appendix includes the matrices of the 5-link model of a walking robot
and additional equations connected to the robot model.






Y4 Preliminaries

2.1 Model of a planar bipedal walking robot

The model for the bipedal robot is depicted on fig. 2.1 with two different
options of configuration angles. The robot consists of rigid links con-
nected via rotary joints. Fach joint is actuated. Two notable features
can be observed — the fact that the model is planar and the fact that
the robot model has point-feet. The choice of point-feet is a common fea-
ture of underactuated walking robots, see [Westervelt et al. (2007)] and
[Chevallereau et al. (2003)], |Grizzle et al. (2009)]. The choice of the
point feet is due to simplification of the gait analysis. Walking can be
defined as periodic switching of two phases of the robot — a swing phase
and an impact phase. Swing phase is occurring when one leg is in the air
and the other is on the ground. The leg that is in the air is called the
swing leg and the leg that is on the ground is called the stance leg. It
is assumed that the stance leg does not slip, nor bounce of the ground.
The impact phase occurs when both legs are in contact with the walking
surface. Thanks to the point-feet the robot is underactuated during the
whole swing phase. This fact simplifies the analysis of the robot gait and
it is the main reason for the choice of point-feet model of the robot. Due to
underactuation it is not possible to easily measure the AO of the robot. As
mentioned before this fact complicates the control and parameter estima-
tion of the robot. However, because the model is planar it is not capable
of 3D motion and if such a model would be built it would not be able to
walk without a platform stabilizing the robot in the lateral direction. The
platform itself can be used to measure the AO. Nevertheless, the planar

9



Chapter 2. Preliminaries

Figure 2.1 — Schematics of a 5-link robot with 5Dof. Left: AO angle ¢f
with respect to the stance leg. Right: AO angle ¢§ with respect to the
torso.

robot is an excellent testbed for testing identification algorithms that do
not utilize the information about the AO from the platform. Further, pla-
nar model includes all the principal challenges inherent in the problem of
the identification of the underactuated walking robots. Therefore, solving
the problem of AO estimation and parameter estimation when AO is not
directly measured is done in 2D as a step towards 3D walking. During 3D
walking robots which would walk freely without the need for support in
the lateral direction. The figure 2.1 describes two special sets of configu-
ration angles. The AO of the robot model depicted in the left part of the
figure 2.1 is defined as the angle between the gravitational vector and the
stance leg. The robot model depicted in the right part of the figure 2.1
is defined as the angle between the gravitational vector and the torso of
the robot. These two ways of defining the AO will be used often in this
work and their use is closely connected with the type and the location of
sensors for the measurements of the absolute orientation.

10



2.2. Swing phase

2.2 Swing phase

During the swing phase the stance leg of the robot is rotating around the
pivot point which is the point of contact between the stance leg and the
walking surface. Planar bipedal walking robot can be modeled as a pinned
planar open kinematic chain. The chain consisting of n, rigid links can be
modeled as a mechanical system with n, degrees of freedom. Its motion
can be described by one absolute angle ¢® and its associated velocity ¢*
and n, — 1 relative angles ¢; and corresponding n, — 1 angular velocities
g;. All these angles at a particular time ¢ form a vector of configuration
angles q(t) and together with the vector of angular velocities q(t) they
constitute the state vector (t). Torques corresponding to each degree of
freedom are included in the vector 7(t), vector u(t) comprises the actuator

torques. Summarizing,

q(t) = [¢". ¢, (2.1)
q(t) = [¢* 41", (2.2)
z(t) = [q" (1), ¢" ()], (2.3)
() = [n(t), ., (D], (2.4)
w(t) = a0, -ty (O] 25)

Kinematic chains can be modeled by the Euler-Lagrange’s equations of
motion [Landau and Lifshitz (1976)]

d (0% 0L
_ = _ 2.
dt ( 0q ) dq ™ (2:6)

where .Z denotes the Lagrangian, which equals the difference between the
kinetic and the potential energy of considered mechanical system, that is,

Z =K(q,q9) - V(g). (2.7)

11
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The kinetic energy of the system can be calculated as the sum of the
kinetic energies of each link,

K(g.4) = Y Ki(a,q). 259)
=1

The kinetic energy of the i-th link is

K;= %mzvf + %IM? (2.9)
Symbol m; denotes the mass of the i-th link, inertia of the i-th link is
denoted as I; and ¢; denotes the absolute orientation of the i-th link
defined with respect to the beginning of the i-th link, positive in the
clock-wise direction. Angles ¢; expressed in configuration angles g; for
the particular configuration angles depicted in the figure 2.1 are given in
the Appendix. Velocity vector v; of the the i-th link coordinates is defined
as

v; = [d%‘ , dyei] (2.10)
dt ’ dt

and the square of the velocity vector is equal to

dz., 2 dye, 2
vfz(dt>+(dt>. (2.11)

The location of the CoG in Cartesian coordinates for i-th link is denoted

as x., and y., and is equal to

i—1

e, = Lo, sin(¢y) + D 1 sin(¢;) (2.12)
j=1
i—1

Ye; = le; cos(¢;) + Z l; cos(o;). (2.13)

Jj=1

12



2.2. Swing phase

The potential energy is given as
Ny Ny
V(g) = D Vilg) = Y mighi. (2.14)
i=1 i=1

Constant g is the gravity acceleration constant and h; denotes the height
from the ground of the i-th link. Note that the calculated Kinetic energy
will have the following structure

K(4,d) = ;@' D(a)d, D(a) = D"(g) > 0 (215)

and the equations (2.6) will assume the following form [Westervelt et al.
(2007)]

D(q)q + C(q,9)q + G(q) + F(q,q) = 7 = Bu, (2.16)
where
@ -2, cla.d) - 1D - 5 D@ 217)

Matrix D(q) is called the inertia matrix, C(q, q) is the matrix of Coriolis
and centrifugal forces, vector G(q) describes gravity effects and vector
F(q, q) contains friction model terms. Matrix B describes how the actu-
ator torques u are generating torques 7. For the case of 5-link robot it is
calculated as

B_ [5@52 —¢1) O3 —a) O3 —Pa) O(ds— ¢5)]
oq ' oqg ' oq q |

(2.18)

The associated state space model can be found using (2.3) and (2.16) as

= f(x) +g(x)u, (2.19)

13



Chapter 2. Preliminaries

Table 2.1 — Parameters of the n,-link robot

by, .-y ln, length of 1%, ... n,' link [m]
le,y -y le,  center of gravity of 15, ... n,™ link  [m]
My, .y M, mass of 15¢, ... n, ™ link [kg|
L, ..., Ip, inertia of 1%, ... n,™ link [kg.m?|
g gravitational acceleration [m.s2]
where
f(z) = 1 K NE (2.20)
D(q)” (=Cl(q,q) — G(q) —F(q,9))
0
g(x) = _ . 2.21

For matrices D, C, G and B corresponding to various models of planar
bipedal walking robots, see the Appendix. Matrices of the model can
be parametrized by physical parameters of the robot which are listed in
tab. 2.1. An example of definitions of lengths of robot links and the
locations of Centers of Gravity (CoG) is depicted in the left part of the
figure 2.2.

2.3 Impact phase

An impact occurs when the swing leg touches the walking surface. When
the walking surface is rigid, the duration of impact is very short. It is
common to approximate it as being instantaneous. This approximation
leads to replacing the ground reaction forces by impulses, resulting in a
discontinuity of velocity components of the robot state. The result of the
impact model are the new initial conditions from which the single support
model evolves until the next impact [Westervelt et al. (2007)]. Depending
on the assumptions several impact models can be constructed [Babitsky
(1998)], [Brogliato (1999)], |Grizzle et al. (2001)] and [Hurmuzlu and

14
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Figure 2.2 — Left: link lengths, CoG locations and ground reaction forces.
Right: schematics of an unpinned 5-link walking robot with 7 Dok

Marghitu (1994)]. As long as the assumptions are valid all of them can
be used to derive the impact map. The approach taken in [Grizzle et al.
(2001)] was adopted in this work for several different models of robots.
The motion of the robot is analyzed only for the case that the contact of
the swing leg with the ground results in no rebound and no slipping of
the swing leg, and the support leg naturally lifting from the ground with
no interaction [Hurmuzlu and Marghitu (1994)]. The basic premises in
[Hurmuzlu and Marghitu (1994)] are that

1. the impact takes place over an infinitesimally small period of time,

2. the external forces can be represented by impulses,

3. impulsive forces may result in an instantaneous change in velocities
of the generalized coordinates, but the positions remain continuous,

4. the torques supplied by the actuators are not impulsional.
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To determine the impact forces and the new initial conditions for the single
support phase the so-called unpinned model — depicted in the right part
of the figure 2.2 — of the robot is necessary. To obtain the unpinned
model, the vector of configuration angles q is extended with Cartesian
coordinates z1, zo of an arbitrary point on the robot. For convenience,
this point is chosen to be identical with the end tip of the stance leg. The
resulting model has 7 DoF and can be written as

De(qe)ae + Ce(qm ‘.Je)(.Ie + Ge(qe) = BT + 5FeXt (222)

where q, = [qT,zl,zz]T stands for the extended configuration vector.
The model 2.22 is integrated over the duration of the impact to obtain
[Hurmuzlu and Marghitu (1994)]

D.(q.) (¢ —q.) = F* (2.23)

where F*' = S:ir SF*™*(7)dr is the integral of the contact impulse over
the duration of the impact, g_ is the velocity just before the impact and
q. is the velocity after the impact. The positions do not change therefore

al =q;.

In order to determine the vectors ¢ and F* additional equations that
describe the contact forces at the contact points are required. The first
contact point is between the ground and the supporting leg. As the sup-
porting leg is assumed to detach from the ground with no interaction the
forces acting on this leg are zero. Therefore, the vector F®* will be com-
posed only of the forces acting at the end of the swing leg [Grizzle et al.
(2001)]. The position of the end point of the swing leg will be denoted
as Y. For the case of 5-link robot with absolute angle defined w.r.t the
stance leg or the torso — as depicted on the figure 2.1 — and parametrized
as depicted in the left part of the figure 2.2 the vector T is given in the
Appendix. The vector of external forces is

FeXt — ET

Er ] , (2.24)
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2.3. Impact phase

where Fp, Fy denotes the tangent and normal forces, respectively, acting
at the end of the swing leg. The matrix E is defined as

oY
E = .
0qe

(2.25)

Thus, the system of seven equations 2.23 contains nine unknowns, ¢! and
Frp, Fy, vector ¢, is known since ¢, = [q 1, %1,%] and 2, = 0, 25 = 0,
since the supporting leg acts as a pivot during the swing phase. Additional
set of two equations can be obtained from the assumption that the swing
leg does not rebound nor slip at impact, i.e. (d/dt)Y(ge) = g—;iqe =0,
thus

Eq = 0. (2.26)

As a consequence, the following system of equations

D. -E a. | _| Dego
E 0 ] [ Fext ] - [ 0 ] (227)

linear in the unknowns g, and F is obtained. Note that F*™<' = (Fp, Fy)7.
The solvability of the (2.27) requires the invertibility of the matrix on the
left hand side. The invertibility of the left hand side matrix follows from
the fact that D, is positive definite and E has full rank [Grizzle et al.
(2001)]. The solution of the (2.27) yields the vector ¢ = [¢", 2] and
values ¢ should be used to reinitialize the model. However, before reini-

tialisation a change of coordinates is necessary as the former support leg
is now swing leg and vice versa. The state vector for new swing phase will

. T .
be x = [(}T, Z]T] . Where g and g denotes the angles and associated
angular velocities after the impact and relabeling. This operation will be
denoted as

xT = A(x7). (2.28)
The extended matrix of the 7TDoF model with AO defined with respect to

the stance leg required for impact calculation is given in the Appendix.
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The relabeling maps for the 5-link with AO defined w.r.t the stance leg
or the torso are given in the Appendix.

2.4 Discrete model of the robot

The prediction of state and measurements between the sampling instant
is based on the discrete model of the robot dynamics and measurements

w(tis1) = falx(t), u(t)), (2.29)
y(tk) = hd(w(tk),u(tk)). (230)

The vector field f; can be calculated using explicit integration methods.
Using the Euler’s method results in f,; given as

Feuw = x(t) + Ti(f(z(t)) + g(z(t))ulty)), (2.31)

where T; is the integration duration. Euler’s integration method is very
simple. The simplicity of the method results in lower precision of the
method. Therefore, this method has to be applied several times between
the measurement samples. Due to these reasons a more sophisticated
integration method — the method of Rung-Kutta of fourth order — has
been tested. The vector field f, for this method is given as

ki ko ks ks

= x(t — =+ — + — 2.32
Jrka w(l)+6+3+3+6’ (2.32)

where, provided w(¢;) is held constant during one sample,

kv = Ti(f (z(t)) + g(®(t))ut)),

Ky = T(f(2(t) + ) + g(a(t) + yu(t)),

2 2
ks = Ti(F (o) + °2) + glalt) + Lu(n),
ks = Ti(f(x(t1) + ks) + g(x(tr) + ks)u(tr)).- (2.33)
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2.5. Estimation algorithms

Cimp(x,u) =0
-——— = 2 .
’4‘ ~~'\ \
i = f(@)+ 9@y
~o Y o
----- ‘\ ’/’I
To

Figure 2.3 — Robot model with impact.

Every time the robot’s swing leg touches the ground an impact occurs.
To model the impact mathematically it only means that the robot model
is reinitialized with new initial conditions whenever the impact condition
©imp(x,u) = 0 as shown on figure 2.3. The condition is usually defined
as the height of the end tip of the swing leg.

2.5 Estimation algorithms

2.5.1 Discrete Extended Kalman Filter

The algorithm of the Extended Kalman Filter (EKF) can be used to es-
timate the state of a nonlinear dynamical system [Simon (2006)]. The
algorithm is composed of two steps: the time update step and the mea-
surement update step. During the time update a one step ahead prediction
of the state &(tx+1|tx) is calculated. This prediction is updated during
measurement update once a new measurement is available and results in
the corrected estimate @(tg+1|tx+1). The stochastic discrete model of the
walking robot can be written as

x(try1) = Fal@(te), uty), w(ty)), (2.34)
y(tr) = ha(z(ty), u(ty), v(te)), (2.35)
w(ty) ~ N(0, o), (2.36)
w(ty) ~ N'(0,3p). (2.37)

Vector w(ty) is a Gaussian random process representing disturbances act-
ing on the modeled system. Vector v(tx) is a Gaussian random process
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representing the measurement noise. Both w(¢x) and v(¢x) are uncorre-

lated with each other and their past samples. Matrix 3¢ denotes the

covariance matrix of the random disturbances w(ty) acting on the system

and the matrix X g stands for covariance of measurement noise v(ty). The

algorithm of the EKF can be summarized in following steps.

1. The EKFT filter is initialized with

Z(to) = E[z(t0)] (2.38)
P(to) = E[(z(to) — (t0)) (®(to) — &(t0))"] (2.39)

2. For k=1...N carry out following steps.

(a)

20

Calculate Jacobians associated with linearisation of the dynamic
equation of robot.

_ 94 L(ty) = %d

_ , —
O | peip(trltr) OW | ez (th]t)

F (1) (2.40)

Time update: perform the covariance update and state prediction.

Pt [tr) = F(tx)P(ialtn) F(tr)T + L) SoL(ty)”  (2.41)
Z(tkr1lte) = fa(@(tkltr), u(tx),0) (2.42)

Calculate Jacobians associated with linearisation of the robot’s mea-
surement model.

oh ch
Td , M(tgg1) = Td
T $=ﬁ:(tk+1‘tk) w :l:=:i:(

w=0 w=0

H(tk+1) =

tet1ltn)
(2.43)

Measurement update: calculate the Kalman gain and the current
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measurement estimate

K(tp1) = Pltpfte) H(tr) " (H(try )P (e |te) H(tr )T+
M(t41)ZrM(tr1)") 7, (2.44)
Y(trr1) = ha(@(tpsa|tr), w(tr1),0). (2.45)

Perform the correction of the covariance and state estimates using

new measurement.

Z(tpr1lter1) = (e lte) + K1 (y(ter1) — 9(tei1))  (2.46)
P(tpltes1) = (1 — K(te1) H(tkr1)) P (bor1[tn) (2.47)

2.5.2 Discrete Unscented Kalman Filter

In comparison with the EKF, the UKF does not require the calculation
of the linearized model of the robot. The algorithm of UKF can be sum-

marized in the following steps.
1. The UKEF is initialized by following estimates

#(t0) = Ela(to)], (2.48)
P(to) = E[(x(to) — &(to))(2(to) — &(t0))"]. (2.49)
For k =1... N carry out following steps.

2. Time update.

(a) Generate sigma points for one-step-ahead state prediction:
e (ty) = &(tpltr) + 2D i=1,...,2n (2.50)
. T
D (t)) = (\/nP(tk|tk)>i i=1,...,n (2.51)
_ T
) (1) = — («/nP(tk|tk)>i i=n+1,....2n (252)
(b) Propagate sigma points using the robot model (2.29), that is
2 (thi1) = Fa@D (t), u(ty)). (2.53)
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(¢) Calculate one-step-ahead prediction of the state as
1 2n )
Z(tpy1lte) = on Z 2 (t11). (2.54)

=1

(d) Estimate the covariance of the one-step-ahead state estimate

2n
P(tk+1|tk) = % 2 ( <;1;(1) (tk-i-l) — :f:(tk+1|tk))
=1
(29 (ths1) - fc(tkﬂltk))T) +3 (2.55)

3. Measurement update.

(a) Generate sigma points for the estimation of output:

()(tk+1|tk) E(tecalte) + 8D (the1) i=1,...,2n (2.56)
D(tysr) = ( Pterilte) ) i=1,....,n (257)

3 (te1) = — (ViPlenlte)) i=L.n (258)
(b) Propagate sigma points using the robot measurement model

YD (thi1) = ha(@D (t 1), w(tiia)). (2.59)

(c) Calculate current estimate of the outputs as

2n

i L&
Y(tps1) = mn Z y( )(tk+1)- (2.60)
i=1

(d) Estimate the covariance of the predicted measurements

2n
Py(tit) = 5 3. (( Dltrr) = 9ltis))
1=1
<y(>(tk+1 Y(trs1) ) (2.61)
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(e) Estimate the cross-covariance between @(t;41|tx) and g(tx11)

2n
1
Poy(tis1) =9 Z ( ( (thg1) — m(tk+1|tk))

(0 ; g
(D) — 9t)) ). (2:62)
(f) Perform the measurement update
K(tg11) = Poy(tsr1) Py (ths), (2.63)
E(tpr1]tes1) = B(tpr[te) + K(tp1) (Y (ter1) — 9(tee)),
(2.64)
P(tpr1lthe1) = Pltrslte) — K(tes1)Py(ter) K(terr) "
(2.65)

2.5.3 Hybrid Extended Kalman Filter for parameter esti-
mation

It is possible to estimate both the states & and the parameters 8 of the
system (2.19) using HEKF. Vector of parameters § can be obtained by
reparametrization of the model as will be seen in the following chapter.
Unknown robot parameters can be considered as state variables and the
state vector can be augmented as

z = [T, 81]7T. (2.66)

Robot (2.19)and measurement model h are augmented as

(Z,u, @) = [f(w) +g(x)“] + [wf”] : (2.67)
0 wg

y(tx) = h(z(ty), o(tx))- (2.68)

Vectors w, ~ N(0,%5), v ~ N(0,%) , wg ~ N(0,Zg). The state

vector is propagated between the measurements according to augmented

Il
<

z
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state equation and the covariance matrix of the estimation error is prop-
agated according to

P = AP + PA + L, LT, (2.69)
where
of of
A_ = — —_ —
0T |, » L ow|,
zt (th—1) 7t (tg—1)

The prior state estimate x(tg|tx_1) and the prior covariance matrix esti-
mate P(tg|ty_1) are updated at each measurement time ¢y,

K = P(t|ts_)HT (HP(t|t)_1)H + MIZzMT)™1 (2.70)

@ (teltr) = Z(tkltr1) + K(y — h(@(t|te 1)) (2.71)
P(tg|tr) = (1 — KH)P(tg]t5—1)(1 — KH)"
+KMIZ ;M KT, (2.72)

where the time indices are dropped to improve the readability.
ch oh
H(tx) = o ;o M(ty) = =

é(tk‘tk_l) :%(tk|tk_1)

2.5.4 Recursive Least Squares

The recursive least squares can be implemented as follows.

1. Instialization: Initialize the parameter estimate ﬁ(O) with some initial
estimate. Initialize the covariance matrix P(0) of the parameter estimate
B(0).

2. Estimation: For t;, = 1... N, perform following:

(a) Calculate the estimated robot joint torques using parameters B(t5_1)

+(tk) = Z(afcd(tk)v &fcd(tk)7 afcd(tk))B(tk)> (273)
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where Z is the design matrix composed of nonlinear regressors consisting
of the relative and absolute configuration angles and their first and second
derivatives. The qy.(tx) stands for digitally filtered measurements of
q(ty). Vectors qy.q(tr), Gfeq(ty) stands for approximations calculated
using central differences from the measurements of g(ty).

(b) Calculate the gain matrix K(¢;) and update the parameter estimates
and the associated covariance matrix

(tk) P(t—1)Z" (te)(Z(tx)P(te-1)Z(tr) + R) ™, (2.74)
Bltr—1) + K(te) (y, (tr) — 7(t)), (2.75)
(tk) = (1 — K(tg) Z(tg))P (tr—1) (1 — K(t)Z(t1))
+ K(t )-

(tr)R(tx) Ktk (2.76)

Matrix R = BX,B” is of rank 2. Therefore a regularization with some
small number is necessary in order to prevent numerical instability of the
algorithm.
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8] Offline 1dentification for
bipedal walking robots

This chapter contains the key results of the thesis. In particular, the
following sections describe how it is possible to include inertial measure-
ments or distance measurements in the design matrix of the underlying
regression problem. The regression problem is closely connected to the
problem of the parameter estimation. This chapter also develops the al-
gorithm which removes the noise contained in these measurements and
calculates the parameter estimates. The chapter is organized as follows.
First, the problem of parameter estimation is introduced. Section 3.1
describes the estimation of relative velocities that are required in the as-
sociated calculations. Section 3.2 describes the process of elimination of
the unknown absolute angle from the regression equation. In section 3.3
these results are used to develop the optimization algorithm that estimates
the unknown robot parameters by maximization of the likelihood of the
measured data. In the section 3.4 a simulated example dealing with the
identification of a 3-link robot model is presented. Finally, in the section
3.5 an experiment focused on estimation of parameters of the leg of the
prototype walking robot is given.

Using the link masses, the link inertia, the link lengths and other phys-
ical parameter — described in table 2.1 — to parametrize the motion
equations (2.16) of a mechanical chain is quite natural. For the pur-
pose of parameter estimation it is, however, more advantageous to use a
parametrization that allows a model linear in parameters,

Bu(t) = 7(t) = Z(q(t), 4(t), (1)), (3.1)
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Chapter 3. Offline identification for bipedal walking robots

where the matrix Z(q(t), q(t),q(t)) can be formed by manipulating the
left-hand side of equation (2.16). The structural identifiability of param-
eters B can be eagily ensured by choosing a parametrization that makes
the corresponding matrix Z of full rank. To be able to exploit the lin-
earity in the parameters, all variables entering the design matrix Z, that
is both relative position and absolute position, must be available. Then
the problem of parameter estimation is reduced to the problem of mul-
tivariate multiple linear regression [Armstrong (1987)]. This case can be
achieved using special platform where the absolute orientation of robot
can be measured with respect to the platform itself. However, a walk-
ing robot freely moving in environment would have to obtain its absolute
orientation using inertial measurements. These measurements, however,
are likely to contain measurement noise. In this chapter the pursued idea
is estimating the parameters in the presence of imperfect knowledge of
absolute orientation from potentially noisy measurements.

3.1 Estimating relative angular velocities and ac-
celerations

A typical situation encountered in practice is that the measurements of
actuator torques and relative angles are available from motor-current sen-
sors and rotary encoders, respectively. The encoder data are usually very
accurate, and after digital filtering, practically noise free. For dataset
consisting of N samples one obtains

tr) + er(tr) = By, (tr),

7(
(tk) = u(tr) + eu(tr),
Yo(tr) = q" (tx),

where k = 1...N. Actuator-torques measurement errors e,(tx) are as-
sumed to be independent, identically distributed, following normal distri-
bution and to have zero mean. That is

E[eu(tk)eu(tk)T] = X, (35)
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3.2. Eliminating the dependence on the absolute angle

Eley(tr)eq(t;)'] =0 for t # ty. (3.6)

As a consequence, e; ~ N(0,3;), where ¥, = BX,B”. On the other
hand, the angular velocities and accelerations are usually not available,
but in the case of relative angles, they can be estimated from angular data
using central differences

(}9(tk + Ts) B Q}(tk: - Ts)
2T ’
qy(ty +215) — 2q% (k) + @y (t, — 215)
AT? ’

Tpealt) = (3.7)

Tea(lr) = (3.8)
where q; denotes digitally-filtered relative angular data, Ts the sampling
rate and the filtering is used to reduce the noise amplification introduced
by numerical differences. By using the estimates (3.7), (3.8) the depen-
dence of (3.1) on relative velocities is effectively removed resulting in

Zde(qg‘anvq.a?q.a) = Z(q(hqaq.amqrvdaaér) (39)

. L P
q"=q%4(a")
A" =&.4(a")

where the time index was dropped to improve the readability. It can be
seen that the only unknown variables are the absolute angle and its asso-
ciated first and second derivatives, since the relative angles are assumed
to be measured.

3.2 Eliminating the dependence on the absolute
angle

There are various sensors that can measure various quantities that are
directly related to the absolute angle. In this work only the distance
from the ground and linear accelerations measured by an accelerometer
combined with gyroscope measurements will be studied. These quantities
can be used to eliminate the dependence on the absolute angle ¢* and its
derivatives ¢q, go from equation (3.1). Achieving this would eliminate the
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Chapter 3. Offline identification for bipedal walking robots

remaining unknown variables from the design matrix Z and would allow
the model identification.

3.2.1 Using distance measurement model

Absolute orientation of the walking robot can be inferred from the distance
measurement between some known point on robot and the some point on
the ground. In this work, only flat surface is studied. One way of mounting
the distance measuring sensor is depicted in the left part of fig. 3.1. The
distance meter is rigidly fixed to the stance leg and is pointing towards the
ground. Note that do denotes the distance from the point where the stance
leg touches the ground to the sensor location. Value of dg is known and
constant. The distance d; is measured by the sensor. Further, the angle
~v3 between the stance leg and the optical axis of the sensor is also known
and constant. In the following text the model of the 5-link robot with
AO referenced to the stance leg will be used to demonstrate derivations
of necessary equations. However, deriving the equations is possible also
using other ways of AO angle definition. The underactuated angle ¢f can
be obtained using equations

T . (di . da
a_ T s for dy < , 3.10
=5 —aren <d3 Sln(%))’ ord cos(73) (3.10)
o — T | arcsin 4 sin(ys) for dy > 2 (3.11)
=73 dg ") "7 cos(ys)’ '
where
ds = \/d% + d3 — 2d1ds cos(73). (3.12)

Once the angle ¢f is determined from the distance measurement dy, the
estimates for ¢f and ¢{ can be easily calculated using central differences.
Using the formulas for the filtered central derivatives and formulas (3.10),
(3.11) eliminates the dependence on absolute angle and all derivatives
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3.2. Eliminating the dependence on the absolute angle

Figure 3.1 — Left: Laser distance-meter measurements. Right: IMU mea-
surements.

from the design matrix Z resulting in

Zd,fcd(dla qr) = Z(qa’ qr’ Cjaa qu (.jaa qr) qa=hd(d1) ) (3'13)
qa=‘§?cd(‘1a)
=q9,4(a")
a"=q%..(a")
A T

It is assumed that the distance measurements d; measured by the laser
distance meter are corrupted with noise as in the following model

Ya, (tk’) =d; (tk’) + €q, (tk)7 (314)

where eq, (tg) ~ N(0,%4). Measurement errors e, 4, = [el, ez;l]T are
assumed to be normally distributed with zero mean and to be uncorrelated
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across time. Thus,

X, 0

Elera, (tk)era (t)] = Tra, = , (3.15)
0

Elera, (th)era () 1=0 for t #t. (3.16)

The covariance of errors eq, is either constant or dependent on the dis-
tance dy, a typical example is when the error of the distance measurement
grows with the distance. The model for a whole dataset containing only
measurable variables can be written as

Yr1.N = L fed 1. .NYdy, Ygr)B + €71..N, (3.17)

3.2.2 Using accelerometer and gyroscope model

The model of a simple IMU (Inertial Measurement Unit) composed of two
axis accelerometer and one axis gyroscope is satisfactory for the purposes
of estimation in the case of planar robot. The following model will be
derived for the case when the IMU is located on the torso of the robot,
but it can be easily adapted for different location of the sensor. The axes
of both sensors — accelerometer and gyroscope — are identical and are
denoted as X ”, Y", zZ" respectively. Sensors axes X "and Y lie in the
plane created by the inertial frame axes X and Y — where the motion of
the robot takes place. Axis Y is aligned with robot’s torso and the axis
X" is perpendicular to the robot’s torso. Axis Z' is perpendicular to the
plane X"Y" and XY

Axes X" and Y are aligned with body coordinate system XY of the
robot’s torso, body coordinate system is not shown in the fig. 3.1 for the
sake of readability. The origin of the body coordinate system X "Y' lies in
the center of mass of the robot’s torso. The origin of the sensor coordinate
system lies in the center of the sensor, see the right part of the figure 3.1.
Both body coordinate system XY’ and sensor coordinate system XY
are rotated in a clock-wise direction by an angle ¢35 = ¢1 + ¢2 + g3 with
respect to the base inertial coordinate system XY. The output of the
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3.2. Eliminating the dependence on the absolute angle

accelerometer will be the proper acceleration vector a,s of the sensor
decomposed into components acting along the accelerometer axes X " and
Y". Note that the absolute angles ¢, depicted on the figure 3.1, are given

as
(o1 [ "0 ]
®2 @+ q
o= |¢3| = @+ g+ g3 (3.18)
G4 @ +q+at+aq
[ o5 |a1t+qe+q3+qatgs]

The acceleration of the accelerometer can be calculated from its XY co-

ordinates
xq =l sin(¢1) + lasin(p2) + lq sin(¢ps), (3.19)
Ya = 11 cos(p1) + l2 cos(p2) + o cos(¢s). (3.20)

By differentiating the coordinates of accelerometer the velocities are ob-

tained as
iq =l cos(¢r)dr + lg cos(d2)(ha) + Ly cos(ds) (d3), (3.21)
Jo = —li sin(¢1)d1 — lasin(¢2)(d2) — Lo sin(ds)(ds), (3.22)

and the second derivatives of positions give the accelerations as

iq=—l Sln(¢1)¢1 + 13 cos(¢1) 1 — Lo sin(¢2) () +
+ 1y cos(¢2) (¢2) — Iz sin(¢s)(ds)® + Is cos(s) (b3), (3.23)

jla = —l1 cos(¢1)éF — 11 sin(¢1)é1 — Ly cos(ga) (d2)*+
— Iy sin(o) (da) — I3 cos(s) (¢s)” — I3 sin(¢s) (). (3.24)

Define a clock-wise rotation matrix R*(¢) and the inverse-clock wise ro-
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tation matrix R™(¢) = inv(R*(¢)) given as

v o | cos(¢) sin(¢) ~ . |cos(¢) —sin(o)
R¥(9) = [— sin(¢) cos(¢)] ’ R(9) = [ ]

The acceleration of the accelerometer (mounted on the torso) in the XY
coordinates, given that q and ¢ are defined as on fig. 3.1, can be written
as

[Z] =R (1)l [_qi;%] +RT(¢2)lo [_(b;%] + R (¢3)la [_QS(Z%]

(3.26)

The proper acceleration vector a,s of the accelerometer — the acceleration
vector relative to the free fall — is

Aps = A5 — g = [xa] - [0] . (327)
Ya g

4

of
ps
accelerometer with respect to the inertial frame X Y . Since the inertial

The output of the accelerometer will be the proper acceleration a

frame X" Y" is rotated by the angle ¢3 in a clockwise direction with respect

ps
vector aps by the angle ¢3 in the counter-clockwise direction in order to

to the coordinate frame XY, vector a,, can be calculated by rotating the

obtain the same vector but in different coordinate system. Therefore

Ya 9

ap = R (¢3)ap = R (¢3)(as—g) = R (¢s) ([%] - [0]) (3.28)

and by substituting (3.26) into (3.28) the proper acceleration is obtained
as

a;s _ R (69) <R+(¢1)l1 [_ﬁgl + R¥(42)lo [_QZQ] +
2 2
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+ ¢3 _ 0
o] ][ o

Noticing that

R (¢1) =R (q1), (3.30)
R (¢2) =R (q1 + ¢2) = R (1)) R (q2), (3.31)
R™(¢3) =R (q1 + 2 + ¢3) = R (q1)R* (q2)R™ (g3), (3.32)

and using the fact that R"(q)R"(q2)R"(g3) = R"(g3)R" (2)R" (1),
relation (3.29) can be written as

—(41 + ¢2)*

g1 + G2
i

a,, =R (3)R (g2)l1 [ ij}] + R (3)l2 [

G1+ G2+ Gs -~ _ 7 0
tla [_(41 + gy + (1-3)2] -R (3R (@2)R (1) [g] . (3.33)

From (3.33) it is clear that by a simple manipulation one can obtain the
following relation

—sin(q1) |  |cos(qr) —sin(q1)| |0 0] &
[ cos(q1) ]g - [Sm(fn) cos(q1) ] [g] —R [9] ~he
(3.34)

where function h, is defined as

h, = [ZZ] = —R"(3)R"(q2) (a;s - R (¢3)R (q2)ls [_(112] +
2 q1

+R(q3)12[ q1 + G2 ]+la [_(’j1+ijz+ijs ]) (3.35)

—(d1 + ¢2)* (41 + 42 + 43)?

Finally,
sin(qr) |, _ [ha| _ 1|-h{
[COS(ql)] — h, = [hJ = [ s ] . (3.36)
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Chapter 3. Offline identification for bipedal walking robots

The resulting equation (3.36) can be used to calculate the sine and cosine
of the absolute orientation angle ¢;. Using sin(q;) and cos(q;) eliminates
the variable ¢; from eq. (3.1) and (3.9), since the variable ¢; always ap-
pears in the motion equations as an argument of either sine or cosine.
There still remains, however, the undetermined values of ¢; and ¢, since
the relative velocities and accelerations can be eliminated using (3.7) and
(3.8). Variables ¢; and §; are required for both calculating (3.36) and
also in (3.1) or (3.9). However, the angular velocity ¢; of the absolute
orientation angle can be measured using gyroscope. And the angular ac-
celeration ¢; can be calculated — in the case of offline estimation — using
finite differences from the gyroscope measurements. After using all these
information, the design matrix Z takes the following form

Za,fcd(a;saqraq.a) = Z(qavqrvq'avqraq.avéT) ) (337)

sin(q1)=h¢ (a.q" ")

cos(q1)=h§ (ap.q"q")
if:&}cd(qr)
q"=q%..(a")
=% .q(d")

where
” . _ " . sroeq e .
h'a(apsaqraqa) - h(a'ps?qraqavq ’qa’q 7) qT:?;Cd(q’r') (338)

=i} (a")
§°=0% (0%

ps
accelerometer and the angular velocity ¢ measurements measured by the

It is assumed that both, the proper acceleration a,, measured by the

gyroscope, are corrupted with noise as in the following model

Yaltn) = ape(t) + ea(tr), (3.39)
Yga (tk) = 4" (tk) + ega(tr). (3.40)

For a compact reference the following vectors are defined
Yimu(ts) = [Ya(tr), yge ()], (3.41)
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3.2. Eliminating the dependence on the absolute angle

€imu(ts) = [ea(tk), eje (tk:)]Tv (3.42)

where €y (tr) ~ N (0, X,). Measurement errors €, iy, = [el, eg;m T are

assumed to be normally distributed with zero mean and to be uncorrelated
across time. Thus,

pI 0
E[eT,imu(tk)er,imu(tk)T] = ET,imu = 5 (3.43)

0 2imu
E[eT,imu(tk)eT,imu(tl)T] =0 for t; # tg. (344)

The model for a whole dataset containing only measured variables can be
written as

Yr1.N = Za,fed 1 .N(Yy" s Yqrs Yia)B + €1 N (3.45)

3.2.3 Linear least-squares regression

For the sake of generality following variables are introduced,

Yy (i) = nlty) + en(te) 3.46)
Yoltk) = a(ty) 3.47
where

yn(tk’) = [yTil (tk)a <o Yny, (tk:)]T> (348)
Yo tr) = [You k), -+ Yoy (t0]T (3.49)
n(te) = [m(te)s s 7y ()17 (3.50)
a(ty) = [a1(tk),- .., on, (tk)]T, (3.51)
ey(tr) = [en (tk), - - - enn, ()" (3.52)

Variable y, (t;) stands for measurements of variables n(t;) containing

noise e, (ty). Variable y,(t) stands for measurements of variables o (t)

which are noise-free. The measurement error e,(t;) ~ N(0,3,). Mea-
T TT

surement errors e-, = [e;, e, ] are assumed to be normally distributed
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Chapter 3. Offline identification for bipedal walking robots

with zero mean and to be uncorrelated across time. Thus,

Blern(ti)enn(ti)] = Sry = [i z?] , (3.53)

E[e‘r,n(tk)ef,n(tl)T] =0 for t #t. (3.54)

The general model that can accommodate different sensors (distance mea-
surement model or IMU model) can now be written as

Yr1.N = Zp.N(Ma)B+er1. N, (3.55)

where the design matrix Z,(n, a) is given either by the design matrix
based on the distance measurements or by the design matrix based on the
IMU measurements. In the case of distance measurements the only noisy
variable is the distance dy, therefore n = d;. In the case of IMU the noisy
variables are both the accelerations and the angular velocity, therefore
n= [(aZS)T, (@$)T]T. Since the structure of the identified system can be
described accurately by the Euler-Lagrange equations, it is assumed that
the errors due to unmodeled dynamics can be neglected. If there are any
additional dynamic phenomena like friction or gear dynamics they should
be included in the model. In the case when the absolute orientation
positional data are accurate, the discrepancies in the design matrix as
well as potential correlation due to closed-loop, can both be neglected
and the problem of parameter estimation reduces to the linear regression
problem, similarly as in the case of manipulator robots, see [Poignet and
Gautier (2000})], [Olsen and Petersen (2001)], [Olsen et al. (2002)] and
references therein. In such a case the design matrix Z,(a) is composed
only from accurate measurements and 3 can be estimated using weighted
least-squares estimator

B=(ZL, NWZy1.N) " Zy1. N"Wy,_N) , (3.56)

The weighting matrix W is equal to

W =3, ®1Lnxn, (3.57)
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3.3. Maximum likelihood estimation of parameters from
open-loop noisy data

where the symbol ® denotes the Kronecker product. Thanks to elimi-
nation of variables that are usually not measured, the method of linear
least-squares can be used to estimate the parameters of the walking robot.
However, this method does not explicitly account for the measurement
noise in the absolute orientation data and therefore does not provide op-
timal estimates when measurements are noisy. Unfortunately, both the
distance meter and IMU tend to provide measurements corrupted with
noise and simple digital filtering does not provide optimal results.

3.3 Maximum likelihood estimation of parame-
ters from open-loop noisy data

Due to errors in the noisy measurements y,, of the robot’s absolute orien-
tation the design matrix

Zy(Yy: Yo) # Zy(n, @) (3.58)

and the resulting estimate of parameters will be biased. Therefore one
would like to find estimates of 7,,;.(tx), which most likely correspond to
the values of n(ty), for k = 1,..., N. It is assumed that the error prop-
erties (3.43) are known. To be more specific, matrix 3, ,, or matrices
Y and X, are known up to a scalar multiple. Estimates of these matri-
ces can be obtained from specially designed repeated experiments. The
distribution of measurements y_(tx) and y,(tx) is given by multivariate
normal distribution

Fy- (), yy(tr) =

(%);m' exp (—;e(tk)TElee(tk)> . (3.59)

The likelihood function of measurements y. (¢x) and y, (¢x) is a function of
7(tx) and n(tx) and is proportional to (3.59). By using the model (3.55),
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Chapter 3. Offline identification for bipedal walking robots

estimator (3.56) one concludes that ¢ for a whole dataset is given as

k=N
timn ) = [ e (—gett™ ). (3.60)

Maximization of ¢(n; ) can be obviously achieved by minimizing the
sum of squares

S(m ~) i e(tr)" S, etr)) - (3.61)

3.3.1 Implementation of the minimization procedure

Minimizing the criterion (3.61) is a nonconvex optimization problem and
therefore the solution has to be sought iteratively. However, the sum
of squares can be calculated extremely efficiently thanks to utilizing the
WLS estimator in conjunction with the central differences. In particular,
this approach does not require to integrate the equations of motion. The
implementation of the identification procedure can be performed using
the following steps, with some small differences which depend on whether
the absolute orientation was measured using the distance meter or using
the combination of accelerometers and gyroscopes.

1. Initialization:

(a) Set the iteration counter to i = 1.

(b) For k =1... N, filter the actuator torques, relative angles, the quan-
tity n related to the absolute angle:

ﬂf(tk) = lowpass(yu(tk)), (362)
qy(tr) = lowpass(yy (tk)), (3.63)
i (1) = lowpass(y, (). (360

(c) For k = 1...N calculate y,.(ty) = Bus(ty) and form the vector

yT,l..‘N'
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3.3. Maximum likelihood estimation of parameters from
open-loop noisy data

(d) Initialize the Maximum Likelihood (ML) estimator of n as

Ninten (te) = N (te), (3.65)

2. Calculation of minimization criterion:
(a) In the case of distancemeter, estimate the angle ¢%, (tx) using the
estimate 7). ;(tx) and for k = 1... N calculate

: Qgei (b + Ts) = e i (te — T)
qz’bl67i(tk) _ mle,i s 7 mle,i s ‘ (366)
s

In the case of accelerometers and gyroscopes, this step is omitted.
(b) For k =1...N, calculate the central differences based estimate from
the current ML estimate g%, ,;(tx) as

4 Ge.i(th + Ts) = Qe (tr — T4)
q;}nle,l(tk) — mie,r S 2T mie,r s ] (3.67)
S

(c) Form the design matrix Z, for each k =1... N as,

Zﬂ(tk) = Z’Z(ﬁmle,i(tk)7 qT(tk)) (368)

(d) Form matrices Z;_ n and W and calculate the estimate of parameters
as

B = (Zml---NTWZn,l---N)fl(Z;L.,NW?JT,L..N)- (3.69)

(e) For k =1...N, calculate the joint torques predicted by the ML esti-

mates

Tmle,i(tk) = Zn(ﬁmle,i(tk)v qr(tk))ﬁ (370)

(f) For k =1...N, calculate residuals

eT(tk) = yT(tk) - Tmle,i(tk)v (371)
en(tr) = Yp(tk) — Mnge.i(tr)- (3.72)

Form the error to be optimized as e(ty) = [el(tx),e,(t;)]. Form the
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sum of squares to be minimized

k=N
S= > (elty)" = eltr)). (3.73)
k=1

3. Perform Gauss-Newton update:

(a) Form the numerical gradient g,,;. of S.
(b) Form the numerical Hessian H of S.
(¢) Obtain the new ML estimate as

’flmle,i,l.“N = Hilgmle‘ (374)

(d) Increase iteration counter i by one and continue to step 2 or end if a
stopping criterion of the optimization procedure is satisfied.

The steps (3.a) to (3.d) are only illustrative and can be replaced by a
particular implementation of nonlinear least-squares minimization proce-
dure.

3.4 Application to parameter estimation of a pla-
nar bipedal walking robot

This section studies the simulation example of one of the simplest me-
chanical systems capable of underactuated planar bipedal walking [Grizzle
et al. (2001)]. The robot is composed of three rigid links - two legs and a
torso - connected by two actuated rotary joints. Schematics of robot are
depicted on fig. 3.2. The set of configuration angles q is composed of one
absolute angle ¢ and two relative angles g3, ¢5. It is assumed that the
relative angles would be measured by incremental encoders and that the
absolute orientation of the robot would be obtained by a laser distance
sensor. The distance meter is rigidly fixed to the stance leg and is pointing
towards the ground, see fig. 3.2. Note that ds denotes the distance from
the point where the stance leg touches the ground to the sensor location.
Value of ds is known and constant. The distance d; is measured by the
sensor. Further, the angle 3 between the stance leg and the optical axis
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3.4. Application to parameter estimation of a planar bipedal
walking robot

Table 3.1 — Parameters of the 3-link robot

I, 1o, I3 length of 1, 22 and 34 link [m]
leys legy ey center of gravity of 15, 28d and 3" link  [m]
mi, ma, M3 mass of 15¢, 274 and 3™ link [kg]
I, I, I inertia of 15¢, 27 and 3" link [kg.m?|
T, T9 torque generated by 15 and 2"d motor ~ [N.m]
g gravitational acceleration [m.s™2|

of the sensor is also known and constant. The underactuated angle ¢f can
be obtained using equations

T . (dy . da
a_ T _ ar for di < , 3.75
¢ = 5 — arcsin <d3 s1n(’y3)>7 TS st (3.75)
o = _ T 4 arcsin 4 sin(~ys) for d; > a2 (3.76)
h=y ds 7)) 17 cos(vs)’ '
where
ds = A/ + d3 — 2d1ds cos(3). (3.77)

Once the angle ¢f is determined from the distance measurements dp, the
estimates for ¢f and ¢{ can be easily calculated using central differences.
In this simulated study the conversion from d; to ¢f was omitted for
simplicity and it is assumed that directly ¢f is measurable, thus the fol-
lowing measurement model was used both in the simulations and in the
estimation procedure

Yoo = q7 + €qe, (3.78)
eqr ~ N(0,00), (3.79)

giz is known. Physical parameters of the robot are

where the variance o
listed in tab. 3.1. Values of physical robot parameters are based on a nu-

merical example of |Grizzle et al. (2001)] where a different parametrization
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Figure 3.2 — Schematics of a 3-link robot.

is used. Parameters are as follows

I3 = 0.5,
ley = 0.2,
msg = 25,
I;=15.

Iy =1, lo =1,
ley =05, 1, =0.5,
m1 = 9, mo = 9,
I, =0, I, =0,

Lagrangian formalism results in the following model matrices

B+ B2+ B3 +2B4ch+205¢3, Ba+Bach, [3+P5ch
D= B2+ Bach, B, 0
| B3+ Pscs, 0, B3
—Badssy —PBsqsy, —Bash(¢f+¢5), —Bssi(df +43)
C= Bagiss, 0, 0
554(1185, 0, 0
—Bes — Brsiy —Besis” 0 0
G- st . B=|o -1,
— sty 1 1

44
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3.4. Application to parameter estimation of a planar bipedal
walking robot

using the following abbreviations: ¢ = cos(gy), ¢ = cos(q}), s =

sin (¢f), s = sin (g4), s = sin (q}), S(ILET = sin (¢} + ¢3), s‘fy = sin (¢f + ¢5).

Substitution

51 =1 + l%mz + l%mg + lglml, ﬁz =1 + m2l2

c2)

By = I3 + mgl2,, Ba = lile,mo,

(3.81)
Bs = lile;ms, Be = g(lima + lims + 1., m1),
57 = gl62m27 BS = glC3m37

makes the model linear with respect to the parameters 3. The state space
vector is given as

T = (quqgaqgaq.{aq.;q.g)T' (382)

3.4.1 Monte Carlo analysis

Since the measurement of the absolute angle is corrupted with noise, a

Monte Carlo simulations were utilized to analyze the performance of the

estimation algorithms. Four cases with different variance aga were an-

2
q

studied. In this case the data begin to be too noisy with respect to their

alyzed, see tab. 3.2. Furthermore the case when Oge = 10_]3 was also
curvature and the resulting estimates ceases to be reliable due to pre-
mature termination of the optimization procedure. This case is used to
demonstrate the effects of local minima. As a validation of proposed es-
timation method a 103 Monte Carlo simulations were performed for each
setting of the variance Ug% totaling in 4 x 103 simulations for the four cases
described in the tab. 3.2 and additional 10® simulations were analyzed for
the case when ogtlz equals 1073, The short duration of the experiments is
due to the open-loop controller and the unstable nature of walking.

The MLE algorithm was compared with the WLS estimator based on the
filtered central differences. Filtering of the absolute angle measurements
Yg, was realized using Matlab built in function £iltfilt which performs
forward and backward filtering to reduce the distortion of data. The
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designed filter was a Butterworth filter of 5" order with a half power
frequency, well tuned for each 03% separately according to the tab.3.2.
The resulting filtered data are denoted as ch f- Relative angular data q"
were not filtered, since they are available noise-free. The estimates of
velocities and accelerations are calculated using central differences based
on data gy = [q"T, Q}]Tas

a5tk + neals) — ap(ti — neals)

G roa(ty) = 3.83
chd( k) g1 ) ( )
o z]fcd(tk + nchs) - E]fcd(tk: - nchs)

tr) = . 3.84
q fcd( k) Mg T s ( )

Parameter n.g = 1 is related to the number of data samples used in the
central-difference approximation of a derivative. Making the parameter
Neg > 1 results in a smoother estimates of the derivatives for the spe-
cific values refer to the tab.3.2. This algorithm will be denoted as WLS
with Filtered Central Differences (WLS-FCD). The MLE algorithm initial
estimates of angles, angular velocities and accelerations are calculated us-
ing WLS-FCD algorithm. For comparison purposes the Recursive Least
Squares (RLS) and Hybrid Extended Kalman filter (HEKF) were tested as
well. Their detailed implementation is provided in the chapter 2 describ-
ing preliminaries. The results of all estimation algorithms are summarized
in the tab.3.3. By studying the tab.3.3, one can see that the performance
of the MLE method is superior to all other approaches, especially for
the cases where the noise has larger variance. The RLS method however
works also very well. The problem of HEKF lies in high nonlinearity of
the system and therefore the filter is often unstable and fails to integrate.

3.5 Parameter estimation of a Leg of Laboratory
Walking Robot

The aim of this section is to verify the proposed estimation procedure,
described in the section 3.3, by estimating parameters of the leg of a pro-
totype underactuated walking robot which was firmly attached to a rigid
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3.5. Parameter estimation of a Leg of Laboratory Walking
Robot

Table 3.2 — Four studied cases and most relevant parameters

Simulation parameters Case 1 Case 2 Case 3 Case 4
ol 10 10® 10° 10"
or, 00, 0=t 107t 107t 107t
Sampling Period T |s] 0.01 0.01 0.01 0.01

Experiment Duration 7" [s] 0.68 0.68 0.68  0.68

WLS-FCD parameters

Half-power freq. 1 0.5 0.25 0.1
C.D. samples n.q [-] 2 3 5 7

Table 3.3 — Sample mean and variance of summed squared simulation
errors of the 3-link robot

MLE Casel Case2 Case3 Case 4
Mean 1.242 1.231 1.195 1.149
Variance 0.009 0.010 0.011 2.567
Failed simulations 0 0 0 2
WLS-FCD Casel Case2 Case 3 Case 4
Mean 1.753  1.884 2480 610
Variance 0.016  0.055 5.023 1.9x10'2
Failed simulations 0 0 0 132
HEKF Casel Case2 Case3 Case 4
Mean 6.804  214.1 103 196.1
Variance 455.9 107 2108 2.98x10°
Failed simulations 25 228 246 160
RLS Casel Case2 Case 3 Case 4
Mean 1.245 0.5952 0.5136 7.1788
Variance 0.009  0.0279 0.1169 173.1557
Failed simulations 0 0 0 4
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Chapter 3. Offline identification for bipedal walking robots

platform. The identified system is depicted in fig. 3.3. The leg consists of
two rigid links and two joints, the joint between the links is actuated, the
other joint is left intentionally unactuated and so it plays the role of the
pivot. Therefore, only one motor is installed and the motor is equipped
with an optical encoder to measure the relative angle g2 between the links.
Further, both joint angles ¢; and g2 can be measured using a contactless
hall encoders, which are used in order to provide benchmark measurements
of both the actuated and the underactuated angle. However, these mea-
surements are not used by the parameter estimation procedure. Therefore
this system possesses principal challenges that are characteristic for iden-
tification of underactuated walking robots. Finally, the motor torque 7
is measured using current shunt monitor and the leg is equipped with a
3-axis accelerometer - measuring proper acceleration a, parallel with the
leg link and a, perpendicular to the upper link, both in the sagittal plane
and a, in the lateral plane - and a gyroscope - measuring angular veloc-
ity ¢1. The joint angle ¢; is defined with respect to the horizontal axis
passing through the center of the joint, parallel with the sagittal plane of
the robot. Angle ¢ is defined as a relative angle between the links. Cor-
responding physical parameters of the robot are listed in the tab. 3.4. A
substitution rendering the model linear in parameters was used resulting
in matrices of the model given by (3.86).

Table 3.4 — Parameters of the 2-link robot leg

l1, lo length of 1%t and 274 link [m]
ley, le,  center of gravity of 1 and 2"¢ link [m]
mi, Mo mass of 15t and 229 link [kg]
I, I, inertia of 1% and 2" link [kg.m?]
1y o viscous friction parameters [N.s/m]
13, 4 Coulomb friction parameters [N.s/m)]

g gravitational acceleration [m.s2]
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3.5. Parameter estimation of a Leg of Laboratory Walking
Robot

Figure 3.3 — Photo of the prototype walking robot - front leg is identified.

Br=mlZ, +malf + I, Be = w1,

Bo = mal?, + I, Br = usz,

B3 = malile,, Bs = ps3, (3.85)
Ba = mile, +maly, By = pua,

Bs = malc,.

D P11+ P2 +2P3cos (q2); P2 + B3 cos (ge)

B2 + B3 cos (g2); B2 ’ (3.86)
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_ 2B, sin (q2)g2; —PB3sin (g2)g2
©= | Basin(g2)q1; 0 ] ’ (3.87)
G _549 sin (q1) + Bsgsin (q1 + q2) (3.88)
i Bsgsin (q1 + q2) ’ '
_ | Bedr + Bssign(qr)
F = [ Bria + ﬁgsign((b)] , (3.89)

B:

(1’] . (3.90)

The absolute orientation angle can be related with measurements using
the accelerometer data a,, ay, angular velocity ¢; measured by gyroscope
and the angular acceleration ¢; - which can be easily obtained by filtered
differences from ¢;. This results in the following relation

lsq1 — Qg,s

b [sin((h)] _ 9 it |- (3.91)

_ay7s J—
g

Since sin(g; +g2) = sin(q1) cos(gz2) +cos(q1) sin(g2) and by combining with
the optical incremental encoder measurements of the angle g2 and by ap-
proximating its derivatives g2, ¢o using filtered central differences, all the
data required for constructing matrices D, C, G are available. By using
also the torque measurements it is possible to use the MLE method to
estimate parameters (3. Table 3.5 shows summed squared errors between
response of simulated model obtained by identification and the real valida-
tion data - not the dataset used for identification. Data were collected at
sampling period of 0.01[s]. Three methods were compared, WLS method

based only on Hall sensor measurements for benchmark, then both WLS

50



3.5. Parameter estimation of a Leg of Laboratory Walking
Robot

Table 3.5 — Summed squared errors for identified model of the robot leg
simulated on validation data from real laboratory experiment

Method — YeZ ~ De2, ] 621 >, 622
WLS-Hall 12927 17.064 18.284 7.762
WLS-IMU 10.216 19.258 17.341 7.620
MLE-IMU 0919 1.748 25.927 6.028

and MLE methods based on gyroscope and accelerometer data. It can be
seen that the MLE based model is superior in predicting the angles ¢; and
q2, which is exactly what is most important, even in comparison with the
benchmark WLS method based on Hall measurements. The covariance
matrices of data, which are required for algorithm to work, were tuned
manually within several minutes. This further boost the practical useful-
ness of the algorithm. Fig. 3.4a shows ML estimates for accelerometer and
gyroscope data — recall that data related to ¢s are accurate and are not
optimized. Fig. 3.4b shows torque prediction for benchmark model and
the MLE model. Note especially excellent quality of the MLE prediction
for the torque 71 on unactuated joint - which should be zero.
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Figure 3.4 — (a) Accelerometer and gyroscope measurements and their
MLE estimates. (b) Current sensor measurements, WLS model predic-
tions of the current based on hall sensor measurements, MLE based cur-
rent predictions based on accelerometer and gyroscope data.
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%8 Online state estimation

Previous chapter was dedicated to the offline estimation of the absolute-
orientation angle and parameters of the robot’s model. However, when
the absolute orientation is required in a feedback control loop, it is nec-
essary to estimate it online. It will be shown — similarly as in previous
chapter — that various measurement instruments can be used to improve
the absolute orientation estimate. The main problem is to properly de-
tect the impact event. A closely related problem is to achieve a timely
impact by lowering the swing leg at the right moment. Relative angles
in combination with walking robot model provide sufficient information
for estimation of the absolute angle, for experimental verification, see the
work of [Lebastard et al. (2006)]. However for the practical implementa-
tion it must be possible to detect when the swing leg hits the ground and
the impact event occurs. This is due to the hybrid nature of the robot
model. Each time the impact event occurs the impact map is utilized
and the swing phase model is reinitialized with new initial conditions.
Moreover the roles of the legs are swapped. However, if the impact is not
detected, then the model no longer describes the reality and the absolute
angle estimator based on such a model will not work properly.

Apart from the proper detection of the time instant during which the
impact occurs the quality of the absolute angle estimate has direct effect
on the stability of the closed loop. Walking gait of the robot is usually
encoded using the absolute angle of the stance leg. For successful walking
the swing leg must be lifted from the ground into the air, high enough
to avoid scuffing. To initiate the impact, the swing leg must be lowered
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Read measurement y(t).
Apply control w(ty).
Detect and process impact event.
Measurement update of &(t|tx).
Time update @ (ty 1[tx) = Fal@(teltn), u(t)):

Calculate new control input w(tg41).

Apply control w(tp4+1

).

00000 @

123 Trt1

Figure 4.1 — Signal flow of closed-loop control with state estimator.

to hit the ground. Since this motion is usually encoded according to the
absolute angle of the stance leg it is clear that an inaccurate estimate of
the absolute angle leads to premature or delayed impact. This can cause
a loss of robot’s momentum and eventually lead to flipping the robot
backwards and falling on the ground.

Two algorithms that are widely used for state estimation were studied —
the well known Extended Kalman Filter and it’s Jacobian-free alternative,
the Unscented Kalman Filter.

The main goal of the estimator is to estimate the absolute orientation
angle from available measurements. Basic signal flow of the closed-loop
control is shown on the figure 4.1. From the figure, it is clear that the
control algorithm is using predicted estimate calculated by the state esti-
mator. The prediction of state and measurements is based on the discrete
model of the robot dynamics and measurements. To detect the Impact
Event (IE) several different sensors can be used. A reliable way how to
detect that the leg is on the ground is to use a contact switches mounted
on the bottom of the legs. An impact usually results is an abrupt change
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of torso angular velocity, this can be measured using a gyroscope mounted
directly on torso, as depicted on fig. 4.2. However, the gait of the robot
can be designed so that the jumps in the velocities are minimized. In
such an event the detection based on the gyroscope might be unreliable.
For methods used to design such a trajectory see [Anderle and éelikovsk)’f
(2014)]. Another way of detection is based on the accelerometer mea-
surements. The acceleration of the torso changes dramatically when the
robot swing leg lands on the ground — this leg becomes the new stance
leg and the weight of the robot is shifted to this new stance leg which
acts as a new pivot, see the fig. 4.2. Mathematically this means that the
model of the robot will fail to predict the measurements of the accelerom-
eter. However, the prediction of the acceleration measurements should be
radically improved by using the impact map, that is, by changing the co-
ordinate system and reinitializing the robot’s velocities. Mathematically
this condition can be written as

€pa = (ya - aps)T(ya - é’ps) < (ya - aps)T(ya - aps)? (41)

"
where y,, denotes the accelerometer measurements, a,,; denotes proper ac-

celerations prior to applying the impact map. Vector dgs denotes proper
accelerations after applying the impact map. Regardless of the impact de-
tection method, it is assumed that the impact will be successfully detected
using sensors. Because the measurements are lagged one sampling time
period, the information about the impact is always available Ty seconds
after the impact has occurred. The model is not used to predict the im-
pact, since this prediction is not reliable. Therefore if the impact occurs,
the one step ahead prediction — calculated during the time update — is
not valid and should be updated once the information about the impact
is available. This update is done prior the measurement update, so that
the measurement update is carried out using valid prediction. The robot
estimator must store the information identifying the swing leg, so that it
is possible to properly assign the encoder readings to the swing leg and
the stance leg. Once the impact is detected, the encoders are reassigned
accordingly.
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0 0/ X=X

Figure 4.2 — Robot schematics with change of coordinate system.

4.1 Extended Kalman Filter

The algorithm of the Extended Kalman Filter (EKF) can be used to
estimate the state of a nonlinear dynamical system [Simon (2006)]. For
the application to the walking robot, the estimator must be extended with
the model of impact. The impact map is assumed in following form

T (te) = Az (t), wr(t), (4.2)

where wy(tg) € N(0,X;) are the random disturbances acting during the
impact, uncorrelated with it’s past samples, or with w(tx) and v(¢) or
their past samples. The closed-loop control based on the EKF can be
summarized in following steps.
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4.1. Extended Kalman Filter

1. The EKF filter is initialized with

(to) = E[z(to)] (43)
P(to) = E[(z(to) — &(to))(x(to) — &(t0))"] (4.4)

2. For kK =1...N carry out following steps.

(a)
(b)

Read the measurement y(tx) and apply the control w(ty).

Analyze if impact has occurred (using contact switches, gyroscope
or accelerometer). In case impact has occurred, swap the encoder
measurements for the swing leg and stance leg. Update the state

and covariance prediction as

Z(trlte—1) = A@(trlte—1)) (4.5)
P(tr|tr) = Fr(te)P(tlts)Fr(te)T + Ly(ty) L (ty) .
(4.6)
where
oA oA
Fi(ty) = oz , Li(ty) = w (4.7)
T | z=a(txltr1) W z=a(tyty 1)

w=0 w=0

Calculate Jacobians associated with linearisation of the robot’s mea-
surement model.

ohy _ ohy

@=d(te|tr_1) OW | 2 (ty]tr_1)
w=0 w=0

H(1)) = (48)

Measurement update: calculate the Kalman gain and the current
measurement estimate

K(tr) = P(tg|tr—1)H(tr)" (H(tr)P(txltr—1)H(tr)" +
M (1) ZrM(tx)") (4.9)
Y(tx) = ha(2(tgltr—1), u(ty),0). (4.10)
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Perform the correction of the covariance and state estimates using
new measurement.

Z(t|te) = 2(tklte—1) + Ke(y(te) — 9(tr)) (4.11)
P(tplty) = (1 — K(t)H(tx))P (tr]te—1) (4.12)

(e) Calculate Jacobians associated with linearisation of the dynamic
equation of robot.

_9a _ %

ox x=&(ts|tr) ow x=&(ts|tr)
w=0 w=0

F(ty) ,  L(tg) (4.13)

(f) Time update: perform the covariance update and state prediction.

P(tii1ltr) = F(to)P(te|te)F(te)" + L(t) SoL(ts)”  (4.14)
@(tpa|tr) = Fa(@(teltr), u(ty), 0) (4.15)

(e) Calculate new control input w(tg.1).

During experiments it has been found that discretisation of the robot
dynamics by the explicit Runge-Kutta method of fourth order leads to
very complicated Jacobian matrices. And the Runge-Kutta algorithm is
feasible only for the most simple case — a simple inverted pendulum —
for more complex systems — even the two link robot — the Jacobians
in explicit form required for the EKF algorithm are very complex. Also

0A

Jacobians . and — are of very high complexity, this renders the equa-

tion (4.6) very unpractical. A simple heuristic to circumvent the problem
is to update the covariance P(tg|tx—1) — in the event that the impact was
detected — by a simple rule

P(tk|tk,1) = ].S(tk|tk71) + cr1, (4.16)
where P(t|t;_1) is obtained by swapping the entries of P (t|t;_1) accord-
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4.2. Unscented Kalman Filter

ing to the impact change of coordinates, 1 denotes the identity matrix of

appropriate dimensions and ¢y is a correction factor. A drawback of the
EKF is the inability to use Coulomb friction model due to its discontinu-
ous nature. Nevertheless, the effect of the Coulomb friction is significant
only during slow motion of the robot and is not important during agile

walking.

4.2 Unscented Kalman Filter

The algorithm of UKF extended with the impact model can be summa-
rized in the following steps.

The UKF is initialized by following estimates

z(to) = E[z(t0)],
P(to) = E[(z(to) — &(to))(x(to) — &(t0))"].

For k =1... N carry out following steps.

(a)

Read the measurement y(t;) and apply the control u(ty).
Process IE.

Analyze if impact has occurred (using contact switches, gyroscope
or accelerometer). In case impact has occurred, swap the encoder

measurements for the swing leg and stance leg.
Generate sigma points for the estimation of impact

(tk|tk 1) =

%

i("“)(tk) . ( nP(tk|tk,1)>‘ i=1,...
(2
Propagate sigma points using the robot impact model

z, (el 1) = A@D(telty 1)),  i=1,...

Bltplte) + 2D (ty)  i=1,...
( tk|tk1> i=1,...

2n (4.19)
,M
,N

2n. (4.20)
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(d) Calculate estimate of the robot state after the impact

2n
1
& (t|tr—1) 2$+( (telte— 1)+% Vitkltr 1), (421)
z 1

(e) Estimate the covariance of the state estimate after the impact

P; (tk|tk_1) = P;a(tﬂtk_l) + P;b(tkﬁk:—l) + 37, (4.22)

2n

2n

1 .

PEu(telty1) = 5 (( O (tfti-) = & (b))
=1

) - T
(@D (teltic) =" (trlti-n) ).

2n

1 i X
Py (thlte-1) = o - ( (7 tlti 1) = & (tltr 1))
=1

(a:;f(” (trlte—1) — 2T (tk|tk1)>T) -

4. Measurement update.

(a) Generate sigma points for the estimation of output:

Btplte_) + () i=1,...,2n  (4.23)
( Peltr1) ) i=1,....n  (4.24)

%

5g<n+z>(tk)=—( nP(tkuk,l)) i=1,...,n  (4.25)

(tk|tk 1) =

(b) Propagate sigma points using the robot measurement model
y () = ha(zD (), u(ty)). (4.26)
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(¢) Calculate current estimate of the outputs as

2n

Bln) = 5 >y t) (1.27)
i=1

(d) Estimate the covariance of the predicted measurements

2n
Py(tr) = % > ( (y(i)(tk) - @(tk))
i=1
(y(i) (k) — @(tk))T> + g (4.28)
(e) Estimate the cross-covariance between &(ty|tx—1) and y(tx)
2n
Poy(tr) = % > ( (w(i) (tx) — i(tk|tk,1))
i=1
ORI @(tw)T) . (1.29)
(e) Perform the measurement update
K(tg) = Py (tr) P, () (4.30)
E(tete) = &(tltr—1) + K(te) (y(te) — §(tx)) (4.31)
P(tg|tr) = P(trltr—1) — K(tx) Py (te) K (tr) " (4.32)

3. Time update.

(a) Generate sigma points for one-step-ahead state prediction:
2D (ty) = a(teltr) + 2D (te)  i=1,...,2n (4.33)
D (1) ( P (t4]tr) ) i=1,....n (4.34)

T
F0) (1) = — ( np(tk|tk)>A i=n+1,....2n  (4.35)
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(b) Propagate sigma points using the robot model (2.29), that is

2O (tg 1) = Fa(@D (1), w(tr)). (4.36)
(c) Calculate one-step-ahead prediction of the state as

2n

3 1 i
Z(tg1|tr) = o 2 2 (tys1). (4.37)
i=1

(d) Estimate the covariance of the one-step-ahead state estimate
1 2n

P(tri1lty) = on Z ( (w(i) (tkr1) — Ci9(l‘fk+1|tk))

(w(i)(tkﬂ) - @(tk+1|tk))T) + g (4.38)

(d) Reuse the sigma points for the potential estimation of impact and
propagate sigma points using the robot impact model

200 (1) = MA@ (1)), (4.39)

(b) Propagate sigma points using the robot model (2.29) for potential
estimation of impact

2 (tee1) = Fa(@D (te), wty)). (4.40)

4.3 Application of EKF and UKF to absolute an-
gle estimation for simulated three-link bipedal
walking robot

This subsection is devoted to a simulation study and comparison of the
EKF and UKF estimation algorithms. Both algorithms were used to
estimate the absolute angle of the three-link walking robot depicted on
the fig. 4.3. The estimation algorithms were tested in closed-loop with
a nonlinear controller. The controller was originally designed in |Grizzle
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Y Soe s Yy

®2

©01/= qf §

X OC’ X

Figure 4.3 — Definition of configuration angles: (Left) EKF/UKF design.
(Right) Controller design.

et al. (2001)]. The controller was adopted here for a three-link model
of walking robot. The parameters of the three-link model are based on
five-link laboratory prototype described in [Anderte et al. (2015)]. The
three-link model is composed of two legs and a torso. Due to absence
of knees the robot model is unable to flex the legs during the walking
cycle. This results in premature contact of the swing leg with the ground.
A solution to this problem was proposed in [McGeer (1990)], where the
author suggests to mount small flaps on the end of each leg, and fold the
flap of the swing leg to avoid the contact and unfold it when the contact
should be initiated. In the following simulation example the solution based
on foldable flaps is simulated. The three-link model is a simplification of
more complicated model which describes also the movement of knees.
However, three-link model comprises all essential challenges which needs
to be addressed during the design of estimator of the absolute-orientation
angle for a bipedal underactuated walking robot. The key problems that
needs to be addressed are: complicated nonlinear dynamics with fast and
unstable behavior and a hybrid model resulting from contact with the
ground. The estimation of the absolute-orientation angle must be of high
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Table 4.1 — Parameters of the 3-link robot

I, 1o, I3 length of 1, 27 and 34 link [m]

leys ley, leg  center of gravity of 15, 28d and 3" link  [m]

mi, mg, M3 mass of 15¢, 224 and 3™ link [kg]
I, I, I inertia of 15¢, 27 and 3" link [kg.m?|
T1, T2 torque generated by 15 and 24 motor ~ [N.m]

g gravitational acceleration [m.s™2|

quality since whole motion of the robot is encoded using this information.
An imprecise estimate leads to loss of robot’s momentum and eventually
destabilizes the feedback control loop. The closed-loop works with two
sets of configuration angles. One set — denoted as g° — is defined with
respect to sensors and this set is used for the design of EKF and UKF
observers, since the dynamical model based on this configuration directly
predicts the measurements taken by the sensors. The nonlinear controller
is based on a different set of configuration angles denoted as g¢. This set
results in less complicated matrices of the robot model and the use of the
particular set of configuration angles results in more natural limit cycle.
Physical parameters of the robot are listed in tab. 4.1. Values of physical
parameters of the robot are given in the following table

L =0.535, Iy =0.535 I3=0.25,
le, = 0.2675, lo, = 0.2675, I, = 0.1189,
my = 0.4192, my = 0.4192, m3 = 1.1646,
I =0.0034, I, =0.0034, I3=0.0182.

(4.41)

4.3.1 Measurement and dynamical models used for ob-
server design

or o,r

Configuration angles are defined by two relative angles ¢;", ¢, and one
absolute angle ¢5'“. These angles are defined in accordance with the sen-
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sors used for measurements. In this simulation example relative angles
q7", ¢" are assumed to be measured using optical incremental sensors.
Angular velocity ¢ of the torso can be directly measured using a gyro-
scope — which is a part of an IMU mounted on the torso, as depicted on
fig. 4.3. Where [;,, denotes the length from the hips to the IMU. Finally
the IMU also includes a planar two axis accelerometer which provides the
measurements of the proper acceleration of the torso in the coordinates
of the IMU. Measurement model is given as

yqo,'r- = qO,T + €gor = [qi)’r7 qg,T]T + [eq?r, eq;,r]T (442)
v = 8" e <4.4s>
Yo = Qps + eags = [aps,xa aps,y]T + [eags,m’ eags’y]T. (4.44)

Errors of the measurement are all normally distributed, uncorrelated across
time, egor ~ N(0,Ry) , egoa ~ N(0, Rgyro), €qr, "~ N(0,Rgee). The
proper acceleration measured by the accelerometer is obtained using

a,, =R (¢3) (11R+(<p1) [90;] + limuR ™ (¢3) [903] - H) :
1 ¥3 g
(4.45)

where ¢ and 3 are absolute angles defined as on the right part of the
fig. 4.3. These angles are defined as

o1 =q)" +q3" —, (4.46)
02 =qy" + a3, (4.47)
P3 = q3". (4.48)

Note that the matrix Rt (p1) can be written as

+ _ | cos(pr) sin(pr) | _
ey = [—sin«ol) cos(gal)] -
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o,r 0,a

—sin(gy")  cos(q]") —sin(qg’a) cos(q3™)

_ [ cos(qy") sin(qf’T)] [ cos(gs) sin(qg’a)] .

(4.49)

Matrices R*(¢3) and R™(¢3) are given as (3.25). The components of the
proper acceleration obtained in the accelerometer coordinate system X,
Y" are obtained by substituting (4.49) and (3.25) into (4.45), resulting in

oo | _ _y | cos(@l”) sin(a”) || @+ |
aps,y - Sin(q?ﬂﬂ) COS(QTJ‘) _(q.i)’T + (jgya)2
0,0 o0,a W 0,a 0
ol | B, (8Os ) msinlay ) O] )
—(d5™) sin(gg™)  cos(qz™) | |9
The model of the robot defined by configuration angles q° is given as
D,(q°)g° + Co(q°,4°)q° + Go(q°) = Bou (4.51)

where the entries of the matrix D, are given as

Dy11 = B,

D12 = —Bacos(q)" — q3"),

Do = P1— Bscos(qy") — Bacos(qy” —g3),

Dy 22 = B2,

D23 = 2 — Bacos(qy” —aq3"),

D33 =01+ B2+ 3 — 285 cos(q]") — 2Bacos(q]” —¢5™") (4.52)

and the remaining entries are completed by symmetry. The elements of
matrix C, are as follows

Co11 =0,

Con2 = —PBasin(ay” — a3 )(@3" +d5"),

Con3 = —Pssin(q]") gy — Basin(qy" — ¢3")(g3" + 43)
Coz2.1 = Basin(qy” — g3 )(@7" + 5,

Co2.2 =0,
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Cop23 = Basin(qy” — 3" ) (47" + 45%)
Coz1 = (Bssin(gy”") + Basin(qy” — ")) (7" +d57%),
Cop = —Pasin(q]" — q3") (45" + d45*),

0,

Cos1 = Bssin(qy")gy" + Basin(q)" — ¢ ) (@) —¢57") (4.53)

Vector describing gravity effects G, and matrix mapping motor torques
to joint torques B, are given as follows

9B sin(q)"" + ¢37)

G, = —gPrsin(gy” +¢5) :
9(Bssin(gy" + g5*) — Brsin(gy” + g5*) — By sin(g3™))
(4.54)
-1 0
B,=|0 -1 (4.55)
0 O
The parameter substitution is identical with (3.81) and is given as
Br =1+ Bmy+ ims + 2my,  Bo=I+ml2,
Bs = I3 + mslZ,, B = lile,ma,
Bs = liley;ma, Bs = (lhma + limg + I, ma),
Br = le,ma, Bs = leyms,
Bg = m1 + mo + mg. (4.56)

Note that parameter g is used only in the unpinned model of the robot.
The vector field corresponding to the continuous state-space model is

-0

q
_ _ 457
Fo D, (—Cog’ — G, + Bou) (4:57)

The associated EKF and UKF estimators are reinitialized each time an
impact event is detected. The detection itself can be done using several
methods as was written at the beginning of the chapter 4. The impact
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map is calculated as described in section 2.2. The additional entries for
the extended matrix associated with the unpinned 5DoF model of the
3-link robot required for the calculation of the impact map are given as

Doean = —P6cos(q]" + q5”)

Doe a2 = Prcos(qy” +q5%)

Doe,a3 = Bz cos(gs®) — Bscos(qy” + g3™) + Brcos(gs” +¢57)
Doe,a,a = By

Dyess =0

Does1 = Besin(qy" +q3%)

Does2 = —Prsin(qy” + q5*)

Does3 = Besin(qy” +¢5%) — Brsin(qy” + ¢5*) — Bz sin(gg®)
Does55 = Py (4.58)

and the remaining entries are completed by symmetry. The impact results
in discontinuous change in angular velocities. That is, the state vector
x> = [q¢7", 45" 45" 47", 45", 43" )T just before the impact will be
mapped to a new state o> = [¢7", 65", ¢, 47", 45", 45 "]”, which
represents the state of the robot just after the impact. Finally, the leg

swapping is accomplished by the following transformation

~o0,r __ _o,r ‘o,r __ 0, +
4 =49 , 9 =4
~0,r ___o,r FOT _ 50T+
49 =47 , 495 =41
~o0,a __ _0,a ‘o,a __ -0,a+
43 =4d3 , 43 =43 (4-59)

which essentially states that the relative angles are swapped and the ab-
solute angle remains the same. The relative velocities are swapped ac-
cordingly. The new state vector &° = [}, 5", 43, ¢" ", a3, 3™ "
will be used to reinitialize the model for the EKF or the UKF estimator.
Finally, to obtain the state vector in the controller configuration angles

q¢, following transformation is required

= o - it =i+ 0

g5 =qy" +q5" —m, @5 =dy" + 45",
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a5 = 43", g5 = 43" (4.60)

4.3.2 Dynamical model for controller design

Using the Lagrangian formalism and configuration angles g, leads to the
following model

Dc(¢°)q° + Cclq®, ¢)4° + Ge(q°) = Beu, (4.61)

where u are the torques generated by actuators and the matrices D., C,,
G, and B, are defined as follows

[ B Bicky Bschy
D. = | Bacly, B2, 0
_/65(:;;37 07 BS
[ o, —Busi a5, PSS 3ds
C.= ﬁ4sij2q'f, 0, 0 (4.62)
__/85Sij3q.f7 07 0
[ — g8 sin (¢f) -1 0
G.=| gBrsin(¢5) |, Be=|[0 -—-11,
| —9Ps sin (g5) 1 1

with abbreviations si7, = sin (¢f — ¢5) , 813 = sin (qf — 45), cip = cos (qf — 45)
and ci73 = cos (¢f — ¢5). The vector fields corresponding to the continuous
state-space model used for controller design is

(4.63)

C

fo= z 1o
T IDN(-C" - Go)|” T D B

4.3.3 Generating a stable walking gait

A steady robotic walking can be viewed as a periodic motion. A controller
should ensure that the robot enters a stable limit cycle after the transient
dies out. Unfortunately, the analysis of stability of a limit cycles for such a
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complex nonlinear system as a walking robot is not trivial. To simplify the
analysis, the system is linearized using output feedback linearization. This
method requires a special set of outputs to be specified. These outputs
— in robotics also called virtual constraints [Westervelt et al. (2007)]
— are asymptotically zeroed via the feedback resulting in a reduction of
degrees of freedom, which usually also amounts to achieving the desired
control task. The reduced system — called zero dynamics — can be used
to asses the stability of the overall system if certain conditions are met,
for an authoritative account on this method see [A. Isidori (1999)]. The
number of virtual constrains that can be asymptotically satisfied is equal
to the number of independent actuators. A three-link robot has three DoF
and two actuators, therefore the reduced uncontrollable system has only
one degree of freedom. Based on the zero dynamics and the method of
Poincaré [Khalil (2002)] one can design a feedback controller that forces
the robot to enter a stable limit cycle if the robot has sufficient initial
momentum |Westervelt et al. (2007)], |Grizzle et al. (2001)].

Controller will be designed using q¢ configuration angles due to follow-
ing reasons. The matrices of the robot model are less complicated and
the design procedure of the controller is described in detail in detail in
[Grizzle et al. (2001)] for the model defined using q¢. Moreover, the re-
sulting limit cycle is more natural than the limit cycle generated by the
controller designed in the coordinates of the observer. Also, note that
the parametrisation of the robot model does not change with different
sets of configuration angles. This shows that identification methods from
section 3 can be used for redesign of the controller.

Virtual constraints encoding a simple walking pattern can be defined as

c hé (g€ C _ Fad
w’ = wi = i(qc) = ch q5c , (4.64)
Wy h5(q©) 92 t 41
where the virtual constraints w® are functions of configuration angles. By

zeroing the constraint w{ robot will maintain the desired torso orientation
denoted as qg’d. Zeroing the second constraint ensures mirroring of the
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legs orientation. Direct computation yields
W = L} h® + Ly Ly hu, (4.65)

where Ly, and Ly  denote Lie derivatives along the vector fields f. and
g, respectively. By defining a decoupling control

v°:= L7 h®+ Ly Ly h‘u (4.66)

and a local co-ordinate transformation

c c c,d
wy 43 — ds
D(q°) = |ws | = | S +qf |, (4.67)
q a5

the system can be written in a decoupled form |Grizzle et al. (2001)]

w* v°
= . . . . . 4.68
Qi CO(wC7wC7QT7Qf) + Cl(wc7wc7Qf7Qf)T’vc ( )

Where v¢ denotes the virtual inputs. With the application of following
feedback control

1 ) cenl cela . a/2—a
of = = (—sign(ed)led|” — sign(6)lol ), (4.69)

where 0 < a < 1 and

1 : sCy|,C|2—a
¢ = qi + (5 — a)sign(ed;)ed; 2 (4.70)

it can be shown that for the design parameters e = 0.1, a = 0.9, qg’d =7/6
and robot model parameters (4.41), the generated limit cycle is stable,
provided robot starts with sufficient momentum.

4.3.4 Simulation results

This subsection contains the simulation results based on the three-link
model described in the section 4.3. The simulation is focused on evaluating

73



Chapter 4. Online state estimation

the performance of the absolute angle estimation using the EKF and UKF
estimation algorithms, described in sections 4.1 and 4.2. The data are
collected during the closed-loop control using the controller described in
subsection 4.3.3. The initial conditions of the robot are set so that it
has sufficient momentum to advance in the forward direction. The initial
state of the EKF and UKF estimators is set so that there is a 10% error
in the estimates of angles and all the estimates of velocities are set to 0.
These initial conditions are set in this way because in order to get the
closed-loop working the robot must be pushed forward and it is usually
not known in advance what the velocities will be. The initial state and
its initial estimate are set to

T
cc(to):[2.65, 343, 0.1, 1.5, —2.5, 0.5] , (4.71)
T
ﬁs(to)z[z.zas, 31, 0, 0, 0, 0] : (4.72)

The initial covariance P(tp) of the estimate is set to identity matrix of
appropriate dimensions. The duration of the simulation T is set to 5 [s].
During this time the robot makes several steps. The sampling time 7§ of
measurements was 0.01, resulting in N = 500 samples per one simulation
run. Integration time 7; for the Euler’s method was set to T; = T/8 and
for the Runge-Kutta method to T; = T/2. Four different setups of sensors
are studied. In the first setup, only relative angles are available, this
corresponds to use of IRC sensors only. The second setup uses IRC sensors
and additionally also a gyroscope to measure the angular velocity of the
torso. This setup will be denoted as IRC & gyroscope. The third setup
uses IRC sensors and additionally also an accelerometer mounted on the
torso to measure proper accelerations of the torso in it’s body coordinates.
This setup will be referred to as IRC & accelerometer. Finally the fourth
setup assumes the usage of all of the previous sensors in conjunction,
that is IRC sensors, the gyroscope and the accelerometer. The setup is
denoted as IRC & IMU. The covariance matrices of measurement errors
for particular sensors were set to

Eirc = 10710]12><27 Egym = 10727 2acc = 1072]12><27 (4-73)
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where X;,.. denotes the variance of the error in the measurements of the
IRC sensors. Variance of the gyroscope measurement errors is denoted
as Mgyro- And the variance of the accelerometer measurement errors is
denoted as 3,... The measurements are generated as described is section
4.3.1. The covariance matrix of the random disturbances acting on the
robot is given by diagonal matrix

o = diag[107%,1072,107,1072,1072,107]. (4.74)

The covariance of the impact for the case of the EKF algorithm was
calculated using the heuristic (4.16) with ¢; = 0.0075 tuned manually.
The performance of the EKF and UKF algorithms was evaluated using
50 MC simulations for each setup of sensors. The following performance
statistics were used for comparison. The vector s denotes the sample mean
of total error for each state variable. Vector s = [51,..., Sy, |, where n,
is the number of states. Variable s is the average of the summed squared
errors of all simulation runs for a particular sensor setup and is calculated

as
1 N’mc
5= s, 4.75
) (4.75)
where N,,. = 50 denotes the number of MC simulation runs, 5° de-

notes the mean squared error calculated for i*" simulation run as § =

1 _ 4 . _
N Zi;iv(ﬁzo’l(tk) — x%(11,))2. The sample covariance corresponding to 3
is calculated as

Nme
1 mc » o 7
ES = m Z:Z; (S S)(S S) . (476)

Also note that 53 denotes the third entry — corresponding to the error
in the AO angle qg’a — from the vector 5. Further, 0373 corresponds
to the third entry from the diagonal of the matrix 3, and denotes the
sample variance corresponding to s3. The tables 4.2 and 4.3 show the
performance statistics of the MC simulations. Table 4.2 contains simu-
lation results when the estimators had perfect knowledge of parameters.
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Table 4.3 contains simulation results corresponding to situation when the
estimators had erroneous parameters of the robot. The errors in the pa-
rameters used by EKF and UKF are used to test the robustness of the
estimation algorithms. Table 4.2 shows that when the model used for es-
timation is known perfectly adding gyroscope or accelerometer has a little
effect on the quality of the AO estimate. However, when the model of
the system is not perfectly known, the resulting estimators benefit from
additional knowledge provided by the gyroscope or the accelerometer, as
can be seen in the table 4.3. It is also observed that the UKF showed very
stable behavior, always providing estimates of the AO. On the other hand
the EKF failed to provide reasonable AO estimates and the closed-loop
became unstable. This behavior was observed only when the parame-
ters of the system used for the time update of the EKF were not known
perfectly. It can be seen, however, that adding additional sensors was
beneficial for the estimation performance. This shows that by using the
hybrid model in the state estimators improves the estimates significantly.
It also shows that the algorithms of EKF and UKF extended with the
impact model can be used in the closed-loop control of the underactuated
walking robots. Typical plots of the UKF estimator — estimating the
vector x° — are given on the fig. 4.4. The abrupt changes that can be
seen in the plots are due to the impact and relabeling. It can be seen that
the estimation performance is excellent even in the presence of impact.
It should be noted here that without the incorporating the impact to the
estimator, the estimator fails to provide useful estimates.
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Table 4.2 — Estimation with perfect knowledge of model parameters.

EKF
Error stat. IRC IRC & Gyro. IRC & Accel. TIRC & IMU
53 531 x 1074 1.92x 1072 143 x 1073 1.22x107°
023 3.82 x 10710 2,99 x 1072 9.70 x 107°  2.75 x 107"
Yo 2.82x107% 7.04x 1072 577 x 107! 1.93 x 1072
tr(2s) 1.74 x 1077 723 x107®  7.40 x 10° 1.14 x 1078
| UKF
Error stat. IRC IRC & Gyro. IRC & Accel. TRC & IMU
53 3.70 x 107° 6.85 x 107° 213 x107™° 242 x 107°
023 6.34 x 10711 3.06 x 1072 4.24 x 10711 4.08 x 107!
S 220 x 1072 1.73x 1072 1.94x 1072 1.72x 102
tr(2s) 8.45 x 10710 750 x 107?  3.31 x 107° 1.29 x 10~

Table 4.3 — Estimation with 10% errors in model parameters.

EKF
Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
53 NaN NaN 1.95 x 10 1.29 x 10*
024 NaN NaN 1.75 x 102 1.48 x 10?
> s NaN NaN 1.38 x 10> 7.31 x 10
tr(Xs) NaN NaN 5.38 x 103 1.01 x 103
| UKF
Error stat. IRC IRC & Gyro. IRC & Accel. IRC & IMU
53 3.72 x 101 1.67 x 10°  5.67x10°! 9.55 x 10!
023 1.70 x 10> 1.52 x 10! 2.06 x 10°  2.17 x 10*
e s 3.33x10% 3.86 x 100 5.25 x 101 4.02 x 10!
tr(2s) 1.52 x 105 4.24 x 102 7.47 x 10> 2.78 x 102
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53 Conclusions

This work studies two problems, both closely related to the control of
underactuated walking robots. First studied problem is the offline iden-
tification of underactuated walking robot. The second studied problem is
the online estimation of the absolute orientation of the robot.

Offline experimental identification of underactuated walk-
ing robots

A walking robot is a highly nonlinear dynamical system. However, this
model has a special property that it is linear in parameters — after proper
reparametrization. This property would potentially allow to solve the pa-
rameter estimation problem very easily by transforming it to the problem
of linear regression. However, there are two fundamental problems that
restrict the application of the linear regression methods. The first problem
is unavailability of the measurement of the absolute orientation angle in
most bipedal robots. However, some works present a special measurement
apparatus which allows such a measurement. Nevertheless, this appara-
tus restricts the practical usability of such a robot outside the laboratory
[El Yaaqoubi and Abba (2009)], [Park et al. (2011)]. When the absolute
orientation angle of the robot is unknown, the linear regression cannot
be used, since the design matrix required in the algorithm can not be
formed. This problem leads to using measurement instruments like gy-
roscopes and accelerometers or laser distance sensors. The usage of such
sensors is, however, problematic as well since these instruments are likely
to provide noisy measurements. The noisy measurements are again rep-
resenting a problem. The usage of the design matrix containing errors in
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regressor variables leads to biased estimates of the robot parameters.

Online state estimation for underactuated walking robots

The problem of the absolute angle estimation during the walking was
studied and solved using nonlinear observers converging in finite time to
avoid the problem of uncertainty of the impact. However this solution
seems to be suboptimal. The reasons are following, the estimate is based
on the robot model, which is likely to be only an approximation to a real
robot. Because of this, the estimate is not perfect and will be affected
by the impact. A wrong estimate of the state after the impact is easily
achieved. This error can have a serious effect on the performance of the

estimator.

5.1 Contributions of the author

Offline experimental identification of underactuated walk-
ing robots

The problems restricting the application of the methods of linear regres-
sion to the problem of identification of underactuated walking robots were
solved in the chapter 3 of this work and the results were presented in
[Dolinsky and Celikovsky (2017)]. The exploiting of the linear regression
methods involve solution of the two problems. The first problem is how
to include the measurements from the inertial sensors, e.g. gyroscopes
and acceleroemters or the laser distance sensor in the regression matrix.
Otherwise this matrix can not be formed. The required mathematical
relationships were described in the chapter 3 for a complex model of 5-
link planar robot. Based on this model a generalization to other models
is straight forward. The second restriction in the application of the lin-
ear regression methods are the measurement errors of the measurement
instruments, i.e. the gyroscopes, acceleroemters or the laser distance sen-
sor. The measurement errors introduce errors in the regression matrix
and thus results in the biased estimates of the parameters. The errors
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enter the regression matrix in a nonlinear way and therefore the solution
is not straight forward. These errors can be recursively minimized using
the method of ML tailored for the walking robots. This method was for-
mulated and verified using both simulations and laboratory experiments.
The simulations shows that the ML method overperforms the benchmark
algorithms classically used in identification of nonlinear systems. The lab-
oratory experiments show that the method is very promising and results
in very accurate models with excellent prediction capability. Further, the
models can be subsequently used in control, since the key robot parame-
ters required for the controller design can be estimated.

Online state estimation for underactuated walking robots

A solution to more robust estimation of the post-impact state is presented
in the chapter 4 of this work together with the simulation study that shows
that this approach results in increased performance. Two well known esti-
mation algorithms — EKF and UKF — that are capable of incorporating
the measurement noise statistics were extended to be applicable on the
hybrid model of a walking robot. The extension in the EKF is compu-
tationally very inefficient and a heuristic alternative was proposed. The
algorithm of UKF based on the so-called unscented transformation pro-
vides a better framework to handle the problem of the hybrid nature of
the robot and the extension is much more computationally efficient than
in the case of EKF. The estimation algorithms were tested using Monte
Carlo simulations. The results show a considerable improvement in the

estimators’ performance.

5.2 Open problems

Among the interesting open problems in identification is the efficient es-
timation from closed-loop data containing noisy measurements of gyro-
scope, accelerometers or distance measuring sensors such as laser sensor
or camera. The estimation from the closed-loop noisy data is a challeng-
ing problem due to correlation between the torque measurements and the
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absolute orientation measurement errors. Another open problem is to es-
timate parameters of the robot during walking on the uneven terrain, in
particular, walking on a slope. This task requires the estimation of both
absolute orientation and the estimation of the slope. Finally, extending
and validating the methods of the offline identification utilizing the lin-
ear relationship in parameters during 3D walking is a matter of ongoing
research.
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Appendix

6.1 Models of robots

6.1.1 5-link — AO referenced to the stance leg

In this subsection a model for the five link planar bipedal robot depicted
on the left part of the figure 2.1. The AO of the robot is given with
respect to the vertical and the stance leg. The absolute angles ¢ defined
with respect to horizontal and beginning of each link are given as

$1 = qf, (6.1)
b2 = qf + g3, (6.2)
$3=qi + ¢ + g3, (6.3)
b1 =i + a5+ a3+ qy, (6.4)
¢5 =i + a5 + a3+ a5 + g (6.5)

The entries of the matrices D, C and vector G for the 5DoF 5-link robot
can be obtained using symbolic software. Matrix D is given for the ex-
tended — unpinned — model to allow for the calculation of the impact

map.

Dy =9L+ L+ I3+ Iy + Iy + (2laleyms) cos(qy + g + q5) + (2l lams+
2l1le,my) cos(qy + g5 + qy) + (2l1lams + 2l1lomy + 2l1loms+
2111, ma) cos(qy) + (2l1l3myg + 21113 + 2l1leams) cos(qs + ¢5)+
(2lalzma + 2lal3ms + 2lal.,m3) cos(qz)+
(2011 ms) cos(qh + a5 + ¢ + a&) + BBma + 13mg + Pmy + 13ms+
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Bms + 3my + B3ms + Bmy + Bms + Bims + lflml + lémg-l—
2 2 2
lcgmg + lc4m4 + lc5
(2lalyms + 2lalc,my) cos(qy + qy) + (2lale;ms) cos(qs) + (2l3lams+

2l3lc,ma) cos(qy), (6.6)

ms + (2l3le,ms) cos(qy + ¢5)+

Dio = I+ I3+ Iy + I5 + (2lale;ms) cos(qs + g + g5) + (Iilams+
Lile,ma) cos(qy + q5 + qy) + (lilams + Lilomy + liloms+
lile,ma) cos(qy) + (Iilsmyg + lilsms + l1leyms) cos(qgh + q5)+
(2lalsma + 2lal3ms + 2lal.ym3) cos(qz)+
(lilesms) cos(qh + 5 + g + qb) + l3ms + I3my + 3ms + 3ma+
I3ms + Uims + 12,ma + 12, ms + 12 my + 12

(23l ms) cos(qy + g5) + (2lalams + 212l ma) cos(qs + q4)+

(2l4lesms) cos(qt) + (2l3lams + 2131, m4) cos(qy), (6.7)

ms—+

D3 =13+ Iy + I + (Iale;ms) cos(qz + gy + q5) + (lilams+
lileymy) cos(gy + g3 + qy) + (Lilzmy + lilzms+
lileams) cos(qy + q5) + (lalsmyg + lalsms + laleyms) cos(gs)+
(lileyms) cos(gh + g5 + qf + q5) + B3ma + 3ms + lfms + 12, ma+
12,my + 12 ms + (2slesms) cos(q + ¢5) + (lalams+
lolc,ma) cos(qy + qy) + (2lalcsms) cos(qs) + (2l3lams+
2l3l.,m4) cos(qy), (6.8)

Dy 4 = Iy + Is + (laleyms) cos(qs + i + g5 )+
(lilams + lile,ma) cos(g; + g5 + ¢) +
(lilesms) cos(qh + g5 + di + ¢5) + lims + 12,ma + 12 ms+
(I3lesms) cos(qy + q5) + (lalams + lale,ma) cos(gz + q4)+
(2l4lcsms) cos(qs) + (Islams + 31, myq) cos(q)), (6.9)

D15 = Is + (l2lesms) cos(qs + g4 + g5)+

2

(lilesms) cos(qy + g5 + qy + q) + I, ms + (I3le;ms) cos(qy + g5)+
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(lale;ms) cos(gs), (6.10)

D6 = (lamg + lamy + loms + lc;ma) cos(qf + q3) + (Ismy + lgms+
legms) cos(q + g5 + q3) + (lesms) cos(q + g5 + g5 + g4 + ¢5)+
(lhma + lymg + lymyg + lyms + le,my) cos(qf) + (lams+
leyma) cos(qi + g5 + g3 + q4), (6.11)

D1,7 = (—lgmg —lomyg — lomg — ZCng) sin(q% + qg) + (—l3m4 — lgms—
lesms)sin(qf + g5 + q3) + (—lesms) sin(qy + g3 + g3 + ¢ + ¢5)+
(—l1m2 — l1m3 —limyg — Z1M5 — lclml) sin(q‘f) + (—l47ﬂ5—

leyma)sin(qf + g5 + g5 + q4), (6.12)

Doy = Ir+ I3 + Iy + I5 + (2lale,ms) cos(qs + gy + g5) + (2lalzma+
2slzms + 2ol ms) cos(qy) + 13ms + 13my + 13ms + 13my + 2ms+
ims + 12,mo + 12 mg + 12 my + 12 ms + (23le;ms) cos(qf + ¢5)+
(2lalyms + 2lalc,ma) cos(gs + 1) + (2laleyms) cos(gs) + (2Uslams+
2l3lc,ma) cos(qy), (6.13)

D273 =3+ 1+ 15+ (lglc5m5) COS(qg + qZ + qg) + (l2l3m4 + lolsms+

lole,m3) cos(qy) + 13my + 13ms + 13ms + lémg + lg4m4 + lg5m5+
(2l3lcsms) cos(qy + g5) + (lalams + lale,mya) cos(qs + 1)+
(2l4lesms) cos(qt) + (2l3lyms + 213l.,m4) cos(qy), (6.14)

Doy = Iy + Is + (laleyms) cos(qs + q1 + ¢5) + 2ms + lg4m4 + lg5m5+
(I3lesms) cos(qy + qi) + (lalams + lale,my) cos(qs + q4)+
(2l4lesms) cos(qs) + (Islyms + I3le,myq) cos(q)), (6.15)

Dy 5 =I5 + (lale;ms) cos(qs + gy + q5) + l35m5 + (I3lesms) cos(qy + g5 )+
(l4l05m5) COS(qg), (616)

Dy ¢ = (lamg + lama + lams + lc,ma) cos(qf + ¢5) + (Isma + lams+
lesmi) cos(qf + g5 + g5) + (leyms) cos(qf + ¢ + g5 + ¢ + g5) +
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(lams + le;my) cos(qy + q3 + g3 + q4), (6.17)

D277 = (—l2m3 — l2m4 — 12m5 — lCng) sin(q‘f + q;) + (—l3m4 — l37ﬂ5—
leyma)sin(qy + q3 + q3) + (=lesms) sin(qf + g5 + g5 + g5 + q5)+
(=lams — leyma) sin(qf + g3 + 3 + q4), (6.18)

Dsg = I3+ Iy + Is + l3mg + B3ms + [§ms + 2,ms + 12, ma + 2 ms+
(213lcsmis) cos(qy + g5) + (2lale;ms) cos(qs) + (2l3lams+
2l3lc,ma) cos(qy), (6.19)

D374 =11+ 15+ m5lz + m4l24 + m5lg5 + (13l05m5) COS(QZ + qg)—i-
(2l4lesms) cos(gy) + (I3lams + [3le,ma) cos(qy), (6.20)

D35 =15+ m5135 + (I3lesms) cos(qy + q5) + (lalesms) cos(qy), (6.21)

D36 = (I3my + l3ms + l.;m3) cos(qf + g5 + q3)+
(lesms) cos(qf + g5 + g5 +qy + q5) + (lams+
leyma) cos(qf + g5 + g5 + q4), (6.22)

D37 = (=l3myg — l3ms — lc;m3) sin(qy + g5 + g3)+

(—lesms)sin(qf + g3 + g5 + g4 + q5) + (—lams—

leyma) sin(gy + g3 + g5 + qy), (6.23)
Dyy = Iy + I5 + msl3 + myl?, + mslZ + (2lule;ms) cos(q), (6.24)
Dys = I + mslZ + (luleyms) cos(qh), (6.25)

Dy = (leyms) cos(qy + g5 + g5 + ai + g5) + (lams+
leyma) cos(qt + 5 + g3 + q4), (6.26)

Dy = (=lesms)sin(q) + g3 + q3 + q4 + q5) + (—lams—
leyma) sin(q] + g5 + g5 + qy), (6.27)
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Ds5 = Is + msl?., (6.28)
D56 = leyms cos(qf + g3 + g5 + 44 + ¢5), (6.29)
D57 = —lesmssin(qf + g3 + g3 + g4 + q3), (6.30)
Deg = D77 =mi +mo +m3+my+ms, Dg7=0. (6.31)

The remaining entries of the matrix D are completed by symmetry. En-
tries for the matrix C are

C11 = (—=g5lale;ms — qylale;ms — gslale,ms) sin(gs + 4 + g5) +
(=galilams — g5lilams — ¢lilams — ¢5lile,ma — G5lile,ma—
qrlile,ma)sin(gy + g5 + q4) + (—dElalesms) sin(qr) + (—g5lale;ms—
q3lilesms — qylile;ms — gylilesms) sin(gy + g5 + @y + g5)+
(—dilslesms — gslslesms) sin(qy + q5) + (—g5l2lams — ¢ylalams—
gzlale,ma — ylole,ma) sin(gs + 1) + (—galilama — g3lilzms—
Gzlilsma — gslilsms — ¢5lile;ms — g3lileyms) sin(gs + q3)+
(=qilslams — qlsle,ma) sin(qy) + (—g5lalama — g5lalsms—
Gslolesms) sin(qs) + (—galilams — g3lilamy — goliloms—

Gylile,ma) sin(qs), (6.32)

Cr2 = (=gslalesms — qylale;ms — Gylale;ms) sin(gy + g + q5) +
(—qilhlams — ¢alilams — gslilams — gylilams — gilile,ma—
dslle,ma — gglile,ma — gylile,ma)sin(gy + g5 + ¢)+
(=g5lalesms) sin(gs) + (=41 lile;ms — Golilesms — glile;ms—
dalilesms — dglilesms) sin(qs + g5 + g5 + ¢5) + (—qilsle;ms—
dslslesms) sinqy + q5) + (—g5lalams — gylalams — g5lale,ma—
dylole,ma) sin(qs + qy) + (—dylslams — ylale,ma) sin(qy)+
(—dslalsma — gslalsms — gslale,ms) sin(qs) + (—¢ililsma—
qthlsms — gslilsmy — gylilsms — gslilsma — gslilsms — qilile;ma—

G3l1le;ms — gslile;ma) sin(gsy + g3) + (—47llams — ¢ililama—
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Galilams — 1lilams — golilomy — ggliloms — ¢7'l1le,mo—
Gal1le,me) sin{qy), (6.33)

= (=qilalesms — Galalesmis — ilale;ms — qylalesms—

dslalesms) sin(qs + @4 + ¢5) + (—dililams — g3lilams — g5lilams—
qalilams — ¢ilile,ma — ¢3lale,ma — @5lale,ma—

dylile,ma) sin(gs + g3 + qi) + (—dglale,ms) sin(gg) + (—glile,ms—
@3l1lesms — g5lile;ms — gylilesms—

d5lilesms) sin(qs + g3 + a4 + ¢5) + (—d4lsle;ms—

d5lslesms) sin(qy + q5) + (—qalslams — gylsle,ma) sin{gy)+
(—dil2lams — golalams — ¢5lalams — gylalams — ¢ilale,ma—
Galale,ma — gslale,ma — qylale,ma) sin(qs + qy) + (=47 lilzma—
qililsms — galilsma — galilsms — gglilsma — g5lilsms — i'lile,ms—
dalileyms — gzlileyms) sin(gy + g5) + (—qflalsma — ¢ilalsms—
Galalsma — glalsms — gilalsma — gslalsms — ¢flaleyms — golale,ma—
gslaleyms) sin(qs), (6.34)

= (=q1lalesms — gslalesms — Gilalesms — qylaleyms—

glalesms) sin(qs + g5 + q5) + (—=4{llams — ¢5lilams — g5lilams—
qalilams — gilile,ma — galileyma — g5lale,ma—

qulile,ma)sin(gh + g5 + q4) + (—GElalesms) sin(gh) + (—¢Flile;ms—
@3lilesms — gslile;ms — gylilesms—

dslilesms) sin(gy + g3 + g1 + q5) + (—dilslesms — ¢alsleyms—
G3lalesms — qylsle;ms — Gylalesms) sin(qy + g5) + (—qilalams—
galolams — gslalams — gylalams — ¢ilale,ma — G3lale,ma—
gzlale,ma — qylale,ma) sin(qs + 1) + (—qfl3lams — galalams—
qslslams — qylslams — 1lsle,ma — G5lsle,ma — g5lsle,ma—
Gylsle,ma)sin(qy), (6.35)

Cis = (=lale;ms (g1 + 4o + 3 + s + d5)) sin(qy + g5) + (—lale;ms (47 +
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43 + G5 + gy + q5)) sin(qy) + (—lale;ms (] + 5 + G5 + g4+
ds))sin(qs + gy + q5) + (—lile;ms(4Y + d5 + 43 + g4+
ds)) sin(gs + g3 + g5 + q3), (6.36)

Ca1 = (¢ililsma + ¢ililsms + ¢{lle;ms) sin(gs + q3) + (¢11lams+
Gililamyg + ¢flilams + ¢1l1le,ma) sin(qs) + (41 11lams+
qthle,ma) sin(qy + g5 + qi) + (41 lles;ms) sin(qy + 5 + g5 + g5)+
(=gslalesms — gylale;ms — qglalesms) sin(qs + gy + g5)+
(—q5lalesms) sin(qs) + (—qylsle;ms — Gylsle;ms) sin(qy + g5)+
(—=qslalams — qylalams — g3lale,my — qylale,ma) sin(qs + qy)+
(—q4lslams — qylsle,ma) sin(qy) + (—q3lalsma — g5lalsms—
glalc,m3) sin(qs), (6.37)

Cao = (—gzlalesms — dylalesms — g5lalesms) sin(qs + g4 + ¢5)+
(—GElalesms) sin(qr) + (—q5la(lsma + lams + leyms)) sin(gs )+
(—dalslesms — g5lslesms) sin(gy + q5) + (=i (Islams+
I3lcyma)) sin(qy) + (=qy(l2lams + laleyma) — G5la(lams+
leyma)) sin(gs + q4), (6.38)

Co,3 = (=4 lalesms — gylalesms — gylalesms — gylale;ms—
gslalesms) sin(qs + qi + q5) + (—dglale;ms) sin(gs) + (—qilsle;ms—
d5lslesms) sin(qy + q5) + (—qalslams — gylsle,ma) sin{gy)+
(—qilalams — golalams — g3lalams — gylalams — Glale,ma—
G3lale,my — gslale,my — Gylale,ma) sin(qs + qy) + (—4flalzmy
— q1lalzms — gylalsmy — gylalsms — gzlalsmy — G3lalsms
— q1lale;m3 — Galale;m3 — G3lale,m3) sin(gy), (6.39)
Co.4 = (=4 lalesms — gylalesms — gylalesms — gylale;ms—
dslalesms) sin(gs + ¢ + g5) + (—dslalesms) sin(gs) + (—dilsle;ms—
G3l3lesms — G3lslesms — qylslesms — Gylsle,ms) sin(qy + gg)+

(—qtlalams — gylalams — gglalams — gylalams — ¢ lale,ma—
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G3laleymy — gslale,my — Gylale,ma) sin(qs + qy) + (=47 13lams—
gylalams — galslams — gylzlams — ¢7lsle,ma — ¢lale,ma—

gslgle,ma — qylsle,ma) sin(qy), (6.40)

Cos = (—lslesms(qf + d5 + G5 + 4y + d3)) sin(qy + q5) + (—lale;ms (47 +
s +d5 + 4y + d3)) sin(gg) + (—lale;ms (41 + G5 + 43 + di+
ds)) sin(qs + q3 + g3), (6.41)

Cs1 = (¢thilsma + ¢tlhilsms + ¢Flile,ms) sin(gy + ¢5) + (4 lalams+
@5lalams + ¢flale,ma + Golale,ma) sinqs + qy) + (g1 lalzma+
qrlalsms + golalsma + Galalsms + Gi'lale,ms + golale;ms) sin(gsy) +
(@ililams + ¢ lile,ma) sin(gs + g5 + q1) + (Gilalesms+
dalalesms) sin{gs + gy + q5) + (¢ lile;ms) sin(q; + g3 + qp + a45)+
(—q5lalesms) sin(qs) + (—qylslesms — Gilsle,ms) sin(qy + ¢5)+
(=qilslams — qjlsle,ma) sin(qy), (6.42)

C32 = (1 (lalams + lale,ma) + G5 (l2lams + lale,ma)) sin(qs + q4)+
(7 (lalamy + l2lgms + laleyma) + G5 (l2lsma + lalzms+
lalesms)) sin(qs) + (glale;ms + galale;ms) sin(gs + g4 + g5) +
(—d5lalesms) sin(qs) + (—qylslesms — Gilsle,ms) sin(qy + ¢5)+
(—qgy(I3lyms + l3lc,ma)) sin(q)), (6.43)

Cs3 = (—q5lalesms) sin(gy) + (—d4lslesms — gilsle,ms) sin(q) + ¢5)+
(=q;(Islams + l3le,ma)) sin(qy), (6.44)

Cs.4 = (=g5lalesms) sin(gs) + (—q1lslesms — ¢3lsle;ms — g5laleyms—
qulslesms — gslslesms) sin(qy + g) + (—¢ils(lams + le,ma)—
Gols(lams + leyma) — @5ls(lams + le,ma) — @yls(lams+
leyma)) sin(qy), (6.45)

C35 = (=lale;ms (gt + da + 43 + da + d5)) sin(gs + g5) + (—lale;ms (g7 +
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43 + 43 + 44 + g5)) sin(qs), (6.46)

Cu1 = (GTl3lesms + ¢5lsleyms + ¢3lsle,ms) sin(qy + q5) + (¢ lalams+
Gglalams + ¢flale,ma + G5lale,ma) sinqs + qy) + (g1 lslams+
G3lalams + gslzlams + Gilsle,ma + G3l3le,ma + G5l3le,my) sin(qy)+
(@ililams + ¢ lile,ma) sin(gs + g5 + qi) + (Gilalesms+
dalalesms) sin{gs + gy + q5) + (¢Tlile;ms) sin(q; + g3 + g3 + 45)+
(—d5lalesms) sin(gs), (6.47)

Cu2 = (4113lesms + G5l3lesms + 3lale,ms) sin(qy + gg) + (¢ lalams+
gylalams + ¢5lalc,my + ¢ylolc,ma) sin{gy + qy) + (4113lams+
Gylslams + ¢slslams + G113le,ma + ¢5lsle,ma + G5lsle,ma) sin(qy)+

(q.?l2105m5 + q;l2l65m5) Sln(qg + qZ + Qg) + (—(}gl4l::5m5) Sin(Qg)v
(6.48)

Cu3 = (4113lesms + G5l3lesms + 3lale;ms) sin(qy + g;) + (¢113(lams+
leyma) + gyl3(lams + le,ma) + ¢5la(lams + le,ma)) sin(qy) +

(_qgl4lcsm5) Sin(qg)v (6'49)
Cua = —qslale;ms sin(gy), (6.50)
Cups = (—lalesms (4] + G5 + 43 + ¢y + g5)) sin(qs), (6.51)

0571 = (l05m5((ji‘l3 + q'glg + qglg)) sin(qz + qg) + (105m5((]'(11l2+
G3l2))sin(qs + gy + q5) + (les (471 + Gola + G3la + Gyla)) sin(qs) +
(d1l1lesms) sin(gs + g3 + a4 + g5), (6.52)

Cs2 = (lesms(qyl3 + d5ls + ¢3l3)) sin(qy + q5) + (lesms(dla+
dal2)) sin(qsy + gy + q5) + (lesms(47l + ¢ola + 4314 + Gyla)) sin(gs),

(6.53)

Cs3 = (lesms (4113 + gols + ¢3l3)) sin(qy + q5) + (lesms(4ila + gola+
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G5la + 43la)) sin(gs),
Cs4 = (lalesms (47 + da + g3 + 44)) sin(gg),
Cs5 = 0.
Vector G describing the gravity effects is given as follows

Gr1 = (=glesms)sin(qf + a5 + g3 + 45 + q5) + (—glams—
gle,ma)sin(ql + g5 + ¢3 + q)) + (—glima — glimg — glima—
glims — gle,m1) sin(qy) + (—glsma — glams—
glesms) sin(qf + g5 + ¢3) + (—glams — glamy — gloms—
gle;m2) sin(qf + ¢3),

G2 = (—glesms)sin(qf + g3 + g3 + ¢4 + q5) + (—glams—
gleyma)sin(qf + g5 + g5 + q1) + (—glsma — glams—
glesma) sin(qf + g5 + q5) + (—glams — glamg — glams—
gle;m2) sin(qy + ¢3),

G31 = (—glesms) sin(q] + g5 +q3 + ¢4 + q5) + (—glams—
gleyma) sin(qf + 5 + q3 + q4) + (—glamag — glams—
glesms) sin(qf + g3 + ¢3),

Ga1 = (—gleyms)sin(qf + g5 + g5 + g5 + q5) + (—glams—
gle;ma) sin(qf + g3 + g3 + q),

Gs,1 = —gle;ms sin(qf + g3 + g3 + g1 + q5).
The position of the end point of the swing leg is

Y1 =2 +lsin(qf) + lasin (¢f + ¢5)+

(6.54)
(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

+ lysin(qf + g5 + g5 + qy) + Issin (¢f + ¢5 + ¢5 + ¢4 + a5),
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Yo = 29 + 1y cos (qf) + lacos (¢f + g5)+
+ lycos (g + g5 + g3 + qf) + 5 cos (¢f + g5 + g5 + g4 + g3).

(6.63)
The relabeling map can be obtained as

W= TG G T g (6.64)
Gy =2m—q, (6.65)
G =m—q, (6.66)
i =T —qy, (6.67)
@t =2m—qy7, (6.68)
@ =T e T T T (6.69)
Bt =g, (6.70)
@ =—arT, (6.71)
TR A (6.72)
Gt =—" (6.73)

6.1.2 5-link with absolute orientation referenced to the
torso

This subsection describes further the model for the five link planar bipedal
robot depicted on the right part of the figure 2.1. The AO of the robot
is given with respect to the vertical and the torso. The absolute angles ¢
defined with respect to horizontal and beginning of each link are given as

o1 =q35+qy+qi —, (6.74)
$2 =q3 + gy —, (6.75)
¢3 = q5, (6.76)
1= g5 + qi, (6.77)
¢5 = q5 + 44 + gs- (6.78)
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The entries of the matrices D, C and vector G for the 5DoF 5-link robot
can be obtained using symbolic software by rederiving the matrices or by
using the canonical change of coordinates. Let ¢ = F be a local change
of coordinates. If the velocities are expressed as q = %—Z('] then the kinetic
energy of the robot is given — according to [Westervelt et al. (2007)] —

as
_ 1.+= .
K(a,9) = 54 D(a)g, (6.79)
where
__ OF(g)" oF
D(g) - 19 _p(g) 21 (6.80)
oq q -
g=F~'(a)
The potential energy is
V(g) =Vi(q) (6.81)
q=F"'(q)
The transformation
q F(q)
.| =1|0F(q). (6.82)
q F
q

is called a canonical change of coordinates. Using (6.80) — (6.82) and
(2.17) one can obtain the matrices D, C and G from matrices derived in
previous subsection for the case of 5-link with AO defined with respect to
the horizontal and the stance leg. The relabeling map can be obtained as

@t =g, at =g, (6.83)
ot =q, o=, (6.84)
@&t =g, @Gt =a5", (6.85)
@t =, @t =47, (6.86)
&t =q, &=t (6.87)
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