Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Control Engineering

Modeling and Optimization
of Traffic Flow in Urban Areas

Doctoral Thesis

Maichal Kutzil

Prague, January 2010

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics

Supervisor: Doc. Dr. Ing. Zdenék Hanzdlek

Copyright
by
Michal Kutil
2010

This thesis is dedicated to my wife
and family members, with love.

Acknowledgements

I would like to give my great thanks to my thesis advisor Zdenék Hanzalek
for his patient support throughout the years it has taken me to create this
thesis. I would also like to express my thanks to all my colleagues helping to
create a friendly atmosphere. I would also like to thank to many anonymous
reviewers of journals and international conferences where preliminary versions
of this thesis were submitted. Their comments significantly contributed to
the quality of this thesis. Last, but not least, thanks belongs to all my family.

This work was supported by the Ministry of Education of the Czech
Republic under project 1M0567.

Czech Technical University in Prague Michal Kutil
January 2010

Nomenclature

alBly
g5

a/U/'U

A

b;
B,B,,
Cj
CaPyy

QLU QU O)
28 Qaacs

IS8
»
1
u

<.

(0]

FrEQEsmEER 0 5o
S
=

=
o

Graham and Blazewicz notation

distribution rate from the source street s to the destination d
cost of edge from node u to node v

linear state space matrix

demand of commodity 4

linear state space matrices

completion time—time when the execution of the task is finished
capacity of edge from node u to node v

set of transitions P indexes

intersection cycle time

intersection i-th cycle time

length of the critical path

maximal allowed difference of tg,,

destination index of street

due date—time limit by which the task should be completed
deadline—time limit by which the task has to be completed
time for which one vehicle flows throw the intersection
matrix of communication delay

tardiness

small constant

set of graph edges

mean value of waiting times

mean value of waiting times in equilibrium point

mean value of waiting times in i-th queue

flow of commodity ¢ from node u to node v

non-linear function

graph

incoming vehicle flow

vector of incoming vehicles flows

incoming vehicle flow in equilibrium point

Nomenclature

vi
h; incoming vehicle flow into the i-th queue
1,] indexes
J objective cost function
k index (especially used for discrete time)
K; i-th commodity
l index
Loun number of lanes in the street from the intersection u to the v
luv length of the unit vehicle including the distance between them
L; lateness of task j
I minimal duration of the phase split
My initial marking
n number of vehicles in the queue—queue length
n° number of vehicles in the queue in equilibrium point
n; number of vehicles in the i-th queue
O asymptotic time complexity
e priority of transition T;
i processing time—time necessary for execution of task i
P Petri net set of places
P; i-th Petri net place
°P; set of input transitions of P;
P set of output transitions of P;
Post Petri net postcondition matrix
Pre Petri net precondition matrix
q vehicles flow rate
q vehicles flow vector
q° vehicles flow in equilibrium point
Qi i-th vehicles flow
g maximum feasible flow
P density
Tj release date—time at which a task becomes ready for execution
R total number of processors
R Petri net sextuple

Nomenclature vii

Jr
Ry
s
84
sink;
source;

set of non-negative real numbers

source index of street

start time

i-th sink node of graph

i-th source node of graph

maximum number of time units

sum of the waiting times of all vehicles currently in the queue
split—time interval of phase k£ for which the vehicle flow can go
through the intersection i

time

switching time—time to pass from one phase to the other phase
vehicle travel time from the s street to d street

Petri net set of transitions

i-th Petri net transition

set of input places of T;

set of output places of T;

NMPC prediction horizon

task ¢

unit vehicle

graph nodes

speed of continuous Petri net transition 7;

maximum permissible speed of continuous transitions T;
sum of the speeds supplying the place P;

set of graph nodes

vector of maximal firing speeds

maximal speed of transition T;

maximum vehicle speed from the street s to d

common maximum speed from the street s

vehicle speed

vehicle speed crossing the intersection from the street s to d
maximal alloved vehicle speed

state vector of extended queue model

viii

Nomenclature

Xj
Xc
XM
€y
Xijk
Pij

state vector of extended i-th queue model

state vector of complete queue model

simple intersection state space vector

number of vehicles that have been waiting for ¢ time units
binary variable of SAT scheduling

offset—time delay between phases of two intersections (i, j)
number of commodities

Abbreviations

CCPN Constant speed Continuous Petri Net

CNF Conjunctive Normal Form

DSP Digital Signal Processing

HPN Hybrid Petri Net

ITS Intelligent Transportation System

ILP Integer Linear Programing

LP Linear Programming

LQR Linear Quadratic Regulator

MMCF Minimum cost Multi-Commodity Flow
NMPC Nonlinear Model Predictive Controller

PN Petri Net

SAT SATisfiability of boolean expression problem
TORSCHE TORSCHE Scheduling Toolbox for Matlab
UML Unified Modeling Language

ZOH Zero-Order Hold

ix

Modeling and Optimization
of Traffic Flow in Urban Areas

Ing. Michal Kutil
Czech Technical University in Prague, 2010

Thesis Advisor: Doc. Dr. Ing. Zdenék Hanzalek

This thesis presents models of simple and general traffic intersections. The
simple intersection model is based on the new queue model, where the state
variables represent the queue lengths and the mean waiting times in the
queues. The general traffic intersection model is based on a constant speed
continuous Petri net. The continuous Petri net tool offers more flexibility of
modeling general intersections and possibility interconnects them to the com-
plex urban traffic region model in future. The Model is innovative, firstly, by
the free space modeling together with the opposite direction of the vehicular
flow, secondly by the continuous Petri net use only leading to a smaller state
space. For this purpose, we show a new method for conflict resolution in a
continuous Petri net based on the maximal speed proportion. The control of
intersections is prosed firstly for simple intersection, where the waiting times
of the individual vehicles in the various streets of the intersection are taken
into account to some degree. Secondly for the urban traffic region model,
where the scheduling is used to find an optimal control of light controlled
intersections. The performance of all depicted models and their control was
evaluated in simulations and compared with real data from the traffic in
Prague.

Goals and Objectives

This thesis will focus on modeling and optimization techniques to improve
efficiency of light controlled intersections in urban area. The objective of this
optimization is to decrease congestions, accidents and environmental load.
From this purpose the goals of this work were set as follows:

1. Describe urban traffic intersection and propose the modern control
method to optimize controlling of intersection with regards to drivers
waiting time balancing.

2. Make a model of general light controlled intersection based on constant
speed continuous Petri net.

3. Improve control of light controlled intersection traffic region.

xi

xii

Contents

Goals and Objectives

1 Introduction

1.1 Related Work
1.2 Outline and Contribution

Simple Light Controled Intersection Model

2.1 Introduction

2.2 Extended Queue Model
2.2.1 Geometrical Interpretation
2.2.2 Extended Queue Model Evaluation
2.2.3 Extended Queue Model Equilibrium

2.3 Simple Intersection Model L.
2.3.1 Linearmodel

2.4 Control of The Simple Intersection Model
2.4.1 Linear Quadratic Regulator
2.4.2 Non-Linear Model Predictive Controller

2.5 SUMMATY . . . ot e

General Light Controlled Intersection Model

3.1 Introduction.,

3.2 Continuous Petri Net
3.2.1 Conflict Resolution
3.2.2 Linear Programming for Conflict Resolution

3.3 Light Controlled Intersection Model
3.3.1 Continuous Petri Net Intersection Model

xiii

xi

=N

© 00 N O ot !

Xiv Contents
3.4 Performance Evaluation 30
3.5 Summary ... 34

4 TORSCHE Scheduling Toolbox for Matlab 35
4.1 Introduction. 35
4.2 Tool Architecture and Basic Notation 37

4.2.1 Scheduling Part 0. 37
4.2.2 GraphParto 41
4.3 TImplemented Algorithm 44
4.3.1 List Scheduling Algorithm 44
4.3.2 SAT Based Scheduling Algorithm 48
4.3.3 Minimum Cost Multi-commodity Flow Problem. . . . 50
4.4 SUMMATY e e e 52

5 Traffic Flow Optimization 53
5.1 Introduction. 53
5.2 Traffic Region Model 55
5.3 Tasks Definition for Intersection 57
5.4 Scheduling with Communication Delay 59
5.5 Summary ... 60

6 Conclusions 63
6.1 Summary and Contributions 63
6.2 Future Research 64

A List of TORSCHE Algorithms 67
A.1 Scheduling Algorithms 67
A.2 Graph Algorithms 0oL 68
A.3 Other Optimization Algorithms 68

Bibliography 75

Index 77

Curriculum Vitae 79

List of Author’s Publications

81

List of Figures

1.1

1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4
4.5

Number of registered vehicles in Prague (different methodol-
ogy was used in the years between 2004 and 2008)
Fundamental diagram of real data measured in Prague street

Extended queue model evolution
Queue model evaluation
Simple intersection model L.
LQR controlloop
Mean waiting times
NMPC control loop
Evolution of accumulated objective function
NMPC with extra vehicles

Continuous Petri net example with actual conflict
Geometrical interpretation of the conflict resolution.
Intersection description
Light controled intersection continuous Petri net model

Prague intersection diagram L.
Real data output from the inductive loop detectors
Prague intersection simulation results

TORSCHE architecture by the UML Class Diagram
Graphics representation of task parameters
UML Interaction Overview Diagram of a typical toolbox work-
flow of the scheduling problem solution
Graphedit (main window, library browser, property editor)

Flow chart of 1istsch function

XV

10
13
14
15
15
17

21
23
26
29
30
31
33

38
39

42
43

xvi List of Figures
4.6 Graph representation of chair manufacturing 47
4.7 The manufacture scheduling in the Gantt chart form 48
4.8 Jaumann wave digital filtero 50
4.9 Solution of the scheduling problem P|prec|Ciq. in the toolbox 50
4.10 The optimal schedule of the Jaumann filter 51
5.1 Traffic region in Prague 54
5.2 Traffic region model L. 55
5.3 Solution of the scheduling problem in the toolbox 60
5.4 The intersections (6, 7 and 8) control 61

List of Tables

2.1
2.2

3.1
3.2

5.1
5.2
5.3

Traffic data for the linearization of the intersection model. . .
NMPC complexity in number of iterations

Intersection parameters
Intersection parameters

Required traffic region multi-commodity flow instances
Multi-commodity flow assignment
Processing time of tasks and offset for intersections 6,7,8 . . .

Xvil

11
16

27
32

56
o7
o7

xviil

Chapter 1

Introduction

The urban traffic is significantly increasing in the large cities. Fig. 1.1 shows
the progress of registered vehicles in Prague during this decade [Prag 09]. As
the number of vehicles in the street (given by the density p) is increasing, the
average speed w is decreasing. Similar to computer networks, from a certain
state increasing density p decreases the traffic flow rate ¢, which corresponds
to a throughput of vehicles through the city. The cut-off point is given by the
traffic stream model [Haef 98] describing relationships among these parame-
ters. See Fig. 1.2, where the fundamental diagram (graphical representation
of traffic stream model) of real data from the Prague street “Zborovska” is
shown. Large number of vehicles and traffic flow decreasing to zero brings
10 XﬁlOr’
9.5 F
9

8.5
8

7.5
7

6.5
6

number of vehicles

2001 2002 2003 2004 2005 2006 2007 2008 2009 year

Fig. 1.1: Number of registered vehicles in Prague (different methodology was used
in the years between 2004 and 2008)

2 Chapter 1 Introduction

0 0.05 0.1 p [uv m’]

(b) speed — density

Fig. 1.2: Fundamental diagram of real data measured in Prague street

more congestion, accidents, longer delays and increasing environmental load.

Described negative effects led to the study of intelligent transportation
systems (ITS) [Figu 01], dated back to the 1980s. ITS make use of lead-
ing edge information and telecommunication technologies to provide traf-
fic and transport information. It increases the efficiency of traffic man-
agement, improves the overall capacity of the road system, enhances road
safety and reduces vehicle wear, transportation times, and fuel consumption.
ITS encompasses traffic control and surveillance, public transport informa-
tion, electronic tool collection, fleet management, car navigation systems,
etc. [Man 00].

1.1 Related Work

A lot of work has been done on intelligent transportation systems. Review
of road traffic control strategies, including the traffic modeling, road traffic
control and freeway traffic control was summarized by Markos Papageor-
giou et al. [Papa 03].

1.1 Related Work 3

Traffic stream models [Cast 96], [Masu 07] consider traffic flow as a het-
erogeneous system which can be described from a macroscopic or microscopic
point of view [Tolb 05]. The macroscopic point of view is described by global
variables as the flow rate, the flow density and the flow average velocity
[Gazi 02]. On the other hand, microscopic point of view focuses on the indi-
vidual vehicles behavior on the road [Nage 03].

The light controlled intersections are characterized by several parameters:
the number of light phases, phase split and offset time [Gube 08]. The term
phase means the state of traffic lights on the intersection. Phase split defines
the time interval of phase for which the vehicle flow can go through the inter-
section. The offset is a certain time delay between phases of two successive
intersections [Papa 03].

The control of a single intersection (belonging to the class of road traffic
control) is usually based on a fized-time strategy or on a traffic-response
strategy. In a fixed-time strategy (see, e.g., the TRANSYT tool [Robe 69)),
the light control phases are scheduled offline. This approach is optimal only
in the case of the under-saturated intersections. The light control phases are
derived from the historical data measured for a given intersection. There
are typically several light control phases for each intersection, depending
on the given time of the day [Febb 06]. The traffic-response strategies are
based on feedback from the current state of the traffic (e.g. the SCOTT tool
[Hunt 82]).

The optimization of the traffic flow over several light controlled intersec-
tions in urban traffic region can be improved by the synchronization of lights.
The three main synchronization strategies are: synchronized, green wave and
random strategy [He 06, Naga 07]. In the synchronized traffic light strategy,
all traffic lights switch from red (green) to green (red) simultaneously. In the
green wave traffic light strategy, the lights switch with a certain time delay
between two successive lights. In the random switching traffic lights strategy,
all traffic lights change independently in an allowed range.

4 Chapter 1 Introduction

1.2 Outline and Contribution

This thesis describes use of appropriate modeling and optimization techniques
to improve efficiency of light controlled intersections in urban area. The main
contributions are:

e Simple traffic intersection model (extended by the mean waiting time)
used for balancing of waiting time (Section 2.3).

e General light controlled intersection model based on a constant speed
continuous Petri net. The model is innovative:

— first, by the use of continuous Petri net leading to a smaller state
space (Subsection 3.3.1).

— second, by the modeling of free space together with the opposite
direction of the vehicle flow (Subsection 3.3.1),

e New method for conflict resolution in a continuous Petri net based on
the maximal speed proportion (Subsection 3.2.1) used to improve the
behavior of the intersection model.

e Design of a tool architecture for development of scheduling and opti-
mization algorithms in the Matlab environment (Section 4.2)

e Original algorithm for scheduling of light controlled intersections (Sec-
tion 5.3, Section 5.4).

This thesis is organized as follows: Chapter 2 presents a dynamic model
of a simple traffic intersection, where the vehicles waiting time is balanced by
the NMPC and LQR use. The Chapter 3 proposes a general light controlled
intersection model based on a constant speed continuous Petri net. In con-
trast of previous chapter the continuous Petri net tool gives us more flexibility
of modeling general intersections. The next two chapters of thesis describe
the optimization of the traffic flow control in urban traffic region made by the
operation research theory use. The TORSCHE Scheduling Toolbox for Mat-
lab, presented in Chapter 4, is used to find the optimal offset and the split
of the light controlled intersections in the urban traffic region (Chapter 5).
The Chapter 6 concludes the thesis.

Chapter 2

Simple Light Controled
Intersection Model

This chapter presents a novel dynamical model of a simple traffic intersection,
where the state variables represent the queue lengths and the mean waiting
times in the queues. Including the mean waiting times in the model allows for
a more fair traffic control, where the waiting times of the individual vehicles in
the various streets of the intersection are taken into account to some degree.
The model is linearized and its parameters are estimated using real traffic
data measured during one day in Prague. For the balancing of the waiting
times, two different controllers are considered: a linear quadratic regulator
and a nonlinear model predictive controller. The controllers are evaluated in
simulations where real traffic data is used for the incoming flows.

2.1 Introduction

In urban traffic control, it is common to decompose the traffic infrastructure
into microregions that describe particular streets and intersections. This
chapter focuses on a dynamic model of a simple intersection, describing the
evolution of the traffic situation by nonlinear difference equations. The main
idea in this model is to introduce a simplification that allows a mathematical
description of the traffic flow without the use of discrete variables. This sim-
plifies the description of the system state space and opens up the possibility
to use optimization and standard control algorithms.

5

6 Chapter 2 Simple Light Controled Intersection Model

The objective is to develop controllers for balancing the vehicle waiting
times in the different streets of the intersection. For this purpose, we use real
traffic data from Prague [Homo 05] to tune the intersection model and then
develop two controllers: a linear quadratic regulator (LQR) and a nonlinear
model predictive controller (NMPC).

Those controllers are offen used to control the number of vehicles in
the queues—see the traffic-response strategies OPAC [Gart 83], PRODYN
[Henr 83], RHODES [Sen 97], and TUC [Diak 02].

We use real data from detectors placed approximately 100 m in front of
the intersection. In order to derive the incoming flow we process these data
via Kalman filter [Homo 05], since this approach enables to estimate the
queues of the length superior to 100 m. In addition to the classical store-and-
forward strategies [Gazi 63, Abou 09] our model also incorporates the vehicle
waiting time [Bonn 95|, which is a crucial input to the controllers designed
in this chapter. A similar approach was taken in [Henr 04], where non-linear
difference state equations were used to model and control web server traffic.

2.2 Extended Queue Model

Classical traffic control strategies use the single variable n—the number of
vehicles in the queue, measured in unit vehicles [uv]—as an input to the
control law with the objective to minimize this value. If we want to increase
the quality of the traffic control from the driver’s point of view, we can add
another objective: the waiting time. The waiting time is the time spent by
the vehicle in the queue.

Let us first assume that we are able to track every vehicle and its waiting
time in the queue. This will be referred to as the complete queue model. The
state vector of this model can be written in the form

Xe = (z1,22,...,2;)" (2.1)

where x; denotes the number of vehicles that have been waiting in the queue
for ¢ time units. The disadvantages of this model are the state equation
complexity and the unbounded state vector. In fact, the complexity of the
model prohibits the application of standard control techniques.

We next consider an approximate queue model with only two state vari-
ables. The first variable, n, is the number of vehicles in the queue, while

2.2 Extended Queue Model 7

2B (k)

q(k) h(k)

n(k+1)

Fig. 2.1: Extended queue model evolution

the second variable, F [s], is the mean value of waiting times. E is given by
S/n, where S is the sum of the waiting times of all vehicles currently in the
queue. The state vector of this model is written in the form x = (n, E)7.
This model will be referred to as the extended queue model.

2.2.1 Geometrical Interpretation

We here derive difference state equations for evolution of the extended queue
model. The extended queue model evolution is dependent on the vehicles
flows and the length of the time unit. We assume there is an (time-varying)
incoming vehicle flow h [uv-s~!] and an outgoing flow ¢ [uv-s~!] of vehicles
leaving the queue.

A geometrical interpretation of the extended queue model is given in
Fig. 2.1. The current state at time k is given by the bold triangle, where
the base represents the queue length n and the height represents the longest
waiting time in the queue. The longest waiting time is assumed to be twice
the mean waiting time F. The area of the bold triangle represents the sum
of waiting times over all vehicles: S = E - n.

Next, we consider the evolution of the state from time k to k£ + 1. The
incoming flow during this time interval is assumed to be h(k), while the
outgoing flow is ¢(k). Studying Fig. 2.1, we have the following geometrical
interpretation of the state evolution.

8 Chapter 2 Simple Light Controled Intersection Model

1. The outgoing flow ¢(k) corresponds to the removal of the polygon A
from the main triangle. The remaining vehicles are thus given by the
triangle B.

2. All vehicles staying in the queue increase their waiting time by 1 unit.
This corresponds to the addition of the rectangle C.

3. The incoming flow h(k) is represented by the addition of the triangle D.
Notice that the quantisation error is zero, when we ussume a constant
incoming flow of vehicles from discrete time k to time k + 1.

The new area (B+C+D) is equivalent to S(k+1), i.e., the sum of waiting
times over all vehicles at time &k + 1:

Sk+1)= 7‘9(’“("5}?;;“’“”2 + n(k)—q(k) + 24 (2.2)
—_— T/ =~
B ¢ D

Finally, using the fact E(k) = S(k)/n(k), we arrive at the following discrete-
time state equations:

n(k+1) =n(k) — q(k) + h(k) (2.3)
E(/f)("(’Z/I)ﬁ)—tz(/f))2 +n(k) — q(k) + @

n

n(k) — q(k) + h(k)

E(k+1) = (2.4)

These equations are valid only for n(k) > 0 and n(k) > q(k) — h(k). This
means that there must be some vehicles in the queue, otherwise E(k + 1) is
equal to zero.

2.2.2 Extended Queue Model Evaluation

To evaluate the extended queue model, we compared its ability to predict
the mean waiting times to that of the complete queue model. (While the
complete queue model has a complex mathematical description, its behavior
can be simulated for a bounded number of vehicles.) As input data to both
models we used input traffic flows taken from a real traffic region [Homo 05].
The result is shown in Fig. 2.2. It is seen that the extended queue model
captures the mean waiting times of the vehicles quite well, justifying its use.

2.2 Extended Queue Model 9

=
53| que
oo | [i e e
3500
3000
2500
2000
1500 |
1000 |
500
0 L L L L L L 1 S
0 1 2 3 4 5 6 7T x100 g

Fig. 2.2: Queue model evaluation

2.2.3 Extended Queue Model Equilibrium

For the purposes of linearization and further control synthesis, we want to
find the equilibrium points, i.e., the points where x(k) = x(k + 1). The
equilibrium points for our model must satisfy the conditions

n(k) = n(k+1)
E(k) = E(k+1)

Solution of these equations implies

q°(k) = h°(k) (2.7)
o _ no(k)
2B°0) = (2.8)

(The circle mark means that the value of a given variable is the value in
the equilibrium.) The condition (2.7) means that the incoming flow h must
be equal to the outgoing flow q. The condition (2.8) implies that the mean
value of the waiting times is proportional to the queue length and inversely
proportional to the vehicle flow. This is the well known Little’s law [Litt 61].
In our terminology, the condition says that “the average number of vehicles
in a stable queue (over some time interval) is equal to their average incoming
flow, multiplied by their average time in the queue.”

10 Chapter 2 Simple Light Controled Intersection Model

phase 2

phase 1

A

Fig. 2.3: Simple intersection model

2.3 Simple Intersection Model

The queue model described above will now be used to construct a simple
intersection model (see Fig. 2.3). The intersection consists of two streets
(i.e., two queues) and one crossing area (which is a shared resource). The
outgoing flow ¢ for each queue is controlled by the intersection lights.

The simple intersection model is described by

xm(k +1) = F (xm(k), q(k), h(k)), (2.9)

where xn(k) = (x1(k), x2(k))T contains the state vectors of the two queues.
The full intersection state vector is hence given by

xm(k) = (n1(k), Br(k), ng(k), Bo (k)T (2.10)

Here, F is a non-linear function given by (2.3) and (2.4). The vector q(k) =
(q1(k), g2(k))T represents the outgoing flow for the queues and the vector
h(k) = (h1(k), ha(k))T represents the incoming flow.

2.3.1 Linear model

A linear model is constructed via linearization of the function F around an
equilibrium point (Subsection 2.2.3). The equilibrium point was selected

2.4 Control of The Simple Intersection Model 11

Table 2.1: Traffic data for the linearization of the intersection model.

queuel | queue?2
q° =h° 0.028 0.042
n° 20 50
E° = 2’;0 (2.8) 360 600

as an average point in the real traffic situation, described by the data in
Table 2.1.
The linearized model can be written as

xm(k + 1) = Axp(k) + Bq(k) + Buh(k) (2.11)

where A, B, and By, are given by

1 0 0 0
0.05 099 0 0
A=1 0 1 0 |’
0 0 0.02 0.99

1 0 0

~17 0 17 0

B=1,y 1] Ba=|, 1
0 —11 0 —11

2.4 Control of The Simple Intersection Model

The goal of the control is to find an optimal switching time for the traffic
lights in the intersection, such that the difference in average waiting times
between the two queues is minimized. In this section, two controllers will be
designed and compared.

In general, an incoming flow of vehicles arriving at an intersection must be
separated into several phases. The phase separation, designed by the traffic
engineers, determines a direction of vehicles driving through the intersection.
A repetitive sequence of phases form a cycle time. The phases have fixed

12 Chapter 2 Simple Light Controled Intersection Model

order in the cycle time and our goal is to find their optimal split. The split
Ty; defines the time interval of phase j for which the vehicle flow can go
through the intersection v from one or more streets [Papa 03].

The simple intersection model defined above includes the two control
phases. Each phase allows vehicles to flow only from one street, see Fig. 2.3.
Our control algorithms consider a constant sum of the phase splits, i.e. con-
stant cycle time C. In this section, the cycle time is assumed to be 90s.
The time when the first phase passes to the second one will be denoted the
switching time tg,. The switching time can be used to define a control law
for the model (2.9) as follows:

ak) {(q’f“””,O)T if k€ (00, iC +t), 212)

(0, g5 9) T if k € (iC + tg, (i+1)0),

Here, ¢;"** is the maximum feasible outgoing flow from queue j and i =
0,1,2,3,... is the index of the cycle time.

2.4.1 Linear Quadratic Regulator

In this subsection, a linear quadratic regulator (LQR) (e.g.,
[Kwak 72],[Astr 97]) will be used for the intersection control. The ob-
jective is to minimize the difference in the waiting times of the vehicles. This
means that a vehicle entering a queue should wait the same time, regardless
of which queue it is entering. This can be expressed as minimization of the
cost function

J = Z (E1(k) — Ea(k))?. (2.13)
k

Using (2.10), the cost function can be rewritten as

J = xm(k)" Qxp(k) (2.14)
k
where:
00 0 0
0 1 0 —1
Q=10 0 0 o0
0 -1 0 1

2.4 Control of The Simple Intersection Model 13

w(k)

>
q(k) Simple intersection model

xy(k)

t.,~q < q-t, < ZOH K—

Fig. 2.4: LQR control loop

Assuming a control law in the form

d' (k) = (a1(k), ga(k)" =k xp(k) (2.15)
and solving the LQR Riccati equation gives the optimal feedback gain

o —-0.001 —-0.020 0.000 —0.012
~ 10001 0016 —0.001 —0.062

This control law produces a potentially unbounded result q'(k), which
cannot be directly applied to the intersection traffic control. Instead, from
this result we compute the switching time ¢4, as

¢ (k)
¢ (k) + gy (k)

The final control law q(k) is obtained by combining this expression and (2.12).
The control law is computed at the start of the cycle time and is held for the
whole cycle time. Control loop schema is shown on Fig. 2.4.

The LQR was applied to the simple intersection model control (2.9). The
simulated response to real input data during one day (i.e. 86400 seconds) is
shown in Fig. 2.5(a). The resulting average waiting times in the two queues
are significantly different, the error caused by the linearization of the model.

tsw(k) =T (216)

2.4.2 Non-Linear Model Predictive Controller

Next, we consider controlling the waiting times in the simple intersection
model using a non-linear model predictive controller (NMPC) [Find 02,

14 Chapter 2 Simple Light Controled Intersection Model

i 1600 Queue 1
Queue 2
1200}
800 -
0 . 1 ‘l‘:"l ”‘V'WH"" bl d | [
0 5 6 7 x 10* t [s]
(a) LQR
:ﬁ 1600 — Queue 1
ﬂ\ . Queue 2
1200} wd u"‘wf\
800 / h ”
I " Y
/ ! ' d\,\v
400} it ‘ L
‘{5‘ Iy J ‘,"}gu |
0 v de 17 . . Sl f"iu“ . t AN bt o —
0 1 2 3 4 5 6 7x10' t[s]
(b) NMPC

Fig. 2.5: Mean waiting times

Magn 03]. The same cost function (2.13) was used as an objective function.
For the NMPC algorithm we must select a control horizon and a prediction
horizon. The prediction horizon TP" is a time interval that the controller
uses for simulating the nonlinear model. The control horizon is a time inter-
val over which the controller optimizes the control signal. In our case, both
horizons were set to the 90s, which is equal to the cycle time C. Control
loop schema is shown on Fig. 2.6.

For convex problems, the NMPC can find an optimal switching time %,
by convex optimization [Boyd 04]. Our optimization problem is not convex,
however. Instead, we find the optimal tg, by enumerating all tg, € (0,C)
and simulating the response. The simulated intersection model response
when applying the NMPC control law is shown on the Fig. 2.5(b).

NMPC allows tuning of the control law to be modified in a number of

2.4 Control of The Simple Intersection Model 15

> k
q(k) _ Simple intersection model Xu(K)

NMPC ph
(C, Tph’ 5, /,[/) W(k,k+T ’

Fig. 2.6: NMPC control loop

LQ Regulator
NMPC (unknown incoming traffic)

— — - NMPC (known incoming traffic)

2 3 4 5 6 7 x100 t[g

Fig. 2.7: Evolution of accumulated objective function

ways. For example, we can extend the controller by taking into account
future incoming flow. In practice, we can measure this traffic in a previous,
neighboring intersection (as shown by [Lei 01]) and forward this information
to the next intersection controller. In this way, the predictive controller can
prepare a much better control action. Trying this approach on the simple
intersection model, adding feedforward traffic information to the NMPC is
able to reduce the cost function J by about 37%. The accumulative value of
the cost function J for different controllers is depicted in Fig. 2.7. We can see
that the NMPC yields much better results than LQR, and that feedforward
from the incoming traffic improves the result even further.

To evaluate the sensitivity of the NMPC to the incoming flow, the fol-

16 Chapter 2 Simple Light Controled Intersection Model

lowing experiment was performed. In addition to the original incoming flow,
Queue 2 was subjected to one additional vehicle per second from time 30000 s
to time 30100s. Fig. 2.8(a) shows that the increase in the number of vehicles
in Queue 1 is partially compensated by the NMPC, which leads to an increase
in the number of vehicles in Queue 2. From the principle (see Equation 2.3)
the number of vehicles in Fig. 2.8(a) holds for both models. The mean value
of the waiting times in the extended queue model (shown in Fig. 2.8(b)) is
used to calculate the switching time t4, by the NMPC. The same tg, is ap-
plied to the complete queue model (see Fig. 2.8(c)) showing that E in both
queues is quite well balanced.

Table 2.2 shows the complexity of the NMPC calculations in terms of
the number iterations for the one-day experiment. The left half of the table
shows the complexity results for a prediction horizon of 90s. The first row
in the first column refers to the complexity of experiments reported up to
now. In general, the control performance can be increased by prolongation of
the predictive horizon. In the right half of the table, the complexity results
for a predictive horizon of 180s is shown. In all cases, the time complexity
is negligible with respect to the cycle time. Nevertheless, we propose two
simple approaches for reducing the problem complexity. First, the ts, does
not need to be an integer variable (as assumed in the first row in Table 2.2),
but can be assumed to achieve a value divisible by 2 (the second row) or by
5 (the third row). Second, for practical reasons, ts,(k + 1) does not need to
vary from 0 to 90's (as assumed in the columns with § = 90, u = 0), but could
be allowed to vary only from max{ts, (k) — J, u} to min{ts, (k) + 6,90 — u}
where § stands for maximal allowed difference of ¢4, and p defines a minimal

Table 2.2: NMPC complexity in number of iterations

predictive horizon 90s predictive horizon 180s
0=90| =30 6=5 0 =90 0 =130 =5
p=0|p=10 | p=10 p=0| p=101| p=10
1| 87451 | 41328 9905 | 7958041 | 1980255 | 110621
45167 | 21927 5995 | 2122849 | 548138 | 39316
5 19220 | 10055 3587 | 384400 | 113237 | 13724

2.4 Control of The Simple Intersection Model

17

=
~.100
S
80

60
40

20

4 1600
1400
1200
1000
800
600
400
200

Queue 1
Queue 2

'y 1 1 1 alle

(a) Number of vehicles in the queue

0 1 2 3 4 5 6 7 x 10 t[s]

Queue 1
Queue 2

0 1 2 3 4 5 6 T x10" ¢ [g]

(b) Mean waiting times in the extended queue model

Queue 1
Queue 2

0 1 2 3 4 5 6 T x10 ¢

(c) Mean waiting times in the complete queue model

Fig. 2.8: NMPC with extra vehicles at t = 3-10%s

18 Chapter 2 Simple Light Controled Intersection Model

phase split. Both approaches lead to a significant reduction of the search
space for the NMPC.

2.5 Summary

In chapter, a new model for traffic queues has been presented. The extended
queue model is described by the number of vehicles in the queue and the
mean value of waiting time. The model is based on non-linear difference
state equations. We have shown that the equilibrium point of the nonlinear
model conforms with the Little’s law.

Further, we have used the extended queue model to derive the parameters
of the controllers for a simple intersection model with two queues. Two
controllers were applied to the intersection model. First, we designed a linear
quadratic regulator based on a linearization of the state equations around
an equilibrium point. Second, we proposed the use of a nonlinear model
predictive controller. The advantages and disadvantages of the controllers
were discussed, and their performance was evaluated in simulations using
real traffic data.

Chapter 3

General Light Controlled
Intersection Model

This chapter proposes a light controlled intersection model based on a con-
stant speed continuous Petri net. In contrast of previous chapter the contin-
uous Petri net tool gives us more flexibility of modeling general intersections.
The Model is innovative, firstly, by the free space modeling together with
the opposite direction of the vehicular flow, secondly by the continuous Petri
net use only leading to a smaller state space. For this purpose, we show a
new method for conflict resolution in a continuous Petri net based on the
maximal speed proportion. The model is compared with intersection model
based on a classical discrete Petri net and it is evaluated in the simulation
where real traffic data is used for the incoming flow.

3.1 Introduction

Traffic stream models consider traffic flow as a heterogeneous system which
can be described from a macroscopic or microscopic point of view, [Tolb 05].
On one hand, the macroscopic point of view is described by global variables
as the flow rate, the flow density and the flow average velocity, [Gazi 02]. On
the other hand, microscopic point of view focuses on the individual vehicles
behavior on the road.

The traffic flow model based on a discrete Petri net (PN), [Wang 93] is
suitable for a microscopic description. On the other side, the model based on

19

20 Chapter 3 General Light Controlled Intersection Model

a continuous Petri net is suitable for macroscopic description, [Tolb 01]. The
combination of both concepts gives us model that consists of a continuous
part in the street and a discrete part in the intersection. Hybrid Petri nets
(HPN), [Davi 01], are used to describe these complex models, [Febb 04]. The
main disadvantage of this concept based on HPN is a discrete part of the
Petri net used for traffic flow, [Tolb 03] or a discrete part of the PN used for
intersection control, [Febb 01], [Julv 05] which subsequently discretizes traffic
flow. In these cases, the continuous flow is cut to the different flow levels by
the intersection part, which is further processed by a continuous part of the
HPN. Due to discrete part, processing such models is not efficient.

The aim of this chapter is to develop a new light controlled intersection
model based on the Constant speed Continuous Petri Net (CCPN), [Davi 98].
This model divides the continuous traffic flow in consequence of the intersec-
tion structure and control without cutting the flow to different flow levels.
Moreover, free space modelling together with the opposite direction of ve-
hicle flow is considered. For this goal, we show a new method for conflict
resolution in the CCPN based on maximal speed proportion. As a result,
we show that the simulation based on our model is faster than based on the
conventional approach.

3.2 Continuous Petri Net

A constant speed continuous Petri net is defined as a sextuple R =
(P, T,V,Pre, Post, My), where the definition of P, T, Pre, Post are sim-
ilar to those of the discrete Petri nets, as well as °T;, T, °F;, P’ notation
for predecessor and successor places and transitions, both described, for ex-
ample, by [Davi 04]. My is the initial marking. V : 7 — RJ U {oc} is a
vector of maximal firing speeds. V; denotes the maximal speed of transition
Tj. Further more v;(t) denotes the speed of transition T at time ¢. The value
of v;(t) is bounded by the interval (0, V}). Transition Tj is strongly enabled
at time ¢ if all places P; of °T; are marked. Place P; is supplied at time
t if there is at least one transition T} in °P;, which is enabled (strongly or
weakly). Transition Tj is weakly enabled at time t if there is place P; € °T},
which is not marked and is supplied, and the remaining places of °T} are ei-
ther marked or supplied. For more information, see [Hanz 03]. The following
extensions of the CCPN will be used: the marking of continuous place can

3.2 Continuous Petri Net 21

take the value of 0+ and Inhibitor arcs there can be. Both of these concepts
are described by [Davi 04].

3.2.1 Conflict Resolution

In a continuous Petri net, there is an actual conflict among k transitions in
aset {T1,T5,..., T}, if the speed of at least one of them has to be less than
the maximal speed due to the speeds of the other transitions in this set.

When there is an actual conflict between two or more transitions, then
the priority rule can be used. Another alternative is to use a conflict reso-
lution method based on the maximal speed proportion. The maximal speed
proportion means that the flow which runs through the place is divided into
the subsequent transitions in proportion to their maximal speeds, if it is fea-
sible in regard to other constraints. The method is based on a flow sharing
rule, observing the mazimum firing speed described by [Hanz 03] and can be
used only in simple Petri nets. A simple Petri net is a net in which each
transition can only be concerned with one conflict at most.

In order to illustrate the conflict resolution method we have shown an
example in Fig. 3.1. There are three places P;, P> and P3 with zero marking.
These places are supplied by the transitions 717, T5 and T3 with a speed
v = 35, vo = 40 and vz = 18, respectively. Place P is supplied with a
smaller speed than the sum of the maximal speed of the transitions P; i.e.
v9 < V4 + V5. Therefore, there is an actual conflict between transitions Ty
and Tx.

A geometrical interpretation of the conflict resolution is given in Fig. 3.2.

v = 35 09 = 40 3 = 18
Ty T 15

OLP O O

Fig. 3.1: Continuous Petri net example with actual conflict

22 Chapter 3 General Light Controlled Intersection Model

The axes show the speeds of transitions Ty and T5. A gray polygon bounds
the area where the possible speed vy and vs can be placed. This polygon
is bounded by w1, v2 and wvg from one side and by the axes from the other
side. All combinations of the speeds v4 and vs which are in proportion to the
maximal speed Vj and V; are located on the line A. Point A, in Fig. 3.2(a),
is where v4 and vs are at a maximum and are located on line A\. The conflict
resolution is given by this point A and the speed transitions for T, and T5
are v4 = 30 and vs = 10, respectively.

Let us consider the modification of speed vy from v; = 35 to v1 = 25
(see Fig. 3.2(b)). This situation corresponds to point B where vy and vs are
at a maximum and are located closest to line A\. The conflict resolution is
given by this point and the speed of the transitions 7, and T3 is vqy = 25
and vs = 15, respectively. Note that the speed is not in proportion to the
maximal speed V4 and V5, but it is the maximum firing speed combination.

Let us assume v; to be equal to 15 (see Fig. 3.2(c)). This situation
corresponds to point C where vy and vs are at a maximum and are located
closest to line A\. The conflict resolution is given by this point and the speed
of the transitions Ty and T5 is v4 = 15 and vy = 18, respectively. Note that
there is no actual conflict in this case.

We can generalize that the conflict resolution corresponds to the point
located on the line segment DFE closest to line A. In the special case when
point D is equal to E i.e. |DE| = 0 the transition speed is placed to this
point, see Fig. 3.2(c) for point C.

This geometrical interpretaion of speed computing can be formulated as
follow: consider place P; and the set of transitions P’ having a conflict.
The set of transitions P indexes is denoted as C;. Variable v7(t) denotes
the sum of the speeds supplying the place P; at time t. For each transition
T where j € C; initialize mazimum permissible transition speed vi*** (t) as
a minimum from the maximal speed V; and separately sum the speed of
transitions which supplied the place from °T); with zero marking. Set the
transition speed v;(t) = 0 and modify it by the iterative Algorithm 3.1.

3.2.2 Linear Programming for Conflict Resolution

This subsection shows how linear programming (LP) can be used for conflict
resolution computation. At first, we will use the example in Fig. 3.1 to show
how a conflict resolution can be solved by linear programming at time ¢. In

3.2 Continuous Petri Net

23

0 10 20 v, 30 40 50 v

(b) Resolution close to proportion

\\2 ‘/;

0 - - - S -
0 10 v, 20 30 40 50 v

(c) Resolution close to proportion without the transition 7% effect

Fig. 3.2: Geometrical interpretation of the conflict resolution

4

24 Chapter 3 General Light Controlled Intersection Model

Algorithm 3.1 Transition speed computing

while v} (t) > 0 and C; is not empty do
Cl=C;
for all j such that j € C! do

. mazx S Vi
v;(t) = min (vj (t) = v;(t), v} <t)ZkE(J2/. Vk)

v (t) = v;(t) + vj(t)
if vj(t) = v}"**(t) then
Ci=Ci\J
end if
end for
v; () = 07 (t) = 2o jecr (1)
end while

this example, we are looking for the speed of Ty and T5 with the maximal
speed proportion condition. The LP problem using the variables defined

above is:
max <U4(t) +us(t) — ¢ |us(t) — m(t)Ki) , (3.1)
subject to:
va(t) > 0,
Us (t> > 07
v(t) < Vi,
(%3 (t) S Vv5, (3.2)
v(t) < oi(t),
vs(t) < ws(t),
V4 (t) + vs (t) S (%) (t),

where € is a small constant for which 0 < e < min(1, %) holds. The fraction
% is the slope of line A in Fig. 3.2.

The objective function (3.1) can be rewritten with the use of a new vari-
able. This variable z45 replaces the absolute value, which includes the v4 and

v variables as follows:

max (v4(t) + vs(t) — €z45) , (3.3)

3.3 Light Controlled Intersection Model 25

on the assumption that we add two new constraints:

vs(t) —ua(t)2 <z,

us(t) — wa(t) (384)

SEs

> —Z45.

This LP problem gives us a solution in conformity of Fig. 3.2.
Moreover, if there is a conflict among more transitions 7 where j € C;
then it can be formulated as an LP problem as follows:

max Zvj(t) —€ Z zi | (3.5)

J€EC; k,leC;
k<l
subject to:
Uj (t) > 0, Vi e
vi(t) < (), Vi €Ci
vi(t) < vi(t),

Ul(t) — 'U]Ai)% < 2z, Vk,l € Cik <1
Ul(t) — Uk(t)ﬁ > =2, Vk,l € Ci,k <.

where € is a small constant number which 0 < e < kn;mg (1, %) holds.
NS
k<l

The solution of the LP problem mentioned above gives us the same results
as Algorithm 3.1. Nevertheless, it is not intended for all continuous Petri nets
generally. It can be used only for a CCPN where the number of subsequent
transitions which are under consideration for the objective function (3.5) for
each P} are the same, which is our case.

3.3 Light Controlled Intersection Model

In this section we will study the light controlled intersection. The intersection
under consideration (see Fig. 3.3(a)) includes four input and two output flows.

The light controlled intersection is characterized by several parameters:
the number of phases, the phases split and a list of streets from which the
vehicles flow. Our model considers a constant sum of the phase time intervals,

26 Chapter 3 General Light Controlled Intersection Model

1" phase 2" phase 3" phase 4™ phase

1 1 1 1
IS IS 45 I
BLACK I A N AL N A N

(a) Phases direction

1" phase 2" phase 3" phase 4™ phase

street

=W N

0 40 50 70 100 ¢ [s]

(b) Phases timing

Fig. 3.3: Intersection description

i.e. a constant cycle time C in seconds. The next parameter is the distribution
rate. The distribution rate a,_,q indicates the proportion of the vehicles
which are crossing the intersection from the source street s to the destination
street d, where the variables s and d denote the indexes of the street numbers.
The sum of the distribution rates for each input street must be equal to
one. For each distribution rate, we consider the real vehicle speed ws_.q in
kilometers per hour. Further more, t,_.4 denotes the duration how long the
vehicles flow with the considered distribution rate.

The intersection under consideration includes four control phases. The
source and destination streets are marked in Fig. 3.3(a). The duration of the
vehicle flow through the intersection from a street can be found in Fig. 3.3(b).
For this intersection, the cycle time C' is assumed to be 100s. The summary
of all the parameters under consideration is presented in the left part of
Table 3.1.

We can see that some of the source-destination pairs are there twice
differing in duration t,_,4. This difference is given by a give way rule in
addition to the light control. For example, see Fig 3.3(a) where, during the
3™ phase the flow from street 2 gives way to the flow from the street 4. If
there is a flow from street 4 then the duration is equal to 30s, otherwise it is

3.3 Light Controlled Intersection Model 27

Table 3.1: Intersection parameters

s|d| assq Ws—d ts—a | ds—a Vsssa Vs
s | 5 |s/u] | fuv/s) | fuv/s)
112 0.2 8.3 50 0.60 0.83 1.93
113 0.8 13.9 50 0.36 1.39 '
112 0.2 8.3 10 0.60 0.17 0.25
113 0.8 13.9 10 0.36 0.28 '
213 8.3 50 | 0.60 0.83 0.83
213 8.3 30 | 0.60 0.50 0.50
312 5.6 40 0.90 0.44 0.44
4|2 0.4 13.9 20 0.36 0.56 0.29
4|3 0.6 5.6 20 0.90 0.22)

equal to 50s.

From these intersection parameters, we can compute the parameters nec-
essary for the continuous Petri net. The first one is the delay d,_,.4, which
denotes the time for which one vehicle flows throw the intersection in seconds
per unit vehicle:

bav
dS—)d — (3-7)

Ws—d
Where the constant [y, is the length of the unit vehicle including the distance
between the vehicles in meters. In this paper, we will consider l, to be equal
to 5m. The second parameter is the maximum average speed V;_,4 over the
period 7" in unit vehicles per second:

Wssdts—d
o (3.8)

The speeds with a common source can be combined with respect to the
distribution rate to one common speed as follows:

Z As—d
_d

Vi =

V:s~>d =

(3.9)

Osd -’
Vsad

d

The summary of all these parameters is presented in the right part of Ta-
ble 3.1.

28 Chapter 3 General Light Controlled Intersection Model

3.3.1 Continuous Petri Net Intersection Model

The continuous Petri net intersection model described in Fig. 3.3 is shown in
Fig. 3.4. The net is divided to six parts. First, part A includes eight places,
which are used as an interface for the inputs into the intersection from the
streets. For each street, there are two places, the first one for vehicles waiting
in the queue before the intersection (Pio1, Pio2, Pio3, Pio4), the second one
for the free space in the street (Pi51, Pis2, Pis3, Pi54). The free space denotes
the tokens which represent the available space for the vehicles, which can flow
into the street. The free space modelling together with the opposite direction
of vehicular flow is an innovative approach to this model. The distribution
rate through the intersection is shown in parts B, C, D and E, each one for
one input street. These parts of the network are very similar, thus only part
C will be described. The transition Tyy consumes vehicles from street 4 and
the free space is returned back to the place Pis4. Vehicles are divided up
into distribution rate acceptance, to the places P,y and P;3. The weights of
the arcs are equal to the distribution rate a4, and a4 3. From places Py
and Py3, the vehicles flow through the transitions Tyo and Ty4 to the output
streets represented by places Psgs and Pags, respectively. The free space from
the output streets close the loop I; (l2) and flow to the place P54 through
transition Tyg. The speed of all the transitions in the loop is the same. It is
bounded by maximal speed which is taken from Table 3.1, i.e. for example,
the maximal speed Vjs and V3 are equal to V4_,o.

Transitions T12, T17, T32, T42 and T14, T19, TQ(], T21, T44, respectively
are in conflict (places Pase2 and Pas3). This conflict is solved by the above
described (see Subsection 3.2.1) conflict resolution method based on maximal
speed proportion. This method guarantees the same free space distribution
as in a real traffic intersection.

Parts D and E include two parallel similar sub networks. Input transitions
to those sub networks T, T15 and Thg, To1, respectively, are in conflict (places
Pyp1 and Pyg2). This conflict is structural but not effective, because only one
of them may be fired at the same moment. It is given by the arcs and the
inhibitor arcs between places Pig3 and Pjg4 respectively and the mentioned
transitions.

See Fig. 3.3(a) there is no flow into street 2 during the 4"* phase. During
this time the free space is accumulated in place Pyse. Thirty percent (split of
the 4" phase in the cycle time C) of the free space is saved to the temporary

4th

3.3 Light Controlled Intersection Model

29

--Lof o
Dy
S
! =
()
[}
= e ™
2] +
2 I
N—/ B |
0 2 o n
3 S |
22 O Ak ‘ ‘
" S 0 -k --
L2l e 3 | !
e 8 ‘ ‘/ 2 3
! I I w A S
|

© ©
& &

PN
SN

. Vis=017

£ ()

R
5 .z Q ﬁﬁémﬁ
| < N |
é \@%D G ll%,’lf'{i’
| L) NOA e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N ‘

C_1Vio

E‘O
|

i

I
itk

A 5

991 V4

O
\A
[~

\—;
N
T‘OAAAAAAAAAAA
C_1Vio

0.29

“““‘“““““““““““““““““
)
Prisq

O O
\

P53
T30
0.44

,,

Fig. 3.4: Light controled intersection continuous Petri net model

30 Chapter 3 General Light Controlled Intersection Model

place P359, by the arc from T} to P52 with weight equal to 0.3. Transition T}
is a part of the street model. This free space must be utilized during the next
traffic phase. The order of the phases is given (see Fig. 3.3(a)) and together
with the give way rule it designates the priority (m;) for transitions 711, Tie,
T31, Ty1. Those transitions consume marking from places P50 and Psso and
the conflict is solved by the priority.

3.4 Performance Evaluation

In this section the performance evaluation of the previously described in-
tersection model simulation is shown. Prague intersection of “V Botanice”
and “Zborovskd” streets (GPS location: 50°4'31.484"N, 14°24'27.36"E) is
used as a real system for the simulation. The street “V Botanice” includes
three traffic lanes and the street “Zborovskd” includes two traffic lanes. The
intersection scheme and control phases are shown in Fig. 3.5.

The real data for the performance evaluation of the simulation is measured
by the inductive loop detectors. Inductive loop detectors monitor the traffic

I I
|1, 2] |1, 2] |12
02 V=i e
8 5 8 ‘ﬁ 5 8 75
|7 6| |7|6| |7|6|
1" phase 2" phase 3" phase
(a) Phases direction
lane 17 phase 2" phase 3" phase
1,2
345
3.4 —
0 20 24 7176 80 ¢ [s|

(b) Phases timing

Fig. 3.5: Prague intersection diagram

3.4 Performance Evaluation 31

0.3

lane 1

detector data
m— approximation

V[uv s*

detector data
m— approximation

<0.3
1 4
EOQ ane Hl‘ l\ I LL\LJH“ A] mlul
> . M'Il‘!lf 'y \||’”‘H
‘ Il
Him
0.1 riLAN
o | um I
0 AN PR ST 1 1 1 1 1
0 1 7 5 4 5 6 T x10" ¢ [y

Fig. 3.6: Real data output from the inductive loop detectors

conditions on the road for each lane separately'. Data from the detectors
is produced as time-averaged over a 90s long period. See Fig. 3.6 for an
example of the data from the detectors in unit vehicles per second during
a one day period for lane numbers 1 and 4 (other lane detectors produce a
similar output). This data from the detectors was subsequently processed by
a step-wise filter. The step-wise filter is based on smoothing and produces a
constant level of the output data during the variable time interval (see the
“approximation” line in Fig. 3.6). Data from this filter is used as the input
for the simulation during one day.

The intersection model uses the same principle described in Section 3.3.
The parameters are summarized in Table 3.2. The places which are intended
for wvehicles waiting in the queue before the intersection (see to part A in
Fig. 3.4) are connected by the arc from the new source transitions. Each
source transition is connected to just one place. The maximal speed of the
source transition is set to the value given by the approximation for the cor-

The detectors distance from the intersection is 35m for the input lanes and 50m for
the output lanes. This is a sufficient distance to minimize the effect of the intersection
control to continuity flow.

32 Chapter 3 General Light Controlled Intersection Model

Table 3.2: Intersection parameters

s | d | asa Ws—d tssd | ds—a Vsd Vs
mes] |] | [5/av] | [ov/s] | fuv/s
1110 0.21 7.2 20 0.69 0.36 0.58
11 71 0.79 13.9 20 0.36 0.69 '
216 1.0 13.9 20 0.36 0.69 0.69
319 1.0 13.9 52 0.36 1.81 1.81
41 8 0.77 13.9 52 0.36 1.81 181
41 7 | 023 7.8 47 | 0.64 0.91 ’
5| 6 1 7.8 47 | 0.64 0.91 0.91

respondent lane. Thus, the intersection places are supplied by the speed
which is equivalent to the real data measured in the streets. Note that the
data from the step-wise filter is not constant during the whole simulation
time. From this point of view, the simulation time must be split into several
shorter intervals during which the data is constant. These intervals are sim-
ulated separately and the simulation result of the first interval is used as an
initial condition for the second interval and so on for the whole simulation
time.

The result of the simulation is shown in Fig. 3.7. There are two repre-
sentative outputs from lanes 7 and 8 in the unit vehicles per second. The
simulation results for the other lanes are similar, hence they are not shown.
Fig. 3.7(a) shows the real data from the detector (thin line) versus the re-
sult of the CCPN model simulation (thick line). Fig. 3.7(b) shows the result
of the CCPN model simulation versus the result of the discrete PN model
(thin line). The simulation based on the discrete PN uses the same real data
which is used for preprocessing by the step-wise filter described above. The
parameters of both continuous Petri net models are the same. The delay
time for the discrete PN model is taken from the column d,_,4 of Table 3.2.
The figures show that the simulation model corresponds to the real system.

The quality of the simulation can be analyzed from Fig. 3.7(c), where the
sum of all the vehicles in lane 7 during the simulation time is shown. We
can see that the number of vehicles which flow through the intersection is
similar for both models. The model based on the CCPN computes its state
continuously in contrast to the discrete PN model where each vehicle in the

3.4 Performance Evaluation

33

~> 0.3 lane 7 detector data
B, T CCPN simulation result
= 0.2
0.1
0 1 1 1 1 1 - 1
0 1 2 3 4 5 6 7 x10" ¢ |5
"» 0.3 detector data
; ‘—CCPN simulation result
= 0.2

0o 1 2 3 4 5 6 7 x10° ¢ 5]
(a) Real data from detector and the CCPN simulation

_‘: 0.3 == CCPN simulation result
i lane 7 —— PN simualtion result
= 0.2+
0.1}
Py
O _ 1 1 1 1 1 - 1
0 1 2 3 4 5 6 7 x10" ¢ [§]
" 0.3
> lane 8 = CCPN simulation result
=3 0.2k — PN simualtion result
= U
0.1F
0 &A o 1 - 1 .
0 1 2 3 4 5 6 7 x10" ¢ 5]

(b) Data from the CCPN simulation and the discrete PN simulation

= = «CCPN simulation result
= PN simualtion result

6 7 x10" ¢ [5]

(c) Sum of all the vehicles during the simulation time

Fig. 3.7: Prague intersection simulation results

34 Chapter 3 General Light Controlled Intersection Model

intersection initiates the state update, implies the computation performance.
The total real simulation time for the model based on the discrete PN is
4927s and the model uses 149523 states from the state space. On the other
side, the total real simulation time for the model based on the CCPN is 2s
and model uses 34 states. We used standard PC (Intel Core2 CPU T7200
@2.00 GHz, 4GB RAM) for the simulations.

3.5 Summary

In the chapter, a new method for conflict resolution in CCPN has been pre-
sented. The conflict resolution method is based on the maximal speed pro-
portion. Next, the iterative algorithm for this problem and its solution by
LP was shown. LP gives us an effective method to solve complex continuous
Petri net models.

Furthermore, the described method for conflict resolution was used in a
light controlled intersection model based on CCPN. The model describes the
traffic flow from the macroscopic point of view. This model is innovative,
firstly, by the free space modeling together with the opposite direction of
the vehicular flow. Secondly, by the constant speed continuous Petri net use
only, i.e. without a discrete part for intersection control. The performance
evaluation shows that the real time of the simulation is much better than for
an equivalent model based on the discrete PN. The accuracy of the simulation
results was successfuly compared with real data from traffic in Prague.

Chapter 4

TORSCHE Scheduling
Toolbox for Matlab

This chapter presents a Matlab based Scheduling toolbox TORSCHE (Time
Optimization of Resources, SCHEduling) intended mainly as an open source
research tool to handle with optimization and scheduling problems. The
toolbox offers a collection of data structures that allow the user to formalize
various scheduling problems. The toolbox algorithms can utilize interfaces
for Integer Linear Programming or the satisfiability of boolean expression
problem solvers. With respect to the close relationship between the schedul-
ing and graph theory, the toolbox provides graph algorithms with uniform
interface.

4.1 Introduction

TORSCHE (Time Optimization of Resources, SCHEduling) Scheduling Tool-
box for Matlab is a freely (GNU GPL) available toolbox developed at the
Czech Technical University in Prague. The toolbox is designed for re-
searches in operational research or industrial engineering and for undergrad-
uate courses. The current version of the toolbox covers the following areas:
scheduling on monoprocessor/dedicated processors/parallel processors, open
shop/flow shop/job shop scheduling, cyclic scheduling and real-time schedul-
ing. Furthermore, particular attention is dedicated to graphs and graph al-
gorithms due to their large interconnection with the scheduling theory. The

35

36 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

toolbox offers a transparent representation of the scheduling/graph problems,
various scheduling/graph algorithms, a useful graphical editor of graphs, in-
terfaces for mathematical solvers (Integer Linear Programming, satisfiabil-
ity of the boolean expression) and an interface to a MATLAB/Simulink
based simulator and a visualization tool. The scheduling problems and
algorithms are categorized by notation («|B|y) proposed by Graham and
Blazewicz [Blaz 83]. This notation, widely used in the scheduling community,
greatly facilitates the presentation and discussion of scheduling problems.

The toolbox is supplemented by several examples of real applications,
e.g. the scheduling of Digital Signal Processing (DSP) algorithms on a
hardware architecture with pipelined arithmetic units, scheduling the move-
ments of hoists in a manufacturing environment, scheduling of light con-
trolled intersections in urban traffic and response-time analysis in real-time
systems. The toolbox is equipped with sets of benchmarks from the re-
search community (e.g. DSP algorithms, the Quadratic Assignment Prob-
lem). TORSCHE is an open source tool available at (http://rtime.felk.
cvut.cz/scheduling-toolbox/)

In the off-line scheduling area, some tools for the development of schedul-
ing algorithms already exist. The term off-line scheduling means all param-
eters of the scheduling problem are known a priori [Pine 08]. A scheduling
system developed at the Stern School of Business is called LEKIN [Pine 02].
It was created as an educational tool and it provides six basic workspace en-
vironments: single machine, parallel machines, flow shop, flexible flow shop,
job shop, and flexible job shop. Another tool is LiSA [Andr 03]. It is a
software-package for entering, editing and solving off-line scheduling prob-
lems while the main focus is on shop-scheduling and one-machine problems.
The graphical user interface is written in Tcl/Tk for machine and operat-
ing system independence. All algorithms are implemented externally while
the parameters are passed through files. The commercial tool ILOG Sched-
uler from the software package ILOG CP Optimizer [ILOG 09] is based on
constraints programming. It provides extensions for scheduling problems in
manufacturing, transportation and workforce scheduling.

There are more tools for on-line scheduling, where on-line means the
parameters of the tasks become known on the task arrival/occur. One
example is the MAST tool [Gonz 08] built to mainly support the timing
analysis of real-time applications. Close to the on-line scheduling tools

http://rtime.felk.cvut.cz/scheduling-toolbox/
http://rtime.felk.cvut.cz/scheduling-toolbox/

4.2 Tool Architecture and Basic Notation 37

are tools for real-time scheduling. For example TrueTime [Ande 05] is a
Matlab/Simulink-based simulator for real-time control systems. TrueTime
facilitates co-simulation of controller task execution in real-time kernels, net-
work transmissions, and continuous plant dynamics.

4.2 Tool Architecture and Basic Notation

TORSCHE Scheduling Toolbox is written in Matlab object oriented pro-
gramming language (backward compatible with Matlab environment version
2007) and it is used in the Matlab environment as a toolbox. The toolbox
includes two complementary parts. The first one is intended for solving prob-
lems from the scheduling theory. Problems from this area or their parts can,
very often, be reformulated to another problem which can be directly solved
by a graph algorithm. For this purpose the second part of the toolbox is
dedicated to the graph theory algorithms.

4.2.1 Scheduling Part

The main classes of scheduling part are Task, PTask, Taskset and Problem.
The UML class diagram with relationships in it is shown in Fig. 4.1. A task
represented by the class of the same name is a unit of work to be scheduled
on the given set of processors. The class includes task parameters as pro-
cessing time, release date, deadline, etc. The instance of the class (variable
T1 depicted below) is returned by the constructor method with the following
syntax rule:

T1 = task([Name,]ProcTime[,ReleaseTime[,Deadline ...
[,DueDate[,Weight [,Processor]]]]])

Input variables correspond to the public class properties. Variables contained
inside the square brackets are optional. The class Task provides the following
properties (also graphically depicted in Fig. 4.2):

Processing time (ProcTime, p;) is time necessary for task execution (also
called computation time).

Chapter 4

TORSCHE Scheduling Toolbox for Matlab

Problem

= notation: char

& machines_type: char

& machines_quantity: double
& betha: struct

& criterion: char

= problem()
- is()

Schedobj

= Notes: char
& version: double
& GrParam: struct

-get()
- set()

= schedobj()

= get_graphic_param()
m set_graphic_param()

= Public method
& Private method

= Deadline: double

m DueDate: double

= Weight: double

= Processor: double

m UserParam: var

& schStart: double

& schLength: double
& schProcessor: double
& ALAP: double

& ASAP: double

m task()

= plot()

m get_scht()

= add_scht()

= task2node(): Node

= TSUserParam: var

= TextParam: struct

= taskset()
= get_schedule()
= add_schedule()

PTask

= Period: double
@ schPeriod: double

= ptask()
= util()

I
I
I
I
I
I
I
I
I
I
|
3 = ReleaseTime: double
I
I
I
I
I
I
I
I

= node()
= node2task()

Edge
= Name: Char
m UserParam: var
= Position: struct
= LineStyle: char
= LineWidth: double
= Arrow: struct
= TextParam: struct
= Undirected: double

= edge()

Task Taskset Node Graph
= Name: char < >{m Tasks: Task = Name: Char = Name: Char
m ProcTime: double m Prec: double m UserParam: var m N: Node

= ScheduleDesc: char = GraphicParam: struct = E: Edge

= UserParam: char
m DataTypes: struct
& Eps: double

= graph()

= addedge()

= adj()

= between()

= inc()

= removeedge()
= removenode()
= subgraph()
-

Graph Part

Fig. 4.1: TORSCHE architecture by the UML Class Diagram

Release date (ReleaseTime, r;) is the moment at which a task becomes
ready for execution (also called the arrival time, ready time, request

time).

Deadline (Deadline, c@) specifies a time limit by which the task has to be

completed, otherwise the scheduling is assumed to fail.

Due date (Duedate, d;) specifies a time limit by which the task should be
completed, otherwise the criterion function is charged by a penalty.

Weight (Weight) expresses the priority of the task with respect to other
tasks (also called the priority).

Processor (Processor) specifies the dedicated processors on which the
task must be executed.

4.2 Tool Architecture and Basic Notation 39

L p, - + L/ -
I I
D
\ task T, ’
6 TJ S/ C/ d/ (’Z/ t

Fig. 4.2: Graphics representation of task parameters

The resulting schedule is represented by the following properties:

Start time (schStart, s;) is the time when the execution of the task is
started.

Completion time (c;) is the time when the execution of the task is fin-
ished.

Lateness L; =c; —d;.
Tardiness D; = max{c; —d;,0}.

The private properties are mainly intended for the final task schedule
representation, which are set-up inside the scheduling algorithms (e.g. by
method add_scht). The values from the private properties are used, for
example, by the method plot for the Gantt chart drawing.

Class PTask (see Fig. 4.1) is a derived class from the Task class in order to
represent a periodic task in the on-line scheduling problems (e.g. in response-
time analysis). This class extends the Task class with support to store, plot
and analyze the utilization methods.

The instances of the classes Task and PTask can be aggregated into a
set of tasks. A set of tasks is represented by the class Taskset which can be
obtained as the return value of the constructor taskset, for example:

TS = taskset(tasks[,prec])

where the variable tasks is an array of instances of the Task class. Fur-
thermore, the relations between the tasks can be defined by precedence con-
straints in the optional parameter prec. The parameter prec is an adjacency
matrix defining a graph where the nodes correspond to the tasks and the

40 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

edges are precedence constraints between these tasks. For simple schedul-
ing problems, the object Taskset can be directly created from a vector of
the tasks processing times. In this case, the tasks are created automatically
inside the object constructor. There are also other ways how to create an
instance of the set of tasks in order to simplify the user interface as much as
possible.

Another class, Problem, is used for the classification of deterministic
scheduling problems in Graham and Blazewicz notation [Blaz 83]. This no-
tation consists of three parts (a|S3]y). The first part describes the processor
environment (e.g. number and type of processors), the second part describes
the task characteristics of the scheduling problem (e.g. precedence constrains,
release time). The last part denotes the optimality criterion (e.g. schedule
makespan minimization). The following example shows the notation string
used as an input to the class constructor:

prob = problem(’P|prec|Cmax’)

This instance of the class Problem represents the scheduling problem on
parallel identical processors where the tasks have precedence constraints and
the objective is to minimize the schedule makespan.

All of the above mentioned classes are designed to be maximally effec-
tive for users and developers of scheduling algorithms. The toolbox includes
dozens of scheduling algorithmsscheduling algorithm which are stored as Mat-
lab functions with at least two input parameters and at least one output
parameter. The first input parameter has to be an instance of the Taskset
class containing the tasks to be scheduled. The second one has to be an in-
stance of the Problem class describing the required scheduling problem. The
output parameter is an instance of the Tuskset class containing the resulting
schedule. A typical syntax of the scheduling algorithm call is:

TSout = algorithmname(TS,problem[,processors[,parameters]])
where:
TSout is the instance of the Taskset with the resulting schedule,

algorithmname is the algorithm name,
TS is the instance of the Taskset to be scheduled,

4.2 Tool Architecture and Basic Notation 41

problem is the instance of the Problem class,
processors is the number of processors to be used,
parameters denotes additional parameters, e.g. algorithm strategy, etc.

The typical work-flow of scheduling problem solution is shown on an UML
Interaction Overview Diagram (see Fig. 4.3). There are several sequence
diagrams (sd) used. The first two “Create Taskset 1” and “Create Taskset 2”
show the constitution of a Taskset instance by both of the above described
ways. The third one, called “Classification”, shows the constitution of a
Problem instance. The following sequence diagram “Scheduling” presents
the call of the scheduling algorithm. The scheduling algorithm is described
separately in the “Scheduling Algorithm” diagram, which is divided into three
parts. The first one is checking of the input parameters (“Read Properties”).
The second one is constituted by the solver of a scheduling algorithm and
the final part stores the resulting schedule into the instance of the Tuskset
(“Schedule to the Tasks”). The last diagram “Gantt Chart” presents the
final schedule conversion to a Gantt chart, i.e. the graphical representation
of a schedule.

Furthermore, the toolbox contains objects to handle problems like open
shop, flow shop and job shop, it also supports limited buffers and transport
robots. For more details please see the toolbox documentation [Kuti 07].

4.2.2 Graph Part

A lot of scheduling problems can be solved with the assistance of the graph
theory. Therefore, the second part of the toolbox is aimed at graph theory
algorithms. All algorithms are available as a method of the main class Graph
which is used to describe the directed graph.

There are several different ways to create an instance of the class Graph.
The graph is generally described by an adjacency matrix. In this case, the
Graph object is created by the command with the following syntax:

G = graph(’adj’,A)
where the variable A is an adjacency matrix. Similarly, it is possible to create

the Graph by an incidence matrix. Another way how to create the Graph
object is based on a matrix of edge weights.

42 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

sd Scheduling Part of Toolbox Use)

simple taskset definition 1 complex taskset definition

sd Create Taskset 1) sd Create Taskset 2/
user at Matlab
% command line

taskset ()

‘Taskset

loop J

sd Classification J sd Scheduling Algorithm)

invalid input

valid input instances instances

sd Read Propcrtics)
[sd Scheduling J [Algorithm| [:Taskset | [:Task |

__Algonthm get()
% loop /

dlgorlthmndme()

- Scheduhng
Algorithm

fC-emmmmmemnnad -

!

ref Scheduling Algorithm Solver
no-exist schedule]
sd Schedule to the Tasks)
[sd Gantt Chart _J [Algorithm] [:Taskset | [:Task |
add_schedule(): '
% add_schedule(): :
plot() _: : loop add_scht()
[1oop J o]
fooemmmmmmmnenee =

Fig. 4.3: UML Interaction Overview Diagram of a typical toolbox work-flow of the
scheduling problem solution

4.2 Tool Architecture and Basic Notation 43

B Graphedit = 8] X | roperty.. (= [B | 2
File Edit Draw View Options Methods Plug-ins Help) node: Mark_{3}
DEd &4 ON|T ﬁ E| L7] Hame Mark_{3} =l
Gridx: | 20 | Gridy: | 20 Mames: 16 v | UserParams: 16 v Zoom 100.. w| 4% 4 Boics Main marker
rs UserParam 191 :}

GraphicParam 1 -
x 220
¥ 220

Wickth 30

[JAESTIE ™)
_J {* ('\x Q\ ™ urvature 1 -

inevidth |1 -

inestyle |- -

I Param [030;-4515]

concept . 0Orapn, [+] <[

1] 5

Fig. 4.4: Graphedit (main window, library browser, property editor)

The toolbox is equipped with a simple but powerful editor of graphs called
Graphedit based on the System Handle Graphics of Matlab. It allows one to
construct directed graphs with various user parameters on nodes and edges by
simple and an intuitive way. Fig. 4.4 shows the Graphedit with a graph with
various graphical representations of nodes, various edge paths and two setting
windows: property editor and node library. The constructed graph can be
easily used to create an instance of the class Graph which can be exported to
the Matlab workspace or saved to a binary mat-file. In addition, Graphedit
contains a system of plug-ins which allow one to extend its functionality by
the user.

Moreover, due to the close relationship between the scheduling and graph
algorithms, each object Graph can be transformed to an object Taskset and
vice versa. Obviously, the nodes from the graph are transformed to the tasks
in the Taskset and the edges are transformed to the precedence constraints
and vice versa according to the user specification.

44 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

4.3 Implemented Algorithm

The biggest part of the toolbox is constituted by scheduling algorithms.
There are a large variety of algorithms (see Appendix A) solving both simple
problems (on a single processor) and practically oriented issues. This section
shows several of them demonstrated on real applications.

4.3.1 List Scheduling Algorithm

List Scheduling (LS) is a basic and popular combinatorial algorithm intended
for scheduling of set of tasks on a single and parallel processors. In this
algorithm tasks are fed from a pre-specified list and, whenever a processor
becomes idle, the first available task on the list is scheduled and removed
from the list. Where the availability of a task means that the task has been
released and if there are precedence constraints, all its predecessors have
already been processed [Leun 04]. The algorithm terminates when all tasks
from the list are scheduled. Its time complexity is O(n). In multiprocessor
case, the processor with minimal time is taken in every iteration of algorithm
and the others are relaxed.

The fact, which is obvious from the principle of algorithm is that, there
aren’t any requirements of knowledge about past or future of content of the
list. Therefore, this algorithm is capable to solve offline as well as online
no-clairvoyance scheduling problems. There are many strategy algorithms
like the Earliest Starting Time first, the Earliest Completion Time first, the
Longest Processing Time first and etc., based on simple ordering of tasks in
the list by various parameters.

Algorithm strategy do not guarantee to find optimal solutions for any
instance of an optimization problem. On condition of appropriate choose of
strategy it often provide acceptable results with very good time and memory
complexity.

The Earliest Starting Time first (EST) is a strategy in which the tasks
are arranged in nondecreasing order of release time 7; before the application
of List Scheduling algorithm. The time complexity of EST is O(n - log(n)).

The Earliest Completion Time first (ECT) is a strategy in which the tasks
are arranged in nondecreasing order of completion time C; in each iteration
of List Scheduling algorithm. The time complexity of ECT is O (n2 . log(n)).

The Longest Processing Time first (LPT) is a strategy in which the

4.3 Implemented Algorithm 45

tasks are arranged in non-increasing order of processing time p; before the
application of List Scheduling algorithm. The time complexity of LPT is
O(n -log(n)).

The Shortest Processing Time first (SPT) is a strategy in which the
tasks are arranged in non-decreasing order of processing time p; before the
application of List Scheduling algorithm. The time complexity of SPT is
O(n -log(n)).

List Scheduling is implemented in TORSCHE Scheduling Toolbox by
function listsch which also allows to user to use any of implemented strat-
egy algorithms and visualize process of scheduling step by step in text form
in MABLAB workspace (see Fig 4.5 for flowchart of function). Moreover,
the last version is able to solve scheduling problems on unrelated parallel
processors. The syntax of listsch function is:

TS = listsch(T,problem,processors [,strategyl [,verbosel)
TS = listsch(T,problem,processors [,option])

where:

T is the instance of the Taskset class without schedule,
TS is the instance of the Taskset class with schedule,
problem is the instance of the Problem class,

processors is the number of processors,

strategy is the strategy (like LPT, SPT, EST, ...),
verbose is a level of verbosity,

option is the optimization option setting.

This subsection concludes by the example. The example solves a problem
of manufacturing of a chair by two workers (cabinetmakers). Their goal is
to make four legs, seat and backrest of the chair and assembly all of these
parts within minimal time. Material, which is needed to create backrest,
will be available in 20 time units and assemblage is divided into two stages
(assembly; /o and assembly, /2). Fig. 4.6 shows the representation of men-
tioned problem by the graph.

46

Chapter 4 TORSCHE Scheduling Toolbox for Matlab

Start

No erification

A

Error message

of input
parameters

Initialization

____________ { Verbose 1

Is number
of tasks on
the list >17

A 4

- = {Verbose 2

Final schedule as Call heuristic if
an output variable

is required == —|= —\Verbose 3

Proc:=processor with
minimal time

A 4
Task := first
available task on
the list

Move Task to Proc.
Remove Task from
the list

Verbose 4

Verbose 5

C

End

Fig. 4.5: Flow chart of listsch function

4.3 Implemented Algorithm 47

leg, leg, leg, leg, seat backrest
p="6 p=06 p=6 p=6 p=15 p=25, r=20

assembly, ,
p=15

assembly, ,
p=15

Fig. 4.6: Graph representation of chair manufacturing

Solution of the scheduling problem is shown in following steps:

1. Create desired tasks.

>> T1 = task(’legl’,6)

Task "legl"
Processing time: 6
Release time: 0

>> T2 = task(’leg2’,6);
>> T3 = task(’leg3’,6);
>> T4 = task(’legd’,6);
>> T5 = task(’seat’,6);
>> T6 = task(’backrest’,25,20);
>> T7 = task(’assemblyl/2’,15);
>> T8 = task(’assembly2/2’,15);

2. Define precedence constraints by precedence matrix prec. Matrix has
size n X n where n is the number of tasks.

>> prec = [0

(el el elNeNeNeNe]

O O OO OO OO0
O OO OO0 OoOOo
(el el elNelNeNeNeNe
O O OO OO OoOOo
O OO P P P =
O O OO OO0 OoOOo

3. Create an object of taskset from recently defined objects.

48 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

>> T = taskset([T1 T2 T3 T4 T5 T6 T7 T8],prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’P|prec|Cmax’)
P|prec|Cmax

5. Call List Scheduling algorithm with taskset and problem created re-
cently and define number of processors and desired heuristic.

>> TS = listsch(T,p,2,’SPT’)

Set of 8 tasks

There are precedence constraints

There is schedule: List Scheduling
Solving time: 1.1316s

6. Visualize the final schedule by standard plot function, see Fig. 4.7.

>> plot(TS)

A
P, | leg, | leg, |seat | assembly,, assembly, ,
P, | leg, | leg, backrest
T T T T T T T T T T T >
0 10 20 30 40 50 3

Fig. 4.7: The manufacture scheduling in the Gantt chart form

4.3.2 SAT Based Scheduling Algorithm

This subsection presents a satisfiability of boolean expression based al-
gorithm for the scheduling problem P|prec|Cipqz, i.e. the scheduling of
tasks with precedence constraints on the set of parallel identical proces-
sors while minimizing the schedule makespan. The main idea is to formu-
late the scheduling problem in the form of CNF (conjunctive normal form)
clauses [Cram 06, Memi 02].

In the case of the P|prec|Cpq: problem, each CNF clause is a function
of the Boolean variables in the form x;j;. If the task T; is started at time

4.3 Implemented Algorithm 49

unit j on the processor k then x;j1 = true, otherwise x5, = false. For
each task T;, where ¢ = 1...n, there are S X R Boolean variables, where S
denotes the maximum number of time units and R denotes the total number
of processors.

The Boolean variables are constrained by the three following rules (mod-
est adaptation of [Memi 02)):

1. For each task, exactly one of the & x R variables has to be equal
to true. Therefore two clauses are generated for each task T;. The first
guarantees having at most one variable equal to true:

(Xir1 V Xi21) A+ A (Rin V XisR) A -+ A (Ri(S—o0)R V XiSR)-
The second guarantees having at least one variable equal to true: (x;1 V
Xizt V-V Zi(S—c0)R V XiSR)-

2. If there are a precedence constraints such that T, is the predecessor
of T,, then T, cannot start before the execution of T, is finished. Therefore,
Xujk = (Kot A= A gt A X411 A A Za(j+pa—1)1) for all possible combi-
nations of processors k and [, where p, denotes the processing time of task
Ty.-

3. At any time unit, there is at most one task executed on a given
processor. For the couple of tasks with a precedence constrain this rule is
ensured already by the clauses in the rule number 2. Otherwise the set of
clauses is generated for each processor k£ and each time unit j for all couples
T,, T, without precedence constrains in the following form:

(Xujk = Xojk) N (Kujk = Zo@r1k) A A (Rugk = Xo(j4pa—1)k)-

The toolbox cooperates with the zChaff solver [Mosk 01] to decide
whether the set of clauses is satisfiable. If it is, the schedule within S time
units is feasible. An optimal schedule is found in an iterative manner. First,
the List Scheduling algorithm (see 4.3.1) is used to find the initial value of S.
Then the algorithm iteratively decreases the value of S by one and tests the
feasibility of the solution. The iterative algorithm finishes when the solution
is not feasible.

An example of the P|prec|Cyqa: problem can be taken from the digi-
tal signal processing area. A typical scheduling problem is to optimize the
speed of a computation loop, e.g constituting the Jaumann wave digital fil-
ter [Groo 92]. The goal is to minimize the computation time of the filter
loop, shown as a directed acyclic graph in Fig. 4.8. The nodes in the graph
represent the tasks (i.e. operations of the loop) and the edges represent the

50 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

‘ processing

time p

Fig. 4.8: Jaumann wave digital filter

precedence constraints. The nodes are labeled by the operation type (“4” or

Wy

+”) and processing time p;. The example in Fig. 4.8 considers two parallel
identical processors, i.e. two general arithmetic units.

Fig. 4.9 shows the consecutive steps performed in the toolbox. The first
step defines the set of the tasks with the precedence constraints for the
scheduling algorithm satsch. The resulting schedule is displayed by the
plot command. The optimal schedule is depicted in Fig. 4.10.

>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];
>> prec = sparse([6,7,1,11,11,17,3,13,13,15,8,6,2, 9,11,12,17,14,15,2 ,10],...
[1,1,2, 2, 3, 3,4, 4, 5, 5,7,8,9,10,10,11,12,13,14,16,16], ...
[1,1,1, 1, 1, 1,1, 1, 1, 1,1,1,1, 1, 1, 1, 1, 1, 1, 1, 11,17,17);
>> TS = taskset(procTime,prec);
>> TS = satsch(TS,problem(P|prec|Cmax),2)
Set of 17 tasks
There are precedence constraints
There is schedule: SAT solver
SUM solving time: 0.06s
MAX solving time: 0.04s
Number of iterations: 2
>> plot(TS)

Fig. 4.9: Solution of the scheduling problem P|prec|Cy,q. in the toolbox

4.3.3 Minimum Cost Multi-commodity Flow Problem

Various optimization problems (e.g. routing) from the graph and network
flow theory can be reformulated on the minimum cost multi-commodity flow
(MMCF) problem. The objective of the MMCEF is to find the cheapest possi-
ble ways of sending a certain amount of flows through the network. Therefore,

4.3 Implemented Algorithm 51

Pi| Tg | Ty T, T Ti4 To Ts | Tie

Py | Tis Ty T; | Ti T, T3 | Tis | Tio | Ta

0 5 10 15 t
Fig. 4.10: The optimal schedule of the Jaumann filter

TORSCHE includes a multicommodityflow function.

The MMCEF problem is defined by a directed flow network graph G(v,),
where the edge (u,v) € E from node u € ¥ to node v € 7 has a ca-
pacity cap,, and a cost ay,. There are 1) commodities K1, Ko,..., K, de-
fined by K; = (source;, sink;, b;) where source; and sink; stand for source
and sink node of commodity ¢, and b; is the volume of the demand. The
flow of commodity ¢ along the edge (u,v) is fi(u,v). The objective is
to find an assignment of the flow f;(u,v) which minimizes the total cost

I =2 Vuw)er (auv : Zg’:l fi(u, v)) and satisfies the following constraints:

Z;pzl fl(ua U) < Capuw V(u, U) € E,
Youew filu,w) = >0 oo fi(w,v) w € V\ {source;, sink;},
Vi=1...1,

Yowew filsources,w) = 37 o fiw, sink;) =b; Vi=1...4. (

4.1)
The function multicommodityflow solves MMCF problem by the transfor-
mation to the linear programming problem [Kort 06]. Let B be the set of
all paths from the source node source; to the sink node sink; for all com-
modities i = 1,2,3...9%. Let M be a 0-1-matrix whose columns correspond
to the elements p of 3 and whose rows correspond to the edges of G, where
My), = 1iff (u,v) € p. Similarly, let N be a 0-1-matrix whose columns
correspond to the elements of 3 and whose rows correspond to the commodi-
ties, where N;, = 1 iff source; and sink; are the start and end nodes of path
p. Then the LP problem using the variables defined above is:

min (ag - y) , (4.2)

52 Chapter 4 TORSCHE Scheduling Toolbox for Matlab

subject to:
y > 0,
M-y < cap, (4.3)
N-y = b,

where b is a vector of b;, cap is a vector of cap; and asp is a constant vector of a
path costs. Each of its elements is defined as a, = Z(u?v)ep G- Assignment
fi(u,v) of multi-commodity flow to the edge is given by the vector y and set
of paths .

An example of minimum cost multi-commodity flow problem for a real
application is shown in the Section 5.2.

4.4 Summary

This chapter presents the TORSCHE Scheduling Toolbox for Matlab cov-
ering: scheduling on monoprocessor/dedicated processors/parallel proces-
sors, open shop/flow shop/job shop scheduling, cyclic scheduling and real-
time scheduling. The toolbox already has several real applications. It has
been used for the development of a new method for re-configuration of the
tasks or a process in an embedded avionics application [Muni 09]. Simula-
tions in TORSCHE also helped to develop a method optimizing the jitter
of tasks in a real-time system [Liu 09]. Recently, TORSCHE has become
a part of a textbook for courses in scheduling “Scheduling: Theory, Al-
gorithms, and Systems” written by M. Pinedo [Pine 08]. The actual ver-
sion of the toolbox with documentation and screencasts is freely available at
http://rtime.felk.cvut.cz/scheduling-toolbox/.

http://rtime.felk.cvut.cz/scheduling-toolbox/

Chapter 5

Traffic Flow Optimization

This chapter proposes consecutive steps to find the optimal offset and the
split of the light controlled intersections in the urban traffic region. The
optimization takes into account the street length, number of lanes and maxi-
mal allowed vehicle speed in consideration to respect the green wave strategy
control and constant intersection cycle time. The solution of this problem is
shown on the urban traffic region in Prague. The problem is formalized and
solved by the TORSCHE.

5.1 Introduction

The light controlled intersections are characterized by several parameters:
the number of light phases, phase split, offset time and a list of streets from
which the vehicles flow [Gube 08]. The term phase means state of traffic
lights on the intersection. The number of phases and the list of streets are
partially given by the urban architecture of the intersection and partially
by the intersection control strategy (i.e. one-way street, directional roadway
marking). Both of these parameters are constant. On the other hand, the
split and offset can be changed dynamically during a day. The split 7,;
defines the time interval of phase j for which the vehicle flow can go through
the intersection v from one or more streets [Papa 03]. The offset @y, is a
certain time delay between phases of two successive intersections u and v.
When the offset is zero, all lights in the region turn on and off at the same
time. It is called the synchronized strategy. In the green wave strategy, the

53

54 Chapter 5 Traffic Flow Optimization

Fig. 5.1: Traffic region in Prague (GPS: 50°4/27.446" N, 14°24'25.951"E) [Goog 09]

traffic light changes with time delay between the light phases of two successive
intersections. As a result, signals switch as the green wave [Naga 07].

The goal of this chapter is to find the offset ¢, respecting the green wave
strategy and the split 7,; which minimizes the total time spend on the road
and considers a constant intersection cycle time C, = Zvj Tyj of intersection
v such that C4 = Cy = --- = C. The problem is formalized and solved
by the TORSCHE (Chapter 4). The solution of this problem is shown on
the example of the light controlled intersections in an urban traffic region in
Prague (see Fig. 5.1) and consists of the following steps:

e The model of an urban traffic region as the oriented graph made up.

e Source and destination nodes of graph mark for requirement traffic
flows.

e The multi-commodity flow compute, which implies splits ;.

5.2 Traffic Region Model 55

Graphedit =] B e
File Edit Draw View Options Methods Plug-ins Help N
DEd #4[R)ON T H: ML= @0

Gridx | 20 | Gridy:| 20 Hames: 12w UserParams |12 v Zoom: 100... w| b ¥

[1882.8]

[2092.8] 11

Fig. 5.2: Traffic region model

e Offset yy, from the street length and vehicle speed compute.

e By the scheduling technique find a schedule for intersection control.

5.2 Traffic Region Model

In the first step, a traffic region is modeled as an oriented graph G(¥, E).
Nodes ¥ of the graph represent the intersections and edges E represent the
streets. See Fig. 5.2 where the Graphedit tool of TORSCHE is utilized to
construct the graph. Sink and source nodes are drawn as rectangles. The
edges include two parameters; the first one is cost a,, and the second one is
capacity capy, of the street (u,v). The cost is given by the street length in
meters. The capacity of the street is given by the number of lanes £, in the
street as capyy = lyy - Wy /luy where W, is a maximal allowed vehicle speed

56 Chapter 5 Traffic Flow Optimization

Table 5.1: Required traffic region multi-commodity flow instances

K; K, K, K K K5 K Ky Ky
source; 14 14 14 14 16 16 16 16
sink; 24 17 21 27 24 21 15 27
bi[1073s7YH 49 | 19| 31| 301] 101] 121 | 1.2 | 6.6
K; Ko | Ky | K| Kio| Kiz| Kuu | Ki5 | Kig
source; 18 18 18 18 18 20 20 20
sink; 24 17 21 15 27 19 24 17
b[1073s7 1] 327 33 | 93 | 21 | 11.3| 89 | 134 81
K; Kiy7 | Kig| Kio | Koo | Kot | Koo | Koz | Koy
source; 20 20 22 22 22 22 23 23
sink; 15 27 19 21 15 27 24 17
bi[1073s7 Y 7.9 | 41.7] 11.7| 85| 4.7 | 251 | 86 | 4.3
K; Kos | Kog | Kor | Kog | Koo | Kso | K31 | Kso
source; 23 23 25 25 26 26 26 26
sink; 21 27 24 21 24 21 15 27
b;[1073s7Y 65 | 36 | 96 | 04 | 159] 1.9 | 57 | 6.5

in the street in ms™! and [, is the unit vehicle length including distance be-
tween vehicles. Let us assume that, in our case, the speed is Wy, = 13.8 ms™!
(50 km/h) and the unit vehicle length is Iy, = 5m, then the capacity of one
lane street is 2.8s~!. The final graph is exported from the Graphedit tool to
the Matlab workspace as graph object G.

In the second step, the multi-commodity flow method in the following
form is called:

>> Gm = multicommodityflow(G,source,sink,b)

where the vectors source, sink and b define the required multi-commodity
flow as is it described in Subsection 4.3.3. These variables are shown in
Table 5.1. The graph Gm includes an assignment of optimal multi-commodity
flow to the edges. We assume the drivers to make their decisions in a similar
way. Table 5.2 shows a part of the assignment f;(u,v) : u =6V v =6. The
complete result can be obtained from the Graph object by the command:

>> F = get(Gm,’edl’)

5.3 Tasks Definition for Intersection 57

Table 5.2: Multi-commodity flow assignment

K; | Ky ‘ K3 ‘ K5 ‘ K ‘ Koy ‘ Kog ‘ Ko Z;ﬁ:1 fi(u,v)
u | v fi(u,v) [1073s71] [1073s71]
2] 6 0 0 10.1 | 12.1 0 0 0 22.2
5| 6 | 19131 0 0 0 0 1.9 6.9
91 6 0 0 0 0 4.3 | 3.6 0 7.9
6| 2 |19] O 0 0 4.3 | 3.6 0 9.8
6| 7 0 |3.1]10.1|12.1 0 0 1.9 27.2

5.3 Tasks Definition for Intersection

In the next step, the phase j split 7,; and the offset ¢, for each light con-
trolled intersection v € 9 are found. Continuous vehicle flow from the street
(u,v) over a given number of intersection phases can be formalized as one
task Ty, from the scheduling point of view. For example there exist three
tasks Tog, Ts6 and Tgg for intersection 6. The number of phases is given
by the urban architecture of the intersection and by the intersection control
strategy. The intersections are the resources from the scheduling point of
view and the tasks are dedicated there by the engineering skills.

The processing time p,,, of task T, is calculated by Algorithm 5.1 (Part
of the Algorithm shows the solution of the consecutive steps in TORSCHE
for intersection 6). This algorithm computes the processing time from the
assignment of MMCF f;(u,v), from the cycle time C' and from the prece-
dence constraints of the tasks (defined by the intersection control strategy).
Table 5.3 shows processing time of tasks for three intersections (6,7 and 8).

Table 5.3: Processing time of tasks and offset for intersections 6,7,8

w,v | 5.6 | 2,6 | 96 | 6,7 | 3.7 |97 7.8 | 228
Do | 21.3 | 68.7 | 24.4 | 296 | 60.4 | 7.5 | 184 | 71.6
Cuw | - _ 95 - [-] 8 _

58 Chapter 5 Traffic Flow Optimization

Algorithm 5.1 Processing time computation

1. Create tasks Ty, with temporary processing time p/, = Zg):l filu,v).

>> T56 = task(’T(5,6)’, 0.0069)

Task "T(5,6)"
Processing time: 0.0069
Release time: 0

>> T26 = task(’T(2,6)’, 0.0222);
>> T96 = task(’T(9,6)’,0.0079);

2. Group the tasks into a taskset and add precedence constrains.

>> prec6 = [0 1 1; 00 0; 00 0];

>> TS6 = taskset([T56 T26 T96],precé);
Set of 3 tasks

There are precedence constraints

3. Compute a length of critical path C'P, by the asap (as soon as possible)
function.

>> TS6.asap;
>> asapStart = asap(TS6,’asap’);
>> CP6 = max(asapStart + TS6.ProcTime)
CP6 =
0.0291

4. From the length of the critical path and cycle time C we obtain pro-
cessing time py, as a linear proportion of flow: py, = pl,, - C/CP,.

>> C = 90;
>> TS6.ProcTime = TS6.ProcTime * C / CP6;

5. We can display intersection phases by the plot function, see to
Fig. 5.4(b).

>> TS6.asap;
>> plot(TS6,’asap’,1, ’prec’,0)

5.4 Scheduling with Communication Delay 59

5.4 Scheduling with Communication Delay

The intersection phase offset and split is computed for the green wave strat-
egy. The green wave strategy, specified by the engineering skills, extends the
tasks precedence constraints by the relationships between successive intersec-
tion tasks. The precedence constraints must be in the out-tree form. Each
of those relationships defines the offset ¢, as a time, which a vehicle needs
to pass from intersection u to intersection v. The ¢, is given by the street
length a,, and vehicle speed Wy, as @uy = ayy /Wy (see Table 5.3).

The split can be found by an algorithm for scheduling with a communi-
cation delay [Chre 95]. The scheduling with communication delay problem
extends the precedence constraints in the classical scheduling by the com-
munication delay between dependent tasks assigned to distinct processors.
In our case the communication delay is equal to the offset ¢,,. Let D be
a matrix of communication delays, where the elements are (,, in the case
that the offset between intersections u and v is considered, zero otherwise.
We can classify our instances as tasks with precedence constraints in an out-
tree form, communication delays, unlimited number of processors and no
duplication of tasks. In Graham and Blazewicz notation it can be denoted as
Pyo|out-tree, ¢ji|Cpmaz- This problem can be solved in O(n) by the allgorithm
presented in [Chre 89] which is implemented in the TORSCHE toolbox (see
Chapter 4) as a function chretienne.

Fig. 5.3 shows the problem solution for three intersections (6, 7 and 8).
First, the taskset object TSall with eight tasks corresponding to the inter-
section control is defined. The tasks and precedence constraints among them
are shown in Fig. 5.4(a). The precedence constraints given by the green-wave
strategy are drawn as solid lines. Consequently, matrix D and the notation of
the problem prob is defined. Finally, the scheduling problem is solved by the
algorithm chretienne and the resulting Gantt chart is shown in Fig. 5.4(b).
The figure shows the tasks for the three considered intersections including
the processing time py,, split 7,; and offset ¢,,. The split is given by the
processing time of the scheduled tasks. The tasks are periodically repeated
with a cycle time C.

60 Chapter 5 Traffic Flow Optimization

>> T56 = task(’T(5,6)’, 21.3); >> TSall = [TS6 TS7 TS8];

>> T26 = task(’T(2,6)’, 68.7); >> TSall.Prec(1,4) = 1;

>> T96 = task(’T(9,6)’, 24.4); >> TSall.Prec(4,7) = 1;

>> prec6 = [0 1 1; 00 0; 0 0 0];

>> TS6 = taskset([T56 T26 T96],prech); >> D = zeros(size(TSall.Prec));

>> T67 = task(’T(6,7)’, 29.6); >> D(1,4) = 9.5;

>> T37 = task(’T(3,7)’, 60.4); >> D(4,7) = 8;

>> T97 = task(’T(9,7)’, 7.5);

>> prec7 = [0 1 1; 00 0; 00 0]; >> prob = ...

>> TS7 = taskset([T67 T37 T97],prec7); problem(’Pinf |prec,out-tree,cjk|Cmax’);
>> T78 = task(’T(7,8)’, 18.4);

>> T228 = task(’T(22,8)’, 71.6); >> TSall = chretienne(TSall,p,Inf,D);
>> prec8 = [0 1; 0 0]; >> plot(TSall);

>> TS8 = taskset([T78 T228],prec8);

Fig. 5.3: Solution of the scheduling problem in the toolbox

5.5 Summary

In this chapter, the offset ¢, and the split 7,; of intersections were found.
The offset is respecting the green wave strategy and the split is optimal
under considered criterion (minimizes the time spend on the road — from the
scheduling point of view minimizes C),,,). The data from real light controlled
intersections in an urban traffic region in Prague was used to demonstrate
consecutive steps of the problem solution.

61

5.5 Summary

[01)10D (8 pue), ‘Q) SUOIPRSIONI O], F°Q *S1q

s[Tew jesjjo pue [ds SUIPNOUT MO S[OIYaA I0] 1IeyDd Jjuer) (q) SIUTRIISTOD 90UIPadAI (®)
} 00€ 02 002 0ST 00T - N
1 1 1 | 1 1 | TR 1 T LH_ lr._HL
S
8¢ 1 .A
& () w”f&
* el g 8 TORO9sINUL Q UOT)I9SIYU]
L9
s [e Y s I : AL
Lod :ﬁﬁ
L'6 ‘ L6\.‘
[] soq [] [] 5L L 8
L€ L'e .
_H d ™ L L Q G'6=""0
[
€L L, TL L UOT}O9sI2)U] TOT)I9SIo)U
L L T T‘T‘a& L 4] jut .
95 o:ﬁﬁ oo OA
96 wobﬁ L
| oy . O
, L v I
e TR T 9 UOI}D9SIOYU] Q UOT109SINU]

62

Chapter 6

Conclusions

6.1 Summary and Contributions

In this thesis, the modeling and optimization techniques to improve efficiency
of light controlled intersections in urban area have been studied. The gen-
eral procedures to make intersection models were shown as well optimization
techniques to their control. All results were verified on real data from Prague
traffic region.

The extended queue model based on number of vehicles in the queue and
the mean value of waiting time was presented. Further, we have used the
model to derive the parameters of the controllers for a simple intersection
model. The advantages and disadvantages of the presented controllers were
discussed.

General light controlled intersection model was based on CCPN. The new
method for conflict resolution in CCPN has been presented. The conflict reso-
lution method is based on the maximal speed proportion. Next, the iterative
algorithm for this problem and its solution by LP was shown. The light
controlled intersection model describes the traffic flow from the macroscopic
point of view. This model is innovative, firstly, by the free space modeling
together with the opposite direction of the vehicular flow. Secondly, by the
constant speed continuous Petri net uses only.

The last part of thesis describes the optimization of traffic flow in urban
region. The new algorithm for the offset and the split of intersections was
presented. The offset is respecting the green wave strategy and the split is

63

64 Chapter 6 Conclusions

optimal under considered criterion. The solution of this problem is solved by
the TORSCHE. The performance of all depicted models and optimizations
techniques was evaluated in simulations and compared with real data from
the traffic in Prague.

The contributions of the thesis are summarized in Section 1.2. In our
opinion, the main contributions are:

1. Formalization of the traffic intersection model (extended by the mean
waiting time) used to drivers waiting time balancing.

2. CCPN based general light controlled intersection model verified on real
data.

3. Algorithm for optimization of light controlled intersection traffic urban
region.

6.2 Future Research

Current work aims at incorporating several intersections based on CCPN
into a complex traffic region model. In order to model the traffic with higher
precision (i.e. incorporating logarithmic stream model capturing the output
flow as non-monotonic function of the flow density) we are developing a model
based on continuous Petri Nets. As future work we would like to include
additional practical constraints to the problem (e.g., supervisory systems
performing high-level optimization on the model).

Appendices

65

Appendix A

TORSCHE Algorithms

A.1 Scheduling Algorithms

algorithm command problem
Algorithm for 1|rj|Crnas alglrjcmax 1r5|Cmaz
Bratley’s Algorithm bratley 1|ry, JJ |Crmax
Horn’s Algorithm horn 1lpmin, 7j| Lmaz
Hodgson’s Algorithm alglsumuj 1> U;
Algorithm for 1|| Y w;D; alglsumwjdj 1| > w; Dy
Algorithm for P||Cmaz algpcmax P||Cmax
Dynamic Prog. and P||Cmaas algpcmaxdp P||Cmax
McNaughton’s Algorithm mcnaughtonrule Plpmin|Cmaz

Algorithm for P|r;, prec, CTJ |Crmax
Hu’s Algorithm

Brucker’s algorithm

List Scheduling

Coffman’s and Graham’s Algorithm
SAT Scheduling

Johnson’s Algorithm

Gonzales Sahni’s Algorithm
Jackson’s Algorithm

Algorithm cpshopscheduler

Alg. for F2, Rl|p;j = 1,t;|Cmaz
Alg. for F||Cmaz with lim. buffers
Alg. for Olp;; = 1| X°T;

Positive and Negative Time-Lags
Cyclic scheduling (General)

SAT Scheduling

algprjdeadlinepreccmax
hu

brucker76
listsch
coffmangraham
satsch

johnson
gonzalezsahni
jackson
cpshopscheduler
algf2ripijtjcmax
fslb
algopijlsumti
spntl

cycsch

satsch

Plrj y PTec, d] |Cmaz
Plin-tree,p; = 1|Cmaz
Plin-tree,p; = 1|Limax
Plprec|Cmaz
P2|prec,p; = 1|Cmax
Plprec|Cmaz

F2‘ ‘Cma.t

O2||Cmam

J2[n; < 2|Cmax

J, F, O||Cmaz

2, Rl‘pij = l»tj|cmaz
F”Cmaac

Olp; =1|XT;
SPNTL

CSCH

Plprec|Cmaz

67

68 Appendix A List of TORSCHE Algorithms

A.2 Graph Algorithms

algorithm command

Minimum spanning tree spanningtree
Dijkstra’s algorithm dijkstra

Floyd’s algorithm floyd

Tarjan’s algorithm tarjan

Minimum Cost Flow mincostflow

Critical Circuit Ratio criticalcircuitratio
Hamilton circuit hamiltoncircuit
Christofides christofides
MWPM mwpm
Multicommodity flow multicommodityflow
All path allpath

K shortest path xbestpath
Commodity flow commodityflow
Graph coloring graphcoloring

Quadratic Assignment Problem qap

A.3 Other Optimization Algorithms

algorithm command

Knapsack problem knapsack
Knapsack problem graph knapsack_graph

Bibliography

[Abou 09] K. Aboudolas, M. Papageorgiou, and E. Kosmatopoulos. “Store-

[Ande 05]

[Andr 03]

[Astr 97]

[Blaz 83]

[Bonn 95]

[Boyd 04]

and-forward based methods for the signal control problem in
large-scale congested urban road networks”. Transportation Re-
search Part C: Emerging Technologies, Vol. 17, No. 2, pp. 163 —
174, 2009. Selected papers from the Sixth Triennial Symposium
on Transportation Analysis (TRISTAN VI).

M. Andersson, D. Henriksson, and A. Cervin. TrueTime 1.3-
Reference Manual. Department of Automatic Control, Lund Uni-
versity, Sweden, Lund University, Sweden, 2005.
http://www.control.lth.se/truetime/.

M. Andresen, H. Brisel, F. Engelhardt, and F. Werner. LiSA - A
Library of Scheduling Algortihms. Otto-von-Guericke-Universitat
Magdeburg, 2003. http://lisa.math.uni-magdeburg.de/.

K. J. Astrom and B. Wittenmark. Computer-Controlled Systems:
Theory and Design. Prentice Hall, November 20 1997.

J. Blazewicz, J. Lenstra, and A. R. Kan. “Scheduling subject
to resource constraints. Classification and complexity”. Discrete
Applied Mathematics, Vol. 5, No. 5, pp. 11-24, 1983.

J. A. Bonneson and P. T. Mccoy. “Average duration and perfor-
mance of actuated signal phases”. Transportation Research Part
A: Policy and Practice, Vol. 29, No. 6, pp. 429 — 443, 1995.

S. Boyd and L. Vandenberghe. Conver Optimization. Cambridge
University Press, New York, NY, USA, March 2004.

69

http://www.control.lth.se/truetime/
http://lisa.math.uni-magdeburg.de/

70

Bibliography

[Cast 96]

[Chre 89

[Chre 95]

[Cram 06]

[Davi 01]

[Davi 04]

[Davi 98]

[Diak 02]

[Febb 01]

[Febb 04]

D. J. M. Castillo. “A car-following model based on the Lighthill-
Whitham Theory”. In: J. Lesort, Ed., Proceedings of the 13th
International Symposium of Transportation and Traffic Theory,
pp. 517-538, 1996.

P. Chrétienne. “A Polynomial Algorithm to Optimally Schedule
Tasks on a Virtual Distributed System under Tree-like Precedence

Constraints”. Furopean Journal of Operational Research, Vol. 43,
No. 43, pp. 225-230, 1989.

P. Chrétienne, E. G. Coffman, J. K. Lenstraand, and Z. Liu.
Scheduling theory and its applications. John Wiley & Sons Ltd,
Baffins Lane, Chichester, West Sussex PO19 1UD, England, 1995.

Y. Crama and P. L. Hammer. “Boolean Functions: Theory, Al-
gorithms and Applications”. 2006.
http://www.rogp.hec.ulg.ac.be/Crama/Publications/
BookPage.html.

R. David and H. Alla. “On Hybrid Petri Nets”. Discrete Event
Dynamic Systems, Vol. 11, No. 1-2, pp. 9-40, 2001.

R. David and H. Alla. Discrete, Continuous, and Hybrid Petri
Nets. Springer, November 23 2004.

R. David and H. Alla. “A modeling and analysis tool for discrete
events systems: continuous Petri net”. Performance Evaluation,
Vol. 33, pp. 175-199, 1998.

C. Diakaki, M. Papageorgiou, and K. Aboudolas. “A multivari-
able regulator approach to traffic-responsive network wide signal
control”. Control Engineering Practice, Vol. 10, No. 2, pp. 183—
195, February 2002.

A. D. Febbraro, D. Giglio, and N. Sacco. “Modular representation
of urban traffic systems based on hybridPetri nets”. In: Intelligent
Transportation Systems, pp. 866-871, Oakland, CA, USA, 2001.

A. D. Febbraro, D. Giglio, and N. Sacco. “Urban traffic control
structure based on hybrid Petri nets”. IEEE Transactions on
Intelligent Transportation Systems, Vol. 5, pp. 224-237, 2004.

http://www.rogp.hec.ulg.ac.be/Crama/Publications/BookPage.html
http://www.rogp.hec.ulg.ac.be/Crama/Publications/BookPage.html

Bibliography 71

[Febb 06]

[Figu 01]

[Find 02]

[Gart 83]

[Gazi 02]

[Gazi 63]

[Gonz 08]

[Goog 09]

[Groo 92]

[Gube 08]

[Haef 98]

A. D. Febbraro and D. Giglio. “Urban traffic control in mod-
ular/switching deterministic-timed Petri nets”. In: 11th IFAC
Symposium on Control in Transportation Systems, 2006.

L. Figueiredo, I. Jesus, J. Machado, J. Ferreira, and J. Santos.
“Towards the development of intelligent transportation systems”.
In: IEEFE Intelligent Transportation Systems Proceedings, p. 29,
2001.

R. Findeisen and F. Allgéwer. “An Introduction to Nonlinear
Model Predictive Control”. In: 21st Benelux Meeting on Systems
and Control, March 2002.

N. H. Gartner. “OPAC: A demand-responsive strategy for traffic
signal control”. Transportation Research Record, Vol. 906, pp. 75—
81, 1983.

D. C. Gazis. Traffic theory. Kluwer, 2002.

D. C. Gazis and R. Potts. “The oversaturated intersection”. In:
Proc. 2nd Int. Symp. Traffic Theory, pp. 221-237, 1963.

M. Gonzalez et al. “MAST (Modeling and Analysis Suite for
Real-Time Applications)”. http://mast.unican.es/, 2008.

Google. “Prague Google Maps”. http://maps.google.com/, De-
cember 2009.

S. H. de Groot, S. Gerez, and O. Herrmann. “Range-chart-guided
iterative data-flow graph scheduling”. Clircuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on,
Vol. 39, pp. 351-364, 1992.

S. Guberini¢, G. Senborn, and B. Lazié¢. Optimal Traffic Control:
Urban Intersections. CRC Press, 6000 Broken Sound Parkway
NW, Suite 300, Boca Raton, 2008.

L. E. Haefner and M.-S. Li. “Traffic Flow Simulation for an Urban
Freeway Corridor”. Transportation Conference Proceedings, 1998.

http://mast.unican.es/
http://maps.google.com/

72

Bibliography

[Hanz 03]

[He 06]

[Henr 04]

[Henr 83]

[Homo 05]

[Hunt 82]

ILOG 09]

[Julv 05]

[Kort 06]

[Kuti 07]

7. Hanzalek. “Continuous Petri Nets and Polytopes”. In: IEFEFE
International Conference on Systems Man & Cybernetics, Wash-
ington, D.C., October 2003.

H. He, L. Dong, and S. Dai. “Simulation of traffic flow with
traffic light strategies via a modified cellular automaton model”.
Journal of Shanghai University (English Edition), Vol. 10, No. 3,
pp. 189-191, 2006.

D. Henriksson, Y. Lu, and T. F. Abdelzaher. “Improved Predic-
tion for Web Server Delay Control”. In: ECRTS, pp. 61-68, IEEE
Computer Society, 2004.

J. J. Henry, J. L. Farges, and J. Tuffal. “The PRODYN real time
traffic algorithm”. In: 4th IFAC-IFIP-IFORS Conference on Con-
trol in Transportation System, BadenBaden, Germany, September
1983.

J. Homolova and I. Nagy. “Traffic Model of a Microregion”. In:
IFAC World Congress, 2005.

P. B. Hunt, D. I. Robertson, and R. D. Bretherton. “The SCOOT
on-line traffic signal optimization technique”. Traffic Eng. Con-
trol, Vol. 23, pp. 190-192, 1982.

ILOG. ILOG CP Optimizer. IBM Corporation, ILOG Europe,
9 rue de Verdun, BP 85, 94253 Gentilly Cedex, 2009.
http://www.ilog.com/products/cpoptimizer/.

J. Jilvez and R. Boel. “Modelling and Controlling Traffic Be-
haviour with Continuous Petri Nets”. In: 16th IFAC World
Congress 2005, Elsevier, 07 2005.

B. H. Korte and J. Vygen. Combinatorial Optimization: Theory
and Algorithms. Springer-Verlag, Berlin, Heidelberg, third Ed.,
2006.

M. Kutil, P. Stcha, M. Sojka, and Z. Hanzdlek. TORSCHE
Scheduling Toolbox for Matlab: User’s Guide. Centre for Applied

http://www.ilog.com/products/cpoptimizer/

Bibliography 73

[Kwak 72]

[Lei 01]

[Leun 04]

[Litt 61]

[Liu 09]

[Magn 03]

[Man 00]

[Masu 07]

[Memi 02]

Cybernetics, Department of Control Engineering, Czech Techni-
cal University in Prague, October 2007.
http://rtime.felk.cvut.cz/scheduling-toolbox/.

H. Kwakernaak. Linear Optimal Control Systems. John Wiley
& Sons, Inc., New York, NY, USA, 1972.

J. Lei and U. Ozguner. “Decentralized hybrid intersection con-
trol”. In: Proceedings of the 40th IEEE Conference on Decision
and Control, pp. 1237-1242, 2001.

J. Y.-T. Leung. Handbook of Scheduling. Chapman & Hall/CRC,
2004.

J. D. C. Little. “A Proof of the Queueing Formula L = A\W?”.
Operations Research, Vol. 9, pp. 383-387, 1961.

Z. Liu, H. Zhao, P. Li, and J. Wang. “An Optimization Model for
10 Jitter in Device-Level RTOS”. In: ITNG ’09: Proceedings of
the 2009 Sixth International Conference on Information Technol-
ogy: New Generations, pp. 1528-1533, IEEE Computer Society,
Washington, DC, USA, 2009.

L. Magni, G. De Nicolao, R. Scattolini, and F. Allgwer. “Robust
model predictive control for nonlinear discrete-time systems.”.
Int. J. Robust Nonlinear Control, Vol. 13, No. 3-4, pp. 229-246,
2003.

I. T. K. Man. “Intelligent Transport Systems”. In: Better air
Quality Motor Vehicle Control € Technology Workshop 2000,
2000.

S. Masukura, T. Nagatani, K. Tanaka, and H. Hanaura. “Theory
and simulation for jamming transitions induced by a slow vehicle
in traffic flow”. Physica A: Statistical Mechanics and its Applica-
tions, Vol. 379, pp. 263-273, 2007.

S. O. Memik and F. Fallah. “Accelerated SAT-based Scheduling
of Control/Data Flow Graphs”. In: ICCD ’02: Proceedings of the
2002 IEEFE International Conference on Computer Design: VLSI

http://rtime.felk.cvut.cz/scheduling-toolbox/

74

Bibliography

[Mosk 01]

[Muni 09]

[Naga 07]

[Nage 03]

[Papa 03]

[Pine 02]

[Pine 08]

[Prag 09]

[Robe 69]

[Sen 97]

in Computers and Processors, p. 395, IEEE Computer Society,
Washington, DC, USA, 2002.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. “Chaff: Engineering an Efficient SAT Solver”. In: Proceedings
of the 38th Design Automation Conference (DAC’01), pp. 530
535, ACM, 2001.

A. C. Muniyappa. Computer Safety, Reliability, and Security.
Springer, Berlin Heidelberg, 2009.

T. Nagatani. “Vehicular traffic through a sequence of green-wave
lights”. Physica A: Statistical Mechanics and its Applications,
Vol. 380, pp. 503 — 511, 2007.

K. Nagel, P. Wagner, and R. Woesler. “Still flowing: Approaches
to traffic flow and traffic jam modeling”. Operations research,
Vol. 51, No. 5, pp. 681-710, 2003.

M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and
Y. Wang. “Review of Road Traffic Control Strategies”. PRO-
CEEDINGS - IEEE, Vol. 91, pp. 20432067, 2003.

M. Pinedo et al. LEKIN®) - Flexible Job-Shop Scheduling System.
New York University, Leonard N. Stern School of Business New
York, NY, 2002.
http://www.stern.nyu.edu/om/software/lekin/.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems.
Springer, 233 Spring Street, NewYork, NY 10013, USA, third
Ed., 2008.

Prague city. “Statistika registru silni¢nich vozidel v hl.m. Praze”.
http://doprava.praha-mesto.cz/, December 2009.

D. Robertson. “TRANSYT method for area traffic control”. Traf-
fic Eng. Control, Vol. 10, p. 276, 1969.

S. Sen and L. K. Head. “Controlled Optimization of Phases at an
Intersection”. Transportation Science, Vol. 31, pp. 5-17, 1997.

http://www.stern.nyu.edu/om/software/lekin/
http://doprava.praha-mesto.cz/

Bibliography 75

[Tolb 01]

[Tolb 03]

[Tolb 05]

[Wang 93]

C. Tolba. “Continuous Petri Nets Models for the Analysis of
Traffic Urban Networks”. In: Proceedings of IEEE Systems, Man,
and Cybernetics Conference, Arizona, USA, pp. 1323-1328, 2001.

C. Tolba, P. Thomas, A. ElMoudni, and D. Lefebvre. “Perfor-
mances evaluation of the traffic control in a single crossroad by
Petri nets”. In: IEEE Emerging Technologies and Factory Au-
tomation, 2003.

C. Tolba, D. Lefebvre, P. Thomas, and E. A. Moudni. “Contin-
uous and timed Petri nets for the macroscopic and microscopic
traffic flow modelling”. Simulation Modelling Practice and The-
ory, Vol. 13, No. 5, pp. 407-436, July 2005.

H. Wang, G. F. List, and F. Dicesare. “Modeling and Evaluation
of Traffic Signal Control Using Timed Petri Nets”. In: IEEFE
International Conference on Systems, Man and Cybernetic, 1993.

76

Index

Chretienne, 59

conflict, see Petri net,conflict
conjunctive normal form, 48
control, see intersection, control
cost function, 12, 14, 15

cycle time, 11, 26, 28

density, see flow, density
distribution rate, 26

equilibrium point, 9, 10

flow
density, 1
rate, 1
incoming, 7
outgoing, 7
speed, 1
free space, 28
fundamental diagram, 1, 2

graph, 41
algorithm list, 68
oriented, 55

green wave strategy, see intersection,
control, green wave strategy

horizon
control, 14
prediction, 14

intelligent transportation systems, 2

intersection
control, 11, 12, 59
green wave strategy, 53
model
general, 25
linear, 10
simple, 10
parameters, 53

linear programming, 22

linear Quadratic Regulator, 12
List scheduling algorithm, 44
Little’s law, 9

multi-commodity flow, 50, 56

non-linear model predictive
troller, 13

offset, see phase, offset

Petri net
conflict, 21

continuous constant speed, 20

hybrid, 20

intersection model, 28
place, see place

simple, 21

transition, see transition

7

78 Index

phase, 3 enabled
offset, 3, 53 strongly, 20
split, 3, 12, 53 weakly, 20
place source, 31
supplied, 20 speed, 20
common, 27
queue model, 6 maximal, 22, 27
approximate, 6
complete, 6 unit vehicle
extended, 7 length, 27

satisfiability of boolean expression, 48 waiting time, 6
scheduling algorithm, 40 mean value, 7
list, 67 minimize, 12
work-flow, 42
scheduling problem classification, 40
scheduling with communication de-
lay, 59
set of tasks, see taskset
source transition, see transition,
source
speed
transition, see transition, speed
vehicle, 26
split, see phase, split
state vector, 6
switching time, 13

task, 37

taskset, 37

TORSCHE, 35

traffic region model, 55

traffic stream model, 1, 3, 19
macroscopic, 19
microscopic, 19

transition
delay, 27

Curriculum Vitae

Michal Kutil was born in Kutnd Hora, Czech Republic, in 1980. He received
the his master’s degree in Electrical Engineering from the Czech Technical
University (CTU) in Prague in 2004. From 2004 he was a Ph.D. student at
the Czech Technical University and from 2005 he has had the position of a full
time researcher at the Center for Applied Cybernetics at CTU. His research
interests include scheduling and urban traffic flow modeling and control.

His teaching activities at CTU cover courses on Introduction to con-
trol, Control Systems, Systems and control, Distributed Control Systems
and Industrial Informatics and Internet. He has supervised several students’
projects and diploma theses.

Michal Kutil completed a three-month stay at Lund University, Depart-
ment of Automatic Control (Sweden) where he worked on a simple intersec-
tion model control.

Research results of Michal Kutil have been presented at prestigious inter-
national conferences and workshops including the 11th IFAC Symposium on
Control in Transportation Systems in Delft (Netherlands), 12th IFAC Sym-
posium on Control in Transportation in California (USA), 17th IFAC World
Congress in Seoul (Korea), etc.

79

80

List of Author’s Publications

Papers submitted to international journals

Michal Kutil, Pfemysl Sticha, Roman Capek, and Zdenék Hanzélek. Torsche
scheduling toolbox for matlab (co-authorship 25%). Transactions on
Mathematical Software, submitted 2010.

Michal Kutil and Zdenék Hanzélek. Traffic Intersection Model Based on
Constant Speed Continuous Petri Net (co-authorship 50%). Transactions
on Intelligent Transportation Systems, submitted 2009.

Michal Kutil, Zdenék Hanzélek, and Anton Cervin. Minimization the Wait-
ing Times in Traffic Intersection Control (co-authorship 35%). Control
Engineering Practice, submitted 2009.

International Conference Papers

M. Kutil and Z. Hanzalek. Light controlled intersection model based on the
continuous petri net (co-authorship 50%). In 12th IFAC Symposium on
Transportation Systems, pages 519-525, Laxenburg, 2009. IFAC.

M. Kutil, P. Stucha, and Z. Hanzélek. Scheduling and Simulation in
TORSCHE Toolbox. In 17th IFAC World Congress- Workshop on Embedded
Control Systems: from design to implementation (co-authorship 35%),
Seoul, 2008. Seoul National University.

V. Navratil and M. Kutil. Torsche Scheduling Toolbox and Graph Theory. In
Summary Volume of 16th International Conference on Process Control "07

81

82 List of Author’s Publications

(co-authorship 50%), page 152, Bratislava, 2007. Slovak University of
Technology.

M. Kutil, Z. Hanzdlek, and A. Cervin. Balancing the Waiting Times in a
Simple Traffic Intersection Model (co-authorship 50%). In 11th IFAC

Symposium on Control in Transportation Systems, pages 313-318, New
York, 2006. IFAC.

P. Sticha, M. Kutil, M. Sojka, and Z. Hanzélek. TORSCHE Scheduling Tool-
box for Matlab (co-authorship 25%). In IEEE Symposium on Computer-
Aided Control System Design 20006, pages 277-282, Piscataway, 2006. IEEE.

M. Stibor and M. Kutil. Torsche Scheduling Toolbox: List Scheduling (co-
authorship 50%). In Proceedings of Process Control 2006, Pardubice,
2006. University of Pardubice.

R. Léska and M. Kutil. AGMAWEB - Automatically generated Matlab
Web Server presentations (co-authorship 50%). In 15th International
Conference on Process Control 05, Bratislava, 2005. Slovak University of
Technology.

M. Kutil. Control of model using Internet (co-authorship 100%). In
8th International Student Conference on bjlectrical Engineering, POSTER
2004, May 20 2004, Prague, Praha, 2004. CVUT v Praze, FEL.

J. Fuka, M. Kutil, and F. Vanék. SARI - Internet Textbook for Basic Control
Education (co-authorship 30%). In Proceedings of Process Control 03,
pages 106-1-106-4, Bratislava, 2003. Slovak University of Technology.

F. Vanék and M. Kutil. Application in Control (co-authorship 10%). In
Proceedings of the 5th International Scientific - Technical Conference, pages
R171-1-R171-5, Pardubice, 2002. University of Pardubice.

Other publications

P. Stcha, M. Kutil, and Z. Hanzalek. TORSCHE Scheduling Toolbox for
Matlab (co-authorship 35%). In ARTIST Graduate Course on Embed-
ded Control Systems, pages 121-129, Stockholm, 2008. Royal Institute of
Technology.

List of Author’s Publications 83

P. Stcha and M. Kutil. TORSCHE Scheduling Toolbox for Matlab(co-
authorship 50%). In Graduate Course on Embedded Control Systems,
pages 347-361, Prague, 2006. CTU, Faculty of Electrical Engineering, De-
partment of Control Engineering.

M. Kutil. Scheduling Toolbox for Use with Matlab (co-authorship 100%).
In CTU Reports - Proceedings of Workshop 2006, volume A, pages 160-161,
Praha, 2006. Ceska technika - nakladatelstvi CVUT.

M. Kutil. Splnitelnost Booleovskych formuli (co-authorship 100%). Re-
search Report K13135/05/231, CVUT, FEL, Praha, 2005.

J. Fuka and M. Kutil. Internet Texbook SARI and Remote Scale Models
(co-authorship 50%). In Proceedings of Workshop 2005, pages 308-309,
Prague, 2005. CTU.

M. Kutil. Scheduling Toolbox First Preview (co-authorship 100%). In
MATLAB 2004 - Sbornik prispévku 12. rocéniku konference, volume 1-2,
pages 297-303, Praha, 2004. VSCHT.

	Titlepage
	Acknowledgements
	Nomenclature
	Abbreviations
	Abstract
	Goals and Objectives
	Content
	Introduction
	Related Work
	Outline and Contribution

	Simple Light Controled Intersection Model
	Introduction
	Extended Queue Model
	Geometrical Interpretation
	Extended Queue Model Evaluation
	Extended Queue Model Equilibrium

	Simple Intersection Model
	Linear model

	Control of The Simple Intersection Model
	Linear Quadratic Regulator
	Non-Linear Model Predictive Controller

	Summary

	General Light Controlled Intersection Model
	Introduction
	Continuous Petri Net
	Conflict Resolution
	Linear Programming for Conflict Resolution

	Light Controlled Intersection Model
	Continuous Petri Net Intersection Model

	Performance Evaluation
	Summary

	TORSCHE Scheduling Toolbox for Matlab
	Introduction
	Tool Architecture and Basic Notation
	Scheduling Part
	Graph Part

	Implemented Algorithm
	List Scheduling Algorithm
	SAT Based Scheduling Algorithm
	Minimum Cost Multi-commodity Flow Problem

	Summary

	Traffic Flow Optimization
	Introduction
	Traffic Region Model
	Tasks Definition for Intersection
	Scheduling with Communication Delay
	Summary

	Conclusions
	Summary and Contributions
	Future Research

	List of TORSCHE Algorithms
	Scheduling Algorithms
	Graph Algorithms
	Other Optimization Algorithms

	Bibliography
	Index
	Curriculum Vitae
	List of Author's Publications

