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Abstract

This thesis brings two complementary approaches for distributed control and
estimation in spatially interconnected multi-agent systems. In particular, the
first approach brings a distributed estimation scheme for large-scale systems.
The plant is considered affected by process disturbance, and measurements are
corrupted by measurement noise. The proposed approach fuses measurements of
differing reliability so that all nodes reach consensus on the plant’s state estimate.
This architecture is flexible to addition of new nodes and, to a certain extent,
robust to node or communication link failures. This follows from a protocol
allowing existence of nodes that do not measure anything but contribute to the
data fusion in the sensor network. Hence, in spite of limited observability by
each of the nodes, data fusion over sensor network allows each node to obtain
the full estimate of the plant’s state. Structured Lyapunov functions are used to
prove the convergence of the estimator. Resulting estimation error covariances
are analyzed in detail.

The second approach introduces a fully distributed adaptive protocol
for consensus and synchronization in multi-agent systems on directed
communication networks. Agents are modeled as general linear time-invariant
systems. The proposed protocol introduces a novel adaptation scheme allowing
control coupling gains to decay to their reference values. This approach improves
upon existing adaptive consensus protocols, which may result in overly large or
even unbounded coupling gains. The protocol design in this paper does not rely
on any centralized information; hence it is fully distributed. Nevertheless, the
price to pay for this is the need to estimate those reference values. Convergence
of the overall network dynamics is guaranteed for correctly estimated references;
otherwise, the trajectory of the system is only uniformly ultimately bounded.
Two estimation algorithms are proposed: one based on the interval-halving
method and the other based on a distributed estimation of Laplacian eigenvalues.
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Abstrakt

Tato prica sa zaoberd dvoma komplementarnymi pristupmi pre distribuované
riadenie a odhadovanie na priestorovo rozprostrenych multiagentovych systé-
moch. Prvy pristup sa venuje distribuovanému odhadovaniu velkého systému pri
predpoklade, Ze na stavy systému a merania posobi Sum. Princip navrhovanej
metddy spociva vo fizil merani s réznou presnostou tak, aby vSetci agenti v sieti
dosiahli konsensus na odhade stavu pozorovaného systému. Tato architektira
umoznuje existenciu agentov ktori ni¢ nemerajui, avSak prispievaju k sireniu
informacii v sieti, a zaroven dovoluje priddvanie novych agentov do siete, ¢o
vedie ku zvyseniu odolnosti voci zlyhaniu komunikacnej linky alebo samotného
agenta. Vdaka tomu, aj napriek obmedzenej pozorovatelnosti odhadovaného
systému z pohladu kazdého agenta, vedie flzia dat zo siete k iplnej rekonstrukeii
stavu pozorovaného systému kazdym agentom samostatne. Na preukazanie
konvergencie odhadov agentov si pouzité Struktirované Lyapunove funkcie.
Vysledné kovariancie chyb odhadu st podrobené detailnej analyze.

Druhy pristup prezentuje plne distribuovany adaptivny protokol pre
konsensus a synchronizaciu multiagentovych systémov na orientovanych grafoch.
Navrhovany distribuovany protokol prindsa novi adaptaéni schému, ktord
umoznuje aby riadiace vdzobné zosilnenia klesali ku ich referenénym hodnotam.
Tento pristup riesi problémy sucasnych distribuovanych adaptivnych protokolov,
ktoré moézu dosahovat velmi velké alebo dokonca neobmedzené vézobné
zosilnenia. Navrh samotného adaptivneho protokolu nevyzaduje ziadnu
centralizovani informdciu, preto je plne distribuovany. Avsak, dai za to spociva
v potrebe odhadovat referenéné hodnoty pre vidzobné zosilnenia. Pri spravnom
odhade tychto referencii je zarucena stabilita protokolu, v opa¢nom pripade je
trajektoria samotnej siete obmedzend v urcitom pasme. Pre odhad referencii
su vyvinuté dva algoritmy: prvy je zalozeny na metdde poloviéného delenia
intervalu, zatial ¢o druhy je zaloZzeny na distribuovanom odhade vlastnych ¢isel
Laplasianu.
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The following list specifies the most important symbols used in this doctoral
thesis. Symbols excluded from this list are defined later in the text. Note that
some symbols might have multiple meanings depending on the context.
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Introduction

The observed occurrence of cooperative behaviors in nature, exemplified by
schools of fish, flocks of birds, swarms of insects and herds of quadrupeds,
motivates their emulation and implementation of distributed cooperation in
the technical world as well. This has attracted attention of many researchers
from a variety of disciplines. Hence, in the past few decades, a significant
progress has been made in the study of cooperative multi-agent systems [10,
53]. This together with a recent boost in computational power paved the
way to decentralization, distribution and development of networked systems.
Networking allowed creation of the Internet, which laid the foundation to a
new phenomenon of smart networks called Internet of Things, interconnecting
smart devices and building smart ecosystems in public and private sphere, e.g.,
intelligent buildings, smart cities, smart power grids, etc.

Networked systems hence also attract considerable research attention in
control theory, where they give rise to networked control system (NCS) [49, 6, 72]
and their synonymous cyber-physical systems, in which cyber-networks intensely
interact with physical plants and humans [40, 31, 4]. This integrates two
complementary fields, the control theory [66, 32, 2] considering the single-
agent dynamics and the algebraic graph theory [21], into an emerging field
of distributed systems. Distributed NCS have a wide range of application
in formation control of mobile robots, satellites, and vehicles [53], heating,
ventilation, and air conditioning in buildings [24], energy generation in micro-
grids [7], estimation with the use of sensor networks [1], synchronization of
coupled oscillators [13], reaching the agreement in human social networks [73],
to name only a few. See the books [61, 43] for a comprehensive treatment.

These systems are composed of autonomous agents networked by a
communication topology. Every agent uses its own information and information
from its neighbors in the network to reach an agreement on states with all
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other agents, called consensus. Over time consensus and synchronization of
agents crystallized in this context as two canonical control problems. Those are
here referred to as the cooperative requlator problem, in which the consensus is
reached among agents, all being of equal standing, and the cooperative tracker
problem, in which all agents synchronize to a single distinct leader. In literature,
these two canonical control problems are sometimes refered to as relative-state
consensus (leaderless consensus) and leader-following consensus.

The first developed consensus protocols solving the canonical cooperative
control problems are the so-called local voting protocols [16, 58, 57, 64]. All
other consensus protocols are their simpler or more complex modifications as,
e.g., passivity-based design of cooperative controllers for multi-agent systems
[12, 3], which was introduced later. The local voting protocols are used for
synchronization of agents with a general linear time-invariant (LTI) dynamics
that is stable or on the stability boundary. They do not require any centralized
information to be known by each agent to reach consensus; hence they can be
implemented on agents fully separately. Unfortunately, they do not allow for
an implementation on agents with unstable dynamics.

The static consensus protocols [45, 76, 77| offer a refinement. They gained
wide popularity in the cooperative control community because of their well
developed simple design and broad applicability on agents with LTI dynamics.
They are based on the synchronizing region methodology, which exhibit many
advantages, such as divorcing the single-agent control design from the detailed
graph topology, bringing robustness to uncertainties in the graph structure,
providing a unified approach to cooperative regulator and tracking problems,
all while allowing for a rather simple controller design. Nevertheless, these
methods generally rely on a common coupling gain, used in all the agents,
that satisfies a specific lower bound. The calculation of this bound requires
knowledge of the graph topology. Since this is centralized information, the
static consensus protocol design via the synchronizing region methodology is
not fully distributed.

Consensus protocols are broadly applied in many distributed control and
estimation approaches. Since a plant is often not fully controllable (observable)
by individual agents in the network, distributed design and implementation of
controllers and observers is often indispensable for proper longterm functioning
and safety of networked multi-agent systems. When a centralized solution is used
on a network of agents, it views the network as a single complex system; therefore,
the complexity of the centralized solution increases with the complexity of the
network. In most applications, centralized solution cannot observe the full state
information due to communication constraints between agents. Moreover, the
centralized solution might fail when the network topology changes, e.g., an
agent or a communication link is added or dropped. Therefore, an incentive to
avoid drawbacks and limitations of centralized approaches initiated development



of decentralized and distributed approaches for networked multi-agent systems.
They handle all drawbacks of centralized approaches and enjoy many advantages,
such as robustness, flexibility, and scalability.

Very early results in the centralized estimation bring the Wiener filter
in continuous [71] and discrete-time [41], for estimating the target of a
stochastic process. For estimation of non-stationary processes, the Kalman
filter [30] was developed. The Luenberger observer [48] brings a simple design
without considering models for measurement and process noises. To improve
upon drawbacks of the centralized observers, their decentralized alternatives
[68, 62, 63] were first developed. The decentralized observers offer fast parallel
processing and increased robustness to failures. However, they require an
all-to-all coupling of nodes, which leads to increased communication load,
computational complexity and thereby to scaling problems on large-scale
networks. The problems of decentralized observers motivated their further
enhancement, which led to the birth of distributed observers. This brought the
distributed estimators of a time-varying signal [59, 67, 80]. The distributed
Kalman filtes (DKFs) [54, 55, 56] ensure estimation of a target system dynamics
with process noise acting on the plant state and measurement noise corrupting
the sensors’ measurements. The DKF approaches ensure optimality of the
resulting state estimates however they suffer from large communication burden,
due to communication of covariances, especially for large-scale network. Different
from DKFs, the distributed Luenberger observers (DLOs) [34, 79] introduce a
simpler design which do not consider process and measurement noises, hence
they do not suffer from large communication load. However neither they aim
for the information weighted sensor fusion. A novel distributed estimation
approach, presented in Chapter 3, combines the best of both approaches on
DKFs and DLOs. It aims to achieve a rather simple observer design achieving
reasonable sensor fusion of measurements with varying reliability by maintaining
relatively small communication burden.

To allow for a fully distributed implementation of cooperative laws, consensus
protocols started to incorporate adaptation of coupling gains. This gave birth
to the first distributed adaptive consensus protocols (DACPs) [69, 75, 46, 47].
These consensus protocols implement an adaptive law which adapts one or
more coupling gain values. Thereby, in contrast to static consensus protocols,
they avoid the requirement of any centralized information about the network
communication topology. Thus, they can be implemented by each agent
separately without using any global information. These DACPs guarantee
cooperative stability. However, benefits from adaptability suffer from possibly
large control effort and lack of robustness to noise. A solution to these problems
is offered by more advanced DACPs, [50] and [11], which introduce modified
adaptive laws allowing all coupling gains to decay to a single static value. These
protocols guarantee uniform ultimate boundedness of the synchronization error.
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However the upper bound on this error depends on the network properties.
This is primary caused by the static reference value to which all the coupling
gains decay. Our DACPs approach presented in Chapter 4 aims to avoid
this drawback by estimating the coupling gains’ references from the network
trajectories individually by each agent. Moreover, it also addresses the problems
of existing DACPs with unbounded coupling gain values and lack of robustness
to noise.

1.1 What the thesis brings

In this thesis, we first introduce basics from the graph theory and cooperative
control theory. Then, we describe the above-mentioned consensus protocols in
the order they were developed and discuss their benefits and drawbacks.

Later, we present a novel distributed estimation approach, [39], for large-
scale sensor networks, that uses sensor fusion to merge measurements of varying
reliability with locally available measurements. The proposed distributed
observer addresses primarily state estimation of plants represented by flexible
structures. It is based on the DLO designs; however, it shares some desirable
properties with the DKF. For instance, it considers process and measurements
noises as DKFs, but it does not communicate covariance matrices, as DLOs, to
reduce the communication burden especially for large network. The observer
design allows existence of nodes that do not measure anything but contribute
to the information exchange among nodes in the network. This, in hand with a
possible incorporation of redundant nodes into the network, increases robustness
to node or communication link failure.

Last but not least, we present a novel DACP, [38], that addresses the
cooperative regulator and tracker problems on directed graphs with a relatively
simple and unified design. It is based on our recent results, [35, 36, 37], which
were motivated by the previously developed DACPs, [46, 47]. The proposed
DACP design introduces a novel adaptive law that allows coupling gains to
decay to their reference values. Thereby it solves the problems of existing
DACPs, [69, 75, 46, 47], with overly large or even unbounded coupling gains.
For estimation of proper coupling gains’ reference values, each agent in the
network implements one of the two proposed on-line estimation algorithms based
either on interval-halving method or on estimation of Laplacian eigenvalues
[17, 18]. The estimation algorithm estimates the coupling gains’ references from
the network trajectories. This is found to improves robustness of the proposed
design to noise and disturbances.
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1.2 Goals of the thesis

This thesis is dedicated to development of a novel distributed cooperative
estimator and a distributed adaptive consensus protocol for multi-agent systems
on general directed communication graphs. Those represent two primary
goals, specified by additional requirements, which are supposed to provide
improvements upon the existing results in the literature. Namely, the goals of
this thesis are given as follows.

1 Develop a distributed estimator for large-scale sensor networks that satisfies
the following requirements.

(a) It considers process and measurement noises.
(b) It provides robustness to node and communication link failures.

(¢) It maintains small communication burden.

2 Develop a distributed adaptive consensus protocol satisfying the following
requirements.

(a) It is fully distributed, in a sense, not requiring any centralized
information for the design and implementation.

(b) It solves both the cooperative regulator and tracker problems.

(¢) The coupling gains are allowed not only to rise but also to decay.

Common tasks concerning both primary goals 1 and 2 aim to analyze stability
and prove convergence of the network of agents implementing the corresponding
approach and also to validate the results numerically by simulations.

1.3 Structure of the thesis

The thesis is structured as follows. Chapter 2 brings basic notation,
mathematical preliminaries, and theoretical results from algebraic graph theory,
which are used throughout this thesis. Furthermore, it introduces general
consensus protocols from cooperative control theory; namely, the local voting
protocol and the celebrated static consensus protocol.

Chapter 3 presents a distributed estimation approach for large-scale sensor
networks. At the beginning, it brings the state of the art in distributed
estimation with detailed design of the related distributed estimation approaches.
It defines the problem that is being solved, presents the distributed observer, and
proves its convergence. Then, it provides a detailed analysis of estimation error
covariances. The observer design is summarized and it properties are further
discussed. Last but not least, numerical simulations validate the proposed
approach.
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Chapter 4 introduces a distributed adaptive consensus protocol on general
directed graphs. First, it brings the state of the art in distributed adaptive
control with detailed design of the related adaptive consensus protocols. Then,
it states the considered cooperative control problems, presents the adaptive
consensus protocol, and concludes on its stability using Lyapunov function
technique. At the end, numerical simulations demonstrate functionality of the
proposed adaptive approach and provide a comparison with existing distributed
adaptive protocols.

Chapter 5 concludes this thesis. It summarizes the main results and discusses
possible future extensions of the presented work.



Theoretical preliminaries

This chapter brings basic notation and mathematical preliminaries used
throughout the thesis. It introduces consensus and synchronization in distributed
conrol and states the general consensus protocols applied in cooperative control.
A more detailed overview of the graph theory can be found in many books,
for instance, [8, 21]. Consensus and synchronization in multi-agent systems is
comprehensively described in [61, 43].

2.1 Notation

In the thesis, following notation and definitions are used. Matrices are usually
denoted with capital letters and vectors with lower case letters. The constants
are usually denoted by small Greek letters. An element of a matrix A is denoted
as a;; while an element of a column or row vector v is denoted as v;.

The sets of positive and non-negative real numbers are denoted as Rt and
Ry, respectively. R™*" denotes the set of m x n real matrices. The set of
m~dimensional real vectors is denoted by R™. The orthogonal complement
of a subspace T is denoted by T+. The 1, denotes a column vector with
p entries, all equal to one. For a vector v € RP with elements v; € R, V =
diag(v;),l € {1,2,...,p}, denotes a diagonal matrix with elements of vector v on
the diagonal. A matrix M = diag(M;) for M; € R™*™ §=1,2, ...k, denotes
a block-diagonal matrix with k£ blocks My, Mo, ..., M} on the block-diagonal.
I, € RP*P is the identity matrix. Operation A ® B denotes the Kronecker
product of matrices A and B, [9]. The symmetric part of a matrix M is denoted
by (M)s. Eigenvalues of M are denoted by A\;(M). The smallest and the
largest eigenvalue of M are denoted by Apmin(M) and Apax(M). The smallest
and the largest element of a vector w are denoted by wmin and wmax. Positive
(semi)-definite symmetric matrix is denoted by M > (>=) 0. The sum over all
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agents » ©_, is denoted by Y, for i = 1,2,...,p, when not stated explicitly.
An expected value of a wide sense stationary stochastic process v(t) € R is
denoted by E[v] € R™. For a zero-mean process, its covariance is E[voT] € R"*".
Whenever the notation is cumbersome we discard the explicit mention of the
time dependence.

2.2 Graph theory

An information exchange among agents is given by a network. It is modeled by
a directed graph G = (W, &), where ¥V = {1,2,...,p} is a nonempty finite set of
nodes (agents) and £ CV x V is a set of arcs (communication links). An arc is
an ordered pair of nodes (i, ), @ # j, where i is the parent node and j is the
child node, that is, the information flows from node i to node j. The arc (i, j)
is depicted by an arrow with a tail node ¢ and a head node j. The graph G
is undirected if (i,j) € £ implies (j,1) € &, otherwise the graph is directed. In
following, it is assumed that the graph G is simple, that is, it has no repeated
edges nor self-loops (4,7) ¢ &, Vi.

Remark 1. Throughout the thesis, the terms "agents” and "nodes” are used
interchangeably, as are the terms "network” and "communication graph”. The
same holds also for the terms "arcs” and ”edges”.

A directed path of length p from node 1 to node p is an ordered set of
distinct nodes {1,2,...,p} such that (I,{+1) € £ foralll € {1,2,...,p—1}.
An undirected path is defined analogously with (I,i+1) e £ & (I1+1,]) € £
forall 1 € {1,2,...,r —1}. A directed graph is strongly connected if there exist
a directed path from every node to every other node. Similarly, an undirected
graph is connected if there is an undirected path between any two nodes. A node
is termed isolated if it has no parent node. Hence, in strongly connected graphs
there are no isolated nodes. Directed tree is a directed graph with every node
having only one parent except one isolated node called a root. An undirected
tree is an undirected graph in witch every pair of nodes is connected by exactly
one path. A directed graph contains a directed spanning tree if there exists
a subgraph which is a directed tree containing all nodes in V; hence, by the
definition, every strongly connected graph has a spanning tree. An undirected
spanning tree of an undirected graph G is defined analogously. An undirected
graph has an undirected spanning tree if and only if it is connected; therefore,
the term spanning tree is used only for directed graphs and undirected graphs
are said to be connected. An example of a directed graph having a spanning
tree is depicted in Figure 2.1. A spanning forest is a set of directed trees such
that a set of all nodes of these trees equals V.
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Figure 2.1: A directed graph containing a spanning tree has 6 nodes. A single
spanning tree having node 1 as the root node is depicted by grey arcs.

2.2.1 Graph matrices

Properties of a graph G can be studied through properties of certain matrices.
The adjacency matrix E = [e;;] € RP*P associated with the graph G is defined
by e;; = 1 if and only if (j,4) € &, otherwise e;; = 0. By the definition, the
diagonal elements of E satisfy e;; = 0, Vi. Denote V; = {i € V|e;; # 0} as the
set of (in-)neighbors of node i, that is, the set of nodes with arcs incoming to i.
Let the (in-)degree matrix D = diag(d;) € RP*P be a diagonal matrix given by
d; = Zj e;j. Then the graph Laplacian matrix is defined by L = D — E.

For instance, the adjacency matrix and the degree matrix corresponding to
the directed graph in Figure 2.1 have the form

001 00O 10 0 0 0O
10 00 0 1 0200000
1 1.0 0 0 O 00 2 0 0O
E= 01 0 0 0 0]’ D= 000 1 0 0}’ (2.1)
001 00O 0 00 010
0001 10 0000 0 2
and the Laplacian matrix is
1 0 -1 0O 0 O
— 2 0 0 0 -1
-1 -1 2 0 0 0
E=1"9 -1 0o 1 0 o (2.2)
0 0 -1 0 1 0
o 0 0 -1 -1 2

Remark 2. If the graph is weighted, that is, arcs have weights, elements of
the adjacency matrix, E, are given by e;; > 0 if and only if (4,¢) € £, otherwise
ei; = 0. In other words, the weight of an arc (j,4) is given by the element e;;.
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In this thesis, we consider unweighted graphs, however all results generally
apply to weighted graphs; therefore, by introducing various approaches from the
literature we usually do not state details about the considered graph weighting.

Lemma 1. The Laplacian matriz, L, has following properties:
1. It is a singular M-matriz, [20].

2. All its eigenvalues A\;(L) have non-negative real part, that is, §R()\Z(L)) >
0, Vi.

3. All its eigenvalues are located in a disc centered at max;{d;}, with a radius
of max;{d;}. This follows from the Gersgorin disc theorem, [25].

4. It has a zero eigenvalue with the corresponding right eigenvector 1,. This
follows from the fact that L has all row sums equal to zero.

Lemma 2 ([43], Thm 2.1). The Laplacian matriz L has a simple zero eigenvalue
if and only if its directed graph contains a spanning tree.

From the definition of L, Lemma 1 and Lemma 2, it follows that the
Laplacian matrix L of an undirected graph G has following properties.

1. It is a symmetric matrix, i.e., L = LT.
2. It has non-negative real eigenvalues. We order them as

0=A1(L) < Aa(L) < ... < M\(L). (2.3)

3. The second smallest eigenvalues is positive, i.e., Ao(L) > 0, if and only if
the undirected graph is connected. This follows from Lemma 2.

Denote by w € RP the left eigenvector associated with the simple zero
eigenvalue of L, i.e., w'L = 0. The pinning matrix G = diag(g;) € RP*P
associated with the graph G is a diagonal matrix of pinning gains g; > 0 such
that g; > 0 if the ith node is pinned, otherwise g; = 0, [43].

The following two lemmas are useful in constructing Lyapunov functions for
cooperative control [77].

Lemma 3 ([77], Lemma 6). Let L be the Laplacian matriz associated with a
directed, strongly connected graph G. Then L has a simple zero eigenvalue and
its left eigenvector w, w'L = 0, has all positive entries, i.e., w; = 0, Vi.

Lemma 4 ([78], Proposition 1 and Corollary 3). For every strongly connected,
irreducible, graph G with Laplacian matriz L, there exists a positive diagonal
matrizc W = diag(w;) satisfying

L'W + WL = 0. (2.4)

10
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Let graph G with Laplacian matriz L contain a spanning forest with g; > 0 for
a root node of each tree, then the positive diagonal matriz © = diag(0;), with
0 =[01,00,...,0,]" = (L+G)""1,, satisfies

(L+G&)'O+6(L+G) 0. (2.5)

2.2.2 Irreducible matrices and Frobenius form

A graph G is reducible if there exists a permutation matrix 7', that transforms
its Laplacian L to a block triangular form

Liy Lip }

oo (2.6)

T'LT = [

If the graph is not reducible it is said to be irreducible.
Lemma 5. A directed graph is irreducible if and only if it is strongly connected.

Let the directed graph be reducible and let it contain a spanning forest.
Then the Laplacian of the graph can be reduced by a node permutation to the
Frobenius normal form [43]. If the graph contains a single spanning tree then
its Frobenius normal form equals

L+G
Lig ... L. Lyt
TTLT = SO : : (2.7)
0 Lc,c Lc,c+1
0 | Lettern

where all L, .,k € {1,2,...,c} blocks are irreducible. This thesis addresses
graphs having a single spanning tree. Such graphs are either irreducible (strongly
connected) or reducible and contain at most one irreducible leader group
Leyic+1- A special case of the irreducible leader group is a single isolated
leader. The results presented for irreducible graphs naturally specialize to
connected undirected graphs.

Remark 3. For the theoretical development in Chapters 3 and 4 we do not
consider edge weights; hence we restrict elements of the adjacency matrix, F,
to e;; = 1 if and only if (j,7) € € and e;; = 0 otherwise.

2.3 Cooperative control

This section gives a short introduction to cooperative control. First, it explains
two generally known consensus problems; namely, cooperative regulator and
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tracker problems. Then, as a solution to these problems, it introduces the so-
called local voting protocol and the static consensus protocol. Each consensus
protocol is shortly described and its benefits and drawback are summarized. A
more general overview of the recent progress in various fields of cooperative
control can be found in [10]. A detailed introduction to cooperative control
and basic consensus protocols for formation control in networked multi-agent
systems is given in [57], [64], [16], [27]. Theory dedicated to cooperative control
can be found in books, such as [43], [61].

Various approaches for the design of distributed cooperative controllers
(including static and adaptive approach) on directed communication graphs
are summarized in [77]. The passivity based design of distributed controllers is
introduces in [12], [3]. A unified viewpoint on design of consensus regulators on
directed graph topologies using the synchronizing region is provided in [45]. The
design of distributed controllers and observers using state or output-feedback in
continuous and discrete-time is considered by [76], [77], [22]. An extension to the
communication graphs with switching topologies and time delays is proposed in
[58], [52].

A stability of a distributed control protocol is proved mostly by the
Lypaunov’s direct method. To use this method on multi-agent systems, it
requires a special construction of Lyapunov functions. The construction of these
Lyapunov functions is described in [78] and [23].

2.3.1 Leaderless consensus

The main objective of the relative state consensus or so-called cooperative
regulator problem is to reach an agreement on some information among agents.
These information are usually states of agents that are being synchronized to
a one common value. To present a general relative state consensus algorithm
solving the cooperative regulator problem, first, consider a network of p agents,
each with an identical single-integrator dynamics

.’El(t) = ’U,l(t) z;,u; € R. (28)

Let the network be given by a directed, strongly connected graph G = (V, ).
The general consensus algorithm also known as the local voting protocol has
the form

ui(t) = €i(t), (2.9)
€it) = 2 jev €ij (5 (t) — 2i(t)) (2.10)

where ¢; represents the local neighborhood error term. Using this algorithm
each agent sums up the errors between its state and states of its neighbors to
obtain the local neighborhood error (2.10), which is then used as the input of

12
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agent 7. This creates a negative feedback in the system having stabilizing effect
on the network dynamics
z(t) = —Lx(t), (2.11)

where x = (x1,%2,...,2,)" is the vector of states of agents. By Lemma 1, the
eigenvalues of L are non-negative, that is, L has one zero eigenvalue and p — 1
negative eigenvalues; thus, the network dynamics (2.11) is stable with respect to
collective dynamics of agents. From the definition of L in Section 2.2.1 follows
that 1, is the right eigenvector corresponding to the zero eigenvalue; hence the
equilibrium of the network dynamics (2.11) is given by z = span(1,) = al,,a €
R, that is, ; = 23 = --- = 2, = . Moreover, by Lemma 3, it holds that

wi(t) = —w Le(t) =0 = w'z(t)=w"z(0)=a, (2.12)

where w is the left eigenvector of L corresponding to zero eigenvalue. As t — oo,
z(t) — al, so, using (2.12), w'al, = w'z(0), which yields that the agents’
states converge to a value given by
T
0
oo ) (2.13)
ey Wi

Thereby, we showed that, under the control protocol (2.9, 2.10), agents in the
network reach consensus on states in the sense of

Jim [l () — 20| =0, Vij=1.2...p. (2.14)

Note that for undirected and balanced graphs L = LT; hence w = 1, If
x € R"™, the same methodology applies using the Kronecker product, [9].

2.3.2 Leader-following consensus

The goal of the leader-following consensus or so-called cooperative tracker
problem is to reach an agreement of agents on leaders information. In other
words, the agents have to track (follow) some reference that is usually considered
as the leader and synchronize their states with leaders. The network has to
contain a single leader, pinning into the root of a spanning tree or into roots of
all trees in a spanning forest.

Consider a network of p agents having identical single-integrator dynamics
(2.8). The network is given by a directed graph G having a spanning tree
with a leader as the root node. The leader, labeled by 0, is represented by an
uncontrolled single-agent dynamics (2.8), that is, ug = 0; in this case &y = 0.
The local voting protocol for the leader-following consensus has the form (2.9)
with the local neighborhood error

€i(t) = D ey i (@ (t) — zi(t)) + gi(wo(t) — x4(1)). (2.15)

13
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The first term on the right-hand side of (2.15) is the local neighborhood error
(2.10) stemming from the relative state consensus. It synchronizes the state of
the 7th agent with states of its neighbors. The second term on the right-hand
side of (2.15) synchronizes the ith agent’s state with the leader’s. If the leader
can send information directly to the ith agent, that is, there is an arc (0,4) € &,
then g; > 0 and the state of the ith agent synchronizes with the leaders. Define
the synchronization error of agent 7 as §; = xg — x;, then the overall network
error dynamics is

0=—(L+G)d, (2.16)
where § = (z—Zp) € RP with Zg € RP representing the column vector of leader’s
states, To = (0, Z0,...,7)". Since the pined Laplacian matrix (L + G) is a

nonsingular M-matrix, it has all eigenvalues positive; hence the network error
dynamics (2.16) is stable and the agents follow the leader. The leader-following
consensus synchronizes the states of agents with the leaders in the sense of

Note that the local neighborhood error for the leader-following consensus
(2.15) is in the sense same as for the relative state consensus (2.10). The
difference is only in the used representation. Considering the leader as an agent
the local neighborhood error (2.10) can be used. However, considering the
leader and agents separately a more straightforward representation for the local
neighbor error (2.15) is used. The same holds for the network dynamics (2.11)
and (2.16).

Because an agent does not distinguish a leader among all its neighboring
agents — it considers all its neighbors as identical agents — it always implements
the local neighborhood error (2.10). The representation (2.15) is generally used,
only for mathematical purposes because it considers synchronization among
agents and synchronization with the leader separately in two independent terms.
Note that, similarly as by the Leaderless consensus, if z € R™, the Kronecker
product, [9], is used to describe the network dynamics (2.16).

2.3.3 Synchronizing region approach

To demonstrate properties of a static consensus protocol, also known as
synchronizing region approach, we describe the static consensus protocol based
on the state feedback. Other static consensus protocols are its more complex
modifications. For more information about the static consensus protocols based
on state feedback, observer and output feedback the reader is referred to [45],
[77].

Consider a network consisting of p agents. The static consensus protocols
are implemented on agents with an identical general LTI dynamics in the form

x;(t) = Az, (t) + Buy(t), i=1,2,...,p, (2.18)

14
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where z; € R" is the state vector, u; € R™ is the input vector, and A € R"*"
and B € R™ ™ are constant matrices. The matrix A is not necessarily stable
but the pair of matrices (A4, B) is assumed to be stabilizable. In the case of the
leader-following consensus, the leader node is described by the same dynamics
without an input

do(t) = Azo(t), (2.19)

where g € R” is the leader’s state vector.
The static consensus protocol defines a control input in the form

u; = ckK (Zj eij(rj — ;i) + gi(wo — xi)) ) (2.20)

where ¢ > 0 is a scalar coupling gain and K € R™*™ is the feedback gain
matrix determined by the linear-quadratic regulator (LQR) design technique.
Let Q@ € R™*™ and R € R™*™ be positive definite symmetric matrices, then

K =R'B"P, (2.21)

where the positive definite symmetric matrix P € R"*" is the unique solution
of the algebraic Riccati equation (ARE)

ATP+PA+Q—-PBR'B'P=0. (2.22)
The overall closed-loop dynamics is
t=(IN®A—-c(L+G)®BK)x+c((L+ G)® BK)Zo, (2.23)
and the error dynamics is
b= (Iy®A—¢(L+G)® BK)d. (2.24)

Note that for the relative state consensus g; = 0, V¢; thus, the control input
(2.20) is
u; =cK ) eij(xj — i), (2.25)

and the overall closed-loop dynamics is
t=(UnN®A—cL®BK)x. (2.26)

Lemma 6. Consider a communication graph G having a spanning tree (possibly
with the leader described by (2.19)). Then the N agents described by (2.18)
reach consensus under protocol (2.20) with the control gain (2.21) if the coupling
gain satisfies the following condition

1

> — 2.2
€= 2min1-€p W(Ai)’ ( 7)

where \; is the non-zero eigenvalue of L (L + G).
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In comparison to the local voting protocol, the static consensus protocol
can be implemented on agents with higher order LTI dynamics that can be
unstable. The feedback gain matrix K stabilizes the agent dynamics and the
coupling gain c stabilizes the network to reach consensus among agents. The
LQR based design of the feedback gain matrix K is beneficial, since it makes the
synchronizing region unbounded, that is, the network is stable for any coupling
gain ¢ higher than the lower bound (2.27). Different designs of the feedback gain
matrix K might lead to a bounded synchronizing region, that is, the network is
stable just for some lower and upper bounded coupling gain c.

A drawback of static consensus protocols is that the choice of ¢ always
depends on the eigenvalues of L (L 4+ G). Namely, to design the scalar coupling
gain ¢, and reach consensus, the smallest real part of the non-zero Laplacian
eigenvalues, min;ey R(A;), has to be known. However, it can be determined only
from the communication graph which is considered as centralized information.
Therefore each agent needs to know the graph topology to set its coupling
gain. For this reason the protocol cannot be implemented on agents in a fully
distributed fashion, different to the local voting protocol. A solution to this
problem is proposed by adaptive approaches, which use an adaptive law to find
the stabilizing coupling gain value.

2.4 Summary

This chapter brought the notation and definitions, which are used throughout
the thesis. Also, it introduced the basics of the graph theory and the cooperative
control theory. In particular, the general (un)directed graphs were introduced
and their properties were described as, e.g., (strong) connectedness, spanning
tree, etc. The mathematical description of a graph by the adjacency matrix,
degree matrix, and Laplacian matrix was stated. Properties of the Laplacian
matrix were discussed and related to properties of the corresponding graph.
The irreducibility of the Laplacian matrix was defined and the transformation
of the Laplacian matrix to the Frobenius form was show.

Last but not least, this chapter gave a brief introduction to the state of the
art in cooperative control. Namely, it presented the first developed consensus
protocols, the local voting protocol and the static consensus protocol, for
leaderless and leader-following consensus.
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Distributed estimation on
sensor networks

In this chapter, we present a novel distributed design for sensor networks
that uses sensor fusion to estimate states of a plant under process disturbance
and measurement uncertainties. The introduced distributed observer addresses
primarily state-estimation of large-scale flexible structures such as aircraft
fuselages, truss bridges, lattice towers, etc. Structural vibration suppression is
indispensable for proper longterm functioning and safety of such plants. For
the design of active dampers for flexible structures, the state of the plant first
has to be know, which is the task of an observer. However, implementations of
centralized solutions are often expensive and prohibitively complex on the larger
scale. A solution is offered by the nascent networked/distributed systems. First
of all, they reduce the implementation costs and complexity of the entire design
and application. Secondly, communication via network provides a potential
for improvement of overall system performance, in contrast to centralized
solutions. Moreover, node redundancy provides additional fault tolerance
or allows for graceful degradation in the case of node failures. Thus, the
networked /distributed architectures handle the drawbacks of (de)centralized
approaches and enjoy many advantages, such as robustness, flexibility and
scalability.

This chapter is structured as follows. Section 3.1 introduces current state of
the art in distributed estimation. Section 3.2 brings our contribution in this
field. The main problem that is being solved is stated in Section 3.3. Section
3.4 presents the distributed observer, proves its convergence and analyzes

The work presented in this chapter and its further extension are accepted for a publication
to IEEE Transactions on Control Systems Technology [39].
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estimation error covariances. Final distributed observer design is summarized
and its properties are further discussed in Section 3.5. Numerical simulations
are given in Section 3.6. Section 3.7 concludes this chapter.

3.1 State of the art

First designs of distributed observers are motivated by previous developments in
centralized estimation. Early results in centralized estimation bring the Wiener
filter in continuous [71] and discrete time [41], for estimating the target of a
stochastic process. Later, the Kalman filter [30] was developed extending the
Wiener filter to non-stationary processes. In contrast to the Kalman filter, the
Luenberger observer [48] does not incorporate statistical models for measurement
uncertainties and process noise. Albeit, the Kalman Filter and the Luenberger
observer share the same structure, their designs differ in the choice of their
design parameters. The design parameters of the Kalman filter are determined
by the statistical properties of noises, [42], while the Luenberg observer derives
the appropriate design parameters using the pole-placement method, [2].

Limitations of the centralized approach prompted a demand for data fusion
over sensor networks [19, 5, 70]. This led to the birth of first decentralized
Kalman filters presented in [68, 62, 63], offering fast parallel processing and
increased robustness to failures. A drawback of these approaches is that they
require an all-to-all coupling of nodes, i.e., their network topology is a complete
graph, which leads to increased communication load, computational complexity
and thereby to scaling problems on large-scale networks. For example, in [68]
every agent serves as a sensor and an actuator, and for control purposes it
uses pure measurements of all nodes in the network, without any sensor fusion.
This approach is not robust to changes of the network topology due to agent
failures, because the controller design is centralized; requiring recalculation of
the controller following any network change. In contrast to [68], each node
in [62] computes its own local estimate of an unknown state vector and then
assimilates all the local estimates into a single final estimate of the plant state
to accomplish globally optimal performance.

The computational complexity and scaling issues of the decentralized
Kalman filter are improved by the DKF. DKF relaxes the requirements on the
communication topology such that each node exchanges information only with
its neighbors and it also offers possible redundancy in case of node failures.
One of the first scalable DKF, providing data fusion over a sensor network
to estimate a process modeled by a general LTI dynamics, is introduced in
[54]. Tt is based on consensus filters [59], and dynamic average consensus [67],
which solve the distributed estimation of a time-varying signal with and without
measurement noise, respectively. In particular, a distributed filtering algorithm
presented in [59] consists of a network of micro-Kalman filters, each embedded
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with a low-pass and band-pass consensus filter. On the other hand, a recent
work on distributed filtering of noisy measurements of a time-varying signal [80]
proposes three algorithms loosely based on Bayesian sensor fusion. It considers
two types of nodes: sensing nodes which perform the measuring task and non-
sensing nodes which mediate between sensing nodes. Extension of the DKF
algorithm from [54] for application to heterogeneous sensor models with different
outputs can be found in [55], which offers a popular and efficient consensus-based
framework for distributed state estimation. Stability and performance of this
DKF algorithm are thoroughly investigated and a new optimal solution of DKF
is developed in [56].

An extension of the discrete-time DKF [55] to continuous-time with
embedded communication of measurement noise covariances is provided in
[33]. The most recent work in this field, [29], presents an optimal information-
weighted DKF, which implements a novel measurement model considering noise
in communication channels. The network topology in [29] is assumed directed
having a spanning tree with a target node observable by at least one root node.
Note, that [68, 62, 63, 54, 59, 67, 55, 56, 33] consider undirected communication
graphs, while the approaches in [80, 29] apply to general directed graphs.

A distributed estimation and control approach on directed sensor networks,
[60], proposes an optimal scheme without a statistical framework; however, it
suffers from a centralized design. It considers nodes which may be sensing,
acting, or both. In contrast to [60], a DLO, [34], allows for a completely
single-agent based design and implementation, albeit only on undirected sensor
networks. A recently introduced distributed observer and controller design
[79] combines appealing properties of both [60] and [34]. It applies to general
directed graphs and adopts the node classification of sensing, acting, or both
as in [60], while it allows for a single-agent based design as in [34] sacrificing
optimality of [60]. Moreover, it also allows insertion of redundant sensor nodes
into the network to increase robustness to node or communication link failures.
However, in contrast to the DKF, the estimation and control approaches in
[34, 60, 79] do not consider process or measurement noises.

To introduce the existing results on distributed estimation in more details,
in following, we review several estimation approaches from the literature. First,
in Section 3.1.1, we describe two estimation approaches using DKF [55, 33].
Then, in Section 3.1.2, we bring two DLO designs [34, 79].

3.1.1 Distributed Kalman filter

The DKF, [55], also referred to as distributed Kalman-Bucy filter, [33], is
a distributed estimator incorporating statistical description of process and
measurement noises. It estimates the state vector of a target system usually
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represented by the LTI dynamics
z(t) = Azx(t) + Yw(t), (3.1)

where z(t) € R™ is the state vector, w(t) € R™ is the process noise, A € R"*"”
is the system matrix and W € R™*™ is the process noise input matrix.

The distributed estimator is given by a sensor network, which is described
by a communication graph, G = (V,£). It consists of p nodes (local observers),
each endowed with the linear sensing model

yi(t) = Ciz(t) + &i(t), i€V, (3.2)

where y;(t) € RP is the ith node measurement corrupted by the measurement
noise &;(t) € R and C; € RPi*™ is the ith node observation matrix. Both w(t)
and &;(t) are independent zero-mean white Gaussian noises (WGNs) with

Elw(t)w' ()] = Qo(t — 1), E[&(t)E] ()] = Rid(t —71), Vi€V, (3.3)

where 6(t —7) =1 if t = 7 and §(¢ — 7) = 0 otherwise.

First, we briefly introduce the celebrated centralized Kalman filter, [42].
Define a global output vector y(t) = Cx(t), where C = [C],C3,...,C]".
Assume that the pair (A4, C) is detectable, i.e., there is no unstable unobservable
invariant subspace in the model; then the classical centralized Kalman filter is
given by

2(t) = Az(t) + K(t) (y(t) — Ci(t)), (3.4a)
K(t)=P(t)C"R™, (3.4b)
P(t) = AP(t) + P(t)AT + ¥QU" — P(t)C"R™'CP(t), (3.4c)

with P(t) > 0 and P(0) = Py >~ 0, where R = diag(R;) = 0,7 € V. The
centralized Kalman filter (3.4) is optimal in the sense of minimizing the limit
tlim J(t) with the cost function

—00

J(t) = Bl ()] = E [ (O)n(t)] = 55)
trace (E [n(t)n' ()]) = trace(P(t)). .

where 7)(t) = x(t) — &(¢) is the estimation error and P(t) is its covariance matrix.

Next, we bring two distributed estimation approaches [55, 33] proposing a
DKF design, which are motivated by the centralized Kalman filter (3.4), [42].
In both approaches [55, 33], the following two assumptions are required to hold.

Assumption 1. The communication graph G is undirected and connected.

Assumption 2. The covariance matrices R; > 0,Vi € V and @ = 0. The pair
1
(A,¥Qz) is controllable and the pair (A, C) is observable.

Note that, by Assumption 2, the pairs (A, C;) are not necessarily observable.
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DKF design proposed by Olfati-Saber et al. [55]
The distributed estimation approach in [55] proposes the DKF in the form

Ti = A% + Ki(yi — Cii) + P, 2 jev, (&5 — &), (3.6a)
K;=PClR ', 7>0, (3.6b)
P, = AP, + BAT + 9QU" — P,CTR'C;P;, (3.6¢)

with the initial conditions: P;(0) = Py > 0 and £;(0) = x(0) for all ¢ in V.

Theorem 1 ([55], Prop. 2). Under Assumptions 1 and 2, the DKF design
(3.6) by [55], with the sensor model (3.2) and target dynamics (3.1), guarantees
asymptotic stability of the distributed estimator (without noise) for v sufficiently
large, i.e., each node’s estimate &;(t) converges to the target state x(t)
asymptotically as t — oco.

It is important to point out that, by [33], the boundedness of the covariance
matrix P;(t) in (3.6) is guaranteed only if (A, C;) is observable Vi € V.

Remark 4. Let J; = V; U {i} denotes the inclusive set of neighbors of the ith
sensor. Then all C;s are, in fact, Cyis (1 meaning local) and Cj = col(Hj) e s,,
yielding that the observation of the ith sensor, y;, is given by an aggregate
observation of all sensors in J;. This clearly follows from Algorithm 3.1.

Algorithm 3.1 states the iterative procedure for implementation of the DKF
design (3.6) introduced in [55]. According to this algorithm, each sensor i
communicates to all its neighbors j € V; its predictions z; as well as its u; and
U; which contain the aggregate observations, as mentioned in Remark 4, together
with other covariance-related information. This brings a drawback in increased
communication load especially for large sensor networks. The initialization
requirements #;(0) = x(0) for the DKF design (3.6) and z;(0) = «(0) for
Algorithm 3.1 are unrealistic to be met for the most estimation problems, which
bring another difficulty. These difficulties are further addressed in [56] by new
optimal and suboptimal scalable solutions for discreet-time DKEF.

DKF design proposed by Kim et al. [33]

A distributed estimation approach in [33], motivated by [55], addresses some of
the above mentioned drawbacks of the DKF design (3.6) with a slightly different
DKF in the form
fi'i = Ai’z-l-Kl(yl —Cli'l) +’VPZ‘ Zg‘evi(fi —@i), (37&)
K;=PC/R™', ~>0, (3.7b)
Py = AP+ PAT +VQUT — P.CJR'CiPi+ kY oy (P — B).  (3.7¢)
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Algorithm 3.1 Iterative Kalman-Consensus Filter

1: Initialization: Set P; = Py, z; = x(0),Vi € V.
2: while new data exists do
3: Locally aggregate data and covariance matrices:

J, = ViU {i}
uUj = C;I—R;ly],Vj c Ji,Zi = ZjEJi Uj
Uj = C]TR;lC],Vj c Ji, S; = ZjGJ,: Uj

o

Compute Kalman-Consensus estimate:

M = (P74 5!

SACi = "El' =+ Ml(zz — Szi’?) =+ GMi ZjEVi (SEj — J_L‘l)
5: Update the state of the Kalman-Consensus filter:

Py =« AM; AT + UQU"

T, = Ai‘l

6: end while

Theorem 2 ([33], Thm. 1). Under Assumptions 1 and 2, the DKF design
(3.7) by [33], with the sensor model (3.2) and target dynamics (3.1), guarantees
asymptotic stability of the distributed estimator (without noise) for v sufficiently
large and P;(0) satisfying certain condition (see [33, Lemma 3]).

Different from (3.6), all the covariance matrices P;(t) in (3.7) are bounded,
hence the pairs (A, C;) can be truly unobservable, as long as Assumption 2
remains satisfied. Note that by the asymptotic stability of the estimator we
mean asymptotic convergence of all estimates 2;(t),7 € V to xz(t) as t — oo.

For the DKF design (3.7), the initial estimates Z;(0) and covariances P;(0) >~
0 of sensors can be different, which relaxes the requirements on initial conditions
from [55]. Similar to [55], each node 4 uses its own estimate Z; and estimates of
its neighbors z;, j € V;; however, different from [55], each node i uses purely
its own observation y;. Nevertheless all the nodes rely on communication of
covariance matrices P; with their neighbors. Thereby this approach inherits the
problem of [55] with larger communication load for large sensor networks.
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3.1.2 Distributed Luenberger observer

The DLO designs, as opposed to DKF, consider a target system with the LTI
dynamics (3.1) and sensors with the linear model (3.2) without noises, i.e.,
w=0and & =0,Vi € V, as follows

i(t) = Az(t), wi(t) = Cia(t). (3.8)

Note, that by taking all the sensors’ measurements together we can define a
single global output vector y(t) = Cx(t), with C = [CT,C5,...,C]]".

DLO design proposed by Kim et al. [34]

The DLO, presented in [34], consists of p local observers (nodes), each
implementing the estimation dynamics in the form

2; = AZ; + Li(y; — Ciy) + VMfl(k’i)Ejevi (&5 — &), (3.9)

where v > 0 is a scalar coupling gain, L; is the injection gain matrix, and M;(k;)
is the weighting matrix. The design matrices L; and M;(k;) are proposed as

Lio

LiTz[ 0

kiMio 0
o Mi(k) =T 7" 17, (3.10)
0 L,
where k; > 0 is the weighting gain, I, is the identity matrix of size v;, and v;
is the dimension of the unobservable subspace of the pair (A, C;). The matrix
T; is an orthonormal coordinate transformation matrix satisfying

Ao O

T -
AT = [ A Ai

], CT,=[Ci 0], (3.11)

where the pair (Ao, Cio) is observable. The transformation (3.11) accomplishes
the observability decomposition of the pair (4, C;).
The following assumptions are required to hold by [34].

Assumption 3. The communication graph G is undirected and connected.
Assumption 4. The pair (A4, C) is detectable.

Note that, by Assumption 4, the detectability is required for all the
measurements of nodes together; hence, the individual pairs (A, C;) are not
necessarily detectable. The following theorem brings the main result of [34].

Theorem 3 ([34], Thm. 1). Consider that Assumptions 3 and 4 hold. Let the
following apply:
1. Each Lj,,i €V is chosen such that the matriz A;, — L;oC;o in Hurwitz.
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2. FEach M;,,i € V is the unique positive definite solution of the following
algebraic Lyapunov equation

(Aio - Liocio)TMio + Mio(Aio - Liocio) = _In—v,-- (312)

3. Let v > 0 and each k; > 0,7 € V are sufficiently large.

Then, by [34] ,with the dynamics (3.8) and (3.9), the observers’ estimates Z;(t)
asymptotically converge to the target state x(t) ast — oo.

The novelty of this estimation method, [34], is in the design of the two
observer gains; the injection gain, L;, for the local measurements and the
weighting matrix, M;(k;), for the information exchange. In the local observer
dynamics, (3.9), the output injection through L; applies only to observable part,
while the error between the observer ¢ and its neighbors affects the observable
part and the unobservable part differently by M;. This separate weighting of
the detectable and undetectable part follows from the block-diagonal structure
of the gain matrices, (3.10), which is the main feature of the proposed approach.

The exact lower bounds on the design parameters k; and « are given in [34].
Although the operation of the proposed observer is a distributed one, its design
is not decentralized because each observer can not choose suitable gains k; and
~ without global information. However, if the maximum number of nodes p
and all possible network structures are known, then k; and v can be chosen
sufficiently large, according to these bounds, [34].

DLO design proposed by Zhang et al. [79]

The DLO design, proposed by [79], addresses the distributed observer design
problem on directed sensor network for spatially interconnected systems. This
approach allows existence of nodes that do not measure anything but contribute
to the sensor fusion via consensus. Moreover, it also allows incorporation or
redundant sensing nodes into the sensor networks to increase robustness to
communication link and sensor failures.

Assume that the target dynamics and the sensor model (3.8) are already
in Jordan canonical form (JCF) with a block diagonal structure of the system
matrix A = diag(4;), A; € R"*"  and the observation matrix C; =
[Ci1,Cia, ..., Cyl, Ci; € RPi*™ . The state vector x € R™ is then partitioned
into [ state-groups = = [z],21,...,2]|", with 2; € R, Zé’:l n; =n.

Remark 5. If (3.8) is not in a block diagonal form, there always exists a
nonsingular real transformation matrix II = [II;,II,,...,I;] € R™*"  with
II; € R™ ™ such that AIl; = II;A;, and AIl = ITA, were A = diag(A4;) € R™*™.
The matrix IT transforms (3.8) to JCF, [2]. Note that by plants representing
flexible structures modal canonical form (MCF), [20], is more appropriate to
obtain a block diagonal structure of (3.8).
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The DLO, presented in [79], consists of p local observers in the sensor
network, each implementing the estimation dynamics

& = A% + Li(y; — Cid) + Fid pey, @k — &), (3.13)

where L; € R"*Pi is the Luenberger-like observer gain, [48], and F; € R™*™ is
the communication gain matrix. The design matrices L; and F; have the form

7| Lio s 0 ,
Ll._Ti{ Cl FET G daery | T (3.14)

where ¢; > 0,5 € {1,2,...,1} is the scalar coupling gain. The matrix T; € R"*"
is an orthonormal coordinate transformation matrix satisfying

Ao 0]

TAT; { 0 A

Cl=[Ci 0], (3.15)

where the pair (Ao, Cio) is observable. The transformation (3.15) achieves
the observability decomposition of the pair (A, C;), i.e., it transforms the pair
(A, C;) to Kalman decomposed form, [2].

Remark 6. The block diagonal structure of the Kalman decomposed form
(3.15) is more restrictive than (3.11) because [79] addressees particularly LTI
spatially interconnected plants like, e.g., large-scale flexible structures, while [34]
assumes plants having the general LTI dynamics. A more detailed comparison
of both approaches is given in Remark 12.

In our work introduced later in this chapter, we follow a very similar
development as [79]; hence, more information about the transformations to
JCF, MCF, and Kalman decomposed form can be found in Section 3.3 and 3.4,
directly in the paper [79], or alternatively in the appropriate literature [2, 20].

Now, let us introduce all the necessary definitions and assumptions needed
by the DLO design, [79].

Definition 1. § ={1,2,...,1} defines a set of state-groups.

Assumption 5. C;; # 0, where i € V, j € S, if and only if the state-group z;
is observable from the measurement y;.

Definition 2. The observable set of agent i € V, is defined as O; = {j €
S|C;; # 0}; the unobservable set of agent ¢ € V is defined as O; = S\O;.

Definition 3. The converse observable set of x;, j € S, is defined as D; = {i €
V|C;;j # 0}; the converse unobservable set of z;, j € S is defined as D; = V\D;.

Assumption 6. The system is globally observable, i.e., O;UO,U---UO, = S.
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Assumption 7. The directed communication graph G. given a priori, satisfies
the following condition: for any j € &, the subgraph G; formed by the nodes
belonging to D;, has outgoing edges pinning into all the roots of a spanning
forest of the subgraph g‘j, formed by the nodes belonging to g‘j.

Note that the reduced Lalpacian matrix £; of the graph G; is obtained via
deleting the kth row and column form the original Laplacian matrix L of the
graph G, for all £ € D;.

The following theorem brings the main result on this DLO design, [79].

Theorem 4 ([79], Thm. 1). Consider that Assumptions 5, 6, and 7 hold. Let
the following apply:
1. Each L;,,i €V is chosen such that the matriz A;o — L;oC;, in Hurwitz.

2. Each F; = ﬁ;lpj,j € S, where P; = I:’]T = 0 e R%*™ 4s the unique
positive definite solution of the ARE

A-jrﬁ] + ijj — Pjéglpj + Qj =0, (316)

with given Qj =0eR%*" qnd Rj =0 RW*n,
3. ¢; > 0,7 €8 is sufficiently large.
Then, by [79], with the dynamics (3.8) and (53.13), tlim (Z:(t)—x(t)) =0,Vi € V.
— 00

The node dynamics (3.13) contains two type of gains; the Luenberger-like
observer gain L;, which ensures estimation of the observable subsystem from
the ith node measurements, and the communication gain matrix F;, which
synchronizes the unobservable subsystem of the ith node with its neighbors.
This follows from the block-diagonal structure (3.14). Note that this differs from
the distributed estimation approach in [34], which applies the synchronization
to both the observable and the unobservable subsystem, see (3.9) and (3.10).
Note also that this approach addresses directed graphs while [34] applies only
to undirected sensor networks.

The exact lower bound on ¢; is derived in [79]. Albeit this observer
implementation is fully distributed, the design is centralized because the lower
bound on ¢; depends on the graph topology, which is a centralized information.
However, by knowing the maximal number of nodes, p, in the network, the
lower bound on ¢; can be evaluated for the worst case scenario and the gains
can be set sufficiently large, similarly as in [34].

The work in [79] introduces also an appropriate distributed controller design,
however we do not state it here. For more information about the controller
design, an interested reader is pointed to [79].
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3.2 QOur contribution

In the following, we bring a judicious DLO design, [39], similar to [79], which
takes into account the precision of the available measurements, similar to a
general Kalman filter [42] and the DKF in [55, 33]. Note that we do not aim here
for an optimal Kalman filter design but rather a generally suboptimal, albeit
easier to implement, consensus-based distributed Luenberger estimator that
nevertheless shares some desirable properties of the Kalman filter. The proposed
approach extends the DLO designs [34, 79] by considering multiple information
sources of varying reliability, similarly as in [80], to achieve reasonable sensor
fusion while retaining a relatively simple distributed design. Thereby it inherits
flexibility of single-agent based design, scalability on large-scale sensor networks
and robustness to node or communication link failures.
This work differs from the existing results by:

e Assuming only partial pining and observability, from each single-agent
perspective, as opposed to the conventional pinning control in [43] and
the DKF in [54].

e We consider general directed communication graphs while many existing
results, [54, 55, 56, 60, 34, 33], focus on undirected graphs. Moreover, we
relax the requirements on the network topology in [80] to directed graphs
having a spanning tree with all sensing nodes in one strongly connected
component as in [79, 29].

o In contrast to [79], we consider disturbances corrupting the sensors’
measurements, as in [80], and process noises acting on plant states as the
DKF in [54, 55, 56, 33].

o As compared to [80], here we aim for state estimation of a plant modeled
by a general LTI dynamics, in line with the developments in [79].

e To minimize the communication burden, we do not communicate
covariances or other covariance-related matrices as the discrete-time DKF
with embedded consensus filters in [54, 55, 56] and the continuous-time
DKEF in [33]. Neither do we assume communication channel noise as in [29],
but rather rely on digital communication channels with data validation.

The main contributions of our results are:

e We consider a more general communication topology than the previously
proposed distributed observers.

e Nodes implement a local micro-Kalman filter to estimate the observable
fraction of the plant state.
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e Nodes use information on process and measurement noises and apply
information-weighted fusion to reach an agreement on the estimate of a
plant state.

e Both the design and implementation of the proposed observer is fully
distributed in the sense that each node designs and implements its local
observer based on its own information and information from its neighbors.

e The proposed design allows incorporation of redundant nodes or insertion
of new communication links in the network to improve robustness to node
or communication link failures.

The convergence of the presented distributed observer is rigorously proven
by structured Lyapunov functions introduced in [78, 23]. Evolution of expected
values and estimation error covariances are further analyzed. Our distributed
estimators lend themselves to control applications along the lines of [79], though
this development is not pursued here.

3.3 Problem statement and motivation
Consider a plant with a continuous LTI dynamics
z(t) = Azx(t) + Yw(t), (3.17)

where z(t) € R™ is the plant state, w(t) € R™ is the process noise acting on
states, A € R™*"™ is the system matrix and ¥ € R™*"™ is the process noise input
matrix. Each node in a sensor network has a linear sensing model

yi(t) = C’isc(t) + fi(t), 1€V, (318)

where y;(t) € RP? is the ith node measurement corrupted by the measurement
noise §;(t) € R? and C; € RP#*™ is the ith node observation matrix. Both w(?)
and &;(t) are WGN, [33], uncorrelated in the sense that E[¢;w"] = 0,Vi and
E[&€]] = 0,V(4,4),i # j. Note that unlike [34], some nodes in the network may
be allowed not to measure anything, similarly as in [60, 79]; for such a node i,
y; is not considered. Note also that [60, 34, 79] does not consider noises while
(3.18) does.

To implement estimation of the plant’s state vector x in a distributed fashion,
it is convenient to transform the system matrix A to a block diagonal form,
A= diag(A4,) € R"*" A; € R™*™ j = {1,2,...,1}, where [ represents the
number of dynamically independent state-groups. There are two generally
known representations offering block diagonal system matrix. They are the
JCF and the MCF. A transformation to MCF is more common for models
describing flexible structures [20], while JCF is used for other general systems
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[2]. In case of MCF for flexible structures, each block A; corresponds to one
eigenmode of a flexible structure and the blocks are of the same dimension,
ie., n; =n;,V(4,5). On the other hand, blocks of the system matrix in JCF
correspond to eigenvalues of the system and the dimension of each block is
given by the algebraic multiplicity of the pertaining eigenvalue.

Hence, define a linear transformation x = Ilz = 22:1 IT;z; with a new
state vector z = [z-lr,z; .. .,z;r]T € R™ composed of state-groups, z; € R™/,
and a nonsingular transformation matrix IT = [IIy, 1o, ..., I;] € R™*" such
that IT transforms the system matrix A to a block diagonal form. This
transformation leads to a block-diagonal representation of the plant dynamics
and the transformed sensing model

A(t) = Aa(t) + o (t), (3.19)
yz(t) = Z(t) g ( )7 i€ Vv (320)

where A = II7'AIl, C; = C,II and &(t) = I~ 'Ww(t). Note, that there
always exists a matrix II, such that A = II"*AII and IT;A; = All, [25]. Let
E[@o"] = Q and E[£;£]] = =; denote covariance matrices of process noise @(t)
and measurement noise &;(t), where {2 and Z; are assumed real, symmetric and
positive definite.

Before proceeding further, we introduce several important definitions and
assumptions adopted from [79].

Definition 4. § ={1,2,...,1} defines a set of state-groups.

Assumption 8. Cj; = C;1I; # 0, where ¢ € V and j € S, iff the state-group
zj is observable from measurement y;.

This assumption tells that pairs (4,C;),i € V can be transformed to a
Kalman Decomposed Form, [2], by a permutation of state-groups. In general it
holds that if the state-group z; is observable from the output y; then C;; # 0
but the converse is not necessarily true. However, the systems we address in
this work satisfy Assumption 8 either completely or approximately, [79].

Remark 7. Note, that Assumption 8 is trivially satisfied if blocks A; are of
dimension 1. For blocks A; of dimension greater than one, n; > 1,j € §, it can
be approximately satisfied under both following conditions:

o if the plant is a flexible structure with independent eigenmodes
corresponding to blocks A;, it naturally leads to a decomposition of
Ci into Cij;

o if C;; # 0 but is small in magnitude, then the jth state-group can be
considered as unobservable from ith node output y; and Cj; can be set
to zero Cj; = 0 for the purposes of the design. The distributed observer
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design proposed in Section 3.5 is robust to such a change as long as
Assumption 9 below remains satisfied.

Definition 5. The observable and unobservable sets of state-groups from ith
node’s perspective, i € V, are defined as O; = {j € S|C;; # 0} and O; = S\O;,
respectively.

Definition 6. The converse observable and unobservable sets of nodes for jth
state-group, j € S, are defined as D; = {i € V|C;; # 0} and D; = V\D;,
respectively.

Note, that Definition 5 and Definition 6 are complementary, i.e., j € O; <=
iEDj andeOi < iGDj.

Assumption 9. The plant state z is globally observable, i.e.,
O,U0U-- U0, =S. (3.21)

This means that the LTI dynamics of the plant (3.17) is observable from
measurements of all nodes (3.18) taken together. In other words, every state-
group z; is observable at least by one node, (from one output y;), in the network,
similarly as in [79]. Ideally, however, different from [79], we want each state-
group to be observable by several nodes so to affect sensor fusion while facing
process and measurement noises. Let us point out that all this still allows
existence of nodes that do not measure anything. The main contribution of
such nodes is in maintaining network connectivity. These nodes can be also
used for actuation purposes, along the lines of the distributed controller design
in [79]. We refer to them as to non-sensing nodes. To all the other nodes in the
network we refer to as the sensing nodes.

Assumption 10. The communication topology is given by a directed graph
having a spanning tree with all the sensing nodes contained in the irreducible
leader group.

Remark 8. The irreducible leader group is a strongly connected component
of the graph given by its Laplacian L.i1 41 in the Frobenius normal form
(2.7). Here the leaders are themselves connected to allow for sensor fusion, as
needed with multiple measurements of differing reliability, in contrast to [79]
where measurements are assumed perfect. It is important to point out, that the
irreducible leader group can additionally contain also some non-sensing nodes.

Remark 9. This approach utilizes directed graphs, unlike some existing results
[54, 55, 56, 60, 34, 33], which consider undirected graphs. In comparison to these
results the requirements on the communication topology, given by Assumption
10, are more relaxed.
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Let each node in the network be endowed with the following LTI dynamics
2%1- = Aﬁz + Gz(% — gz) + F; Zjev eij(éj — 21), (3.22)

where G; € R"*Pi ig the local observer gain and F; € R™ "™ is the distributed
observer gain. The ith observer state vector, 2; = [}, 2L, ..., élTl]T € R, is,
similarly as the plant’s state vector z, partitioned into state-groups Z;;. Note
that all nodes (3.22) share the same drift dynamics A, which equals the dynamics
of the plant.

The node estimation dynamics (3.22) has a similar structure to those
presented in [34, 33, 79]. It uses two information sources necessary for proper
estimation of the plant state. The first is the measurement g;, contained in the
estimation term G;(y; — §;), motivated by the Luenberger observer design [48].
It ensures estimation of observable state-groups j € O; by the ith node from
its local measurements. The second information source is given by the state
estimates of neighboring nodes contained in the local neighborhood error term
F > jev €ij (2j —2;). Its purpose is to synchronize the unobservable state-groups

j € O; of the ith node with those of its neighboring nodes and effect sensor
fusion for the observable state-groups using information from the network.

Define an observation error as a difference between the estimated state (3.22)
and the true state of the plant (3.19)

ni(t) = Z(t) — 2(¢), (3.23)
then the observation error dynamics reads
= (A—G;Ci)n; + F; djev €ij(my —ni) + Gi&i — @. (3.24)

The goal is to design matrices G; and F; so that the observation errors (3.23)
are asymptotically stable in expectation and their covariances remain finite for
all times with their upper bounds depending on the noises, appropriately taking
into account the reliability of individual measurements.

3.4 Observer convergence

For the convergence analysis of proposed estimation dynamics (3.22), in this
section we first consider the plant dynamics (3.19) and sensor model (3.20)
without noises, i.e., & = 0 and & = 0,Vi. Our goal is then to design the local
observer gains GG; and the distributed observer gains F; so that the observation
error (3.23) in noise-free settings asymptotically converges to zero

lim n;(t) =0, Vie). (3.25)

t—o0
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For each node ¢ we can reorder the state-groups Z;; in the state vector
Z;, such that the new state vector 2’V is a tandem of observable Z; € R"&,
containing observable state-groups Z;; for j € O;, and unobservable 2;, € R"5,
containing unobservable state-groups Z;; for j € O;. Hence, for every node i

there exists a permutation matrix T;, Ti_1 =T, such that

gnew = [ Jio ] =T;%. (3.26)
Zia
Correspondingly, in the new coordinates, the system matrices are in the
Kalman decomposed form

A, 0

A'—4~T:
A=A )

} . Gi=CT1I=]0C 0], (3.27)

where A; = diag(4;), j € O; and A;, = diag(A;), j € O; are block diagonal
matrices with |©;| and |O;| blocks on their diagonal. Matrix C;, can be
interpreted as a row vector consisting of |O;| elements (matrices) Cj;, j € O;.
Note that the transformed system matrix A; in (3.27) has zero matrices on the
off-diagonal blocks because of the Assumption 8 considering observability of a
state-group.

Remark 10. The state vector of a non-sensing node is composed completely
of unobservable state-groups, 2°V = 2; = 2;,, hence no permutation of state-
groups is needed. The matrices (fli =A, = A, C’i =C, = 0) are then already in
the Kalman decomposed form. The same would hold for a sensing node observing
all the state-groups, except that (C’Z =(;, = C’Z), because its state vector would
be composed completely of observable state-groups, 2]V = 2; = ;.

Remark 11. The permutation of state-groups achieving (3.27) is made possible
by Assumption 8. It allows each node to transform the drift dynamics A to
the Kalman decomposed form with respect to its sensing model C;. Each node
can then in principle estimate its observable state vector 2; using only its
local measurements y;, by designing a Luenberger-like local observer. For those
states, the distributed gain is used to improve the nodes’ local estimates for the
observable state vector Z; . To estimate the unobservable state vector Z;_, local
measurements are to no avail. Therefore a node uses communication with its
neighbors to gather estimates on 2;,. For this purpose every node designs its
distributed observer for unobservable state vector.

Remark 12. The block diagonal structure of the Kalman decomposed form
(3.27), adopted from (3.15), [79], is more specific that (3.11) presented in
[34]. Tt requires clear separation into dynamically independent observable and
unobservable state-groups from each single-agent perspective. These more
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specific assumptions are found to be fulfilled to an acceptable degree of certainty
in flexible structures. Robustness of the proposed distributed observer design
can, in fact, handle small off-diagonal terms. Furthermore, similarly as in [79],
the assumptions made here lead to developments which rely on more relaxed
(global) conditions than those in [34] like, e.g., directed graphs, existence of
nodes that do not measure, robustness to node or link failures.

In order to show observer convergence on the considered network topology,
as detailed in Assumption 10, we proceed first by proving the convergence
for strongly connected graphs representing, in general, the irreducible leader
group. Then we show convergence of the remainder of the network, considered
as pinned. Ultimately using those two results we conclude convergence on the
entire graph satisfying Assumption 10.

The following theorem brings the design of local observer gains G; and
distributed observer gains F; together with conclusion on convergence of the
observer dynamics (3.22) in the noise-free case on strongly connected graphs.

Theorem 5. Consider a network of nodes given by a directed strongly-connected
graph G. Let each node with the sensor model (5.20) implement the estimation
dynamics (3.22) to estimate states of the plant dynamics (3.19) in noise-free
settings; @ = 0 and & = 0,Vi. Suppose that Assumptions 8 and 9 hold.

Let Q; and U; be symmetric positive definite matrices. Choose the local
observer gain as

(3.28)

T—1 AT 77—1
GiT;T[Mi Ci"Ui }7

0

where T; € R"™™™ is the permutation matriz bringing the pair ([l, C’l) to the
Kalman decomposed form (3.27) and Mi_1 is the solution of the observer ARE

M7YAT + A, M7+ Qi — M7PCL U G M = 0. (3.29)
Furthermore, define Nj := a1, such that

Wmin ZieDj Amin (MlQ'LMz)

0<a; < , (3.30)
! wmaz(p - |Dj|)>\max (Aj + A-]r)
and choose the distributed observer gain as
__— )
Fy =T M, 0 T:, j€O, (3.31)

0 dz’ag(Nj_l)

with v > 0. Then each observer state 2;(t) asymptotically converges to the plant
state z(t), in the sense of (3.25) for v sufficiently large.
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Proof. Define a Lyapunov function candidate in the quadratic form
V=3 ey win My, (3.32)

where w; > 0 is the element of the left eigenvector corresponding to zero
eigenvalue of the Laplacian matrix L as in Lemma 3 and M; € R™"*" is a
positive definite symmetric matrix to be specified later in the proof. The
time-derivative of this Lyapunov function candidate is

V =3 ey wilthi Min; + 1] Minj;), (3.33)
V= Diey wyt] (Mi(fz1 - GiCy) +(A- Giéi)TMi) M
+ 23 ey win MiFi 3 ey eij(n — i)

Let M;F; = I, with v € RT. As the graph is strongly connected, the
second term can be rewritten to a quadratic form according to [77] as follows

23 iy win] MiFi Y- ey eii(nj — i)
=2y X5 wieqn; (n; = i)
=20, wiein] (N —mi) +7 X2, ; wieign; (0 — 1)
= =y 2 wieig(ny —m) (nj —m),

(3.34)

3.35
3.36
3.37

(
(
(
(3.38

)
)
)
)

yielding the derivative of the Lyapunov function in the form
= ey wieij(ny —ni)" (n; — mi)- '

Note that the second term in (3.39) is negative semi-definite. It is zero only
for the case n; = 1;,V(j,1) € £. To show V < 0 we investigate two cases; first,
for n; = n;,¥(j,i) € &, the second term vanishes and we show that the first
term is negative definite. Then, for 3(j,7) € £,7; # n;, we show that the second
negative definite term dominates the first indefinite one.

1) Let n; = n;,¥(j,4) € £. The time-derivative of the Lyapunov function
then retains only the first term

V= Diey win] (Mz(;l - Gzéz) =+ (121 - Gzéz)TMz) ;. (3.40)

Applying the state transformation (3.67), the time-derivative of the Lyapunov
function can be written as

V=3 win" (TMT] (T,AT] — T,G,C/IY)

~ ~ 3.42
+ (GAT] - T,G;CT) T MT) ) (342)
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V=3 win (Mi(/ii - GiC) + (4 - éiéi)TMi) s, (3.43)

with the system matrices (A;,C;) in the Kalman decomposed form (3.27), the
local observer gain G; given by (3.69), and the matrix M; in the form

M; = T,M;T} = { ‘]\gl ]8 } , (3.44)

where N; = diag(N;), N; € R%*" j € O;. .
This allows to write the time-derivative of the Lyapunov function as V =

)% 2% e ) o

which yields the kernel

T4 — { M;(A;, — G;,C;)) + (A, — G;,Ci))TM; 0 ]

0 NiA;, + AT N,

(3.46)

This transformation allows us to split the time-derivative of the Lyapunov

function into two terms representing the contributions of observable and
unobservable state-groups separately

V =3, winp, (Mi(Ai, = G3,Ci,) + (A, = Gi,Ci, )T M;) 1,

N . 3.47
+>, wzn;l; (NiAia + AlT,;Ni) Nig- ( )

Referring to Theorem 5, let @; > 0 and U; > 0 are chosen matrices and the
local observer gain is given by G;, = ]\_4[103; U[l, where M, [1 is the solution of
the ARE (3.29). Then by using ARE (3.29), the first term of the time-derivative
of the Lyapunnov function can be simplified to

M;(4;, = G3,Ci,) + (A, — G, Ci,)TM;
= M;(M; Al + A M7t —2M;7'CT U7 G MM,
= M;(—Q; — M;'C] U7 C;, M) M.
Then the time-derivative of the Lyapunov function equals

V =3 winl Mi(—Q; — M;'CT U7 Cy, M) My,

_ B 3.48
5w (Wi, + AT N (349
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By neglecting the negative semi-definite term with (fMi_lC'iTo U7 tC, M) we
find an upper bound on the time-derivative of the Lyapunov function as

V < — Z,L win-iraMiQiMinio + Zl wtn;ra (NLA% + A;I—ENJ Nis- (349)
A lower bound on the first term gives
> Wimin (M Qs M)l ni, < 57, winl M; Qi M;n;,,. (3.50)

Let R; = N;A; + AJNj; then, with N; = diag(N;),j € O;, the time-
derivative of the Lyapunov function is

V<=3 w (Zjea- )\min(MiQiMi)n;rjInjnij)

(3.51)

+ Liey Wi (Zje(’ji mTjRjﬁij) :

Let us recall that here n; = n;,V(j,i) € &, which implies that all

corresponding state-groups of all nodes are equal, i.e., n; = n; = n; =

“or =1p;,Vj €S. This allows us to rewrite the time-derivative of the Lyapunov
function into the form V = Zjes n;‘TEjn;-‘, where

Ej < — EiED]- wi)\min(MiQiMi)Inj + Zie@j ’LUi}%j7 (352)

with sum over state-groups instead of sum over agents and vice versa. For
V <0, as state-groups are dynamically independent, E; < 0 has to be satisfied
by each state-group j. The second sum in (3.52) is indefinite while the first sum
is negative definite. To allow V < 0, every state-group has to be observable by
at least one agent to have at least one negative definite term in E;. Note that
this property is guaranteed by Assumption 9.

Using the definition N; = a;I,,; from Theorem 5, we derive an upper bound
on matrix F; as follows

Ej j — Wmin ZiGD]- )\mm(MzQle)InJ

§ (3.53)
+ (P = D)) awmazAmaz (A; + Aj) In; -

Choosing «; as in (3.30), E; < 0, thus V < 0 for the investigated case,
i = 77]7V(.]az) €é.

2) Let now 3(j,4) € &,m; # 1. Define a matrix W = W ® I,,, W = diag(w;)
and a block diagonal matrix H = diag(M;(A — G;C})), i € V. Rewriting the
derivative of the Lyapunov function (3.39) to the matrix form gives

V=n"(WH+H"))n—m" (WL+L'W)®I,)n. (3.54)
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The first term of (3.54) is generally indefinite while the second term is
negative definite. Finding upper and lower bounds on these two terms we get

V < Wmaz Amaz (H + HT) ”77”2 - 'Y/\min>0(WL + LTW)”’W”Q (355)
Hence the time-derivative of the Lyapunov function is negative definite for

Amaz (H + HT)
Amins0(WL + LTW)

v > Wax (3.56)

In other words, for sufficiently large v, V < 0 for the second investigated case,
3(j,1) € E,m # ;.

Hereby we showed that the time-derivative of the Lyapunov function (3.32)
is negative definite for a; in (3.30) and ~ sufficiently large, satisfying (3.56), in
all cases. Hence nodes’ estimation dynamics (3.22) is stable in the sense that
nodes’ states always converge to the plant state. This concludes the proof. [

Theorem 5 brings general methodology for the design of local observer
gains G; and distributed observer gains F; for the strongly connected leader
group without explicitly considering noises. The implication of this design to
observation error covariance, when measurement and process noises are acting,
is given in Section 3.4.1.

Remark 13. From Theorem 5 it follows that both sensing and non-sensing
nodes, in the irreducible leader group at least, share the same design of G; and
F;. Moreover, all the non-sensing nodes have the same distributed observer
gain F; = F := diag(NV j_l) and also, trivially, the local observer gain, as it is
identically zero, i.e., G; = G5 := 0.

Now consider the remainder of the network. It is given by a graph generally
having a spanning forest with root nodes of all trees pinned by the outgoing edges
of the irreducible leader group from Theorem 5, (due to the assumed existence
of a spanning tree). According to Assumption 10, the nodes in the remainder
of the graph are all necessarily non-sensing. The node dynamics (3.22), for
such nodes, can be written in the form containing two local neighborhood error
terms ) ~

2]@ = Afk + Fa Zr ekr(ér - 2]@) + F5 Zl 61“(22 - 2k), (357)

The first term Fj ZT err(2r — Z1) serves to synchronize the non-sensing
nodes with their peers from the remainder of the network and the second term
F5)", exri(2i — Zx) serves to synchronize these nodes with the irreducible leader
group. Because the remainder of the network contains only non-sensing nodes,
the dynamics (3.57) has no estimation term. Let g = ), ey, represent the
overall pinning gain from the irreducible leader group to the kth node in the
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remainder of the graph. In terms of the observation error dynamics (3.23), the
node dynamics (3.57) is then given by

77/(: = /I’]’]k + Fa (Zr ekr(’l’]r — 77]@) - gknk) + FE ZZ €kili, (358)

which is considered as composed of the nominal dynamics

e = Ani, + F5 (3, er (0 — k) — genk) (3.59)

and the interconnection term Fj Zz ek;n;- Note that the nominal dynamics
(3.59) is a special case of conventional leader following consensus, also known as
the cooperative tracking problem, [43], with a static leader node representing a
zero reference.

The following result proves convergence of the nominal dynamics (3.59) for
nodes in the remainder of the network.

Proposition 1. Consider a graph with a spanning forest having root nodes of all
trees pinned. Let each node in this graph implement the nominal dynamics (3.59)
with Fz = ’ydz’ag(Njfl) with N; as in Theorem 5. Then the nominal dynamics
(3.59) is asymptotically stable, i.e., the observation error ng(t) converges to 0
as t — oo, for v sufficiently large.

Proof. By use of the Kronecker product, the nominal dynamics (3.59) can be
written in the form

= (I, ® Ay — (L+G)® F5)n, (3.60)

where L is the Laplacian matrix of the spanning forest and G = diag(gy) is the
pinning matrix.
Define a Lyapunov function candidate in the quadratic form

V=002 M)n>0, (3.61)

where © = diag(h;) > 0 is selected based on Lemma 4 for L + G and M is
positive definite symmetric such that M F; = vI,. Then the time-derivative of
the Lyapunov function candidate (3.61) equals

V=n" (0@ (MA+AT™M)-~(O0L+G)+(L+G)0)aL,)n (3.62)

with M = diag(N;) = diag(a; I, ).
An upper bound on the time-derivative of the Lyapunov function (3.62) is
V < amaxemax)\max (A + AT) ||77H2

[+ G A 3.63
— YAmin (@(L+G)T+ (L +G)\) Inll2, (3.63)
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which is negative if

amaxemax)\max (A + AT)
Amin (O L +G) + (L+G)TO)

v > (3.64)

As the time-derivative of the Lyapunov function (3.62) is negative for v
sufficiently large, satisfying (3.64), this implies asymptotic stability of the
nominal dynamics (3.59), and concludes the proof. O

Remark 14. Design details for G; and F; coincide in Theorem 5 and
Proposition 1 as they should for a practical design. Namely, a node need
not know if it is in the irreducible leader group or in the remainder of the graph.

The entire network is thus a hierarchically coupled system given by the
observation error dynamics for the irreducible leader group and the remainder
of the network

1 = (A - GiCi)n; + F; > eii(nj —mi), (3.65)

e = A+ Fs (3, e (e — i) — gimie) + Fs X einis (3.66)

which are coupled through the interconnection term Fj ; €kiNi- We use results
of Theorem 5, Proposition 1, and the well known results on hierarchically
interconnected systems to show the convergence of the entire network satisfying
Assumption 10. The following theorem constitutes the main result of this
section.

Theorem 6. Consider a network of nodes with the sensor model (3.20)
implementing estimation dynamics (3.22) to estimate states of the plant
dynamics (3.19) in noise-free settings; @ = 0 and & = 0,Vi. Suppose that
Assumptions 8, 9 and 10 hold. Let conditions of both Theorem 5 and Proposition
1 apply respectively to the irreducible leader group and the remainder of the
graph, considered as pinned. Then each estimate 2;(t) asymptotically converges
to the plant state z(t), in the sense of (3.25) for v sufficiently large.

Proof. The entire network is a hierarchically coupled LTI system of the
irreducible leader group (3.65) and the remainder of the graph (3.66). The
eigenvalues of hierarchically interconnected LTI systems are given by the
eigenvalues of their autonomous subsystem blocks on the system matrix block-
diagonal, (which is a generally known result in linear systems). Theorem 5
shows the asymptotic stability of (3.65) and Proposition 1 shows the asymptotic
stability of the autonomous subsystem (nominal dynamics) in (3.66), hence
implying stability of the hierarchically coupled system. O
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Alternatively, to show stability of the entire network, a composite Lyapunov
function could be constructed as in [23]. Since this work deals with LTI systems,
asymptotic stability is exponential. Note that Theorem 6 shows stability of the
entire network but the convergence rate of each estimator depends on all initial
conditions and the graph topology. Nevertheless, it is bounded from below by
the slowest eigenvalue of the total system.

The following subsection analyses the effect of the process and measurement
noises on the estimation error 7;, building on the results of Theorem 5,
Proposition 1, and Theorem 6.

3.4.1 Estimation error covariance

If the process and measurement noises are acting, it will be shown that the
covariance of observation error (3.23) is finite for all times, with an upper bound
depending on the noises.

Assume that the process and measurement noises are nonzero, i.e., @(t) # 0
and &;(t) # 0,Vi, then the local observation error 7; has the dynamics (3.24).
Applying the transformation

with the permutation matrix 7T; that rearranges the state-groups 7;; of the ith
observer node into observable, #;_, and unobservable ones, 7);,, as in (3.26), the
observation error dynamics reads

i = (A= GiC)i + By Y ey €3 (R — i) + Gili — @i, (3.68)

where the state-space matrices (/1, C’Z) are in the Kalman decomposed form
(3.27), the observer gain matrices are

G, =T,G; = [ GO } Fi:EFiTiT:[% z~9 } (3.69)
and the transformed process noise is @; = T;0.
The global observation error dynamics has the form
= Aworn + GE — @, (3.70)
with & = [&], &5, ..., @17, G = diag(G;), and
Agor = diag(A — G;C;) — diag(F)(L ® I,). (3.71)

Define the observation error covariance P(t) € R"*"P as

P(t) = E[(5(¢) ~ B[ (t)]) (n(t) — Elr()])"] (3.72)
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then its time evolution is governed by
P = AP+ PAL, + Q+ GEGT, (3.73)

where Q has blocks Qij = TiQTjT and E = diag(E;).

Since, by Theorem 6, the system matrix A, is asymptotically stable, P(t),
the covariance matrix of the estimation error 7}, is finite for all times, with
an upper bound depending on the noises. Moreover, this estimation error
covariance P is naturally partitioned into blocks

P = [ ?‘J‘oo Biji } € R™™ (3.74)
50 55
which allows one to write (3.73) in the block form
Pz’j = (/Al - éiéi)Pij + Pij(A — éjéj)T
— F; ey €in(Pij — Pij) — S pey €k(Pij — Pac) T (3.75)
+ Qi + GiEiGL by,

with 0;; = 1 iff ¢ = j and d;; = 0 otherwise.
For minimizing the cost

J(t) = trace(P(t)) = >, trace(P;;(t))
=2, (trace(Py,, (1)) + trace(Py,, (1)),

one could consider two differential equations for P;; , and P;,_,, corresponding
to observable and unobservable state-groups of the ith node as follows

= (4, — Gi,Ci,)Pii,, + Pii,,(Ai, — Gi,C;,)"
— Fi, Yy €ik(Piig, — Priy,) — Yopey €ik(Piiy, — Pir,,)FL - (3.77)
+Q, +Gi, 5G],

(3.76)

P,

too

Pii;,g, = AiaPiiaa + PiiaaA-z!—a
- Fia ZkEV eik(Piiaa - P’fiaa) - E}cev eik(Piiaa - ikaa)F;I; (378)
+ Qi57

where €, and €, are found from

0 = TOTT = { ip s } . (3.79)
121 5

Given a constant distributed observer gain Fi, to derive the optimal G;

minimizing (3.76) it is sufficient to minimize trace(P;;,, ) with respect to G;_ as

d(trace(P;;,,))

——P, CT — P, CT +2G; 5, 3.80
e 2Ol = Pii,, OF, +20, (3.80)
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which yields
Gi, = Py, Ci,E7". (3.81)

Remark 15. The optimal solution for G;, (3.69, 3.81), requires P, for
its design. This can be obtained either by solving the Lyapunov equation
(3.73) for P globally for all nodes, which does not allow for a fully distributed
design; or by solving the Lyapunov equation (3.77) locally, which would require
communicating covariances. The reason stems from the two terms

— Fi, Yoney €ik(Piivy = Priyo) = Yopey €ik(Piigo — Pitoo) Y (3.82)

in (3.77) representing network interconnections.

Note that, here we do not aim for optimality but rather for an effective
sensor fusion and reduced communication load. The distributed observer design
proposed by Theorem 5 introduces G, (3.28), having the same structure as
the optimal one (3.69, 3.81). It requires solving the ARE (3.29) for M, !
which, in comparison to the Lyapunov equation (3.77), does not include the
interconnection terms (3.82). The similarity of the proposed design with the
celebrated Kalman Filter is further analyzed in Section 3.5.1 after introducing
the design steps.

Remark 16. Results of this section extend [80] by considering a general plant
dynamics, while considering process and measurement noises, unlike [79], which
assumes perfect measurements. Moreover, different from [79], all nodes in
the irreducible leader group and the remainder of the network implement the
same observer dynamics (3.22) and design their local observer gains G; and
distributed observer gains F; in the same way, independently of each other. In
particular, a given non-sensing node need not know if it is in the irreducible
leader group or in the remainder of the network. Theorem 5 and Proposition 1
imply different lower bounds on = hence, for the design, a more conservative
one should be chosen by all nodes to guarantee stability of the entire network.

The general conclusions of this section provide a basis for the specific design
detailed in the following section. Theorem 5, Proposition 1 and Theorem 6
require several design parameters, Q;, U;, o, and vy, which are not specified yet,
giving a family of DLOs. Their specific choice influences the performance of
the proposed distributed observer dynamics. In the following section, we detail
the design procedure and address the specific choice of these design parameters.
Those pertain to distributed observers, nevertheless they will be chosen, in fact,
to emulate certain desirable properties of the Kalman filter.
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3.5 Design procedure

This section proposes the distributed observer design, satisfying conditions
of Theorem 6, for an individual node under the original plant dynamics with
process noise (3.19) and sensor model with measurement noise (3.20).

Algorithm 3.2 DKF design procedure

Preliminary steps:
1: Choose v > 0 satisfying both following conditions

)\maw A AT
7 > Wnas (A+4) , (3.83)
Anin>0(WLegt,ev1 + Loy /W)
Amax (A + AT
’Y > 9max = (~ = ) = . (384)
Amin (O(L +G) + (L +G)TO)

2: Choose f3, such that 0 < 5 < 1.
3: Let every node ¢ know the values of €2, v, and .

Design steps:

1: Every node 4, 0; # 0, sets its U; = =; and Q; = Q,,, with Q;_ from (3.79).
2: Every node i, O; # 0, calculates M; ' as the solution of the ARE (3.29).
3: Every node 7, O; # (), also calculates

o wmin)\min (MZQ’LM’L) .
i = o 1) (A + AT) 7 €O (3.85)

and communicates the value of a;; . to all other nodes in the network.
4: Every node k € D;,Vj, chooses its o; as

a; = min{l, Bo; .+, (3.86)

where ay; . =min{ay;  |i € D;}.
5: All nodes design their G; and F; according to Theorem 5.

The preliminary steps in Algorithm 3.2 are the only centralized elements of
the design. Note that, in contrast to [54, 55, 56, 33], our communication scheme
does not require communicating the covariance-related matrices. Neither do we
consider channel noise as [29]. This reduces the communication burden.

Remark 17. The design procedure outlined in Algorithm 3.2 relies on having
Q; > 0 as this is needed in Theorem 5. If, however, there is no disturbance
acting on the plant, Q = 0, we propose a slight modification of the design by
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choosing the design parameter Q; as Q; = €l,, , where € is a small positive

scalar chosen considering magnitudes of the noise covariances Z;.
Furthermore, for purposes of the design, the assigned covariance matrices Q;

and U; can be scaled equally by an arbitrary constant, at least for asymptotically

stable plants or unstable plants with o.; > 1,Vj € [J_; O;. This scaling
brings an additional degree of freedom offered by the design.

Note, that the choice of a; in (3.86) is conservative to satisfy the upper
bound on «; in (3.30). This conservativeness comes from the choice of ayj; .
in (3.85). If |D;| = 1, i.e., only one node observes the jth state-group, then
(3.85) is the same as (3.30). On the other hand, if |D;| > 1, i.e., more than one
node observes the jth state-group, then (3.85) is more conservative that (3.30).

According to (3.86), if the upper bound on «; is greater than 1, i.e., oy, >
1, then o; = 1. Otherwise o  is chosen such that 0 < a; < 1. There is no reason
for a;; to be chosen greater than 1, since the greater the a; the smaller the
stability margin guaranteed by the Lyapunov function in the proof of Theorem
5. The exact value of «; is in this case determined by the auxiliary design
parameter .

The lower bounds on v in (3.83) and (3.84) imply (3.56) and (3.64). The
lower bound (3.56), following from Proof of Theorem 5, is primarily determined
by the indefinite term Ay,q.(H + H'). The block diagonal matrix (H + H') is
composed of two types of blocks (H;, + H] ) and (H,, + H] ). The first type,
given by H; = Z\Zio (A;, — G, C;,),i €V, j € O, corresponds to the observable
state-groups of the ¢th node and the eigenvalues of such a block are negative.
Hence those do not affect the lower bound on + in (3.56) and can be disregarded.
The second type (H;, + HI)) is also a block diagonal matrix but with indefinite
blocks (H;j + Hsz) = amax(A} +Aj),i €V, j € O;, where aumax is an upper
bound on all a;. It yields a new numerator of the lower bound (3.56) in the
form

Amae(H + H') < 0tmaxAmaz(A; + AJ). (3.87)

Taking into consideration an upper bound on ¢;, (3.86), one can put aumax = 1.
Then the new numerator (3.87) of (3.56) and also the second lower bound (3.84),
yield simplified lower bounds (3.83) and (3.84).

Hereby we showed that the outlined design indeed satisfies conditions of
Theorem 5 and Proposition 1, guaranteeing observer convergence as per Theorem
6.

Remark 18. The conservative choice of a;s brings robustness to sensor failures.
If one node stops measuring and its previously measured state-groups are
still measured by other nodes in the network, the observation error dynamics
remains stable according to Theorem 6. This property allows incorporation
of redundant nodes in the network to increase robustness of the distributed
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observer. Moreover, fixing of the upper bound on «;, (3.86), brings an additional
benefit; it establishes definite lower bounds on <, which are independent of «;.

3.5.1 Theoretical analysis

This subsection provides further discussion on the properties of the presented
distributed observer, in particular reflecting on the similarities with the
celebrated Kalman filter.

Remark 19. Design parameters (); and U; are chosen as covariance matrices of
the process and measurement noise to emulate the Kalman filter design. Hence
every sensing node implements its local Kalman filter to estimate observable
state-groups of the plant given only its local measurements and noises. This
brings local sensor fusion.

To elucidate this further, we analyze the behavior of the local observer gain
G; in dependence of the design matrices @); and U; given by noise covariances.
Following the properties of the Kalman filter, which are well documented,
[42, 65, 28], if for the ith node G; is chosen according to the solution ]\;[Z-_1 of the
ARE (3.29), then if U; increases while Q); is fixed G;, decreases in magnitude and
if Q; increases while U; is fixed G, defined in (3.69), increases in magnitude.
In other words, the more uncertain the plant state, the greater the weight given
to the measurements and vice versa; the more uncertain the measurements, the
less the weight given to them, or rather greater weight is given to the plant
state. This describes the local sensor fusion that fuses the already known state
estimate with newly incoming measurement, akin to that of the Kalman filter.

Let us recall properties of the ARE in the following result.

Lemma 7. By scaling both design matrices Q; and U; by some positive scalar
§ > 0, for all i, O; # 0, the local observer gain G; does not change but the
distributed observer gain F; scales with § for ~y fized.

Proof. Multiplying the ARE (3.29) by the scaling gain ¢ yields

SM;YAT + A, 0M;' +6Q; —26M;'CL U Cy M =0, (3.88)

o

(M) AT, + s, (631 ) +6Q: — 2630, )CT (U )C, (031) = 0. (3.89)

Hence, by multiplying both @; and U; by § the solution Mi_l of the ARE (3.29)
scales as 0. Inserting the scaled terms into (3.30) we get

1 wmzn)\mzn (ZiG'Dj MZQZMZ)
8 Winaw (P — [Dj|) Amaz (Aj + A}) )

0<a; < (3.90)
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which yields that the upper bound on «; scales as 1/6 and thereby N j_l scales
as 0. Inserting this scaling into (3.31) we obtain

sM;! 0
0

- ATT _
=t [ diag(6N;!

) ]T,» j€O;. (3.91)
This shows, that by scaling @; and U; by §, Vi € V the distributed observer
gain F; scales as §.

In contrast, this scaling does not affect the local observer gain GG; because
the contributions of M{l and U{l cancel each other

(3.92)

Gy =TT { (OM;H)Ci, (5U7) ] .

K]
0
O

Remark 20. This has a clear interpretation in the context of our design.
The local observer gain G; effects the local Kalman filter from the history of
local measurements and state estimate. If both the process noise 2 and local
measurement noise =; scale equally, the local observer gain G; will not change
but the distributed observer gain F; will increase, if - is kept the same. Simply,
the more uncertain the measurements for the state-group j the greater weight
will be given to the information coming from the network.

Moreover, the restriction of the upper bound on all a; to 1 brings an
additional degree of freedom in the observer design as it was already mentioned
in Remark 17. It separates scaling of the observable and unobservable parts of
F;. From the proof of Lemma 7 it follows that scaling of 2 and Z; by some
scales only the block of F; corresponding to the observable subsystem, as long
as all o; = 1. This additional functionality can improve overall performance of
the estimator, however it applies only to stable systems or unstable systems
with ;> 1,5 € U, O;.

Remark 21. The value of «; is chosen the same for all nodes not measuring
the jth state-group directly to design their F;. But in fact, «; is determined
by the nodes that do measure this state-group directly, by (3.30). To be more
precise, a; is determined by the worst sensor sensing state-group j. This means,
if we have a faulty measurement somewhere in the network, in average we have
more corrupt sources of information, the more the non-sensing nodes will listen
to the network. This increases network cohesion and ultimately reduces the
steady state error covariances.

Remark 22. The solution M, * of the ARE (3.29) gives the optimal estimation
error covariance, that would be obtained by using the Kalman filter on locally
available measurements. This would be the best that a sensing node can
achieve, without any information from the network. Our design however, via
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the Lyapunov equation (3.77), leads to P;;,, which is the actual estimation error
covariance found in the system. Hence, due to network interconnections, the
final error covariances may be less than that obtainable by using purely local
measurements, which is also confirmed numerically, (see Section 3.6.3).

Moreover, we can state the following conclusion.

Proposition 2. If trace(Py, ) > trace(Py,, ), ¥V k € Vi, then the
distributed estimator can not be absolutely worse than the purely local Kalman

ﬁlter Furthermore sz PMGOM z - M Py, J\Zf. : andM P”OOM2 -

M P;%OM YV k € V;, in the sense of quadratic forms, then the distributed
observer certamly outperforms the purely local Kalman filter, in the sense
Py, < M.

Proof. The stationary solution of P;;,, can be obtained by solving (3. 77 ) with
zero left-hand side, i.e., dP;,  /dt = 0. The ARE (3.29) giving M, ! with
Qi =, and U; = E;, can be written in the closed-loop form

(Ai, = G, Ci,) M+ My (Ai, = G, Gy, )T + Qi + G EiGL =0, (3.93)
Note, that F;, = yM, . Subtracting (3.93) from (3.77) with the zero left-hand

side leads to

( G C )( uoo_M ) ( Tioo Mi_l)(Aio _GioCiO)T

. (3.94)
—WMZ- 2 kev €ik(Piige = Prioy) =¥ 2pey €ik(Piiyy — Pik,, )M; = 0.
Multiplying both sides of (3.94) with l% = Mi% >~ 0 gives
- = _ 1 _1
0= (Al,, - Gz,, 1,,)(Mi2 PziooMlz - Inlo)
+ (M2 Py, NP — 1, )(A;, — G, Co)T
(M Py, M; o) .Ci,) (3.95)

_ 1
- 'YM Zkey ezk(Pzzoo Pikoo)Mi 2,

(A;, — Gy, Ci )M 2. Note, that

K o (3.96)
(A, — G, 0 )TM? <0,
95) g

which follows from (3.93). Applying traces to ( ives

2 trace ((/Lo -G, Ci)s (MZ’P“OOJ\;[2 I..)

(3.97)

Sl —

2 trace (M;§ > key ik (Piig, — Pkioo)M

)
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11

12 13 14 15|

Figure 3.1: A beam divided into 15 finite elements with a sensor network
consisting of 4 sensing nodes, {1, 2, 3,4}, and 2 non-sensing nodes, {5,6}.

Let trace(P;;, ) > trace(Pix,,), V k € V;, then the right-hand side of (3.97) is
positive, which implies

2 trace ((Aio — Gy Ci)s(ME Py, M2 — Inio)) > 0. (3.98)

Since y (3.96), (A;, — G;,C;,)s is symmetric and negative definite,
1

(M 3 P”OOM > —I,,,) can not be a positive-semidefinite matrix, which implies
P, 7t Mi . Hence the distributed estimator can not be absolutely worse than
the purely local Kalman filter; this proves the first part of Proposition 2.

To prove the second part of Proposition 2 we proceed as follows. Let
_ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1
M2 Py, M, > = M? Py, M, > and M, *>P;; M? = M, *Py, M?,Vk €V
then the last two terms in (3.95) are negative definite and hence

[N

ol
M\»—l

0= (A, —Gi,Ci ) )(MZ Py, ,M? — I, )
+(M Py, M;

3.99
— I, )(Ai, = G, G, .

m\»—A
k\J\»—l

Since, by Theorem 6, (A;, —G;, C;.) is asymptotically stable, from the Instability
_ 1 _ 1
Theorem [32, Theorem 3.3] it follows by contradiction that (M2 Py, M7 — I, )

must be negative definite, hence P;; =< Mi_l. This concludes the proof. O

too

3.6 Numerical simulations

The proposed distributed observer design is numerically validated on a model
of a clamped beam adopted from [20, Section 1.1.4]. The beam is 150 cm
long, with a cross-section of 1 cm?. It is divided into 15 elements, i.e., 14 free
and 2 clamped (fixed) nodes as depicted in Fig. 3.1. Each node has 3 degrees
of freedom (displacement in = and z axis, and pitch in y axis. In general,
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Figure 3.2: The 2-norm of the output matrices C,,; for the first four modes j
and all possible sensor positions k£ on the beam on the left and chosen sensor
positions on the right.
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Figure 3.3: Frequency response from 6th input to 3rd output.

the clamped beam model represents a mass-spring-damper system which is
described in nodal form by a second order matrix differential equation

M(t) + Di(t) + Kq(t) = Bou(t), (3.100)
Yy = Coqq(t) + COUQ(t>7 (3101)

where ¢, ¢, and ¢ are nodal displacement, velocity, and acceleration vectors in
R*2, M, D, and K are the mass damping, and stiffness matrices in R42*42,
B, € R**1 ig the input matrix and C,,, and C,, are the output matrices
in R14*42 The beam mass and stiffness matrices are given in [20, Appendix
C.2]. The damping matrix is given by Rayleigh damping in the form D =
M -107% + K - 1075, The sensor locations are given by Coq = 114 ® coq, where
Coq = [010] and C,, is a zero matrix. For purposes of a proper sensor placement
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we first evaluate performance of all possible sensor locations. For the distributed
observer design we consider zero control input, i.e., u = 0.

A transformation to modal form is used to obtain the block diagonal structure
of the system required by the design. Following the transformation procedure,
described in [20], we obtain the full modal state-space representation

() = Apa(t), (3.102)
y(t) = sz(t)a (3103)

with A, = diag(A,,) and Cp, = [Cry, Crys - o, O], where j = 1,2, f
and f represents the number of modal pairs (state-groups) z; = [W;qm, (jmj}T
consisting of modal displacement z;, = W;g,, and modal velocity zj, = Gm,-
The matrices Amj are in the form

_| 0 w;
Ap, = [ o 20, } , (3.104)
where @w; is the jth modal frequency and (; is the jth modal damping ratio.
Since the plant is a flexible structure, the modal output matrix C,, satisfies
Assumption 8.

The model order reduction technique, [20], is used to obtain the reduced
model containing the first [ = 4 dominant modes given by frequencies w =
[89,221,409,651]T Hz, hence the set of state-groups is S = {1,2,3,4}. The
output matrix C,, is reduced column-wise to contain only the 4 chosen modes.
The 2-norm of the output matrices Cyy,,; for the 4 considered modes j € S and
all possible sensor positions k € {1,2,...,14} is depicted in Fig. 3.2 on the
left. The output matrix is further reduced row-wise by choosing only the sensor
locations 3,7,9,11 for good sensing performance of all 4 modes. A detailed
comparison of the 2-norm of output matrices C,,; for chosen sensor locations
is shown in Fig. 3.2 on the right. As discussed in Remark 7, the magnitude of
some Ciy,; is very small for the distributed design, hence one can consider them
to be zero as long as the Assumption 9 remains satisfied. The small magnitudes
of Cyy,,,, for chosen sensor locations appear in Fig. 3.2 in red color. Observable
set for each node is allocated as follows: O = {1,2,3,4},0s = {1,3},03 =
{1,2,4},04 = {1,2,3},05 = 0 and Og = (). The observability of modes is
found to satisfy Assumption 9.

After the model order reduction and sensor placement we obtain the reduced-
order model of the beam given by the plant dynamics with process noise, (3.19),
and sensor model with measurement noise, (3.20). The reduced-order model
has A € R®*8 and C' € R**8. Fig. 3.3 shows a comparison of the amplitude
characteristic of frequency response for the nominal plant and the reduced model.
The frequency response is calculated by considering an input displacement at
node 6 in z direction and measuring a response of a sensor at node 4 in y
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Figure 3.4: The plants modal displacements and nodes’ estimates, z;, and Z;;_,
Y(i,7),i € V,j € S, in time-domain, response to initial conditions.
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Figure 3.5: Comparison of measured and estimated nodal displacement g, ,Vk €
{3,7,9,11} of the sensing nodes, response to initial conditions.
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Figure 3.6: The 2-norm of the state observation error n;;, ¥(¢,7),i € V,j € S,
response to initial conditions. Simulation for three cases: a) general case
for demonstration of the observer convergence; b) 4th sensor measurement
degradation; c¢) failure of the communication link from node 4 to node 1.

direction. It is introduced for a better interpretation of the reduced model,
however for purposes of this design we do not consider any input.

The communication topology of the sensor network is given in Fig. 3.1. It
consists of four sensing nodes V; = {1,2, 3,4} contained in an irreducible leader
group and two non-sensing nodes Vo = {5, 6} located in the remainder of the
graph, i.e., ¥V = V; UV,. Note that the topology satisfies Assumption 10.

The beam model represents a low damped flexible structure with stable
poles close to the imaginary axis. For this reason the bounds on the «; and v do
not restrict the design, i.e., their values can be set arbitrary large. Nevertheless,
following the design guidelines from Section 3.5 we set o; = 1,Vj. The value of
v is chosen later such that the rate of convergence corresponds to the speed of
the local observers.

3.6.1 Simulation with initial conditions

Functionality of the proposed distributed observer is demonstrated on a
simulation of the clamped beam excited only by initial conditions. The plant
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initial conditions in nodal coordinates are set to zero except the displacement in z
direction at 7th position which is set to 0.01. The corresponding initial conditions
in modal coordinates are: 2z(0) = [2.9,0,—5.2,0,—6.2,0,21.5,0]. Initial
conditions of nodes in the sensor network are chosen randomly in appropriate
scales. The sensing nodes’ measurement noises are WGN with covariance matrix
= = diag([2,5,3,0.1]) - 1075. Process noises are also WGN with randomly
generated diagonal covariance matrix Q = diag([6, 10, 10,6, 18,14,8,8]) - 10~%.
The remaining design parameters are: a = 1, 3 =1, and v = 10%.
Our analysis follows three simulated scenarios:

a) General simulation with introduced parameters.
b) Measurement degradation of 4th node, i.e., 44 = 1072,
¢) Failure of the communication link 4 — 1, i.e., e;4 = 0.

For all the investigated cases, the state observation error 7;; is asymptotically
stable in its expected value and has a finite covariance, which can be seen in
Fig. 3.6; hence each node 7 € V obtains a full estimate of the plant state vector.
These results validate the conclusion of Theorem 6. In general, more dominant
modes have better observability, therefore their convergence speed is faster,
which is evident from the figures.

General simulation

This simulation shows the functionality of the proposed observer. The
convergence of the ith node modal estimate Z;; to the plant modal vector
z; can be seen in Fig. 3.4. and also in Fig. 3.6a in form of 2-norm of the
estimation error 7;;. The comparison of the sensing nodes’ measurements with
their measurement estimates is given in Fig. 3.5.

The small noise variance in the 4th node’s measurement causes the 4th node
to assign larger confidence to its measurements than to information from the
network, therefore the 4th node’s estimates of the modes 1, 2, and 3 show faster
convergence than the other nodes’ estimates, which can be seen in Fig. 3.6a. On
the other hand, the 4th mode is unobservable from the 4th node’s perspective,
hence it receives information on that mode from the network. This is in line
with the analysis of the observer convergence given in Section 3.4.

Measurement degradation

In case of corrupted measurements of the 4th sensing node, the convergence of
the estimator is shown in Fig. 3.6b. The 4th node obtains the full estimates of
the plant state together with the rest of the network in spite of its corrupted
measurement. The reason is the judiciously designed distributed observer
which for the 4th node takes into consideration the large noise variance of that
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Figure 3.7: Variance of modal displacement estimation error n;;,, V(4, ), €
V,j € S, steady-state simulation for the three cases a), b), and c¢).

measurement and thereby imposes small G4, and large F_ . This also follows
from the 2-norms of G4, and Fy, before and after the measurement degradation,
which are ||Gy4 ||, = 77, ||F4, ||, = 0.64 and ||Gy4, ||, = 0.11, ||Fy, |, = 33,
respectively. By its comparison to a general case from Fig. 3.6a it can be seen,
that small noise variance in 4th sensing node provides slight improvement in
convergence rate of the estimator.

Communication link failure

By failure of the communication link from node 4 to node 1, the redundant
sensing node 4 gets disconnected from the irreducible leader group. Since the
Assumption 9 remains satisfied, the nodes are still able to obtain full estimate
of the plant states. In this particular case, the rest of the network is not able
to obtain information from the 4th node, hence the network cannot benefit
from the accurate estimates of the 4th sensing node. This causes slightly slower
convergence of the nodes’ estimates, which can be seen by comparing Fig. 3.6¢
with Fig. 3.6a. Note that, because there is no other link from the node 4 to
the irreducible leader group, failure of this link is identical to the failure of the
sensing node 4 from all other nodes’ perspective.

3.6.2 Steady-state simulation

To provide insight into the overall deterioration of precision of nodes’ estimates
for all three investigated cases from Section 3.6.1, the plant and the sensor
network are simulated in a steady state with zero initial conditions. Fig. 3.7
shows a comparison of the calculated variances of modal displacement
observation errors z;;,. It can be seen that differences in the variances
are negligible, hence the proposed design is found robust to measurement
degradation and a link/node failure.
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3.6.3 Evaluation of covariances

To obtain the covariance matrix P, which gives the real uncertainty in the system,
the global Lyapunov equation (3.73) is solved with G;s as in Theorem 5. By
comparing Mi_l with P;;__, all diagonal elements of P;;, are found to be smaller.
For instance, the diagonal elements of M * are [27,27, 33,33, 73,73, 74, 74]- 10°
and for Py = Py, are [14,14,17,17, 33,33, 66, 66]-10~°. Evaluation of the sum
of traces gives >, trace(M; ') = 10.5- 1073, and Y, trace(P;;,,) = 6.4 - 1073,
This shows that the final variances are lower than the purely local design would
allow, thereby clearly showing the benefit of network communication and sensor
fusion. Hence, the resulting variance over the observable states of a sensing
node, when it is integrated into a network, is smaller than the variance that
would be optimally obtained using only a local Kalman filter.

Moreover, variances for the unobservable states P;;_, are comparable to those
for observable states P;;,,. For example the 5th node, which does not sense
anything has Ps5 = Ps5,, with diagonal elements [14, 14, 24,24, 42,42, 67,67] -
10~°, which are similar in magnitude to those in P;,,. Hence, even nodes
that do not sense certain state-groups, obtain reasonable estimates over those
state-groups, comparable to those achieved by nodes which are sensing them.
This is verified also by calculating trace(P) = 16.1 - 1073,

For comparison with an optimal centralized approach, the general Kalman
filter, [42], having access to measurements of all nodes taken together, achieves
the following variances of its states’ estimates: [4,4, 6, 6, 20, 20,60,60] - 10~°.

3.7 Concluding remarks

In this chapter, we proposed a DLO design for sensor networks, which considers
disturbance acting on states of the plant and noise corrupting the sensor
measurements. Observer nodes in the sensor network are designed and
implemented in a fully distributed manner using only their local information
and information from their neighbors. The presented distributed observer
design exhibits good scalability on large-scale sensor networks and flexibility to
integrating new nodes into the network. Moreover, it is found to potentially
improve the precision of nodes’ estimates above that optimally available from
purely local measurements. Additional node redundancy provides robustness to
communication link or node failures. The convergence of the state estimates
of networked observers to the plant (target) state are rigorously proven. The
observer design is thoroughly described and its theoretical analysis is provided.
Numerical simulations validate the proposed distributed observer design.
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Distributed adaptive
consensus protocol

A communication topology of real-word multi-agent systems, e.g., networks
of mobile robots, satellites, and vehicles, often varies in time; therefore such
spatially interconnected systems require distributed consensus protocols which
can handle network changes. General distributed static consensus protocols do
not satisfy this requirement, because they assume knowledge of the network
topology. For this purpose DACPs were developed. DACPs use adaptive laws
which allows them to adapt to network changes. Since these protocols do not
require any centralized information, they are fully distributed in the sense, that
each agent can implemented these protocols fully individually.

In this chapter, we develop a novel DACP that uses an adaptive law to
adapt coupling weights (gains) between agents in the network. The introduced
protocol solves the cooperative regulator and tracker problems on directed
communication graphs, with agents described by LTI dynamics. Its novelty
stems from a new coupling gain dynamics allowing coupling gains to decay to
some estimated references. This tackles the problems of existing DACPs with
considerable control effort and a lack of robustness to noise or disturbances.

This chapter is organized as follows. Section 4.1 describes the recent progress
in development of distributed adaptive laws. The main contribution of the
proposed adaptive approach is given in Section 4.2. Section 4.3 states the
considered cooperative control problems and brings the relevant stability notions.
Sections 4.4 and 4.5 respectively present the DACP for cooperative regulator
and tracker problems. Lyapunov function candidates are introduced and their

The content of this chapter is published in International Journal of Robust and Nonlinear
Control [38].
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time-derivatives are elaborated, concluding on the stability of the adaptive
protocol given appropriate reference values. Section 4.6 brings the methodology
for distributed on-line estimation of these references. Numerical simulations are
given in Section 4.7. Section 4.8 concludes the chapter.

4.1 State of the art

Some laws in distributed control and estimation incorporate adaptation to
handle system and network uncertainties, unmodelled dynamics and guarantee
robustness to disturbances, [15, 14, 51, 74, 77, 69, 75, 46, 47, 44, 50, 11]. Most
of these adaptive laws, also known as adaptive consensus protocols (ACPs), can
be broadly categorized into two general groups.

The first group of ACPs handles networks of agents with unknown dynamics
and known communication topology. Few of these laws assume knowing only
the agent model structure [51, 74], while others instead use a neural network
(NN) to estimate it [77, 14]. In the latter case, the adaptive law is used by each
agent to estimate its model parameters or its NN weights from local information
and information from neighboring agents. The estimated agent model or NN
weights are then used for control purposes to reach consensus among agents.
Since global properties of the communication topology are required to design
the appropriate coupling gain, similarly as in static consensus protocol designs,
those also cannot be implemented in a fully distributed fashion.

This particular problem motivates ACPs that fit into the second general
group usually referred to as distributed ACPs (DACPs); those that handle
networks with known agent dynamics but unknown communication topologies.
There, the agents are assumed to have identical linear [46, 47, 11] or non-linear
dynamics [69, 75]. Some adaptive protocols solve only the cooperative regulator
problem [69] , while others solve both cooperative regulator and tracking,
but only apply to undirected connected communication graphs [46, 75, 11].
Similar noteworthy results solving output regulation introduce ACPs addressing
the cooperative tracker problem for identical agents [50] and the cooperative
regulator problem for heterogeneous agents having general LTT dynamics [44].
The coupling gains, which conventionally require global information on the
communication graph, are there updated by an adaptive law. Namely, each
agent adapts one or more feedback coupling gains individually based on its local
information and information from neighboring agents. The coupling gains’ values
are then used for synchronization to reach the consensus among agents. The
adapting coupling gains are associated with the agents themselves [75, 47, 44, 50],
the network edge weights [46], or both the agents and the edge weights [69].
These protocols do not rely on any centralized information; therefore, they can
be implemented by each agent separately. They guarantee cooperative stability;
however, they suffer from possibly large resulting control efforts and a lack of
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robustness to noise [69, 46, 75, 47]. Moreover, widely different protocols are
currently proposed in the literature for very similar consensus problems that
are conventionally treated quite similarly via the synchronizing region approach.
Our work introduced later in this chapter tries to tackle these difficulties.

There are also woks in distributed control and estimation, which take an
advantage of adaptation but they do not belong to the above-mentioned two
categories of ACPs. From this field, it is worth to mention [15]. The author
investigates the distributed filtering of spatially varying processes using a sensor
network. The sensor network consists of interconnected filters (state estimator)
each having its own group of sensors. The sensor group provides number of state
measurements from sensing devices, that are not necessarily identical. Each
filter is essentially a Luenberger observer. It produces its own state estimates for
the local plants and additionally synchronize these estimates with other filters
in the sensor network. Thereby, an agreement on state estimates is reached
among filters. The adaptive law is used by each filter to estimate the proper
coupling gain value for an agreement with other filters.

In following we introduce several existing results on ACPs in more details.
First, from the group of ACPs adaptively estimating the agent dynamics, we
briefly present two works [51, 14]. Then we thoroughly describe several DACP
approaches adapting the coupling gains’ values, [69, 75, 46, 47], which are more
relevant to our work.

4.1.1 Adaptive estimation of agent dynamics

This section brings few of the above-mentioned ACPs, which are using an
adaptive law for estimation of an unknown agent dynamics, in more details.

ACP design proposed by Min et al. [51]

An ACP for synchronization of networked Euler-Lagrange system, [51], solves
the relative state consensus and the leader-following consensus on directed
networks with switching topologies and communication time delays. All agents
in the network share the same Lagrangian dynamics with a known structure.
An adaptive law, implemented by each agent, estimates parameters of the
agent’s Lagrangian dynamics. These parameters are then applied in the agent’s
control law to reach consensus. The proposed control law uses two graphs,
the communication (velocity) graph and the sensing (position) graph, that
are assumed to be directed and balanced. This approach, [51], guarantees
convergence of the ACP on switching topologies, if the changing communication
graph is directed and balanced, and the sensing graph is static and strongly
connected; however, it do not state how the communication time delays affect
the overall performance and the convergence rate of the ACP. Details of this
adaptive control law won’t be stated here. In following, we introduce other
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more general adaptive control laws that share the same goal and also capture
the agents with Lagrangian dynamics.

ACP design proposed by Das et al. [14]

An neural adaptive design for synchronization of unknown non-linear networked
systems, [14] presents a synchronization protocol which addresses leader-
following consensus on directed strongly connected communication graphs.
The agents are assumed to have different unknown non-linear dynamics with
disturbances. The i-th agent dynamic is defined as

E(t) = Jilaa(0)) + wilt) + wild), (4.1)

where x; € R is the agent state, u; € R is the control input, w; € R is
the external disturbance, which is unknown but is assumed to be bounded,
and f;(-) : R — R is the agent dynamics that is assumed to be continuously
differentiable or Lipschitz. The leader’s target dynamics to be tracked is also
assumed to be non-linear and unknown. It is described by

To(t) = fo(zo(t),t), (4.2)

where zy € R is the leader’s state and fo(-) : R x [0,00) — R is the leader’s
dynamics.

The idea of the protocol is to use the information of states from neighbours
to evaluate the performance of the current control protocol along with the
current estimates of the non-linear functions. The local control input for the
i-th agent is given by .

U; = C€; — fi($i), (43)
where the coupling gain ¢ > 0, the local neighbourhood error ¢; is defined by
(2.15) and the estimates of the i-th agent nonlinearity fl(mi) are given by
fiw) = Wi - pi(s), (4.4)
where W; € R¥ is a current estimate of NN weights for the i-th agent, v; is
the number of neurons maintained at each agent and ¢;(x;) : R — R" is a
suitable basis set of NN activation functions. A NN design technique that
adapts the neuron weights is used to estimate each agent nonlinearity modeled
by fi(z:) = WI - pi(x;) + ;. The estimation error of NN weight, W;, is then
denoted by W, = W; — Wi. The local agent NN weight estimates Wl are
generated by the following NN adaptive tuning law

ﬁ/i = —Fipie, pi(d; + gi) — KEW;, (4.5)
with F; = II,1,,, where I,, € R¥*" is the identity matrix, II; > 0 and x > 0

are scalar tuning gains and p; > 0 is some constant defined in [14, Lem 2].
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Note that for the relative state consensus g; = 0, Vi, thus the local
neighbourhood error (2.15) simplifies into (2.10) and the NN tuning law (4.5)
changes to

Wi = —Fypiel pid; — kF;W;. (4.6)

Theorem 7 ([14], Thm. 1). Consider a directed strongly connected
communication graph G consisting of p agents and a leader described by (4.1) and
(4.2), respectively. Under the control protocol (4.3) with (4.4, 4.5) and properly
chosen K and ¢ given in [14], there exist a number of neurons v;,i =1,..., N
such that v; > v;,Vi and the local neighborhood error vectors €; and the NN
weight estimation errors Wy are uniform ultimate boundedness (UUB ). Therefore,
the control node trajectory xo is UUB and all agents synchronize to xy.

Unlike the local voting protocol and the static consensus protocol, this ACP
does not require the knowledge of the agent and the leader dynamics. The
agent dynamics just have to satisfy certain week conditions like continuous
differentiability or Lipschitz continuity, which are fulfilled by majority of real
systems. We haven'’t stated the design of the tuning gain &, coupling gain ¢ and
constants p;; however, it is important to note that they depend on the (pinned)
Laplacian matrix, L(+G). The knowledge of the graph topology is required
at the design stage as it is by the static consensus protocol, and therefore this
ACP is not fully distributed.

Other ACP designs

Alternative ACPs for synchronization of unknown nonlinear systems are
proposed in [74] and [77]. The work in [74] introduces an ACP that addresses
undirected graphs with jointly connected switching topologies. This approach
also handles communication drop-outs in the network. On the other hand, [77]
applies to directed communication graphs having a spanning tree. In contras to
[14] and [74], which consider agents with first order nonlinear dynamics, [77]
considers agents of higher order non-linear dynamics. Although both approaches
in [74] and [77] solve the leader-following consensus, they can be applied also to
relative state consensus.

4.1.2 Adaptive estimation of coupling gains

This section brings four DACPs designs from the literature [69, 75, 46, 47] in
more details. The DACPs use an adaptive law to adapt the coupling gains.

DACP design proposed by Su et al. [69]

Early DACP introduced in [69] implements an adaptation of coupling gains to
solve the leader-following consensus on a network of p interconnected agents
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(mobile robots) following a leader in n-dimensional Euclidean space. The
communication graph is assumed to be undirected, initially connected and
just a small fraction of agents are informed about the leader. A connectivity
preserving algorithm is introduced. Once the topology is connected, it guaranties
connectedness for all future times [69]. Following from the algorithm, the
communication topology is time-varying. When the consensus is reached, the
agents have all-to-all coupling and all are connected to the leader. The algorithm
is not related to the adaptive control law; therefore, its details are omitted.

The agents and the leader are assumed to have unknown identical second-
order non-linear dynamics. The motion of each agent is governed by

pi(t) = vi(t),

0i(t) = f(vi(t)) +ui(t),
where p; € R™ is the position vector of agent i, v; € R™ is its velocity vector,
f() : R™ — R™ is its intrinsic dynamics, that is Lipschitz-like continuous [69],
and u; € R™ is its control input. The leader is specified by

(4.7)

Po(t) = vo(t),
0o(t) = fo(vo(t)),
where pg € R" is the leader’s position vector, vg € R™ is its velocity vector and

fo(+) : R™ x [0,00) — R™ is its intrinsic dynamics. The local control law takes
the form

(4.8)

ui = =32 € Vp, (i — pill) = 325 mijei; (vi — ;)

o b (4.9)
— GiCs (Pi - Po) - gici(Ui - 00)7

Vi

where the constant ¢s; > 0 is the weight on the position feedback that can
take any fixed value, time-varying parameters m;; > 0 and ¢; > 0 represent
the velocity coupling strengths and the weights on the velocity navigational
feedbacks, respectively, and the function ¢(-) is a non-negative potential function
of the displacement between agent ¢ and agent j with given properties [69]. The
local control law (4.9) is written without time labels for clarity; however, note
that the elements of the adjacency matrix e;; and the pinning matrix g; are
time-varying.

The term denoted by «; is a gradient-based term, which enforces agents’
positions to converge to a common value, (3; is the consensus term, which drivers
the agents’ velocities to a common value, and +; is the navigational feedback
term, which forces the agents to track the leader.
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The local adaptation laws for both the weights on the velocity navigational
feedback and the velocity coupling strength are

mij = kij(vi — ’l}j)T('Ui — ’Uj), (410)
éi = kz(’l)l — U())T(’Ui — U()), (411)

where the constants k;; = kj; > 0 and k; > 0 are the corresponding weighting
factors of the adaptation laws.

Theorem 8 ([69], Thm. 1). Consider system of p mobile agents with dynamics
(4.7) each steered by protocol (4.9) to follow a virtual leader with dynamics
(4.8). Suppose that the initial network G(0) is connected, the agent intrinsic
dynamics f(-) is Lipschitz-like continuous and that the initial network energy is
finite [69]. Then the velocities and positions of all agents will converge to those
of the leader asymptotically, i.e., the agents reach consensus with the leader.

The DACP introduces the control input (4.9) that uses a constant gain c;,
two types of time-varying gains m,;, ¢; and a constant function ¢ (-) that can be
interpreted as a variable gain. The static gain cg4, chosen by the design, is used
for synchronization of positions of agents with the leaders. The time-varying
coupling gain m,; is associated with each agents’ interconnection e;; and it
takes care of the consensus in agents’ velocities. A time-varying coupling gain
¢; is associated with each leader-agent interconnection g; and it is used for
synchronization of agents’ velocities with the leaders. The time-varying coupling
gains m;; and ¢; are being adapted by the adaptive control laws (4.10) and
(4.11), respectively. The potential function (-) takes care of consensus in
agents’ positions.

The authors state that the DACP can be used on unknown connected
communication graph with agents described by unknown second-order non-
linear dynamics. Nevertheless, they do not state all the details of the protocol
design. Thus, it is not clear how to properly choose the coupling gain values c;
and the weighting factor values k;; and k;.

The adaptive laws (4.10) and (4.11) introduce also several drawbacks. Since
the coupling gains’ derivatives in (4.10) and (4.11) are monotonically increasing
functions, values of the coupling gains m;; and ¢; rise until there is some error
in positions and velocities of agents. The coupling gains might therefore attain
higher value than it is necessary for the network stability. The coupling gains
are also decoupled; therefore, they end up with different final values and the
network gets unbalanced, i.e., the agents react differently to the input signal.
Additionally, if there is some noise in position or velocity measurements, the
coupling gains would rise reaching some saturation level. Therefore, instead
of implementing the adaptive control laws, the coupling gains could from the
outset be initialized to this saturation value. As it will be shown later in this
section, this is a common problem of recent DACPs.
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DACP design proposed by Yu et al. [75]

A similar DACP proposed in [75] solves the relative state consensus and the
leader-following consensus on undirected and connected communication graphs.
Agents have unknown second-order non-linear dynamics given by

pi(t) = vi(t),
0;(t) = f(pi(t), vi(t)) + wi(t),
where p; € R™ is the position vector of agent i, v; € R™ is its velocity vector,

f():R™ x R® — R™ is its continuously differentiable vector-valued non-linear
dynamics, and u; € R™ is its control input. The leader’s dynamics is given by

(4.12)

Po(t) = vo(t),

0o(t) = fo(po(t), vo(t), 1), (4.13)

where pg € R" is the leader’s position vector, vg € R is its velocity vector and
fo(+) : R™ x R™ x [0,00) — R™ is its continuously differentiable vector-valued
non-linear dynamics.

The local control law and the adaptive law for the relative state consensus
are given by

u; = ac; Y eii(pj — pi) + Bei X2 e (v; — vy), (4.14)
& = & (0, Ligps) (S, Ligps) + BY(S, Ligus) (L, Lises)

(4.15)
+ (8 +a)(S, Ligps) (5, Ligvs) ) -
and for the leader-following consensus take the form
ui = ac; y_; Hij(pj — po) + Bei 325 Hij(vj — o), (4.16)
& = & (a3, Higpy )T (53, Higps) + B3, Higo))T (5, Hijoy) i

+ (B+an) (X, Hijpy)' (X Hz‘j”j)) ;

where H = L 4+ G it the pinning matrix, o > 0 and § > 0 are coupling weights,
and & > 0 and v > 0 are constants.

Theorem 9 ([75], Thm. 1, thm. 2). Suppose that the graph G is connected
and for the agent intrinsic dynamics f(-) holds the so-called QUAD condition
on vector fields [15]. Then the agents described by (4.12) reach consensus or
follow the leader (4.13) under the distributed control law (4.14) or (4.16) and
the coupling gain dynamic (4.15) or (4.17).
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This DACP requires the knowledge of the weighted Laplacian matrix L that
has to be defined by the designer; therefore, it is not fully distributed. Since
each agent has just one adapted coupling gain that is used for the velocity
feedback and also the position feedback, the protocol appears to be simpler
than in [69]. However, the design of this protocol appears to be incomplete.
The authors do not state how to properly design the coupling strengths «, 3
and constants &;, v. Nonetheless, the DACP inherits the problems of previously
introduced DACP with different, large, and unbounded coupling gain values.

DACP design proposed by Li et al. [46], [47]

Novel DACPs are introduced by Li et al. [46], [47] for the agents having known
identical LTI, (2.18, 2.19), or Lipschitz non-linear dynamics. For simplicity, we
introduce the consensus protocols just for the agents with LTI dynamics. These
results can be analogously adopted to agents described by Lipschitz non-linear
dynamics.

The DACP in [46] solves the relative state consensus on undirected connected
communication graphs. The control input with the coupling gain dynamics for
i-th agent are given by

U; :sz cijeij(xi—xj), (418)
éij == Iiijeij(l‘i — .’I?j)TF(,TZ‘ — xj), (419)
where k;; = kj; > 0 are constants, ¢;; > 0 is the time-varying coupling gain
between j-th and i-th agent with ¢;;(0) = ¢;;(0), K = —BT P! is the feedback

control gain matrix, I' = P''BBT P! is the adaptation matrix, and P > 0 is a
unique solution of the linear matrix inequality (LMI)

AP+ PA" —2BB' <. (4.20)

Note that the solution of the LMI (4.20) equals the solution of ARE (2.22) for
R = I,,,. Also note that this adaptive approach addresses unweighted undirected
graphs, hence e;; = ej; = 1if (j,4) € £ and e;; = e;; = 0 otherwise.

Theorem 10 ([46], Thm. 1). Suppose that the communication graph G is
connected. Then p agents (2.18) reach consensus under the control input (4.18)
and the coupling gain dynamics (4.19).

A similar DACP proposed by the same authors in [47] solves the leader-
following consensus on directed graphs containing a spanning tree with a leader
as the root node. Each agent implements a control input with the coupling gain
dynamics in the form

u; = cipi (&) P& KE, (4.21)
& =& g, (4.22)
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where &; £ Z;VZI eij(xj—x;), ¢; > 01is the time-varying coupling gain associated

with the i-th follower with the initial condition ¢;(0) > 1, K = —B" P! and
I' = P'BBT P are the feedback gain matrices, p; is a smooth monotonically
increasing function, satisfying p;(s) > 0 for s > 0, chosen as p; = (1+&] P1¢;)3,
and P > 0 is a unique solution of the LMI (4.20).

Theorem 11. Suppose that the communication graph G has a spanning tree.
Then p agents described by (2.18) follow the leader defined by (2.19) under the
control law (4.21) with the coupling gain dynamics (4.22).

The DACPs, [46] and [47], do not rely on any centralized information, and
therefore they can be implemented on agents in a fully distributed fashion.
Nevertheless, they suffer from several drawbacks. The coupling gain dynamics
in both DACPs (4.19) and (4.22) contain a quadratic term leading to non-
negative coupling gain derivative, ¢; > 0. Therefore, both protocols inherit the
problems of already mentioned DACPs with different, large, and unbounded
coupling gains.

Other DACP designs

Recently published DACPs, [50] and [11], address these problems by proposing
a modified adaptive laws which allows coupling gains to decay to lover values.
More precisely, these protocols add a new decay term to the coupling gain
dynamics that pushes the coupling gains’ values to a predefined constant: 1 in
[50] or 0 in [11]. This is found to solve the problems related with unbounded
coupling gain values. Nevertheless, since this reference value for the coupling
gains is a constant regardless of the network configuration and protocol design,
under certain conditions it might lead to large UUB bounds on the local
neighbourhood errors.

4.2 Qur contribution

To tackle the aforementioned drawbacks of existing DACPs, specifically the
considerable control effort and a lack of robustness to noise or disturbances,
a new DACP [35] was first developed. It proposes to solve the cooperative
regulator problem on undirected connected communication graphs, and is
subsequently extended to directed graphs having a spanning tree [36]. The
protocol introduces a novel coupling gain dynamics allowing coupling gains to
synchronize and decay to some estimated reference values. Thereby it solves
the issues of the recent DACPs with a one static reference value [50, 11]. The
on-line estimation mechanism for these reference values, based on interval-
halving method, compensates for the unavailability of centralized information,
[35, 36]. To handle changes in network topology, an alternative estimation
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algorithm, based on a distributed estimation of Laplacian eigenvalues [17, 18],
was elaborated later, [37]; however, it applies only to undirected connected
graphs.

This chapter presents an improved DACP, [38], solving both the cooperative
regulator and tracker problems for agents with LTI dynamics on directed
communication graphs. It is based on the previous results [35, 36, 37] and it
extends the earlier seminal work on undirected graphs [46] to more general
directed graphs while providing a simpler control protocol, comparable to the
conventional synchronizing region control design, as opposed to [47] which
involves additional nonlinearities.

This work differs from the existing results by:

o We consider general directed communication graphs, similarly as in [47,
44, 50], while other existing results [69, 75, 46, 11] focus on undirected
graphs.

o The adaptive law differs from the conventional adaptive approaches [69, 75,
46, 47, 44, 50] by allowing coupling gains to decay to estimated coupling
gains’ references, rather that to a constant [50, 11].

o The coupling gains are associated with agents, similarly as in [75, 47, 50,
44], while other adaptive approaches have coupling gains associated with
edges in the network [69, 46, 11].

e The Lyapunov function used here differs from those conventionally
appearing in cooperative control [77, 78, 23].

The main contributions of our results are:

e The introduced DACP is fully distributed, in the sense that each agent
designs its local controller based only on its own information and
information from its neighbors.

e Both the cooperative regulator and tracker problems on general directed
communication graphs are treated in a similar fashion using essentially
the same adaptive consensus protocol.

e The novel adaptive law avoids problems of existing adaptive consensus
protocols which possibly result in large control efforts and a lack of
robustness to noise and disturbances.

o References values for the coupling gains are estimated by one of the two
presented estimation algorithms: the interval halving estimation algorithm
and the eigenvalue estimation algorithm.
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A formal proof of uniform ultimate boundedness and convergence of a
network dynamics implementing the presented DACP is given using Lyapunov
function techniques. A thorough stability analysis of the proposed adaptive
protocol is carried out, and simulations are provided validating its performance.

4.3 Problem statement and motivation

Consider a set of p identical agents networked by a communication topology.
Each agent is described by a general LTI dynamics

where x;(t) € R™ is the agent’s state, u;(t) € R™ is the agent’s input, and
A € R"™™ and B € R™™™ are constant matrices. The matrix A need not be
stable, but the pair (A, B) is assumed stabilizable.

Assumption 11. The communication topology of the network of agents is
given by a directed strongly connected graph G;.

With Assumption 11, the goal is to solve the cooperative regulator problem
[43] and thereby reach an agreement on states of all the agents in the sense
that ||x;(t) — ;(t)|| = 0 as t = oo, V(4,7), without requiring any centralized
information.

Additionally, consider a leader given by an autonomous LTI dynamics
Zo(t) = Axo(t), where zo(t) € R™ is its state.

Assumption 12. If a single leader is present, the communication topology is
given by a directed graph Go either having a spanning tree with a root pinned
by the leader or a spanning forest with roots of all trees pinned by the leader.

With Assumption 12, the goal is to solve the cooperative tracker problem
[43] and thereby synchronize the states of all agents with the leader’s state
in the sense that ||zo(t) — z;(¢)|| — 0 as ¢ — oo, Vi, without requiring any
centralized information.

A class of distributed adaptive consensus protocols [46, 47, 69, 75] proposes
possible solutions to these two cooperative control problems. They do not
require any global information on a communication graph, therefore they are
fully distributed. Nevertheless, they generally suffer from high final coupling
gain values and a lack of robustness to noise.

To solve the cooperative regulator problem on directed strongly connected
graphs and address the above-mentioned issues, we previously presented a novel
adaptive control protocol [35, 36, 37], that allows coupling gains to decay and
synchronize. This adaptive protocol was first introduced to solve the cooperative
regulator problem on undirected graphs [35] which was later extended to directed
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strongly-connected graphs [36]. In both results we provided an algorithm for
estimation of coupling gains’ references, based on the interval-halving method.
Robust, albeit more complex, estimation algorithm based on estimation of the
Laplacian eigenvalues [17, 18], was later proposed [37]. Note, that stability of
this adaptive protocol has not been rigorously proven yet.

This chapter builds upon our previous results [35, 36, 37] and provides an
improved adaptive consensus protocol with a detailed stability analysis and
rigorous proofs of the UUB and convergence. Moreover, it also extends the
adaptive control law to solve the cooperative tracker problem on directed graphs
under Assumption 12.

Before introducing this adaptive consensus protocol we state technical results
required for the subsequent stability analysis.

Lemma 8 (Uniform Ultimate Boundedness [32]). The solution of an
autonomous system & = f(x), f(0) = 0,z € R™, is guaranteed to be UUB
if there exists a continuously differentiable function V : D — R, defined on a
domain 0 € D C R", and a positive constant r, such that V(m) < 0 outside a
ball B, = {x € R"|||z|| < r} C D of finite radius r. Moreover, the solution is
said to be globally UUB, if D = R™ and V() is radially unbounded.

Remark 23. If there exists a closed and bounded region J C D, such that
V(x) < 0 on the exterior of J, then one can always find a ball B, = {z €
R”|||z|]| <7} C D containing J, such that V(z) < 0 on its exterior, and hence
Lemma 8 guarantees UUB. Note in fact, that the existence of a closed and
bounded region J is equivalent to the existence of a ball B, with a finite radius
required for UUB in Lemma 8.

4.4 Adaptive leaderless consensus protocol

To solve the cooperative regulator problem and avoid the above-mentioned
issues of the previously proposed adaptive consensus protocols we consider an
adaptive control law in the form

ui(t) = ci(K 3 eij (x(t) — i(t)) , (4.24)
&) = X, e (1) = 2i(0)" T (1) = 2:(t) = Bi (calt) = ri) . (4.25)

where ¢;(t) > 0 is an adaptive coupling gain associated with the ith agent,
ki > 0 is a reference value estimated by the ith agent as detailed later, and
B; > 0 is a constant design parameter associated with the ith agent. The
K € R"™™ and T' € R" "™ are feedback and adaptation gain matrices. Let
Q=Q"T ¢ R and R = RT € R™*"™ be given positive definite symmetric
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matrices, then K and I' are taken as

K=R'BTP, (4.26)
I'= KTRK = PBK = PBR™'B' P, (4.27)

where matrix P > 0 is the unique stabilizing solution of the ARE
ATP4+ PA+Q—-PBR 'BTP=0. (4.28)

For purposes of the convergence analysis, define the synchronization error
as §; = x; — x*, where x* is a virtual leader

w;
Wig,

o= e (4.29)

Wi
(e

Then one has the constraint
> o =0, (4.30)

which implies that 6; = d;,V(4, j) < §; = 0, Vi. Expressed in terms of (6, c), the
network dynamics reads

57; = 146Z + CiBK Zj 62']'((5]' - (51) —a, (431)
éi = Zj eij((sj — 51‘)Tr((5j — (51) — ﬁl(cl — KZ'), (432)
where a := &* — Az™ is the same for all agents 1.

Remark 24. The adaptive consensus protocol (4.24, 4.25) is motivated by
previous results [46, 47], however there are several major differences to existing
work. As opposed to [46, 11], having adaptive gains corresponding to edges in
the network, in (4.24, 4.25) each agent has only one adaptive gain, much along
the lines of [47, 75, 50]. For comparison, note that some adaptive consensus
protocols [69] use both types of adaptive gains: ones corresponding to edges
and those corresponding to agents in the network.

Furthermore, the coupling gain dynamics (4.25) allows the coupling gains ¢;
to decay to their reference values k;; hence, it is not a monotonically increasing
function as in most present adaptive laws [46, 47, 69, 44]. It consists of two terms.
The first term 3, e5(2; — 2;)TT(z; — x;) is the non-negative quadratic term
similar as in [46, 47]. Its purpose is to push the coupling gains to higher values
until the states of agents become synchronized. The second term —pj;(c; — ;)
pushes ¢;s to k;s. The value of k; is updated by an estimation algorithm
as detailed in Section 4.6. The decay rate 3; determines the strength of the
convergence of ¢; to k;.

Also, different from previous work [35, 36, 37|, the coupling gain dynamics
(4.25) does not contain the coupling gain synchronization term. Omitting
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synchronization of coupling gains simplifies the protocol design. Moreover, in
(4.24, 4.25) each agent has its own decay rate ;. Note however, that this does
not prevent the implementation of only one decay rate 5 = 3;, Vi along the lines
of [35, 36, 37].

To the best of our knowledge, none of the existing results on adaptive
consensus protocols introduce the decay of coupling gains in the way (4.24,4.25)
does. There exist proposals [50, 11] which incorporate decay of adaptive gains
in the protocol design. Nevertheless, nonzero decay rate there implies nonzero
consensus error, hence they involve a trade-off between the rate of decay and
the bound on the resulting consensus error.

For better understanding of the following stability analysis and proofs of
UUB and convergence of the network dynamics (4.31, 4.32) let us first examine
a simple motivating example which exhibits a very similar development.

4.4.1 Motivating example

The introduced network dynamics (4.31, 4.32) shares some similarities with a
simpler dynamical system

i =1y, (4.33)
j=2"+(k—vy), (4.34)

in R x RSF where x € R, y € Rg and k > 0 is a parameter. The system (4.33,
4.34) can be analyzed by the Lyapunov function

V(z,y) = gxz +ay, (4.35)

with 7 > 0 and « > 0, having the time-derivative

: 3 4
Viz,y) = gr - ;—g —(2r —a)| 2% - r% + a(k —y). (4.36)

The Lyapunov function (4.35) is defined on the domain {z,y|z € R,y > ¢ > 0},
which is forward invariant for (4.33, 4.34) if € < . For definiteness, let r = 1.75
and a = 1/2, then the level sets of V(z,) and V(z,y) = 0 lines are depicted
in Figure 4.1.

The time-derivative of the Lyapunov function, (4.36), is negative for |z| or
y sufficiently large and it is positive only on some closed and bounded region,
which is obvious also from Figure 4.1. This region is indeed different for different
values of k, actually, it grows with x, but it always remains closed and bounded,
as shown in Figure 4.1. Hence for every value of x there exists a closed and
bounded region on which V(z,y) > 0 and V(z,y) < 0 on its exterior. Thus,
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Figure 4.1: Level sets of V(z,) and lines V (z,y) = 0 for different values of .

&)

Figure 4.2: Plots of f;(c¢;) for different values of ;.
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by Lemma 8, a trajectory of the system (4.33, 4.34) is UUB for every x > 0.
Furthermore, as y > 0, for y < k, in (4.34), the trajectory of the system (4.33,
4.34) has to eventually end in a positively invariant closed and bounded region
{z € R,y > k}. Once, the trajectory enters this region, it will stay there for all
future times. Note, that due to UUB and radial unboundedness of V' (z,y), the
trajectory cannot escape to infinity in finite time before entering this region. For
k large enough, this region has V(x, y) < 0 in its interior. Hence, the considered
trajectory will be contained in the intersection of {z € R,y > «} with some
sublevel set of V(z,y), which is compact. Applying the LaSalle’s invariance
principle [32] to a trajectory bounded in this compact set, the trajectories of
(4.33, 4.34) converge to the largest invariant set in {z,y|V (x,y) = 0}, consisting
only of the equilibrium point {z = 0,y = k}. In summary, trajectories of
the system (4.33, 4.34) are UUB for every k > 0, and they converge to the
equilibrium point {x = 0,y = k} for x large enough.

Although (4.33, 4.34) does not exhibit any peculiarities of network
interactions found in (4.31, 4.32), this consideration motivates the form of
the Lyapunov function chosen for (4.31, 4.32) and its subsequent analysis.

4.4.2 Lyapunov function candidate

Consider a Lyapunov function candidate V(4,¢) : D — R for the system (4.31,
4.32), given by
V(d,e) =3, %@TP&- +ad, wic, (4.37)

where o > 0 is a parameter, defined on a domain D = {§,¢|§; € R",¢; >
€ > 0,Vi}. The region D is positively invariant with respect to (4.31, 4.32) if
0<e< Iniin(m-).

Remark 25. Note that the Lyapunov function (4.37) is radially unbounded,
i.e., if ||§]] = oo or ||c|| = oo then V(§, ¢) — oco. Moreover, for ¢; # 0, if ¢; — 0
then V' (4, ¢) — oo, which is the other boundary of D. Hence, by approaching

any boundary of D, V (4, ¢) — oo everywhere, except at {§; = 0,¢; = 0}, where
the Lyapunov function (4.37) looses continuity.

The time-derivative of the Lyapunov function (4.37), under dynamics (4.31,
4.32), equals

V(8,¢) =23, %67 Po; — 32, 6T Poici + a Y, wids, (4.38)
V(6,¢) =23, woTP {A(Si +¢BE Y eiy(6; — 6) — a}
— X, 5 (T P8) [0, () — 8)TT(6; = 6,) = Bile — k)| (4.39)

+adw [Zj €ij (65 — 0;)TT(8; — ;) — Bi(ei — f%‘)} ;
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=T =0, due to (4.30)
. —N— e e
V(6,¢) =237, 2107 PAS; + 23, wio] PBK Y, eij(8; — 0;) =23, ¥46] Pa

-2 (§TP5 )Z eij(8; — 6)TT(6; — 6;) + Do (5TP5 )Bi(ci — ki)
+ aZi w; Y €ij(65 — 6)TT(6; — &) —ad, wiﬁi(ci — K;). (4.40)

Note, that the a term does not contribute to V(é, ¢). Due to 4.30, since G; is

strongly connected and I' is symmetric, it holds that
23, wie;; 01 T(6; —6;) =23, y wie;6] D(8; — 0;) = (4.41)
> wieij (8 — 6;)"T(6; — ), [T7, 46, '

hence
== 20 wiei (05 — 6;)TT(d; — &;)
V=3, w8l (PA+ ATP)S + 25 wis] T Y, eij(8; — &)
+adl;  wie(d; — 6:)TT(0; — ) (4.42)
-2 (5TP5 )Z i (6, — 6:)TT(8; — &)
+Y (5TP5 )Bi(ci — ki) — a ), wifi(ci — Ki).

As PA+ ATP4+Q —T =0, we can use PA+ ATP = —Q 4T in the first term
of (4.42), yielding

V=3, %5T(—Q+T)0 — (1 —a) Y2, ; wiei; (6; — 6:;)TT(6; — 6;)
=20 3 (6 Poi) 325 ei5 (05 — 5i)TF(5j ) (4.43)
+> %(@TP&)@Q =22, B (8] P&)Biki — a3 wibi(ci — ki),

V=306 [%(F—Q—FPBZ-) — 3 PBiki| 0
- (1 - a) Zij wieij(éj — (SZ)TF(gj — 51) (444)
- Z o (5TP5 )Z €45 (6J 6i)TF(5j —0;) — aZi w;Bi(c; — Kq).

Since I' is symmetrlc positive semi-definite matrix, the second term in (4.44)
can be upper-bounded as

—(1=a) ¥, wiei; (8, — 8:;)TT(8; — 6;) =
—(1—a)d" [(WL+L"W)®TI]s=
—1=a)§" [(WL+L"W)® IL,] (In®I)§ =
~(1 =)0 (In @ VD)T (WL + LT™W) @ I,,] (In ® VT)§ <
—(1 = ) Amin (WL + LTW) @ L) [|(Iy ® VT)d||* =
—(1 = @) Anin(WL + LTW) 3, 67T6;.

(4.45)
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Let us denote M = (WL + LTW), which is positive semi-definite by Lemma 4.
Then the upper bound on the Lyapunov function time-derivative has the form

AT P+PA+B; P
V< 3,67 |20 = Q+ BiP) % PBiri — (1= ) Auin(M)T] 6, (4.46)

= X @ (07 P0:) 325 €45 (0; — 0)TT(0; — 6:) — a 30, wifi(ei — ki)

The time-derivative of the Lyapunov function (4.46) consists of three terms.
The first is the only possibly indefinite term quadratic in §;, then follows the
negative term quartic in §;, and finally the linear term in ¢;, which is negative
for ¢; > k; and positive otherwise. In order to proceed with the stability analysis
of (4.31, 4.32) we first bring two technical results regarding (4.46), stated as
Lemma 9 and Proposition 3.

Lemma 9. The term ), % (0] Pd;) > eii(0 — §;)TT(6; — &;) in the time-
derivative of the Lyapunov function (4.46) is zero, i.e., Y, % (6T Pé;) > ei(dj—
51)TF(5] - 51) = O, ZﬁVZ,(gl € ker(F)

Proof. 1t is straightforward that

Vi, 0; € ker(I') = >, 75—3((5ZTP51) > €ii(d5 — §)TT(6; — 6;) = 0. (4.47)
To show that converse is also true,

> Zf—g(éiTPdi) > €ij (0 — 6:)TT(8; = 0;) = 0= Vi, 6; € ker(T), (4.48)

we proceed with a proof by contradiction. Since w; > 0,V7, by Assumption 11
and Lemma 3, P > 0, I' = 0, and ¢; > 0, Vi, it holds that

> (67 Poi) 20 eij(0; — 0:)TT(0; —6) =0 &
1 Vi, wi (6] P6;) Y5 €i(8; — 6:)TT(0; — &) = 0. (4.49)
Let us consider the case when
Vi, wi(6] P8;) Y5 €i5(6;—0:)"T(8;—6;) =0 and yet 3j,d; ¢ ker(T). (4.50)

Since P > 0 and §; ¢ ker(I') = §; # 0, one has 6J-TP5j > 0 and thus for the
jth summand,

w; (67 P8;) >y e (0 — 6;)T(6k — 6;) =0, (4.51)

to be zero it must hold that (dx — d;) € ker(I'),Vk € V;. If §; ¢ ker(I') then
also such ¢ ¢ ker(I') because 6, = 0; + v and v € ker(I') = 0, ¢ T'. In
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other words, every neighbor k of agent j has its J; ¢ ker(I'). Applying the
same principle successively to all neighbors of the agent k, their neighbors and
so on, by Assumption 11, all §; in the graph are not in the kernel of T, i.e.,
Vi, §; ¢ ker(T'). Tt follows then, that (4.51) is zero for every ¢ with Vi, d; ¢ ker(T")
meaning Vi, 57 P§; > 0 implying

Vi, (o Z]‘ eij(éj - 51)T1"(5J - 51) = 0, (452)
which further leads to the sum over ¢ being equal to zero

Zi w; Zj €ij ((5j — (51)T1—‘((5J — 51) =0. (453)

This can happen iff either Vi, d; € ker(I") or V(4,5),d; = d;, but in the later case
0; = 0 € ker(T"), Vi, leading to the contradiction to (4.50), thereby completing
the proof. O

Proposition 3. Given 0 < a <1 and 0 < f; < “““((%) Let 0; ¢ ker(T'), Vi,
then the first term of (4.46) is negative, i.e.

Z 5T |:w7 (F Q + ﬁl ) %Pﬁzﬁjl - (1 - O‘)/\min(M)F:| 51' < O, (454)

on the domain D if all k;s are sufficiently large.

Proof. The first term of (4.46), expression (4.54), is bounded from above by

Z 5T |:w.L ( max(F) - Amin(Q) + 5i)\max(P))
w;
- Cf mln( )ﬂzﬁi - (]- - Oé))\min(M)Amin>O(F)i| 61 (455)
Each square bracket term in (4.55), has the form of a quadratic polynomial in
! given by a function

fi(ci) = %Sz + l%‘ + z, (456)
C; C;
with s; = _wi)\min(P)BiHia qi = wi()‘max(r) - /\Inin(Q) + Bi)\max(P))v and
z = —(1 = @)Amin(M)Amin>0(T). Choose some 0 < a < 1,0 < 5; < )/\\;“;"z((%)),
then s; <0, ¢; € R, z <0, and f;(¢;) depends only on the value of k; > 0 as
depicted in Figure 4.2. Let ¢ € R be such that

filei) = max fi(ci), (4.57)

then the maximizing ¢} and the maximum value are

2s; q;
. () =T 4, 4
dt=-2 pe=-E 4 (1.5
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*

It follows, that ¢} scales with x; and f;(c}) scales as 1/k;. Hence for all x;s
sufficiently large, f;(cf) < 0,Vi, which implies that (4.54) is negative. This

concludes the proof. O

Remark 26. The behaviour of f;(¢;) in dependence of k; is depicted on Figure
4.2 for clarity. The bound on k;, obtained from the condition f;(c}) < 0, Vi, for
which Proposition 3 holds, reads

wi()\max(r) - )\min(Q) + ﬁi)‘maX(P))Q

K/i > Kj;k = 5 V'L. 4-59
151 — @) dean (M) dwin (P Ao (1) (4.59)
For definiteness, let us chose a = 1/2, 8; = ;:::;((CIQD)) for the numerator, and

Bi = Q\L(?;) for the denominator of (4.59), then (4.59) is certainly satisfied if
a simpler, albeit more conservative, condition holds

u}max)\max(-P)(>\max(]-—‘))2
)\min(Q))\min<M))\min (P)/\min>0 (F) ’

Ki > K > K=

Vi. (4.60)

4.4.3 Stability analysis

Starting from the expression for V (4, ¢), (4.46), Proposition 3, and Lemma 9
we bring here the main result on dynamics (4.31, 4.32).

Theorem 12. Consider a network of p agents with the general LTI dynamics

(4.23) satisfying Assumption 11. Let each agent implement the control input
(4.24) with the coupling gain dynamics (4.25) andlet 0 < B; < %,w Then
the agents reach consensus within some bounded region, i.e., their trajectories

are UUB, on domain D, if all k;s are sufficiently large, satisfying the bound
Py (20— Q+ BiP) — Z5PBiki| < (0= 1)1 = a)Auin (M. (4.61)

Proof. Consider the Lyapunov function (4.37) with its time-derivative (4.46).
The UUB of the solution of the network error dynamics (4.31, 4.32) is proved
by showing that, for x;s sufficiently large, satisfying (4.61), there exists a closed
and bounded region J = {6, ¢|V(d,¢) > 0} C D outside of which V(5,¢) < 0 on
D, in accordance with Remark 23. To that end, we analyze V (4, ¢) for several
different cases:

1. Vi,d; € ker(T'); The terms containing I" in (4.46) vanish and the time-
derivative of the Lyapunov function (4.46) simplifies into

V<Y, of [%(—Q + B;P) — %Pﬁiﬁi} 6 —aywiBi(c — ki) (4.62)
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It is obvious that (4.62) is negative definite, i.e., V(4,¢) < 0, for ¢; > k;, Vi.
If ¢; < k;, for any 4, the positive contribution of terms linear in ¢; is bounded
and finite, therefore there exists d; sufficiently large, such that the contribution
of the ith summand in (4.62) is negative definite and thereby V (d,¢) < 0. Hence
V(3,¢) > 0 only on a closed and bounded region 7.

2. Vi, d; ¢ ker(I'); The time-derivative of the Lyapunov function is given by
the full expression (4.46). Note, that the existence of negative definite terms
in V((S, ¢), which are quartic in §;, is guaranteed by Lemma 9. Let us split the
analysis of its sign-dependence into the following three situations:

2.a) one or more §;s grow with v € [1,00), i.e., §; = ., and the remaining §; =
dc, with all ¢; = ¢ fixed at the value that maximizes the positive contribution
of the first term quadratic in d;, as in (4.57). Increasing a single ¢; while keeping
other §; = 6. and all ¢; = ¢} fixed leads to a single indefinite term increasing
quadratically in ¢;, few negative definite terms increasing quadratically in §;
and a single negative definite term which increases quartically with J;, hence
for some finite value of ||d;||, the negative definite quartic term dominates the
contribution of all the positive definite terms and V (4, ¢) is necessarily negative
definite. This negative definite term certainly exists as per Lemma 9.

For multiple ;s growing simultaneously, let us consider the worst case
scenario, where there arises a minimum number of negative definite terms in
V (9, ¢), which are quartic in §;. The constraint (4.30) implies, that the minimum
number of negative definite terms quartic in ¢;, on strongly connected graphs,
is 2 and the network is then composed of p — 1 agents having §; = d,v except
one agent which has 6; = v, both 6, and §, € ker(I')*. This worst case
scenario is depicted in Figure 4.3a. Note, that all agents are considered to have
their ¢; = ¢ fixed. For §; sufficiently large, the resulting 2 negative definite
terms, quartic in d;, dominate p indefinite terms quadratic in d;, thus V (8, ¢) is
rendered negative for a finite value of v.

2.b) one or more ¢;s grow with v € [1,00), i.e., ¢; = ¢fv, and the remaining
¢; = ¢f, with all ¢; = §, fixed, where ¢} is given by (4.57). By increasing any ¢;
above k;, the negative contribution of the last term linear in ¢; increases with
¢; while the contribution of the indefinite term decreases with 1/¢;. Therefore
there exists a value of ¢; > k; such that the increasing negative definite term
dominates the indefinite term and V (9, ¢) is rendered negative definite. If several
c;s are considered to grow simultaneously, then there likewise exists growing
¢; > k; sufficiently large, such that V(8,¢) < 0.

2.c) both §;s and ¢;s grow with v € [1,00), i.e., §; = d.v and ¢; = cfv. We
analyze the worst case scenario, where there arises a minimum number of
negative definite terms, quartic in J;, and their corresponding §; and c¢; increase
simultaneously. From the constraint (4.30) on d;s it follows, that the minimum
number of such terms is 2, see Figure 4.3b, and for this worst case scenario
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(a) more §;s grow and ¢;s are constant (b) both §; and ¢; grow

Figure 4.3: Network topology of the worst-case scenario for Case 1, Vi,d; ¢
ker(T").

the network is composed of p — 1 agents with §; = J,v and one agent with
61 = Opv, both §, and d, € ker(F)L. Label the 1st agent’s child with index
2. To maximize positive definite contribution of the first term in V (4, ¢), all
those agents having fixed ¢;, have their ¢; = ¢, whereas the 1st and the 2nd
agent have ¢; = c¢jv and ¢y = chv. Scaling of ¢; simultaneously with §; makes
the negative definite quartic term in §; effectively scale only quadratically in
v: comparable to the growth of quadratic indefinite terms. Note however, that
the first quadratic terms in V((S, ¢), which correspond to the 1st and the 2nd
agent, are no longer indefinite with increasing c¢;s. By scaling ¢; and ¢y they
are rendered negative semidefinite for a finite value of v. The time-derivative of
the Lyapunov function is composed of 3 parts corresponding to the agent 1, the
agent 2 and the rest of the network
V<P 07 [0~ Q+ BiP) = 25 Pirs — (1 - a)Awin(M)T| 8202

C

—a Y gwifi(c] — ki)

— 67 11 = ) Amin(M)T] 850% — 22 (57 P, (8 — 6)TT (8 — 60)1
i (4.63)
— awlﬂl(dlk’/ — Kg
— 6T [(1 — &) Amin (M)T] 802 — ;"3 (6T P8,) (64 — 85)TT (80 — 6)1/2
2

— awyfBa (v — K;).

If the following bound is satisfied, the first indefinite quadratic terms in (4.63)
are dominated by the resulting negative definite quadratic terms alone and
V' (4, ¢) is rendered negative definite,

67 Y0 [ 4T = Q4 BiP) = 5 PBis — (1= ) Amin(M)T | 602 <

ro , (4.64)
ST1(1 = @) Amin (M)T]0,0/2,
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P[00 - @+ 8iP) — 2 PBisi] — (0~ 2)(1 — @) hmin(MT <
(1 — ) Amin (M)T,

(4.65)

Py |5 = Q4+ BiP) — 2 PBiki] < (0= 1)(1— @) Auin(M)T. (4.66)

This leads to the final bound (4.61). Note, that by assuming a common 8 = ;,
Vi, the inequality (4.61) can be unified for all agents as

w:nax (T'-Q+pP)— lf:minz PBrmin < Ep : ;; (1 —a)Amin(M)T.  (4.67)

Moreover, taking p — oo, it can be generalized for any number of agents

Zmax (1 — Q4+ BP) — ™ PBriin < (1 — @) Amin(M)T. (4.68)

3
min max

The three above investigated situations cover all possible scenarios, which
can occur on domain D, for the case when Vi, d; ¢ ker(I'). They imply, under
condition Vi, d; ¢ ker(T'), that, for all k;s satisfying (4.61), there always exists a
closed and bounded region 7, such that V(&, ¢) > 0 in the interior of J and
V(d,¢) < 0 in the exterior of J.

3. 3i,d; € ker(T') A 3k, 6 ¢ ker(T'); Let us denote Sr as the set of nodes for
which §; € ker(I") and the complementary set Sp = V\Sr for which & ¢ ker(T).
Then the time-derivative of the Lyapunov function can be split into two sums
over Sr and Sp respectively

V< ies OF [2(-Q+ BiP) = % PBiki] 6 — 0 i, wilhi(ci — i)
+ 2 hes O {%:(F —Q+ BrP) — %{Pﬁkﬁk — (1 = &) Amin (M)T| 5

~ Yres (00 Po) 32 e (0; — 0k)TT(8; — br)
— @ kes WBk(ck = Kr). (4.69)

The first part of (4.69) with sum over Sr, being identical to (4.62), shares
the same conclusion with Case 1, Vi, d; € ker(T"). It is negative definite if, for
all ¢, either ||6;]| or ¢; exceeds certain finite value while its maximum positive
contribution is bounded for ||d;|| or ¢; below that value.

If condition (4.61) derived in Case 2 is satisfied for a network consisting of p
agents then it also holds for a smaller number of agents, ps = \3p| < p. Hence,
the results of Case 2, Vi, d; ¢ ker(I"), apply to the second part of (4.69) with
sum running over Sr.

Because positive contributions of both parts of (4.69) are bounded and
V' (4, ¢) is radially unbounded, increasing either ||é;|| or ¢; or ||dx]| or ¢, the
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growing negative definite contribution of one part of (4.69) always eventually
dominates the bounded positive definite contribution of the other part. This
translates into existence of the bounded region J. Thus, for the case when
3i, 0; € ker(T") A 3k, 0y, ¢ ker(T'), for all k;s satisfying (4.61), there also always
exists a closed and bounded region 7, such that V(d,¢) > 0 in its interior and
V < 0 on its exterior.

All the above investigated cases lead to the same conclusion, i.e., for all x;s
satisfying (4.61), there always exists a closed and bounded set J C D, such that
V(3,¢) > 0 on its interior and V < 0 on its exterior. Since the union of these
three cases covers the whole domain D and V' (4, ¢) is radially unbounded on
D, this bounded set J guaranties uniform ultimate boundedness (UUB) of the
solution of the network dynamics (4.31, 4.32), for all x;s sufficiency large. O

Theorem 13. Consider Theorem 12 and in addition assume that all k; satisfy
the bound (4.59), then the states of agents fully synchronize, i.e., tlim |l (t) —
—00

z;(t)|| =0,V(4,7). Moreover every c;(t) converges to k;.

Proof. Following the analysis of V(é, ¢) in Section 4.4.2 and by Proposition 3,
for sufficiency large ; satisfying (4.59), the first two terms in (4.46), quadratic
and quartic in d;, are both negative definite and the third term, linear in ¢;,
is negative definite for ¢; > k;. Hence if ¢; > k;, Vi then V(é, ¢) < 0. On the
other hand, if any ¢; < k;, then there exists ||0;]| > 0, for any 4, sufficiently
large, such that the negative contribution of the first two terms dominates the
bounded positive contribution of the third term in the ith summand of V (4, c).
Therefore V(8,¢) < 0 for ||6;]| or ¢; sufficiently large. This means that the
set J = {6,¢|V(d,¢) > 0} C D is closed and bounded and V(8,¢) < 0 on its
exterior, thus the solution of the system (4.31, 4.32) is certainly UUB.
Furthermore, the coupling gain dynamics (4.32) has a consequence that
ci < ki = ¢ > 0. As V(J, ¢) is radially unbounded by Remark 25, there is no
escape to infinity in finite time while ¢; < k;, so the solution of (4.31, 4.32)
always ends in a set Q = {4, c¢|¢; > ki, Vi}. The set  is positively invariant with
respect to (4.31, 4.32) and, under (4.59), V(,¢) < 0 in its interior. Wherever
the solution first enters the region €2 it will be contained, for all future times,
in a well defined sub-level set ¥ = {§,¢|V(4,¢) < g}, which is bounded on D
by the fact that V(J,c¢) is radially unbounded, and since V(,¢) < 0 on the
whole 2 the solution has to stay within this set ¥ for all future times. Thus
the solution eventually ends in a positively invariant compact set & = ¥ N
where V(8,¢) < 0. Let E be the set of all points where V(4,¢) = 0 in ® and
let M be the largest invariant set in E. Then, M = {,¢c|d; = 0,¢; = Ky, Vi}
contains only the equilibrium point and by LaSalle’s invariance principle [32],
every solution in ® approaches M as ¢t — co. Therefore the system (4.31, 4.32)
converges to the equilibrium point (§; = 0, ¢; = k4, Vi) while being UUB. O
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Remark 27. Note that the given Lyapunov proofs provide only sufficient
conditions, not necessary ones. It may very well happen that the bounds there
are too conservative and one in fact has UUB and convergence to the equilibrium
point even for lower values of k;s. Nevertheless, certainly if all ;s exceed the
given lower bounds one can no longer have limit cycles but only convergence to
the target equilibrium point {6 = 0, ¢; = k4, Vi}, which is the main result here
and serves as a justification for the x; update process proposed in Section 4.6.

4.5 Adaptive leader-following consensus protocol

The following adaptive consensus protocol is proposed to solve the cooperative
tracker problem

ui(t) = ci() K| 3205 e (25(t) — (1) + gi (wo(t) — 2i(?)) } ; (4.70)
&) = 32, e (1) = 2i(0)" T (1) — 2i(1))

. (4.71)
+ gi (xo(t) —x4(t))" T (zo(t) —z4s(t)) — Bi (ci(t) — K4),

where K and T are given by (4.26) and (4.27), respectively, and P is the positive
definite solution of the ARE, (4.28). Define the tracking error of an agent with
respect to the leader, §; = x; — x¢. Then the synchronization error dynamics is

(S.i = Ad; + CiBK[Zj €ij (5J — (51) — giéi s (472)

b= X2, 04365 — 0)TT(0; — 6) + g:0TT6) - Biles — k). (AT3)
Remark 28. Note that, from the single-agent perspective, the adaptive
consensus protocol (4.70, 4.71) is equivalent to the protocol (4.24, 4.25) applied
to communication graphs satisfying Assumption 12. The only difference are the
pinning terms contained in (4.70, 4.71) which is a matter of notation; hence
Remark 24 applies also to (4.70, 4.71). Furthermore, note that the adaptive
consensus protocol (4.70, 4.71) contains no additional nonlinearities in contrast
to the proposal found in the literature [47].

In the following we derive the time-derivative of the Lyapunov function
(4.37), with 0;s as defined in this section, for (4.72, 4.73) and then use it to show
UUB and convergence of the adaptive consensus protocol (4.70, 4.71) solving
the cooperative tracker problem.

4.5.1 Lyapunov function candidate

Consider the same Lyapunov function as in (4.37) with a > 0 and w; > 0, Vi,
to be determined later. Let us emphasize, that different from the definition of
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vector w in Lemma 3, in this case w is some convenient positive vector to be
chosen later. The time-derivative of the Lyapunov function (4.38), under the
dynamics (4.72, 4.73), then equals

V= 221’ %(SZTP [A(SZ + ¢;BK [Z] €ij<6j - 51) — gléz} }
XL BT PE) [, 005 — 67T, — )+ :(67T6) — Bules — )|
+adl w [Zj eij(86; — 6:)TT(0; — 6;) + g:(61T6;) — Bile; — /-z,»)] , (4.74)

V=23, w67 PAS, + 23, “6T Pe;BK Y, ey(6; — 6:) — giél}
T (T PS) T e4y(6; — 67T, — 5)
=2, #(6] Po;)gi(8T8;) + 37, & (87 Poi)Biei — ki) (4.75)
+a Eijj wie;;(8; —8;)TT(6; — (51»)1—&— ad, wigi(61T6;)
—a) ;wiBile — ki),
=r
V=3, 6T (PA+ ATP)S; + 25, wieyyo! PBR(S, — 5)
— 23 w;gi6ITd; + « Z” wie;;(6; — 6;)TT(8; — &;)
5 0T P S 04565 — 67T, — 61) (4.76)
= 205 #9i(6] Poi) (0] T6:) + 32, & (6, Poi)Bilci — ki)
+a Y, wigi(6]T6;) — a2, wiBi(e; — ki)
Let o = 1, then four terms of the above yield
2 Zi,j w;e;; 61 T(6; — 8;) — 2>, w;g:(67 T'6;)
+ 205 wieij (8; — 6;)TT(d; — ;)
+ 3 wigi(6] T6;) = QZi,j wiei0;] T(85 — 6;) — 32, wigi (57 T5;)
+ 225 wi€ij(d; — 6)TT(0; — 6;) (4.77)
= 22 wieij (05 + ;) TT(8; — ;) — 32, wigi (87 T'd;)
=3 wieii (0] T0; + 67 T6;) — 3, wigi (87 T6;)
= —w'(L+ G)v,
where v is a vector composed of elements v; = §7 I'§; > 0. Choosing the positive
vector w > 0 such that (L + G)Tw > 0, which is possible by the properties of

nonsingular M-matrices [61], makes this expression (4.77) certainly negative
semi-definite in §, —w” (L + G)v < 0; the expression (4.77) being zero iff v = 0.
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Hence
V=3, 45T (PA+ ATP)§; + 61T6;) — 32, wigi (57 T'6;)
= 205 @07 Poi) 325 €45 (05 — 0)TT(0; — i)

4.78
S TP GTTE) X B TP — k) )
— > wiBilei — Kq).
Substituting PA + AT P = —Q + T in the first term of (4.78), yields
V=3, %66 — 3, % (67 Poi) Y, eij (6, — 6:)TT(6; — 6y)
=2 %gi(éiTpéi)(éiTrai)
(4.79)
— 20 (6] Po;)Biki — 3o, wili(ci — k),
V=3, Lol To; — 30, % (07 Poi) X2, eij(d5 — 6)TT (85 — &)
=2 9 gi(6] P&;) (07 T4;)
(4.80)

—WT(L+ G — X, 8T (Q + GiP)S,
> %(5?1350&!% — > wiBi(ei — ki),
which for the choice of w so that w” (L + G) =17, (i.e,, w" = 11(L+ G)™1),
simplifies to w” (L + G)v = 1Tv = 37, 67T6;, so
V=3, w6l Ts; — 3, 46T (Q + BiP)6: — X, % (67 Poi) i
— 22,000 = 32, (6] Pi) 35 €ij (35 — 6:)" T (05 — 6;) (4.81)
= 225 Hgi(07 Po:) (0] T0;) — 32, wiBi(ci — ki),

V=3, 5?[%@ = Q+BiP) — FPBiki — F}ai — > wifi(ci — Kq)
- X BT PO) T ey 55— 0)TT(E; - 8) (1.52)
=2, #2907 P6;) (6] T6;).
Lemma 10. All terms in the time-derivative of the Lyapunov function (4.82),
which are quartic in 6;, vanish iff §; € ker(T"), Vi.

Proof. Assume that all the quartic terms in (4.82) vanish; that includes the
summands of the last term in (4.82) containing the pinning gains g;. Particularly
for those to vanish, nodes that are pinned by the leader need to have their
d; € ker(T"). Further, these nodes subsequently pin to other nodes in the rest
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of the graph, which need to have their ¢; such that (§; — ;) € ker(I"), making
those d; € ker(I') as well, and so on, by Assumption 12, until the ending leafs
of all the pinned trees in the spanning forest. Hence necessarily ¢; € ker(I") for
all agents in the entire graph. The converse implication is obvious. O

Proposition 4. Given 0 < f; < inai,(g’)) Let 0; ¢ ker(I'),Vi, then the first
term of (4.82) is negative, i.e.

>, 678D~ Q + BiP) — % PBir; F} 5; <0, (4.83)
on the domain D if all k;s are sufficiently large.

Remark 29. The proof of Proposition 4 follows along similar lines as the proof
of Proposition 3, hence we omit it here for brevity and only introduce the
resulting bound on x; for which condition (4.83) is satisfied; that is

w; ()\max(r) - AInin(C?) + Bi)\max(P))Q
4ﬂi)\min(P))\min>O(F) ,

Ki > K} = Vi. (4.84)

4.5.2 Stability analysis

Starting from expression (4.82), Lemma 10 and Proposition 4 we bring here the
main results on dynamics (4.72, 4.73).

Theorem 14. Consider a network of p agents with the general LTI dynamics
(4.23) satisfying Assumption 12. Let each agent implement the control input
(4.70) with the coupling gain dynamics (4.71) and let 0 < B; < %,W.
Then the agents’ states reach an agreement with the leader’s state within some
bounded region, i.e., their trajectories are UUB, on domain D, if all k;s are
sufficiently large, satisfying the bound

P-4 piP) - %Pﬁini} < pr. (4.85)

Remark 30. Note, that by assuming one common § = 3;, Vi, inequality (4.85)
can be stated uniformly for all agents as

p

wi‘nax (F _ Q +5P) _ 7«5!111112 Pﬂﬁmin < ( — I)F (486)

Theorem 15. Consider Theorem 14 and in addition assume that all k;s satisfy
the bound (4.84), then the agents’ states fully synchronize with the leader’s, i.e.,
tlim lz:(t) — zo(¥)|| = 0,Vi. Moreover every c;(t) converges to ;.

—00
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The proofs of Theorems 14 and 15 proceed from the time-derivative of the
Lyapunov function (4.82), Lemma 10, and Proposition 4 along similar lines as in
the irreducible graph case for Theorems 12 and 13, respectively, by examining
the pertinent worst-case scenarios. Here the role of non-vanishing quartic terms
is taken by the quartic terms containing the pinning gain, g;, or the terms
stemming from the leaf nodes. We omit the proofs for brevity. Note, that the
comments of Remark 27 on the network stability apply here as well.

4.6 Reference estimation mechanism

Building on results of previous sections which guarantee that for x;s sufficiently
large one has convergence and for other ;s only UUB, this section brings the
k; estimation mechanism based on real-time observation of the actual behavior
of the network. The estimation of x;s determines the stability of the network
of agents implementing the adaptive consensus protocol. Each agent runs an
estimation algorithm to obtain its ;. Since ¢; is pushed to x; by the ¢; dynamics,
each agent seemingly estimates its ¢;. This applies to both developments in
Sections 4.4 and 4.5, addressing cooperative regulator and tracker problems.

Remark 31. From the proposed Lyapunov analysis in Sections 4.4.3 and 4.5.2,
it follows that any choice of constant ¢;s would lead to a more conservative
bound for those ¢;s, than the bound for pertaining k;s; as in that case, the
beneficial effect of ¢; dynamics on the time-derivative of the Lyapunov function
would be absent.

To estimate the value of such «;s, previous results [36, 37] introduce two
algorithms: the interval-halving estimation algorithm [36] applicable to both
directed and undirected graphs and the eigenvalue estimation algorithm [37]
appropriate for undirected graphs. They are briefly summarized in the following
two sections. The reader is pointed to [36, 37|, for more details.

4.6.1 Interval-halving estimation algorithm

The interval-halving mechanism for estimation of x; is stated in Algorithm 4.1. It
updates the value of k; as long as the trajectory of the network dynamics exhibits
oscillations, i.e., as long as it is only UUB. From a single-agent perspective, the
oscillating trajectory implies oscillating coupling gain, therefore the coupling
gain ¢; is sampled at a sampling frequency fs and recorded in a time window
At. The highest and the lowest recorded values are averaged and this average
is then used as a new value of ;. This process is periodically repeated. The
coupling gains, ¢;s, stop oscillating when the x;s get sufficiently large and the
trajectory of the network dynamics converges. The x;s then also reach their
steady-state values.
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Algorithm 4.1 Interval-halving algorithm for determination of «;

o Parameters: sampling frequency fs and time windows At.
e Variables: sampling buffer cg of size At - fs.
e Initialization: Fill cg with samples of ¢;, sampled at f,.

1: Record a sample of ¢; into cp at the sampling frequency f;.

2: Calculate the new x; = (max(cg) + min(cp)) /2.

3: Repeat from 1.

Remark 32. Note, that the interconnection of Algorithm 4.1 and the adaptive
consensus protocol creates a hybrid system. To handle changes of the network
topology, e.g., of adding or dropping an agent, Algorithm 4.1 is reinitialized
and ¢;s are set to their initial values after each network change. Since an agent
can detect changes in its neighborhood and forward this information to other
agents in the network, the reinitialization is fully distributed. A dead-zone is
used in updating k;s to handle measurement noise.

4.6.2 Eigenvalue estimation algorithm

The eigenvalue estimation algorithm is based on the estimation of Laplacian
eigenvalues in multi-agent systems [17, 18], applicable only to undirected graphs.
Each agent estimates the Laplacian eigenvalues by performing an algorithm
with the following updating rule

Fi(t) = =€>2; € () (6i(t) — q; (1)),
Gi(t) = &3, eis(t) (rat) —r;(1)),

where £ > 0 is a constant parameter and r;,q; € R are artificial states of
the ith agent eigenvalue estimator. Following from [17], each pair of states
r;, q; oscillates as a linear combination of sinusoids with frequencies f; =
ENe(L), k € {1,2,...,p}. Using the Fast Fourier Transformation, each agent
can independently estimate these frequencies fr and thereby the non-zero
eigenvalues of Laplacian matrix A\;(L). The new r; value is then calculated as

_ 1
2)\min>0 (L) ’

where Aminso(L) is the smallest non-zero estimated eigenvalue of L. This
formula is adopted from the stability condition of a static consensus protocol.
[76] In summary, to estimate the value of «;, each agent performs steps given
in Algorithm 4.2.

(4.87)

(4.88)

K

Remark 33. If the agents correctly estimate the smallest non-zero eigenvalue
of the Laplacian matrix the network of agents should reach convergence. On the
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Algorithm 4.2 Eigenvalue estimation algorithm for determination of x;

e Parameters: constant £ > 0, sampling frequency fs, time windows At.
e Variables: sampling buffer cg of size At - f,, estimated frequencies f.
o Initialization: Generate the initial conditions r;(0), ¢;(0) € {—1,1}.

1: Perform the state updating rule (4.87).

2: In a time window At, estimate the frequencies fj of sinusoids of agent’s
artificial state r; or g;.

3: Calculate the smallest non-zero estimated eigenvalue of L as Apins>o(L) =
ming (fi)/¢€.

4: Use Amin>o(L) to calculate the new x; from (4.88).

5: Repeat from 1.

other hand, if this eigenvalue is unobservable for some agents and they estimate
different eigenvalue instead of the smallest non-zero one, the adaptive control
protocol still guarantees UUB.

Remark 34. Algorithm 4.2 is found robust to changes of the network topology
and to measurement noise, while Algorithm 4.1 requires an additional detection
of a change in the network topology and a dead-zone to handle measurement
noise. Moreover, different from Algorithm 4.1, Algorithm 4.2 decouples the
ki estimator from the control law, hence they can be designed separately.
Nevertheless, on large-scale networks, Algorithm 4.2 leads to higher ;s and
thereby c¢;s than Algorithm 4.1. Thus, for a special case of undirected graphs,
Algorithm 4.2 outperforms Algorithm 4.1 on small networks only. For a thorough
comparison of the both approaches see simulations in the following section.

4.7 Numerical simulations

This section brings simulations of the proposed adaptive consensus protocol
solving both cooperative control problems on directed and undirected graphs.
The agents are double-integrators, described by a general LTI dynamics (4.23),

with
o 0 1 _ 0 o Ty .
T B R B P

where z;, and z;, represent respectively the position and velocity of the ith
agent. Design matrices Q and R are chosen as identity matrices of appropriate
dimension. Each k; is initialized to ¢;(0), Vi. Initial conditions of the agents
are chosen as follows

z;,(0) € (—=10,10), z;,(0) =0, ¢;(0)=0.01, Vi, (4.90)
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20

time, ¢ [s]

Figure 4.4: Simulations of the proposed protocol (4.24, 4.25) with
a) Algorithm 4.1 and b) Algorithm 4.2 on an undirected circle consisting
of 50 agents.

0 5 10
time, ¢ [s]

0 5 10
time, ¢ [s]

Figure 4.5: Simulations of the proposed protocol (4.24, 4.25) with
a) Algorithm 4.1 and b) Algorithm 4.2 on an undirected circle consisting
of 10 agents with noise in state measurements.
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) 10 10
o
50 55
f e \u,:
0
0 15 30 0 15 30
time, ¢ [s] time, t [s]
b) 1o 10
-10 0— =
0 15 30 0 15 30
time, t [s] time, ¢ [s]

Figure 4.6: Simulations of the proposed protocol (4.24, 4.25) with
a) Algorithm 4.1 and b) Algorithm 4.2 for a change in the graph topology as
depicted in Figure 4.8.

di,
=
Cij

S L
-10 0
0 15 30 0 15 30
time, t [s] time, ¢ [s]

Figure 4.7: Simulation of an existing adaptive consensus protocol from the
literature [46] on an undirected circle consisting of a) 50 agents; b) 10 agents
with noise in state measurements c) 5 agents with a change in the graph
topology, (see Figure 4.8).
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a) b)
@ O
(2) (2)

® ®

Figure 4.8: Change of the topology from a) to b) at ¢t = 15 s.

where states x;, are chosen randomly in the range (—10,10). In figures, d;,
denotes the position error corresponding to the state z;,. The positive constants

f3; are set to
)\min(Q)

)\maw(P))7
Simulations of the adaptive consensus protocol (4.24, 4.25) solving the
cooperative regulator problem on undirected circular communication graphs are
depicted in Figures 4.4, 4.5, and 4.6. The protocol uses both Algorithm 4.1 and
4.2 from Section 4.6. For their comparison, each figure shows two simulations
a) and b) corresponding to these estimation algorithms. Algorithm 4.1 is
configured to the time window At = 5 s and the sampling frequency fs; = 10 Hz.
Algorithm 4.2 is configured to fs; = 50 Hz. Figure 4.4 shows the simulations on
an undirected circle consisting of 50 agents. In this simulation, Algorithm 4.2
uses At = 10 s. Assuming noise acting on state measurements, the responses of
10 agents in an undirected circular topology are plotted in Figure 4.5. Figure 4.6
shows the responses of 5 agents to a change in the network topology. At the
time instant of 15 seconds the graph topology is switched from an undirected
circle of 4 synchronized agents to an undirected circle of 5 agents, as depicted
in Figure 4.8. In simulations shown on Figure 4.5 and 4.6, Algorithm 4.2 uses
the estimation period At =5 s. Simulations of an existing adaptive consensus
protocol from the literature [46] are shown in Figure 4.7, for comparison.

Pi=p=09 Vi. (4.91)

Remark 35. Comparison of Figure 4.4 and 4.5, demonstrates that Algorithm
4.1 attains lower ¢; values, than Algorithm 4.2 while preserving stability on
large-scale networks. Thereby Algorithm 4.2 outperforms Algorithm 4.1 only
on smaller networks. Furthermore, from Figures 4.5 and 4.6 follows, that the
proposed protocol (4.24, 4.25) implemented with both Algorithm 4.1 and 4.2 is
found to be robust to measurement noise and changes of the network topology.
Moreover, by comparison to the simulations shown in Figure 4.7, at least in
some situations, it attains lower ¢; values than the existing adaptive consensus
protocol from the literature [46].

Figures 4.9 and 4.10 show simulations solving the cooperative regulator
and tracker problems, respectively, on directed communication graphs. The
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0 15 30
time, ¢ [s]

Figure 4.9: Simulation of the proposed
protocol (4.24, 4.25) with Algorithm
4.2 on a directed graph consisting of
two interconnected circles as depicted

— —

6

2

- 8
< 4
0

4

time, ¢ [s]

Figure 4.11: Simulation of the
proposed protocol (4.70, 4.71) with
Algorithm 4.2 on a directed graph
consisting of 6 agents following a

in Figure 4.10. leader as depicted in Figure 4.12.

. )
’ ©
-

Figure 4.10: A directed graph consist-
ing of two interconnected circles, each
having 25 agents.

Figure 4.12: A directed graph
consisting of 6 agents {1,2,...,6} and
a leader {0}.

graph topologies are depicted correspondingly in Figures 4.11 and 4.12. For the
cooperative regulator problem, the adaptive consensus protocol (4.24, 4.25) uses
Algorithm 4.1 configured to fs; = 25 Hz, At = 2 s, while for the cooperative
tracker problem the adaptive consensus protocol (4.70, 4.71) uses Algorithm 4.1
with fg1 =10 Hz, At =5 s.

Remark 36. Although it has been proven that UUB is guaranteed for k;s
sufficiently large, satisfying the bound (4.61) for cooperative regulator problem
or the bound (4.85) for cooperative tracker problem, simulations show that
UUB is found, in fact, for any choice of x;s. The bounds (4.61) and (4.85) are
only sufficient but not necessary. In considered examples, using any positive
k;s one achieves UUB or even convergence for k; values lower than required by
the Theorem 12 and 14.
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4.8 Concluding remarks

This chapter introduced a novel distributed adaptive consensus protocol for
multi-agent systems that solves the cooperative regulator and tracker problems
on general directed graphs. The protocol incorporates a novel coupling gain
dynamics allowing feedback coupling gains to decay to some estimated reference
values. These reference values are updated on-line, in real-time, by one of the
two proposed estimation algorithms. Due to decay, the coupling gains in some
situations attain lower values than in existing adaptive consensus protocols
proposed in the literature. Moreover, the presented adaptive protocol design
provides a unified approach to both cooperative control problems on undirected
as well as on directed communication networks. Agents in the network design
and implement their controls in a fully distributed manner based only on
their local information and information from their neighbors. Additionally, in
combination with the estimation algorithms, the proposed protocol exhibits
robustness to measurement noise and changes of the network topology. A
thorough stability analysis of the adaptive control law is provided. The uniform
ultimate boundedness and convergence of the agents’ trajectories are thus
rigorously proven. Numerical simulations validate the theoretical results.
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Final conclusion

This thesis brings two complementary approaches for distributed control and
estimation in networked multi-agent systems. They are originally introduced in
our previous work, [38, 39]. Both approaches consider agents with general LTI
dynamics and communication networks given by a general directed graph.
The first distributed approach, presented in Chapter 3, brings a distributed
Luenberger-like observer [39], similar to [80], which considers process noises
acting on the plant’s states and measurement noises corrupting the sensors’
measurements, similarly as the general Kalman filter [42] and DKF in [55] do.
Thereby, the observer achieves some required properties of both DLO and DKF
designs. The observer does not aim for optimality of the Kalman filter but
rather for a suboptimal albeit easier to implement distributed Luenberger-like
observer design that achieves reasonable sensor fusion by taking into account
precision of available measurements. It primarly addresses state estimation of
large-scale systems represented by flexible structures. To avoid difficulties of
DKFs with large communication load, especially on large-scale networks, it does
not directly communicate the covariance matrices between nodes. Each node in
the sensor network implements a local micro-Kalman filter to achieve sensor
fusion. Only partial observability from a single-node perspective is assumed
by the observer. Moreover, the observer allows for existence of nodes that do
not measure anything but contribute to sensor fusion. In addition, it allows for
insertion of redundant nodes into the network. This increases robustness to
node and communication link failures. Structured Lyapunov functions are used
to prove stability of the distributed observer. The functionality and required
properties of the distributed observer design are validated by simulations.
The second distributed approach, given in Chapter 4, presents a novel
DACP [38] proposing a simple, unified framework for the cooperative regulator
and tracker problems. The protocol implements an adaptive control law that
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adapts coupling gains and allows them to decay to lower values. To be more
specific, coupling gains are being adapted by a modified coupling gain dynamics
containing an additional decay term, which pushes the coupling gains to their
reference values. These coupling gains’ references are estimated on-line from
the network trajectories by one of the two proposed estimation algorithms:
Algorithm 4.2, based on estimation of Laplacian eigenvalues, [17, 18], and
Algorithm 4.1, based on interval halving. Algorithm 4.1 applies to both
undirected and directed graphs, while Algorithm 4.2 works on undirected
graphs only. Benefit of Algorithm 4.2, in contrast to Algorithm 4.1, is that
it fully decouples the adaptation of coupling gains from estimation of their
references. The decay of coupling gains to their references solves the problems
of existing DACPs, [69, 75, 46, 47], with unbounded or overly large coupling
gain values. Moreover, the estimation of coupling gain references with an
estimation algorithm improves robustness of the DACP to noise or disturbances.
Nonetheless, different from the celebrated static consensus protocols, [45, 76, 77],
the proposed DACP does not require any centralized information for its design,
similarly as other DACPs; hence, it is fully distributed. Thorough stability
analysis of the DACP is carried out and the stability of the network is proven
using Lyapunov function techniques. Provided numerical simulations validate
the functionality of the DACP and compare its performance with an existing
DACP [46] from the literature.

5.1 Fulfillment of the goals

Goal 1 of this thesis, stated in Section 1.2, is fulfilled by the distributed
Luenberger-like observer design for sensor networks, [39], presented in Sections
3.3, 3.4, and 3.5. According to the design procedure detailed in Section 3.5,
the distributed observer considers process disturbance acting on the plat state
and measurement noises corrupting the sensors’ measurements. Thereby, the
distributed observer satisfies requirement la. Furthermore, under Assumption
9 in Section 3.3, it provides robustness to node or communication link failures;
hence it fits requirement 1b. Since the proposed estimation approach does
not communicate covariance-related matrices, it provides lower communication
burden than existing distributed estimation approaches, as discussed in Section
3.2. The overall performance of the communication was not further analyzed;
therefore, the proposed approach only partially satisfies the last requirement 1c.

Goal 2 of this thesis, stated in Section 1.2, is fulfilled by the DACP, [38],
presented in Section 4.4. According to the adaptive law for adaptation of
coupling gains (4.25), the coupling gains can decay to their reference values;
thereby, the DACP satisfies requirement 2c. The DACP design provides a unified
approach to both cooperative regulator and tracker problems, as presented
in Section 4.4 and 4.5, respectively, thus satisfying requirement 2b. Since
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this approach does not require any centralized information for its design and
implementation, it is fully distributed; hence it meets requirement 2a. The
lack of the centralized information is compensated by its estimation. For this
purpose, two estimation algorithms are developed, which is done beyond the
main requirements. These algorithms are described in Section 4.6.

Further details on the fulfillment of this thesis’s goals from Section 1.2 are
given by the main contributions in Sections 3.2 and 4.2.

5.2 Future research

One of the tasks for future research is to derive the UUB bound on the
synchronization error for the DACP in Chapter 4, and compare this bound with
those existing in the literature, [50, 11]. The existing DACP designs [50, 11]
suffer from a drawback stemming from one common static reference for coupling
gains. This causes the UUB bound on the synchronization error to depend on
network properties, which are considered as centralized information. Hence,
one expects the performance of the DACPs in [50, 11] to vary with the network
configuration, which is usually not required. According to the DACP design in
Chapter 4, each agent has its own coupling gain’s reference value, which might
avoid the above-mentioned drawback of existing DACPs; however, this was not
verified yet, and, therefore, it is a task for future research.

A further extension of the proposed distributed Luenberger-like observer in
Chapter 3 is offered by DACPs. Namely, the adaptive law in Chapter 4 can
be used for the adaptation of network feedback coupling gains to achieve a
fully distributed observer design. Following this scenario, each node adapts its
coupling gain given by a positive scalar v;, which replaces the current design
parameter v common for all nodes. The design of the distributed observer
summarized in Algorithm 3.2 assumes v sufficiently large to satisfy the lower
bounds (3.83) and (3.84). Since both bounds depend on network properties,
which need to be known at least to a certain extent, the design of the observer
is not fully distributed. The adaptation of coupling gains solves this problem.
Extending the distributed observer in Chapter 3 with the distributed adaptive
law in Chapter 4 leads to a fully distributed adaptive Luenberger-like observer.
The main tasks for the future research are to investigate stability of such a
distributed observer, prove its convergence, and validate its performance in
numerical simulations.

Note that there already exist results on decentralized/distributed estimators
incorporating the adaptation of coupling gains. For example, the authors in
[15] propose a design of adaptive consensus filters for estimation of distributed
parameter systems using a sensor network. The sensor network consists of
groups of sensors, where each group of sensors belongs to a filter implementing
a local Luenberger observer. Each consensus filter implements an adaptive law
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for adaptation of the feedback weighting gains. The sensor fusion is used to fuse
the estimates of all filters in the network with appropriate weighting. The plant
has to be fully observable by each filter individually; therefore, every filter can
fully estimate states of the plant. Moreover, the proposed approach considers
an all to all coupling of filters, which requires a full communication graph. This
is different from distributed estimator in Chapter 3, which assumes only partial
observability by each single agent on general directed communication graphs.
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