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Abstract

A system identification plays a central role in any activity associated with
the process control. As the usual purpose of the model is its consequent
use for control, the system identification should be focused mainly on those
dynamics, which are important from the control point of view. Moreover,
with the control being done on different levels, different models can be re-
quired for the same plant, each for a different range of dynamics.

A wavelet transform is quite young mathematical tool for signal analysis.
It analyses a signal in both time and frequency domain at once and is be-
ing performed via wavelet functions. Due to an intrinsic localisation of the
wavelet functions in time and frequency, methods exploiting wavelets may,
to some extent, represent a natural way of selection of an important infor-
mation hidden in a data. Consequently, a system identification adopting
wavelets introduces a possibility to obtain a model describing the plant from
important dynamics point of view only, hence a model suitable for control.
It is also very convenient for identification of the dominant modes of the
system, e.g. when identifying singularly perturbed systems.

Some early works in system identification showed that a linear model with a
suitable structure and an appropriate order can sufficiently approximate any
dynamics, even non-linear. The mostly used methods intended for an iden-
tification of linear models however do not provide the user with some simple
approach to select particular range of dynamics to be identified, but with
the only direct computation of a filter and subsequent filtering of data.

The thesis presents several approaches to system identification in which
wavelet transform is employed for both single and multivariable system
identification enabling selection of the particular frequency range of interest.
Moreover, the thesis treats the possibility of applying the wavelets within
both continuous-time and discrete-time system identification. Next, as there
are several families of wavelet functions, each possessing different properties,
the incorporation of wavelet transform into a system identification is treated
in a general concept. However, besides others, there are two divisions of
wavelet functions, each in accordance to one particular property. The first
property is a compact support in time domain and still good selectivity in



frequency domain. These wavelets are utilized with advantage of accurate
implementation. The second property is a mutual orthogonality of wavelets,
what leads to exploiting the data without any loss of information. The thesis
also provides several points of view on wavelets, what enables the reader
to understand both the theory of wavelets and system identification theory
more deeply. A lot of connections of both theories are very intuitive, hence
are simply applicable in different fields.
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Mathematical notations

The list of mathematical notation used within the thesis follows. Note that
the notation holds unless otherwise stated.

N Set of natural numbers

Z Set of integer numbers

R Set of real numbers

2(ZN) Space of complex sequences of N-dimensional vectors
2(7) Space of complex square-summable sequences

L*(R) Space of complex square-integrable functions

t, k Time - either continuous or discrete

w Frequency - either continuous or discrete

© General notation of basic father wavelet

P General notation of basic mother wavelet

L Length of wavelet filter (either father or mother)

N Length of data to be analysed

P Maximum level of wavelet analysis

T Wayvelet matrix

w Weighting matrix

| 2] Integer part of number z

D Direct sum

& Kronecker product

® When e stands for a complex function, e denotes its Fourier

transform. Otherwise it denotes the estimate of the true value of e.

Ng Order of the polynomial a

np Order of the polynomial b

m Number of system’s inputs

n Number of system’s states or order of the system
0 Number of system’s outputs

0 Vector of unknown model’s parameters

A, B,C.D Matrices of system’s or model’s state-space description
G,H Transfer functions of deterministic and stochastic part, respectively
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Introduction

Mathematical modeling of systems and processes is an essential tool used in science and
engineering from its very beginning. Newton’s laws are an example for a model. They
describe the motion of bodies such as the various bodies in the solar system: the Sun,
the planets and their moons. Models are used extensively in all branches of science
and engineering, which raised to the term model-based engineering. The fitting of the
model to the actual physical system takes a central position, which systems engineers
refer to as system identification, and it gained a lot of attention until quite recently
in control engineering. The development of model-based control is originated in 1960’s
and it is one of the mile-stones in control. Before that time, most of control design
strategies had been based either on heuristic methods (Ziegler-Nichols method for tun-
ing of PID controller parameters) or on system properties obtained via simulation or
measurement (impulse response, Bode graph). Since 1960’s, a huge development of
control techniques employing the model of the controlled process has been recorded
and hand in hand with this development, system identification became a more impor-
tant part of control theory. Nowadays, system identification is an indispensable part
of modern control theory and covers a wide range of problems and approaches to their
solution. Moreover, the progress in system identification is still under pressure, since
the growing requirements on control naturally reflect into the growing demands on the
model. Details about the history of system identification can be found in Gevers [2006].

Model is an image of the real process that represents its properties essential to the
application and that behaves within a given context similar to the real process. There
is, however, a plenty of choices for the modeling itself (a description of the model, a
model structure or a model order), which affect the resulting model and its properties.
Therefore, there can be several models of the same process, each describing the process
in a different way, hence the model of the process is by no means unique. As the model
is used for a subsequent control, it is obvious that it should reflect only those properties
of the system, which are important from the control point of view. In addition, the
model should also be of a sufficient quality to be suitable for a control.



The process of system identification can be considered as follows. i) To acquaint
with the application and to select its inputs and outputs, which are necessary for con-
trol. ii) To select a model structure, possibly in accordance to the control strategy.
iii) Based on the model structure, to choose the algorithm for a system identification
and to specify model parameters to be estimated. iv) To select the criterion to measure
the quality of the model. v) To estimate the parameters of the model. vi) And finally,
to validate the model. However, in case of an insufficient model quality, the procedure
is repeated until a good model is obtained.

The model parameters estimate is computed from measured input and output data
and since these measurements record both wanted and unwanted process behavior, it
is therefore very suitable to analyse the data and extract the appropriate portion of
information from them. One of possibilities of data analysis is the Wavelet Transform
(WT), the transform possessing several advantageous features and bringing new ideas
into the concept of system identification. Further on, a brief story about the origin
of the WT is written as well as the motivation why the WT utilization should be
investigated.

1.1 Origins of wavelet analysis

One of the most used signal analysis had been introduced by French mathematician
and physicist Jean Baptiste Joseph Fourier (x1768; t 1830) and, in his honor, has been
called Fourier analysis (or Fourier Transform (FT)). Fourier analysis reflects the time
domain into the frequency domain and results in frequency spectra of the time-varying
signal. The natural disadvantage of this transform is the fact, that one domain disables
detection of important phenomena in the second domain and vice versa - one is not
possible to detect important time instants from the frequency spectra as well as to
specify main frequencies (or harmonic functions) from the time domain. Many years
after Fourier, Hungarian electrical engineer and physicist Denis Gabor (x1900; 1 1979)
comes up with Short-Time Fourier Transform (STFT), where the FT of the signal is ap-
plied within the given time-window only. STFT is thus trade-off between the time and
the frequency signal description, however, its limiting factor is type and mainly fixed
size of time-window. As a next logical step, STFT with time-varying window has been
inspected what laid the fundamental idea of wavelet analysis. WT analyses the signal
from both time and frequency points of view. In principle, WT is similar to STF'T. The
main difference is that the time-window is not fixed, but scaled across the levels of WT.

In late 1970’s, French geophysicist Jean Morlet (x1931; 1 2007) worked on an ana-
lysis of the reflected signal containing both high and low frequency content on short
and long time spans, respectively. During this work he noticed that keeping the time-
window of STFT fixed is wrong approach. Therefore he came up with the idea of
changing the time-window while keeping its frequency content. What Morlet did is
that, while in STF'T the signal is multiplied by particular time-window and then anal-



ysed by all harmonic functions one by one, he multiplied particular harmonic function
by time-window (what actually was a Gaussian envelope) and the resulting function
is used for the analysis. Because of the shape of this new function Morlet called it
“wavelet” and this term is used till today. On Morlet’s honor, harmonic function mul-
tiplied by Gaussian window is nowadays called Morlet’s wavelet.

In 1980, Morlet met the Croatian-French physicist Alexander Grossmann (x1930)
and together rigorously formalized basics of wavelet analysis what included stating the
wavelets by its properties. Moreover, Grossmann helped the Morlet with development
of inverse wavelet transform. Next two great contributors to the field of wavelets were
French mathematician and scientist Yves Meyer (x1939) and, in that time student,
Stéphane Mallat, who developed the idea of multiresolution analysis. That was a big
step in a wavelet theory, since the scaling of wavelet functions was introduced for the
first time. It consequently enabled to construct a general wavelet theory independently
on the wavelet functions. During derivation of the multiresolution analysis, an interest-
ing fact was found out, namely that wavelet history goes back to 1909, when Hungarian
mathematician Alfred Haar (x1885;  1933) - a student of German mathematician David
Hilbert - created a simple orthogonal system of functions that satisfies both the wavelet
properties and conditions for multiresolution analysis, thus became the first and the
simplest system of wavelets at the same time. The last significant contributor and
wavelet researcher who should not be forgotten is Belgian mathematician and physi-
cist Ingrid Daubechies (x1954), who in late 1980’s used the multiresolution analysis to
create new system of wavelet functions. These wavelets are called Daubechies wavelet
and have many important properties for which became the most used wavelets after
the Haar wavelet. For further details on history of WT see e.g. Polikar [1999].

1.2 Motivation for wavelet transform

Wavelet transform, from its pure essence, brought a lot of possibilities into the science.
As every new mathematical tool, it introduced a new way of describing of some parts of
the nature and enabled to mathematically formulate some scientific problems. As was
already mentioned, the main advantage of WT is its possibility to analyse the signal
in both time and frequency domains. This is, actually, not only the advantage, but
simultaneously quite important feature and it should be understood correctly. Wavelet
analysis arose from STFT by generalization of the time-window onto wavelets, which
is well localised both in time and frequency. It consequently means that instead of
the signal being described as a function of either time or frequency, it can be viewed
in both time and frequency simultaneously. Analysis in time proceeds by shifting the
wavelet along the time axis and analysis in frequency proceeds by scaling the wavelet.

This dual time-frequency approach to signal analysis is, of course, counterbalanced
by more complicated mathematical background, however, just thanks to this duality
WT found a way to plenty of real applications as one of the most convenient mathe-



matical instrument. As W'T serves mainly as a tool for signal analysis, typical ways of
its utilization belong into the signal processing, namely i) detection of signal discon-
tinuities, ii) trend detection, iii) detection of self-similarities, iv) particular frequency
detection, v) signal suppression, vi) signal denoising and vii) data compression. Al-
though these above-mentioned ways are widely known and used, applications of WT
are not limited to them at all. The analysis itself is not the only new product of wavelet
research, but the wavelet functions as well. There are many kinds of wavelet functions
each of them possess several desired and useful properties. Thus the signal analysis
does not have to be the only purpose of utilizing of wavelets. Additionally, as time
went on, it showed up that one can look at the wavelets from several different points
of view. While classical approaches to wavelets are via functional analysis or vector
spaces theory, other concepts were proposed, e.g. through theory of frames in vector
spaces, set theory or theory of finite elements.

As was mentioned above, wavelets with their characteristic properties have num-
ber of possible applications in many diverse fields, usually those closely related to the
scientific research and development. Some obvious applications are biological signals
analysis (EEG, EKG), analysis of seismic activity and prediction of earthquakes, ana-
lysis of sounds, multidimensional signal analysis together with data compression often
applied to image processing as specific representative, analysis and attempts to predict
the behavior of stock market, financial data analysis, etc. This all denote the capabili-
ties of WT and wavelets themselves and predict them great importance in the future.
However, despite the apparent strength of WT, it is still not used as much and as
frequently as it can be and as it deserves.

1.3 Organization of the Thesis

This thesis is further structured as follows. Chapter 2 states the aims of the thesis.
In Chapter 3, a comprehensive survey of the state of the art of using wavelets within
the system identification is presented. Chapter 4 and Chapter 5 introduce briefly both
wavelet theory and system identification theory, respectively. Three main parts of the
thesis follow. The first of them, Chapter 6, treats the utilization of wavelet transform
within a single LTI system identification, discuses different setups of the algorithm and
ways of its adapting to the real application. Moreover, asymptotic properties of the
proposed algorithm are discussed as well as some possible extending approaches. Next,
Chapter 7 extends the Chapter 6 for multivariable systems. Three methods for the mul-
tivariable system identification are given together with their adaptation to the wavelet
transform incorporation. Yet another method for utilizing the wavelet transform for
system identification is presented in Chapter 8. Despite the fact that there were some
attempts in the field of modulating functions and wavelet theory (see the state of the
art in Chapter 3), to the author’s best knowledge no general interconnection has not
been done, therefore the Chapter 8 dealing with this topic was the must for this thesis.
Chapter 9 concludes the thesis.



Each of main chapters (Chapter 6, Chapter 7 and Chapter 8) begin with a brief
introducing of the system identification method and then its adaptation to the wavelet
transform follows. Moreover, in Chapter 6 and Chapter 7, a functionality of the pro-
posed algorithms is shown on a suitable case studies. In Chapter 8, the case study
is missing since its functionality is in principle already shown within the case studies
in Chapter 6 and Chapter 7 as the algorithms share the basic idea. Chapters 6 and 7
were partially published within the author’s publications.






Aims of the Thesis

The thesis is entitled Discrete Wavelet Transform in Linear System Identification and
since it is a very general topic, it had to be studied before the work on thesis started.
The theory of linear system identification became very important when the model-based
control theory has arisen and is now widely used in practise. Next, a search for a good
models that are suitable for control applications yields the fact that both academicians
and engineers develop or adapt the identification methods for their specific application.
An alternative to developing new theories is to combine seemingly unrelated theories
thereby adding new components to the identification procedures and adding new views
on the involved theories.

Therefore, the main theme of the thesis lies in the interconnection of wavelet theory
and theory of linear system identification. The goals are split into the following subjects:

1. To perform a comprehensive survey of the methods of exploiting the wavelet
transform for system identification.

2. To find and describe a suitable way of incorporation of wavelet transform into the
problem of general single-input single-output linear system identification. Analyse
the method and demonstrate it on a suitable example.

3. To extend the method to multivariable systems. Analyse the method and demon-
strate it on a suitable example.

4. To investigate and find the utilization of wavelet transform within the continuous-
time linear system identification. The discussion on implementation issues must

be included.






State of the art

Until recently, wavelet theory has not been extensively applied to many theoretical and
practical problems belonging to the system identification so much. However, there are
several papers which deal with application of wavelets in this field. Almost all of that
applications exploit the superior properties of wavelet analysis or are at least based
on some specific property of the particularly used wavelet function - both cases have
already been discussed in Chapter 1. Moreover, absolute majority of that applications
deal with a specific wavelet function only and do not consider general wavelet function.

In this chapter, we will go through the most used, important and meaningful
wavelets utilisations in system identification in more details. And as the wavelets
enters distinct areas of research, we will sort them in order to the object of the research
rather than along the time axis.

3.1 Wavelet transform in linear system identification

3.1.1 2" order systems identification

Starting with simple Linear Time-Invariant (LTI) systems, one of the first attempts
was to estimate oscillatory properties of a system like natural frequency, damping and
stiffness. Ruzzene et al. [1997] proposed a wavelet based estimation method for the
system of several interconnected oscillatory 2" order systems. For the estimation,
the Morlet’s wavelets were used because of their advantage of simple mathematical
formulation.

Next, Boltezar and Slavic [2004] being inspired by the previous paper solved a sim-
ilar problem, but with the help of parametrized Gaussian windows instead of Morlet’s
wavelet. The idea of wavelet edges showing the importance of particular wavelet coef-
ficients was utilized, however, usual method based on ordinary edge-effect (Staszewski
[1998]) was shown to be unsuitable. The authors thus came up with three new ap-
proaches to the edge-effect, all improving the proportionality between the wavelet co-
efficients and the analysed signal.

Further works dealing with the estimating of the 2" order system parameters are



e.g. Erlicher and Argoul [2007]; Huang and Su [2007]; Joo [2012]; Kijewski and Kareem
[2003]; Kougioumtzoglou and Spanos [2013]. It is worth to note that many of them use
the Continuous Wavelet Transform (CWT).

3.1.2 Wavelet analysis of system relevant signals

Another method of employing wavelets for system identification is to apply the WT to
the system relevant signals. Such a general characterization is used intentionally, since
there are several different utilisations of wavelet analysis for system inputs, outputs
or states across the literature. Some of them even misuse the wavelet theory or its
notation, so they are not either correct from the rigorous mathematical point of view
on WT or well-advised from an engineering point of view, read e.g. Section 3.1.4.
Nevertheless, leaving the mathematical accuracy, those papers bear with no doubts
interesting ideas.

Luk and Damper [2006] exploited one of the fundamental properties of wavelets -
their mutual orthogonality - to design a suitable system input. It yields the inverse
WT of the system’s impulse response. The mutual orthogonality of wavelet functions
plays an important role also in the Serban [2007], where the authors took advantage
of this property to decompose the input and output of the system into more signals,
each lying in specific frequency range. Several models thus could be identified each
describing a distinct part of the overall dynamics. Morlet’s wavelets were used.

The ability of removing noise has also found attention: Wang et al. [2010] denoised
system input and output to suppress the high frequency content of data to improve the
accuracy of parameter estimation.

At last, a general framework of applying the WT on system inputs and outputs
should be mentioned, see e.g. Carrier and Stephanopoulos [1998]; Erlicher and Argoul
[2007]; Kinoshita and Ohta [2010]; Lardies et al. [2004]; Mukhopadhyay and Tiwari
[2010]; Shan and Burl [2011]; Shiguo et al. [2004]; Xu et al. [2012]. This framework does
not, actually, contain any specific procedure at all, but represents the natural way of
utilization of WT. It is used across different applications of WT no matter the problem
specification or complexity. A quite surprising fact is that not only are advantages of
wavelets the reason for using the WT for improving either the identification method
or the resulted model, but also endeavour or enthusiasm are other frequently occurred
reasons for using of WT. In general, the later reasons are usual for investigating a
new way or trying to look at the problem from a different point of view. Indeed, those
reasons are not explicitly mentioned in any paper, however it is important human
nature which forces us to do so even without any well-founded reason.

3.1.3 Wavelet as modulating functions

When studying the WT applications for linear systems identification we should not for-
get to pay attention to the relationship of wavelets and modulating functions. The basic
principle of applying modulating function for system identification is well established
topic and firstly was suggested by Shinbrot [1954], however for more details the reader

10



can look for some recent book, e.g. Rao and Unbehauen [2006]. Modulating functions
satisfy 3 specific properties and there are some wavelet functions which comply them
as well.

A great summarizing study about the usage of the modulating functions on the
system identification has been performed in triplet Preisig and Rippin [1993a,b,c], where
mostly Maletinsky’s splines were used as modulating functions. Briefly, the first part
introduces a general modulating function method and provides a history survey, the
second part shows an algebraic formulation of Maletinsky’s splines and extends the
method to the arbitrarily overlapping modulating functions. The third part then apply
the extended method on a batch process. General spline approach to wavelets is treated
in Chui and Wang [1991, 1992].

A few years later, one of the first attempts to employ wavelet function as a modu-
lating function was doubtless Kosanovich et al. [1995]. The Poisson wavelet was used
here, which is derived from the Poisson probability density function being a kernel of
Poisson transform. Note that Poisson wavelet is neither compactly supported (due to
the exponential in its expression) nor orthogonal, thus can not be considered as a real
wavelet or modulating function, although the previous related work of Kosanovich had
shown that Poisson wavelet complies any of wavelet properties. However, when ap-
proximating the exponential, one obtains a function which satisfies desired properties.
Consequential work Ramarathnam and Tangirala [2009] analyses the use of Poisson
wavelet in more details.

Preisig came back to wavelets as modulating functions in Preisig [2010], where he
discussed the suitability of input signal for further purpose of system identification.
There is however no general interconnection of wavelets and modulating functions, but
the utilizing multi-wavelets as modulating functions only.

3.1.4 Linear time-varying system identification

The identification of Linear Time-Varying (LTV) systems is the last application of
wavelets in this chapter. It can arouse a discussion whether the LTV systems belong
to the either linear or non-linear systems. In this thesis, we will consider LTV system
as a specific extension of linear system.

When going through the number of publications concerning this theme, for exam-
ple Chang and Shi [2010]; Dorfan et al. [2004]; Doroslovacki et al. [1998]; Ghanem and
Romeo [1999]; Kougioumtzoglou and Spanos [2013]; Li et al. [2011]; Shan and Burl
[2011]; Tsatsanis and Giannakis [1993]; Wei and Billings [2003]; Wei et al. [2008]; Xu
et al. [2012], we can get the impression of existence the only one way of exploiting
wavelets for LTV system identification. Namely, varying parameters are generally con-
sidered as n-dimensional functions so they can be expressed as a linear combination
of suitable n-dimensional basis functions - wavelet functions in this case. Wavelets are
used because of their superior selectivity in frequency domain, because of their inher-
ent orthogonality and because of very large foundation of wavelet functions. Such an
approach transforms time-varying system parameters into time-invariant coefficients of
parameters approximation via wavelets. Therefore the whole problem becomes time-
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invariant as well and is solvable as a classical linear system identification problem. This
idea could be improved by using a shift-scale plane analysis Staszewski [1998], wherein
the problem of the proper wavelet selection is addressed.

At first sight, the method could seem as quite simple compared to the obtained
result. However, there is one big obstacle which the user should take care when em-
ploying this technique. The wavelet functions are (based on theory) square-integrable
functions, therefore in discrete-time space even compactly supported functions. It con-
sequently means that any their linear combination has also compact support, so the
linear approximation of varying parameter as well. This is probably the biggest defect
of the method and its main limiting factor for being used for prediction of evolution
of system parameters. On the other hand, parameters approximation via wavelets
provides us with an insight into the time-frequency parameters behavior and further
analysis can disclose partial relations among parameters development and adjoining
events. Moreover it is important to distinguish two points of view on parameters de-
velopment: i) Parameter changes in order to ageing of the system. Such changes are
irreversible, smooth and usually slow. ii) Quite opposite case is that parameter changes
from its principle (e.g. a changeable weight inside a lift). These changes can be very
quick, non-smooth and are definitely reversible.

The discussed method is demonstrated mainly on simulation case studies across
the publications, but there are few of them applying it in practise, for instance in
biomedical engineering for EEG analysis Li et al. [2011]; Wei et al. [2008] or on analysis
of hysteretic behavior Chang and Shi [2010].

3.2 Wavelet transform in nonlinear system identification

The procedures of using wavelets on linear processes treated in the previous section are
applicable for the identification of non-linear processes as well. There are few different
methods of utilizing wavelets which, though regarded as general methods, belong rather
into the non-linear section Sjoberg et al. [1995].

One of them is applying wavelet functions for a support vector machine algorithm as
admissible support vectors. Wen et al. [2005a,b] propose a wavelet support vector ma-
chine with reproducing wavelet kernel especially for the identification of non-linear dy-
namics or approximating a non-linear function. The main advantages of using wavelets
here are their compactness, orthogonality and a good reproducibility of wavelet ker-
nel. Moreover, wavelet kernel usually performs much faster learning in comparison to
standard neural networks or fuzzy logic Li and Liu [2006].

Another approach employs wavelet function as a sigmoid function within a neural
network, then called wavelet network Zhang and Benveniste [1992]. A lot of publications
have been published on this theme, for more details, the reader is referred to Adeli and
Jiang [2006]; Billings and Wei [2005]; Ghanem and Romeo [2001]; Shi et al. [2005]; Wen
et al. [2005a,b]; Zhang [1997].
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3.3 Extensions of wavelet transform

3.3.1 Advanced wavelets

As time went on, the wavelet theory recorded further development and extension. For
instance, new “families” of wavelet functions have been discovered and the wavelet the-
ory has been established for non-orthogonal wavelet functions. Therefore, apart from
the simple wavelet analysis, the bi-orthogonal wavelets Ho and Blunt [2003], wavelet
frames (Sureshbabu and Farrell [1999]) or multi-wavelets Preisig [2010]; Strang and
Strela [1994]; Strela and Strang [1994]; Strela and Vogan [1996] can be possibly used
for system identification.

As the reader probably noticed, many wavelet applications have exploited specific
class of wavelets, namely wavelets with an explicit mathematical description. Using of
just these wavelets is not surprising. Since it is a common practise to use impulse or
step functions (or their combination, e.g. pseudo-random binary signal) as a system
input, the wavelet analysis of such signals can be mathematically derived only in case of
wavelets with any mathematical expression. There is a different point of view as well -
when the user has a possibility to design the system input, exploiting these wavelets can
be advantageous due to the results in the form of direct mathematical formulae. The
benefit is apparent: case study independent direct equations for parameters estimation.
On the other hand, there are several wavelet families with no explicit expression, but
much more advantageous from another point of view (see Chapter 4.5). Therefore it
is not always desired to derive any general results, but rather to sketch a basic in-
vention and derive its elementary (and general) properties like asymptotic behavior,
reproducibility, etc.

The citation list is by no mean exhaustive since there are lot of papers published
within many journals and it is almost impossible to track them all. Therefore the
reader should take into consideration that the cited articles are only representatives of
presented research directions that can be used further as starting points for searching
details.
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Wavelet transform

Basic concepts and ideas of WT were discussed within Chapter 1. This chapter intro-
duces primers of WT, which is necessary for further work. It is widely known fact that
there are several forms of FT according to the space where the transform is defined on.
Analogously, since WT is an “extension” of FT, there are also several forms of WT,
again - each defined on particular space of sequences or functions.

The Discrete Wavelet Transform (DWT) is a fundamental form of WT and is defined
on (*(Zy), a Hilbert space of complex sequences of N-dimensional vectors, where the
theory of the Discrete Fourier Transform (DFT) is built on as well. Although the
wavelet theory is in general very complex, the simplicity of this form lies within the
finite dimension of the space ¢2(Zy), which directly yields the completeness of the
orthonormal wavelet basis.

Next form is defined on ¢?(Z), a Hilbert space of infinite, generally not periodic,
complex signals. As it operates on discrete-time signals, the background theory is
mostly adopted from the DWT. Main differences arise from the infinite dimensionality,
what makes the theory more demanding, e.g. it is necessary to prove the completeness
of the orthonormal (basis) set.

The third and the most complicated (from the theory point of view) form of WT
is the CWT, which is defined on L?(R), a Hilbert space of complex square-integrable
functions. Here, the construction of wavelets is usually reduced to the construction of
a MultiResolution Analysis (MRA).

For purposes of further applying for real processes, only the DWT is worth to
introduce in more details. The basic principle of other WT remains the same across
different types of WT, however their background theories differ a lot and the reader
can found more details in Frazier [1999]. The theories will not be presented within
this thesis, but they will be used when necessary and an appropriate literature will be
referred to. An overview of its well-known and established theory follows.
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4.1 Prerequisities

Before further explanation of the DW'T, let us recall some important preliminaries.
See Frazier [1999]; Kolzow [1994] for further details on any of them.

e Hilbert space and the best approximation of its element. The DWT
is defined on Hilbert spaces. Let H denotes Hilbert space with inner product
(,-). Each Hilbert space has an orthonormal basis. If this orthonormal basis
is countable, the Hilbert space is separable, see Rudin [1986]. Such a separable
Hilbert spaces are for example aforementioned ¢2(Zy), ¢?(Z) and ¢?(R) spaces.

Let M be some closed subspace in H: M C H and let Mt be its orthogonal
complement: M+ = {z € H| (x,y) = 0 Vy € M}. We can write H = M & M+
and the best approximation .y, of any vector x € H is then its orthogonal
projection onto subspace M. More precisely, x4, € M is uniquely determined by
the condition x — x4y, € ML, e K.

¢ Periodic extension of a vector. For the sake of simple notation, it is worth to
make a convention by defining a periodic extension of a vector to be defined at all
integers (similar as within the DFT theory). Let us define the periodic extension
of vector z = [2(0),2(1),...,2(N —1)] € £2(Zy) as 2(t + N) = z(t) Vt € Z.

¢ Discrete Fourier transform. A standard notation of the DFT is used across
the thesis, i.e.
N-1

2(w) =F{z(t)} = Z 2(t) - e 2mwt/N, (4.1)

t=0

For further purposes of this work recall two important equations from DF'T theory
which holds for any z,w € ¢*(Zy):

— Parseval’s theorem:
(2,0) (4.2)

— Plancherel’s formula
1
HZHZZNWH2 (4.3)

o Furthermore, some additional operators are defined Frazier [1999].

1. Definition 4.1: Translation operator: Suppose z € (?(Zy) and k € Z.
Then define

Ryz(t) = z(t — k) for t € Z. (4.4)

Ry is called the translation by k operator and Ryz is called translate of z by
k.
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2. Definition 4.2: Convolution of two vectors: For z,w € (?(Zy), the
convolution z x w € £2(Zy) is the vector with components

N-1
z*x w(w) = Z z(w—tw(t), Vw. (4.5)

t=

3. Definition 4.3: Conjugate reflection: For any z € ¢*(Zy), define z €
*(Zy) by

2(t) = 2(—1) = 2(N — t), Vt. (4.6)

We call Z the conjugate reflection of z.

Moreover, the following properties indispensable for discrete wavelet theory
hold:

zxw(k) = (z, Riw), (4.7)
zxw(k) = (z, Ryw). (4.8)

4.2 Multiresolution analysis

The main idea of the DWT is to decompose original Hilbert space £2(Zy) into two
subspaces, space of approximations V and space of details W. This is known as analysis
at the 15! level. Since the (Hilbert) space of approximations is closed and has countable
basis, it is separable and can be decomposed further. In general, this is known as
analysis at the p* level. Let V; and W; denote space of approximations at the Gt level
and space of details at the j*" level, respectively. Then we can write

C(Zn) = V1 & Wy,
Vi =V & Wy,

Vp-1=Vp &W,,
or in more compact form
CIZN)=Vy W, @ Wy 1 @ - & Wy (4.9)

Both subspaces V;, W, for some j have the same dimension, what consequently means
that spaces V;, W; have dimension N/ 2J. That is the reason, why N has to be dividable
by 2P, where p is maximum level of analysis. Note that the nomenclature space of
approximations and space of details has its origin in two essential wavelet properties.
The first of them is the possibility to construct the best approximation of any vector by
orthogonal projection (what the DWT does) and the second is, concerning the wavelets
on a particular level of analysis, mutual exclusivity of wavelets in a frequency domain.
This will be discussed more in details in Section 4.4.
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4.3 Discrete wavelet transform

This section gives a brief sketch of the DWT theory. Full DWT theory can be found
in Frazier [1999]; Kolzow [1994] together with proofs of propositions stated here.

Let N = 2M and ¢, € (*(Zy). Then the set B = {Rorp}p o' U{Rutb}ary' is
orthonormal basis in ¢?(Zy) if and only if the matrix

1 oem
A =5 g+ M) g+ ) (4.10)

is unitary for all t =0,..., M — 1. Such an orthonormal basis B is called wavelet basis
at the 1% level, and vectors ¢, are called its generators. Vector ¢ is called a father
wavelet and vector v is called a mother wavelet. Furthermore, let ¢ be a vector such
that a set {nggo}y:?)l is orthonormal. Thereafter one of the possible vector v could
be constructed as follows:

P(n) = (=11 —t),t=1,...,N.

Let us have a signal z € £?(Zy). Its coefficients in the basis B can be expressed as the in-
ner products of z with the basis vectors. By taking advantage of the equation (4.8),
vector z in the basis B can be written as

s =[5 3(0), 2+ B(2),.., 2 GIN = 2), 25 $(0), 2% $(2), ..., 2+ (N — 2)] .
Definition 4.4: Let z € (*(Zy), w

el
operator D : (2(Zy) — 02(Zyr), D(2(t)) =
operator U : 2(Zy) — (*(Zy), U(w(t))

(2

M

z(2t) fort =0,..., M —1 and an upsampling
t

—w(t

) and N = 2M. Define a downsampling
() for even ¢t and U(w(t)) = 0 for odd ¢.

These operators possess following properties:

D(U(z)) = z, (4.11)
(MD@D:%@+ZU, (4.12)

where 2*(t) = (—1)%2(t). [2]p could be now expressed as

[2]p = [D(z «3), D(z *@z?)] . (4.13)

(4.13) illustrates a representation of the signal z by the vectors of approximations and
details and it is also in accordance with the idea of the best approximation. To construct
the wavelet bases for the whole analysis at the p* level seems to be very complex.
However, the wavelet basis has one important property, that it can be constructed only
from generators at the 15¢ level. This will be described in the following proposition.
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Proposition 4.1: Let N be divisible by 2P, p € N and let @1,¢1 € (*(Zy) is a pair
of generators of wavelet basis at the 15¢ level. Let us construct the sequence of pairs of
vectors @;, v, j=2,...,p as follows:

29-1-1 20-1_1
kN kN N
pj(t) = Z ¥j (t+ 2j—1) , ¥5(t) = Z ¥; (t+ 2]'—1> » t=0, 91
k=0 k=0
Then the set {gpj,wj}gzl is a sequence of wavelet basis generators for analysis up to
the pt" level.

The wavelet analysis is now performed in accordance to the MRA. Firstly, the
analysis (4.13) of z € £2(Zy) is done to obtain vectors of approximation a; = D(z* )
and details d; = D(z % ¢;) on the 1 level, both from (*(Zyy5). Then continue with
analysis of the vector a; by repeating the procedure with @2 and v, so we obtain
vectors ag = D(ay * $2) and do = D(a; * Qﬁg), both from ZZ(ZN/QQ). The procedure
continues up to the p!* level, where we have final approximation ap and final details
dp, both from (*(Zyo»).

Definition 4.5: Let N is divisible by 27, p € N and let ¢;,19; € 62(ZN/2J-71) is
a pair of generators of a wavelet basis of 62(ZN/2J-_1), j =1,...,p. Then the vec-

tor [dy,da,...,dp, ap|, obtained as described above, is called an analysis of the vector
z € 12(Zy) at the p!" level.

So far we treated only the wavelet decomposition. Let us now have a brief look at
the reconstruction.

Proposition 4.2: Let M € N, N = 2M and let 1,11 € (*>(Zy) be the generators of
wavelet basis of (*(Zy). Let D (zx@1) = x1 € £2(Zyr), D (Z*I/;l) =y € (Zy).
Then the following equation holds

o1 U(z1) + 1 * U(y1) = 2, Yz € 13(Zy). (4.14)

This is an equation of the perfect reconstruction of the original signal z € ¢*(Zy). For
the reconstruction we can then write analogously

op * Ulap) +1bp x U(dp) = ap-1,
pj x Ulaj) + v« U(dj) = aj1,

¢I*U(a1)+¢1*U(d1):Z.
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4.4 Frequency properties

Recall that in order to the theory built on the £2(Zy) space, discrete frequency domain
is proposed. Due to the practical applications we consider a real space signal z sampled
by Ts = i with sampling frequency fs. Such a signal has full and symmetric (double
sided) spectra. To comply with Shannon-Kotelnik theorem we count only single sided
spectra, however, due to the necessity of retaining of the full signal energy, we have to
multiply it by 2 in accordance to discrete wavelet theory. If we express DFT of wavelet
analysis in (4.13), we obtain

= [B(E)56) BRI e

what can be repeated up to the p** level. That is why the wavelet analysis can be
thought of as a filtering operation and it is the reason why ¢;, 1, are sometimes called
wavelet filters. Moreover, this is why the subspaces are called after approximations and
details. It is logical that the approximation D(z * @) of the original signal z contains
the smallest frequencies and the details D(z * 1/;) contain the highest frequencies, so
¢ (%) is low-pass filter and ¥ (%) is high-pass filter.

The frequency characteristics of both types of wavelet filters cover full range of fre-
quencies, however, in practice, only that half of the frequency range can be considered
which has a major influence. We say that a wavelet function is localised in some fre-
quency interval if most of its components outside that interval are 0 or relatively small.
Moreover, the frequency localisation of mother and father wavelets are almost exclusive.
While the father wavelet is localised over the first half of the frequency domain (the
half with low frequencies), the mother wavelet covers the half with high frequencies, see
upper characteristics for level 1 in Figure 4.1. Based on a metaphor, father wavelet is
also sometimes called “filter” and mother wavelet is called just “wavelet”. Numerically,

at the 1% level analysis, the full frequency range 1 - E, 2. %, cen % . f—]\ﬁ is divided into
two bands: %, e % . f—]\; for the low-pass filter (father wavelet) and % . f—]\s,, e % . %

for the high-pass filter (mother wavelet).

A consequence of joining the MRA and the equation (4.15) is that the procedure
can be applied repeatedly up to the p” level. Since the transform is performed accord-
ing to the (4.13), the space of approximations at the 1% analysis level has dimension
N/2 (due to the downsampling operator), what consequently means that the highest
distinguishable frequency is also half. Therefore, at the next analysis level, the wavelets
frequency localisation look like that in Figure 4.1 for level 2. The Figure 4.1 demon-
strates the repeating of the filtering procedure within the DWT for higher levels. The
overview of resulting wavelet filters and their frequency localisations is in Table 4.1 and
their examples are depicted in Figure 4.2.

As can be seen from the figure Figure 4.2, wavelet filters divide the frequency domain
equidistantly in logarithmic coordinates. There is one more option of frequency domain
division introduced by a discrete wavelet packet transform (DWPT). In DWPT, the
decomposition is performed not only on the approximations, but on the details as well.
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Frequency domain
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Fmin Fn/16 Fn/8 Fn/4 Fn/2 Fn

Frequency [rad 3_1]

Figure 4.1: Frequency domains of wavelet filters at distinct analysis levels.

Therefore, final division of full frequency range is equispaced in linear coordinates Gao
and Yan [2011]; Mohallem and Kawakami [2006]. Note that whether some particular
frequency (important from the application point of view) belongs (or not) into some
specific frequency band given by a wavelet function depends on the sampling time as
well as on the total length of the analysed signal.

Table 4.1: Table of wavelet filters and their main intervals at distinct levels.

1 lisati
Analysis M Frequency-domain filter
fmin fmax
15 level details % % ) b (%)
ond Jevel details % % A W (%) . @ (%)
374 Jevel details % % W (%) ) (%) ) (%)
p'™ level details S L V() T2 6 (2
p'" level approximation 0 L P o(%

21



gain [-]

Fmin Fn/8 Fn/4 Fn/2 Fn

gain [-]

O l 1 i
Fmin Fn/8 Fn/4 Fn/2 Fn
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Figure 4.2: Resulting frequency domains of wavelet filters.
Both figures depict the same wavelet filters, the upper in logarithmic frequency and the
lower in linear frequency.

The sense of the wavelet function in both time and frequency domains is depicted
in Figure 4.3. Let us have the wavelet db8 at the 5" level from the Daubechies wavelet
family (see next Section 4.5.1) and analyse the data sampled by fs = 3 Hz. The upper
figure depicts the spectra of the wavelet filter (blue line). The horizontal violet line
shows the amplitude of —10 dB and vertical violet lines stand for limit frequencies of
the wavelet filters for the gain of —10 dB. Note that this gain has been chosen for the
purpose of the example, however, as the figure shows, the wavelet filter’s localisation
in frequency can be considered much wider. The important fact is that the wavelet
filter accentuates those frequencies between violet ones while the others are suppressed
significantly. In this example, the violet frequencies are 0.09 Hz and 0.21 Hz. Moreover,
two frequencies have been chosen to show the analogy in time: 0.14 Hz (red color) and
0.3 Hz (green color). Two lower plots depict the wavelet function together with the
harmonic function of appropriate frequency. The similarity in time can be observed for
the frequency 0.14 Hz (Figure 4.3 down left) what results in large coefficient of wavelet
transform. Since the wavelet is shifted during transform, a significance of the wavelet
coefficient is marked by its absolute value which obviously does not depend on the shift.
Right opposite case is the frequency 0.3 Hz (Figure 4.3 down right) which is “too fast”,
thus is finally suppressed. The wavelet coefficients for this case are 0.0334 for 0.14 Hz
and 1.13- 1077 for 0.3 Hz.
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Figure 4.3: Time-frequency analogy of wavelet transform.
The meaning of colors is preserved in all figures.

4.5 Basic wavelets and their properties

Several different wavelet functions have been developed. More precisely, several dif-
ferent methods to create or compute wavelet functions have been developed, each of
them producing a set of wavelet functions. Each of these methods has been proposed
in order to find a set of wavelet functions complying some particular property usually
specified by a parameter, e.g. length of wavelet filter support. These sets are called
wavelet families. This section starts with a list of basic wavelets properties and then
introduces particular wavelet families classifying them from those properties point of
view, not considering the type of wavelet analysis.

A suitability of using of particular wavelet family varies in accordance to properties
of its wavelets and also in accordance to the application itself. The main qualitative
parameters of wavelets are:

1. Wavelet filter support: Compact (finite) support is with no doubts one of
the most desired wavelets properties because of two reasons: Firstly, a compact
support results in a finite multiplication in the DWT, what consequently yields
to simple practical implementation of wavelet analysis. Since there is no need to
approximate the wavelet function (to have a compact support), all computations
are exact. The second reason is a good time localisation of the wavelet, what will
be discussed in more details later.
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2. Symmetry and antisymmetry: Since both the scaling function and the mother
wavelet can be seen as filters, their phase characteristic plays an important role
as the negative derivative of the phase is a group delay. It is very desirable in
signal processing application that the filters have a linear phase, thus constant
group delay. Even in image processing this issue is known as very crucial in the
restoration process Ahuja et al. [2005]. The linear phase of wavelet filter requires
its scaling function to be symmetric or antisymmetric.

3. Orthogonality: This property guarantees the independence of wavelets in time
(their shifts and scales), thus some specific kind of exclusivity in signal analysis.
Note that there must always be a trade-off between the orthogonality and sym-
metry of wavelets, since it is not possible to impose both of them simultaneously.
One of the big issues in research was to design orthogonal wavelets which are
symmetric to the degree possible. Some of results are e.g. symlets Daubechies
et al. [1992]. It is also possible to exploit wavelets which are non-orthogonal, nev-
ertheless, the wavelet theory is then much complicated and is built up on theory
of Riesz’s bases. Moreover, the wavelet synthesis is not perfect anymore, since
there is always an error between original and reconstructed signal.

4. Number of vanishing moments: Some wavelets suppress moment functions,
thus polynomial functions of certain order as well. It results in more sparse
representation of the wavelet analysis, what can significantly save the memory
space while implemented Fugal [2009]. Again, there is a trade-off between number
of vanishing moments and the length (dimension) of the wavelets.

5. Existence of scaling function: The simple rule holds about this property:
When the scaling function does not exist, the analysis is not orthogonal. Note that
the rule is rather theoretical and has no impact on the choice of wavelet family to
be applied in practise, since the (non)orthogonality property of particular wavelet
family is always known.

6. Expression: An explicit representation of the wavelet will generally result in
faster computation of their elements as well as coefficients of wavelet analysis.
However, the most of explicitly formulated wavelets have infinite support except
two of them: Haar wavelet and B-spline wavelets. Note that the infinity support
is usually due to the exponential function in the expression, hence these wavelets
need not be well localised in time.

7. Time-frequency localisation: A good localisation of wavelet in either time or
frequency determines the possibility of the wavelet to detect particular phenom-
ena in corresponding domain. However, in order to the uncertainty principle,
both the compact support and the band-limitations property cannot be attained
simultaneously. In other words, the more strict resolution in frequency, the larger
support of wavelet, thus the worse time resolution. Analysis in time proceeds by
shifting the wavelet along the time axis and analysis in frequency proceeds by
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scaling the wavelet. Obviously, widening the wavelet shifts its frequency content
towards low frequencies and conversely, narrowing the wavelet shifts its frequency
content towards high frequencies.

4.5.1 Wavelet families

The wavelets are to be chosen to fit the application Ahuja et al. [2005]. It would not
be reasonable to pick one particular wavelet, use it for all applications and always
expect a good results. Different applications require different properties of wavelets. In
the following, an overview of wavelet families is provided with emphasis on their main
properties. For more details see Fugal [2009].

4.5.1.1 Orthogonal wavelets

The property of orthogonality has already been discussed in Section 4.5, however there
is one fact which has not been mentioned - the orthogonality is an essential presumption
in wavelet theory in general. Orthogonal wavelets enable orthogonal MRA as well as
the possibility of perfect reconstruction. When orthogonal wavelets are used, the energy
of the signal is preserved in both time and frequency domains by virtue of Parseval’s
theorem (4.2). Moreover, most of orthogonal wavelets have a compact support, what
makes them the most often used wavelets in the DW'T, hence in practise.

1. Daubechies wavelets are called in honor of its inventor, well known mathe-
matician Ingrid Daubechies. They are usually denoted as db/N, where N is the
order. The order N actually determines the wavelet properties: the wavelet db N
has support of the length of 2N and has N vanishing moments'. The wavelets
are not symmetric and do not have an explicit expression. The only exception is
a Haar wavelet, what is a special case of Daubechies wavelet for N = 1. The Haar
wavelet resembles the step function and is the most simple wavelet, what makes
it the most used wavelet. Note that since the short support, it has an excellent
time localisation, but at the expense of the resolution in frequency.

2. Symlet wavelets have also been invented by Ingrid Daubechies. Symlets are
more symmetric than Daubechies wavelets, what is their main advantage. The
wavelets are denoted as sym/N and have the same property as db/N, what is the
length of 2N and N vanishing moments.

3. Coiflet wavelets, despite their name, are also made by Ingrid Daubechies at the
request of Ronald Coifman. They are denoted as coif N and have 2N (mother
wavelet) or 2N — 1 (father wavelet) vanishing moments and length of 6N — 1.
So when looking at the support, coiflets have less number of vanishing moments
than Daubechies wavelets or symlets.

'In literature, dual notation can be found. One where dbN has the length of 2N and one where
dbN has the length of N.
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4.5.1.2 Crude wavelets

On a contrary to orthogonal wavelets, crude wavelets have usually explicit expression,
therefore are very smooth, but also have an infinite support. Such an expression enables
a very good localisation in frequency. Crude wavelets can only be used in the CWT.
Although there is always a possibility to evaluate their explicit formula in equispaced
points in time to obtain a discrete-time approximation (with so called “effective sup-
port”), such an approximation is not orthogonal and can not be used in the DWT.

1.

. Gaussian wavelets are derived as derivatives of a single Gaussian function e~

Shannon wavelets is the dual wavelet to Haar, since it is defined as a rectangular
bandpass in frequency domain, thus have a perfect resolution and localisation in
frequency. On the other hand, it leads to the sinc function in time domain,
hence very poor time localisation. It has infinite number of vanishing moments,
is infinitely differentiable and its integer shifts are orthogonal to each other.

. Morlet wavelets has already been introduced in Chapter 1 as a (complex)

harmonic function multiplied by Gaussian window. The wavelet is symmetrical
and has an effective support from —4 to +4.

t2
They are either symmetric or antisymmetric, have a very simple expression and

have an infinite number of vanishing moments. Low-order (small number of
derivatives) Gaussian wavelets have quite good time resolution.

Mexican hat is the most known representative of Gaussian wavelet. It is com-
puted as its negative second derivative. Its effective support is from —5 to +5 and
the wavelet is symmetric. With very narrow localisation and very rapid decay in
time and since the human eye work somewhat like a Mexican hat Fugal [2009], it
is an unique choice for vision analysis.

. Meyer wavelets are, as well as Shannon wavelet, defined in frequency domain,

but in contrast to Shannon wavelet, sharp edges in frequency are “replaced” by
smooth function, what causes faster decay in time domain. Its effective support
is from —8 to +8.

. Bi-orthogonal wavelets were obtained as the result of both symmetry and per-

fect reconstruction requirements. As those properties are incompatible in case of
just one wavelet filter, bi-orthogonal wavelets have different filters for decompo-
sition and reconstruction.
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Introduction to linear time-invariant system
identification

This chapter briefly provides the reader with basics from the area of linear time-
invariant systems, design of the model structure and its parameters identification via
prediction error method. The main focus is, however, laid on the methods and princi-
ples, which are to be used further in the thesis.

5.1 Linear time-invariant systems

LTT systems is the most important class of dynamic systems exploited in both theory
and practice. Since the most of real processes record some non-linearity, LTI systems
usually serve as an approximation of the processes encountered in real life. Moreover,
their simple structure is often justified and results based on them prove sufficient for
the application. As the theory of linear systems is well-established and widely known,
only the main terminology is collected in this section. Moreover, for the purposes of
this thesis, the main focus will be laid on discrete-time systems. For further details see
e.g. Ljung [1999]; Van den Hof [1996].

A LTI causal continuous-time system can be described through its time-invariant
impulse response ¢(t) as

y(t) = /OOO g(T)u(t —7)dr, t € R,

where u(t),y(t) are system input and output signals, respectively. Its discrete-time
equivalent is

y(t) = ig(k:)u(t —k), teN
k=1

with g(k) being uniformly sampled impulse response. Analogously, the effect of distur-
bances can be expressed as

o(t) = h(k)e(t — k)
k=0
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with e(t) being a zero-mean white noise with variance o and general LTI system can
then be written as

y(O) =3 glk)ult — k) + o).
k=1

By defining the forward shift operator ¢ as qu(t) = u(t + 1), we can rewrite a general
LTT system as

y(t) = G(q)u(t) + H(g)e(t), (5.1)
where
Glq)=>_q "g(k), H(q) = q *h(k) (5.2)
k=1 k=0

are transfer functions of appropriate linear systems, G(q), H(q) € K2, where X stands
for a set of complex functions squared integrable on the unit circle and analytic in
the exterior of the unit circle. When H(q) is a monic transfer function, then moreover
H~'(q) € K3. Monicity implies that h(0) = 1 and we can therefore write

H(q) =1+ i h(k‘)q_k.
k=1

Throughout the rest of the thesis, a general discrete-time LTI system is considered to
be described by (5.1). Note that complex number G(w) is the value of the transfer
function G(q) evaluated in the point ¢~! = € and it bears the information about the
steady state behavior of the system when the input is harmonic function with frequency
w.

For predicting the behavior of the LTI system (5.1), denote the conditional expec-
tation on the future output in time ¢t based on knowledge of outputs up to the time
t —1 as §(t|t — 1). Note that when predicting the output in time ¢, the input wu(t) is
already known, so the predictor describes how the system responses on the input in
time ¢. Then, a general one step ahead predictor of the LTI system (5.1) is (Ljung
[1999])

gt = 1) = [1 = H™Y(q)] y(t) + H™ (q)G(q)u(t). (53)

5.2 Models of linear time-invariant systems

The first step in a way of a System IDentification (SID) is to determine the structure
of the model to be identified. In other words, the procedure begins with choosing the
set or class of models in which the most suitable model is searched. Such a choice of
the model structure depends on several things concerning the knowledge of the system
of interest like its inner physical structure, order of the system or its approximation or
even the fact that the only knowledge of the system we have is the numbers of inputs
and outputs. Whatever the system to be modelled is, a suitable classification of its
model structure is very important from the identifiability point of view and directly
affects the result of SID process.
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Let us recall a basic notation used in SID theory. Let M denotes the set of all
models with particular structure and let § € R? stands for the vector of unknown
parameters of the model. Obviously, values of parameters are not arbitrary numbers,
but have to satisfy some constraints given for example by physics. Hence we can
formally write @ € Dy C R?, where Dy is set of all admissible vectors of parameters.
Then M(0), 6 € Dy is one specific admissible model from the whole set M (Ljung
[2002]).

Now, each model is described by the structure and by parameters, which are usually
unknown and are the main values to be estimated. A general transfer function model
of LTT system can now be formulated as

y(t) = G(g, 0)u(t) + H(q,0)e(t) (5-4)

with G(q,0), H(q, 6) being transfer functions with appropriate model structure M. Re-
alize that (5.4) describes a set of all possible models. In order to (5.3), the one step
ahead predictor of such models is

it —1.0) = [1— H™(q.0)] y(t) + H(q,0)C(q. 0)u(). (5.5)

There is a number of distinct model structures which are frequently used and
which are sufficient enough to cover most of applications. The main representatives
are state space models for cases where an internal structure of the system is known
and transfer function models taking only the input-output behavior of the system into
consideration. The most known representatives of the latter model structures are Auto-
Regressive with eXternal input (ARX), Auto-Regressive Moving Average with eXternal
input (ARMAX), Output Error (OE) or the most general Box Jenkins (BJ) structures.
For the purposes of this thesis, we focus on the ARX model. More details can be found
in Ljung [1999].

The ARX structure represents a simple input-output relation and is described as a
single linear difference equation

Na ny
y(t) + Z ary(t — k) = Z bru(t — k) + e(t). (5.6)
k=1 k=0
Analogously to the (5.2) and to the (5.4), we can write
Na g
A(q,0) =1+ q *ar, B(g,0) = q "y, (5.7)
k=1 k=0

where the parameters vector 6 comprises of the unknown parameters ay, bi. The model
structure is then

A(q,0)y(t) = B(g, O)u(t) + e(t). (5.8)
The term A(q, 0)y(t) represents an auto-regressive part and the term B(q,0)u(t) rep-

resents an exogenous input. When comparing with the linear model (5.4), we can see

that
B(q,0) 1

G(q,0) = Aq.0) H(q,0) = . (5.9)
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For a special case of n, = 0, the ARX model structure becomes a Finite Impulse
Response (FIR) filter.

5.3 Prediction error method

Prediction Error Methods (PEM) is a broad family of parameter estimation methods,
which have a close relationship with the maximum likelihood method (Ljung [2002]).
PEM is based on (as the name marks) the minimization of the prediction error, namely
one step ahead prediction error. The finally identified model is then the best one step
ahead predictor from the set of all admissible models M(6), 6 € Dy.

It is assumed that discrete input-output signals are generated by the system

y(t) = Golq)u(t) + Ho(g)e(?), (5.10)

where (®)( describes the true system transfer functions, and that the model is described
by (5.4). The prediction of the model is (5.5) and prediction error is

e(t,0) = y(t) — mm—lm
=y —{[1= HY(¢,0)| () + H'(9,0)G(q,0)u(t) }

=H1ummw “1(q,0)G(g,0)ult)
=H*@@@@—G@mmm. (5.11)

The filtered prediction error is

ep(t,0) = F(q)e(t,0) (5.12)

with F'(q) being a stable linear filter.
In general, the problem of parameters estimation is an optimization task:
arg min [V (M(6),D)]. (5.13)
0€ Dy
The optimization proceeds over the set of admissible parameters 6 € Dy and the
criterion function V' to be minimized is some scalar-valued function of the data D and
model structure M, which evaluates the quality of the model. The criterion function is

usually marked as Viy (), N denotes the number of data points from which the estimate
is computed. For PEM, the criterion function is generally taken as

1 N
t=1

where /(o) is a positive scalar-valued function and is taken as ¢(x) = %332 very often.

Finding of model parameters can then be formulated as

N
On = arg mein VN (9) = argmln — Z‘SF (t,0). (5.15)
N =
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Oy denotes the estimate of model parameters from N data points and represents the
best possible choice of parameters from the considered set Dy in the minimization of
Vn (0) function point of view. The final estimated model is

y(t) = G(g,On)u(t) + H(q,0n)e(t).

Let us now have a look at the effect of the PEM in the frequency domain. In
the following, we will use a notation E{s(t)} for the expected value of discrete stationary
signal s(t) and R(t) for the covariance of s(t) (Ljung [1999]). Using the property of
the inverse Fourier transform

B{s(1)} = R.(0) = % /7; B, (w)dow,

®, denotes (power) spectra of the signal s, we are able to reformulate the problem (5.15)
into the frequency domain as

A

1 ™
_ . 2 _ .
Oy = arg melnE {EF(t, 0)} = argmin o— /_7r P, (w, 0)dw. (5.16)

By substituting (5.10), (5.11) and (5.12) into (5.16), we obtain

o 17 |Go(w) — G(w,0)PPu(w) + 02| Ho(w) 2
9]\/—8L1“g11191n%/_7r H(w.0)] |F(w)|*dw
and for the case of a fixed noise model H(w, ) = H,(w)
5 1o 2 Pu(w)|F(w)?
I = argmin Lﬂ Go(w) — Gl O 24 S do (5.17)
—_————

F'(w)

(5.17) clearly shows that PEM try to fit the original transfer function Go(q) in the best
possible manner in sense of the two norm with respect to frequency weighting by filter
F'(w). ®,(w) depends on the input to the system, whilst H,(w) on the noise expecta-
tions. Hence, the user defined filter F'(w) is the only way, how to affect the identified
model. Moreover, following proposition extends the understanding to this filtering.

Proposition 5.1: If the predictor (5.3) is time-invariant and linear in parameters and
u(t), y(t) are scalars (implying a Single-Input Single-Output (SISO) system), then the
result of filtering of one step ahead prediction error e is the same as filtering the input-
output data first and then applying the predictor (Ljung [1999]).

This proposition will be used further in the thesis as a starting point for the incor-
poration of wavelets into the system identification.
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Single LTI system identification with wavelets

6.1 Incorporation of wavelets into the system identifica-
tion

The linear system identification is well established and described field. The most of
the identification methods for linear systems operates in time-domain, i.e. they try to
match the time-domain data as much as possible and do not take the information in the
frequency domain into account. The consequence is that they try to match the whole
frequency range of the system to be identified (or, more precisely, the frequency range
covered by the data). In sharp contrast, the methods operating in frequency domain
possess an advantage of a specific frequency range selection and are used with a benefit
as an application oriented approach. A typical problem is a case of singularly perturbed
system, where usually only the subsystem with slow or fast dynamics is of interest
Kokotovic and Khalil [1986].

It was already shown in Chapter 4, that the DW'T can be understood as a frequency
filtering. Moreover, the proposition 5.1 gives the conditions for the filtering to be used
directly on input-output data while also directly affecting the prediction error. The
proposition however required the predictor to be linear in parameters, therefore a well-
known ARX structure (Section 5.2) has been chosen. Based on (5.5), (5.7) and (5.9),
the predictor for ARX model structure is of the form

gt —1,0) = [1= H'(¢.0)] y(t) + B (¢.0)G(a, 0)u(t)

— 1 Al )] (0) + Alg.6) 3 L gt
= [1=Alq,0)]y(t) + B(g, 0)u(t)

= ia: arg Fy(t) + Eb: brq Fu(t) (6.1)
k=1 k=0

and is linear in unknown parameters ag, bg. This equation can be rewritten as

(tlt—1,0) = 2" (),
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where z(t) = [—y(t — 1), ..., —y(t — ng),u(t), ..., u(t —ny)]" is the vector of data mea-
sured up to time ¢ and 0 = [ay,...,an,,bo, .-, bnb]T is the vector of unknown parame-
ters. Expressing this equation for all measured data (more time points) and concate-
nating them, we obtain the set of equations Y (t,0) = Z(t)0 with

9(t|t — 1,0)
P0.0) — it +:1\t, 0) |
_gj(t+N|t—'FN— 1,0)
—yt—1) - —y(t—na) u(t) o ult—m)
—y(t) o =ylt—mng+1) w(t+1) - u(t—my+1)
Z(t) = : : : :
_—y(t—‘l—i-N) <o —y(t—ng+N) u(t+N) -+ ut—np+N)

The solution fy of the equation Y (¢,0) = Z(t)# can be easily obtained as a solution to
an Ordinary Least Squares (OLS) optimization problem

. 1N . 2
Oy = arg min — z; 5 {Y(t) -Y{(t, 9)}
t=
1 & 2
= argmin — tz::l 3 Y (t) — Z(t)0] (6.2)
= [2"0zm)] " 27wy ) (6.3)

derived within Section 5.3. Y (¢) is vector of measured outputs compound in the same
way as Y (t,0), see e.g. Ljung [1999]. Note that a square of a vector z € (2(Zy) is
defined as z? = zT2. For the simple notation, we will use Y, Z instead of Y (¢), Z(t)
further on.

Recall now that wavelet coefficients are to be evaluated as an inner product of
the time signal and even shifts of the wavelet filters. On the ¢?(Zy) space, the inner
product can be written as a vector multiplication. If z and Ry from the (4.8) are
vectors, then for the coefficients of the wavelet transform of the signal z the following
holds

2x @ = (2, Rpp) = (Rpp, 2) = (Rip)" Z = (Rip)" 2. (6.4)

For simpler notation, let us consider real valued wavelet filters, what gives us (sz)T =
(Riz)". The obtained form can be directly used for incorporation of wavelet transform
into the SID problem (6.2). Note that the complex conjugate is applied on a wavelet
filter. Specifically, the columns of the data matrices Y, Z represent mutually shifted
input and output signals. Each of them can be transformed by wavelets according
to the right side of the equation (6.4). Since the wavelet transform is linear, the
problem (6.2) can be written as a multiplication with an appropriate matrix 7. The
problem is thus transformed onto the problem of minimizing [TY — TZ9}2, where the
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matrix T = T'(¢, 1, P) contains all possible shifts of wavelet filters ¢, v at all applied
levels P C {1,...,p} and we will call it “wavelet matrix”. By adding some user defined
weighting matrix W, the final optimization problem is

N 1 XN )

On = arg min — ; 5 (WTY — WTZ0) (6.5)
and is still solvable via OLS. When orthogonal wavelets are used, the energy of the
transformed signal is preserved in both time and frequency domains by virtue of Parse-
val’s theorem (4.2). Hence error minimization in either domain would give the solution
of the same quality Mukhopadhyay et al. [2010].

Notice that transformed prediction error TY — T Z6 can be understood in 2 possible
ways, which both are mathematically identical. The first point of view is transforming
data stored within Y, Z, thus analysing their time-frequency properties. The second
point of view is transforming just the prediction error as T'(Y — Z#), hence analysing the
time-frequency properties of the prediction error with no notion of the data themselves.

Also, at first look, there seems to be a better way of input-output data filtering
(transforming), namely to transform input-output data first and then use it for creating
of the matrices Y, Z. However, when transforming the data first, we obtain wavelet
coefficients corresponding to wavelet filters shifted by even number of samples and they
do not preserve the time-structure of the data anymore. Therefore, the consequently
created matrices Y, Z would have a spoiled structure.

6.2 Wavelet matrix T

This section deals with the construction of the wavelet transform matrix 7. There are
two main practical limitations that have to be considered while implementing the DW'T"

1. Analysed data length: For the purposes of a wavelet analysis it would be
convenient to have data of the length of 2P, where p is maximum analysis level.
It is however obvious that it is highly impractical to guarantee this requirement.

2. Data periodicity: In the DWT, the periodical extension of a vector is used
for analysis of the whole data. However, due to a number of reasons such as
adding high frequencies due to “non-continuity” of periodically extended data
or disabling of recursive identification, it is not convenient to periodically extend
measured data. Therefore we will use non-extended data for wavelet identification
which brings other theoretical modifications.

Let us discuss now the above mentioned limitations in detail. Let the measured data
be of length D and n, be the order of an estimated model. From the structure of Z it
turns out that the length of input-output data for analysis is equal to the dimension of
the column space of Z, that is N = D — ng + 1, what is desired to be the power of 2.
There are two possible points of view on the basic principle of wavelet analysis:

35



1. Both the approximations and the details of the analysed data are kept of length
N (by making use of the upsampling operator) and scaled wavelet filters

0 = 280y (271), by = 254y (201), t €N

are used. Then the length of wavelet filters at the j** level is L; = 2/=1L; and
the shift at this level is s; = 20—1lg, =27,

2. On the other hand, the lengths of both approximations and details at all levels
are decreased and the analysis is always performed by the same filters 1, ;.
Consequently, the length at each level is L and shift S (generally S = s; = 2).

Since the analysed data need not be of length 2P for any p € N, the latter approach
is more accurate and more convenient for further use. Based on that, data of length
N is decomposed (thanks to the even shifts and periodically extended vectors) into
the approximations and the details, both of length N/2. As we do not assume peri-
odically extended vectors, the dimension of the subspaces will be in our applications
always less than N/2. The dimension depends not only on the data length but on
the length of basic wavelet filter L as well, since N > L+ 2k has to hold, where k& € Ny
is here maximum possible number of the shifts of the wavelet filter of the length L at
the particular analysis level.

Under these assumptions, the data of length N3 = N is decomposed into the ap-
proximations and the details, both of length No = 1 + {N e L J, where |z]| denotes

the integer part of z. This formula can be written recursively as

N; - L
Nj+1:1+{] J

. (6.6)

as long as the data are long enough for analysis at the next level. Then the number
of iterations is maximum level p of wavelet analysis. With the knowledge of p and
individual lengths N;,j = 1,...,p the wavelet matrix 7" can be computed successively:

1. At the 1% level the analysis is done by matrix 77 which contains the even shifts
of the wavelet filters in rows. Because the wavelet filter of length L could be
smaller than the data length N7, the wavelet filters ¢, ¢ have to be replenished
onto the length Ny with zeros for the purposes of the inner product with data.
The replenished wavelet filters do not make any differences in both time and
frequency domain properties and will be considered further on. Let us define
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the matrix 77 as

L RQ(Nz—l)SD J

where Th p(1), T1 a(p) are sub-matrices of the mother wavelets and of the father
wavelets, respectively. Both sub-matrices have size Ny x Nj. The transformed
prediction error is now

nY -1T1Z0 =

6. (6.8)

The upper part express a transformed set of the equations into the subspace of
details and lower part into the subspace of approximations. Note that size of T1Y
is 2Ny x 1 and size of T1Z is 2Na x (ng + np + 1).

. Higher levels analysis is in principle very similar to analysis at the 1% level.
The j** level analysis, j € N,j > 1, could be characterized by multiplying by
the matrix 7. In Chapter 4 it was said that the 4t level analysis of measured
data is the same as the 1% level analysis of the approximation of measured data
at the (j — 1) level. Details at all levels up to the (j — 1) level have to be
preserved without change.

Let us treat the matrix T3 for the 27¢ level first and higher levels will be shown
analogously afterwards. Based on a similar idea as before with matrix 77, the ma-
trix Ty is defined as

L0 | Top(®)
To = { 0 D } , where Th = TQ,A(QO)] . (6.9)

The unitary Ny x Ny matrix I serves for the preservation of the details at the 1%
level. The matrix T, defined analogously to the matrix 77, comprises the wavelet
filters replenished onto the length of Ny. Consequently the size of Ty is 2N3 x N
and the total size of the matrix T4 is (N2 +2N3) x 2N3. The whole wavelet matrix
for transformation at the 279 level is then T' = Ty T}.
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Finally, T; can be expressed as follows:

(0
Ryt
I 0 __ T:
e[ ] = [ 59| P | g
vy Tj,A(SD) ¥
Ry
i Ry(Njy 19 i

It is obvious that the wavelet filters have to be replenished onto the length of IV;.

J J
The unit matrix I has now the size Z N; X Z N;, matrix T] has size 2N;11 X N;
i=2 i=2
and finally, the whole wavelet transform matrix is

So far, we have dealt with the construction of the matrix 7" from the specific (se-
lected) wavelet basis function only. There is, however, a possibility to exploit several
wavelet functions within the matrix 7" at once. Realizing that the matrix T" contains one
row (wavelet function) for each specific (and possible) shift and scale of the wavelet ¢
or v, the main reason for utilizing of more than one basic wavelet function is obviously
to increase the number of equation comprising the information from the particular time
and frequency localisation.

There arises yet another question: Why to use several banks of wavelet functions
if every wavelet function divides the frequency domain in the same way (Section 4.4)?
The answer is that there are differences between those functions. The Figure 6.1 depicts
two wavelets db4 and db8, both at the 5! analysis level, in both time and frequency.
The first difference is the support of those functions in the time domain (as already
commented in Section 4.5.1) and the second difference is the steepness of their frequency
characteristics. The larger the support is, the larger part of data is investigated. The
steeper characteristic of the filter is, the more precise is the filtering.

6.3 Weighting matrix W

The weighting matrix W is a user-defined, diagonal matrix with its elements as weight-
ing coefficients for the particular wavelet filters given by their shift and scale. This
section discusses several possibilities for choice of the weighting matrix.

38



0.03

0.02 s R R 1 |
0.01 I —
: : o : :
o) S,
3 v
5 0 3
£ S o0 b
? §
-0.01
—-0.02 - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-0.03 : : :
0 200 400 600 0,01 0,1 fn/2
time [samples] frequency

Figure 6.1: Difference between distinct wavelet filters at the same level.

A quite well-known way of selecting of particular weights is to use the power spec-
tra or empirical transfer function estimate computed from the input-output data Ljung
[1999]. This method computes the weights for a particular frequency range in accor-
dance to the energy present in that range, thus the weights are assigned in accordance to
the shape of the frequency characteristics. Such a procedure seems to be something like
automatic computation of weights, however there are two drawbacks: i) The weights
need not correspond to the application and to the demands on the model (they only
correspond to the information in the data). ii) Small signal to noise ration can break the
spectra on higher frequencies, hence can enlarge particular weights and consequently
destroy the resulting model.

The previous method weights each frequency range by the same weight without
considering the time domain. However, data can contain some time intervals where
the specific dynamics can be observed, thus it is worth to put an emphasis on these
intervals by weighting of appropriate wavelet functions, which are localised in that time
interval. The procedure can be for example done in two steps: i) One weighting matrix
contains only ones and zeros, what causes the selection of appropriate wavelet filters.
ii) Another weighting matrix contains weights of those selected filters to evaluate their
significance. A typical situation for this procedure is when the model is identified from
the data obtained during an experiment' on the system. Such a data-set can contain
(and usually contains in practise) specific time intervals, where particular property of
the system is tested, so only some appropriate wavelet filters are worth to use.

!To obtain the sufficiently excited data containing sufficient information about the system, a so
called “experiment” is performed on the system, where the specific, pre-computed input is applied.
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Another possibility of weighting is to adapt the weights on particular frequency
range to the number of wavelet filters covering this range. Since wavelet filters on
higher levels (scales) have longer support and since the length of data is given, the
number of possible shifts decrease with each next level. Then, the sum of square of
prediction error corresponding to the particular frequency range becomes smaller only
due to the smaller number of equations. A remedy can be to set weights inversely
proportional to the number of wavelet filters on the particular frequency range.

Next, due to partial overlapping of wavelet filters in frequency domain (see e.g. Fig-
ure 4.2), the filters from table Table 4.1 (made by composition of basic wavelets) have
not unit gain at any frequency. This effect (together with constant coefficients be-
longing to those filters) can be compensated by normalizing the wavelets by weighting
matrix W computed from the vector of weights

1 1 1

V= U maxy, (Wp(w)) " maxy, (Wp41(w))

: (6.11)

max,, (1 (w))

where w;, j =1,...,p+ 1 are filters from the table Table 4.1, j = 1,...,p for details
at the j level and j = p + 1 for approximation at the p** level.

Yet another constraint can be applied to the matrix W. It has already been men-
tioned that filters overlap each other in frequency domain. Due to this fact and user-
friendly use, weights of filters should be chosen such that no filter overweights any
other, especially the adjacent filters. In consequence, there is some upper bound (or
lower bound, it depends on point of view) for weights for each particular wavelet filters
families Heil and Walnut [1989]; Mallat [1999]; Rao et al. [1999].

Finally, the total weighting matrix W can be computed from individual weighting
matrices Wy,--- , Wy, g € N as

6.4 Asymptotic properties of the estimate

We have shown how to incorporate the wavelet transform into model identification.
Now, let us have a look at the limit behavior of the algorithm, which is very important
for practical use. It was shown in Ljung [1999] that the ARX model is strictly globally
identifiable. Let 8* denote such a model parameters vector, which is the best possi-
ble theoretical solution of the (6.2) (when N — o), and let Oy denote the solution
computed from measured data (some finite N). The convergence of the estimate of
the ARX model parameters via wavelets and its quality are investigated:

1. Convergence: For general PEM it is proven that if noise e(t) is not correlated
with regressor Z, the following holds:

Jim Gy = 6", (6.12)
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This condition is not satisfied in the case of the ARX model and the estimate is
biased.
. A _ . T —1 T
lim Oy =0 —i—ngnooE{(Z 7)1 7%} (6.13)

Since the proposition 5.1 was complied, this limit has to hold analogously with
using of wavelets for filtering:

lim Oy = 0"+ lim B{(ZTTTW?TZ)(WTZ) e} (6.14)
N—oo N—oo

Note that the fact that the estimate is biased does not mean that the estimate is
wrong. The bias is caused by the demand on parameters estimate to give the best
possible predictor (Ljung [1999]). It consequently means that we really obtain
the best possible predictor, what need not be the best approximation of the true
system from the simulation point of view.

Moreover, there is the instrumental-variable (IV) method (for details see e.g.
Van den Hof [1996]) which guides the user how to have uncorrelated data Z
with noise e, hence to have an unbiased estimate. Also realize that when it is
possible to have unbiased estimate just by adjustment of the matrix Z, then the
best predictor depends on the measured data, what consequently leads to the
condition of sufficient excitation.

. Quality of the estimate: The estimation error Go(q) — G(q,0n) = Golq) —
G(q,0*) + G(q,0*) — G(q,0x). The term Go(q) — G(q,0*) is a structural error. It
describes an incapability of the model (with given structure) to match the system.
The meaning could be well understood in frequency domain. If the fixed noise
model is considered, the structural error is minimum if and only if the solution
0* is found by solving least squares problem mein |Go(w) — G(w, ). The term

G(q,0") — G(q, éN) is an error caused by noise affecting the measured data and
represents how far from the optimal solution the found solution is. This can also
be comprehended as variation of the random variable v N (éN — 0*). In case of

an open-loop, the variance of the frequency function estimate at certain frequency
w can be written as (Zhu [2001])

n ®,(w)

N &, (w)’

VarG (w, On) ~ (6.15)
v(t) = H(q,On)e(t) is filtered noise. For further derivation, let us remind, that
(power) spectra of the response y(t) = G(z)u(t) of the system G(z) on the input
u(t) is @y (w) = @, (w)|G(e™)[®. Obviously, each wavelet filter can be viewed as
a system with particular frequency characteristic @;(w). Because each of these
systems filters the same input data and because of filters (practical) exclusive
frequency localisation, the total variance satisfies

_1 p+1 1

(VarG(w,éN)) :Z<Vaer(w,§N)) , (6.16)

J=1
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Var;G(w, fy) stands for variance caused by wavelet filter ;(w). This partial
variance can be written as

Glw.On) ~ n Py (w)
VariGle 0n) = N G @ IV Gy @) (647
where
V/( ) = & (6.18)
7T max{V ()} '

is the normalized weight for the j* level analysis, V (k) is k" element of the vector
of weights from which the matrix W is constructed. The normalized weights have
to be considered to correctly derive the variance Var;G(w, Ox). Let us make the
substitution T'; = [V/(j);(w)[*>. Then

o1 P aw) T N By (w) B
(VarG(w,HN)) R Z (N‘IW)F]> = D) ZI‘]- (6.19)

7j=1 7j=1

and the total variance
1
; n®,w) (&=,
VarG(w, 0y) ~ N EW; (Z |V/(])wj(w)|2) . (6.20)
u j=1

In case of no additional weighting, the sum equals 1 and the results of the iden-
tification with and without wavelet filtering are very close to each other! both
in time and frequency domain. On the other hand, additional weighting affects
the variance of the estimate at the particular frequency range and, consequently,
the behavior of the estimated model in this frequency range as well. And as was
already mentioned, this change of variance of the estimate behaves in order to
the Parseval’s theorem (4.2), thus in order to the coefficients of wavelet transform
with appropriate wavelets.

To show a parallel to understanding the problem of the ARX model parameters
estimation in the frequency domain, the following formulae evaluating the quality
of the estimated parameters holds:

. -1
trace{cov{0* — On}} = otrace { (ZTTTW2TZ> } .

6.5 Possible extensions

This section shows possible improvements of the estimates useful especially in applica-
tions.

!Strictly speaking, variances of the estimate G (w, 0 ~) would be the same, the estimate itself however
need not be.
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1. Thresholding of wavelet analysis. The thresholding in the wavelet analysis
is used to reduce noise. This operation means to nullify such the wavelet coeffi-
cients which are lower than some threshold ¢; € R. Consequently, the threshold
provides the lower limit for the considered portion of particular frequency range
in the original signal. Globally, it can lead to more accurate numerical results
but, on the other hand, some information from the input-output data is removed.

Let 1y, n. > 0 are values of thresholds for certain wavelet type 1, certain shift ¢ €
N and certain analysis level j. Next, denote y., z. some columns of matrices Y, Z,
respectively. Then if any of wavelet coefficients are lower than the appropriate
thresholds:

Ye *lﬁj(t) < Ty ZC*wNj(t) < Nz,

the appropriate row (corresponding to some equation) within the set TY —T'Z0 is
nullified (omitted). This procedure is performed during the analysis for all wavelet
filters, each analysis level can have (and usually have) different thresholds in order
to required amount of information in corresponding frequency band.

2. Keeping of the wavelet analysis coefficients at lower levels: As mentioned
before, the approximation at the 5% level is replaced by the approximation and
the details, both at the (j + 1) level. The consequence is that still less and less
equations are generated for the approximation, thus for a low-frequency content
of data. Moreover, since low-frequency wavelets have large support and larger
basic shift than high-frequency wavelets, it is natural that there are much less
low-frequency equations. As a remedy, we can double the number of equations
on each level and then keep one half and use the second half for the analysis at
the next level. The procedure is still done in a sense of (6.5), but with

T; remains the same as in (6.10). This significantly expands the number of equa-
tions, thus it can improve quality of the result. However it is recommended to
apply it only for frequency ranges of interest because of increases in computational
demands.

3. Recursive identification: Recursive solution of the OLS problem (6.2) is de-
scribed in e.g. Engel et al. [2004]; Ljung and Ljung [1985]. Recursive identification
applied to SID using wavelet transform is more complicated. There is one inher-
ent difference from a classical recursive identification, namely, a length of newly
measured data has to be, at least, the length of shift of any wavelet filter used for
the SID. Hence the minimum length of new data is shift of those used wavelets
which cover the highest frequencies of interest, and on the contrary, for one new
equation in the lowest frequencies of interest, the length of new data has to be
at least the shift of the appropriate (maximum level used) wavelet filters. (Note
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that the maximum level used need not be the maximum possible level, since
the choice of used levels depends on the application while the maximum possible
level is given by the length of the data. Such the situation turns up in cases of
identifying a faster system’s dynamics while the information about slow dynamics
is not of interest. Moreover, the weighting matrix W could also suppress partic-
ular frequency ranges.) This condition must be considered due to possibility to
perform at least 1 new shift of any wavelet filter whereby at least 1 new coefficient
(equation) is obtained. If this condition is satisfied, the prediction error can be

written as
Toia | | Youa(t) Tod | | Zowa(t)
— 0, 6.21
[Tnew] [Ynew(t) Tnew Znew(t> ( )
where T,y = [T 0} , Yoga =Y, Zyqa = Z. The construction of Y,ew, Zpew 1S

based on the new input-output data and T, is matrix of all new possible shifts
of wavelet filters. After multiplication

TY (t) T(t)
Y (¢) - Z(t) 0, (6.22)
Tnew [Ynew (t)] Tnew lZnew (t)]

which leads to the expanded predictor

TY (t) — TZ(t)0 (6.23)
Y(t) Z(t)
Tnew [Ynew (t)] - Tnew lZnew (t)] 0 (624)

Weighting matrix W is also expanded in an appropriate manner. Unfortunately,
the newly arisen set of equations (6.24) depends on the whole set of the input-
output data contained in Z(t),Y (t), thus for parameter 6 actualization is nec-
essary to recompute it again from the whole data set. Any only advantage is
provided if maximum analysis level used is lower than maximum theoretical ana-
lysis level. In that case, an “unused” part of the matrix T, is filled by zeros
(Toew = [0 T}

new}) what means less input-output data is needed to be stored in
memory for Y, Z in equation (6.24). However, due to necessity of using quite large

part of old data, WT is not suitable to be used within recursive identification.

6.5.1 Discussion on other model structures

Talking about the recursive identification, we should also mention the applicability of
the presented method to other model structures. So far, we have dealt with ARX
model structure because of the reason that the predictor is linear in parameters. There
are actually several different SISO model structures which are also quite often used in
practise: ARMAX and OE model structures. The reader can find more details about
them for example in Ljung [1999]; Van den Hof [1996]; Zhu [2001]. These structures
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enable flexible description of disturbance part of a model, what consequently yields
the regressor z(t) contains the error of the estimate, thus depends on the parameters.
This is simultaneously their main disadvantage, since the predictor is then of the form
g(t) = z(t,0)0, what is called pseudolinear regression and what is impossible to solve
quickly by OLS. The solution to this identification problem is usually computed using
recursive least squares and as was previously mentioned, the recursive identification
is not advantageous when using with wavelets. Nevertheless, when transforming the
regressor in the presented way, one can utilize a recursive identification without any
change, the features of incorporation wavelets into SID remain the same. All adapta-

tions of the recursive algorithm like forgetting can also be applied.

6.6 Case study

The proposed algorithm was implemented and tested on an example thereby also
demonstrating the main features of the algorithm. Only a simulation example is used
for the reason of showing how the proposed algorithm performs, real-life cases will be
treated within the next section dealing with multivariable system identification. Con-
sider simple system with transfer function

. 0.0012272(s + 178)(s + 2)°
(s +0.1)2(s2 +4.8s +174.8)°

The objective of this example is to identify two models, each of the 2"® order and

each describing slow or fast dynamics of the original system, respectively. The fre-
quency characteristic of the system is well divisible into slow and fast part - poles are
{=0.1, —0.1} and {—2.4 — 13i , —2.4 + 134} for slow and fast dynamics, respectively.
This example is therefore very suitable for the demonstration of how wavelet filters can
work within SID. For simulation purposes, the system was discretized by sampling
time Ts = 0.1 s, thereby we obtained

G _ 0:0012272(= +13.94) (= — 0.6902)(=* — 1.7222 + 0.7431)
¢ (z — 0.99)2(22 — 0.42082 + 0.6188) ‘

Let us call the ARX model obtained via wavelets as “WAV” model. The results of
both the ARX and the WAV model parameter identification with all filters’ weights
set to 1 are depicted in Figure 6.2 and in Figure 6.3. Daubechies wavelets db4 were
used and the maximum possible analysis level p = 8 was used. Both models are not
satisfactory at all since they try to describe the global behavior of the original system,
but both are of the insufficient order. Despite the fact that the system has been excited
sufficiently at all necessary frequencies (up to half of the Nyquist frequency), this case
also illustrates that the WAV model implicitly contains more information about the
highest frequencies. It is caused by the fact that in the higher frequencies, there are
more equations in the predictor, therefore more emphasis is put on higher frequencies.
Note that when the order of the identified model would be 4 as of the original system,
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both models would be identified exactly even without tuning the weights, since the
original system G4 belongs to the set of all models with ARX structure of the 4*" order
(the set M), since this model structure is globally identifiable (Ljung [1999]) and since
the system was sufficiently excited by data.

magnitude (dB)

-3 -2 1
= 400 original system
S ARX model
< 200
o WAV model
& 0 : |
| ; N | ; N | ; A |
-3 -2 —1 0 1
10 10 10 10 10
frequency (rad/sec)
Figure 6.2: Model identified on full frequency range - Bode plot.
Table 6.1: Table of identified models.
. 2"? order model identified by
Frequencies
ARX WAV
All —0.00010382240.018562—0.02404  0.000046242240.016062—0.01076
22—1.1172+0.1484 22-0.50072+0.5538
Low 0.00888322—0.016422+0.007671 0.010822—0.020322-+0.009644
22-1.9722+0.9717 22-1.975240.9755
Hich 0.0003624224-0.015832—0.007988  —0.000091722240.015792—0.007404
& 22—0.3992+0.6096 22—0.387924-0.6149

During the identification procedure, the Empirical Transfer Function Estimate
(ETFE) and estimation of the frequency response together with wavelet filters (Fig-
ure 6.4) is displayed for the user convenience to adjust the filters’ weights in accor-
dance to his/her knowledge of the system. Concerning the selection of the weights of
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Figure 6.3: Model identified on full frequency range - simulation and histograms of
erTors.

the wavelet filters for slow and fast models in this case study, only the compensation
of the effect of the wavelet filters overlapping was considered. To obtain credible re-
sults of the WAV model it is suitable to compare it with the ARX model pre-filtered

with classical filter F'. The filters were chosen as Fj,, = ﬁ for low frequencies
and Fgn = G JS:;)4 for high frequencies. Both filters were discretized by Ts and both

are depicted in bode plots. The results are depicted in figures 6.6 and 6.7 and in fig-
ures 6.8 and 6.9 for slow and fast model identification, respectively. Both bode plots
clearly show that the frequency range selected for identification is perfectly covered
by the models obtained by both methods. For the slow dynamics (frequencies up to
1 rad-s™!, see Figure 6.4), 4 wavelet filters with the smallest frequencies were used
(i, i =6,...,9 from Table 4.1 for p = 8) and for the fast dynamics (frequencies from
1 rad-s™1), filters ;, i = 1,...,5 were used. The behavior of the models is worthy
to verify in the time domain as well. The time responses of the slow models match
the trend and higher frequencies are involved in the simulation error depicted by his-
tograms. On the other hand, the fast models cover only fast and short-time changes and
the whole trend of the signal is omitted. Numerical results are summarized in Table 6.1.

Let us now discuss the resulting ARX and WAV models. They are very similar one
to each other even from the numerical point of view. The question arises why to pre-
filter the identification data by wavelet filters. Wavelet filters have big advantages in
comparison to the filters designed in a classical way. Firstly, they have a simple struc-
ture in the frequency domain, secondly, they complement each other in the frequency
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Figure 6.4: Filters and ETFE for filters weights selection.

domain. This provides us with a big advantage in real problems, where the frequency
characteristics of the system to be identified are not known a priori. The satisfactory
results can be acquired by tuning of the weights (which corresponds to some knowl-
edge of the system) only. Note that once implemented, this method is quite generic,
while the design of the appropriate filters can be quite time consuming (compare the
simplicity of selection of weights when looking at the Figure 6.4 against describing a
suitable filter of some complex shape in frequency domain). Moreover, the wavelet
filters are orthogonal in the time domain, therefore each filter extracts the specific por-
tion of information from the signals without any duplicity. This fact also contributes
to the conditionality of the identification algorithm.

Moreover, there is a difference between the proposed algorithm and classical filtering
utilized above, as illustrated by Figure 6.5. The classical approach to frequency-domain
system identification is to first filter the input data, apply those inputs to the system
and perform identification afterwards (see Figure 6.5(a)). This approach has a major
drawback — the user should have a good knowledge of the frequency properties of the
system in advance to take the important frequencies into account while designing the
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Figure 6.5: The main principle of the proposed identification algorithm.
(a,b) shows classical frequency-domain identification approaches, (c) is the modification
with wavelets according to the thesis.

filter. Moreover, if any resonance or another important frequency is not excited, the
ability of the resulting model to cover this frequency decreases. The aforementioned
problem can be treated to a certain extent by using filtering after applying inputs
on the system (Figure 6.5(b)). Our (wavelet based) approach performs the filtering
and frequency analysis on unfiltered input and output signals as well. However, to
keep the time structure of the SID problem, it is impossible to separate the wavelet
transform and SID. Thus, both frequency analysis and W'T have to be included in the
identification algorithm as illustrated in Figure 6.5(c).
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Figure 6.6: Model identified on low frequency range - Bode plot.
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Figure 6.7: Model identified on low frequency range - simulation and histograms of
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50



5 T
i% ~10 original system
3 o0 ARX model
2 -—-— WAV model
g -30 .
g — — - prefilter for ARX
£ 40— R I T T e ey
-50 5 '2
10 10"
180 N Tor T TrTrd N Tor T T fff!/ N T T
120 | : N B
S 7
[0
o
(0]
(2]
©
<
o
_1503 II ”””iz II ”””i1 Iio Ii1
10 10° 10 10 10

frequency (rad/sec)

Figure 6.8:

systems responses

Model identified on high frequency range - Bode plot.

- N
3 —0.05F e Nl MR A
S |
o W, ‘ ‘
T e e || B e original system n
} ARX model
-0.15 o T " """""" T -—-— WAV model |
0 50 100 150 200 250 300 350 400 450 500
discrete time
histogram of error for ARX histogram of error for WAV
50 50

0.05 0.1 0.15

-0.1 -0.05

0

-0.1 -0.05

0

0.05 0.1

0.15

Figure 6.9: Model identified on high frequency range - simulation and histograms of

€rrors.

o1



52



Multivariable LTI system identification with
wavelets

As the Chapter 5 introduces the system identification problem from the SISO systems
point of view, the Chapter 6 shows how to exploit wavelets within the identification of
a SISO system. Additionally, there are several methods to identify unknown parameters
of multivariable LTI models as well. A multivariability is usually understood as that
the system has more than one input or output. In order to that, the control community
distinguish between two classes of multivariable systems, which are commonly marked
as Multiple-Input Single-Output (MISO) systems or Multiple-Input Multiple-Output
(MIMO) systems. The main SID procedure steps like choice of modeling purpose, choice
of model structure and choice of estimation method remain the same as for SISO SID
or at least analogical, however, the estimation method for multivariable systems can be
in general more complex, more computational demanding (sometimes even intractable)
and, additionally, they bring new problems into the SID theory and practise.

Although there are number of possible descriptions of LTI systems, two of them
are much more frequently used then the others: a state space system description and
a transfer function description. The choice of description can be largely assumed as a
part of choice of appropriate model structure. There are also some typical SID methods
for usual multivariable model structures: the already mentioned PEM for the transfer
function description and Subspace State Space System IDentification (4SID) method
(sometimes just called “subspace” method) for the system in a state space description.
Moreover, these methods can be extended to be able to handle the constraints on
unknown parameters Privara et al. [2010, 2012].

In this chapter, possible incorporation of WT into the identification of multivari-
able systems is investigated. The Chapter 6 has revealed a condition for SID method
to enable the incorporation of the DWT into it while the meaning of the DW'T and its
principles remain. That condition is a suitable expression of the identification prob-
lem so that a time-structure of measured data is preserved. Realize that when this
structure is broken, the DW'T can still be applied, but the meaning of filtering as well
as time and frequency localisation are completely lost and the DWT becomes just a
transformation tool with no interpretation. Therefore, in this chapter, we will address
only that multivariable SID methods which are suitable for the DWT.
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Typical representative of method which breaks the time-structure of data is sub-
space method. Subspace method exploits orthogonal projections between input and
output data to compute a matrix, which is to be divided further via SVD decomposi-
tion. Both projections and SVD decomposition break the time-structure of data, thus
the physical meaning of the DWT as well.

7.1 MISO LTI system identification with wavelets

It has been already mentioned that the main reason for the ARX model structure to be
treated within the Chapter 6 is proposition 5.1. Nevertheless, the ARX model structure
can be expanded for a MISO systems in the following way.

Let the MISO system with m inputs and 1 output be described (analogue to (5.6))
by a linear difference equation

O+ alt— k) =33 buus(t — ) + e(t),
k=1 =1 k=0

where wu; stands for the " input and b; 1. is the coefficient by for the input u;. By
substitution

Na Np
Alq,0) =1+ ¢ Far, Bi(q,0) =Y ¢ Fbip,
k=1 k=0

the model structure is

m

A(q,0)y(t) = Bi(q,0)ui(t) + e(?).

i=1
and transfer functions

G(q, 9) _ |:Bl(Qa ‘9) BQ(qve) Bm(q, 9)

T b o R ol RELCU R vt
Afterward, the predictor is of the form
g(tlt = 1,0) = [1 = H ' (g,0)| y(®) + H(g,0)G (g, 0)u(t)
= [1 - A(Qv 0)] y(t) + [Bl ((L 9)7 BQ(Qv 0)7 T Bm(Qv 0)] u(t)

Na m Ny
= — Z arg Fy(t) + Z Z bi,kqfku,-(t) (7.1)
k=1 i=1 k=0

and is still linear in unknown parameters ay, b; . Like before, this equation can be
rewritten as
g(tlt —1,0) = 27 (1)0

with
z(t)=[—y(t—=1),...,—y(t —ng),ur(t),...,u1(t —np), ..., um(t), ..., um(t — nb)]T,
9 = [al, e ,ana,bl’o, e ,bLnb, . ,bm’o, .. ~7bm,nb]T
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For all measured data, we again obtain the set of equations Y'(t,6) = Z(t)f with
Y(t,0), Z(t) composed in a similar manner as in Section 6.1.

Since this method extends the SISO SID from the Chapter 6 and since it is actually
the same class of the SID problem, its properties remain in principle the same (see Sec-
tion 6.4) except for one difference. This difference is that input signals must not be
mutually correlated with one another for the parameters to be strictly globally iden-
tifiable. The reason is that strongly correlated inputs are then difficult to distinguish
on the output of the system. Numerically, it causes the collinearity among columns
in the regressor Z(t)!, hence there is some non-empty right null-space of this matrix
and it consequently brings some additional degrees of freedom into the resulting set
of “optimal” parameters Oy Afterwards, there is no change in T, W matrices and
the whole principle of the DWT within SID is preserved just like in Chapter 6. Note
that the collinearity in transformed regressor T'Z(t) is hard to discuss since it depends
on several aspects, where the biggest one is the choice of wavelet filters family.

7.1.1 Case Study

After testing of the algorithm on the simple SISO system in Chapter 6, it is not neces-
sary to demonstrate the MISO algorithm for some testing example and we can test it
directly on a real life system. Namely, we will model one part of Heating, Ventilation
and Air Conditioning (HVAC) system of the building of the CTU in Prague consisting
of one zone only. The controlled quantity is the temperature in the zone T [K] and it
is affected mainly by three factors:

1. The first factor is indeed the heating accomplished here by water heating circuit.
The water flow rate within the heating circuit is constant, hence the temperature
of the supply water Tsy [K] is then the only control variable. The water heat up
the concrete in the ceiling of the zone, by what the air inside the zone is heated up
Privara et al. [2011]. The temperature of the return water Tgry [K] is measured,
but the temperature of the concrete T [K] is not.

2. The second factor is the ambient temperature Ty, [K], which affects the zone
temperature through both walls and windows.

3. The last factor is a solar radiation Qsol [J 3*1] affecting the zone temperature
mainly through windows. Note that the physical notation () is used since the
solar radiation effect is usually understood as an energy gain of the zone.

The collinearity in the regressor matrix can be also caused by the correlation of input and output
data, however, such a case can already appear when dealing with SISO SID.
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Thermodynamic systems are worth to be described with respect to energies Privara
et al. [2013a]. A simple first principle model of the situation can be written as

LhAc(Ty —To)

CcTC =cwm(Tsw — Teo) + ewmn(Trw — To) +

)

Rcz
CwTrw = cwm(Tsw — Trw) + cwri(Te — Trw), (7.2)
. AT =T I13As(Tymp — T .
Oty — 2 c(Te Z)Jr 3As(Tamp Z)+l4Qsol-
Reoz Raz

Cc, Cw and Cz stand for heat capacities of the concrete in ceiling, heating water
and zone air, respectively. ¢y denotes the specific heat of heating water. . denotes
constant water flow rate. Ac and Ag stand for heating area of the ceiling and area of
the surface between the zone and external environment, respectively. Royz and Raz
stand for thermal resistances between concrete and air inside the zone and between
zone and ambient environment, respectively. lo[—] € (0,1) are loss factors. Note
that in practise, all the capacities, resistances, areas and loss factors are not known
and are included within the parameters of the model. All these parameters cover
several practical phenomena, e.g. the capacity of the zone air covers also capacity of
the equipment inside the zone, the ambient temperature affects the zone temperature
through both walls and windows etc. The RC (Resistor-Capacitance) network for this
situation is depicted in Figure 7.1. The resistances R; and Rs in the figure represent
energy losses of the heating water and are inversely proportional to ¢y, however,
they are introduced only for the RC network purposes and will not be needed anymore.
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Figure 7.1: A schematic RC network of the heat transfer within the CTU building.

Realize now that from causality point of view, the temperature of return water
can not be an input to the system, since it is measured with a delay compared with
the effect of the heating water on the zone. From physical point of view, the return
water temperature should be an output of the model, however, the system would have
been of MIMO structure, which is treated further in the thesis. For the need of MISO
structure for this Section, we have to exploit the measured return water temperature
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and pre-compute the energy delivered to the concrete (to the point where the T¢ is
measured) Qppar(t) ~ Tsw (t —d) — Trw (t +d) with d being time delay between Ty
and To and/or between T and Try and with ~ denoting a proportionality except
for an unknown constant. Based on the measurements of supply and return waters,
this delay was determined to be approximately 10 minutes, thus d = 5 minutes, what
is then a reasonable choice for the sampling time T to be used for the discretization
of the model. Hence QHEAT(k") ~ Tsw(k — 1) — Trw (k + 1) with discrete time k.

Moreover, the equation for the Try is now out of the interest. Considering the Euler’s
approximation of the derivative by a difference, the discrete-time model is now

Totk+ ) =Tel) _y o iA(Ta(k) = Te(®) (7.3)
T, Roz

Tz(k+1) =Tyz(k)  LAc(Tc(k) — Tz(k)) N I3As(Tamp(k) — Tz (k))
T, - Reoz Raz

Cc

CZ + Z4Qsol(k)-

lp covers both a loss factor and an unknown coefficient of proportionality between
Qupar and true energy delivered to the concrete. The model (7.3) is now causal and
of the required MISO structure, since the only output of the model is Tz and the
inputs to the model are Q HEAT > Lump and Qsol. The temperature T¢ is a state, which
however does not play a role within the model’s transfer function. The transfer function
of the model is (according to (7.3)) of the 2”@ order. The parameters lo, R, Cs and
A, are considered to be constant and together with sampling time T form unknown
parameters of the model. More details on the modeling of this particular building can
be found in Privara et al. [2011, 2013b]; Siroky et al. [2011] (where at some of them,
the author of this thesis is a co-author), therefore we will not treat it anymore and let
us have a look at the identification using wavelets. For the demonstration, appropriate
representative of data measured on the building is depicted in Figure 7.2.

At first, we perform an analysis of data measured on the building. Since the only
differences of the temperatures are present in the model description, the temperatures
in degrees of Celsius can be used with no loss of generality. In practise, the data usually
suffer from several phenomena, what consequently makes their frequency analysis ugly.
A quite common issue is the high frequency content of data that is caused by several
reasons: i) A common measurement noise is present. ii) A resolution of a sensor
causes jumps in the measure values, which consequently add an artificial high frequency
content into data. iii) Failures of sensors are similar issue to the letter one. When either
the sensor breaks down or the communication fails, it breaks the dynamics stored in
the data. And afterwards, when repairing the sensor, another jump in the measured
value can arise. We should therefore treat the data carefully, especially from the high
frequencies point of view. One of ways to improve the variance properties of the ETFE
is to smooth it Ljung [1999]. This procedure results in highlighting of the frequency
content of the data across the whole spectra except of the slowest frequencies, since
the procedure operates on several (shorter) parts of measured data. Such treatment
of the measured data was performed and is depicted in Figure 7.3. Moreover, when
performing a frequency analysis of the data, the sampling time Ty = 5 minutes emerged
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Figure 7.2: Representative data measured on the real building.

to be unnecessarily fast, since the dynamics of the heating up of either the concrete or
the air is much slower. Therefore, the Ts = 5 minutes was used only for the computation
of the energy delivered during one sample Qgrpar =~ Q geAT - Ts and then, the data were
re-sampled (or recomputed) onto Ts = 30 minutes, what has been proved in literature
to be sufficient enough for building modeling.

For the case study, wavelet family db4 was used on the data for identification
of length around 800 samples. The maximum analysis level is 6. Figure 7.3 shows
the estimates of magnitude-Bode graphs for appropriate inputs, from which the user
can presume the importance of individual frequency ranges. Based on the author’s
experience with building dynamics, the finally used wavelet filters were mainly on the
27 and on the 3" level (red and green color; count the levels from the right) together
with wavelet filter for steady state. The 1% and the 4*" levels (cyan and blue color)
should also be considered, since they cover either the fall (poles of the transfer function)
or the growth (zeros of the transfer function) in the ETFE. Final vector of weights

was set as V = [5 0 0 15 23 23 1}, the orders of the model to be identified

was chosen to be n, = 2, ny = 3 and no delay was considered, all in accordance to the
transfer function of the model (7.3).
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Figure 7.3: Frequency analysis of data measured on the real building.

Figure 7.4 shows the result and possible improvement of the model estimated firstly
only by using of the pure ARX model and afterwards by using the wavelets with the
above-mentioned settings. Note that the range of the improvement depends (except of
the measured data quality) on knowledge of the system. Creating the classical filter
is a difficult task in this case since there are several frequencies (or frequency ranges)
of interest. On the other hand, the wavelet pre-filtering becomes a very user-friendly
method which requires the user to choose the weights for the individual filters only.
We can see in that figure that the resulting model possesses acceptable dynamics.
Moreover, it is important to realize that, in spite of the model was estimated by PEM,
thus with an emphasis to minimize the one step prediction error, Figure 7.4 depicts
the simulation of the model on 1 week data,' and it still records a good result. On the
other hand, comparing the performance of both models on one step ahead prediction
would not bring any valuable result, since both models predict the right next output
almost exactly (according to the theory and its treatment of the noisy data). Note that
to evaluate the simulation performance of the models (e.g. by the well known fit-factor
Ljung [1999]) is not so reasonable when simulating the model, since such evaluations
usually assess the exact matching of the data, but the emphasis should be laid on the
correct dynamical behavior. More detailed comparison of both models is in Table 7.1.

Moreover, we should mention non-linearities, disturbances, noises or even missing
measurements in the real life task that also affect the model quality. For example of the
buildings modeling, the typical missing variable is an occupancy, which however affects

11 week simulation is sufficient enough, the MPC control of buildings usually predict the behavior
1 or 2 days ahead Privara et al. [2013a].

59



the zone temperature a lot and is also missing in this case study. Finally, Figure 7.4
also depicts histograms of the simulation error. It can be seen, that the WAV model has
more Gaussian histogram than the ARX model. It is caused mainly by the satisfactory
tracking of the measured output data by WAV model, while the ARX model recorded
large simulation error in the second half.

systems responses

26 T T T T T T T
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ARX model EECTETTSR R
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Figure 7.4: Real application of MISO system identification.

7.2 MIMO LTI system identification with wavelets

When facing the problem of modeling and identification of MIMO systems where only
input and output data are measured and no or very little information of the system’s
structure is known, a general model structure has to be utilized. Such a description of
the model in the state space form is z(k+1) = A(0)x(k)+B(0)u(k), y(k) = C(0)x(k)+
D(0)u(k), where dimensions of inputs and outputs are given by measurements, but the
order of the system is unknown (the same holds for appropriate dimensions of model
matrices). One of the identification methods for such a structure is (already mentioned)
4SID algorithm, which is unsuitable for the DW'T incorporation. There is however a
possibility to deal with MIMO state space structure in a way enabling the usage of
the DWT. This procedure is described in the following Section 7.2.2.
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Table 7.1: Comparison of MISO ARX and WAV models.

ARX model WAV model

Fit-factor computed on the simulation

25.19% | 43.21%

Order of the model
Order n = 2, one of them is measured | Order n = 2, one of them is measured
output. output.

Effect of the inputs
The ARX model records negative effect | The WAV model records small, thus un-
of both external inputs what is definitely | reliable, effects of both external inputs
not correct. what can be a consequence of insufficient
inner structure.

Evaluation of the simulation

The simulation of both models seem to be good enough, especially when considering
its length and all the simplifications performed during the modeling. However,
despite of the fact that both models possess an acceptable dynamics, effects of
their inputs are not correct at all. Therefore, the models are not suitable for any
practical utilization, since they (more precisely, their parameters) do not comply
basic physical laws.

In a transfer function description, we can consider a general model described through
polynomial fractional matrices G(q, ), H(q,0). The procedure of identification of such
transfer function model structure is described in the following Section 7.2.1, where
consequential properties of stochastic part of the model are discussed.

7.2.1 Transfer function description

Assume a multivariable system of the form of (5.1)

y(t) = G(q)u(t) + H(q)e(t) (7.4)
with
Gi1(q) - Gim(q) Hi(q) 0
Glg)=| : , H(q) = : (7.5)
Go,l(Q) e Go,m(Q) 0 HO(Q)

Note that u(t), y(t), e(t) are now vectors. Additionally, since e(t) is considered (as is
usual in SID theory) to be white Gaussian and independent sequence, we can “stack”
them and write (with some abuse of notation) the stochastic part simply as H(q) =

T
{Hl (q) --- Ho(q)} . To comply with the theory in Chapter 5, a general model of the
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system (7.4) is y(t) = G(q, 0)u(t) + H(q,0)e(t), where G(q,0), H(q,0) are analogous
to those in (7.5).

Let us have a look now at the deterministic part G(q) in more details. From the
linear systems theory Antsaklis and Michel [1997], the well-known fact is that any
proper rational transfer function G(gq) can be written thanks to Polynomial Matrix
Fractional Description (PMFD) as

G(q) = D;'(¢)NL(q) = Nr(q)Dg' (), (7.6)

where N1,(q), Nr(q), Dr(q), Dr(q) are polynomial matrices of appropriate dimensions.
For further purpose of the work, we will use only the notation G(q) = Dil(q)N (q) =
D~'(q)N(q). The matrix D(q) can be computed as a diagonal matrix with elements
as the least common denominators of all entries in the appropriate rows of G(q)

di(q) 0
0 do(q)
however, in such configuration, the diagonal elements d;(q),7 = 1, ..., 0 can be different,

so the MIMO system can be split into o MISO systems and each identified separately:

di(qQ)y1(t) = Ni(q)u(?),

: : (7.8)
do(Q)yo(t) = NO(Q)u(t)a

where N; stands for the i row of matrix N(g). This structure has many advantages Zhu
[2001]: i) It has simple interpretation. ii) Splitting MIMO model into MISO models
reduces a complexity of the SID problem. iii) The SID methods developed for SISO
systems (see Chapter 5) and extended to MISO systems (see Section 7.1) can be further
used for MIMO systems as well.

Having now G(q) = D~*(q)N(q) in the aforementioned form, we obtain the model
structure

y(t) = D™ (q,0)N(q,0)u(t) + H(q,0)e(t). (7.9)

The choice for the structure of H(q,6) should be done to classify the SID problem.
It is easy to see that when H(q,6) = I, the model (7.9) becomes multivariable OE

model structure consisting of o independent MISO OE models. Another choice is
H(q,0) = D7 '(q,0) which yields the MISO ARX model structure

D(q,0)y(t) = N(g, 0)u(t) + e(t). (7.10)

This choice gives us linear in parameters predictor §(t) = G(q, 6)u(t) = (I—D(q,0))y(t)+
N(q,0)u(t). Each partial MISO system is then identified as in Section 7.1.
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Another option is to choose the matrix D(q) as D(q) = d(q)I with polynomial d(q)
being a least common denominator of all entries in G(q), what consequently means
that all partial transfer functions in

(7.11)

have the same denominator, N'(¢) stands for N(q) with some polynomials extended in
order to the equality (7.11) holds. The model structure (7.10) now has an expression

d(q, 0)y1(t) = Ni(q, O)u(t) +ex(t),

d(q,0)yo(t) = No(q, O)u(t) + eo(t).

As the denominator d(q,0) is common to the whole model, the user can identify the
whole system at once. Moreover, it enables the user to select the order of the denomi-
nator according to considered important dynamics of the system.

The formulation of the identification problem follows. Predictor of the i*» MISO
submodel can be written according to Section 7.1 as Y;i(t,8) = Z;(t)6;, where 6; contains
unknown parameters of d(q,8) and N;(q, 8). Since the part of 6; containing parameters
of d(q,0) is common to all §;, i = 1,...,0, let us divide Z;(¢t) and 0; as Z;(t) =
(Zia(t), Zin(t)] and 6; = {95, HZN}T, where 62" and HEN contains only the parameters
of d(q,0) and N;(q,0), respectively, Z;(t) is divided in the same manner. Now the
predictor for the whole MIMO model can be written in the form of Y (¢,0) = Z(t)6 as

Obviously, the problem can now be solved via OLS as in (6.2) with Y (¢) being compound
in the same manner as Y (,6).

The main pros and cons of this approach with D(q,6) = d(q,0)I compared to the
approach with general diagonal matrix D(q, ) are:

+ The whole model is identified at once.

+ The number of unknown parameters is significantly reduced, since the only one
denominator is used for the whole model.

- Y (t), Z(t) matrices used within the identification problem are much larger, thus
the computational demands increased. However, the matrix Z(t) is very sparse
and has specific structure, what can simplify the computation.
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The presented method extends the MISO SID from the Section 7.1, therefore, the
properties of the method remain the same as before as well as issues with correla-
tion of data or collinearity in regressor. Finally, the way of utilizing wavelets within
this method still remains as before with one important, but quite clear change: each
partial MISO model can be obtained via a different set of wavelet filters, hence with
emphasis placed on different dynamics.

Concerning the utilization of different model structure of MIMO system (or MISO
systems) like aforementioned ARMAX or OE model structures, the difficulty of ex-
ploiting a recursive identification together with wavelets has already been discussed
within Section 6.5 and the same holds for a multivariable case as well.

7.2.2 State space description

Consider now the true system is MIMO LTI system in a state space description with all
outputs being also the state variables and that all of them are measured. The discrete
formulation of such a system is

x(k + 1) = Az(k) + Bu(k) + e(k)

with k& being the discrete time, z € R", u € R™, e € R" are system state (or output),
input and measurement noise vectors, respectively. Matrices A and B are system
matrices of appropriate dimensions. The state space model structure can be chose as

o(k+1) = A@)z(k) + BO)u(k) (7.12)

with A(#), B(6) being model matrices. For the time line, it can be written

XN =A@)XN 1+ BOUN, (7.13)
where N is the number of samples and X,]:JFN*l, U,erN*l are the matrices of state,
input and noise values defined as follows

X2 = [ivk Tyl - $k+N—2] ;
U]ICH_N_Q = [uk Uk+1 - ’u,kJrN,Q} . (7.14)
The equation (7.13) can be rewritten as
xN-1
X3 = [A@0) BO)] [UI}V11 (7.15)

For the purpose of possibility to apply the DWT within this SID method, the (7.15)
has to be transposed. However, due to a simple notation, we set up the notation
Xy = Xév, X = X{V_l, U, = UlN_1 and then obtain

<=t or] [
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This equation can be further rewritten to the standard OLS estimation problem with
the aid of vectorization (vec(e)) and Kronecker product (e ® e)

m@@:@®p;wpmqggb, (7.16)

where I,, is n X n identity matrix and n represents the system’s order. The equation
(7.16) is now in the form of Y = Z6 with

szec(X;‘F) ) Z:In®[X1T Uﬂ 70:V€C<léiggﬂ>'

Let us have a look at the predictor for the model (7.12). The transfer functions of
this model are G(q,0) = (¢~ — A(@)f1 B(9), H(q,0) = I and the predictor (in order
to (5.5)) is

2(0) = [1 = B7(g,0)] i + H™'(4,0)G(q, )1
=[1-1 vt (¢ - A®)  BOU
= (¢'1-40) " BOV:,

with Y1, Y2 being in accordance to (7.14). Therefore, since (¢~ — A(G))_1 B(0) is the
transfer function and since the outputs are also the state variables, we can write the
predictor in the form of
X5(0) = A(0) X, + B(H)U;

and due to (7.13), X2(#) = X2(0). The consequence is that the equation (7.16) is
predictor of the model (7.12) and Y = vec (Xg) = vec (X2T) =Y.

The problem of finding the parameters 6 in the prediction error minimization point
of view is now well known and corresponds to the (6.2) and (6.3). So in our case it can
be written as

N

. 1 N 2
On = arg mgm N ; 3 |:X2 — XQ(H)]
2
: AT(0)
_ T\ T 77T
_MW”M%)w®WIHM%bWD2 (.17)
An alternative expression is
2
R R , AT(6)
_ T\ _ xT yr
An(0), Bn(0) argA(IQIilél(e) vec (X2 ) (In ® [ 1 Uj D vec <lBT(9)]> 2
(7.18)

st.: A(0) € Ay,
B(6) € B,
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where M stands for the particular model structure including both the structure of
matrices A(6), B(#) and constraints of parameters § and where Ayg, By are sets of
all admissible matrices A(6), B(#). The difference between these two expressions is
that the prediction error in (7.18) is linear in parameters A(f), B(6) or their elements,
respectively, but the prediction error in (7.17) need not be linear in 6. The solvability
of (7.18) depends on the choice of what the parameters 6 are. Let us explain it quickly

on an example. Let A = %b b(;]’ where a, b, ¢ are unknown. When 6 = [ab, ¢, b?],
the problem is the same as the (7.18) and is uniquely solvable. On the other hand,
when 0 = [a,b,c|, we have to introduce an auxiliary ¢ = f(6) = [ab, c,b?] to solve

the problem as before, but existence of an analytical solution to # = f~1(¢’) is not
guaranteed, not even its uniqueness.

Realize now that when writing the model structure based on physics, only some of
elements of matrices A(#), B(#) are to be found while the others can be zero. This is the
point where the strength of the vectorization comes up. Namely, the set of equations
(7.16) can be divided on the equations with zero right side and the equations with
right side dependent on 6. The zero-right-side equations can then be omitted from
the problem (7.17), since they are independent of parameters 6 and they do not affect
the solution @y. Moreover, the selected (modelled based on physics) inner structure
of matrices A(6), B(6) can be verified by evaluating the errors of the zero-right-side
equations and, if necessary, an analysis of missing terms (missing physical phenomena)
can be performed.

Note that there is another option that some parameter is known. Then the only
difference from the principle described above is that the set of equations with right
side independent on # extends. On the other hand, the user need not trust this value,
so leave it among unknown parameters as one of them and either initiate it on the
assumed value or limit it by some reliable range around the assumed value.

It can be seen on the | X{ U{ } matrix that the transposition preserved the time-
structure of the data. Moreover this time-structure is not spoiled by the Kronecker
product (In ® [X I ur } ), hence such the SID problem formulation is suitable for the
incorporation of the DW'T. The wavelet filtering can be incorporated directly into the
minimization problem (7.17) in many ways, for example as

2
(7.19)

- AT(8
vee (WTX]) = (L, @ WT |XT UF]) vec ([ BTEQ;D

Oy = arg ngn
2

where T', W are wavelet and weighting matrix, respectively. Note that the principle of
interconnection of the DWT and the SID again remains the same is before.
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7.2.3 Case Study

In here, we will consider another case study to show a functionality of the proposed
algorithm. Firstly, we assume a system

2s/30+1 10s/3+100 505+100
G(g) = | F425F1 12054100 5242054100
4) = | 0,1255+10 5/30+1 25+10 )

s2+11s+10 s2411s+1 s2+11s+10

and discretize it by Ts = 0.01 s. This system has two main locations of poles (in —1
and in —10), fast and slow, and we will show just the result of applying the algorithm
for MIMO SID, since the idea of applying the wavelets has been discussed in more
details within case studies in Chapter 6 and Section 7.1. The system was excited at
all frequencies by Pseudo-Random Binary Sequence (PRBS), data used for the identi-
fication were of the length of 2000 samples and basic wavelet function db5 was used.
Since there is higher number of equation containing the high-frequencies information,
we will focus on a fast submodel identification only (so the frequencies corresponding
to w = 10 and higher). The original system is of 2"? order and the order of the model
to be identified was chosen as n, = 1,1, = 2 and with no delay. The resulting model
covers the high frequencies only, what is demonstrated by comparison of Bode plots of
original system and the resulting model in Figure 7.5.

Another illustration was performed on a real life case. In the case study for MISO
system (Section 7.1.1) we promised that the full causal structure of the building of
the CTU in Prague will be treated as a MIMO system, so it is here. Based on the equa-
tions (7.2) and proper causal sampling, we obtain the 3"% order model with Tsyw, Tums
and Qs as inputs, T as unmeasured state and Tryy and T as measured states, thus
outputs. Note that two cases will be showed here:

1. Since one of states of the model is not measured, the identification method for
the MIMO state-space model description (Section 7.2.2) can not be used and we
use the transfer function approach (Section 7.2.1). This case will be treated in a
similar manner as was in the MISO case in Section 7.1.1, thus we will compare
the pure ARX model against the WAV model exploiting the wavelets.

2. Next, we add the comparison against the model, which is widely used in practise of
the predictive control of the building heating system Privara et al. [2013a]; Vana
et al. [2014]. Such a model is identified in the form of state-space description via
the method described in Section 7.2.2. The state-space description of the model
is enabled by the omitting of the virtual concrete core temperature T¢. In this
case, the model can obviously be of the lower order. This model is further marked
as GB model.

The same identification data as well as the same type of wavelet filters as for
the MISO case were used. It means the data length of around 800 samples were used,
what with wavelet function db4 results in that the maximum wavelet analysis level is 6.
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Figure 7.5: Comparing of Bode plots of the resulting MIMO fast submodel and the
System.

The order of the model must comply the previously mentioned model structure, thus
ng = 3,np = 4 and again, no delay was considered. The only difference in the procedure
is now in the set of inputs and outputs of the model as their mutual relationships are
different than for the MISO case. Therefore, there will be a different vector of weights.
Based on the author’s experience with building modeling, the weights were set as a
combination of two approaches to weighting:

1. The first approach is weighting the number of equations within a particular fre-
quency range (see Section 6.3). Since each new analysis level halves (approxi-
mately) the number of equations from the analysis on one level lower, the vector
of weights were set as V} = [64 32 16 8 4 2 1}. It means that the cumu-
lative errors at all distinct frequency ranges are of the same interest.

2. The second approach is classical weighting of frequency ranges of interest. The
vector of weights was set as Vo = [12 1 3 2 3 1 3}.

The final vector of weights is then element-wise multiplication of V; and V5.
The results are introduced in the same manner as in Section 7.1.1. However to be
more interesting, the simulation was performed for much longer time interval. Figure 7.6
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and Figure 7.7 show the 6-weeks simulation of all resulting models in comparison both
to the measured data and to each other, each figure for one particular output. Based
on the length of the simulation, there can be no doubts that all models possess a
proper dynamics. Realize that since the objective of the application is to control the
temperature T inside the zone, an emphasis during identification should be placed
right on this output. Moreover, as is visible from the Figure 7.6, the models perform
very well from the Tgry point of view. Therefore, we can allow some small lost of
performance on this output at the expense of improvement of performance on the zone
temperature Tz output. Such a user’s endeavour can be seen on histograms of errors
of ARX and WAV models, where for Try, the ARX model recorded better result than
the WAV model while for Tz, the WAV model recorded significantly better result than
the ARX model. There is another important result visible from histograms so that
there are no systematic errors (as a shift) in the simulation, what also verifies the
qualities of the models.

Concerning the GB model, it recorded results which are comparable to those of
the ARX and the WAV models, even despite of the fact that it is of the lower order.
In the predictive control, the lower model order means also the lower computational
demands. On the other hand, the difference of the orders of the models is not that
high to cause any computational difficulties when using for the predictive control of
buildings, since the heating has slow dynamics and there is a lot of time to compute
the control action. Yet another fact is that the state-space identification approach (used
for obtaining of the GB model) is sufficient enough to describe the system’s behavior,
since it is widely used for the control in practise Privara et al. [2013b]; Vana et al.
[2014]. More detailed comparison of both models is in Table 7.2.
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Figure 7.6: MIMO real life case study - a comparison of models simulations against the
measured data - the return water temperature behavior.
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Table 7.2: Comparison of MIMO ARX, WAV and GB models.

ARX model

WAV model

GB model

Fit-factor computed on the simulation of Ty

90.19% | 86.72% | 81.51%
Fit-factor computed on the simulation of T
24.52% | 49.70% 35.23%

Order of the model

Order 1,5, = 6, none of
them is measured. More-
over, the model contains
unjustified oscillatory dy-
namics.

Order nu, = 6, two of
the are measured outputs.
There are 3 main eigenva-
lues of the state transition
matrix repeating for each
output.

Order n,,n, = 2, both of
them are measured out-
puts. The eigenvalues
are similar to those of
the WAV model, however
the fastest dynamics for
the heating water itself is
missing.

Effect of the inputs

The ARX model records
negative effect of the so-
lar input what is definitely
not correct.

The WAV model records
(out of the considered
models) the most reliable
effects of all inputs.

The GB model records re-
liable effects of inputs on
Tz, but the effects on the
Trw seem to be overesti-
mated.

Evaluation of the simulation

The simulation of all models seem to be good enough, especially when considering

its length.

Despite of the fact that
the ARX model possesses
an acceptable dynamics,
effects of its input is
not correct, therefore, the
ARX model is not suitable
for any practical utiliza-
tion, since it does not com-
ply basic physical laws.

The WAV model records
very good long-time simu-
lation result, even better
than the GB model, what
is caused by both the
higher order and stronger

emphasis on important
frequencies during the
identification. Moreover,

not measuring of some
states is not such a big
deal since a state observer
is a common solution to
this issue in practise.

The GB model records
very good long-time sim-
Consider-
ing the simplicity of the
model together with ad-
vantage of the measured
states, it definitely be-
longs among the models
suitable for further practi-
cal MPC control.

ulation result.
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Wavelets as modulating functions

According to practical data measurement, parameters estimation from the discrete-
time domain is the dominating approach in system identification. On the other hand,
models based on physical laws are usually described in the continuous-time domain,
what is a motivation for using identification methods for continuous-time models.

There are several approaches to continuous-time system identification Garnier et al.
[2003], many of them are well-established and widely known. They divide into exact
and direct methods. The exact approach exploits the discretization of original system
to estimate its parameters, namely, the discrete-time model is described in terms of
continuous-time parameters, which are then computed from parameters estimated for
the discrete-time model. In direct approach, continuous-time signals are transformed
in order to obtain a set of algebraic equations, whose solving results in required para-
meters.

This chapter describes one of the basic identification methods developed mainly
for continuous-time model estimation together with possible incorporation of wavelet
functions. The state of the art for this chapter has already been stated in Chapter 3.

8.1 Modulating function method

Consider the continuous-time LTT system

y ") () +an, 1y () 4+ Faoy(t) = by u™) (#)+bpy 1w () 4 - +bou(t) +e(t),

where ny, < n,, where e(t) is a noise and where ag, a1, ..., an,,bo, b1,...,by, are para-
meters to be estimated from a set of input and output signals y(t), u(t). % stands for
the i*" derivative of the function with respect to time. For a simple notation, we can
write

Ng ny
S aiy () = buld(t) +e(t) , an, =1. (8.1)
i=0 j=0

The fundamental complication of this formulation is within the time derivatives. There
are three methods to cope with this issue Garnier et al. [2003] and the approach using
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modulating functions is one of them.

The basic principle of applying modulating function for SID was firstly suggested
by Shinbrot [1954], however for more details the reader can look for some recent book,
e.g. Rao and Unbehauen [2006]. The idea of modulating functions is quite simple as
they are only weighting functions to the signals. The only (and the main) difference
is that they become zero-valued after a finite time. The reason for this feature is best
explained by applying the procedure.

Modulating functions ¢(t) of general order n are smooth, n times differentiable
functions with finite support [0, 7]. Mathematically, they satisfy 3 specific properties:

1.
B o(t) for0<t<T,
o(t) = { 0 elsewhere. (8.2)
2. .
Cflt(f( t) = ¢( )(t) exists for ¢ = 0 ,n (8.3)
3.
d)(i)(o) =0, ¢(i) (T)=0fori=0,...,n. (8.4)

The main purpose of defining the modulating functions as above is their consequent

property:
/ FO @) / f(#) (8.5)

where f(t) is a continuous-time n times differentiable function. Note that this important
property can be derived by repeated integrating by parts together with using all three
properties of modulating functions.

Let us apply it onto the identification of the system (8.1). Modulating (multiplying)
the system by the function ¢(t) and integrating over the time interval [0, 7] yields

Na T T
a: (%) J) e a, = 1.
; /0 YO (1) Zb/ (t)dt—i—/o (D60t , an, =1

However, because of the property (8.5), the expression above can be rewritten as

Ta T np
_ ia, (%) _ CNin. .o
> (-Vfax [yl ey D [ e e [ oo, an, =1.

Now, it is possible to evaluate the integrals numerically, what leads to the sole algebraic
equation. Hence the modulating functions enable us to transform the continuous-time
problem into set of algebraic equations and, moreover, they avoid the effect of initial
conditions when estimating unknown system parameters. The number of unknown
parameters is ng +np + 1, so at least the same number of linearly independent algebraic
equations is needed to estimate the parameters. However, having exactly ng + np + 1
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equations need not be satisfying, since the power of statistical data-driven SID is in the
much larger amount of equations than of unknown parameters and since it is hard to
obtain really independent equations in practise. There are two usual ways of generating
the equations:

1. When ¢(t) is the modulating function, the shifted function ¢(t — AT) is also the
modulating function. The only difference is that its support is [AT, T + AT], but
the basic principle of modulating function method is preserved.

2. The second and an obvious alternative is to use a different modulating function.

Denote the particular modulating function as ¢ (¢) and denote

. T i
) = V' [ uoe o (3.6)
T
e = /0 e(t) b (1)dt. (8.7)
Then the algebraic equation for some ¢ (t) can be rewritten as
ng—1 ) ngy )
W) == D amp(y) + Y bim(u) +e=0+¢
i=0 §=0
where
v = [T W) R W) R W) (8.8)
0= [an, 1,--,a0,bpy, .., bo]" . (8.9)

Matrix extension of this equation for all employed modulating functions ¢ () is solvable
via classical OLS method.

For more details about not only the modulation functions method itself, but about
the application of this method on several issues concerning the system identification as
well, please, see Preisig and Rippin [1993a].

8.1.1 Choice of modulating function

As the modulating functions are the only variables in this method, they should be
selected responsibly to correspond to the aims of the identification procedure = the
purpose of the model. The selection should be done in order to the following properties
of the modulating functions:

1. Type: Several types of modulating functions can be found across the literature.
The widely referred types are Shinbrot’s functions, Cahen’s and Loeb’s functions
and Maletinsky’s spline functions, however, many other successful attempts to
create the modulating function were done. Except the properties discussed fur-
ther, they usually differ in number of parameters.
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2. Order: The main rule which the order of the modulating function should satisfy
is that it is larger than or equal to the order of the identified model, thus to be
at least n times differentiable.

3. Time properties:

i) Length: It has been already shown that the finite (compact) support is
essential property of modulating function. The length T of the modulat-
ing function obviously determines the lowest distinguishable frequency in its
spectra. Also the maximum length is limited by the length of the measured
data. Next realize that the data are always corrupted by a noise, which is
integrated over T as well. So the choice of T should be some trade-off be-
tween stochastic part elimination and extraction of useful information from
the data.

ii) Shift: The shift AT plays an important role when generating algebraic
equations needed for problem solving. Since the particular equations are
beneficial to be independent, the suitable choice for time shift has to be done.
The choice itself is not easy, since it can depend on the choice of modulating
function type or even on the excitation of the data (or the system). Moreover,
several various shifts ATy, k= 1,2,... can be used for different modulating
functions. Choice for proper AT is sometimes mentioned in connection with
the frequency information obtained from data, realize however that the shift
has no impact on the modulating function spectra.

4. Frequency properties: Since the modulating functions are usually symmet-
rical around some time point t5 (mostly due to their simple construction and
consequently for the fast computation), the equality

T T
| rOwett —dt = [ fOws(t. +ar
0 0
T 4
= (0" [ R0+
e .
= (0" [ F08 .~ 1y

holds. It transfers the multiplying with shifted modulating function (by ts) into
the convolution in time point ¢; and as is generally known, the convolution in
time is multiplying in frequency, thus filtering. The conclusion is that because of
the modulating functions are symmetrical, the modulating can be thought of as
a simple filtering. Therefore, the user should now take care about the frequency
properties of modulating functions as well. Some of them are already mentioned
above within the time properties, so let them repeat from the frequency point of
view. The maximum distinguishable frequency is given by the length 7' (or by
the length of data) together with the Shannon-Kotelnik theorem. Also various
types of modulating function can differ in their spectra, thus each type can be
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utilized to focus on an appropriate (application depended) frequency information
in data.

Next, the stochastic part is filtered as well, so when the noise is (rightfully)
considered to be in higher frequencies, we can practically get rid of the noise
by proper choice of modulating functions ans reduce the error in parameters
estimation significantly. However, the general conclusion about the stochastic
properties of the estimate is hard to make since it finally depends on many user’s
choices, which each treat the noise diversely.

8.2 Wavelets as modulating functions

When reading about the modulating functions, several similarities to wavelet transform
arise, e.g. requirement on finite support or specific time-frequency localisation. This
section introduces utilizing wavelet functions as modulating functions within the sys-
tem identification procedure. First, the relationship between wavelets and modulating
functions is determined and then, a discussion on both choice of wavelets and other
aspects related to wavelet analysis is provided here.

8.2.1 Wavelets and modulating functions relationship

As the modulating function method is method for continuous-time SID, we must look
at the similarities with the CWT Frazier [1999]. The general formula of the CWT is
expressed by the integral

Fab) = [ ro o) @ (8.10)

a,b) = —_— , .
Vil Joe a

where F'(a, b) is continuous-time wavelet transform of square-integrable function f(t) €

2(R), (t) is (mother) wavelet function and a,b € R, a > 0 are scale and shift,

respectively. Comparing this formula with the integral

/0 " ettt (8.11)

used within the modulating function method, we can state some relations between
wavelets and modulating functions. First and the most important remark is that the
modulating function ¢(t) corresponds to the complex conjugate of the wavelet Wt) and
not to the wavelet ¢ (t) itself. Next, the shifts and scales of the basic wavelet could
be used as modulating functions as well. The requirements imposed on modulating
functions must be still satisfied for W An inner product with a complex conjugate
is a convolution with a conjugate reflection (4.8), thus the wavelet transform (8.10)
performs a filtering and the symmetry of wavelet function as a modulating function
is not required anymore. Now it can seem that the condition “to be a modulating
function” is stronger than the condition “to be a wavelet”, but it is not true and it

is not weaker condition either. Both wavelets and modulating functions are special
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types of functions themselves, there are modulating functions which are not wavelets
and there are wavelets which are not modulating functions. Note that one of the first
notes on similarities of modulating functions and wavelets was mentioned in Preisig
[2001], where the relation between Maletinsky’s spline modulating functions and B-
spline wavelets is discussed. Next, Mukhopadhyay et al. [2010] handles the spline
wavelets for SID problem.

There is one more advanced feature of the CW'T which is possible to incorporate into
the modulating functions method to simplify the whole procedure. It is the Mallat’s
algorithm (Frazier [1999]) enabling fast computation of the CWT (sometimes called
fast wavelet transform). The Mallat’s algorithm enables to compute the transform at
all levels with use of basic wavelets only. Wavelet transform coefficients at higher levels
are then computed based on the knowledge of the coefficients at one level lower. In
connection with necessity to produce several algebraic equation to solve the identifica-
tion problem, the Mallat’s algorithm simplifies only that computations which use the
same basic wavelet.

As we already know from Section 4.5 and Section 4.5.1, continuous-time wavelets
usually have explicit expression, what is an advantage for computing the integral (8.10).
There are, however, other troubles with application of the modulating function method
with wavelets. Foremost, the essential problem of the pure modulating functions
method is that both input and output must be also expressed explicitly. Another
issue is that continuous-time wavelets have usually infinite support, so they do not
comply one of the key requirements and therefore they can not be used as a modulat-
ing function in a classical manner. Nevertheless, as the real data are always sampled no
matter the system description is continuous or discrete, the integrals within the modu-
lating functions method can be computed through a numerical integration. Therefore,
the continuous-time wavelets have to be approximated by their discrete expression (as
mentioned in Section 4.5.1).

Finally, the whole identification problem becomes discrete. It however can not be
said that the CWT is replaced by the DWT. Realize that it is not necessary to employ
the wavelet transform in its essence, but only the wavelet functions with their specific
properties as advantages are to be utilized as modulating functions. Therefore, there
is no necessity of keeping the rule of even shifts of wavelets and we can shift wavelet
function just by 1 sample. In order to do that, let us look at the wavelets from the linear
systems point of view. Considering a linear dynamical filter to have the same filtering
properties as particular wavelet function, this filter has to generate the wavelet function
as its impulse response. Next, considering a discrete-time approximation of the wavelet
(when necessary), the resulting filter is a simple FIR filter and can be computed as

L—1
FIR(q) =Y q77v(j),
j=0

where L — 1 is the order of the filter (what corresponds to the support L of the wavelet
¥ (t)). The example and comparison of such LTT filters is depicted in Figure 8.1. The
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advantage of approach via FIR filters is definitely a possibility to decrease mutual shift
of wavelets, thus reducing necessary length of measured data, and gaining the possi-
bility to apply a recursive identification with each new incoming data point, although
at the expense of lost of orthogonality. On the other hand, the principle of DWT can
be preserved when applying wavelets in a way that the rules of DWT are complied.
Then, comparing the formulae (4.13) with the discrete approximation to modulating
functions method we again obtain that the modulating function should be a complex
conjugate of wavelet function, even in a discrete approach.
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Figure 8.1: Comparison of FIR filters and appropriate wavelets in both time and fre-
quency domains.

Left figures depict time-domain, right figures depict frequency domain. Upper figures
concerns both wavelet and filter db7 at the 15 level and their approzimation by FIR
filters and depict a division of the whole frequency domain into halves by low-pass and
high-pass filters. The lower figures concerns the wavelet dbd at the 3" level, what is
band-pass filter.
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Realize a very important fact that the equation (6.20) for the variance of the esti-
mate still holds when orthogonal wavelets are used. There are different explanations for
it: i) Parseval’s theorem holds in general and does not depend on the particular shift of
the wavelet functions. ii) Equation (6.20) itself does not depend on a shift. iii) Using
of any shift of wavelet functions does not affect their frequency characteristics, but the
length of data used for the identification only. Shorter shift of wavelet functions causes
just a duplicity of (time-frequency) information borne in wavelet coefficients, but an
amount of that information is the same as while using correct shift. Longer shift (what
is not a case of FIR filters) means that some data points are not subject of wavelet
transform, thus the variance can be worse than when using correct shift. However,
this difference is not caused by filters themselves, but by less data points used for an
identification and hence is covered by number of data points N. Moreover, a very large
shifting can cause omitting some data, thus change of spectra ®,(m) of data used for
the identification.

Another comment on the error of estimation follows. Consider for a while that one
have explicit expressions for both input and output signals and that orthogonal (thus
discrete-time) wavelets are to be used. A numerical integration has to be employed due
to wavelets. Then when computing an error of the estimate, we should not forget to
count on the error caused by the numerical integration itself. When using continuous-
time non-orthogonal wavelets, the integration can be done analytically, thus exactly.
When using both discrete-time data and discrete-time wavelets, talking about the error
of integration has no sense, however, another error caused by an approximation of
derivatives of wavelets in discrete-time arises. These errors are inherently associated
to the method itself and can be suppressed by a suitable choice of numerical approach
of computation of either integral or derivative, e.g. sufficiently fast sampling of data
together with using wavelets of high orders.

8.2.2 Choice of wavelet modulating function

This section is analogy to the Section 8.1.1 and treats the selection of wavelets as mod-
ulating functions only. Indeed, all the properties previously mentioned in Section 8.1.1
still hold, so mainly additional possibilities and points of view on wavelets are discussed
here.

1. Type: In spite of the number of wavelet families, when considering some par-
ticular wavelet function, different wavelet modulating functions can be obtained
by their shifting or scaling. The scaling means their stretching or shrinking to-
gether with their normalization. Next operation modifying the basic wavelet and
resulting into the different wavelet modulating function is the making the wavelet
filters corresponding to the higher level analysis.

There is yet another method to compute discrete-time wavelet functions for higher
analysis levels, which results completely from the DWT theory. It determines the
computation of partial filters summed in Table 4.1 in time domain. As these
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Figure 8.2: A frequency-domain demonstration of computation of discrete wavelet func-
tions in time domain.

filters were marked by @;, j =1,...,p+ 1 (Section 6.3), we can write
wa(k) = U ($(k)) = (k) = U (wi(k)) * G(k),
ws(k) = U (w2 (k)) = U (¢(k)) = 5(k),

what consequently yields the recursive formulae
wi(k) = U (wi—1(k)) * U™ (@(k)) * U™ (¢(k)) * - % @(k), (8.12)

where U® stands for i times repeated operator U (e).

The procedure can be very simply understood in a frequency domain and is shown
in the Figure 8.2. The shapes of frequency characteristics of basic filters @, 1) are
already known from Section 4.4. The second line in the Figure 8.2 shows how
does the upsampling operator U(e) transform the frequency properties of the
function: it shrinks the spectra of the original function and extend it periodically
to the full range. Afterward, the convolution with father wavelet is performed,
what is just multiplying in frequency with appropriate low-pass filter, see the last
line in the Figure 8.2. The result is a new wavelet function, which represents the
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analysis at the 2"? level. Note that its frequency characteristics is the same as
shown in the Figure 4.2.

All these operations preserve the properties required on the function to be a
modulating function and can be combined arbitrarily.

. Sampling: The sampling corresponds mainly to the ability of the wavelet mod-
ulating function to get a particular frequency information from the data. There
is a big difference between using discrete-time wavelets and using discrete appro-
ximation of continuous-time wavelets.

When employing discrete-time wavelets, their length is strictly given by the type
of wavelet and the sampling is given by a measuring, so the possibilities of fre-
quency domain division are predetermined as described in Section 4.4. The only
choice for required frequency range selection is then the procedure described above
in the point 1.

On the other hand, the discrete approximation of continuous-time wavelets pro-
vides the user with an unique choice of sampling time for wavelets themselves.
Together with the combination of operations from the previous point, the user
can ensure arbitrary frequency localisation of the wavelet modulating functions
for the specific application.

. Independence in time or frequency: This property has been partially dis-
cussed within the basic properties of wavelets in Section 4.5, therefore we only
emphasize the important remarks here.

The discrete-time wavelets are usually orthogonal among their scales and even
shifts, what plays a very important role for independence of the finally obtained
algebraic equations. However the orthogonality in time does not guarantee the
independence of the algebraic equations itself. Moreover, the mutual shifts of
measured data corresponding to the shifted wavelets should not be correlated,
what can be managed by the sufficient excitation of the system. It finally ensures
the independence of the wavelet transform coefficients, or in this case, coefficients
of algebraic equations. Due to a finite support, these wavelets overlap in frequency
domain and are not orthogonal there at all, nevertheless, they are practically
exclusive.

Note that there is no rule about the shift of modulating functions, but classical
shift 2k for the i*" level wavelet analysis assures the qualities of wavelet transform
as well. Nevertheless, utilizing of wavelets as modulating functions does not
oblige the user to employ the wavelet transform itself, thus it is not necessary
to comply those even shifts. The trade-off has to be done about the shifts: The
shift guaranteeing an orthogonality is longer, so more data is needed. On the
contrary, simple shift by 1 point needs less data, but the coefficients could bear a
duplicate information. This obviously holds across the scaling. Realize yet that
for identification with focus on low frequencies, the appropriate wavelets have long
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support. Joining this fact with several shifts of a basic filter (for more algebraic
equations) results in necessity of long data as well.

Concerning the continuous-time wavelets as modulating functions, the situation
is the opposite. The wavelets (or rather their discrete approximations) are not
orthogonal, but can have an excellent localisation in frequency. Therefore the
coefficients in algebraic equations can not be fully independent and it is a must to
generate more equations than the number of parameters. On the other hand, user-
defined frequency localisation of these wavelets enables very precise frequency
localisation of the identified system.
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Conclusions

9.1 Results

The thesis presented a new approaches to utilization of the wavelet transform in the field
of system identification. Since the wavelet transform as a mathematical tool serves
mainly for signal analysis both in time and frequency domains, the algorithm introduced
in the thesis represents a natural way of interconnection of discrete wavelet theory and
theory of system identification. This approach is based mainly on favourable properties
of wavelet basis functions and brings several advantages:

1. The set of wavelet basis functions at all possible levels (i.e. all scales of one
particular couple of wavelet basis functions - father and mother wavelets) forms
a set of filters. This set then covers the whole frequency range determined by
the properties of analysed signal, more specifically, by its length and a sampling
time.

2. Due to theoretical restrictions, orthogonal wavelets have compact support thus
simple structure. Consequently, all convolutions are exactly computable, thus no
information carried in signal is lost.

3. Some wavelet filters are orthogonal in time and complementary in frequency do-
mains, therefore each filter extracts the specific portion of information from the
signals without any duplicity. This fact also contributes to numerical conditioning
of the identification algorithm.

4. Moreover, there are several kinds of wavelet basis functions (wavelet families)
with different time or frequency properties. Most of them satisfy the neces-
sary conditions given by the wavelet theory, however, there are also some kinds
of wavelet functions, which do not. These exceptions are covered by theory of
wavelet frames, which is generalization of the wavelet theory and is built on the
theory of Riesz’s basis.
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5. Once implemented, this method is quite generic and intuitive, while the design
of appropriate linear filters could be quite time consuming. In addition, this
provides us with a big advantage in real problems, where the frequency charac-
teristics of the system to be identified is not known a priori. The satisfactory
results could be acquired by tuning of weights only, which corresponds to some
knowledge of the system. On the other side, the implementation itself requires
deeper understanding to wavelet theory.

At the beginning, the thesis discusses the possibilities of incorporation of wavelet
transform into the system identification in the form of a comprehensive study. Then, a
general concept of the incorporation of wavelets was introduced. At first, the method
was derived for simple SISO systems as well as its asymptotic properties were discussed.
Regarding the asymptotic properties of the proposed methods, the results were derived
based on properties of the PEM for identification of the ARX model. Further on in
the thesis, the proposed concept was extended on firstly for MISO and then for MIMO
systems. The algorithms for all parts were implemented and their performance was
demonstrated on case studies at the end of appropriate chapters. Finally, a detailed
analysis of the utilizing the wavelets as modulating functions were elaborated.

Although the wavelets are used, in principle it still is proper selection and (pre)filtering
of data with all its pros and cons. There are mainly 2 ways where the methods from
the thesis can be employed with advantages:

a) A sufficiently accurate model is required, well describing the system’s behaviour
at particular frequency ranges.

b) The only submodel is identified (the lowest order model as possible) which takes
into account behaviour on required frequency ranges. It includes ability to identify
slow or fast subsystems of singularly perturbed system as well as to do model
reduction for identification for control.

Indeed, both ways can be linked together.

9.2 Fulfillment of the objectives

Here a short note on fulfilment of the aims from Chapter 2 is provided.

v/ To perform a comprehensive survey of the methods of exploiting the wavelet trans-
form for system identification. — This objective was completed and described
in Chapter 3.

v/ To find and describe a suitable way of incorporation of wavelet transform into the
problem of general single-input single-output linear system identification. Analyse
the method and demonstrate it on a suitable example. — This objective was
satisfied by development and description of the algorithm, its implementation
and demonstration on an example. All is stated within the Chapter 6. This is
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the main part of the author’s publications Vana and Preisig [2012]; Vana et al.
[2011].

v/ To extend the method to multivariable systems. Analyse the method and demon-
strate it on a suitable example. — This objective was handled in several points of
view on multivariable systems description. The ways of incorporation of wavelet
transform into multivariable system identification was described and demon-
strated within the Chapter 7. This objective was also partially described in Vana
and Preisig [2012]; Vana et al. [2011], partially since at that time, the work on
the objective was still in progress.

v/ To investigate and find the utilization of wavelet transform within the continuous-
time linear system identification. The discussion on implementation issues must
be included. — This objective was satisfied by the Chapter 8, where the modulat-
ing function method primarily designed for continuous-time system identification
were shown to be a great alternative for utilization of wavelets within system
identification.

All the algorithms implemented within this work are available on the enclosed CD.
Moreover, the reader can find there those examples used within case studies, which are
not adherent to any coordination with some commercial company.

9.3 Concluding remarks

The thesis builds on the existing literature results and interprets them differently be-
sides clarifying properties and links between methods and approaches. To be more
specific, the thesis provides several points of view on wavelets, what enables the reader
to understand both the wavelets and mutual consequences between wavelets and sys-
tem identification more deeply. The most of relations of theories of wavelet transform
and of system identification were described in a general manner, therefore they can be
simply applied in different fields.

Except of the algorithms described in the thesis, the interconnection of theories of
both wavelet transform and system identification is the main contribution of the thesis.
Nowadays, there are lot of distinct highly professional tools, which are well-known and
widely used by people from some particular branch only. It is therefore very important
not only to develop new methods, but also to look for suitable methods across different
scientific fields. There is a strong reason for doing it even in situations where no new
results can be obtained, since using of tools which are “new” in particular field can
always show new analogies and links.
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