
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Control Engineering

Scheduling in manufacturing systems

Doctoral Thesis

Jan Kelbel

Prague, February 2012

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics

Supervisor: Doc. Dr. Ing. Zdeněk Hanzálek

To my wife Lenka.

Acknowledgements

I would like to give my thanks to my thesis advisor Zdeněk Hanzálek for his
patient leading, support and help throughout the years I spent in his research
group at the Department of control Engineering. I would also like to thank
to the anonymous reviewers of journals and international conferences where
preliminary versions of this thesis were submitted. Their comments signifi-
cantly contributed to the quality of this thesis. I would also like to express
my thanks to all my colleagues for friendly discussions about the topics of
combinatorial optimization. Last, but not least, many thanks belongs to all
my family for the support during my work on this thesis.

This work was supported by the Ministry of Education of the Czech
Republic under project 1M0567.

Goals and Objectives
This thesis is focused on combinatorial optimization problems that are
present in the domain of manufacturing systems. Three different problems
are studied, where with regards to computational complexity each of them
belongs to the class NP-hard. The objective of each of the optimization prob-
lems is different, but the common requirement is to efficiently utilize existing
manufacturing resources. For each of the three combinatorial problems, the
goals of this work are set as follows:

1. Analyze and categorize the specified optimization problem.

2. Create a mathematical model of the problem.

3. Design an algorithm to solve the problem.

4. When applicable, compare the quality of the obtained solution to the
existing solutions.

vii

viii

Contents

Goals and Objectives vii

1 Introduction 1

1.1 Related work . 2

1.2 Outline . 3

2 Production scheduling with earliness/tardiness penalties 5

2.1 Introduction . 5

2.2 Scheduling problem formulation 8

2.2.1 Earliness tardiness job-shop scheduling problem 8

2.2.2 Lacquer production scheduling problem 9

2.3 Solving techniques . 12

2.3.1 Modeling earliness tardiness job-shop scheduling problem 12

2.3.2 Cost directed initialization 12

2.3.3 Solving the lacquer production scheduling problem . . 13

2.4 Experimental results . 17

2.4.1 Earliness tardiness job-shop scheduling problem 17

2.4.2 Lacquer production scheduling case study 20

2.4.3 Random instances based on the lacquer production
case study . 21

2.5 Conclusion . 22

3 Component allocation in SMT assembly 25

3.1 Introduction . 26

3.2 Description of the SMT assembly line 30

3.3 Component reallocation problem 32

ix

x CONTENTS

3.3.1 Assembly time approximation 33
3.3.2 Problem specification 34

3.4 Solving the component reallocation problem 37
3.4.1 Constraint programming model 37
3.4.2 Search procedure . 39

3.5 Large neighborhood search 40
3.6 Experimental results . 42

3.6.1 Production problem instance 43
3.6.2 Generated instances 44

3.7 Conclusion . 47

4 Permutation flow-shop with blocking 49
4.1 Introduction . 49
4.2 Problem formulation . 51

4.2.1 Computation of makespan 52
4.3 Solving technique . 53

4.3.1 Large neighborhood search 53
4.3.2 Complete search algorithm 54
4.3.3 Lower bound computation 57

4.4 Experimental results . 58
4.4.1 Lower bound computation 59
4.4.2 Minimizing the makespan 59

4.5 Conclusion . 60

5 Conclusion 63
5.1 Summary and contributions 63
5.2 Future research . 64

Bibliography 65

List of Author’s Publications 71

List of Figures

2.1 The recipes for the lacquer production. 11
2.2 The results for random instances of the lacquer production

scheduling . 24

3.1 SMT assembly line with two machines HS50. 30
3.2 Petri net model of the dual-delivery operation of the pair of

placement heads. 31
3.3 Gantt chart of an example assembly with dual-delivery oper-

ation of placement head pair. 32
3.4 Comparison of lj for existing and balanced component alloca-

tion for production problem instance. 44
3.5 Comparison of rj for existing and balanced component alloca-

tion. 45

xi

xii

List of Tables

2.1 Average ratio for the best values of the cost functions of the
solutions found within 600 s 18

2.2 The number of optimal solutions (F)ound and (P)roven within
600 s (among 20 instances) . 19

2.3 The number of (B)est and (U)niquely best solutions found
within 600 s . 20

2.4 Results for the case study instance 21

3.1 Computation time for the production problem instance. . . . 43
3.2 Cycle time comparison for existing and balanced feeder setups. 44
3.3 Computation results for the randomly generated instances. . 46
3.4 Robustness of the LNS algorithms: Ability to find the best

solution (in percents) . 47

4.1 Best obtained solutions for Taillard’s benchmarks. 61

xiii

xiv

Chapter 1

Introduction

This thesis is focused on combinatorial optimization problems that are
present in the domain of manufacturing systems. Three different optimiza-
tion problems are studied. The first optimization problem is an industrial
case study problem of lacquer production. It is a production scheduling with
earliness and tardiness penalties that reflects the scheduling part of the Just-
In-Time inventory strategy. The aim of the scheduling is to create a schedule
for the lacquer production, which will meet the due dates required by the
customers. The storage costs for orders completed before due date and the
penalty payment for not meeting the due date are considered. The second
problem deals with the component reallocation problem in the Surface Mount
Technology (SMT) assembly process optimization. It is aiming to improve
the existing component allocation which was in this case originally created
by the SMT line operators as a manual modification of the initial compo-
nent allocation by the line computer optimizer. The modification was made
to improve the quality of the assembly; however, it negatively affected the
assembly time. This paper describes an algorithm developed as a decision
support system for the SMT line operators and its purpose is to suggest
changes in the existing component allocation in order to improve the pro-
duction performance. The third problem deals with a scheduling problem in
manufacturing of agricultural machinery. The objective is to minimize the
total production time for a defined set of ordered products. The problem is
categorized as a permutation flow-shop problem.

1

2 1 Introduction

1.1 Related work

The algorithms presented in this thesis are based mainly on two approaches
that will be briefly introduced in this section. The first approach is the
constraint programming and the second one is the large neighborhood search.
For a survey on the works related to the studied optimization problems,
please refer to the introduction sections of the related chapters of the thesis
(Section 2.1, Section 3.1 and Section 4.1).

The Constraint Programming (CP) approach (Dechter, 2003; Barták
et al., 2009) is a method for declarative description and solving of the fea-
sibility and optimization problems. Constraint satisfaction over the integer
domains is a part of the constraint programming which is used to solve com-
binatorial problems including scheduling problems.

The constraint satisfaction problem (CSP) is defined as a triple (x, d, c),
where x = {x1, . . . , xn} is a finite set of variables, d = {d1, . . . , dn} is a set
of respective domains that contain possible values for each variable, di =
{v1, . . . , vk} and c = {c1, . . . , ct} is a set of relations — called constraints —
restricting the legal combinations of the values of the variables. Assigning
the values to the variables so that all constraints are satisfied at once is one
solution of the CSP.

The software systems for solving CSP (called CSP solvers) (ILOG, 2002;
Gecode Team, 2010), usually employ two cooperative techniques to get a
solution of CSP. Constraint propagation, which is the inference of the new
constraints from the existing set of constraints, actually removes from the
domains those values that directly violate the related constraints. Usually,
constraint propagation itself is not capable of finding a solution of the CSP,
so the second technique — the search algorithm — is used to systematically
explore the search space pruned by the constraint propagation. The search
consists of a search procedure (also called the labeling procedure) used to
construct the search tree, and a search strategy (e.g. depth-first search) that
is applied in order to explore the search tree. The search procedure typically
makes decisions about the variable selection (i.e. which variable to choose)
and about the value assignment (i.e. which value to assign to the selected
variable). The constraint propagation and the search cooperate during the
process of solving the CSP. The search decision, i.e. the assignment of the
value to the chosen variable, reduces the domain of the variable, which trig-
gers the constraint propagation of the related constraints.

1.2 Outline 3

The large neighborhood search (Shaw, 1998) (LNS) represents a local
search method to solve combinatorial optimization problems. As any local
search method, it is based on the idea of iterative improvement of the ex-
isting solution. Given the existing solution, value assignment is relaxed for
a selected subset of the problem variables (i.e. the domains of the variables
are restored to the initial state). The rest of the variables remain fixed at
the values from the existing solution. This partially relaxed problem is then
solved using a complete search method.

The difference between classical local search methods (e.g. hill climbing
or tabu search) and LNS is in the construction of the neighborhood. In local
search, the neighborhood is defined by local moves. On the other hand, the
neighborhood in LNS is defined by all possible extensions of the fixed partial
solution. The neighborhood in LNS is usually larger than the neighborhood
used in local search. That is why an efficient complete search method (e.g.
constraint programming, integer linear programming) is used instead of the
enumeration common in local search.

1.2 Outline

This thesis is organized as follows. Chapter 2 presents the solution of the
production scheduling problem with earliness and tardiness costs. The prob-
lem of reoptimization of component allocation in SMT assembly is presented
in Chapter 3. Chapter 4 deals with the problem of scheduling the assembly
of agricultural machinery. In the last chapter, the contributions of the thesis
are concluded.

4

Chapter 2

Production scheduling with
earliness/tardiness penalties

This chapter deals with an application of constraint programming in pro-
duction scheduling with earliness and tardiness penalties that reflects the
scheduling part of the Just-In-Time inventory strategy. Two scheduling
problems are studied, an industrial case study problem of lacquer production
scheduling, and also the job-shop scheduling problem with earliness/tardiness
costs. The chapter presents two algorithms that help the constraint program-
ming solver to find solutions of these complex problems. The first algorithm,
called the cost directed initialization, performs a greedy initialization of the
search tree. The second one, called the time reversing transformation and
designed for lacquer production scheduling, reformulates the problem to be
more easily searchable when the default search or the cost directed initial-
ization is used. The conducted experiments, using case study instances and
randomly generated problem instances, show that our algorithms outperform
generic approaches, and on average give better results than other nontrivial
algorithms.

2.1 Introduction

The Just-In-Time inventory strategy of supply chain management has been
applied in practice since the early 1970s (Ohno, 1988). About a decade later
the first formulations of the scheduling problem with earliness and tardiness

5

6 2 Production scheduling with earliness/tardiness penalties

cost appeared (Baker and Scudder, 1990), reflecting the scheduling part of
JIT. In the problem, the earliness cost may represent the storage cost for
early finished product while the tardiness cost represents the cost of a delay
in the following production, for example.

This chapter describes a constraint programming approach (Barták et al.,
2009) to solving scheduling problems with earliness and tardiness costs. Since
the scheduling problem of minimizing the total tardiness 1 ||

∑
j Tj is shown

to be NP-hard (Du and Leung, 1990), all the earliness/tardiness problems
except some special cases are NP-hard too. In the related work, we will
include only those papers related to the same or similar problems to the ones
we are dealing with. For more information on earliness/tardiness scheduling,
we refer to the reviews of (Hoogeveen, 2005; Baker and Scudder, 1990).

In the chapter we introduce two scheduling problems with earli-
ness/tardiness costs. The first problem, introduced in (Beck and Refalo,
2003), is a job shop scheduling problem with earliness and tardiness costs
related to the completion time of each job. This problem is solved in (Beck
and Refalo, 2003) using a hybrid approach based on a probe backtrack search
(El Sakkout and Wallace, 2000) with the integration of constraint program-
ming and linear programing. This hybrid approach performed significantly
better than the generic (näıve) CP and MIP algorithms. With another hy-
brid approach, combining local search and linear programming in (Beck and
Refalo, 2002), the results obtained were slightly worse than in (Beck and
Refalo, 2003). The large neighborhood search (Danna and Perron, 2003) ap-
plied to the same earliness/tardiness job shop problem outperformed both
hybrid approaches of Beck and Refalo.

The second problem is a lacquer production scheduling problem, an indus-
trial case study introduced in the project Ametist (AMETIST, 2002), where
it was solved using a timed automata approach (Behrmann et al., 2005). This
problem can be classified as a resource-constrained project scheduling prob-
lem, more general than the job shop scheduling problem, with distinct due
dates and release dates, and with job dependent earliness and tardiness costs.
In comparison to the first problem, are not only dedicated resources there,
but also groups of parallel identical resources. Next, the problem includes
changeover times, breaks on resources and breakable tasks. The problem
similar to the lacquer production scheduling is, for example, solved in (Luh
P. B. et al., 1998), where a combination of Lagrangean relaxation, dynamic

2.1 Introduction 7

programming and heuristics is used.

Our motivation was to find a result for the lacquer production schedul-
ing problem that would outperform the original timed automata solution.
The second objective was to compare our method with the already exist-
ing algorithms using benchmark instances of the earliness/tardiness job-shop
problem. To solve the two earliness/tardiness scheduling problems, we used
the constraint programming approach, where the user declares a model of
the problem, applies a generic search procedure, and obtains a result. How-
ever, for these problems, we had to develop two algorithms that helped the
constraint programming solver to find solutions.

The first algorithm is a search tree initialization procedure for the earli-
ness/tardiness scheduling problems, which initially assigns those values to the
variables that leads to a solution with minimal local cost. For lacquer produc-
tion scheduling, considering the structure of the problem, we also developed
a time reversing transformation algorithm that transforms the problem to
a formulation, which is more suitable for searching using the default search
procedure of the used constraint programming system.

The proposed search tree initialization procedure is tested on a set of
randomly generated instances of the job shop scheduling problem with earli-
ness and tardiness costs. It significantly outperforms simple (default) models
introduced in (Beck and Refalo, 2003), and on average it gives better re-
sults than the Unstructured Large Neighborhood Search (Danna and Perron,
2003).

For lacquer production scheduling, the search tree initialization and the
time reversing transformation was applied to solve the original case study
problem instance (Behrmann et al., 2005), and we were able to find a solution
with more than a 60% better (lower) cost than the one computed by the timed
automata. Next, our approach was tested on a set of randomly generated
instances with the structure of the case study instance.

This work contains two main contributions: the search tree initialization
procedure for earliness/tardiness scheduling problems, and the time reversing
transformation considering the structure of the lacquer production scheduling
problem.

The chapter is organized as follows: In the next section, the earli-
ness/tardiness scheduling problems are formulated. The section “Solving
techniques” describes the constraint programming approach to solving the

8 2 Production scheduling with earliness/tardiness penalties

scheduling problems. The section also includes the description of the two
algorithms. The section “Experimental Results” contains the description of
problem instances we used for computational experiments, and the results.

2.2 Scheduling problem formulation

2.2.1 Earliness tardiness job-shop scheduling problem

The definition of the earliness tardiness job-shop scheduling problem
(ETJSSP) is based on (Beck and Refalo, 2003). We assume a set of jobs
J = {J1, . . . , Jn} where job Jj consists of a set of tasks Tj = {Tj,1, . . . , Tj,nj}.
Each task has a given processing time pj,i, and required dedicated unary re-
source from a set R = {R1, . . . , Rm}. The start time Sj,i of all the tasks de-
termine the result of the scheduling problem. The completion time of a task
is defined as Cj,i = Sj,i + pj,i. For each job Jj there are precedence relations
between tasks Ti and Ti+1 such that Cj,i ≤ Sj,i+1 for all i = 1, . . . , nj − 1.

Concerning earliness and tardiness costs, each job has a due date dj as-
signed to it, i.e. the time when the last task of the job should be finished. In
general, the due dates are distinct. The cost function of job Jj is defined as
αj(dj − Cj,nj) for an early job and βj(Cj,nj − dj) for a tardy job, where αj

and βj are the earliness and tardiness costs of the job per time unit. Taking
both alternatives into account, the cost function of the job can be expressed
as

fj = max(αj(dj − Cj,nj), βj(Cj,nj − dj)). (2.1)

An optimal solution of the ETJSSP is the one with the minimal possible sum
of the costs over all jobs

min
∑
Jj∈J

fj .

In this article, a specific ETJSSP will be considered in order to be con-
sistent with the original problem instances (Beck and Refalo, 2003). All
jobs have the sets of tasks with the same cardinality, which is equal to the
number of resources, i.e. nj = m for all j. Each of the nj tasks of the
job is processed on a different resource. Next, the problem has a work flow
structure: the set of resources R is partitioned into two disjunctive sets R1

and R2 of about the same cardinality, and the tasks of each job must use
all resources from the first set before any resource from the second set, i.e.

2.2 Scheduling problem formulation 9

task Tj,i for all i = 1, . . . , |R1| requires a resource from set R1, and task
Tj,i for all i = |R1|+ 1, . . . , nj requires a resource from set R2.

2.2.2 Lacquer production scheduling problem

The lacquer production scheduling problem is an industrial case study intro-
duced in the project Ametist (AMETIST, 2002). Each order of the lacquer
to be produced — that is a job in terms of scheduling — is specified by
quantity of the produced lacquer, release date (earliest start time of the pro-
duction), due date, earliness and tardiness costs, and the type of lacquer.
The type of the lacquer determines the recipe used for the job. The recipe
defines the production steps (called tasks) of the job. The definition includes
the resources required by each task, the processing times of the tasks (related
to the quantity of lacquer), and the precedence constraints. The lacquer pro-
duction scheduling problem includes three recipes for metallic, bronze and
uni lacquers.

The main difference between the lacquer production scheduling problem
and the ETJSSP is that the resources in the case study behave in a more
realistic way. The resources operate in shifts and tasks cannot be scheduled
during breaks, e.g. for a resource operating in two eight-hour shifts during
the night. Some of the tasks are breakable, i.e. allowed to be interrupted by a
break, but not preempted by another task. In addition, there is a changeover
time for the resource filling station G4 – see below.

The resources are grouped according to their types. Some of these groups
contain more than one machine, i.e. there are more machines of that type
available. Inside the group, the machines are parallel identical resources
in terms of the scheduling theory (Blazewicz et al., 2001), or in terms of
constraint-based scheduling (Barták et al., 2009), each group is the cumu-
lative resource with the capacity equal to the number of machines in the
group.
The groups of parallel identical resources are:

• The mixing vessel G1 = {R11, R12, R13} is used for the production of
the metallic and bronze lacquers.

• The mixing vessel G2 = {R21, R22} is used for the production of the
uni lacquers.

• The dose spinner G3 = {R31, R32} is used in all recipes.

10 2 Production scheduling with earliness/tardiness penalties

• The filling station G4 = {R41, R42} is used in all recipes. This is
the resource with sequence-dependent changeover time – cleaning is
needed when two successive jobs are of a different lacquer type, and
the changeover time depends on the types of the jobs. Due to the
changeover time, we need to distinguish the two filling stations. There-
fore, G4 is not a cumulative resource, but a group of alternative re-
sources.

The dedicated resources are:

• The disperser G5 = {R5} is used in the uni lacquer recipe.

• The dispersing line G6 = {R6} is used in the uni lacquer recipe.

• The bronze mixer G7 = {R7} is used in the bronze lacquer recipe.

• The bronze dose spinnerG8 = {R8} is used in the bronze lacquer recipe.

Finally, there is an unrestricted resource, laboratory G9, which is used in
all recipes. The recipes for metallic, bronze and uni lacquers are depicted
in Figure 2.1 with example processing times. Five production steps can be
identified in the lacquer production (Loeschmann and Ludewig, 2003): In
step 1 and 2, pre-dispersion and dispersion, solid and liquid input materials
and solvents are prepared for actual production. This operation is only used
in the production of the uni and bronze lacquers and it utilizes resources G5,
G6, G7 and G8. Then, in step 3, the input materials are filled into mixing
vessel G1 or G2 (depending on the type of the lacquer) using dose spinner
G3. Each dose spinner contains 200 valves injecting predefined quantities
of the materials into the mixing vessels. After the required quantities are
injected, the mixing of the materials continues for a defined period of time.
When the mixing procedure is finished, the lacquer quality is checked in
laboratory G9. Step 4 is necessary if the lacquer quality requirements are
not satisfied. The mixing vessel is once again moved under the dose spinner
and the dosing procedure is repeated. The quality is checked again after the
mixing procedure. In this case study, step 4 is always required. In step 5,
the mixing vessel is emptied of the prepared lacquer at filling line G4. When
the filling operation is finished, the mixing vessel is cleaned.

The objective of the lacquer production scheduling is to minimize a com-
bination of total weighted earliness (the cost for storage of orders that are

2.2 Scheduling problem formulation 11

Figure 2.1: The recipes for the lacquer production.

finished too early) and total weighted tardiness (the penalty payment for
delayed orders):

min
∑
j∈J

max(αj(dj − Cj), βj(Cj − dj)), (2.2)

where J is the set of jobs, dj is the due date and Cj is the completion time
of job j. αj and βj are the unit earliness and tardiness costs.

12 2 Production scheduling with earliness/tardiness penalties

2.3 Solving techniques

The two earliness/tardiness scheduling problems were solved using the Con-
straint Programming (CP) approach.

2.3.1 Modeling earliness tardiness job-shop scheduling prob-
lem

Our approach to modeling ETJSSP is quite straightforward and is based on a
usual constraint programming model for scheduling problems. The schedul-
ing problem is modeled directly by using the formulation from the previous
section, yet by using higher abstraction objects for scheduling (e.g. tasks and
resources) available in the used CSP solver1. The precedences are declared
as linear algebraic constraints between the variables representing the start
times of the tasks, and also using the precedence graph constraint (Laborie,
2003). The disjunctive edge-finder (Carlier and Pinson, 1990) propagation
algorithm is used for resource constraints, i.e. when we need to assure that, at
most, one task is processed by one resource each time. The used CSP solver
showed better performance of the computations when the cost function (2.1)
was expressed as fj ≥ αj(dj − Cj,nj) ∧ fj ≥ βj(Cj,nj − dj).

To find a solution of the ETJSSP, we designed a search procedure called
the cost directed initialization, which is described in the next subsection.

2.3.2 Cost directed initialization

Most of the constraint programming solvers have a default search procedure
that builds the search tree by assigning the values from the domains to the
variables in increasing order. For scheduling problems, the CSP solver used
for experiments in this work employs the ranking search procedure (Baptiste
et al., 1995) as a default, which is supposed for makespan minimization.

The idea of our search procedure is based on the fact that only Cj,nj , the
completion time of the last task of the job, influences the value of the cost
function, and that the values of Cj,nj inducing the lowest values of the cost
functions fj should be examined first.

1ILOG OPL Studio in version 3.6 (ILOG, 2002) was used as a CSP solver for the
experiments in this work.

2.3 Solving techniques 13

Algorithm 2.1 – CDI search procedure

1. Sort the last tasks of the jobs, Tj,nj for all j, according to the nondecreasing
domain size of Cj,nj .
2. For each task from the sorted list from the domain of Cj,nj select a value
vj leading to the minimal fj and create two alternatives in the search tree:

• Cj,nj = vj
• Cj,nj ̸= vj

3. Continue with the ranking search procedure for all variables.

The search procedure, which is denoted as the cost-directed initialization
(CDI), performs as described in Algorithm 2.1: Variables representing the
completion time Cj,nj are selected in increasing order of the size of their
domains (step 1). The value selection (step 2) is made according to the lowest
possible value of the cost function fj (2.1) and two alternatives are created
in the search tree. In the first alternative, the variable Cj,nj is assigned the
value inducing the lowest earliness/tardiness cost for job j. As the second
alternative in the search tree, this value is disabled. This is only done once
for each task Tj,nj , i.e. the CDI procedure creates only the first n levels of the
search tree. Then, the search continues with the default search procedure,
which is the ranking (step 3).
The CDI search procedure is a complete algorithm, which can be easily
proven: in step 2 of the algorithm, the whole domain of each variable Cj,nj

is covered. All other variables are labeled in the third step by the ranking
procedure.

Slice Based Search, available in (ILOG, 2002), based on (Beck and Perron,
2000), and similar to Limited Discrepancy Search (Harvey and Ginsberg,
1995) is used as a search strategy to explore the search tree created by the CDI
procedure. This is necessary for obtaining good performance, as using depth
first search instead, the algorithm was not capable of finding any solution for
about 50% of the used instances of the ETJSSP.

2.3.3 Solving the lacquer production scheduling problem

The lacquer production scheduling requires some more complex constraints
on tasks and resources, which will be described in this subsection. The
variables and constraints of the lacquer production CSP model are declared

14 2 Production scheduling with earliness/tardiness penalties

Example 2.1 – precedence and delay constraints of the metallic
recipe

Job 1: production of metallic lacquer.
Variables: S1,1, S1,2, S1,3, S1,4, S1,5, S1,6 and C1,6.
Precedence and delay constraints:
S1,1 + p1,1 = S1,2

S1,2 + p1,2 ≤ S1,3

S1,3 + p1,3 = S1,4

S1,4 + p1,4 ≤ S1,5

S1,6 = S1,1

C1,6 = S1,5 + p1,5 + 240

according to the specification of the jobs in the problem instance. Exam-
ple 2.1 illustrates the declaration of the precedence and delay constraints of
one job using the metallic recipe from Figure 2.1.

The resource constraints are also declared according to the recipe. For the
cumulative resources, i.e. a set of parallel identical resources, the cumulative
edge-finder (Nuijten and Aarts, 1996; Mercier and Van Hentenryck, 2008)
propagation algorithm is used.

Some of the resources operate in shifts, so it is necessary to model breaks.
The used CSP solver supports breaks on disjunctive (i.e. dedicated) re-
sources. Breakable tasks, which can be interrupted during breaks, are also
supported by the solver (ILOG, 2002).

Breaks on the cumulative resources are not supported directly. One pos-
sibility to model this feature is to replace the cumulative resource by a set
of alternative dedicated resources, where the breaks and the breakable tasks
are supported. Then the task will be processed by one of the resources from
the set, and the assignment is chosen during the solving process. However,
it is more computationally efficient to use a cumulative resource with the
cumulative edge-finder propagation algorithm, and to add constraints that
disable the execution of the tasks during breaks. For non-breakable tasks, it
is made by removing the appropriate time intervals from the domain of the
start time variable. For breakable tasks, conditional constraints are added
such that if the start time of the task is in the specified interval, then the
processing time of that task is extended by the duration of the break. That

2.3 Solving techniques 15

is, the task executes during the break also, but in that case its processing
time is adequately extended.

Due to the size of the lacquer production scheduling case study, it was
necessary to make additional modifications in the CSP model to obtain a
solution of instances of a size greater than 5 jobs in an acceptable time. The
mixing vessel resource (G1 or G2) is needed for nearly the whole production
time of each job. To use this resource, a shadow task (Tm6, Tb8 or Tu8) with
the variable processing time is created. The mixing vessel is a restricted
resource, so it is necessary not only to finish the job near its due date but
also to minimize the processing time of the shadow task to release the mixing
vessel for the other jobs. This makes a major difference in comparison with
the ETJSSP. Next, in the case study problem instance, the unit tardiness cost
βj is about 50 times larger than the earliness cost αj for most of the jobs. This
disproportion is usual in industry if the production is a part of customer’s
supply chain, for example if we supply lacquers to a car manufacturer.

Summing it up, we need to find a schedule, where the jobs complete close
to their due dates while preferring to finish before the due date, and also
where the processing time of the tasks requiring the mixing vessel resource is
minimized. Instead of designing a new search procedure we chose to trans-
form the problem and to use the cost directed initialization (Algorithm 2.1).
This transformation, described in Algorithm 2.2, is based on reversing the di-
rection of time. The constants and variables in the transformed formulation
are denoted by prime notation (e.g. S′

j).
The target start time r̂′j of job j is introduced in the transformed formula-

tion, and it corresponds to the due date of the original formulation. To make
the search space smaller, deadline d̃j is defined for each job by the maxi-
mal allowed weighted tardiness cost f̄ , that is found experimentally during
the solution of the transformed problem. The introduced deadlines are more
constraining for jobs with a large βj , and possibly discard optimal solutions.
However, this modification helps to find a good solution in reasonable time.

The objective of the lacquer production scheduling (2.2) is transformed
using Algorithm 22 to the formulation

min
∑
j∈J

max(βj(r̂
′
j − S′

j), αj(S
′
j − r̂′j)), (2.3)

i.e. in the transformed problem, the objective depends on the distance be-

16 2 Production scheduling with earliness/tardiness penalties

Algorithm 2.2 – time reversing transformation

1. Calculate the upper bound of the schedule makespan: UB
2. Calculate the job deadlines: d̃j = dj + f̄/βj
3. For each job Jj calculate the new values of:

a) the target start time r̂′j = UB − dj

b) the release time r′j = UB − d̃j

c) the deadline d̃′j = UB − rj
4. Calculate the new start and completion times for all breaks on the re-
sources (similarly to step 3.).
5. Reformulate the precedence and delay constraints by substitution:

Sj,k = UB − C ′
j,k Cj,k = UB − S′

j,k

Example 2.1 (cont.) – applying time reversing transformation

Job 1: production of the metallic lacquer.
Variables: C ′

1,1, C
′
1,2, C

′
1,3, C

′
1,4, C

′
1,5, C

′
1,6 and S′

1,6.
Precedence and delay constraints:
S1,1 + p1,1 = S1,2 −→ C ′

1,1 − p1,1 = C ′
1,2

S1,2 + p1,2 ≤ S1,3 −→ C ′
1,2 − p1,2 ≥ C ′

1,3

S1,3 + p1,3 = S1,4 −→ C ′
1,3 − p1,3 = C ′

1,4

S1,4 + p1,4 ≤ S1,5 −→ C ′
1,4 − p1,4 ≥ C ′

1,5

S1,6 = S1,1 −→ C ′
1,6 = C ′

1,1

C1,6 = S1,5 + p1,5 + 240 −→ S′
1,6 = C ′

1,5 − p1,5 − 240

tween the start times and the target start times, and the earliness and tar-
diness costs are actually swapped.

The lacquer production scheduling problem is solved in three steps. The
problem is transformed using Algorithm 2.2, then solved using the Cost Di-
rected Initialization (Algorithm 2.1), and the resulting start and completion
times are transformed back using step 5 of Algorithm 2.2.

The continuation of Example 2.1 shows the application of Algorithm 2.2
on the precedence and delay constraints of the metallic recipe.

2.4 Experimental results 17

2.4 Experimental results

2.4.1 Earliness tardiness job-shop scheduling problem

The proposed Cost Directed Initialization (CDI, Algorithm 2.1) was tested
against:

MIP a mixed integer programming model with disjunctive formulation
(Beck and Refalo, 2003)

ST a constraint programming model with a SetTimes heuristic as a
search procedure and a depth-first search as a search strategy (Beck
and Refalo, 2003)

uLNS Unstructured Large Neighborhood Search (Danna and Perron, 2003)

where MIP and ST are simple generic models used in (Beck and Refalo, 2003)
for performance comparison. The uLNS algorithm is used in a mixed integer
programming solver solving the MIP disjunctive formulation.

Benchmarks are randomly generated instances of the ETJSSP according
to Section 6.1 in (Beck and Refalo, 2003). The problem instances have the
work flow structure. The processing times of the tasks are uniformly drawn
from the interval [1, 99]. Considering the lower bound tlb of the makespan
of the job-shop according to (Taillard, 1993), and a parameter called the
looseness factor lf , the due date of the job was uniformly drawn from the
interval [0.75 · tlb · lf, 1.25 · tlb · lf]. The job-shops were generated for three
n×m sizes, 10×10, 15×10, and 20×10, and for lf ∈ {1.0, 1.3, 1.5}. Twenty
instances were generated for each (lf ,size) combination.

The experiments were executed using ILOG OPL Studio 3.6 with ILOG
Solver and Scheduler for the CSP models, and ILOG Cplex 9.1 for the MIP
models. The Unstructured Large Neighborhood Search (uLNS) (Danna and
Perron, 2003) was used by enabling the Relaxation Induced Neighborhood
Search (RINS) via a IloCplex::MIPEmphasis=4 switch in Cplex 9.1 (Danna
et al., 2005; ILOG, 2005). All algorithms were running on a PC with AMD
Opteron 248 CPU at 2.2GHz with 2GB of RAM. The time limit for each
computation was 600 s, after which the execution was stopped, and the best
solution up to that time was returned.

Table 2.1 shows the average ratio of the costs of the best solutions ob-
tained by the MIP, uLNS, and ST to the best solutions obtained by the CDI,
for all types of instances.

18 2 Production scheduling with earliness/tardiness penalties

T
a
b
le

2.1
:
A
v
era

ge
ratio

for
th
e
b
est

valu
es

of
th
e
cost

fu
n
ction

s
of

th
e
so
lu
tio

n
s
fo
u
n
d
w
ith

in
600

s

size
1
0
×

10
15
×
10

2
0
×

10

lf
M
IP

/C
D
I
u
L
N
S
/C

D
I
S
T
/C

D
I
M
IP

/C
D
I
u
L
N
S
/C

D
I
S
T
/C

D
I
M
IP

/
C
D
I
u
L
N
S
/
C
D
I
S
T
/C

D
I

1.0
1
.8

1.2
2.6

4.7
3.1

6.2
5
.3

4
.9

6.7

1.3
4
.8

1.8
9.2

18.4
5.3

28.3
1
4
.0

1
4
.3

25.8
1.5

3
.8

2.1
8.1

7.9
1.9

37.9
5
.5

5
.7

50.6

2.4 Experimental results 19

In Table 2.1 we observe that for the generated problem instances, the CDI
algorithm finds the solutions with the best cost on average. The second place
belongs to the uLNS algorithm. The uLNS outperformed the generic MIP
approach, which corresponds to the findings of (Danna and Perron, 2003).
Table 2.1 also shows that the difference between the CDI and the other
approaches is bigger for larger problem instances. Further on, in Tables 2.2
and 2.3 the ST algorithm will not be included due to its poor performance.

Table 2.2 shows the number of instances solved to optimality within the
600 s time limit, and also the number of instances, for which the algorithm
proved the optimality of the solution. A solution found by the CDI model is
considered as the optimal solution when the value of the objective function
was equal to the one of the proven optimal solution found by the MIP models
or to a lower bound found by the MIP.

Table 2.2 shows that the CDI found the most optimal solutions among
the used algorithms, however the difference is small. The CDI usually needed
less time than the MIP or uLNS to find a solution with the optimal cost. On
the other hand, in many cases the CDI was not able to prove its optimality,
which can be observed in the table.

Table 2.2: The number of optimal solutions (F)ound and (P)roven within
600 s (among 20 instances)

size 10× 10 15× 10 20× 10

lf MIP uLNS CDI MIP uLNS CDI MIP uLNS CDI

F P F P F P F P F P F P F P F P F P

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.3 0 0 0 0 0 0 1 1 2 2 5 0 0 0 0 0 0 0
1.5 7 7 9 9 10 4 5 5 9 9 12 3 3 3 4 4 5 3

Table 2.3 is inspired by (Beck and Refalo, 2002). For each problem in-
stance, the lowest cost obtained by any of the used algorithms is selected.
Then, Table 2.3 contains the number of instances for which the algorithm
found the solution with the best cost, i.e. equal to the lowest cost, and the
number of solutions with uniquely best cost, i.e. if no other algorithm has
found a solution with the same or lower cost. Here we can see that CDI
found the majority of the best and uniquely best solutions among the used

20 2 Production scheduling with earliness/tardiness penalties

algorithms. The difference is larger for the problem instances with a smaller
looseness factor. In line with the observation from Table 2.1, we can say that
the power of the CDI is more visible for harder problem instances.

Table 2.3: The number of (B)est and (U)niquely best solutions found within
600 s

size 10× 10 15× 10 20× 10

lf MIP uLNS CDI MIP uLNS CDI MIP uLNS CDI

B U B U B U B U B U B U B U B U B U

1.0 0 0 5 5 15 15 0 0 0 0 20 20 0 0 0 0 20 20

1.3 0 0 2 2 18 18 1 0 2 0 20 18 1 1 1 1 18 18
1.5 8 0 12 0 20 8 5 0 14 3 16 6 3 0 7 4 16 12

2.4.2 Lacquer production scheduling case study

The case study instance originates from the AMETIST project (AMETIST,
2002), where it was denoted as the extended case study with performance
factors. It contains 29 jobs. The tasks requiring an unrestricted resource
laboratory can be replaced by delay constraints. Then, the problem instance
includes 139 tasks in total (of which 110 are breakable). The scheduling
horizon of the case study instance is 9 weeks in 1 minute resolution, but the
time available for each job is about 2 weeks from the release date to the due
date, which makes the search space smaller. The due dates of the jobs are
almost evenly distributed from the 3rd to the 9th week.

Three CSP algorithms and the original timed automata result (TA) from
the project AMETIST (AMETIST, 2002) are compared in the experiments.
All three CSP algorithms have the same CSP model for the problem using the
time reversing transformation (Algorithm 2.2) and differ only in the search
algorithm. Algorithm 2.1, the cost directed initialization (CDI) is compared
to the ranking (the default search procedure) with a slice based search (SBS)
or depth-first search (DFS). The time limit for each experiment was 600 s,
and then the best solution found up to that point was returned. The results
are presented in Table 2.4, where the time needed to find the solution is
located in the CPU column.

2.4 Experimental results 21

The constraint programming experiments were run on an AMD Opteron
2.2GHz CPU with 2GB of RAM, using OPL Studio 3.6 under Windows
XP. The timed automata experiments were run on an Intel P4 Xeon 2.6GHz
(Behrmann et al., 2005).

Table 2.4: Results for the case study instance

CDI SBS DFS TA

Cost 777,249 1,324,253 1,669,999 ≈ 2,100,000

CPU time [s] 331.4 s 372.7 s 3.2 s ≈ 600 s

The biggest impact on the performance of the application of the CSP
to the lacquer production scheduling has the time reversing transformation
(Algorithm 2.1), as was already mentioned in the previous section. Compar-
ing the results in Table 2.4, we can see that all three CSP search algorithms
outperformed the original timed automata approach. CDI, which was the
best performing CSP search algorithm, found a solution with a cost more
than 60 % better that the original TA result.

2.4.3 Random instances based on the lacquer production case
study

The purpose of this experiment is to compare the performance of the CDI
(Algorithm 2.1) to the default search procedure ranking on a set of random
problem instances. The time reversing transformation (Algorithm 2.2) is
used with both search procedures. The random instances are based on the
structure of the case study instance. Jobs have a randomly assigned recipe to
one of the three recipes depicted in Figure 2.1. The release date rj of the job
Jj is uniformly drawn from the chosen time interval (which is specified later
in this section), the due date is specified as dj = rj+2 weeks. The amount of
lacquer to produce is uniformly drawn from the interval [5000, 20000] units.
This value determines the processing time of the tasks, and the earliness and
tardiness costs.

Two sets, each of 50 random instances, were generated as follows:
1) 30 jobs executed in the time interval of 9 weeks (similar to the size of the
case study instance)

22 2 Production scheduling with earliness/tardiness penalties

2) 18 jobs executed in the time interval of 6 weeks.

The instances have been solved by the following three search algorithms:

DFS the default search procedure (ranking) with a depth-first search as a
search strategy

SBS the default search procedure (ranking) with a slice-based search

CDI the cost directed initialization (Algorithm 2.1)

The results are depicted in Figure 2.2. The percentage of instances, for
which the first solution was found by the given time, is shown in Figure 2.2 (a)
for the set of instances 1) and in Figure 2.2 (c) for set 2). For the second
comparison, the best solution obtained by the given time was selected and
then the ratio of the cost function of the given solution to the one of the best
solution was computed. The average of these ratios is shown in Figure 2.2 (b)
for set 1) and in Figure 2.2 (d) for set 2).

The results illustrated in Figures 2.2 (b) and (d) show that the CDI
algorithm is capable of finding the solution with the best cost function among
the used search algorithms. In Figures 2.2 (a) and (c) we observe that the
CDI needs more time than the other two search algorithms to find the first
solution. The results show that the SBS is in second place with regards
to performance, while the DFS does not provide satisfactory results. The
difference in performance of the CDI and SBS is more apparent for larger
problem instances.

2.5 Conclusion

This chapter presented two algorithms for solving earliness/tardiness schedul-
ing problems, which are designed to be applied within a constraint program-
ming system.

For an earliness tardiness job-shop scheduling problem, a greedy search
tree initialization algorithm called the cost directed initialization (CDI, Algo-
rithm 2.1) is presented. The performance of the algorithm is compared to a
mixed integer programming model (MIP), a mixed integer programming with
unstructured large neighborhood search (uLNS) and to a simple constraint
programming model with a SetTimes search heuristic (ST). The experiments,
on randomly generated benchmark instances, show the efficiency of the cost
directed initialization. Within time limit of 600 s, the CDI is capable of find-

2.5 Conclusion 23

ing a solution that is usually better than the one found by any of the MIP,
uLNS, or ST. With respect to the number of solutions with the best obtained
value of the cost function, the CDI algorithm also performed better than the
other algorithms. However, the weak point of the CDI is that the optimum,
even if it is found, is usually not proven within the given time limit.

When solving the lacquer production scheduling problem, the usage of
the time reversing transformation (Algorithm 2.2) had the greatest impact
on the performance. Without this transformation, we were able only to solve
instances of a size up to 5 jobs. The conducted experiments showed us that
also adding the cost directed initialization helped to solve the majority of the
randomly generated problem instances. For the lacquer production schedul-
ing case study instance, the combination of the time reversing transformation
and the CDI found a solution more than 60% better than the timed automata
solution (AMETIST, 2002).

24 2 Production scheduling with earliness/tardiness penalties

(a) The first solutions obtained for
instance set 1)

(b) The average ratio of the cost
functions for instance set 1).

(c) The first solutions obtained for
instance set 2).

(d) The average ratio of the cost
functions for instance set 2).

Figure 2.2: The results for random instances of the lacquer production
scheduling

Chapter 3

Reoptimizing component
allocation in surface mount
technology assembly system

The component allocation problem, which is a part of the Surface Mount
Technology (SMT) assembly process optimization, is a problem of distribut-
ing the components to the multiple machines at the assembly line. This
chapter deals with the component reallocation problem aiming to improve
the existing component allocation which was in this case originally created
by the SMT line operators as a manual modification of the initial compo-
nent allocation by the line computer optimizer. The modification was made
to improve the quality of the assembly; however, it negatively affected the
assembly time. This chapter describes an algorithm developed as a decision
support system for the SMT line operators and its purpose is to suggest
changes in the existing component allocation in order to improve the pro-
duction performance. To minimize the impact of the optimization on the
assembly quality, the number of changes in allocation is minimized and the
reallocation of some components is not allowed. The SMT line considered
in this work is equipped with two dual-delivery multi-station placement ma-
chines. The proposed algorithm is based on the constraint programming
approach and the large neighborhood search. The problem-specific search
procedure and the nozzle selection constraint are presented. Performance of
the algorithm is evaluated by the optimization of one product type assembly

25

26 3 Component allocation in SMT assembly

and on a set of randomly generated problem instances following the structure
of the production problem instance.

3.1 Introduction

In the Surface Mount Technology (SMT) assembly process, usually the place-
ment machines are—because of their high purchase cost—the limiting re-
source of the production. Therefore, the optimization of the operation of
placement machines is necessary, and placement machine manufacturers de-
liver software for some kind of this optimization. Yet, these tools are some-
times not able to fulfill all the needs of the SMT line operators.

The problem in scope of this work came out from cooperation with an au-
tomotive industry company producing power steering controllers. The com-
pany uses an SMT line computer optimizer developed by the manufacturer
of the placement machines to compute the initial solution of the component
placement optimization. This initial setup is implemented at the SMT line
(i.e. appropriate components are loaded to component feeders, etc.) and a
production trial is carried out. Then, the SMT line operators analyze the
quality of the placement operations and make manual changes in the setup to
reduce the number of defects in component placement. However, these modi-
fications, which include changes in allocation of components to machines and
changes in assignment of nozzle types to components, have a negative effect
on the balance of the placement line. The following re-optimization does not
focus solely on improvement of the workload balance; the second objective of
the problem is to minimize the number of changes in allocation with respect
to the manually modified setup, since each of the changes can again decrease
the quality of the component placement process. The line computer opti-
mizer is not suitable for this re-optimization task due to stochastic nature
of the used algorithm. The problem described and solved in this chapter is
specified as follows: for an existing setup, find a setup with lower cycle time,
i.e. with workload more uniformly distributed among placement machines,
while the number of differences in allocation between the setups is minimized.

The optimization of printed circuit board (PCB) assembly system is a
complex optimization problem consisting of a number of related problems.
These problems are categorized into three major hierarchically related sub-
problems (Ball and Magazine, 1988; Ammons et al., 1997). At the highest

3.1 Introduction 27

level, the grouping problem consists of selecting machine groups in the set
of available machines, selecting printed circuit board families in the set of
produced PCBs, and assigning the PCB families to machine groups. The
allocation problem at the middle level comprises allocation of component
types to placement machines, for each particular PCB family and the related
machine group. At the lowest level, the assignment of component feeders
to slots of the machine and the sequencing of the placement operations is
performed. Due to problem complexity, the typical approach is to solve each
of the three sub-problems separately.

This work focuses on the allocation problem. Therefore, the problem of
re-optimizing the setup is denoted as the component reallocation problem. Of
the two remaining subproblems, the sequencing problem is left to be solved
consequently using the line computer optimizer, while the solution of the
grouping problem is already determined by the initial setup. In our case,
the production of PCBs for power steering controllers is a High-Volume Low-
Mix production, i.e. a small range of PCB types is produced in large series.
In such situations, the workload balancing of the assembly line is a more
critical issue than the length of the changeover time required to reconfigure
the assembly line for a production of a different PCB type (Kulak et al.,
2008). Considering this, the single unique setup strategy (Ammons et al.,
1997) is chosen, where a single setup is used for a card family containing
only one PCB type.

The allocation problem has been solved using various approaches. In Ball
and Magazine (1988) the allocation problem is formulated as a bin packing
problem, assuming the time to pick and place each component is constant.
Ammons et al. (1997) used a list processing heuristic similar to the best-
fit-decreasing for bin packing, and also a mixed integer linear programming
approach. The time to pick and place is estimated for each type of compo-
nent. Kodek and Krisper (2004) applied a branch and bound algorithm to
the allocation problem, balancing a heterogeneous assembly line where the
assembly time is specified for each combination of component type and ma-
chine. Sun et al. (2005) used an iterative algorithm, where the component
allocation is solved by a genetic algorithm, and the solution is passed on to a
greedy heuristic for evaluation of the workload. A two step genetic algorithm
approach is described in Kulak et al. (2008) where a set of candidate solutions
to the allocation problem is generated, and these solutions are consequently

28 3 Component allocation in SMT assembly

used as an input for the sequencing problem algorithm determining the ac-
tual cycle time for the assembly line. Then, the best solution is selected.
In the component reallocation problem, the goal is to find a modification in
the existing solution of the allocation problem. Watkins and Cochran (1995)
presented a line balancing heuristic for existing setups, where the existing
component allocation is modified by greedy local moves.

The technology of a SMT placement machine significantly influences
the optimization algorithm. Overview and classification of various machine
technologies and related optimization algorithms is presented by Ayob and
Kendall (2008). The SMT placement line in our problem consists of ma-
chines that can be categorized as dual-delivery collect-and-place machines.
The dual-delivery machines are characterized by two placement heads that
alternate in accessing one shared placement zone. The main feature of collect-
and-place machines is the usage of placement heads containing multiple vac-
uum nozzles, that enable picking of a number of components from feeders
(i.e. collecting) before the placement head moves above the PCB to perform
placement operations. The placement heads can be equipped with various
types of vacuum nozzles that are used depending on the physical parameters
of mounted components. Typically, more than one nozzle type is needed even
for production of single PCB type. For the collect-and-place machines, there
are two possibilities how to deal with the nozzle requirements: either noz-
zles are changed during production as necessary or the heads are equipped
with all the nozzles needed. The process of nozzle changes significantly de-
creases the production speed. Hence, if the changes are allowed, the goal is to
minimize the number of nozzle changes. When we choose not to change the
nozzles during production, another problem has to be solved – the selection of
nozzles to be set up on the placement heads. The operation of dual-delivery
collect-and-place machine is described by Tirpak et al. (2000), where the se-
quencing problem and the nozzle selection problem is solved. The workload
balancing of the two alternating heads was not solved, since both heads were
operating using the same setup. In the already mentioned work of Sun et al.
(2005), which also deals with dual-delivery collect-and-place machines, the
nozzle change minimization problem was solved by the workload evaluation
heuristic. Raduly-Baka et al. (2008) presented an algorithm with polynomial
time complexity to solve the optimal nozzle selection problem.

In this work, the component reallocation problem is formulated as a num-

3.1 Introduction 29

ber partitioning problem, i.e. similarly to the formulation of component
allocation problem in Ammons et al. (1997); Kulak et al. (2008). The for-
mulation contains additional constraints that can be divided into two parts.
The first part consists of constraints describing the reallocation property of
the problem and the second one is related to the technical specifications of
the placement machines. Nozzle changes are not allowed during production
for two reasons: besides the already noted significant increase in the duration
of assembly line cycle time, there is also a probability of breakdown caused
by the unsuccessful nozzle change. The nozzle selection problem is included
in the allocation problem as a nozzle selection constraint. While there are
efficient algorithms for the number partitioning problem, the constraint pro-
gramming (CP) (Dechter, 2003) approach is chosen due to the additional
constraints. The CP model is combined with depth-first branch and bound
optimization search. For better scalability and applicability to larger problem
instances, the CP model was also used within the large neighborhood search
framework (Shaw, 1998). The proposed algorithm can be also included as
one part of the two step optimization, as described in approach of Kulak
et al. (2008). The CP algorithm is tested on a production problem instance
and a set of random instances generated according to the structure of the
production problem instance. The results shown in this work represent a 10%
improvement of the production speed, when the output of our algorithm was
used for a production trial on the SMT line.

The two main contributions of the work are as follows. The nozzle se-
lection problem is included in the reallocation problem, whereas in other
approaches, either nozzle optimization is performed later as a part of the
sequencing problem, or different nozzle types are not considered at all. Fur-
ther, the proposed algorithm solves the component reallocation problem us-
ing complete search, whereas the related papers, e.g. Watkins and Cochran
(1995), usually consider only single local search moves for the reoptimization
of the component allocation.

The chapter is organized as follows. In the next section, the SMT as-
sembly line consisting of dual-delivery machines is described. Section 3.3
presents the formulation of the component reallocation problem. In Sec-
tion 3.4, the constraint programming model including the search procedure
for the problem is described. Section 3.5 describes the construction of the
large neighborhood search. Section 3.6 contains the description of problem

30 3 Component allocation in SMT assembly

instances used for the computational experiments, and the results of the
performance evaluation are presented.

3.2 Description of the SMT assembly line

The SMT assembly line consists of two machines Siemens SIPLACE HS50
connected by two conveyors in parallel, as it is depicted in Figure 3.1. Each
machine contains four revolver placement heads. Each placement head is
equipped with 12 vacuum nozzles and a camera for visual inspection, and
it has its own stationary feeder bank with a number of feeder slots. The
placement head is mounted on an overhead gantry that allows simultaneous
movements in X-Y directions and also movement in Z direction for the com-
ponent pick and placement. The PCB does not move during the pick and
place operations.

Figure 3.1: SMT assembly line with two machines HS50.

The machine can be classified as a combination of dual-delivery collect-
and-place placement machine and multi-station placement machine according
to Ayob and Kendall (2008); Kulak et al. (2008), and except the number of
stations, it is similar to Fuji NP-132 machine in Tirpak et al. (2000). The
machine is composed of two stations. Each of the stations contains one
placement zone which is shared by a pair of placement heads, e.g. placement
heads 1 and 4 in Figure 3.1. The pair of placement heads operates in dual-
delivery mode, which means that at one time only one head of the pair
can be located inside the placement zone. The dual-delivery operation of
a placement heads pair is modeled by a Petri net (Petri, 1962) depicted in

3.2 Description of the SMT assembly line 31

Figure 3.2 and the Gantt chart illustrating the dual-delivery operation for
one example assembly is presented in Figure 3.3.

Figure 3.2: Petri net model of the dual-delivery operation of the pair of
placement heads.

The sequence of operations starts when the PCB is loaded by the con-
veyor to the placement zone. One placement head of the pair, e.g. the head
number 4, moves over the PCB to acquire the position of fiducial marks using
the built-in camera, while the second placement head (the head number 1)
moves over its feeder bank to perform the pick operation to collect 12 com-
ponents at most (each nozzle can hold one component). Next, as soon as the
placement zone is empty, the placement head 1 moves from the feeder bank
over the PCB to place the components. At the same time, the placement
head 4 is performing the pick operation. Then, the heads synchronize, i.e.
the placement head that finishes the pick operation waits for the other head
if it still blocks the placement zone with the placement operation. Then,
the heads continue in alternation in the concurrent execution of pick opera-
tion and placement operation, with synchronization at the end of each pick
operation before the placement head enters the placement zone.

One pick-and-place round of operations performed by the placement head
is denoted as the tour, which is indicated in Figure 3.3. The assembly time is
the time spent by the placement head pair on assembly of one PCB, measured
from the start of the first pick operation to the end of the last movement out

32 3 Component allocation in SMT assembly

Figure 3.3: Gantt chart of an example assembly with dual-delivery operation
of placement head pair.

of the placement zone. The time needed by the SMT assembly line to perform
a complete assembly of one PCB is the cycle time. The assembly line consists
of a sequence of dual-delivery placement head pairs (see Figure 3.1). For such
configuration the cycle time is determined as the maximum of the assembly
time for all placement head pairs.

3.3 Component reallocation problem

The aim of the component reallocation problem is to improve the existing
component allocation, that was originally created by the SMT line opera-
tors as a manual modification of the initial component allocation by the line
computer optimizer. The solution of the component reallocation problem
is the balanced component allocation and is determined by the changes in
component allocation with respect to the existing allocation. The compo-
nent reallocation problem is a multicriteria optimization problem. The first
objective of the problem is to minimize the maximal assembly time for all
placement head pairs, i.e. to minimize the cycle time of the assembly line.
The second objective is to minimize the number of changes in component
allocation.

An instance of the component reallocation problem is specified as follows.

3.3 Component reallocation problem 33

The PCB family in the problem is a singleton set, i.e. the re-optimization is
performed for a single PCB type. The set of SMD components required for
the assembly of the PCB is defined. This set is divided into mutually exclusive
and collectively exhaustive subsets according to type of components, where
the subset of all components of one type is denoted as the component type.
The existing component allocation is defined. Each component type requires
a specified nozzle type and is allocated to exactly one placement head. From
the set of all component types, a subset is selected to be fixed at the existing
allocation due to production quality requirements.

3.3.1 Assembly time approximation

The component reallocation problem is solved separately from the sequencing
problem, which is a common approach to deal with the complex problem of
SMT assembly optimization. Since the exact value of the assembly time is
not available until the sequencing problem is solved, an approximation of the
assembly time is included in the component reallocation problem.

Let J be the set of the placement heads. The number of tours performed
by head j ∈ J is indicated by rj . The placement zone is optimally utilized
by a pair of placement heads, if the number of tours of the two placement
heads is equal or different by one:

|rj − rk| ≤ 1 (3.1)

where {j, k} ⊂ J is the notation for the placement head pair. This re-
quirement is easily proved. The placement zone is shared and the placement
operations of the head pair are serialized. Therefore, it is not possible for
the two placement heads to finish the assembly at the same time. For the
absolute value of the difference (3.1) equal to zero or one, one placement head
will be idle during the last placement operation of the second head, as it is
depicted in Figure 3.3. For the difference of two or greater, one placement
head has to be idle while the second head performs one placement operation
and one or more complete tours.

Since the assembly line is equipped with one type of placement heads,
the approximation of the sequencing problem is defined as follows:

A) The duration of pick and placement is equal for all components.

B) The duration of all feeder-PCB movements is equal.

34 3 Component allocation in SMT assembly

Next, we assume that:

C) All placement heads perform at least one tour fully loaded.

D) Requirement (3.1) is satisfied.

Then, the assembly time of {j, k} ⊂ J is approximated by a number of
components allocated to {j, k}, and by a number of tours performed by {j, k}.
That is, the approximation replaces one criterion by two criteria.

Let us shortly explain the approximation. Due to A) and C), the duration
of the first pick operation can be subtracted from the assembly time for all
{j, k} ⊂ J . Then, due to A) and D), the assembly time is a sum of durations
of all placement operations and all but two feeder-PCB movements (examine
in Figure 3.3). Finally, A) and B) is used to replace the durations by number
of components and tours.

3.3.2 Problem specification

Let I be the set of all component types. Component type i ∈ I consists of wi

components. Let the integer variable lj , the load of placement head j ∈ J ,
represents the number of components allocated to j, which is defined by the
following constraint:

lj =
∑
i∈I

wi · xi,j for all j ∈ J , (3.2)

where the binary variable xi,j = 1 iff component type i is allocated to place-
ment head j. A solution of the component reallocation problem is uniquely
determined by values of xi,j , i.e. xi,j is the main decision variable of the
problem. Each component type is allocated to exactly one placement head,
which is ensured by the constraint∑

j∈J
xi,j = 1 for all i ∈ I. (3.3)

The constraints (3.2, 3.3) represent the multi-way number partitioning prob-
lem and correspond to the formulation of the allocation problem in Kulak
et al. (2008).

The objective of the problem contains the requirement for minimization
of changes in component allocation. Let the parameter ai represent the
placement head to which the component type i is allocated in the existing

3.3 Component reallocation problem 35

allocation. The change in allocation is then indicated by a binary variable yi
with yi = 1 iff the component type i is allocated to placement head different
from ai. The relation between yi and the allocation variable xi,j is expressed
by the constraint

yi = 0 ⇐⇒ xi,ai = 1 for all i ∈ I. (3.4)

The change of the allocation is disallowed for component types indicated by
a set D ⊂ I, which is represented as

yi = 0 for all i ∈ D. (3.5)

Load lj cannot exceed the number of components the head j is able to
transport in rj tours. This is expressed as

lj ≤ rj · cj , (3.6)

where cj is the capacity of the revolver placement head j, i.e. the maximal
number of vacuum nozzles carried by the head.

The placement heads are equipped with various types of vacuum nozzles
as required by the component types. Since the nozzles are set up before the
production and no changes are allowed during the production, rj is directly
related to the allocation and the nozzle type requirements of the component
types. This relation is represented by the nozzle selection constraint described
below. Let T be the set of all nozzle types used in the assembly. The
binary parameter vi,τ indicates whether the assembly of component type
i ∈ I requires nozzle type τ ∈ T . Each component type requires exactly
one nozzle type what is ensured by the parameters satisfying the constraint∑

τ∈T vi,τ = 1 for all i ∈ I. The partial load lj,τ represents the load of
placement head j caused by component types requiring nozzle type τ , which
is expressed as

lj,τ =
∑
i∈I

vi,τ · wi · xi,j for all j ∈ J , τ ∈ T . (3.7)

Load lj is a summation of all partial loads, lj =
∑

τ∈T lj,τ for all j ∈ J . The
nozzle selection constraint then ensures that for each placement head, the
total of required nozzles does not exceed the capacity:

36 3 Component allocation in SMT assembly

∑
τ∈T

⌈
lj,τ
rj

⌉
≤ cj for all j ∈ J . (3.8)

This relation is more restricting than (3.6), which is demonstrated in Exam-
ple 1: Given the partial loads of placement head j, the optimal (i.e. minimal
feasible) value of rj is determined.

Example 1 Nozzle selection

Determine the optimal value of rj for head j with capacity cj = 12 noz-
zles, which is used for placing of 16 components requiring nozzle type 1, 10
components requiring nozzle type 2 and 7 components requiring nozzle type
3.

The load of the placement head is lj = 33. When the nozzles are allowed
to be changed arbitrarily during the production, using Relation (3.6), the
components will be placed in rj = ⌈33/12⌉ = 3 tours. However, the nozzles
have to be set up before the production and rj = 3 is not sufficient since the
required number of nozzles exceeds the capacity cj :
⌈16/3⌉+ ⌈10/3⌉+ ⌈7/3⌉ > cj .

The optimal number of tours is rj = 4:
⌈16/4⌉+ ⌈10/4⌉+ ⌈7/4⌉ ≤ cj .

Depending on the values of partial loads lj,k, the solution of nozzle selec-
tion constraint with smaller load lj may require higher number of tours rj .
For illustration, compare Example 1 and another instance with load lj = 36
consisting of partial loads lj,1 = 15, lj,2 = 12 and lj,3 = 9, which is placed
in rj = 3 tours. In the context of the component reallocation problem, the
minimization of lj may increase the value of rj and vice versa. Since the du-
ration of a feeder-PCB move is significantly longer than the duration of pick
and placement of a component, a unit change in value of rj has a greater
impact on the assembly time than a unit change in lj . Also, as defined
by Relation (3.6), the value of rj defines an upper limit on the value of lj .
Therefore, the minimization of the number of tours is performed prior to the
minimization of the load. The objective is formulated as the lexicographic
minimization Ehrgott (2005) – the lexicographic order is used for comparing
the criterion vector composed of the problem criteria. The complete objective

3.4 Solving the component reallocation problem 37

of the component reallocation problem is defined as

lexmin

(
max

{j,k}⊂J
(rj + rk) , max

{j,k}⊂J
(lj + lk) ,max

j∈J
lj ,
∑
i∈I

yi

)
(3.9)

containing four criteria to be minimized. The first criterion is the maximum
of the number of tours performed by the placement head pairs. The second
criterion is the maximum of the load of the pairs. The purpose of the third
criterion — the maximum of the load lj for all j ∈ J — is to balance the load
of the individual placement heads. Similar balancing of rj for the individual
placement heads is not necessary while the constraint (3.1) is satisfied. The
last criterion represents the requirement to minimize the number of changes
in the component allocation with respect to the existing allocation.

3.4 Solving the component reallocation problem

The component reallocation problem was solved using the Constraint Pro-
gramming (CP) approach. Then the complete search constraint programming
algorithm was used in the large neighborhood search algorithm.

3.4.1 Constraint programming model

The constraint programming model of the component reallocation problem is
constructed using the constraints (3.1–3.8) and the objective (3.9) presented
in the previous section. Most of these constraints are directly available in the
used CSP system. The only problematic constraint is (3.8) due to the usage
of the integer division rounding toward positive infinity, while the integer
division available in constraint programming systems typically rounds the
result toward zero. The integer division that rounds the result toward positive
infinity can be formulated with the available division constraint using the
relation ⌈a/b⌉ = ⌊a+ b− 1/b⌋. The nozzle selection constraint (3.8) is then
implemented as ∑

τ∈T

⌊
lj,τ + rj − 1

rj

⌋
≤ cj for all j ∈ J . (3.10)

Primarily for the purpose of the search, the CSP model contains two
additional variables. The integer variable zi represents the placement head

38 3 Component allocation in SMT assembly

Algorithm 3.1 Identification of the bounds on rj

1. Determine the average number of tours

AV =
∑

i wi

c·|J |
2. Determine the lower bound
if AV − ⌊AV ⌋ ≤ 0.5 then

LB = ⌊AV ⌋
else

LB = ⌈AV ⌉
end if
3. Determine the upper bound

UB = maxj r
′
j

4. Apply the bounds
LB ≤ rj ≤ UB for all j ∈ J

the component type i is allocated to, and the relation between zi and xi,j is
defined by the channeling constraint

zi = j ⇐⇒ xi,j = 1.

The second additional integer variable Y represents the total number of
changes in allocation defined as

Y =
∑
i∈I

yi.

To reduce the search space, upper and lower bounds on the domains of
variables are identified. The upper bound is computed from the maximal
number of tours r′j in the existing solution. Algorithm 3.1 determines the
lower and upper bound on variable rj for all j ∈ J . The bounds are subse-
quently distributed to variable lj using constraint propagation on constraint
(3.6). In the first step of Algorithm 3.1, it is assumed that the capacity of
all placement heads is the same, that is c = cj for all j ∈ J .

The objective (3.9), which consists of multiple lexicographically ordered
criteria, is reformulated as a weighted sum of the criteria

3.4 Solving the component reallocation problem 39

min

(
λ1 · max

{j,k}⊂J
(rj + rk) + λ2 · max

{j,k}⊂J
(lj + lk) + λ3 ·max

j∈J
lj + Y

)

where the non-negative integer parameters λ1, λ2, λ3 represent the weights
of the summation with sufficiently different values in order to prevent the
interference of the individual criteria.

3.4.2 Search procedure

The search procedure (in CSP also denoted as the labeling procedure) de-
signed for the component reallocation problem performs the variable selection
and the value assignment as described in Algorithm 3.2. In the first step,
the search procedure performs the value assignment for the variable Y in in-
creasing order, i.e. the number of allowed changes in the allocation increases
during the search. In step 2, the component type i is selected, which was
originally allocated to placement head ai with the maximal actual load. If
there are several such component types, the second criterion for selecting i is
the minimum of the possible alternative allocations, and further criterion is
the maximum of size wi. Then, two branches are created in the search tree: i
is forced to change allocation, and alternatively allocation of i is unchanged.
Step 3 performs labeling for the number of tours, selecting first j with small-
est domain, i.e. using first-fail principle. Finally, in step 4, the allocation is
assigned for the component sets which are supposed to change allocation.

40 3 Component allocation in SMT assembly

Algorithm 3.2 Search procedure for the component reallocation problem

1. Select Y , assign the values in increasing order.
2. Labeling of yi ∀i ∈ I:

Select i for which lai has domain with the maximal minimum
if not unique selection of i then

select i with the minimal domain size of zi
if not unique selection of i then

select i with the maximal value of wi

end if
end if

Create two branches in the search tree:
– assign yi ← 1
– alternatively assign yi ← 0

3. Labeling of rj ∀j ∈ J :
Select rj with the smallest domain, assign values in increasing order.

4. Labeling of zi ∀i ∈ I:
Select zi with the smallest domain, assign values in increasing order.

The used CSP system contains a generic search procedure that offers vari-
ous choices for the variable selection and also for the value assignment. It was
used in steps 1,3 and 4 of the search procedure described in Algorithm 3.2.
The decisions made in step 2 were implemented as a special branching heuris-
tic.

The depth-first branch and bound optimization search strategy was ap-
plied to solve the problem.

3.5 Large neighborhood search

The component reallocation problem is stated as a re-optimization of the
existing solution. That is, the problem naturally fits for application of the
local search. The paper of Watkins and Cochran (1995) presents a local
search approach to solve a less complex version of component reallocation
problem. It defines the neighborhood using simple local move composed of
change in allocation of one component type. By contrast, with the application
of the large neighborhood search, complex exchanges in allocation can be
explored. The functionality of LNS used in this work to solve component

3.5 Large neighborhood search 41

Algorithm 3.3 Large neighborhood search

s∗ ← existing solution of the problem
while stop condition = false do

Select R ⊆ I
Create a new problem instance p using s∗:
value assignment is relaxed for zi for all i ∈ R
zi = z∗i for all i ∈ I \R

s← solve(p)
if s is better than s∗ then
s∗ ← s

end if
end while

reallocation problem is described in Algorithm 3.3.

The algorithm is initialized with s∗ containing the existing solution of
the component reallocation problem. Then, the iterative loop is repeatedly
executed while a defined stop condition does not hold. The main variable for
the LNS approach is zi representing the allocation of the component type i ∈
I. From the set I a subset R is selected by neighborhood selection heuristic,
as described bellow. The variables zi of the new problem instance p are for
all i ∈ I \R fixed at the values of z∗i from the current best solution s∗. The
value assignment of zi is propagated to related variables xi,j and yi. Then, the
partially fixed problem instance p is solved using the constraint programming
model and the depth-first branch and bound optimization search described
in Section 3.4. In order to explore more neighborhoods, p is not solved
completely, but with a limit on number of failures during the search. In this
work, the limit was set to 40k.

The important part of applying LNS is the process of selecting the set R
that composes the neighborhood. In this work, three neighborhood selection
heuristics are studied.

LNS1 The randomized selection chooses randomly the component types for
which the value assignment will be relaxed. The size of R is chosen randomly
between 10% and 50% of |I \ D|. The elements of R are randomly selected
from I \ D. The randomized selection of the neighborhood was previously
used for example in Gargani and Refalo (2007) on the steel mill slab design

42 3 Component allocation in SMT assembly

problem with a structure similar to the component allocation problem. The
randomized selection heuristic has one drawback concerning the criterion Y
of the component reallocation problem. In each iteration of LNS, a random
part of the current best solution is fixed. The changes in allocation made in
one iteration may be fixed for the next iteration. That way, the algorithm can
accumulate a significant difference in allocation with respect to the existing
solution. Then additional iterations are necessary to perform in order to
reduce the number of changes represented by Y .

LNS2 The randomized non-drifting selection of R is designed specifically
for the problem with the objective containing a criterion of minimizing the
difference between the existing and the optimized solution. The idea of the
heuristic is that all component types i which have changed allocation need
to be included in the set R. The size of R is defined as |{i ∈ I|z∗i ̸= ai}| plus
10%–50% of |{i ∈ I \ D|z∗i = ai}|. All component types in {i ∈ I|z∗i ̸= ai}
are selected to be part of R. Subsequently, the set R is completed by random
selection from the set {i ∈ I \ D|z∗i = ai}.
LNS3 The alternation of the neighborhood selection heuristics LNS1 and
LNS2. In the while loop of Algorithm 3.3, when the solving of the partially
relaxed problem instance p fails n times in a row, the neighborhood selection
heuristic is switched. The alternation is performed after 10 fails of LNS1 and
after 1 fail of LNS2.

3.6 Experimental results

The proposed algorithms were implemented using Gecode 3.4, an open-source
C++ library for constraint programming (http:://www.gecode.org). The
constraint programming algorithm using the depth-first branch and bound
search from Section 3.4 is denoted as DFS in the following text. The neighbor-
hood search algorithm is used with the three neighborhood selection heuris-
tics as denoted in Section 3.5.

All algorithms were compiled as 32bit binaries and executed on a PC with
AMD Opteron 248 CPU at 2.2GHz with 2GB of RAM, in the environment
of Microsoft Windows Server 2003. The time limit for each computation was
600 s, after which the execution was stopped, and the best solution up to
that time was returned. For the LNS algorithms, the time limit was used as
the stop condition. The LNS algorithms performed 10 executions for each

3.6 Experimental results 43

problem instance in order to measure the robustness of the LNS approach.

The experiments were conducted using one problem instance from pro-
duction and a set of randomly generated instances following the structure of
the production problem instance. The SMT assembly line for all problem in-
stances consists of two dual station dual delivery machines Siemens SIPLACE
HS50 as depicted in Figure 3.1, i.e. the number of placement heads is |J | = 8.
Each placement head j is equipped with revolver placement head containing
cj = 12 vacuum nozzles.

3.6.1 Production problem instance

The experimental verification of the algorithm was realized for one PCB
type. The problem instance consists of |I| = 61 component sets with 572
components in total. The placement of the components requires |K| = 7
different types of vacuum nozzles. Change in allocation is disallowed for
|D| = 11 component sets.

All tested algorithms obtained the solution with the same objective. The
computation time needed to obtain the solution is presented in Table 3.1.

DFS LNS1 LNS2 LNS3

CPU time [s] 103.6 25.8 9.2 21.1

Table 3.1: Computation time for the production problem instance.

The existing component allocation is compared to the balanced solution
in Figure 3.4. Each column represents the load of the placement head speci-
fied at the horizontal axis label by machine-head number code following the
notation used in Figure 3.1. The pairs of placement heads are indicated.
The number of tours for the existing component allocation and the balanced
solution is depicted in Figure 3.5.

This optimized component allocation was used for production trial at the
SMT line. The conclusion of the results measured by SMT line operators
during production is included in Table 3.2, with the maximum assembly
time for all placement heads, and also with the balance ratio computed as
mean/max assembly time in percents.

44 3 Component allocation in SMT assembly

Figure 3.4: Comparison of lj for existing and balanced component allocation
for production problem instance.

Table 3.2: Cycle time comparison for existing and balanced feeder setups.

Existing Balanced Difference

Cycle time [s] 34.1 30.5 −3.6
Balance ratio [%] 83.4 89.5 +6.1

3.6.2 Generated instances

The problem instances randomly generated for the purpose of performance
evaluation share the same structure with the production problem instance.
The generation of the instances is performed in two steps. First, a list of com-
ponent types with assigned size and required vacuum nozzle type is created.
The proportion of occurrence of different values of wi is determined accord-
ing to the production problem instance. The frequency of usage of different
vacuum nozzle types also corresponds to the production problem. Next, the
component list is used as an input for the constraint programming DFS algo-
rithm from Section 3.4 with disabled optimization. It non-optimally allocates
component types to placement heads, generating existing allocations which
are the problem instances for the component reallocation problem. The set
D, which is selected randomly for each instance, is of size 10 for all instances.
The problem instances were generated in three sizes of |I| ∈ {62, 75, 100},

3.6 Experimental results 45

Figure 3.5: Comparison of rj for existing and balanced component allocation.

with 20 instances in each of the three sizes.

Table 3.3 summarizes the results of the experiments. For each problem
size and applied algorithm, it presents the number of Solved instances (i.e.
found any solution) out of the 20 in each set. The best solution is selected for
each problem instance from the results of all four algorithms. In row Best,
the table presents the number of problem instances (out of 20) for which
the best solution was found. The Uniquely best row represents the number of
solutions for which the algorithm found the best solution, that was not found
by the other algorithms. The CPU time is the computation time needed to
obtain the best solution. The table presents the median of the CPU time for
the 20 problem instances.

The conclusion from Table 3.3 is that the LNS algorithms outperform
the DFS algorithm in both computation CPU time and the ability to find
the best solution. The difference in performance is more apparent for larger
problem instances. When comparing the LNS algorithms, the alternation
of the two neighborhood selection heuristics, denoted as LNS3, outperforms
both heuristics alone.

Table 3.4 relates to the experiment focusing on the robustness of the LNS
algorithms. Each problem instance is solved 10 times by each LNS algorithm.
A solution with the best objective is selected for each instance. The table
presents, for each algorithm and problem size, the percentage of executions
that obtained the best objective. In order to study the capability of the LNS

46 3 Component allocation in SMT assembly

T
ab

le
3.3:

C
om

p
u
tation

resu
lts

for
th
e
ran

d
om

ly
gen

era
ted

in
sta

n
ces.

S
ize

62
75

1
0
0

A
lgo

rith
m

D
F
S

L
N
S
1

L
N
S
2

L
N
S
3

D
F
S

L
N
S
1

L
N
S
2

L
N
S
3

D
F
S

L
N
S
1

L
N
S
2

L
N
S
3

S
olv

ed
20

20
20

20
20

20
20

2
0

1
2

2
0

2
0

20

B
est

11
20

14
20

13
20

19
2
0

0
1
3

1
5

16

U
n
iq
u
e
b
est

0
0

0
0

0
0

0
0

0
1

1
3

M
ed

ian
C
P
U

[s]
6
.4

4.8
0.2

4.7
58.6

4.2
2.8

2.6
3
0
9

1
5
2

1
55

117

3.7 Conclusion 47

algorithms to minimize the number of changes, the results are inspected for
two cases:

a) Y , the number of changes, is included in the objective. b) Y is not included
in the objective.

Comparing the results for the two cases a) and b), the results by the ran-
domized selection heuristic (LNS1) have the largest difference, which is the
reason for designing the other heuristics, as discussed in Section 3.5. The
heuristic LNS3 outperformed LNS1 and LNS2 also according to the results
in Table 3.4. Next, the results show that with increasing size of the problem
instance, the LNS algorithms are less capable to find the best solution.

Table 3.4: Robustness of the LNS algorithms: Ability to find the best solution
(in percents)

Size 62 75 100

Algorithm LNS1 LNS2 LNS3 LNS1 LNS2 LNS3 LNS1 LNS2 LNS 3

Y in objective 67 59 66 79 85 88 13 26 22

Y not in objective 68 59 66 87 85 90 77 41 76

3.7 Conclusion

This chapter presents an algorithm for the reoptimization of the component
allocation which was created by manual modifications performed in order to
improve the quality of the assembly. In order to minimize the influence of the
reoptimization on the quality of the assembly, the objective of the problem
includes the minimization of changes in component allocation, and a list of
components is specified for which the change in allocation is not allowed.

The proposed model of the component reallocation problem includes the
nozzle selection problem that was in previous works solved later as a part
of the sequencing problem (Sun et al., 2005; Kulak et al., 2008). The algo-
rithm is implemented using constraint programming approach using depth-
first branch and bound optimization search. More complex exchanges in the
allocation can be explored than in the local search approach of Watkins and
Cochran (1995). Subsequently, the CP algorithm is used within the large

48 3 Component allocation in SMT assembly

neighborhood search framework in order to obtain better scalability. Two
heuristics for construction of the neighborhood are presented, and also an
algorithm alternating the application of the two heuristics is introduced.

The algorithms are applied to one production problem instance and the
conducted production trial shows an improvement of assembly line cycle time
by 10%. Next, a set of randomly generated problem instances is used to com-
pare the constraint programming DFS algorithm and the large neighborhood
search algorithms. The LNS algorithms outperform the DFS algorithm, with
a more significant difference in the results for the larger problem instances.
Among the neighborhood selection heuristics, the alternation of the heuris-
tics, denoted as LNS3, shows the best performance.

Chapter 4

Permutation flow-shop with
blocking

This part of the thesis deals with a problem of scheduling an assembly line
producing agricultural machinery. The problem is categorized as the permu-
tation flow-shop problem with blocking. The algorithm to solve the problem
is based on the large neighborhood search framework and it uses a branch-
and-bound algorithm as a complete search sub-routine. A new algorithm for
computation of lower bound is presented taking into account the properties
of the explored neighborhoods.

4.1 Introduction

This chapter deals with a problem of scheduling an assembly of agricultural
machinery. The company manufactures a range of product types. The as-
sembly of all these product types is performed at one assembly line consisting
of a sequence of assembly stations. A job is defined by customer order where
a customer specifies product type, chosen configuration and options. The
order specification defines the processing time of the job at each assembly
station. Each job passes through all assembly stations, and the order of visit-
ing the stations is the same for all jobs. There are no storage buffers between
the assembly sites, so a job that finishes operation at one assembly station
cannot leave that station until the immediately following station is empty.
The objective of the company is to minimize the total assembly time.

49

50 4 Permutation flow-shop with blocking

The problem is categorized as the permutation flow-shop problem with
blocking (PFSB). There is a set of jobs that are processed on a set of machines
(i.e. unary resources). All jobs visit the resources in the same order. There is
no possible overtaking of the jobs during the production, that is all jobs are
processed on each resource in the same order. The objective of the problem
is to find such a permutation for processing of the jobs that the completion
time of the last job is minimized.

Considering the computational complexity, the problem is NP-hard for
m > 3 resources (Hall and Sriskandarajah, 1996). In the case of a flow-
shop problem with two resources, denoted as F2|block|Cmax according to
the notation by Graham et al. (1979), the problem can be polynomial-time
reduced to a special form of the Traveling Salesman Problem (Reddi and
Ramamoorthy, 1972) which can be solved by a polynomial time complexity
algorithm (Gilmore and Gomory, 1964).

The approaches to solve the permutation flow-shop problem with blocking
can be roughly divided into two subsets – complete algorithms and heuris-
tics. Among the complete algorithms the most common approach is to use a
branch-and-bound algorithm, as for example in (Levner, 1969; Ronconi and
Armentano, 2001; Ronconi, 2005; Companys and Mateo, 2007). The used
branching is typically the one described by Lomnicki (1969) for solving the
flow-shop problem without blocking. In brief, the branching is constructing
the schedule (i.e. permutation of the jobs) from the start of the schedule. In
each level of branching, a job from a set of unordered jobs is selected and
inserted at the end of the current partial schedule. Concerning the recent
branch-and-bound algorithms, Ronconi (2005) presents a new bounding al-
gorithm, which utilizes a part of the algorithm (Gilmore and Gomory, 1964)
for solving F2|block|Cmax. Companys and Mateo (2007) presents another
approach (algorithm called LOMPEN), where the branch-and-bound algo-
rithm is simultaneously executed for the original problem instance and for
the time-inverse formulation of the problem. This algorithm (as the only one
from the branch-and-bound algorithms) was able to verify optimal solutions
for all benchmark flow-shop instances by Taillard (1993) of size n = 20 jobs
and m = 5 machines.

The heuristic approaches can be further divided into constructive heuris-
tics and meta-heuristics. The constructive heuristics are polynomial-time
complexity algorithms that usually create a suboptimal solution. Such an

4.2 Problem formulation 51

algorithm operates first by assigning a priority to the jobs using some de-
fined rules. In the next step, the algorithm processes the jobs according to
this priority and insert them into the final schedule. In (McCormick et al.,
1989), a constructive heuristic for the permutation flow-shop problem with
blocking was introduced. Lestein (1990) compared heuristics developed for
permutation flow-shop problem without blocking when applied to PFSB. In
conclusion of that study, the best of the algorithms was the NEH heuristic
(Nawaz et al., 1983). A study of the efficiency of different variants of the NEH
heuristic is presented in (Ribas et al., 2011). In that work, the mentioned
constructive heuristics are used as one of the steps of an iterated greedy algo-
rithm. The presented algorithm was able to find new best solutions for most
of the Taillard’s benchmark instances. From the works using meta-heuristic
approach, for example, a genetic algorithm is presented in (Caraffa et al.,
2001). Grabowski and Pempera (2007) presented a tabu search approach to
solve PFSB.

The algorithm presented in this chapter to solve the permutation flow-
shop problem with blocking is based on the large neighborhood search frame-
work (Shaw, 1998). It represents a local search method, where a local neigh-
borhood of a current solution is explored using a complete search method.
The used complete search method is based on branch-and-bound algorithm
by Ronconi (2005). A new algorithm for computation of lower bound is pre-
sented which better utilizes the properties of the explored neighborhoods in
comparison to the bounding algorithm in Ronconi (2005).

The chapter is organized as follows. In Section 4.2 the permutation flow-
shop problem with blocking is formulated. In the next Section 4.3, the algo-
rithm for solving the PFSB is presented. Section 4.4 shows the results of the
conducted experiments. The last section then concludes the results of the
work.

4.2 Problem formulation

The flow-shop problem with blocking can be formulated as described in the
following text. We assume a set of n jobs J = {J1, . . . Jn}, where job Jj
consists of a set of tasks T = {Tj,1, . . . Tj,m}. Each task of job Tj has a
given processing time pj,i on a unary resource Ri from a set of m resources
R = {R1, . . . , Rm}. The start time Sj,i of all task determine the result of the

52 4 Permutation flow-shop with blocking

scheduling problem.

For each job j, there exist a precedence relation between tasks Tj,i and
Tj,i+1 such that

Sj,i + pj,i ≤ Sj,i+1 for all i = 1, . . . ,m− 1. (4.1)

Let π = (π1, π2, . . . , πn) denotes a permutation of jobs, where πk = j iff job
Jj is the k-th job of the schedule. Then, a precedence relation between two
consecutive jobs is formulated as a precedence relation between the tasks
sharing the same resource:

Sπk,i + pπk,i ≤ Sπk+1,i for all k = 1, . . . , n− 1; i = 1, . . . ,m. (4.2)

The blocking property of the schedule is expressed by relation

Sπk,i + pπk,i ≤ Sπk+1,i−1 for all k = 1, . . . , n− 1; i = 2, . . . ,m. (4.3)

The makespan of the problem is defined as the end of processing of the
last job, i.e. Cmax = Sπn,m + pπn,m.

The objective of the problem is to find a permutation π′ ∈ Π from the set Π
of all permutations such that the makespan is minimal:

Cmax(π
′) = min

π∈Π
Cmax(π). (4.4)

4.2.1 Computation of makespan

When a permutation π of jobs is defined, a schedule can be computed in
polynomial time using a recursive computation (Pinedo, 1995). In this al-
gorithm, variables Dj,i are introduced denoting the departure time of job j
from resource i, that is the time when the resource is released by job j and
the next job can be processed. A relation Cj,i ≤ Dj,i applies for each task of
the schedule.

4.3 Solving technique 53

Dπ1,0 = 0, (4.5)

Dπ1,i =

i∑
q=1

pπ1,q i = 1, . . . ,m− 1, (4.6)

Dπj ,0 = Dπj−1,1 j = 2, . . . , n, (4.7)

Dπj ,i = max(Dπj ,i−1 + pπj ,i, Dπj−1,i+1) j = 2, . . . , n; i = 1, . . . ,m− 1,
(4.8)

Dπj ,m = Dπj ,m−1 + pπj ,m j = 1, . . . , n. (4.9)

The makespan of the schedule is then represented as Cmax(π) = Dπn,m. This
computation of makespan is used in various algorithms for PFSB, for example
in (Ronconi, 2005; Grabowski and Pempera, 2007; Ribas et al., 2011), and
also in the algorithm presented in this chapter.

4.3 Solving technique

4.3.1 Large neighborhood search

The functionality of large neighborhood search algorithm used in this work is
described in the following Algorithm 4.1. An existing permutation of the jobs
is used to initialize the LNS algorithm. This initial permutation is obtained
by the same algorithm that performs the complete search in the iterations of
LNS (see bellow), with the only difference in computation of lower bound –
the same LB is used as in (Ronconi, 2005). The solving time for the initial
permutation is limited to some reasonable value, for example 60 s. Variable
f which serves as counter of failed (i.e. non-improving) iterations of LNS is
initialized to value 0.

Then, in each iteration of LNS, an ordered set of jobs OS ⊂ J is selected
containing jobs where precedence from the last iteration will be preserved.
The size of OS is n− 5 to n− 10 jobs. Two types of selection are alternated:
1) random selection 2) selection of tuples of jobs j ∈ J in the non-decreasing
order of values of ∑

i∈1,...,m
Dπ∗

j+1,i
− Sπ∗

j,i
− pπ∗

j+1,i
− pπ∗

j,i
, (4.10)

54 4 Permutation flow-shop with blocking

Algorithm 4.1 Large neighborhood search

Initialization:
π∗ ← initial permutation of jobs
f ← 0

while stop condition = false do
Select OS ⊂ J
Create a new problem instance P using π∗ and OS:

P ← precedence(π∗, j ∈ OS)
π ← solve(P)
if Cmax(π) < Cmax(π

∗) then
π∗ ← π
f ← 0

else
f ← f + 1

end if
if f > limit then

π∗ ← escape(π)
end if

end while

that is, tuples of jobs are selected, where the idle time between the jobs is
minimal.

Given the permutation π∗ and set OS, a new problem instance P is
created, where for jobs j ∈ OS a precedence relation is declared in order
to satisfy the order of jobs in π∗. Then, P is solved using the complete
search algorithm described in the following sub-section. If the newly found
permutation is better, it will be used in following iteration. If f reaches a
given limit, a modified version of the complete search algorithm is executed
in order to escape from the local minimum.

4.3.2 Complete search algorithm

The complete search algorithm is branch-and-bound algorithm derived from
(Ronconi, 2005). The main difference is that the algorithm is implemented
using constraint programming (CP) approach (Dechter, 2003), which is a

4.3 Solving technique 55

method for declarative description and solving of the decision and optimiza-
tion problems. Constraint satisfaction over the integer domains is a part of
the constraint programming which is used to solve combinatorial problems.

The constraint satisfaction problem (CSP) is defined as a triple (x, d, c),
where x = {x1, . . . , xn} is a finite set of variables, d = {d1, . . . , dn} is a set
of respective domains that contain possible values for each variable di =
{v1, . . . , vk} and c = {c1, . . . , ct} is a set of relations — called constraints —
restricting the legal combinations of the values of the variables. Assigning
the values to the variables so that all constraints are satisfied at once is a
solution of the CSP.

The software systems for solving CSP (CSP solvers) employ two coopera-
tive techniques to get a solution of CSP. Constraint propagation removes from
the domains those values that directly violate the related constraints. Usu-
ally, constraint propagation itself is not capable of finding a solution of the
CSP, so the second technique — the search algorithm — is used to system-
atically explore the search space pruned by the constraint propagation. The
search consists of a search procedure (also called the labeling procedure) used
to construct the search tree, and a search strategy (e.g. depth-first search)
that is applied in order to explore the search tree. The search procedure
typically makes decisions about the variable selection (i.e. which variable to
choose) and about the value assignment (i.e. which value to assign to the
selected variable). The constraint propagation and the search cooperate dur-
ing the process of solving the CSP. The search decision, i.e. the assignment
of the value to the chosen variable, reduces the domain of the variable, which
triggers the constraint propagation of the related constraints.

Although CP offer specialized scheduling algorithms (Baptiste et al.,
2001), their efficiency to solve PFSB was inferior when compared to (Ron-
coni, 2005). Therefore, CP was used only as a framework for implementation
of B&B algorithm.

The problem formulation consists of the following variables:

πk for all k = 1, . . . , n represents the job at position k

hj for all j = 1, . . . , n represents the position of job j in the permuta-
tion

Di for all i = 1, . . . ,m is a departure time on resource i, which repre-
sents during solving of the problem, at which time the resource is free for
next job.

56 4 Permutation flow-shop with blocking

Algorithm 4.2 Branching algorithm

function Branch(PS) :
k ← |PS|+ 1
Select πk
for all j ∈ d(πk) do

compute lower bound LBj,k where
job j is inserted at the end of PS into position k

end for all
for all j ∈ d(πk) ordered by non-decreasing LBj,k do

create PS′ = PS + j
update Di for all i = 1, . . . ,m for created PS′

Branch(PS′)
end for all

end function

The constraints in the problem formulation are:

πk = j ⇔ hj = k channeling constraint connecting πk and hj

hj1 < hj2 iff job j1 precedes j2

The objective of the problem is to minimize the final departure time on the
last resource:

minDm.

The recursive branching algorithm is presented in Algorithm 4.2. The
input of the algorithm is a partial sequence PS of already sequenced jobs.
d(πk) denotes the domain of variable πk, i.e. a set of jobs that are allowed
to be placed at position k. When a new branch PS′ is created where job j is
inserted at the end of current PS, the departure times Di are updated using
the algorithm for computation of departure time (5–9). The computed lower
bound is used for two purposes. As usually in branch-and-bound algorithms,
the LB is used to discard branches of the search tree, where LB exceeds the
objective value of current best solution. The second purpose is to set the
search priority for the newly created branches. The computation of lower
bound is presented in detail in next sub-section.

4.3 Solving technique 57

Escaping from local minimum

The algorithm for escaping from local minimum, which is used in the LNS
algorithm, adds new variables and constraints to the presented complete
search algorithm. The objective of the problem is different.

Using current best permutation π∗, an array of constants nextj is crated for
all j ∈ J representing the job which is directly following job j in permutation
π∗:

nextj = π∗
hj+1 for all j ∈ J .

New binary variable xj for all j ∈ J is created, which will contain value 1
iff in the current schedule job j has the same directly following job as in π∗.
This is represented by the following constraint:

xj = 1⇔ (πhj+1 = nextj).

Then, the problem is solved while minimizing
∑

j xj and Dm simultaneously,
with higher priority on xj , i.e. the objective is:

min
(
M ·

∑
j xj +Dm

)
where M >> maxmDm.

4.3.3 Lower bound computation

The computation of lower bound utilizes the fact that when LNS approach is
used, there exists a subset of jobs j ∈ J \R ordered according to permutation
π∗ from the previously found best solution. The lower bound computation is
based on the following Property 1 of the PFSB.

Property 1: Let π is a permutation of jobs in PFSB and Jj /∈ π is a job
not included in the permutation. The makespan of optimal schedule for π is
denoted as Cmaxπ. The makespan of optimal schedule for π ∪ j, where Jj is
inserted optimally between two other jobs in π is

Cmaxπ∪j ≥ Cmaxπ + min
i=1,...,m

pj,i

Proof: Given the permutation π, the grid graph (Grabowski and Pempera,
2000) representing the schedule is constructed. The critical path traversing
this graph connects any two consecutive jobs on at least one of the resources
from the set R. If job j is inserted between two jobs, makespan will be
increased at least by pj,i where i is the critical resource. The critical path
starts at task Tπ1,1 and ends at Tπn,m. Therefore, if job j is inserted in front
of π, the value of makespan will be increased at least by pj,1. Similarly, when

58 4 Permutation flow-shop with blocking

Algorithm 4.3 Computation of lower bound

initialization:
LB ← 0
Compute the departure time D for the jobs in PS.
Select jobs JU : {j ∈ J | j ∈ OS \ PS}
Select jobs JN : {j ∈ J | j ∈ J \ (OS ∪ PS)}
Select job j′ as the last job in the set {j ∈ J | j ∈ OS ∪ PS}

for all i = 1, . . . ,m− 1 do
Compute D on resources i, i+ 1 for j ∈ JU when scheduled after PS
DU,i+1 ← D of last job in JU on resource Ri+1

Update LB

LB ← max

Du,i+1 +
∑
j∈JN

min
q=i,i+1

pj,q +

m∑
q=i+2

min
j∈JN∪j′

pj,q, LB


end for all

job j is inserted after π, the value of makespan will be increased at least by
pj,m.

The computation of lower bound is based on Property 1. In level k of
the branching tree, there exists a partial sequence PS of jobs π1, . . . , πk that
create a part of the resulting permutation, beginning from the start of the
resulting permutation. The subset of jobs j ∈ J \ R ordered according to
permutation π∗ will be denoted as ordered subset OS.

4.4 Experimental results

The experiments evaluating the performance of designed algorithms were
conducted using the flow-shop benchmark instances by Taillard (1993). In
the first part, the introduced Algorithm 4.3 for computation of lower bounds
is compared to the algorithm by Ronconi (2005). In the second part, the
designed LNS algorithm is compared to other algorithms for solving per-
mutation flow-shop problem with blocking. The experiments were executed
using algorithms implemented in Gecode (Gecode Team, 2010) C++ library

4.4 Experimental results 59

for constraint programming. The presented algorithms were executed on a
PC with AMD Opteron 248 CPU at 2.2GHz with 2GB of RAM. The results
for the algorithms from related works were take from the relevant papers.

4.4.1 Lower bound computation

Algorithm 4.3 is designed to compute a lower bound for flow-shop problem
instance where an ordered subset OS ⊂ J of jobs exists, where precedence is
defined. Benchmark instances for this part of experiments were created from
the benchmarks (Taillard, 1993) by following operations. For given problem
size, size of OS was specified and the set OS was randomly generated as a
subset of J . The presented complete search algorithm was used with each
of the two compared LB computation algorithms. The solution time was
limited to 60s. We used problem instances of size n = {20, 50, 100} jobs and
m = {5, 10, 20} resources, i.e. problem instances of 9 different problem sizes
were used. The results show that although the value of lower bound computed
by Algorithm 4.3 was 3− 5% higher than the lower bound computed by the
algorithm (Ronconi, 2005), the output of the optimization was quite equal.

4.4.2 Minimizing the makespan

In this experiment, the proposed LNS algorithm is compared to the branch-
and-bound algorithm by Ronconi (2005) (RON), to the tabu search algorithm
by Grabowski and Pempera (2007) (GP) and to the greedy iterative algorithm
by Ribas et al. (2011). The time limit for each computation was 1 hour, after
which the execution was stopped, and the best solution up to that time
was returned. We used problem instances of size n = {20, 50, 100} jobs and
m = {5, 10, 20} resources. For each size of the problem, only the first five
instances from the flow-shop benchmark set by Taillard (1993) was used. The
results of the experiments are presented in Table 4.1. The LNS algorithm
did not find for any problem instance a better solution than was presented
in (Ribas et al., 2011). For the larger problem instances, the LNS is 5− 7%
worse. In Table 4.1, the results are compared only to results obtained by
algorithms RON and GP.

The presented results show that for smaller problem instances, LNS algo-
rithm is able to find better solution than RON or GP algorithm. For problem
instances of larger size, the tabu search approach GP was better performing

60 4 Permutation flow-shop with blocking

than LNS.

4.5 Conclusion

This chapter presented an algorithm for solving permutation flow-shop prob-
lem with blocking. We were able to improve the efficiency when compared
to the branch-and-bound algorithm by (Ronconi, 2005), on which the de-
signed LNS algorithm is based. However, for the larger problem instances,
the algorithm was surpassed by the tabu search approach of (Grabowski and
Pempera, 2007). Only for instances of size 20×5 and 20×10 we were able to
obtain solutions equal to the results from (Ribas et al., 2011). The potential
for the approach presented in this work is in solving permutation flow-shop
problem with additional constraints, which would make the constraint prop-
agation more efficient.

4.5 Conclusion 61

Table 4.1: Best obtained solutions for Taillard’s benchmarks.

LNS GP RON LNS GP RON LNS GP RON

20× 5 50× 5 100× 5

1374 1387 1384 3056 3163 3151 6475 6639 6455

1409 1424 1411 3280 3348 3395 6172 6481 6214

1280 1293 1294 3117 3173 3184 6096 6299 6124

1449 1451 1448 3263 3277 3303 5961 6120 5976

1345 1348 1366 3289 3338 3272 6110 6340 6173

20× 10 50× 10 100× 10

1698 1698 1736 3698 3776 3913 7354 7320 7496

1835 1836 1897 3669 3641 3798 7084 7108 7281

1672 1674 1677 3614 3588 3723 7303 7233 7400

1538 1555 1622 3787 3786 3885 7420 7413 7670

1617 1631 1658 3774 3745 3934 7172 7168 7317

20× 20 50× 20 100× 20

2448 2449 2530 4672 4627 4886 8238 8101 8347

2244 2242 2297 4418 4411 4668 8362 8105 8372

2479 2483 2560 4556 4388 4666 8127 8071 8265

2348 2348 2399 4478 4479 4650 8407 8081 8365

2436 2450 2538 4521 4359 4475 8270 8074 8304

62

Chapter 5

Conclusion

5.1 Summary and contributions

This thesis describes a study of three combinatorial optimization problems
from the are of manufacturing systems. For each of the three problems,
an analysis and categorization of the problem was performed. Then, an
algorithm was developed to solve the problem. Finally, the algorithm was
tested on data that was either real data obtained from our industrial partner
or artificially generated problem instances. The main contributions of this
thesis are enumerated in the following text.

For the production scheduling problem with earliness/tardiness penalties pre-
sented in Chapter 2, the contributions are:

• Design of the search tree initialization procedure for the earli-
ness/tardiness scheduling problems.

• Definition of the time reversing transformation for the earli-
ness/tardiness scheduling problems.

For the problem of reoptimization of the component allocation in surface
mount technology assembly system presented in Chapter 3, the contributions
are:

• Inclusion of the nozzle selection problem in the reallocation problem,
whereas in other approaches, either nozzle optimization is performed

63

64 5 Conclusion

later as a part of the sequencing problem, or different nozzle types are
not considered at all.

• The component reallocation problem is solved using a complete search
algorithm, whereas the related papers usually consider only single local
search moves for the reoptimization of the component allocation.

For the permutation flow-shop problem with blocking, the contributions are:

• Design of a large neighborhood search algorithm for solving the PFSP.

• Definition of a new algorithm for computation of lower bound to be
used in the LNS algorithms.

5.2 Future research

The conclusion of this work regarding the future research is that in scheduling
problems from real manufacturing process, the storage space between the
working stations is a scarce resource. Another finding that emerged from
consultations with a colleague from the cooperating industrial partner is that
in a mass production supply chain, the payment of tardiness cost usually
would have a liquidation result to the supplier. Therefore, in the future
research in the field of scheduling in manufacturing systems, the appropriate
scheduling problem to deal with would be the earliness/tardiness scheduling
problem with limited buffers, or a scheduling problem with only the earliness
part of the objective.

Bibliography

AMETIST, 2002. European Community Project IST-2001-35304 (Advanced
Methods for Timed Systems). http://ametist.cs.utwente.nl/.

Ammons, J. C., Carlyle, M., Cranmer, L., DePuy, G., Ellis, K., McGin-
nis, L. F., Tovey, C. A., Xu, H., 1997. Component allocation to balance
workload in printed circuit board assembly systems. IIE Transactions 29,
265–275.

Ayob, M., Kendall, G., 2008. A survey of surface mount device placement
machine optimisation: Machine classification. European Journal of Oper-
ational Research 186, 893–914.

Baker, K. R., Scudder, G. D., 1990. Sequencing with earliness and tardiness
penalties: A review. Operations Research 38 (1), 22–36.

Ball, M. O., Magazine, M. J., 1988. Sequencing of insertions in printed circuit
board assembly. Operations Research 36 (2), 192–201.

Baptiste, P., Le Pape, C., Nuijten, W., 1995. Constraint-based optimization
and approximation for job-shop scheduling. In: AAAI-SIGMAN Work-
shop, IJCAI-95.

Baptiste, P., Le Pape, C., Nuijten, W., 2001. Constraint-Based scheduling:
Applying Constraint Programming to Scheduling Problems. Kluwer Aca-
demic Publishers.

Barták, R., Salido, M. A., Rossi, F., 2009. Constraint satisfaction tech-
niques in planning and scheduling. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-008-0203-4.

65

66 BIBLIOGRAPHY

Beck, J. C., Perron, L., 2000. Discrepancy-bounded depth first search. In:
CP-AI-OR 2000.

Beck, J. C., Refalo, P., 2002. Combining local search and linear programming
to solve earliness/tardiness scheduling problems. In: CP-AI-OR 2002.

Beck, J. C., Refalo, P., 2003. A hybrid approach to scheduling with earliness
and tardiness costs. Annals of Operations Research 118 (1–4), 49–71.

Behrmann, G., Brinksma, E., Hendriks, M., Mader, A., 2005. Production
scheduling by reachability analysis - a case study. In: WPDRTS 2005.
IEEE Computer Society Press.

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., Werglarz, J., 2001.
Scheduling Computer and Manufacturing Processes, 2nd Edition. Springer-
Verlag, Berlin.

Caraffa, V., Ianes, S., Bagchi, T. P., Sriskandarajah, C., 2001. Minimizing
makespan in a blocking flowshop using genetic algorithms. International
Journal of Production Economics 70, 101–115.

Carlier, J., Pinson, E., 1990. A practical use of jackson’s pre-emptive schedule
for solving the job-shop problem. Annals of Operations Research 26, 269–
287.

Companys, R., Mateo, M., 2007. Different behaviour of a double branch-and-
bound algorithm on fm∥block∥cmax problems. Computers and Operations
Research 34 (4), 938–953.

Danna, E., Perron, L., 2003. Structured vs. unstructured large neighborhood
search: A case study on job-shop scheduling problems with earliness and
tardiness costs. In: CP 2003. pp. 817–821.

Danna, E., Rothberg, E., Le Pape, C., 2005. Exploring relaxation in-
duced neighborhoods to improve MIP solution. Mathematical Program-
ming 102 (1), 71–90.

Dechter, R., 2003. Constraint Processing. Morgan Kaufmann Publishers, San
Francisco.

BIBLIOGRAPHY 67

Du, J., Leung, J. Y.-T., 1990. Minimizing total tardiness on one machine is
NP-hard. Mathematics of Operations Research 15 (3), 483–495.

Ehrgott, M., 2005. Multicriteria Optimization, 2nd Edition. Springer, Berlin.

El Sakkout, H., Wallace, M., 2000. Probe backtrack search for minimal per-
turbation in dynamic scheduling. Constraints 5 (4), 359–388.

Gargani, A., Refalo, P., 2007. An efficient model and strategy for the steel
mill slab design problem. In: Principles and Practice of Constraint Pro-
gramming – CP 2007. pp. 77–89.

Gecode Team, 2010. Gecode: Generic constraint development environment.
Available from http://www.gecode.org.

Gilmore, P. C., Gomory, R. E., 1964. Sequencing a one state-variable ma-
chine: A solvable case of the traveling salesman problem. Operations Re-
search 12, 655–679.

Grabowski, J., Pempera, J., 2000. Sequencing of jobs in some production
system. European Journal of Operational Research 125, 535–550.

Grabowski, J., Pempera, J., 2007. The permutation flow shop problem with
blocking. a tabu search approach. Omega 35, 302–311.

Graham, R. L., Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., 1979.
Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Annals of Discrete Mathematics 5, 287–326.

Hall, N. G., Sriskandarajah, C., 1996. A survey of machine scheduling prob-
lems with blocking and no-wait in process. Operations Research 44, 510–
525.

Harvey, W. D., Ginsberg, M. L., 1995. Limited discrepancy search. In: IJCAI-
95. pp. 607–615.

Hoogeveen, H., 2005. Multicriteria scheduling. European Journal of Opera-
tions Research 167 (3), 592–623.

ILOG, 2002. Ilog OPL Studio 3.6 Language Manual.

68 BIBLIOGRAPHY

ILOG, 2005. Ilog Cplex 9.1 User’s Manual.

Kodek, D. M., Krisper, M., 2004. Optimal algorithm for minimizing pro-
duction cycle time of a printed circuit board assembly line. International
Journal of Production Research 42 (23), 5031–5048.

Kulak, O., Yilmaz, I. O., Günther, H.-O., 2008. A GA-based solution ap-
proach for balancing printed circuit assembly line. OR Spectrum 30 (3),
469–491.

Laborie, P., 2003. Algorithm for propagating resource constraints in AI plan-
ning and scheduling: Existing approaches and new results. Artificial Intel-
ligence 143 (2), 151–188.

Lestein, R., 1990. Flowshop sequencing problems with limited buffer storage.
International Journal of Production Research 28 (11), 2085–2100.

Levner, E. M., 1969. Optimal planning of parts machining on a number of
machines. Automation and Remote Control 12, 1972–1978.

Loeschmann, S., Ludewig, D., 2003. Case study 4: Detailed description of
the problem – model of a lacquer production. AMETIST Deliverable 3.4.1.

Lomnicki, Z. A., 1969. A branch-and-bound algorithm for the exact solution
of the three-machine scheduling problem. Operational Research Quarterly
16, 89–100.

Luh P. B. et al., 1998. Job shop scheduling with group-dependent setups,
finite buffers, and long time horizon. Annals of Operations Research 78,
233–259.

McCormick, S. T., Pinedo, M. L., Shenker, S., Wolf, B., 1989. Sequencing in
an assembly line with blocking to minimize cycle time. Operations Research
37, 925–936.

Mercier, L., Van Hentenryck, P., 2008. Edge Finding for Cumulative Schedul-
ing. Informs Journal on Computing 20 (1), 143–153.

Nawaz, M., Enscore, E. E., Ham, I., 1983. A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem. Omega 11 (1), 91–95.

BIBLIOGRAPHY 69

Nuijten, W., Aarts, E., 1996. A computational study of constraint satisfac-
tion for multiple capacitated job shop scheduling. European Journal of
Operational Research 90 (2), 269–284.

Ohno, T., 1988. Toyota Production System: Beyond Large-Scale Production.
Productivity Press, New York.

Petri, C. A., 1962. Kommunikation mit automaten. Ph.D. thesis, University
of Bonn.

Pinedo, M. L., 1995. Scheduling: Theory, Algorithms, and Systems. Prentice-
Hall, New Jersey.

Raduly-Baka, C., Knuutila, T., Johnsson, M., Nevalainen, O. S., 2008. Se-
lecting the nozzle assortment for a gantry-type placement machine. OR
Spectrum 30 (3), 493–513.

Reddi, S. S., Ramamoorthy, C. V., 1972. On the flow-shop sequencing prob-
lem with no wait in process. Operations Research Quarterly 23, 323–331.

Ribas, I., Companys, R., Tort-Martorell, X., 2011. An iterated greedy al-
gorithm for the flowshop scheduling problem with blocking. Omega 39,
293–301.

Ronconi, D. P., 2005. A branch-and-bound algorithm to minimize the
makespan in a flowshop with blocking. Annals of Operations Research 138,
53–65.

Ronconi, D. P., Armentano, V. A., 2001. Lower bounding schemes for flow-
shops with blocking in-process. Journal of the Operational Research Soci-
ety 52, 1289–1297.

Shaw, P., 1998. Using constraint programming and local search methods to
solve vehicle routing problems. In: Principles and Practice of Constraint
Programming – CP 1998. pp. 417–431.

Sun, D.-S., Lee, T.-E., Kim, K.-H., 2005. Component allocation and feeder ar-
rangement for a dual-gantry multi-head surface mounting placement tool.
International Journal of Production Economics 95 (2), 245–264.

70 BIBLIOGRAPHY

Taillard, E., 1993. Benchmarks for basic scheduling problems. European Jour-
nal of Operational Research 64 (2), 278–285.

Tirpak, T. M., Nelson, P. C., Aswani, A. J., 2000. Optimization of revolver
head smt machines using adaptive simulated annealing. In: IEEE/CPMT
Int’l Electronics Manufacturing Technology Symposium. pp. 214–220.

Watkins, R. E., Cochran, J. K., 1995. A line balancing heuristic case study
for existing automated surface mount assembly line setups. Computers &
Industrial Engineering 29 (1–4), 681–685.

List of Author’s Publications

Kelbel, J., Hanzálek, Z., 2006. A case study on earliness/tardiness scheduling
by constraint programming (co-authorship 50%). In: Proceedings of the
CP 2006 Doctoral Programme. pp. 108–113.

Kelbel, J., Hanzálek, Z., 2007. Constraint programming search procedure for
earliness/tardiness job shop scheduling problem (co-authorship 50%).
In: In Proceedings of the 26th Workshop of the UK Planning and Schedul-
ing Special Interest Group. pp. 67–70.

Kelbel, J., Hanzálek, Z., 2008. Feeder setup optimization in smt assem-
bly (co-authorship 50%). In: In Proceedings of the 21st International
FLAIRS Conference. pp. 575–576.

Kelbel, J., Hanzálek, Z., 2011. Solving production scheduling with ear-
liness/tardiness penalties by constraint programming (co-authorship
50%). Journal of Intelligent Manufacturing 22 (4), 553–562.

Kelbel, J., Hanzálek, Z., 2012. Reoptimizing component allocation in surface
mount technology assembly system (co-authorship 50%). Submitted to
journal – in review.

71

