
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Algorithm for network topology design

Doctoral Thesis

Tomáš Fencl

Prague, March 2011

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics

Supervisor: Doc. Ing. Jan Bı́lek CSc.

Copyright
by

Tomáš Fencl
2011

Acknowledgements
In the first place, I would like to thank my advisor Jan Bı́lek for his support and
patience when not everything was going well and for his human quality. I would
like to thank also Pavel Burget for his support and help. My big thanks belong to
my family and friends who supported me in every possible way during those years
and make me smiled when I needed it. I would like to thank to those all who I met
during this time and allowed to me see things from different points of view and help
to recognize what is really important. My thanks belong also to my colleagues for
friendly atmosphere. I want to say thanks also to all people who have read all papers
and works before its submitting and advised me how to improve it. My thanks belongs
to all anonymous reviewers for their comments that allows to improve this work.

This works has been co-financed by the Grant Agency of the Czech Republic,
project number 102/08/1429 “Safety and Security of Networked Embedded System
Applications” and by the Czech Ministry of Education, Youth, and Sports as Eu-
Sophos project No.2C06010 This work was supported by the Ministry of Education
of the Czech Republic under project 1M0567.

Czech Technical University in Prague Tomáš Fencl
March 2011

Nomenclature

C Matrix of the acquisition costs; ci,j describes the costs that is necessary
to pay for the connection of the nodes i and j

CF Matrix of the costs for the fibre cable
CM Matrix of the costs for the metallic cable
capi Capacity of the communication link
Cost Costs of the designed network as well as the fitness function
D Matrix of the maximal permitted delays (a worst-case scenario)
Depth Depth of a node in the tree topology
Depthmax Maximal permitted depth of the tree topology
er Number of links connected to the nodes that should be removed
F Matrix of data-flows, fi,j - size if the data-flow between nodes i and j
j Number of data-flows in the network core
K Array describing the number and kind of communication ports, kfi - the

number of communication ports of node i that can be connected to the
fibre cable, kmi - the number of communication ports of node i that can
be connected to the metallic cable,

kdis Number of nodes that are disconnected from the main node (root node)
kcyc Number of cycles in the network
k Number of nodes at which the number of communication ports is

smaller than a number of available communication ports
kD Number of data-flows that have bigger delay than it is the maximal per-

mitted delay
kF Number of independent paths
l Length of the chromosome of the logical topology
M Matrix of the fault-tolerance. mi,j - describes the number of the inde-

pendent communication paths between nodes i and j
m Number of communication links in the core
Np Number of iterations of the genetic algorithm for the design of the phys-

ical topology
Nch Number of chromosomes of the genetic algorithm for the design of a

physical topology
NLch Number of chromosomes of the genetic algorithm for the design of a

logical topology
P Matrix describes the designed network, pi,j describes the connection of

the nodes i, j; 0-there is no connection, 1-there is a connection created
by the metallic cable, 2 -there is a connection created by the fibre cable

v

Packlen Length of data packets
Pen Penalty function
r Flag of the fault-tolerance; 1-network is not fault-tolerant at the de-

manded level, 0-network is fault-tolerant
Red List of the nodes to be removed∑
ce+ Costs of all edges that were added to the original topology∑
ce− Costs that is necessary to pay for the removal of the communication

links from the original network
u u = 1 if the network described by the chromosome is already in the

accumulator of the unsuitable topologies; u = 0 if the chromosome is
not in the accumulator of unsuitable topologies

Algorithm for network topology design
Ing. Tomáš Fencl

Czech Technical University in Prague, 2011
Thesis Advisor: Doc. Ing. Jan Bı́lek CSc.

The application of the distributed control systems became a standard solution in the
area of industrial control systems. The ability of the industrial control system is not
only dependent on the ability of every part of the control system but also on their
ability to communicate among them. The operation of the control system can be very
limited if a part of the control system does not receive the demanded data or receives
data too late. Unfortunately, the design of the suitable network topology is often
omitted and the limitation of the network topology can cause the limited functionality
of the control system.

The existing algorithms for the network topology design do not offer a design
of the network with demanded attributes. These algorithms often do not apply some
of the real life limitations such as the limited number of communication ports, fault-
tolerance of the network or limitation caused by the environment in which the network
will be used. Moreover, some algorithms are not able to ensure some ability that
should be fulfilled (Algorithms are not able to ensure the design of the fault-tolerant
network even if they offer it). Therefore, a novel algorithm for the design of the
network topology is proposed in the thesis.

The algorithm is able to design the network with the different levels of fault-
tolerance in the different parts of the network. The designed network is less expensive
than the network designed by other existing algorithms. Moreover, the algorithm
is able to work with the nodes that have different numbers of communication ports
and addition of communication ports to nodes is not possible. The algorithm uses
information, which can be received from the application engineers, about unsuitable
structures of the network topology and is able to avoid designing of the network that
contains these unsuitable structures. The proposed algorithm contains the part that
verifies network ability to transfer every data-flow in demanded time.

It is often necessary to change the network topology if the controlled technology is
changed. Thus, the modification of the proposed algorithm for the network topology
design is described in the thesis. The redesigned network meets all demands for the
fault-tolerance, application of nodes with the limited number of communication ports
etc. as a brand new network. On the contrary, the redesigned network is less expensive
than the new network since it uses as a big part of the original network as possible.
Moreover, the modification for the tree topology was proposed.

The algorithm is designed as a modular iterative task on the basis of the genetic
algorithm. The modularity allows application of the more accurate model of the net-
work behaviour if it is needed. Moreover, it is possible to design the topology of the
pipeline or electrical grid if the module for the verification of the network delays is
substituted with model desribing behaviour of electrical grid or pipelines.

Goals and Objectives
The goals of this work were set as follows:

1. To design an algorithm for the design of the network with the different fault-
tolerance in different parts of the network while the network allows in time data
delivery.

2. Modifications of the basic algorithm for the limited number of communication
ports of nodes (different physical layers can be applied) and an application of a
priori information about unsuitable topologies.

3. To design an algorithm for the mesh network expansion and reduction.

4. To design an algorithm for the network topology design. The tree network has
limited depth and use nodes with the limited number of communication ports
of the different type of physical layers.

5. To design an algorithm for the tree topology expansion or reduction.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and outlines . 4
1.3 Genetic algorithm . 6

2 Reliability 9
2.1 Requested network . 12
2.2 Reliability . 14

2.2.1 Ring topology . 14
2.2.2 Node degree as an approximation 17
2.2.3 Node degree as a reliability measure 18

3 Related works 19

4 Network topology design 33
4.1 Problem formulation . 33
4.2 Topology with different levels of fault-tolerance 36

4.2.1 Chromosome representation 36
4.2.2 Genetic functions . 37

4.2.2.1 Genetic mutation 38
4.2.2.2 Crossover operator 38
4.2.2.3 Fitness function 39

4.3 Topology with same level of fault-tolerance 41
4.3.1 Node degree as fault-tolerance measure 41
4.3.2 Algorithm for creation of initial population 42
4.3.3 Genetic operators . 45

4.3.3.1 Mutation . 45
4.3.3.2 Crossover operator 47
4.3.3.3 Fitness function 51

4.4 Logical topology design . 52
4.4.1 Data-flow delay calculation 54

ix

x CONTENTS

4.4.2 Worst-case scenario . 58
4.4.3 Logical topology representation 59
4.4.4 Generation of initial population for logical topology design . . 60
4.4.5 Genetic operators for the logical topology design 61

4.4.5.1 Mutation genetic operator 61
4.4.5.2 Crossover operator 62
4.4.5.3 Fitness function 63
4.4.5.4 Selection and end condition 64

4.5 Algorithm for network design . 64
4.6 Numerical results . 66

4.6.1 Logical topology design . 70
4.6.2 Simulation results . 71

4.6.2.1 OPNET model . 73
4.7 Time complexity . 77

4.7.1 Time complexity - physical topology design 77
4.7.2 Time complexity - logical topology design 79

4.8 Algorithm extension . 81
4.8.1 Different physical layers . 82
4.8.2 Prohibited topologies . 84
4.8.3 Network expansion and reduction 85

4.8.3.1 Network expansion 86
4.8.3.2 Network reduction 89
4.8.3.3 Network reduction and expansion 90

4.8.4 Numerical results - expansion 91
4.8.4.1 Numerical results - reduction 93

4.9 Algorithm settings . 94
4.10 Design of tree topology . 102

4.10.1 Chromosome representation - Tree topology 104
4.10.2 Genetic operators . 104

4.10.2.1 Initial population 104
4.10.2.2 Mutation operator 106
4.10.2.3 Crossover operator 106
4.10.2.4 Fitness function 106

4.11 Reduction/expansion of the tree network topology 107
4.11.1 Tree topology expansion . 108

4.11.1.1 Creation of initial population 108
4.11.1.2 Genetic operators 109
4.11.1.3 Fitness function 109

4.11.2 Tree topology reduction . 109
4.11.2.1 Initial population 109

4.11.3 Numerical result - tree topology 110
4.11.3.1 Design of tree topology 111

CONTENTS xi

4.11.3.2 Numerical results of tree topology reduc-
tion/expansion . 112

5 Conclusion 115
5.1 Contribution . 118

5.1.1 Goals . 119
5.2 Future research and development . 120

6 Appendix 123
6.1 Ability of crossover operator [1] . 123
6.2 Setting of algorithm . 125

6.2.0.1 Same fault-tolerance - literature 125
6.2.0.2 Same fault-tolerance - proposed algortihm 125
6.2.0.3 Different fault-tolerance 125
6.2.0.4 Logical topology design 125
6.2.0.5 Simulation results 125
6.2.0.6 Network expansion - 2-fault-tolerance 127
6.2.0.7 Network reduction - 2-fault-tolerance 127
6.2.0.8 Tree topology . 127
6.2.0.9 Network expansion - tree topology 127
6.2.0.10 Network reduction - tree topology 128
6.2.0.11 Dependency of quality results on number of chro-

mosomes . 129
6.3 Contents of enclosed CD . 129

Bibliography 136

List of Publications 138

Vita 139

xii CONTENTS

List of Figures

2.1 Mesh network with “core” . 13
2.2 Ring topology . 14
2.3 Reliability - Ring topology . 15
2.4 Mesh network . 16
2.5 K-reliability . 16
2.6 Mesh - non 1FT . 17

4.1 Network . 37
4.2 Network representation . 37
4.3 Chromosome mutation . 38
4.4 Chromosome crossover . 38
4.5 TSP chromosome representation . 41
4.6 2FT Repairing operation . 44
4.7 2FT Repairing operation 2 . 44
4.8 2FT mutation . 45
4.9 2FT mutation result . 45
4.10 2FT mutation result . 46
4.11 2FT mutation result . 46
4.12 n-FT crossover operator . 48
4.13 n-FT crossover - results . 48
4.14 n-FT crossover - after reparation . 48
4.15 n-FT crossover - network . 50
4.16 n-FT crossover - network - after reparation 51
4.17 The network . 53
4.18 End-to-end delay according to link load 55
4.19 Worst-case scenario . 58
4.20 The Core . 59
4.21 The chromosome - logical topology 61
4.22 The network - logical topology . 61
4.23 Logical topology - mutation . 62
4.24 Logical topology - crossover . 62

xiii

xiv LIST OF FIGURES

4.25 Algorithm - network topology design 65
4.26 Fault-tolerant network-different level of fault tolerance 69
4.27 Fault-tolerant network, the same level of fault-tolerance 70
4.28 OPNET node . 73
4.29 OPNET - switch . 74
4.30 OPNET - node . 75
4.31 OPNET - node - process model . 75
4.32 OPNET network . 76
4.33 End-to-End delay OPNET . 76
4.34 Chromosome representation - more physical layers 83
4.35 Network - more physical layer . 83
4.36 Algorithm - network design . 84
4.37 Network expansion - original . 87
4.38 Network expansion - original . 88
4.39 Network enhancement-initial population 88
4.40 Network expansion - initial chromosome 88
4.41 Parallel algorithm . 97
4.42 Algorithm performance . 98
4.43 Algorithm performance - detailed view 99
4.44 Tree topology - initialization . 105
4.45 Tree topology - After repairing . 105

6.1 Crossover operator [1] - Proceeding 124
6.2 Costs - Tree topology N = 10 . 127
6.3 Costs - Tree topology N = 12 . 128
6.4 Costs - Tree topology N = 14 . 128
6.5 Costs - Tree topology N = 16 . 128
6.6 Costs - Tree topology N = 18 . 128
6.7 Costs - Tree topology N = 20 . 129
6.8 Costs - dependence on number of chromosomes N = 20 130
6.9 Costs - dependence on number of chromosomes N = 30 130
6.10 Costs - dependence on number of chromosomes N = 40 131
6.11 Costs - dependence on number of chromosomes N = 50 131

List of Tables

2.1 Reliability - Ring topology . 15

4.1 Time consumption K-connectivity [1],[2] 67
4.2 Costs K-connectivity [1],[2] . 67
4.3 Time consumption - Same fault-tolerance 68
4.4 Fault-tolerance - different level . 68
4.5 Time consumption - logical topology design 71
4.6 Comparison of End-to-end delay of the OPNET and proposed model . 77
4.7 Network expansion - results . 91
4.8 Network reduction - results . 93
4.9 Parallelization - time consumption 97
4.10 Parallelization - time consumption 99
4.11 Size of search space . 101
4.12 Recommended number of chromosomes 101
4.13 Design tree topology . 111
4.14 Tree topology expansion . 112
4.15 Tree topology reduction . 113

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

The networked systems gain bigger importance with the growing application of the
distributed systems generally and distributed control or telecommunication system
particularly. In these systems, the networks have a big importance but the proper de-
sign of them is unfortunately very often omitted. The design of the network is done
very often ad hoc, in order to create the network as cheap as possible. This approach
can cause the network malfunctions that can bring big financial losses or casualties in
the worst-case scenario. It is easy to imagine that the network is used in the chemi-
cal industry and malfunction of the network causes the malfunction of the controlled
technology. The malfunction of the controlled technology e.g. petrol distillation can
induce technology explosion and ecological accident can occur. Moreover, many ex-
isting algorithms [3], [4], [5], [6], [7] for the network topology design are dedicated
to some purpose and omit some of the real life limitations as the number of commu-
nication ports of the communication nodes or limitation caused by the environment in
which the network is used.

Existing algorithms often use the reliability of the network as an attribute for the
network design. The reliability is not good characteristic of the network behaviour
in some cases especially, if the network transports the life critical data. The network
can have such a topology that the reliability does not describe the behaviour of the
network. In these cases, the fault-tolerance is a better characteristic of the network
behaviour since it says how many communication links can be disrupted without an
influence on the network operation. The applied level of the fault-tolerance ensures
that user of the network can be sure that a certain disruption of the communication
links does not cause the malfunction of the network. The fault-tolerance is easier to
imagine for users and designers of the network and therefore it is easier to set the
demands of the network fault-tolerance.

On the other hand, the required level of the fault-tolerance is necessary to choose

1

2 Chapter 1 Introduction

very carefully. The level of the fault-tolerance is directly connected with the acquisi-
tion costs of the network since the bigger level of the fault-tolerance the more com-
munication links are needed and the bigger acquisition costs are. Fortunately, in many
cases it is possible to avoid this attribute since it is possible to find parts of the network
that need bigger level of the fault-tolerance and parts of the network that need smaller
level of the fault-tolerance. If the algorithm for the network topology design is able to
design the network with the different levels of the fault-tolerance in the different parts
of the network, then it is possible to avoid unnecessary costs as well.

There are more demands for the network abilities than request for the different
fault-tolerance in the different parts of the network. The network must allow to in
time delivery of the data. If the data are received too late, it can cause serious issue
for the control algorithm and consequently for the controlled technology. Therefore,
it is necessary to verify whether the network is able to transport the expected load in
the demanded time. It is necessary to accommodate nodes with the different abilities
in the network communication. Every node can have different number of communi-
cation ports and even if this situation occurs, the network must meet the request for
the different levels of the fault-tolerance in the different parts of the network. It means
that the design algorithm cannot plan to use more communication ports than there are
available at the nodes.

The application engineer often knows information about the environment in which
the network will be used. The environment can limit the structure of the network
since it can prevent a usage of the direct connection between certain nodes. In this
case, it is necessary to design the network in a different manner and connect these
nodes via other nodes. The algorithm for the network topology design must use a
priori information about unsuitable topologies and design the network according to
this information in order to find the different topology. The network can be combined
from the different communication technologies and therefore it is not possible to focus
only on one communication technology; the design algorithm must be able to work
with the different communication technologies at the same time.

Unfortunately, there is not such an algorithm that is able to design the network
with the different fault-tolerance levels in the different parts of the network with a
usage of nodes with the limited number of the communication ports and application
of a priori information while the network is able to transport expected load in the
requested time. Existing algorithms are able to design the network with the different
levels of the reliability [3], [8], some of them are able to work with the limited number
of the communication ports [9]. None is able to use a priori information about the
unsuitable topologies. Some algorithms that are able to design the “fault-tolerant”
network with the same level of the fault-tolerance are in fact not able to ensure that
the network is really fault-tolerant [1], [2]. In certain situation these algorithms design
networks that seem to be fault-tolerant at certain level but this assumption is wrong
(see chapter: 2 Reliability).

Therefore, the algorithm that is able to design the network with the different fault-

1.1 Motivation 3

tolerance in the different parts of the network with the application of the nodes with the
limited number of communication ports and use a priori information about unsuitable
topologies is proposed in this thesis. Naturally, the network must be able to transfer
the expected load.

The designed network can be changed during its life cycle. The changes can vary
from a minor change in amount of the load to the change of the part of the topology
or an expansion or a reduction of the number of the communication nodes. The al-
gorithm for the network design should be able to redesign the network in this case.
Existing algorithms [3], [10] are able to redesign the network topology only if the
number of nodes is still the same but they are not able to redesign the network if
the number of the communication nodes is changed. Moreover, the changed network
should still meet the demands for the different levels of the fault-tolerance in the dif-
ferent parts of the network that uses communication nodes with the limited number of
communication ports. The network must be still designed according to a priori infor-
mation about the unsuitable topologies and must be able to transport expected load.
Any known algorithm does not offer this possibility and therefore the new algorithm
for this purpose is described in this thesis as well.

The tree topology is very often used in the industry even if it is not able to ensure
the network fault-tolerance. On the other hand, the tree topology allows designing the
network with as less expense as possible. There are algorithms that allow to design the
network with the limited depth of the network and with the nodes with the different
numbers of communication ports. Nevertheless, there is not an algorithm that is able
to design the network with the tree topology with the limited depth and application of
the nodes with the different numbers of communication ports and a priori information
about unsuitable topologies. This algorithm is described in this thesis. Moreover, the
algorithm allows using different physical layers.

It is often necessary to change the topology of the network if the control technol-
ogy is changed. In this case, it is possible to create the brand new network or change
the old network. Both solutions must meet the requirement for the maximal depth of
the network and must be able to use nodes with the different numbers of communica-
tion ports. Moreover, the network topology must be different from those unsuitable
topologies that are known a priori. The redesigned network should be as less expen-
sive as possible. Thus, the new tree topology should use as much components of the
original network as possible. It is only possibility to design as inexpensive changes
as possible if the tree topology is redesigned. The algorithm that allows redesigning
the network with the tree topology is described in this thesis. The algorithm uses as
a big part of the original network as possible. The resultant network has a limited
depth; contains nodes with the different numbers of the communication ports, and it
is different from those unsuitable topologies that are known before the design of the
changes of the network.

4 Chapter 1 Introduction

1.2 Objectives and outlines

Design of the network topology is the important part of the design of the distributed
control systems. Unfortunately, the network is very often designed ad hoc or some
important attributes are omitted during the design. This omission can cause that the
designed network is not possible to construct since the nodes do not have enough
communication ports or the environment does not allow the construction of the net-
work of the designed structure. Existing algorithms are not able to design the network
that meets all requests such as the different fault-tolerance in the different parts of the
network, in time data delivery and limitation caused by the environment and attributes
of the nodes at the same time. The algorithm that complies with all requirements is
proposed in this thesis there.

The ad hoc design is not a big issue if the network is newly designed but in case
that the network is incrementally extended or reduced, the network can lost its at-
tributes and costs for these incremental changes can be unnecessary big even if the
network does not meet all requests. The existing algorithms are able to add or remove
communication links but they are not able to design changes in the network structure
if the number of nodes must be changed. Therefore, the algorithm that is able to work
with the changes of the number of nodes is proposed in this thesis. The changed net-
work must meet the same demands as the original network. Thus, the network must
have requested fault-tolerance, contain the nodes with the limited number of commu-
nication ports and be different from topologies that are unsuitable from some reasons
(mostly because of the environment limitations).

The topology that is very often used in the control engineering is a tree topology.
The tree topology has an advantage in easy expansion and small costs in comparison
with the mesh topology. Nevertheless, there are some limitations in the structure
of the network e.g. the number of communication ports of nodes, a depth of the
tree topology (it has a direct influence on the network behaviour such as time of the
data delivering and network behaviour if some communication link is interrupted)
and limitation caused by the environment. Any existing algorithm does not apply the
limitation caused by the environment. Therefore, this algorithm is proposed in this
thesis.

The changes of the structure of the tree topology are very often while the changes
in the controlled technology occur. These changes are mostly done ad hoc and can
decrease the quality of the network (some branches of the tree can be too long). There-
fore, the algorithm that is able to design as inexpensive changes in the network struc-
ture as possible is proposed in this thesis. The newly designed network meets all
requests arose from the owner of the network (such as the maximal depth of the net-
work, limitation of the number of communication ports of nodes and the limitation
caused by the environment).

The genetic algorithm is used for the design of the network topology. The algo-
rithm is time demanding for the design of the middle and bigger sized network (10+).

1.2 Objectives and outlines 5

Therefore, a parallelization of the genetic algorithm is proposed in this thesis. The
parallelization is used for the finding of the recommended setting of the algorithm for
the design of the network with the different levels of the fault-tolerance in the different
parts of the network.

The document is organized as follows: the first chapter defines the requests that
the network should achieved and reasons why the appropriate network is so important.
In the first chapter, there is basic general information about the genetic algorithm since
the genetic algorithm is used for the design of the network topology.

The second chapter is dedicated to a description of the reliability and the fault-
tolerance of the network. There are examples that represent differences between re-
liability and fault-tolerance and how important is understanding to these differences.
There is also an example of misunderstanding of the meaning of the fault-tolerance
approximation by the node degree and it is possible to see the result of this misun-
derstanding. This misunderstanding can cause that the network that should be fault-
tolerant according to the approximation is not fault-tolerant in fact.

The third chapter is an overview of the parts of works related to the subject of
the designs of the reliable/fault-tolerant networks. There are examples of works that
should cover all possibilities of designing of the fault-tolerant/reliable networks and
can show different approaches to the network designing. The works described there
also show possibilities of the network design from different points of views.

The fourth chapter deals with the network topology design. There is an expla-
nation of the design of the network with the different levels of the fault-tolerance in
the different parts of the network. This algorithm is used as a basic part of the all
modifications of the network design that are depicted in this chapter. The design of
the logical topology is also described in this section since knowledge of the logical
topology allows estimation of the end-to-end delay of data-frames. The modifications
of the algorithm that allows to use a priory knowledge for the design of the network
topology are shown in this chapter as well. Moreover, modifications that allow to use
different physical layers for the network and work with the nodes with the different
number of communication ports are also depicted in this chapter. The algorithm that
is able to design the network with the same level of the fault-tolerance is described
in this section as well (this algorithm was developed since algorithms mentioned in
the literature are not able to ensure this fault-tolerance (see chapter: 2 Reliability).
The design of the tree topology is important since the tree topology is often used in
the telecommunication, computers or control technology. Therefore, this method is
described in this section as well.

It is often necessary to change the existing network topology. Therefore, algo-
rithms that are able to change the existing topology are described in the fourth section.
These algorithms are able to preserve abilities of the original network or improve them
if it is requested. They are able to design changes not only of the number of commu-
nication links but they are also able to design changes of the network topology if the
whole groups of nodes are added or removed; this is a difference in comparison with

6 Chapter 1 Introduction

the existing algorithm.
There are numerical or simulation results for every single described algorithm in

the section fourth. There is also recommended setting of the algorithm for the phys-
ical topology design described in this section. These settings were gained thanks to
the parallelization of the algorithm that allows to do enormous number of tests for
the different numbers of nodes of the network. Even if the changes of settings were
limited to the number of chromosomes, it was necessary approximately six months
of computer time of six computers in average for gaining of these results. The way
of algorithm parallelization is also described in the fourth section. There is also de-
scription of all genetic operators, fitness function and repairing algorithms that are
necessary to use in the algorithms described in the fourth chapter.

The fifth section concludes the thesis and describes the contribution of this thesis.
There is also a chapter that is dedicated to the possibility of the future research.

In the appendix is a description of the settings of the algorithms that were used
for getting results described in this thesis. There is also an example of the results
that are possible to gain if a crossover operator, which is described in the paper [1]
mentioned in the section: 3 Related works, is used. This operator can produce a
network that has not demanded level of the fault-tolerance, therefore it is depicted in
the appendix as an example of the genetic operators that should be avoided. In the
appendix, there is also possible to see all results of the design of the network that is
used during the description of the simulation results. There is also possible to see the
influence of the number of chromosomes on the quality results in the figures in the
appendix. These results were gained thanks to the parallelization of the algorithm for
the network topology design. In these figures, there is possible to see the best results
that are possible to gain with the existing algorithm for this kind of the network and
the best possible solution that would be possible to gain by the proposed algorithm as
well.

1.3 Genetic algorithm

Following paragraph was adopted from the [11], [12],[13] in which is possible to find
more detailed description.

The first applications of the evolutionary computing were used in the 60’s. These
applications solved real technical issues as a design of airfoils. Other solutions were
dedicated to the optimization and machine learning. Evolutionary biologist used the
evolutionary computing as controlled experiments in their research.

All these applications were used in order to solve specific task without intention
to design a general theory that is able to describe optimization process. All methods
were tailored for the specific tasks in contrary to the genetic algorithm developed by
Holland and described in [13]. Holland abstracted the mechanism from the biology as
a gene, chromosomes and genetic operators as mutation, crossover and selection that

1.3 Genetic algorithm 7

allows bigger reproduction of better results than those with worse results. Probably
Holland’s biggest contribution is the theory of “Schemas” and the application of pop-
ulation of chromosomes on which above mentioned operators do their job. The theory
of “Schemas” tried to explain how the genetic algorithm works on the basis of prob-
abilities. This theory allows explaining of the behaviour of the genetic algorithm and
its operations. It is possible to understand Simple Genetic Algorithm [12] as a basic
algorithm (also called Standard Genetic Algorithm). The SGA works as follows:

1. Create an initial population.

2. Calculate the fitness of the initial population.

3. Create new chromosomes with the help of genetic operators: mutation and
crossover.

4. Calculate the fitness of newly created chromosomes.

5. Select chromosomes for the next generation.

6. If stop criterion was not met, continue to step No.3., if stop criterion was met
stop the algorithm and return result.

The structure of the simple genetic algorithm is used for the algorithm or the
network topology design that is described in this thesis.

Creation of the initial population For the run of the genetic algorithm, it is nec-
essary to have an initial population. The initial population should cover the whole
search space. Size of the initial population should correspond to the size of the search
space in order to allow finding a good solution in reasonable time. There are two pos-
sible ways of the generation of the initial population. The population can be created
randomly. This method is suitable if the structure of the good solution is not known or
we are not able to create a structure similar to the good solution. In this situation, the
whole initial population is created at random. Another method is suitable to use if we
know the structure of possible solution and it is possible to create it. In this situation,
the initial population is created at random but in order to looks like the structure of
the possible solution. The example of this situation is a design of the ring topology.
Every node in the ring topology must have degree deg (v) = 2. In addition, the net-
work must be connected. Then the all chromosomes are created randomly but they
must meet the above described condition. This allows finding the solution faster than
if the general randomly generated solution is used.

Evaluation of the initial population The initial population must be evaluated in
order to find the quality of the initial population. This evaluation is later used for the
selection of the chromosomes to the next generation.

Mutation The mutation operator is used in order to preserve diversity in the pop-
ulation and shift the solution in the search space. There is used the one bit mutation

8 Chapter 1 Introduction

in the algorithm for the network topology design. The mutation flips the gene of the
chromosome to another value. Every gene in the chromosome can be mutated with
certain probability. The probability of mutation is usually very small [11], [12].

Crossover operation Crossover operator combines two chromosomes and tries to
find better solution with the help of information stored in parent chromosomes. The
one point crossover is used in the algorithm for the design of the network topology.
Every chromosome from the population can be chosen and every border between
genes can be used as a point of crossover.

Evaluation of the population The newly created chromosomes must be evaluated
in order to gain the evaluation of the whole population. The evaluation of chromo-
somes allows to decide which chromosome is better than others.

Selection The selection chooses the chromosomes for the next generation of the
genetic algorithm. The tournament selection [12] is used in the algorithm for the net-
work topology design. Two chromosomes from the actual generation are compared
and the better one is selected for the next generation. Moreover, the elitism mech-
anism is used. The elitism mechanism means that the best chromosome is always
selected for the next generation even if the best chromosome was not compared with
any other chromosomes. The chromosomes in the tournament selection are chosen
at random for the comparison. Thus, it is possible that the best chromosome is not
compared with any other chromosome and will not be chosen for the next genera-
tion. Therefore, the elitism mechanism is used in order to prevent losses of the best
chromosome.

Stop criterion The stop criterion stops the whole genetic algorithm. In the al-
gorithm for the design of the network topology, the number of iterations is used as
the stop criterion. If the number of iterations reaches the value that is used as a stop
criterion, the algorithm is stopped and the chromosome with the best evaluation is
considered as the solution of the topology design. Another possibility is to use a
stop criterion which decides according to the speed of evolution of the population e.g.
If the population (best chromosomes etc.) has not been changed during the last ten
iterations, stop the algorithm.

The genetic algorithm allows to find the near optimal solution in reasonable time
even if the search space contains several local optimum and the search space has enor-
mous size. Therefore, the genetic algorithm was chosen as the basic for the algorithms
that are described in this thesis and allow to design the network topology.

Chapter 2

Reliability

Distributed control systems are more and more applied in the industry and have a great
importance to an economical operation of the industrial technologies. A distribution
of the control system does not only allow to control vast technologies in a huge plants
but it can be also only possible solution for a gaining of the control systems with big
enough performance. It is possible to imagine a control of a petrochemical plant for a
petrol distillation, car production line, metallurgical plant or an offshore installation.
The distribution of the control systems and control algorithms is natural in all these
cases and in many others in which the controlled technologies are geographically vast
and their control must be safe and reliable. Other situation, when the distribution of
the control systems and algorithm is beneficial, is its application at systems that needs
very fast response because of the safety or the technological reasons. Moreover, the
distribution of the control systems brings cost savings thanks to the savings of infras-
tructure of the whole control systems. It is possible to use only one communication
cable that connects parts of the distributed control systems among each other instead
of using of enormous lengths of cables for an interconnection of sensors and cen-
tral control system. Another possibility is to use remote inputs/outputs and connect
them via communication cable to the central control system or use a combination of
the mentioned possibilities. The distribution of the control systems is possible only
thanks to a communication among parts of the system. It is necessary to share data
among parts of the control systems for correctly working systems and therefore the
communication has the crucial importance for the possibility of the control system
distribution. The data sharing allows optimization of the technology control and bet-
ter diagnostic of the controlled technology as well as the control system and thanks to
that it is able to bring cost savings.

Although the distribution of the control system can bring a lot of advantages as
a faster response or an easier maintenance of the system etc. it can also bring some
disadvantages that are caused by the distribution of the control system. The control
system could share data that are not only important for the optimal run of the con-

9

10 Chapter 2 Reliability

trolled technology but they can be also important for safe operation of the technology
(it could be a pressure in the tank, a concentration of methane in the air, temperature
etc.). If data important for optimal run of the technology are lost, it can cause financial
losses but if the safety data are lost it can cause not only financial losses but also it can
literally mean a biological hazard or a threat to human lives. Therefore, it is necessary
to ensure that the data exchange is reliable and data are uncorrupted. These demands
are fulfilled thanks to the deterministic data exchange via communication protocols
(Profibus R©, Modbus R©, EtherCat R©, Powerlink R©).

Behaviour of the communication protocols is deterministically described by their
standards and these standards also describe procedures that assure data integrity or
prevent data corruption (Cyclic Redundancy Check, SSH, etc.). In case that it is not
possible to assure data integrity, these procedures should be able to inform that data
are not correct. All these procedures do a great work with data exchange but they are
not able to do anything if data are lost. The data losses can be caused by the two main
reasons:

• Communication network is overloaded

• Communication network is interrupted

Basically, it is possible to say: the communication network is unreliable if data are
lost and very probably the network is not designed correctly. It is not easy to prevent
data losses when it happens. If the network is overloaded, it means that capacity of the
network is too small, one must increase the network capacity or decrease data amount
exchanged in the network. In most cases it is possible to use only the first solution,
because it may be possible to add some communication link at the appropriate place
but often it is not possible to reduce amount of exchanged data without a change of
a communication technique. One can expect that data, which are exchanged, are
necessary for a safe and reliable technology control. Hence, it is not possible to
omit a part of this data and therefore they must be comprised in the data exchange
or a method of the data exchange must be changed. Both these possibilities mostly
need the change of a communication technique and the change of the communication
infrastructure connected with the communication technique. However, the necessary
change in the communication infrastructure may not be possible when the network is
already built.

Data losses can be also caused by an interruption of the network or by a malfunc-
tion of the part of the control system. Since we expect the reliable control system, in
which every part is important for the technology control, we can omit a malfunction
of a part of the control system in our expectation. If some part of the control system
does not work correctly then it is not possible to control the technology anyway and
in that moment the communication among nodes is not so important for the correctly
working system. Therefore, the fully operative control system can be expected and a

11

malfunction of the control system can be omitted. Then it is possible to prevent data
losses with the help of an addition of some communication link to the network.

The issue of data losses can be solved by an addition of the communication links
into the network. Unfortunately, the solution of this issue is not as straightforward as
it may seem. Hardware of the control system has a limited number of communication
ports that can be used in the network, the technology used for the communication
network has a constrained bandwidth and the addition of the communication link
may cause data bottleneck at another place. Thus, an improvement of an existing
communication network is limited and the behaviour of the improved network can be
hardly better than the behaviour of the network that is properly designed according to
the demanded attributes from very start of the design.

A design of the communication network for an industrial application is a quite
complex task because inexpensive highly reliable networks are requested in the indus-
try and customers have demands that are contrary to each other by nature (acquisition
costs are one of the important attributes, another is a network fault-tolerance. If there
is a small number of communication links, the acquisition costs are small as well as
the fault-tolerance. It is possible to increase the reliability thanks to the increasing of
the number of communication links then the acquisition costs are increasing as well).

One understands as a reliable network such a network that allows a communica-
tion among parts of the communication network without data-losses. Furthermore,
the network should allow the communication also, if some communication link is
interrupted, it means that there must be a redundant communication path for the inter-
rupted one. The network for the industrial application can control technologies with
very fast dynamic. Thus, data must be exchanged not only fast but also must arrive
to their destination in specified time. The demand for data arrival in the specified
time is the most important attribute of the hard real-time communication protocols
as Profinet R©, EtherCat R©, PowerLink R© for non real-time protocols it is only nec-
essary to ensure that data arrive up to some specified timeout. This attributes of the
communication network are directly connected to the capacity of the network and the
capacity of every communication link. Moreover, every control system has a limited
number of communication ports or can use different kinds of communication infras-
tructure than other parts of the control system. Therefore, it is not possible to place a
communication link at some random position in the network but it is necessary care-
fully choose the appropriate way to connect part of the control systems among each
other. We can see that it is not simple to design the communication network for the
control engineering. One can design the network by himself for very limited number
of devices. On the other hand, for bigger number of devices it is necessary to use some
methodology that helps to balance antagonistic demands as reliability/fault-tolerance
and acquisition costs.

12 Chapter 2 Reliability

2.1 Requested network

The network that should be applied in control engineering must meet several require-
ments. The network must be reliable from engineer’s point of view. One can under-
stand as a reliable network such a network that is tolerant to some communication
link interruption. A tolerance to the link interruption (fault-tolerance) means that ev-
ery node in the network is still able to communicate with the rest of the nodes even if
some communication link is interrupted (It means that the network is still connected
from the graph theory point of view [14]). Another request is a data-delivering in time
(The network must have a big enough capacity for the data-transfer in order to avoid
data losses and data delaying). The last important attribute is the cost of the whole
network. The best possible solution of this optimization issue is a topology that is
not only fault-tolerant and has a big enough communication capacity but it is also as
inexpensive as it is possible. As we demand the application of the resultant topology
in control engineering the main request for us is the tolerance to the link interruption
and the big enough capacity of the network. Nevertheless, we do not want to design
the topology that has the same level of the fault-tolerance in the whole network but we
want the topology that has different levels of the fault-tolerance in the different parts
of the network.

Since the design of the network topology belongs to NP-complete problem [3], [7]
it is not possible to design the network in analytical way for medium and bigger net-
works. Therefore, it is necessary to use some heuristic algorithm as greedy [4], simu-
lated annealing technique [1] or genetic algorithm [3], [6].

Heuristic algorithms allow fast finding of the near optimal network topology but
they are not able to ensure finding of the optimal network topology. In general, it is
not even possible to say that the solution found by the heuristic algorithm is close to
the optimum. This is the main disadvantage of the heuristic algorithms; another one is
that the algorithm must be designed according to the solved task. These disadvantages
have an opposite in the main advantage of the heuristic technique and it is the speed
of a solution finding.

There have been published many papers that focus on the telecommunication net-
work topology design e.g. [8], [15]. These algorithms try to balance the reliability and
costs of the network. Nevertheless, all these algorithms have not proposed solution
that provides sufficient methodology for the network designer in the control engineer-
ing. Moreover, some algorithms are not able to ensure a design of the fault-tolerant
network e.g. [1], [2] from the control engineering point of view and any of the al-
gorithms is not able to design an inexpensive mesh network with the different levels
of the tolerance to the link interruptions in the different parts of the network. This
attribute leads to unnecessary expensive network. Thus, the new methodology for the
network topology design is proposed in this work.

The designed network topology must satisfied two basic demands: the network
must be reliable and allow the data delivering in time. Moreover, the network should

2.1 Requested network 13

V3
V4V1

V2
V5

Figure 2.1: Mesh network with “core”

have as low acquisition costs as possible and can comprise nodes with the different
and limited number of communication ports.

It is possible to understand to the reliability as a probability of the uninterrupted
communication in the network. Nevertheless, it is necessary to know the reliability of
each link for this purpose and it is possible only when the network is built. Therefore,
the reliability, described by this definition, is hardly possible to use for new networks
because we do not know the reliability of the communication links before the network
is built. Thus, it can be used only for the verification of the reliability of the already
built network. If we use it for the designed network before its actual construction it
is only an estimation that may be correct but this estimation can be hardly used as a
realistic reliability measure. Thus, the tolerance to the link interruption is used instead
of the reliability.

The requested fault-tolerance is possible to set independently for every pair of
nodes according to the controlled technology and control algorithm that runs in every
part of the control system.

Part of the network, in which is the critical part of the control algorithm, needs
more reliable communication among nodes and therefore bigger fault-tolerance to the
link interruption (bigger number of independent paths) than other parts of the network.
Node that archives data is not critical for controlled technology and needs one or two
independent paths for the communication with the other parts of the network. Similar
situation is for the communication between the network of the control system and
office network that provides data for managers. This kind of communication is not
needed to be as reliable as the communication in the control network. Thus, one
communication path is enough reliable for this purpose. The network designer can
set the demanded fault-tolerance for every pair of nodes thanks to the knowledge of
the controlled technology and describe the demanded fault-tolerance in the matrix of
fault-tolerance M .

It is possible to see an example in the Fig. 2.1. Node V2 represents a station that
allows a supervision of the controlled technology but not the actual control of the
technology. It provides statistical data, which describe efficiency of the controlled
technology, for managers of factory or supervisors of the technology via public ac-
cess. Node V1 archives data and helps to communicate to a “core” of control system
that include nodes V3 and V5. In the node V4 runs not so critical part of the control
algorithm as in nodes V3 ans V5.

14 Chapter 2 Reliability

2.2 Reliability

The reliability of the network is connected with a possibility of uninterrupted com-
munication even if some communication link is interrupted. If the network is discon-
nected then some node cannot communicate with another node in the network and
therefore the data-exchange is not possible. It is possible to omit the reliability of the
nodes because the network is used in control engineering and the main goal is not
only communicate among nodes but allowing of the technology control. The network
is only tool that should allow an exchange of data that are necessary for the control
of the systems. If node is destroyed, it cannot control the technology and therefore
in this case the communication among nodes is not important any more (even if the
network is fully operative there are any data for the data exchange if the nodes do not
work). Therefore, the fully operative nodes are expected.

2.2.1 Ring topology

The basic and common way of the reliable network topology design is an application
of the ring topology (see Fig. 2.2).

V3V4

V1 V2

Figure 2.2: Ring topology

The ring topology allows uninterrupted communication even if a communication
link is destroyed because there exist two independent paths for every pair of nodes.
This topology can be used for the control systems that include small number of nodes.

In the Fig. 2.3 and Tab. 2.1 is possible to see that the reliability is dependent on the
link reliability and the number of the communication links of the network (Number
of links is the same as nodes in the network with the ring topology).

The Monte Carlo method was used for data gaining. It was done 10000 tests
for every number of nodes of the network. Communication links fail statistically
independently and the link reliability is the same for all of them. It is possible to see
that the terminal reliability for the network with the ring topology, which comprises 10
communication links with reliability 0.9, is 0.74. This reliability can be sufficient for
non critical parts of the network but for the part that is important for the safe control of
the technology it is not enough. The huge disadvantage of this method is a necessity
of the link reliability estimation. We can count the link reliability if the network is
already built and we have statistical data from the real network operation. If we do
not have the real data, we can try to estimate them according to other similar network.

2.2 Reliability 15

LinkReliability 0.8 0.85 0.9 0.95

Nodes Network Reliability
5 0.74 0.84 0.91 0.98
6 0.66 0.78 0.88 0.97
7 0.58 0.71 0.85 0.96
8 0.51 0.66 0.82 0.94
9 0.44 0.60 0.78 0.93
10 0.38 0.55 0.74 0.91
11 0.33 0.50 0.69 0.89
12 0.27 0.45 0.65 0.88
13 0.24 0.40 0.62 0.86
14 0.19 0.36 0.58 0.84
15 0.17 0.31 0.54 0.83
16 0.14 0.28 0.52 0.81
17 0.12 0.25 0.48 0.79
18 0.09 0.22 0.44 0.78
19 0.08 0.20 0.41 0.75

Table 2.1: Reliability - Ring topology

The estimation of the link reliability can be very inaccurate since the networks can be
applied in different environment. Thus, it is necessary to use some other method.

Figure 2.3: Reliability - Ring topology

One method was introduced in [16]. There was used a novel approach for the
network topology design. The cross-entropy method [17] was used for the calculation
of the network reliability in [16]. It is very useful method that allows to count a

16 Chapter 2 Reliability

probability of rare events as a communication link interruption. Method described
in [16] expects minimally bi-connected network and solves the issue of the network
topology design with the unreliable communication links (every communication link
has its own reliability. In proposed case, every link has the same reliability as the
others). A disadvantage of the proposed method is necessity of the link reliability
estimation. The algorithm described in [16] is not able to design a network with the
different levels of the fault-tolerance in the different parts of the network or design
a mesh network that could include a network part with the bus topology as is in the
Fig. 2.4.

Figure 2.4: Mesh network

Another solution of the network topology design problem was suggested in [8].
The concept of the k-terminal reliability was introduced in [8]. The novel method of
the reliability calculation was described in [8].

V6

K1 K 2

K 3

V1

V2

V3

V5

V4

Figure 2.5: K-reliability

This method allows to design the network with the different reliability in the dif-
ferent parts of the network but it is not able to ensure the different fault-tolerance in
the different parts of the network. The method expects that the network is split into k
parts (set of the nodes - see Fig. 2.5); for every set of the nodes is possible to have dif-
ferent demands for terminal reliability (probability that all nodes in the set are able to
communicate with all other nodes in the set). If the reliability of the communication
links is known, then it is possible to count the reliability of every set of nodes with the
help of the Monte Carlo method.

The Monte Carlo method is used for the terminal reliability calculation of the
network designed by the genetic algorithm. The Monte Carlo algorithm generates
set of interrupted communication links of the designed network and the node inter-
connection is verified for every set of k . Then the algorithm is able to calculate the

2.2 Reliability 17

k-terminal reliability for every k−set thanks to the providing of numerous tests. This
method again expects the knowledge of the link reliability and it is not able to design
a network with the different levels of the fault-tolerance in the different parts of the
network or a mesh network that could include a network part with the bus topology as
is in the Fig. 2.4 neither as method described in [16]. Algorithm is not able to ensure
the fault-tolerance because of the nature attributes of the Monte Carlo method. Monte
Carlo method is based on the application of the numerous statistical independent tests.
Result of these tests is able to describe tested hypothesis with confidence interval that
is dependent on the number of the statistical independent tests. Naturally, one can see
that the Monte Carlo method is not able to ensure 100% network reliability if certain
number of communication links fail and therefore it is not able to ensure that there
is not such a configuration of the interrupted communication links that is able to dis-
connect the network. Therefore, methods based on the Monte Carlo algorithm are not
able to ensure the network fault-tolerance.

Methods that are able to ensure fault-tolerance are based on the graph theory. One
was introduced in [1]. There was used a degree of nodes as a fault-tolerance mea-
sure. Unfortunately, the proposed method is possible to use only at very constrained
conditions.

• Node degree is used as fault-tolerance measure

• Node degree is used as fast approximation of another reliability measure

2.2.2 Node degree as an approximation

An application of the node degree as a reliability/fault-tolerance approximation has
a great advantage: it is a speed of finding of the node degree. It is very fast and
thanks to that, it allows a creation of very fast algorithms. An algorithm based on this
methodology would be always faster than any other would be (other algorithm must
find node interconnections firstly and then they work with the topology described by
these connections). However, the test of the node degree is possible to use as a fast
approximation but as the final test of the reliability is not as useful as it could seem to
be.

V1

V2 V4 V7

V6

V8

V3 V5

Figure 2.6: Mesh - non 1FT

In the Fig. 2.6 is a network that satisfies demands:

deg (Vi) ≥ 2 for Vi ∈ V (2.1)

18 Chapter 2 Reliability

It is possible to use an equation (2.1) as a fast “approximation” of the minimal edge
connectivity according to [1]. If the minimal edge connectivity is equal to 2, then the
network is 1 − fault − tolerant and the equation (2.1) should ensure it according
to [1]. However, the equation (2.1) is not possible to use as a real approximation of
the minimal edge connectivity. One can see that it is possible to disconnect network
if only one link is interrupted (link between V4 and V5). Then the network depicted
in the Fig. 2.6 does not have the minimal edge connectivity equal to two but to one
and therefore the network is definitely not one fault-tolerant and the equation (2.1)
is possible use only as a fast rough approximation of the edge connectivity and the
fault-tolerance as well.

2.2.3 Node degree as a reliability measure

An equation (2.1) was used in [1] as a fault-tolerance measure. Moreover, there was
proposed a heuristic that repairs unreliable topologies (those with deg (Vi) < 2). The
equation (2.1) should ensure that the designed network should be 1−fault−tolerant
(a failed link does not interrupt the communication among nodes). Nevertheless, it is
possible to see in Fig. 2.6 that the equation (2.1) is not able to verify whether the
network is really fault-tolerant. The network in the Fig. 2.6 should be 1 − fault −
tolerant, but it is not true because an interruption of the link between V1 and V2
disconnects a network into two parts that are not able to communicate with each other
anymore. Thus, the equation (2.1) is possible to use only as a necessary condition
for the fast decision whether the network may be 1 − fault − tolerant but it is not
possible to use it as a sufficient condition for the verification whether the network is
really 1− fault− tolerant. It is necessary to use different condition for verification
whether the network is 1− fault− tolerant.

deg (Vi) = 2 for Vi ∈ V (2.2)

(2.2) is the same condition as for the minimal Euler graph [14] and it really ensures
that the network, which corresponds to the (2.2), is 1− fault− tolerant. The equa-
tion (2.1) is possible to use as a fault-tolerance measure if there are also other condi-
tions (it cannot be use as a test of network that has similar structure as the network in
the Fig. 2.6).

We can see that an application of the node degree as a fault-tolerance measure
is very limited and cannot be used for the complex demands such as different fault-
tolerance in the different parts of the network. The huge advantage of this method is
that it is not necessary to estimate the communication link reliability and it is possible
to use only knowledge about the structure of the network topology. (2.2) and similar
equations allow to find only the network with the same level of the fault-tolerance
but it does not allow to verify whether the network has different fault-tolerance in the
different parts of the network. The verification of the different fault-tolerance in the
different parts of the network is described in the thesis.

Chapter 3

Related works

The first papers concerned with the network topology design were published at early
70’s. Some of them are about the design of the topology of pipelines [18] but most of
them dealt with the possible design of the ARPANET.

Gerla and Kleinrock [19] introduced several algorithms for the network topol-
ogy design (Concave-Branch elimination), flow assignment and routing policy (Flow-
Deviation algorithm). The Flow Deviation method is a hill climbing method that
expects continues cost function. In case that there are more local extremes, it is not
possible to ensure the global extreme finding. If the cost function is not continues,
one must find an interpolation of the cost function. The proposed algorithm for the
topology design (Concave-Branch elimination) iteratively uses the flow-deviation al-
gorithm for the finding of several local extremes. The proposed method is able to
design the reliable network that is tolerant to the interruption of the link. Thus, the
method is possible to use for small networks with the small probability of the link in-
terruption. The method is not able to ensure the design of the network topology with a
bigger fault-tolerance than one or different fault-tolerance in the different parts of the
network. The algorithm cannot integrate a priori knowledge of unsuitable topologies
as well. Hence, it is possible that the algorithm designs the network with the topol-
ogy that is unsatisfying for us for some reason. The most important contribution of
this paper is an interpolation of the end-to-end delay of the traffic flow of the packet
switched communication. Model of this interpolation was gained according to the
data from ARPANET network. This interpolation of the M/M/1 system (according to
Kendal’s notation) is still used for the calculation of the average time delay of sys-
tems that has Poison’s distribution of interarivel time and service time and use one
communication link.

Dutta and Mitra proposed in [20] an algorithm that is able to design the network
with the different fault-tolerance in the different parts of the network and optimize the
acquisition costs with constrains to the fault-tolerance. The algorithm is a hybrid of
mathematical programming (Mixed Integer Programming) and heuristic algorithms.

19

20 Chapter 3 Related works

The mathematical programming generates initial solution of the topology that is later
changed by the iterative algorithms that ensure fulfilling of the connectivity requests,
degree constraints and assign the flows to the communication paths. The whole algo-
rithm works as an iterative task that allows running the algorithm again if the demands
are not met. The algorithms contain quite complex corrective algorithm that prevents
heuristic algorithms to cycle the same solution among heuristic algorithms (e.g. the
connectivity task proposes the solution that does not meet the degree constrain. After
that, the degree task repairs the network to meet the degree limitations; then connec-
tivity task finds out that the connectivity demands is not fulfilled and proposes the
same solution as before. This could lead to infinite iterations without the corrective
algorithms). The algorithm is able to design the topology in such way that the average
delay of all packets should be under demanded deadline. Unfortunately, the algorithm
works with the average delay of all packets and it is not able to ensure the delay for
every single packet. It means that it is possible that some packet is delivered in four
times longer time than it is demanded and another is delivered in quarter of the de-
manded time. In this situation, which is not definitely corresponding to the demanded
behaviour, the average delay will correspond to the maximal permitted delay and we
will not have any sign about impropriety of the designed network. Then, the error
in design appears after actual construction of the network and very probably in the
situation in which the communication fails. In case, that the network is used in the
control engineering, this error can cause the serious issue or life threats. The algo-
rithm is also not able to work with the different physical layers of the network. The
proposed algorithm [20] is also not able to design an expansion or reduction of the
existing network.

Dengiz at all [21] proposed an algorithm for the reliable network design. The al-
gorithm uses a genetic algorithm for purpose of the network design. The comparison
of the algorithm with the Branch&Bound method was made at 79 testing sets. These
tests proved that the genetic algorithm outperformed the Branch&Bound method. The
algorithm focuses only on the design of the topology that should be reliable. The al-
gorithm uses a fast estimation of the reliability that speeds up the reliability calcula-
tion (the reliability is exactly evaluated only for the most promising chromosomes).
Unfortunately, the algorithm is not able to design 1 − fault − tolerant (1FT) net-
work even it seems to. Algorithm uses the degree of nodes as an interpolation of
2-edge connectivity and consequently as a measure of the fault-tolerance. A condi-
tion deg (Vi) ≥ 2 is used for this purpose. In fact, this condition is not able to verify
1 − fault − tolerance. The most of networks that meet the condition are really
1− fault− tolerant but there exist network topologies that fulfill the condition but
they are not 1− fault− tolerant (see chapter 2 Reliability).

Dengiz at all [21] proposed a corrective algorithm that should repair networks
that are not 1 − fault − tolerant (according to the condition deg (Vi) ≥ 2) and
were made by the genetic operators (Initial population meets this condition). This
correcting algorithm ensures that all chromosomes, which are in the chromosomes

21

set, are 1 − fault − tolerant (according to deg (Vi) ≥ 2). Moreover, the algorithm
does not solve issue of the constrained number of the communication ports or the
delay of the delivered data. Therefore, the results gained by this algorithm can be
used only as candidates for a future investigation of its attributes.

Ko at all [6] proposed a method for interconnection of ten Chinese cities via fi-
bre cable. The method is based on application of the genetic algorithms for solving
of several issues. The method solves issue of the fault-tolerant interconnection of
cities; minimal two independent communication paths are demanded for every pair of
cities. The solving of the average time delay, flow assignment and link capacity issue
is integrated into the algorithm as an optimization subroutine in this algorithm. The
advantage of this algorithm is that the optimizing subroutines are integrated directly
into the main task of the network topology design. It means that if the network does
not accommodate demands for the in time data delivery, the design algorithm can try
to change the topology immediately in such way that offspring of the current insuffi-
cient network meet demands for in time data delivery. On the other hand, this direct
influence is also disadvantage in the different point of view. The verification of the in
time data delivery is very time demanding since it uses a genetic algorithm as well.
The verification must be done for every newly created chromosome in every iteration
of the main algorithm and it needs a lot of time. Algorithm outperformed the branch
exchange method [6] with which the comparison was done. Results of the branch
exchange method need more fibre cables. Regardless to the bigger need of the fibre
cable, the average delay of data was bigger in comparison with the proposed genetic
algorithm [6].

The proposed algorithm can be very useful for the design of the backbone of the
computer network but its application in control engineering could be very constrained.
The algorithm is able to ensure only 1−fault−tolerance, but it is not able to ensure
the design of the network with the different fault-tolerance levels in the different parts
of the network (it is not able to ensure the design of the network with bigger or smaller
level of the fault-tolerance than one fault-tolerance). The algorithm also does not in-
corporate constrains of the number of the communication ports. The main reason why
this algorithm is unsuitable for the application in control engineering is the verifica-
tion of the end-to-end delay. The algorithm verifies only the average time delay in the
whole network and it is not able to ensure the maximal delay for every data-flow in the
network. This attribute directly disqualifies the algorithm for an application in control
engineering especially in the real-time systems. The average value of the delay does
not say anything about the real behaviour of the network under demanded load (e.g.
a half of the delays can be two time bigger than permitted value and half can be two
times smaller than the maximal permitted delay and according to the delay evaluation
in this algorithm is everything all right). Therefore, this algorithm is not possible to
use for the network design in the control engineering. The designed network could
be inexpensive, one-fault-tolerant with the satisfying average time delay but still not
suitable for the application in control engineering since the delay of some data-flow

22 Chapter 3 Related works

could exceed the maximal permitted value.
Jan at all [22] suggested an algorithm for the design of the reliable computer

networks. This algorithm ensures the global optimum finding in contrary to other
algorithms (those based on heuristics, genetic algorithm and so on). The method
is based on the Branch&Bound algorithm that is also the main disadvantage. The
Branch&Bound algorithm searches through the whole search space. This search is
very time demanding and needs a huge amount of the memory for an expansion of a
tree of the possible solutions. Jan at all [22] proposed a heuristic algorithm that allows
to speed up the whole algorithm. This heuristic uses the basic attribute of the network:
the network must be connected for the communication among all nodes and the essen-
tial condition is that the network must contain minimally N − 1 communication links
for N nodes. The upper bound of the possible network reliability is used as another
heuristic rules for the algorithm speeding up (where the upper bound of the possible
reliability depends on the node degree). Then, the upper bound of possible reliabil-
ity must be bigger than demanded network reliability [22]. The exact reliability of
the designed network is calculated only if the constraints for the number of commu-
nication links and upper bound of the reliability are satisfied. These heuristics rules
allow significant reduction of the search space and thanks to that also the time that is
necessary for the network design. Nevertheless, the algorithm is not able to design
the network with the different reliability in the different parts of the network or even
to ensure the network fault-tolerance. The algorithm also does not incorporate the
degree constraints in spite of the application of the node degree for the calculation of
the upper bound of the network reliability. Even if the heuristic rules are applied, the
algorithm is hardly able to solve the design of bigger networks, because of enormous
growth of the search space and the combinatorial tree of the Branch&Bound method
as well. The algorithm does not solve the issue of data delivering time at all. It just
design the network that meets demands for the network overall reliability without a
consideration of the data delay issue. Therefore, the algorithm is not suitable for the
application in control engineering as well as previous cited algorithms.

The algorithm for the expansion of the existing network was proposed by Kumar
at all [23]. The method uses a genetic algorithm as a core for the optimization of
the network expansion problem. The network expansion problem arises very often
in control engineering as well as in the computer networks. This necessity often oc-
curs after some changes of the controlled technology. These changes often lead to
the changes of the control system such as a reduction or an expansion of the control
system or number of parts of the control system. The genetic algorithm described in
the paper does not use very efficient chromosome coding because the coding allows
to create self-loop connection of the node. This kind of coding causes unnecessary
chromosome length and therefore wasting of the computer memory. The application
of the common genetic operators can create unfeasible chromosomes (e.g. node is
connected to another node according to a gene of chromosome but according to an-
other gene the nodes are not connected). Therefore, a correcting algorithm was also

23

proposed. This correction repairs unfeasible chromosomes and allows to design fea-
sible chromosomes. The algorithm is able to expand the network under reliability and
nodes degree constrains even if it is not able to design the network with the differ-
ent levels of the reliability in the different parts of the network. Unfortunately, the
algorithm is not able to ensure the design of the fault-tolerant network as well as it is
not able to use a priori information about the inappropriate topologies. The algorithm
does not also solve the issue of data-flows and delay of the data delivering. Therefore,
this algorithm is not possible to use in control engineering.

The algorithm for the design of the LAN networks was proposed in [7]. The algo-
rithm solves an important part of the computer network design such as a computer as-
signment to clusters in order to minimize the network load among those clusters. The
algorithm uses an original coding in which chromosome represents a virtual Huffman
tree. This coding is longer than the minimal possible coding but has a great advantage
in simplicity of finding of a path between segments of the network described by the
Huffman tree. The algorithm is based on the genetic algorithm. The genetic operators
change the chromosomes and they can destroy the virtual Huffman tree. Therefore,
the algorithm also implements a correcting procedure that changes an invalid virtual
Huffman tree into the correct form of the virtual Huffman tree.

The algorithm [7] tries to minimize an amount of the data transferred among clus-
ters of the network by the optimal placing of computers in the clusters. The average
time delay for the network traffic is employed as an optimality measure. The fault-
tolerance and the delay for every data-flow is not solved in this algorithm because of
demands for clustering algorithms (there is no expectation of the independent com-
munication paths among clusters, and there should be minimal traffic load among
clusters if the computers are correctly placed into the clusters). This is possible to
assume for the common computer office network, in which common behaviour is that
most of the traffic is among a few computers [7]. This is an assumption that is not
valid for the network in the control engineering since there is an expectation that parts
of the control system communicate with the other parts of the network. Then, the
assumption of possible minimizing of the network delay by the optimal distribution
of the parts of the control system into the clusters is not possible to use.

Saha and Chakraborty [24] developed an algorithm for the computers network
enhancement. This method uses a genetic algorithm with the common genetic op-
erators for the purpose of the network enhancement under constrained costs. This
approach allows enlarging network with as low costs as possible and a reduction of
costs for the network enhancement. Proposed algorithm showed a good ability of
the network enhancement but unfortunately it is neither able to ensure a design of
the fault-tolerant network nor reliable network. The algorithm works only with the
budget as an optimized variable but does not incorporate other demands. It means
that an application of the extended network can cause serious issues. The algorithm
does not incorporate possible physical limitations of the network caused by the con-
strained node degrees. Then the designed network may not be build since the nodes

24 Chapter 3 Related works

do not have enough possible communications ports available. Another very important
attribute is not considered as well. The traffic delay should be one of the most im-
portant quality measures for every network. Only the traffic delay is able to say what
happens in the network whether there is some bottleneck for the network traffic that
may cause data losses and consequently a malfunction of the whole system that uses
a network for the communication. Since the algorithm does not use any calculation
or even an estimation of the delay, the proposed algorithm is not possible to use in the
control engineering. The proposed algorithm should not be used for the design of any
network at which we expect reliable data exchange because algorithm does not allow
to find the network behaviour before the actual construction of the network.

An algorithm for the design of the fault-tolerant network is described in [1]. The
algorithm uses a common genetic algorithm [12] that incorporates repairing heuristics
that should ensures that all chromosomes in the set describe feasible solutions. The
heuristic is applied at chromosomes that are results of genetic operators (crossover
and mutation). Thanks to that, the algorithm should design the fault-tolerant network
that allows uninterrupted communication among nodes and allows in time data deliv-
ery. The algorithm seems to ensure 1− fault− tolerance in the whole network and
use edge connectivity as a fault-tolerant measure. Unfortunately, it does not use the
edge connectivity directly but uses an approximation instead of the edge connectiv-
ity and therefore the algorithm does not ensure design of the 1 − fault − tolerant
network since the network can be disconnected by an interruption of just only one
communication link (see 2 Reliability). The repairing heuristic rules are not able to
repair all non fault-tolerant networks. Moreover, the repairing heuristic can produce
non fault-tolerant network and does not inform about that (see Appendix).

The algorithm [1] designs only the physical topology and does not verify whether
the network allows the data delivery in time, hence the proposed network may not
allow in time data delivering and cause a malfunction of the controlled system. There-
fore, the algorithm is not very appropriate for the application in the control engineer-
ing area. Furthermore, the algorithm also does not use the node degree as a limitation
of the network design and expects the infinite number of communication links at every
node.

In the paper [1], a comparison of different methods of the network design has
been done. An approach based on the genetic algorithm was briefly compared with
Branch&Bound method and simulated annealing technique. There has been pointed
out that the Branch&Bound method finds the global optimum but it is very time ex-
hausting search technique. The simulated annealing is faster than the Branch&Bound
method but often finds only a local optimum. On the other hand, methods based
on the genetic algorithm are very fast but are not able to ensure the global extreme
finding. In opposite to simulated annealing method, the genetic algorithm provides
parallel search and therefore the global extreme finding is more probable than for the
simulated annealing technique.

It is possible to use different kinds of communication technique in the modern

25

communication systems. It could be peer to peer communication, when the messages
are sent directly from the source node to the destination node. This kind of communi-
cation has an advantage if the most of the communication is between two nodes and
every node is the receiver of different data from the source nodes. This kind of com-
munication has a great disadvantage if the source node sends the same data to different
receivers. At that moment, the data transfer needs a lot of time in comparison with a
method at which data are sent as a multicast message to all receivers. If it is necessary
to send the same data to different receivers, the multicast messages easily outperform
the peer-to-peer communication. Therefore, the multicast method of the communica-
tion should be considered during the network topology design. An approach for the
design of the logical topology for the multicast messages is proposed in [10]. There
were described two different methods for a finding of the multicast tree. First of them
applies the Branch&Bound algorithm for a finding of the delay bounded multicast
tree. The algorithm incorporates extended Dijkstra’s algorithm [14] for the searching
of possible solutions. The whole algorithm was named Dboc. Dboc is able to find
the optimal solution of the multicast tree design. Unfortunately, it needs exponential
time for finding of a solution in the worst-case scenario [10]. It means that for bigger
networks it may not be able to find a solution in reasonable time because of the size
of the search space. Therefore, another algorithm is proposed in [10] as well. It is
based on the genetic algorithm. The genetic algorithm ensures a fast solution finding
in contrary to the Branch&Bound algorithm but the genetic algorithm is not able to
ensure that the found solution is the optimal one. The genetic algorithm incorporates
the rules that ensure disconnecting of all communication cycles in the network since
the expected result is the multicast tree. The steady state of the results of the genetic
algorithm was used as a stop criterion of the genetic algorithm. Hence, the genetic
algorithm is able to provide the solution even if the solution is not the optimal one.

Since the algorithm [10] expects the application of the common nodes without
ability of a usage of the communication tree backup, the algorithm does not solve
issue of the reliability or the fault-tolerance. Algorithms apply the average delay as
an evaluative function. This is the big disadvantage for the application in the control
engineering since the average delay does not say anything about the maximal delay in
the multicast tree and therefore algorithms are not able to ensure data delivering until
the maximal permitted time elapses. It means that the algorithm is not suitable for an
application in control engineering.

In the network at which it is not possible to expect every node with the switch
ability it is necessary to place switches at places that allow to use as small number
of switches as possible and decrease the price of the network in this way. A method
for the switch placement was proposed in [25]. Two methods were described for
the finding of the optimal switch placement. The first one applies heuristic rules
for switches placement (it creates list of the nearest neighbours for every nodes and
then place randomly as less switches as possible, check the network connectivity, find
shortest path for every data-flow and evaluate price of the network, if the price is

26 Chapter 3 Related works

smaller than the best one reached, store network. This process is continually repeated
until the number of iterations is exceeded). Another proposed algorithm used the
genetic algorithm for the switch placement problem. The placement of the switches
is chosen randomly and genetic algorithm has not any special rules for the switch
placement in the initial population.

According to the published results, the genetic algorithm outperforms the heuristic
one but both of them have the same disadvantages. The algorithms do not solve the
network fault-tolerance or even the reliability issue. The independent communication
paths are created at random since placement of switches is done randomly as well. It
means that the algorithm is not able to ensure the certain level of the reliability of the
network. Moreover, algorithms do not solve issue of the data-flow delay. Therefore,
the algorithms are not appropriate for the application in control engineering since they
do not provide any information about possible data delays in the network and are not
able to ensure any maximal delay in the network. Then the network may have some
bottleneck for data-traffic and data can be delivered too late and control algorithm can
fail because of the late data delivery.

A finding of the network reliability is time demanding but it is required for the
solution of the network topology design. The algorithm for the exact calculation of
the network reliability was proposed in [26]. The algorithm decomposes the network
to the tree that contains parts describing smaller part of the network. Then the al-
gorithm creates list of all possible malfunctions of this tree and iteratively calculate
the reliability of the uninterrupted communication. In case, that the algorithm is not
able to find a whole solution, it estimates lower bound of the reliability. There is 5%
uncertainty of lower bound estimation according to the numerical results [26].

The method described in [26] calculates the reliability of the network in which
the link reliability is known. This attribute is exactly known only at already built
networks after certain operational time. On the other hand, the link reliability can
be only estimated in the networks that are planned to be built and may not be accu-
rate enough. Therefore, the described methods give us proper information only for
already built networks. Moreover, the algorithms count only probability of uninter-
rupted communication but does not consider whether the network allows in time data
delivery. Therefore, it is possible that the network meets demands for the reliability
but when the network is applied in real word situation, the network can be useless
since data are not delivered into the destination in time or can be lost. Therefore, the
application of this algorithm in area of the control engineering is not very appropriate.

The goal programming is one of algorithms that is very useful for the network
topology design since it allows to set demanded attributes of the network. This method
was used in [8]. The algorithm designs the network that is as inexpensive as possible
while it meets demands for the different levels of the reliability in the different parts
of the network. Described method uses a Monte Carlo algorithm for the reliability
verification. It allows designing a network with the different levels of the reliability
in the different parts of the network but it is not able to ensure the fault-tolerance

27

see 2 Reliability. The application of the goal programming allows setting of the dif-
ferent priority of every reliability level. The algorithm uses common genetic operators
that can create unfeasible solutions. Hence, every solution created by the genetic op-
erators is checked whether it is feasible or not and only feasible solutions are used
in the next generation. Unfortunately, the algorithm [8] expects no limitation at the
node degree. It means that the algorithm may design the network in which should be
more communication links at some node than it is possible. Moreover, the algorithm
does not incorporate a verification of the traffic time delay. Therefore, it is not able
to find whether the network allows in time data delivering. Thus, the algorithm is not
appropriate for an application in control engineering.

The method for the fault-tolerant network topology design was described in [15].
The algorithm is based on the simple genetic algorithm [12] and applies common ge-
netic operators. The algorithm incorporates an iterative repair heuristic procedure that
modifies the unfeasible solution into the feasible one because of the common genetic
operators can produce unfeasible solutions. Moreover, the repair heuristic algorithm is
applied for every solution created by the genetic operators and modifies chromosomes
to meet demands for the fault-tolerance if it is needed. The number of independent
spanning trees is used as a measure of the fault-tolerance (if some communication link
in the spanning tree is interrupted, then other spanning trees are uninterrupted and al-
low the communications among nodes). [15] pointed out that solutions of the network
topology design brings an issue of the choice of the suitable evaluative function, es-
pecially if the penalty function is used. There was shown [15] that the wrong penalty
function can cause better evaluation of the unsuitable solution than the suitable one.
The algorithm applies technique of the reliability upper bound calculation for evalua-
tion speeding up. Even if the speeding up technique is used, the algorithm needs 9000
seconds for the design of the network comprises 15 nodes (the 15 biggest German
cities). The method is compared with a greedy algorithm for the network topology
design that is outperformed by the genetic algorithm especially for the design of the
reliable network of the 15 biggest German cities. The algorithm does not include a
solution of the degree limitation issue. The algorithm solves the important task of
the design of the reliable network topology. However, it does not incorporate another
important attribute of the network such as the delay of the data-flows in the network.
It means that after the search of the reliable network the algorithm may produce a
network that does not allow in time data delivery. Therefore, the algorithm described
in [15] is not possible to use in the control engineering since the delay of every data-
flow has a big importance in the control engineering because the late data-delivery
can cause malfunction of the control algorithm and consequently malfunction of the
controlled system.

The algorithm that incorporates the fault-tolerance and the time delay issue was
proposed in [27]. The algorithm is based on Bicriteria genetic algorithm (one criterion
is for the network price and another is for the delay of the network traffic in the
network). The algorithm finds a Pareto optimal set and offers a heuristic algorithm

28 Chapter 3 Related works

for the choosing of the appropriate solution among solutions of the Pareto optimal
set. The algorithm does not include the node degree constraints and therefore expects
that the number of communication links can increase to infinite at every node. This
assumption is not naturally possible. The algorithm uses the average end-to-end delay
as a measurement of the network behaviour under demanded load. The average delay
describes general network behaviour but it is not able to say whether the network
allows in time data delivery for every data-flow. It means that a data-flow may need
two time bigger time than it is permitted and another one may need a half of the
time but the average time delay still meets the demands. Furthermore, the average
time delay for the configuration, in which some data-flow has a bigger delay than
permitted, can be smaller than for the network in which all data-flows have smaller
delay than it is permitted but the average one is bigger than in the first case. Then
the network with a smaller delay is evaluated as better one even if it does not satisfy
the demands for the maximal permitted delay for some data-flow. Thus, the algorithm
is not very useful for control engineering because it is not able to ensure demanded
delays in the network and it can cause the malfunction of the control system and
consequently a malfunction of the controlled technology.

A general algorithm for the design of the fibre cable networks was proposed in [3].
The algorithm proposes a method for the topology network design and the network
enhancement. The algorithm uses a goal programming for the design of the network
with the demanded attributes as they are: reliability and minimal average delay of the
data delivering. The algorithm is able to design the network with the different levels
of the reliability in the different parts of the network. The Monte Carlo algorithm is
applied for this purpose. The Monte Carlo algorithm is not able to verify the network
fault-tolerance and especially not the different levels of the fault-tolerance in the dif-
ferent parts of the network. The algorithm verifies the delay of the data-frames in the
network and thanks to that, it is possible to anticipate behaviour of the network before
the actual creation of the network. Nevertheless, the algorithm uses the average time
delay calculation for this purpose and it means that we know only the average be-
haviour of the network but we do not know the actual behaviour of the network under
demanded load. There can be a data frame with very small delay and the other one that
exceeds expected value but the average delay says that everything is all right and there
is no issue. The real behaviour can be found after actual built of the network. The
algorithm offers also the enhancement of the already existing network. The network
enhancement applies the limitation for the average time delay of the data-frames and
the budget for the network enhancement. However, the algorithm does not incorporate
the node degree constrain and therefore it is possible that the network enhancement
will not be possible to apply at the network since the communication nodes do not
have enough communication ports available. The algorithm tries to design the net-
work in which the node degree is close to the demanded node degree but there is no
strict rule which says: “If the node degree is higher than the permitted degree then
the network is inappropriate”. The algorithm does not allow designing an extension

29

or a reduction of the number of nodes of the network or even use a priori information
for the network enhancement. This can be a huge disadvantage for the enhancement
procedure since people who demand the network enhancement can have knowledge
about impossible solutions of their issue but the algorithm can design the network en-
hancement the same as the inappropriate one. Method proposed in [3] is not possible
to use in control engineering since it does not ensure the network fault-tolerance and
does not include the limitation of the node degree. It is not able to design the num-
ber of nodes addition/reduction. Algorithm is able to add or remove the number of
communication links.

The algorithm that should design a fault-tolerant computer network was described
in [2]. The algorithm uses a simple genetic algorithm [12]. The algorithm designs the
network with as small costs as possible while the network should be fault-tolerant
and have small average delay. Algorithm does not verify the delay of every data-
frame therefore the algorithm is not able to ensure so that the designed network allows
keeping delay of every data-frame under the maximal permitted value. Moreover,
the algorithm uses the node degree as an approximation of the edge connectivity.
This method has very constrained usage and the application described in [2] does not
ensure the real fault-tolerance (see 2 Reliability). Therefore, the designed network
may not be fault-tolerant and customer does not know it. This can cause a serious
issue if the network is used for the delivering of the safety data. Not only that data can
be delayed unexpectedly but the data may not be even delivered because the network
can be interrupted by the only one link malfunction even if the network should be one
fault-tolerant (see 2 Reliability). The method described in [2] should not be applied
in control engineering since it is able to cause not only serious financial losses but
also casualties if the network is applied for safety purposes.

A methodology for the network topology design based on the greedy algorithm
was proposed in [4]. There are three greedy algorithms described for the design of
the fault-tolerant network. All algorithms use the same cost function that is a sum of
a function of the link capacity and a function of the link length. Evaluation of the
network according to this function and this evaluation can cause that link with smaller
capacity and small length will have better evaluation than the link with higher capac-
ity and bigger length. Therefore, it is possible that the designed network will have
communication links with small length as well as small capacities and therefore will
not be able to handle with the demanded load since there are not any penalty func-
tions for case if the link capacity is smaller than demanded. The quality evaluation
via sum function is not able to ensure network with the big enough capacity. Pro-
posed greedy algorithms verify the fault-tolerance with the help of the attributes of
the graph theory. Author verify the number of independent spanning trees (if network
is 1-fault-tolerant, there should be 2 independent spanning trees at least). This veri-
fication allows designing the fault-tolerant network but does not allow designing the
network with the different levels of the fault-tolerance in the different parts of the net-
work. Hence, the designed network will be unnecessary expensive if the network with

30 Chapter 3 Related works

the different levels of the fault-tolerance satisfy our demands. One can imagine that it
is necessary to reach 3-fault-tolerance in the part of the network and in the rest of the
network 1-fault-tolerance is satisfying. If the described approach is used, one must
design the whole network as 3-fault-tolerant and therefore more expensive than would
be necessary. The proposed algorithm is not suitable for the control engineering since
it is not able to ensure enough capacity for the data traffic and due to it is not able to
ensure data delivering in time. The small communication network capacity can cause
data losses as well. The data losses or late data delivery can cause malfunction of the
control algorithm and consequently malfunction of the controlled technology.

The algorithm for the design of the electric distribution network was proposed
in [9] the algorithms consider not only with installation costs but also operation costs,
costs of undelivered electricity and costs that are necessary to pay if the network
is not operational (penalty that is paid to the consumers). Moreover, the algorithm
considers also a capacity of the grid and necessity of some redundant path in the grid
since it is necessary to avoid a disconnection of the grid when some link is disrupted.
The algorithm is very contributing for this approach; any previous approach has not
considered all of these costs. Therefore, it brings realistic estimation of the costs of
the designed network. Unfortunately, the algorithm does not allow setting demanded
number of redundant paths for every node pair independently. The redundant paths
are created randomly by the genetic operators.

Above described algorithms were chosen as an example of algorithms that are
used for the network topology design. Any of the mentioned algorithm is not able to
design the network for control engineering. It means network that has different levels
of the fault-tolerance in the different parts of the network and thanks to that it can
be less expensive than the network with the same level of the fault-tolerance in the
whole network. At the same time, the network must allow in time data delivering and
prevent to malfunctions of the control systems caused by the late delivering of data or
data losses. The algorithm must be able to ensure not only that the average delay does
not exceed permitted value but also that no data frame exceeds the maximal permitted
delivery delay. Since in control engineering the real hardware is used and often is
not possible to expand the number of the communication ports, the algorithm must
apply a limitation of the number of the communication ports as well. It is not possible
to connect more communication links to the device than there is the number of the
communication ports of the device. The algorithm should allow using a priori infor-
mation of the unsuitable topologies, if it is possible to gain some similar information.
The acquisition costs of the network should be as small as possible while the network
fulfills mentioned demands.

From time to time, it is necessary to change the network for the control engineer-
ing because the controlled technology was changed. Then it is necessary to change
the control system very often as well as the network that allows communication of
the parts of the control system among each other. The network must also satisfy all
demands for the time delay, fault-tolerance and communication ports constrains if the

31

number of nodes must be expanded or reduced. It is necessary to add to the modifica-
tion costs all costs that are necessary to pay for the network change. It means that the
costs for device and cable removal are necessary to consider as well. Moreover, there
is a possibility that information about unsuitable topology of the reduced/expanded
network is known. Then it is useful to use this kind of information to design the
network that satisfies all demands that are laid down on the network. The algorithm
that works with all these requirements it not known yet. Therefore, it is necessary
to design this kind of the algorithm for an application in the computer systems and
especially in the control engineering.

32 Chapter 3 Related works

Chapter 4

Network topology design

4.1 Problem formulation

The network is possible to describe as an undirected graph G = {V,E}, where V is
a set of all vertices and E is a set of all edges. The set of all edges in the graph and
consequently the set of all communication links should be one of algorithm results.
We need to know parameters that are necessary for the network topology design. Since
we want to design the network that is as less expensive as possible, we need to know
the prices of all possible connections of the nodes in the network. The prices of all
possible connections are described in the matrix of acquisition costs C. The matrix
C is used during an evaluation of the designed network. The matrix C is symmetrical
since the price for connection of two nodes is the same independently on the direction
of the communication cable laying (in the real situation this may not be the true, since
the cable can be laid in tough environment and the cable laying in one direction can be
easier than in another direction). The described cost matrixC is possible to use only if
we use one kind of material of communication cables. If we want to use the different
materials for the communication cables, one matrix of the acquisition costs will not
be able to describe prices of nodes interconnection when different materials are used.
Hence, it is necessary to use more matrices of the acquisition costs. Since we expect
an application of the metallic and the fibre cables, we must use two different matrices
of the acquisition costs. CF for the fibre cables and CM for the metallic cables. Every
element of the mentioned matrices describes the costs that are necessary to invest for
the interconnection of the pair of the nodes. The costs include price of the cable and
work that is necessary for the cable laying. Both of them are dependent on the length
of the cable, then it is possible to say that the price of the nodes interconnection is
a function of the cable length that it is possible to estimate from the position of the
nodes in the environment.

Another important parameter for the network physical topology design is the de-
manded numbers of the independent communication paths between nodes. This at-

33

34 Chapter 4 Network topology design

tribute is described by the matrix of redundancy M . The matrix M is a symmetrical
since the technology, which allows communication in the both direction, is expected
to be used. All elements of the matrix M are nonnegative. Element mi,j is 0 if the
communication paths between nodes i and j is not needed. It means that the parts of
the control algorithm included in nodes i and j do not need to share the data among
each other. The bigger element mi,j the more important data are shared between
nodes i and j. The actual value of the element mi,j should be chosen very carefully
according to the control algorithm and a possibility of the link interruption. From
this point of view, the elements should be set as high as possible; from the acquisi-
tion costs point of view, the elements should be chosen as small as possible. Hence,
it is necessary to balance these points of view regard to natural demands in control
engineering: the fault-tolerance is more important than the acquisition costs.

Above mentioned variables are sufficient for the design of the physical topology
of the network that is not constrained by the real life request such as the constrained
number of communication ports of the nodes or the limitation caused by the environ-
ment. Any known algorithm [1], [8], [21], [22], [25], [26], [28], [29], [30] does not
consider these limitation and therefore may design the network at which the required
number of connections to the node can exceed the number of node communication
ports available and consequently makes the network realization impossible (If it is
difficult to increase the number of the communication ports). Therefore, it is nec-
essary to have a possibility to inform the algorithm for the network topology design
about a number of communication ports at every node. Moreover, if we expect an
application of more physical layers than only one, we must store information not only
about the number of the communication ports but also about the kind of communi-
cation ports of every node. This information is stored in the variable K for every
node. This information allows to evaluate every network, which has a bigger num-
ber of communication links at some nodes than it is possible, as an inadmissible one
since the network is not possible to build because of small number of communication
ports at some node. The number and kind of communication ports is very useful to
know especially if the network should comprise different kinds of nodes that can have
different numbers of communication ports. In this case, it is not possible to use some
simple condition that the number of connections at every node must not exceed some
certain value which is the same in the whole network. It is possible to use this simple
condition if the limitation is set according to the node with the smallest number of
the communication ports available. On the other hand, this limitation may prevent a
usage of all communication abilities of nodes with bigger number of communication
ports than it is this limitation and lead to unnecessary expensive network.

Above mentioned variables allow to design the network physical topology with
the different fault-tolerance in the different parts of the network. Moreover, there can
be used different physical layers in the whole network and they can be incorporated in
the network design without any issue. Nevertheless, the successful design of the inex-
pensive fault-tolerant physical topology is not sufficient for the design of the network

4.1 Problem formulation 35

for the control engineering by itself since there is another network attribute important
for the network application as well. It is the delay of the data-frame delivering. The
inexpensive network is useless if the data are delivered too late and cause malfunc-
tion of the control system and consequently malfunction of the controlled technology.
The costs connected with the malfunction of the controlled technology can be much
bigger than savings gained by the building of inexpensive network that causes this
malfunction. Therefore, it is necessary to verify the time of data delivery since it is
the only possible variable that can say whether the network has enough performance
for the transmission of the expected load.

We must know expected load in the network for a calculation of the data-frame
delay. The expected load for every node pairs can be estimated from the knowledge
of the behaviour of the control algorithm and communication protocol. We know the
amount of data, which are necessary to transmit among nodes, thanks to the knowl-
edge of the control algorithm and its distribution among nodes. The communica-
tion protocol determines a communication overhead of every data-frame. These at-
tributes allow estimating overall data amount, which are necessary to transmit among
all nodes. The data amounts, which are necessary to transmit among nodes, are stored
in the matrix of data-flows F . Every element fi,j of the matrix F corresponds to the
data amount that must be transferred between nodes i and j.

There is another important attribute that is necessary for the calculation of the data
frame delay. It is a capacity of the communication links in the network. We assume
that the communication capacity of all communication links that are made from the
same material is the same for those communication links. It means that we have the
same number of communication capacities as it is the number of different physical
layers.

We can calculate delays of data-frames thanks to the knowledge of the data traffic
between nodes but we must to know also the maximal permitted delay of data-frames
between nodes.

We can estimate the maximal permitted delay from the attributes of the control
system or from the attributes of the control algorithm. A level of sensitivity of the
control algorithm to the late data delivery has a crucial importance for the setting
of the maximal permitted delay. If the control algorithm is used for a control of a
heating system, then the maximal permitted delay can be tens of seconds. However, if
the control algorithm is used for the control of the fast servo drives then the maximal
permitted delays can be milliseconds and its exceeding can cause serious damage of
the controlled technology. Thanks to knowledge of the control algorithm, we can set
the maximal permitted delay for every pair of nodes and thanks to that evaluate the
delay for every node pair independently on others. This independent evaluation is
possible to use during the network topology design, where the number of exceeded
permitted delay says how inappropriate the design is. The maximal permitted delays
are stored in the matrix of delays D where every elements di,j corresponds to the
maximal permitted delay of data-frames between nodes i and j.

36 Chapter 4 Network topology design

The result of the algorithm exactly describes a placing of the communication links
in the network and the acquisition costs of the network as well. The node intercon-
nection is described by the adjacency matrix P where every element pi,j depicts con-
nection of nodes i and j. If pi,j = 0 there is no direct connection between nodes i
and j. If pi,j = 1 there is a direct connection between nodes i and j. The matrix
p is symmetrical since we expect that the communication technology allows to com-
municate in both direction and then if there is a direct connection between nodes i
and j there is connection between node j and i as well. The network design gained
by our algorithm has the demanded level of the fault-tolerance among sets of nodes
and allows to transfer demanded load among nodes while any delay constrains is not
exceeded. The network topology has as small acquisition costs as possible at the same
time.

The Simple Genetic Algorithm [11] is used for the design of the network physical
topology. Genetic operators are described in the following paragraphs.

4.2 Topology with different levels of fault-tolerance

The design of the network physical topology belongs to the NP complete problems [3],
[7]. Therefore, it is necessary to use some heuristic method for the solving of the
network topology issue [1], [20]. The genetic algorithm was chosen for this purpose.
The genetic algorithm cannot ensure a finding of the global optimum but it is able
to find a near optimal solution very fast. The big advantage of the genetic algorithm
is that its basic version is simple for implementation [12] and the genetic algorithm
can very easily implement complex constrains of the solution. The genetic algorithm
is very useful at discrete optimization and in condition when optimized function is
not continues. Thanks to that, the genetic algorithm is very useful for solution of
the network topology design issue. The genetic algorithm brings many issues by its
natural attributes and behaviour. The first of them is a representation of the solved
problematic. The representation has a huge importance since all genetic operators
must work with this representation and they are limited by this representation. Others
possible issues are connected to genetic operators and chromosomes evaluation.

4.2.1 Chromosome representation

The chromosome must be able to describe solved problematic and all possibilities
that can occur. It is possible to use a description based on the graph theory that works
with the adjacency matrix. The adjacency matrix describes node interconnection and
thanks to that it exactly says which node is connected to others. We can see in the
Fig. 4.1 an example of the network that comprises 5 nodes. The corresponding adja-
cency matrix is in the Fig. 4.1 as well. We can see that adjacency matrix is symmet-
rical by its definition [14] (if we expect that the communication in the both direction

4.2 Topology with different levels of fault-tolerance 37

is possible and the node V1 is connected with the node V4 then the node V4 must be
connected with the node V1). Then we can use this attribute of the adjacency ma-
trix for the network representation very easily because the chromosome can represent
only triangular part of the network. If the chromosome represents only a triangular
part, the length of the chromosome is reduced as well as the memory amount that is
needed for the chromosome storing. The transformation of the adjacency matrix to
the chromosome and vice versa is possible to see in the Fig. 4.2.

Figure 4.1: Network

Figure 4.2: Network representation

Then the chromosome is a vector i with l elements:

i = {ij : ij ∈ {0, 1} , , j = 1, ..., l} , (4.1)

where l is given by:

l =
N (N − 1)

2
. (4.2)

4.2.2 Genetic functions

Genetic functions are the core of the genetic algorithm. They have a direct influence
on the speed of a search and results quality. There are two basic genetic operators;
both mutation and crossover are based on the natural evolution.

38 Chapter 4 Network topology design

4.2.2.1 Genetic mutation

Genetic mutation operator belongs to the basic genetic operators. The main purpose of
the mutation operator is to preserve a diversity of the chromosomes [12]. It is allowed
by the small changes that occur at the chromosome population rarely. These “little”
changes allow genetic algorithm to search in the whole search space and thanks to
that, the genetic algorithm can find a near global optimum solution. Mutation oper-
ator prevents stagnation in the local optimum, which is the main disadvantage of the
gradient methods. Thanks to the proposed chromosome representation it is possible
to use very simple genetic mutation (one bit mutation [12]) which only switch cho-
sen element to another value (if the element is 1, its mutation is 0 and vice versa).
The chromosome representation ensures that the mutated chromosome describes only
allowable solutions, since the chromosome represents only the triangular part of the
adjacency matrix. If the link is removed or added to the network, the link is removed
or added not only to the source node but also to destination node (rows of the ad-
jacency matrix represent sources and columns represent destinations). There is an
example of the used one bit genetic mutation in the Fig. 4.3.

1111 000000 11111 00000000

1111 000000 11111 00100000

Figure 4.3: Chromosome mutation

4.2.2.2 Crossover operator

A crossover operator tries to improve the genetic population with the help of the pre-
vious “good” solutions. The crossover operator combines solutions from the previous
iteration to the new solutions in expectation that offspring will be better than parents.
The crossover operator is depicted in the Fig. 4.4.

101111 1

11111

0000

000000

1011

11

1

11

111

0000 000

000

Figure 4.4: Chromosome crossover

It is very easy to imagine that the crossover operator can create impermissible
solutions. Fortunately, the chosen chromosome representation always describes per-

4.2 Topology with different levels of fault-tolerance 39

missible solution, since the chromosome describes only the triangular part of the ad-
jacency matrix. Both the mutation and the crossover operator create a new population
from the original population and thanks to that, it is possible to discover new solu-
tions of the network topology design issue. The new chromosomes finding would be
useless if we were not able to decide which chromosome represents “better” network.
Therefore, there must be an evaluative function for every application of the genetic
algorithm.

4.2.2.3 Fitness function

The fitness function serves as a chromosome evaluation. There is obvious possibility
to use network acquisition costs as a fitness function. Especially, if one of the tasks is a
design of as inexpensive network as possible. At this assumption, the acquisition costs
of the network can be used as the basic fitness function for the topology evaluation:

CP = C&P (4.3)

The matrix CP is the cost matrix of the actual network (described by the chromo-
some that is evaluated); the matrix P is the adjacency matrix of the actual network
(described by the chromosome that is evaluated); the operator & is “logical AND”
which works as follows cpi,j = ci,j if pi,j 6= 0 else cpi,j = 0. Since it is much easier
to compare one value than the whole matrix, it is possible to count the actual network
costs and fitness function according to:

cost =

N∑
i,j=0

cPi,j (4.4)

As one can see in the (4.4), the basic fitness function evaluates only the price of the
network and it is not influenced by the fault-tolerance of the network or even by the
network interconnections. If we use the basic fitness function and we know that the
less expensive network the better network, then the best network according to (4.4)
will be the network without any communication links at all and this network defi-
nitely does not satisfy demands for the uninterrupted communication. Therefore, it
is necessary to use a function that helps to evaluate chromosomes describing network
that does not meet the fault-tolerance or other requirements. The function that helps
evaluate chromosomes is called the penalty function [11]. The penalty function says
that chromosome does not meet our requirements but the chromosome is not auto-
matically excluded from the next generations and may have an influence on them.
The chromosome, which does not meet the demands, may be only one mutation or
crossover far from the global optimum of the solved task and premature excluding of
the chromosome can prevent find the global optimum.

cw = cost + rPen. (4.5)

40 Chapter 4 Network topology design

where
Pen = 1 +N2cmax. (4.6)

Where N is the number of the network nodes; cmax is the maximal element of the
cost matrix C and r is the indication that the chromosome should be penalized. If the
chromosome does not describe the network which has demanded fault-tolerance in the
different parts of the network, then r = 1 if the chromosome meets all demands for
the different fault-tolerance in the network, else r = 0). The equation (4.6) ensures
that the chromosome that is penalized has always bigger costs than the chromosome
which is not penalized. The equation (4.6) prevents situation when the penalized
chromosome has better evaluation than chromosome with many communication links
which is not penalized. If the smaller penalty function is used, then the chromosome
without any communication links can have better evaluation than the chromosome
that meets all demands for the fault-tolerance and connectivity and it must not ever
happen.

The equation (4.7) is used as a fast approximate test of the network connectivity
and the fault-tolerance.

deg (v) ≥ mmin for ∀v ∈ V. (4.7)

This equation (4.7) is possible to use only as a fast approximation of the network
fault-tolerance and connectivity (see 2 Reliability) but it is very fast and can reduce
the number of unnecessary chromosome tests. (if there is in the network the node with
smaller degree than it is the minimal number of the demanded independent paths,
then this network definitely does not meet demands for the fault-tolerance and it is
not necessary to use the exact fault-tolerance verification). It is similar to the con-
nectivity verification, if there is a node with deg (v) = 0 then the network has node
that is not connected to the rest of the nodes. The equation (4.7) is not able to verify
whether the network has the demanded different fault-tolerance in the different parts
of the network or if there are disconnected components in the network. Thus, the
Ford-Fulkerson [14], [31] algorithm is used for this purpose. The Ford-Fulkerson al-
gorithm allows to verify the number of independent paths for every pair of nodes and
the network interconnection is verified during the algorithm initialization. Thanks to
that one can be sure that the network which is evaluated as connected with the different
demanded fault-tolerance in the different parts of the network really meets requested
attributes contrary to the networks gained by algorithms [21], [26], [29], [32]. Unfor-
tunately, the exact verification with the help of the Ford-Fulkerson algorithm needs a
lot of time.

Results gained with the help of proposed fitness function can be better than results
gained by the fitness function described in [2], [3], [8] since these algorithms do not
allow to design the network with as small number of communication links as possi-
ble. It can occur if the network can have different levels of the fault-tolerance in the

4.3 Topology with same level of fault-tolerance 41

different parts of the network. If the network can have different levels of the fault-
tolerance, algorithms that use a node degree as a fault-tolerance measure must design
the network that meets demand for the highest node degree in the whole network.
It means that these algorithms necessarily design more expensive network than it is
possible to design if the demands for the different fault-tolerance are fulfilled exactly.
If the network must have a set of nodes which connection is 1 − fault − tolerant
and some node pairs which interconnection should be 2 − fault − tolerant, the
algorithms which use the node degree as a fault-tolerance measure must design the
whole network as 2− fault− tolerant. It means, that there must be minimally three
independent paths for every node pair contrary to the application of proposed algo-
rithm that is able to design the network containing only necessary links. The proposed
algorithm is able to design the network that can meet the demands for the different
fault-tolerance exactly thanks to the application of the Ford-Fulkerson algorithm and
fitness function (4.7).

4.3 Topology with same level of fault-tolerance

The huge disadvantage of the algorithms [2], [3], [8] is that they are not able to en-
sure that designed network is really fault-tolerant (see 2 Reliability). Therefore, if
we really want to design the network with the same level of the fault-tolerance and
use a node degree as a fault-tolerance measure we must use a different approach. It
is possible to use a degree as a fault-tolerance measure and a fitness function with the
penalty for every node that does not have the demanded degree or use a such chro-
mosome representation and genetic operators that allow designing only networks that
meet the request for the node degree automatically. Similar technique was developed
for the representation of the TSP (Traveling Salesman Problem) [33].

4.3.1 Node degree as fault-tolerance measure

The useful chromosome representation of the TSP issue was developed for the genetic
algorithm [33]. The representation use the nature attributes of the TSP: a path passing
through the all nodes must create a cycle. Then the issue of the TSP can be easily
described as a list of nodes as is depicted in the Fig. 4.5.

1 3 2 4 6 5

1

46

2

5

3

Figure 4.5: TSP chromosome representation

The list of the nodes exactly describes the node interconnection (every node is
connected by the communication link directly to its neighbours; the node at the start
of the chromosome is connected to the end node and vice versa).

42 Chapter 4 Network topology design

One can see that this representation is simple and very economical at the memory
consumption (it needs only 6 memory places instead of 15 places for coding of the
adjacency matrix). Moreover, it always ensures that every node has exactly deg (v) =
2 for ∀v ∈ V. Thanks to that, the designed network must be 1-fault-tolerant. This
description could be used for the design of the network that should have the same
level of the fault-tolerance in the whole network. The genetic operators for solving of
the TSP problem are known as well. The application of the described chromosome
representation can speed up the design and ensures the 1-fault-tolerance at the same
time. Unfortunately, this representation is not possible to use if we need bigger fault-
tolerance than one. Therefore, the new solution is proposed and described in the
following paragraphs.

The chromosome coding is the same as for the design of the network with different
fault-tolerance (Fig. 4.5). It means that the attributes of the adjacency matrix are
applied. Unfortunately, there does not exist any attributes that could ensure that the
network has demanded fault-tolerance and therefore it is necessary to verify the fault-
tolerance exactly or use the node degree (the node degree is possible to use only in
the limited cases). It is possible to use the penalty function similar to (4.5). The
penalty function would penalize the chromosomes with the different node degree than
demanded. On the other hand, another algorithm can create only such solutions that
suffice for the demands of the same node degree for all nodes in the network.

The creation of the chromosomes that meet demands for the node degree is not as
simple as it seems to be. No exact algorithm that produces this kind of chromosomes is
not known. Therefore, a random generation of the initial population is used and after
then the repairing function of the initial population is applied. The initial population
must contain only chromosomes with the demanded node degree after application of
the repairing function.

4.3.2 Algorithm for creation of initial population

Algorithm works with the chromosome but will be described as if it works with the
adjacency matrix for illustrative purposes (algorithm works with the chromosome that
describes the upper triangular part of the adjacency matrix).

1. Generate chromosome

Generate genes randomly from the set {0, 1}. Any node must not have a degree
bigger than it is demanded node degree. If it is not possible to set any other
element to 1 without exceeding of a constrain to the node degree, verify if the
chromosome meets the demands for the node degree at every node. If yes, then
satisfying chromosome is generated, continue with the generation of the other
new chromosome. If not, continue to step No. 2.

4.3 Topology with same level of fault-tolerance 43

2. Repair chromosome

(a) Find the first node which does not have the demanded degree (search from
the node with the highest index - the lowest row of the adjacency matrix).

(b) Then continue in searching in the direction to upper rows, find the row,
which does not contain 1 in the column corresponding to the node that
does not meet demands for the node degree and have 1 at other position.

(c) Then change elements in the found rows in the following manner: fill
in 1 in the column, which corresponds to the row, which does not meet
demands for the node degree; if there is 1 at some other column change
the first 1 into 0. All operation in this step are done at the row found in
the step No.2b. Go to step No.3.

3. Removal of unnecessary links

(a) If there is some node, which has a bigger node degree than demanded,
remove all edges connected to this node.

(b) If there are steady shifts in the network topology: randomly put 1 at some
chromosome element and go to the step No.2. If not, go to the step No.3c

(c) Go to step 1.

The step No.1 places as many communication links as it is possible without vi-
olation of the node degree limitation. If the chromosome does not meet the node
degree request, the algorithm repairs the chromosome by the addition and removing
of a communication link (step No.2.). The step No.2. does not verify the node degree
since the task in the step No.2. was launched because there was not possible to create
any other connection in the network without a violation of the node degree constrains.
Therefore, it is possible that step No.2. can create a chromosome that exceeds permit-
ted number of the communication links. Thus, algorithm removes all edges connected
to the node that has bigger number of the communication links than it is demanded
(step No.3.). Then, there are enough possibilities to place other communication links
to the network, thanks to the operation at the Step No.2. and 3.

Even, if the communication links are removed and placed at different position, it is
possible that there are some kinds of periodic shifts in the topology changes and algo-
rithm does these shifts repeatedly. At that moment, there are two possibilities: discard
the whole chromosome and start over with the chromosome design or try to change
way of the chromosome reparation. The second possibility is chosen and therefore
the reparation procedure goes from the step No.3b. to step No.2. directly in that case.
The important question is how to find out that the periodic shifts in the network topol-
ogy occurred. It is possible to store the last several network changes and compare the
new changes with those already done or expect that the chromosome is being changed
periodically after certain number of iterations of the repairing algorithm. The number

44 Chapter 4 Network topology design

of iterations equal to 100 ∗ N was chosen as a condition of periodic shifts (N is the
number nodes).

It is possible to see the step No.2 in the Fig. 4.6. The network consists of 6 nodes
and every nodes should have degree deg(vi) = 3 (the network should be 2-fault-
tolerant).

Figure 4.6: 2FT Repairing operation

In the Fig. 4.6 is an adjacency matrix corresponding to chromosome built in the
step No.1. One can see that the node No.4 and No.5 does not meet demands for
the node degree (deg(vi) = 3). Thus, the repairing operations are launched. Step
No.2. tries to repair interconnection of the node No.5 to other node (to increase the
number of communication links connected to the node No.5). It is possible to see
the result of this operation in the Fig. 4.7. The number of communication links at
the node 5 is increased but the number of communication link at the node No.3. is
smaller than demanded as well as at nodes No.4, 5. The missing communication links
(at the node No.3, 4, 5) are added during the next passing through the step No.1 of
the repairing algorithm. The elements, which ware changed in the step No.2 of the
repairing algorithm, are in the grey boxes.

Figure 4.7: 2FT Repairing operation 2

The way of the chromosome generation and the application of the repairing algo-
rithm ensures that all chromosomes in the initial population have the demanded node
degree at the every node (the node degree is the same for all nodes) and therefore
they meet the demands for the fault-tolerance. The suitable chromosome represen-

4.3 Topology with same level of fault-tolerance 45

tation can help to the genetic algorithm to get better results but it is useless without
appropriate genetic operators.

4.3.3 Genetic operators

4.3.3.1 Mutation

The mutation operator for the network with the same demanded node degree for the
whole network works similarly as the mutation operator for the TSP. There is only
one difference, it is necessary to work with the adjacency matrix instead of elements
of the list of the nodes(TSP). In the Fig. 4.8. is the example of the network and
corresponding adjacency matrix.

Figure 4.8: 2FT mutation

The network consists of the six nodes and every one has the degree deg (v) = 3.
The nodes No. 1 and 4. were randomly chosen to be mutated. The mutation result is
depicted in the Fig. 4.9.

Figure 4.9: 2FT mutation result

Mutation algorithm for n-FT network:

1. Choose the chromosome which is going to be mutated.

2. Randomly choose two nodes to be mutated.

3. Substitute rows, corresponding to the chosen nodes, by each other.

4. Change columns corresponding to the nodes according to the new rows of the
adjacency matrix.

46 Chapter 4 Network topology design

5. Verify if all nodes meet the node degree demands; if yes, the chromosome was
successfully mutated; if not continue to step No.6.

6. Repair chromosome - Set elements at the coordinates [Node1, Node2] and
[Node2, Node1] to 1. Then the chromosome was mutated successfully.

Figure 4.10: 2FT mutation result

In the Fig. 4.10 is a 2-fault-tolerant network containing six nodes. The node No.
1 and 3 were chosen to be mutated. The result of the mutation is possible to see in the
Fig. 4.11.

Figure 4.11: 2FT mutation result

It is possible to see at the left part of the Fig. 4.11 that at two positions (elements
x) there should be no connection according to the algorithm. If it happens, the rules
of the node degree would be violated. Therefore, it is necessary to repair the chromo-
some; set elements at positions corresponding to the mutated nodes to 1. The reason
why it is necessary to repair the chromosome is that at the original gene was 1 at
elements that are after mutation exactly at the diagonal of the adjacency matrix and
therefore the connection is missing after the mutation. The mutation operator and
repairing procedure ensures that all resultant chromosomes meet the demands for the
node degree and consequently the network created according to the chromosome has
required level of the fault-tolerance.

The mutation operator is not the only one genetic operator, which must be tailored
according to the chosen chromosome representation. The crossover operator must be
modified as well.

4.3 Topology with same level of fault-tolerance 47

4.3.3.2 Crossover operator

The crossover operator is the important part of the genetic algorithm and allows
gaining the new chromosomes from the already existing chromosomes and using
part of the information stored in “parents”. The function of the crossover operator is
dependent on the chromosome representation. As it was already written, the chro-
mosome representation that describes the triangular part of the adjacency matrix was
chosen. This representation and the task of the design of the fault-tolerant network
with the same node degree brings by itself an issue of the permissibility of the genetic
operator results. Therefore, the chromosomes can be crossed only at places, which
are at the borders of the node elements. It allows better manipulation with the data
and easier decision if there are some conflicts in the resulting chromosome. The
crossover operator crosses the chromosomes at two points and works with two parents.

Crossover algorithm

1. Randomly choose two chromosomes

(a) Transform the chromosomes to the matrices

(b) Randomly choose nodes for crossing

2. Crossover nodes

(a) Swap elements at rows and columns corresponding to the nodes chosen
for crossover

3. Verify whether the resulted matrices (chromosomes) meet demands for the de-
manded node degree

(a) If both results of the crossing meets demands for the node degree: The
results are permissible ones

(b) If the node degree demand is not fulfilled: Continue with the repairing
algorithm.

It is possible to see an example of the crossover operator in the Fig. 4.12.
Two randomly chosen chromosomes should be crossed. The indexes No.3 and

No.5 were selected as the borders of the mutation. It means that rows No.3 and No.4
are going to be swapped between the corresponding adjacency matrices. The results
of this operation are depicted in the Fig. 4.13. The corresponding columns are ex-
changed and the rows as well. The consequence of this operations is that the rule of
the demanded node degree is violated (some nodes have bigger node degree; other
nodes have smaller degree than demanded). Therefore, it is necessary to repair the
chromosomes gained by the crossover operator.

In the Fig. 4.13 is possible to see the result of the chromosome reparation. In the
red boxes are elements of the matrices that are necessary to repair to fulfill demands

48 Chapter 4 Network topology design

Figure 4.12: n-FT crossover operator

Figure 4.13: n-FT crossover - results

of the node degree. It is necessary to design the new part of the network topology in
these boxes and elements outside of these boxes give us the constraints for this repair.

Figure 4.14: n-FT crossover - after reparation

4.3 Topology with same level of fault-tolerance 49

Reparation algorithm after the crossover operation:

1. Remove elements at rows which violate the rules of the demanded node degree
(remove all elements excluding those which correspond to the rows that have
been crossed).

2. Find the row with the smallest number of non-zero elements. (Find the nodes
with the smallest node degree). Continue to the step No.3.

3. Try to put 1 at the row, which have been found at the step No.2.

(a) Find the column, which corresponds to the node that has a smaller degree
than demanded.

(b) Put 1 if in the found column was 0 in the matrix from which have been
taken the crossing element. Continue to the step No. 3c.

(c) If you have found the column but there have been 1 at the corresponding
element of the matrix from which have been taken the crossover part, then
continue to the step No.3d.

(d) If the row found at the step No.2. have the demanded degree or all possi-
bilities for placing of 1 was already tried unsuccessfully, continue to the
step No.4. otherwise go to the step No.3a.

4. If there is some row, which does not meet demands for the node degree and it
was not already tried to be repaired, go to the step No.2. If all possible rows
were already tried to repair go to the step No.5.

5. If the matrix meets demands for the node degree, then the chromosome was
repaired successfully and it is possible to continue in the same way with the
other results of crossover operation. If not, continue to the step No.6.

6. Do the same as in the step No.2., go to the step No. 7.

7. Try to put 1 at the row, which was found at the step No.6.

(a) Find the column that corresponds to the node that has a smaller degree
than demanded and put 1 there.

(b) If the node found in the step No.6. does not meet demand for the node
degree and not all possible places of 1 have been tested yet, go to the step
No.7a. Otherwise, continue to step No.8.

8. If not all rows were repaired and all rows were not already tried to be repaired,
go to the step No.6. Otherwise, go to the step No.9.

50 Chapter 4 Network topology design

9. If the all nodes meet demand for the node degree, then the reparation was suc-
cessful and one can continue in reparation of other results of the crossover op-
eration. Otherwise, the reparation was not successful, return the original matrix
and then continue with the reparation of other results of the crossover operation.

The reparation algorithm works as it is described above. It is not very likely that
the resultant matrices meet demands for the node degree after the application of the
crossover operator. Therefore, it is necessary to launch the reparation operation. The
Step No.3. allows finding different topology than is described by only one of the
parents (see the step No.3c). This allows preserving part of the information of both
parents and doing only necessary repairs in order to meet the node degree demand. If
it is not possible to repair it in that way, another procedure tries to repair the chromo-
some in way that the network topology can be almost the same as one of the parents
(see the step No.6.).

It is possible to see see an example of the networks and crossover operators in the
Fig. 4.15, 4.16. The networks are the same as there are described by the example of

0

6
8

9

2

1

5

7

3

4

0

1
3

2

8

6

5

4

9

7

Figure 4.15: n-FT crossover - network

the reparation algorithm (see the adjacency matrices). The nodes No.3. and 4. were
chosen to be mutated (grey colour). It means that also the connections to other nodes
from the chosen nodes should be preserved. One can see the results of the crossover
and repair operation in the Fig. 4.16.

The communication links, which were added by the reparation algorithm, are in
the black colour. Link and nodes, which were mutated, are in the grey and link which
are the same as some links of the original networks (before crossover) have the same
colour as was their colour in the original network. It is possible to see that the network
on the left side of the Fig. 4.16 has only a few communication links that are the
same as those in the original networks (the crossover part was remained and only
two communication links from the parents as well). Nevertheless, the parts of the
topology from the original networks were preserved and new parts were created only
in order to meet demands for the degree of the nodes. The resultant network on the
right side of the Fig. 4.16 shows that the crossover operator is able to preserve most of

4.3 Topology with same level of fault-tolerance 51

0

1

3

2

5

4

9

7

8

6

8

5

7

3

4

0

1

2

9

6

Figure 4.16: n-FT crossover - network - after reparation

the structure of the original networks. The resultant network is mostly a combination
of the original networks.

Generally, the crossover operator should combine information from the successful
chromosomes of the previous generation in order to improve the following generation.
This natural attribute is fulfilled in this case thanks to the proposed reparation algo-
rithm that it is necessary to use since the crossover operator by itself often generates
the chromosomes that do not meet demands for the size of the node degree. The repa-
ration algorithm allows gaining the chromosomes that combine the original topologies
of the parents and meet demands for the node degree at the same time.

4.3.3.3 Fitness function

The important part of the genetic algorithm is a fitness function since it allows to
evaluate a quality of the chromosome and consequently a quality of the topology as
well. The acquisition costs can be very useful evaluative measure for the design of
the fault-tolerant network that should have the same level of the fault-tolerance in the
whole network.

It is possible to assume that the acquisition costs include all costs that are neces-
sary for the creation of the actual network. It means that the acquisitions costs should
include not only the cost of communication cables but also the cost of work which
is necessary to do as well as the costs of the additional communication interfaces (if
they are needed) and so on. Then the evaluative function and the acquisition costs are
the same:

cost =
N∑

i,j=0

cPi,j . (4.8)

Where cPi,j are elements of the matrix CP , which is the matrix of the acquisition
costs of the designed network and exactly describes the price of every necessary com-
munication link and it is possible to gain this matrix according to following equation:

CP = C&P. (4.9)

52 Chapter 4 Network topology design

The matrix C is the cost matrix for the actual network (network described by the
evaluated chromosome). And Operator & is “logical AND” which works as follows
cpi,j = ci,j if pi,j 6= 0 else cpi,j = 0.

The best network topology is not with the highest evaluation but the one with the
smallest since the acquisition costs are used as a fitness function.

It is not necessary to employ any penalty function in the fitness function since all
chromosomes are permissible and it is possible to create the real network according to
their structure. The repairing functions at the crossover and mutation operator are able
to ensure that chromosomes are permissible as well as chromosomes created for the
initial population. Thanks to that it is not necessary to consider any penalty function
and use only the fitness function described by the equation (4.8).

4.4 Logical topology design

The communication network for control engineering has specific demands for the de-
lay of the data delivering since the control algorithm can be very sensitive for the late
data delivery. If the control algorithm receives data too late, then the control algorithm
can decide wrongly and consequently cause a malfunction of the controlled system.
Thus, in time data delivery is a crucial for the correct function of the control system
and the network must allow in time data delivering. There are two possibilities how
to find whether the network allows in time data delivering: it is possible to build the
network and after then hope that the network has enough capacity to handle the net-
work load or verify the network behaviour before the actual build of the network. The
first choice is not an option since it could be very expensive to build the network and
after then verify whether the network allows to transmit demanded network load and
repair it if the network would not be able to transport the demanded load. Therefore,
it is necessary to use the simulation of the network behaviour before the actual build
of the network.

We need to know not only the network physical topology but also the logical topol-
ogy of the network for the verification of the time of the data delivery. It means that
one must design also the logical topology for the verification purposes. The logical
topology says which communication path is used for the data sending. It does not
say anything about a schedule according which data are sent or behaviour of the
communication network if the data are not sent or collide with other data. These
issues are solved by the communication protocol or by the scheduling algorithm [34].
The genetic algorithm is used for the design of the logical topology.

It is crucial to tailor the genetic algorithm exactly to the task, which the algorithm
should solve. Therefore, it is necessary to design the algorithm very carefully ac-
cording to the task that should be solved and try to simplify the task as much as it is
possible. The simplification is important since the algorithm works with a huge search
space and it needs a lot of time for the solution finding. Therefore, the simplification

4.4 Logical topology design 53

can be very useful.
The algorithm for the network topology design is forced to find the topology,

which has several independent communication paths, by the demands for the network
fault-tolerance. If the algorithm that is able to design only the network with the same
level of the fault-tolerance in the network is used, there must be minimally one re-
dundant path for every node pairs. Therefore, the topology of the network can be
quite complex and the search space can be vast. Unfortunately, if there is a redun-
dant communication path it is hardly possible to do some easy simplification of the
network contrary to the network where the network part with the bus topology exists.
However, this kind of the network can never be designed by the algorithm, which
designs the network with the same level of the fault-tolerance in the whole network.
Nevertheless, the proposed algorithm for the design of the physical topology with the
different levels of the fault-tolerance can design the network topology, which includes
the bus topology, if there are not demands for the fault-tolerance at some nodes.

It is possible to see an example of the network containing the bus topology in the
Fig 4.17. It is easy to imagine that the logical topology is exactly determined by the
physical topology in the part with the bus physical topology.

V1

V3 V2

V6
V7

V4

V5

Figure 4.17: The network

There is an example of the network with the physical topology containing the
bus physical topology in the Fig 4.17. The network is possible to divide into two
parts, the “core” of the network and the “branches” of the network. The core of the
network is a part in which is possible to change the logical topology without changes
of the physical topology. It means that there must be redundant communication paths
in the “core” of the network, since it is not possible to change the logical topology
without any redundant communication path. The “core” of the network depicted in
the Fig 4.17 contains the nodes V1, V2 and V3.

On the other hand, the branches contain only one communication path and there-
fore the logical topology is strictly described by the physical topology and can not be
changed without changes of the physical topology (it is possible to see in the Fig 4.17;
the “branches” of the network contain nodes V4, V5 and V6, V7). Therefore, the logical
topology in the branches cannot be designed in other way than the physical topology
allows and there is not any possibility to change the way how the data are exchanged.

54 Chapter 4 Network topology design

Thus, it is not possible to design the logical topology in the branches differently and
this attribute can be used for reduction of the search space of the task of the logical
topology design.

It is possible to assume that the network is connected and there is any unconnected
node during the design of the logical topology. If this assumption is not fulfilled, the
design of the logical topology is useless, since we expect that it is possible to design
the logical topology and the nodes have uninterrupted communication paths among
them.

The algorithm of the branch finding:

1. Find the node with the degree deg (vi) = 1

2. Find the node connected to the node found in the previous step.

3. If the node has deg (vi) ≥ 3, it is the “end” node of the branch, go to the
step No.4. If the node has deg (vi) = 2, go to the step No.2. If the node has
deg (vi) = 1, then the whole physical topology is connected like a bus and
therefore it cannot be optimized anymore.

4. Save all nodes of the branch and continue to the step No.1, if all nodes with the
deg (vi) = 1 have not been found as a part of some branch.

The network simplification provided according to the algorithm described above
decreases the size of the search space of the logical topology design and thanks to that,
it speeds up the design of the network topology. The important question is whether
the part of the network topology, which has been excluded from the logical topology
design, has some influence on the part in which it is possible to optimize the logical
topology. It is possible, there are no data-flows from the branches to the core of
the network and vice versa, but generally this case is very rarely and therefore there
must be a way in the logical topology design how the data-flows in the branches can
influence data-flows in the network core. If one omits this influence, which branches
definitely have on the network core, the logical topology in the network core would be
designed wrongly and the network simplification would do the design of the network
topology useless, since the verification of data-flow delays would be wrong and gives
us completely wrong description of the network behaviour under the demanded load.
Therefore, it is necessary to know how the data-flows in the branches influence the
data-flows in the network core. The relation between the communication link capacity,
network load and the delay of the data-flow must be known for this purpose.

4.4.1 Data-flow delay calculation

The data-flow delay calculation allows to find the delay of the data-flow if the capac-
ity of the communication link and its load is known. We expect the application of the

4.4 Logical topology design 55

network in control engineering where the amount of the communication technology
based on the packet-switching network still grows. The packet-switching technol-
ogy is used at the Ethernet technology. The Ethernet technology is used at industrial
communication protocols as Profinet R©, Powerlink R©, EtherCat R©, etc. The Ether-
net technology allows connection of the common network traffic with the traffic used
for the control technology purposes. The basic model for the packet-switching net-
work was developed for the ARPANET network. The average delay in the network is
possible to calculate by the Kleinrock’s interpolation [19].

T =
1

γ

k∑
i=1

fi
ci − fi

(4.10)

Where fi is load of the communication link; ci is the capacity of the communication
link; γ is total arrival rate into the network and k is the number of the communica-
tion link. fi, ci and γ are in bits per second. This interpolation is possible to use
also for the calculation of the delay at every link not only for the calculation of the
delay of the network. The (4.10) is possible to use only if the condition fi ≤ ci is
valid. The Kleinrock’s interpolation is widely used for an estimation of the network
behaviour. The interpolation is accurate enough if certain assumptions are fulfilled.
The assumptions are as follows: The Poisson’s distribution of the arrival time, ex-
ponential packet length distribution, infinite nodal storage front, fixed routing, error
free communication channels, no nodal delay and independence between transmission
time and interarrivel time [19].

Figure 4.18: End-to-end delay according to link load

The dependence of the end-to-end delay and the load of the communication link
is depicted in the Fig. 4.18. It is possible to see that if the network load approaches

56 Chapter 4 Network topology design

the link capacity, the delay grows to infinity. The network load in control engineering
uses small part of the network capacity mostly. Therefore, it is possible to reach small
end-to-end delays that are almost linearly dependent on the communication load.

Thanks to knowledge of the network behaviour, it is possible to simplify the net-
work since is possible to find out the delays in the branches caused by the network
load. This knowledge allows to transform the matrices of delays and flows of the
network core and thanks to that to decrease the size of the search space.

It is possible to see it at the following example. The same network as is depicted
in the Fig. 4.17 is expected. The network consists of the core containing the nodes
V1, V2 and V3 and the branches containing nodes V4, V5 and V6, V7. The matrix of the
expected flows looks like:

F =



0 f1,2 f1,3 f1,4 0 0 f1,7
f2,1 0 f2,3 0 f2,5 f2,6 0
f3,1 f3,2 0 f3,4 0 0 0
f4,1 0 0 0 f4,5 0 f4,7
0 f5,2 0 f5,4 0 f5,6 0
0 0 f6,3 0 f6,5 0 f6,7
f7,1 0 0 f7,4 0 f7,6 0


. (4.11)

The matrix of the maximal permitted delay is:

D =



0 d1,2 d1,3 d1,4 0 0 d1,7
d2,1 0 d2,3 0 d2,5 d2,6 0
d3,1 d3,2 0 d3,4 0 0 0
d4,1 0 0 0 d4,5 0 d4,7
0 d5,2 0 d5,4 0 d5,6 0
0 0 d6,3 0 d6,5 0 d6,7
d7,1 0 0 d7,4 0 d7,6 0


. (4.12)

The network is changed only into the core after the application of the branch
removal. The nodes in the core are going to be transmitters and receivers not only for
data-flows generated in the network “core” but also for the data-flows generated and
received in the branches. The matrix of flows and matrix of the maximal permitted
delay is changed due to the branch removal algorithm as well. The new matrices of
flow looks like:

Fn =

 0 fn1,2 fn1,3
f2,1 0 f2,3
fn3,1 fn3,2 0

 . (4.13)

Where the new matrix of flows does not only contain the original flows generated
in the core but also the flows going from the branches to the inside of the “core” or
only passing through the “core” to another branch. The nodes in the “core” are the

4.4 Logical topology design 57

new inputs or outputs node for the data-flows going from or to the branches. It means
that flows in the core looks like:

fn1,2 = {f1,2}
fn1,3 = {f1,3, f6,3, f6,5, f7,4}
fn3,1 = {f3,1, f4,1, f4,7, f5,6}
fn3,2 = {f3,2, f5,2}

. (4.14)

We can see that the network simplification reduces the number of flows for which
it is necessary to design the logical topology from 23 to 13. Nevertheless, before the
start of the logical topology design it is necessary to apply these changes of the flows
into the matrix of the maximal permitted delay, which looks like this:

Dn =



0 d1,2 d1,3 dn1,4 0 0 d1,7
d2,1 0 d2,3 0 dn2,5 dn2,6 0
d3,1 d3,2 0 dn3,4 0 0 0
dn4,1 0 0 0 d4,5 0 dn4,7

0 dn5,2 0 d5,4 0 dn5,6 0
0 0 dn6,3 0 dn6,5 0 d6,7

dn7,1 0 0 dn7,4 0 d7,6 0


. (4.15)

The matrix has still the same structure as the original one since it is necessary to
verify the delay of all data-flows but the elements are changed. The elements corre-
sponding to the delays of the data-flows created and received in the “core” of the net-
work are without any change but the elements corresponding to the data-flows created
or received in the branches and going through the network “core” are changed. These
elements are smaller because they are reduced by the delay caused in the branches. It
means that it is necessary to count the delays for the data-flows in the branches before
the matrix of the maximal permitted delay (4.12) is changed into the matrix of the
maximal permitted delay for the reduced network (4.15). The delay in the branches is
calculated according to (4.10). Then, the new maximal permitted delay looks like:

dni,j = di,j − dBi,j . (4.16)

Where dBi,j is a sum of all delay in the branches for the data-flow fi,j .
If there are the branches in the network, the knowledge of the delay in the branches

is important from other reason as well. The knowledge of the delay in the branches
can say whether is possible to design the logical topology of the network.

dni,j ≤ 0 (4.17)

If the equation (4.17) is valid, it is impossible to design the logical topology without a
violation of the physical law (the data-flow transport needs some time and therefore it
can not be zero or even negative). If this happen, it is not possible to design the logical
topology without the changes of the physical topology and it means that it is necessary
to design the physical topology of the network again from the very beginning.

58 Chapter 4 Network topology design

4.4.2 Worst-case scenario

The behaviour of the network has a stochastic character since the data-flow transfer is
a stochastic process (provided that there is no network traffic schedule, according to
the traffic would be sent through the network in the precisely given time. The data-
flow schedule ensures that any data-flow does not have to wait in some queue of the
node receiver till the node can accept the data-flow and the data-flow can go directly
to the node without any addition delay caused by the waiting in the receiver node).

It is difficult to estimate the network behaviour if there is not the network sched-
ule, therefore it is necessary to define the boundaries of the network behaviour. It is
possible to expect that there are not constraints for the early data delivering but there
are the constraints for the late data delivery. Therefore, it is important to find the
maximal possible delay of data delivery - the worst-case delay.

V1

f1

f2

f3

f4
f1+f2+f3

d1

f1+f2+f3+f4

d2

V2 V4
f1+f3+f4

d3

V3

f2

Figure 4.19: Worst-case scenario

In the Fig. 4.19 is an example of data-traffic between nodes V1 and V4. It is possi-
ble to see the worst-case scenario for the data-flow f1. The worst situation (excluding
the link interruption) occurs if all other data-flows are sent before the data-flow f1.
Especially, if the all data-flows are sent as one burst in which the data-flow f1 is at
the end of the burst. It means that between nodes V1 and V2 the data-flows f1, f2 and
f3 are sent as one burst of the data and the data-flow f1 is at the tail of the data-burst.
The data-flow f4 comes to the node V2 and it is added to the incoming data-burst from
the node V1. The data-flow f1 is still at the tail of the data-burst. Then, the data-flow
f2 leaves the node V3 via a different communication link and only data-flows f1, f3
and f4 continue to the node V4 (the data-flow is still at the tail of the data-burst).

Then the load for the communication link between nodes V1 and V2 is f1+f2+f3,
the load for the communication link between nodes V2 and V3 is f1 +f2 +f3 +f4 and
the load for the communication link between nodes V3 and V4 is f1 + f3 + f4. These
loads must pass through the queue at every node and this pass causes the transport
delays d1, d2 and d3 that can be calculate from the (4.10).

Then the delay for the worst-case scenario for the data-flow f1 is the sum of the
all delays on the communication path from the transmitter to the receiver node. The
worst-case delay for every data-flow is possible to calculate in the similar manner. The
data-flow for which the delay is calculated is at the tail of the data-burst that transmits
all data-flows between two nodes. The result of this calculation is the maximal possi-
ble delay for the data-flow and only a few data-flows can have this delay at the same
time in the whole network.

4.4 Logical topology design 59

It is not possible that the real delay for the data-flows f1 and f3 would corre-
spond to the worst-case scenario delays at the same time since it is not possible to
have both data-flows f1 and f3 at the tail of the data-burst. Thus, the worst-case delay
calculation is highly pessimistic and does not describe the network behaviour realisti-
cally but gives us the upper bound of the data-flows delay. There is no way, how could
be this upper bound of the network delay violated (excluding the link interruption).
Therefore, if the worst-case delay is smaller than maximal permitted delay one can
be sure that the network allows transmitting of the demanded traffic load without the
violation the maximal permitted delay in any possible situation. Thus, the worst-case
delay is useful for the network behaviour description.

4.4.3 Logical topology representation

The important part of the genetic algorithm is a representation of the solved task. The
appropriate representation can save a lot of trouble during the logical topology design.
Therefore, it is necessary to tailor the representation of the task, which is solved by
this algorithm, to the nature attributes of the solved task. It is necessary to describe
the logical topology of the network in this case. The logical topology says which
communication links are used for the transmission of every data-flow. It means that
one must be able to describe every possible communication path for every data-flow
of the network. In the Fig. 4.20 is the “core” of the network depicted in the Fig. 4.17.

V1

V3 V2

e1

e2

e3

Figure 4.20: The Core

The natural and the easiest description of the logical topology is to use the coding
of the edges of the network for this purpose. If it is possible to expect that the physical
topology of the network is already given and it is not changing in time, then the
number of the communication links is stable and it is not changing in time as well.
Therefore, it is possible to describe a path that must be used by the data-flow from the
transmitter to the receiver node. It is possible to see this at the following example.

There are two data-flows f1,2 and f2,3 for which the logical topology should be
found. The flow f1,2 can use a communication link e1 or communication links e2 and
e3, the flow f2,3 can use a communication link e2 or communication links e1 and e3.
It is possible to see that the chromosome must be able to describe all communications
links in the network core as a part of the communication path for every communication
link. It means that for the description of the communication path of one data-flow it is
necessary to use the same number of elements as is the number of the communication

60 Chapter 4 Network topology design

links in the network core. Then for the description of the whole logical topology for
all data-flows is necessary to have l elements.

l = jm (4.18)

Where l is the length of the chromosome for the logical topology description, m is the
number of the communication links in the core and j is the number of the data-flows
in the network core.

4.4.4 Generation of initial population for logical topology design

The important part of the genetic algorithm is a generation of the initial population.
The species in the population should be enough diverse. Therefore, the chromosomes
in the population should be as random as possible. The generation randomness brings
an issue of the chromosome permissibility. It is easy to imagine that the random
generation of the chromosome can generate such species, which does not describe a
permissible logical topology at all. The randomly generated gene can describe the
communication path that is several times disconnected or even does not start or end
at the nodes that should be the transmitter or the receiver node for that data-flow.
Therefore, it is necessary to find a different kind of the chromosome generation than
pure random generation.

If we look in the Fig. 4.20 we can see that we are able to find all possible commu-
nication paths for every data-flow. If we use the Ford-Fulkerson algorithm [14] for
the all node-pairs we gain the set of all possible communication paths for data-flows.
This set of all possible paths allows to generate the chromosome randomly.

Algorithm

1. Create set of all possible communication paths for every data-flow.

2. For every data-flow randomly choose one possible communication path and
place it in the chromosome.

It is possible to show the algorithm at the following example. There is the same
network as it is depicted in the Fig. 4.20 and algorithm should generate the chromo-
some which describes the communication path for data-flow f1,2 and f2,3. The MSB
(Most Significant Bit) corresponds to the edge e3 and LSB (Least Significant Bit) cor-
responds to the edge e1. Then the set of all possible paths for the flow f1,2 contains
elements {001, 110} the set of all possible communication paths for data-flow f2,3
contains elements {010, 101}. The chromosome describing the logical topology for
these data-flows is randomly chosen from these two sets of all possible communica-
tion paths. The chromosome could be e.g.

It is possible to create the whole initial population in the similar manner.

4.4 Logical topology design 61

10 0 0 11

f1 ,2 f2,3

Figure 4.21: The chromosome - logical topology

4.4.5 Genetic operators for the logical topology design

Genetic operators must correspond to the chromosome representation of the solved
task. Therefore, it is necessary to modify the genetic operators to the chromosome
representation. The network depicted in the Fig. 4.22 is used at the following para-
graphs for easier understanding.

V1

V4 V2

e1

e2e3
V3

e4
e5

Figure 4.22: The network - logical topology

The chromosome will describe the logical path only for two data-flows f1,3
and f2,4. Then the set of all possible communication paths for the data-flow
f1,3 is {00011, 01100}. The set of all communication paths for data-flow f2,4 is
{10000, 01001, 00110}. The communication link e5 corresponds to the MSB and
e1 to LSB.

4.4.5.1 Mutation genetic operator

The “one bit” mutation operator is used for this purpose. The operator must be modi-
fied since the real one-bit mutation [12] can cause that the result of the mutation is in-
admissible because the communication path described by the chromosome is wrong.
Therefore, the mutation operator can mutate only complete logical path for chosen
data-flow. It is necessary to know the set of all possible logical paths for every data-
flow for this purpose.

The common one-bit mutation [12] randomly chooses the bit for the mutation and
change it over. Similar technique is possible to use if the physical topology has the
ring structure (one value - the flow goes in one direction, another value - the flow
goes in another direction; mutation is possible only between these two values). If the
physical topology has different structure, the technique is not such straightforward,
since there are more possible values in which the mutated element can be changed
over.

62 Chapter 4 Network topology design

The application of the mutation operator is explained at the following example
for the chromosome describing the logical path for the data-flow f1,3 and f2,4 of the
network depicted in the 4.23.

0 0 0 1 1 01 0 0 0

0 0 0 1 1 10 0 01

f1 ,3 f2,4
Original

chromosome

Mutated
chromosome

Figure 4.23: Logical topology - mutation

The original chromosome describes the logical topology as {00011, 10000} the
“bit” chosen for the mutation is the “bit” describing the logical path for the data-flow
f2,4. The mutation must change the whole “bit” describing the logical path not only a
part of the logical path; if so, the gene would describe path that is not possible to use
because of its inadmissibility. Therefore, knowledge of the set of all possible paths
for every data-flow is used and the result of mutation must correspond to one of the
elements from the set for the chosen data-flow. The element, which substitutes the
original one is chosen from the rest of the set of all possible paths for data-flow f2,4
{01001, 00110}. In this case, the element {00110} was chosen and the original chro-
mosome was mutated into {00011, 00110}. The procedure of the randomly chosen
element from the set of all possible paths is possible to use for every data-flow and
the number of the possible communication path does not limit it.

4.4.5.2 Crossover operator

The one point crossover operator is used for the logical topology design purposes. The
crossover operator works so that it randomly chooses the place of the crossing and
chromosomes are crossed at that place. It is important to choose the appropriate place
of the crossing. The place is chosen randomly but its position must be between two
elements describing the logical path of the data-flow. If the position of the crossing is
placed somewhere in the middle of the element describing the logical path, the result
of the crossover operation will be impermissible.

0 0 0 1 1 01 0 0 0

10 0 01

f1 ,3 f2,4

Original
chromosomes

10 01 0

0 0 0 1 1

01 0 0 0

10 0 01

f1 ,3 f2,4

10 01 0

Crossovered
chromosomes

Figure 4.24: Logical topology - crossover

4.4 Logical topology design 63

If the position of the crossover is placed between two elements describing the
logical path the results of the crossover operations are always permissible, since all
chromosomes in the population are permissible (see generation of the initial popu-
lation, mutation operator). Therefore, if the crossover operation does not create the
impermissible chromosomes, there is any other way how the impermissible chromo-
somes could occur in the chromosome population.

4.4.5.3 Fitness function

The fitness function allows evaluation of the quality of the chromosome and chromo-
somes population as well. It is important to design the fitness function according to
solved task. In this case the task is to design the logical topology with the smallest
delay of data-frames as possible. The logical topology must allows in time delivery
of all data-frames since every data-frame has its own maximal permitted delay of the
delivering and this boundary must not be exceeded. The delay of the data-flows in
the core is easy to calculate since the delay in the network branches is already known.
The delays in the branches were calculated according to the algorithm (see 4.4.1).
If the constrain (4.17) is not valid and therefore it is possible to design the logical
topology in the network core. It is not necessary to consider the delay in the branches
because the delay in the branches is the same for every chromosome (the delay in the
branches have already influenced the maximal permitted delay in the matrix (4.15)
that describes the maximal delays after branches removal). Therefore, it does not
have an influence on the quality of the chromosome (the influence is the same for all
chromosomes).

The delay of the data-frames in the network is possible to calculate according
to (4.10). The sum or the average value of the delay can describe the quality of the
chromosome. The delay is smaller, the chromosome is better. The delay is bigger, the
chromosome is worse.

Fitl =

j∑
i=1

dFi + PenL (4.19)

dFi is the worst-case delay of the data-frame i, PenL is a chromosome penalization
during the logical topology design.

The delay is able to describe the chromosome quality good enough but it is not
able to describe whether some constrain of the maximal permitted delay is violated
or not. Therefore, it is necessary to add a penalty function to the fitness function,
The penalty function must be able to ensure that every chromosome which fulfills de-
mands for the maximal permitted delay at every data-flow has better evaluation than
the chromosome which violates some of these demands. Moreover, the probability
that the designed logical topology does not allow to satisfy the demands at more than
one data-flow is quite high at the start of the evolution. Therefore, it is useful to recog-
nize the number of violated constrains and to have different penalty for the different

64 Chapter 4 Network topology design

number of the violated demands. Thus, the number of violation has direct influence
on the size of the penalty:

PenL = kD max(D)N2. (4.20)

Where max(D) is the maximal element of the matrix of the maximal permitted de-
lays, N is the number of nodes in the network and kD is the number of violation of
the maximal permitted delay constraints.

The application of the different penalty for the different levels of the fulfilled de-
mands for the maximal permitted delays allows to not lose the information from the
chromosome which does not meet demands for the maximal permitted delay. Thanks
to that, information included in these chromosomes can have an influence on the chro-
mosomes in the next generation even if their quality is not very good. The information
in these chromosomes can improve next generations of the chromosome thanks to the
genetic operators.

4.4.5.4 Selection and end condition

The tournament selection is used for a selection of the chromosomes for the next
generation. Moreover, the elitism mechanism is applied. Thanks to that, the best
chromosome in the population is always preserved to the next generation and can take
a part in the population evolution. The chromosome set, at which the selection mech-
anism is applied, contains not only chromosomes of the actual generation but also
the results from the genetic operations. The tournament selection randomly chooses
chromosomes form this set to the next generation. It means that the offspring can
replace its parent even if the offspring quality is worse (provided that the parent is
compared with the better chromosome and the offspring is compared with the worse
chromosome).

The number of iteration is applied as the end condition for the logical topology
design. The design is stopped after a hundred iterations and the best chromosome is
understood as the result of the logical topology design. The resultant chromosome
describes the logical topology of the network and its fitness says the delay of the all
data-flows in the network in the worst-case scenario.

4.5 Algorithm for network design

The design of the network topology is a complex task and it is necessary to consider
many possibilities of the design. The network must meet demands for the different
fault-tolerances and allows transferring of the demanded data-load in time. Moreover,
the network should be as less expensive as possible.

It is important to preserve the design of the logical topology split from the design
of the network physical topology since this division allows to use algorithm modular-

4.5 Algorithm for network design 65

ity. The algorithm modularity is useful since there is not any preferred communica-
tion technology in control engineering and therefore the algorithm should allow easy
modification for the different communication technologies. The design of the network
physical topology is by itself useless since it does not say anything about the network
ability to transfer demanded load and the logical topology design needs the network
physical topology as one of the inputs. Therefore, it is necessary to bide this parts of
the network design together.

Design of physical
topology

Design of logical
topology

Accumulator of
unsuitable solutions

Unsuitable physical
topology

Physical topology

_

+

Save data

Write output
parameters

Set input
parameters

Correct
structure?

Figure 4.25: Algorithm - network topology design

The whole algorithm is depicted in the Fig. 4.25. It is possible to see a binding of
the design of the physical and the logical topology. Both, the logical topology design
as well as the physical topology design are important for the design of the network for
control engineering and therefore they must share the results. The whole algorithm
works as follows:

1. In the first step, it is necessary to Set all input parameters. It means that all
data are set; the matrix of the maximal permitted delay, the matrix of the data-
flows, the matrix of fault-tolerance, the matrix of the acquisitions costs. The
accumulator of the inappropriate solutions is cleared.

2. In the step: Design of physical topology, the physical topology is created. The
algorithm is simple genetic algorithm [12] that uses a chromosome representa-
tion and fitness function described in the section 4.2.1. Additional input is from
the Accumulator of unsuitable solutions in which the former solutions, which
does not meet demands for the maximal permitted delays, are stored

3. In the step: Design of logical topology the maximal data-flow delays are veri-
fied. The logical topology for the network must be designed for this purpose.

66 Chapter 4 Network topology design

The physical topology designed in the step No.2. is used as the input data to-
gether with the data set in the step one. If the delay is bigger than the maximal
permitted delay, the physical topology is stored in the accumulator of the un-
suitable solutions and the design continues again with the step No.2. in the next
iteration. If the demanded network is not possible to design because of unreal-
istic demands (the data-flows are too big in comparison with the link capacity
and therefore the delay is bigger than the maximal permitted delay) the algo-
rithm could iterate forever. Thus, it is necessary to set the maximal number of
permitted iterations. If the limit is exceeded, the network design is assumed as
impossible since it is not possible to meets demanded attributes of the network.

The accumulator of the unsuitable solutions is possible to use during the physical
topology design that can be influenced in different ways than only for a comparison
with the unsuitable solutions from the previous iterations. This application of the
accumulator is explained in the chapter 4.8.2.

4.6 Numerical results

The algorithm performance is the important attribute of the algorithm since it allows
to judge if the algorithm is suitable for the task or not. Therefore series of tests for
the medium sized network were done. The task was to design the physical topology
for the network with the number of nodes N ∈ {10, 12, 14, 16, 18, 20}. The network
should have different levels of the fault-tolerance in the different parts of the network.
The main part of the network should be 1− fault− tolerant and the more important
part should be 2 − fault − tolerant. Therefore, it is not possible to use the most
common “safe” network topology - the ring topology; since the ring topology is only
1− fault− tolerant. Therefore, for the algorithm [1], [2] is necessary to design the
whole topology as 2− fault− tolerant and therefore the designed network is more
expensive than the network designed by the above proposed algorithm that is able to
design the network with different fault-tolerance levels.

All tests were done at PC Pentium − 3GHz, 512MB RAM, Windows −
XP SP2. The algorithm is implemented in V S2005−C#. The stopping criterion for
all tested algorithm was the number of iterations - 100. The number of chromosomes
is also 100. The mutation probability is set to pm = 0.05 and crossover probability
pc = 0.20 . The cost matrix C has every element equals to 1 for purpose of easier
comparison.

The Tab. 4.1 shows the time that is necessary for the design of the network with
the same level of the fault-tolerance. We can see that the algorithm [1][2] is very fast.
The kF is the number of independent paths in the network kF = 3 means that the
whole network should be 2 − fault − tolerant. We can see that the time necessary
for the finding of the network topology is almost independent on the fault-tolerance

4.6 Numerical results 67

kF 3 4 5
N T [msec.] T [msec.] T [msec.]

10 118 120 121
12 170 172 172
14 224 223 224
16 288 288 287
18 356 357 356
20 439 440 439

Table 4.1: Time consumption K-connectivity [1],[2]

level. Nevertheless, the algorithm is not very suitable for us since it is not able to
ensure the real fault-tolerance (see chapter 2 Reliability).

N µ σ min

10 15, 56 0.05 15
12 18.96 0.06 18
14 22.7 0.06 21
16 25.55 0.09 24
18 28.85 0.09 27
20 32.66 0.1 31

Table 4.2: Costs K-connectivity [1],[2]

The Tab. 4.2 describes the acquisition costs for the network with the nodesN . The
network should be 2−fault−tolerant. The algorithm ([1],[2]) settings are the same
as before. We can see that the algorithm is not able to find the minimum for every
algorithm run (see columns min and µ - the average acquisition costs; the column
min contains the minimal value found by the algorithm, the global minimum for the
network with N = 20 is different than the minimum found by the algorithm). The
statistical results are gained from the 100 runs of the algorithm. We can see that the
algorithm settings for the network with the 20 nodes are not very good (see elements in
the column σ, and inability to find the global minimum). The algorithm is possible to
use if we want to get the results very fast and the fault-tolerance is not very important
for us (see chapter 2 Reliability). These algorithms [1],[2] are not an option for us
if we want to have the network which meets the demands for fault-tolerance. The
network must be more expensive than it is necessary (the demanded fault-tolerance
must be bigger than the necessary one - see chapter 2 Reliability). Therefore, the
algorithm which uses the node degree as a fault-tolerance measure (see chapter 4.3)
and is able to ensure that designed network is really fault-tolerant was proposed (the
genetic algorithm uses the repairing functions described in the chapter 4.3).

Tab. 4.3 describes the time, which is necessary for the design of the network with

68 Chapter 4 Network topology design

N T [msec.] Costs

10 482 15
12 759 18
14 1255 21
16 1689 24
18 2593 27
20 3228 30

Table 4.3: Time consumption - Same fault-tolerance

N nodes. The network is 2 − fault − tolerant (it is possible to interrupt two com-
munication links and the network still allows the communication among nodes). The
results were gained from 100 runs; the algorithm setting is the same as for the previ-
ous algorithm. We can see that this algorithm is slower than algorithm described in
cite [1],[2].

Nevertheless, this algorithm was able to find the global minimum for every
run. This is given by the size of the search space and by the conditions of the
run of the algorithm. The allowable chromosome must meet demands for the
2 − fault − tolerance. If the chromosome does not meet the demands for the
2 − fault − tolerance, the repairing algorithm repairs it in order to meet the
2 − fault − tolerance. Therefore, it is not possible that the network would con-
tain more communications links than it is necessary for the fulfilling of the condition
of the 2− fault− tolerance.

N j T [sec.] µ σ min

10 4 2.86 13.41 0.05 13
12 5 4.41 16.42 0.08 15
14 6 6.49 19.38 0.08 18
16 7 9.39 22.11 0.09 20
18 8 13.42 25.27 0.09 23
20 9 18.62 28.63 0.11 26

Table 4.4: Fault-tolerance - different level

The Tab 4.4 contains results of the proposed algorithm, which is able to design
the network with the different levels of the fault-tolerance in the different parts of the
network. The biggest part of the network should be only 1 − fault − tolerant but
the part of the network should be 2 − fault − tolerant. The column j describes
the number of the node-pairs that should have three independent paths - the core of
the network (the interconnection of the node should be 2 − fault − tolerant). The
column T contains elements corresponding to the time that is necessary for the task
solution. Column µ corresponds to the average value of the acquisition costs and
column σ is the variance. Column min contains the minimal value of the acquisition

4.6 Numerical results 69

costs that were found. The results were gained from the 100 runs of the algorithm and
other settings are the same as for the algorithm described before.

V1 V2 V3 V4 V5

V10 V9 V8 V7 V6

Figure 4.26: Fault-tolerant network-different level of fault tolerance

There is an example in the Fig. 4.26 of the network with 10 nodes in which every
node-pair should be 1− fault− tolerant and minimaly 4 node-pairs should be 2−
fault−tolerant (the first row in the Tab. 4.4). The connection between nodes V1, V9;
V9, V3; V3, V7 and V1, V3 is 2− fault− tolerant. Moreover, the connection between
nodes V9, V7 and V1, V7 is 2 − fault − tolerant as well. The network designed by
the algorithm has similar structure for all rows in the Tab. 4.4. It is possible to see that
even if two communication links in the network are disrupted the network core is still
able to communicate, because there are three independent communication paths for
every node pairs in the network core.

We can see that the algorithm is much slower than algorithm that uses the node de-
gree as a fault-tolerance measure. It is caused by the application of the Ford-Fulkerson
algorithm for the verification of the numbers of the independent paths that is very time
demanded. On the other hand, the application of the Ford-Fulkerson algorithm allows
to design the network with the different levels of the fault-tolerance in the different
parts of the network. Thanks to that, it is possible to design the network that has
exactly demanded fault-tolerance and therefore the acquisition costs are as small as
possible. We can see it in the column µ if we compare it with corresponding columns
in the Tab. 4.2 and Tab. 4.3. The average value of the acquisition costs of the network
designed by the proposed algorithm for the different levels of the fault-tolerance is
smaller than the minimal value of the acquisition costs of the network designed by
other algorithms. This is caused by the abilities of the algorithms. The algorithm
using the node degree as a fault-tolerance measure [1],[2], section 4.3 must design
the network which meets demands for the maximal demanded fault-tolerance (see
Fig. 4.27) and can do it very fast in comparison with the algorithm that is able to
design the network with different levels of the fault-tolerance.

According to the results described in this section, one can concludes that the pro-
posed algorithm is able to design the network with smaller acquisition costs than
known algorithms [1], [2], [3] if there is a request for the different levels of the fault-
tolerance in the different parts of the network but it needs longer time for this design.

It is better to use the algorithm that uses the repairing procedure described in the
section 4.3 if we want to design the network that has the same level of the fault-
tolerance in the whole network. The design is faster than with the algorithm for the

70 Chapter 4 Network topology design

V1 V2 V3 V4 V5

V10 V9 V8 V7 V6

Figure 4.27: Fault-tolerant network, the same level of fault-tolerance

network with the different levels of the fault-tolerance and needs smaller number of
the chromosomes for the global minimum of the acquisition costs finding.

4.6.1 Logical topology design

It is necessary to design the logical topology for the verification of the data-flow delay.
The physical topology is one of the inputs to the logical topology design. We assume
that data-flow is not possible to divide into more communication paths and data-flows
are sent in data-packets of the constant length. Kleinrock interpolation (4.10) is used
for the delay calculation. The genetic algorithm described in the section 4.4 Logi-
cal topology design is used for the design of the logical topology. The parameters
of the algorithm are as follows: pc = 0.05, pm = 0.20. The stop criterion is the
number of iterations. The algorithm stops after the 200 iterations and the number of
chromosomes is 200 as well.

Series of tests were done for the verification of the time consumption and effi-
ciency of the algorithm. The logical topology was designed for six medium sized
network with the different numbers of nodes N ∈ {10, 12, 14, 16, 18, 20}. The phys-
ical topology of the networks meets demands for the 2 − fault − tolerance in the
whole network (the networks are the results of the algorithm for the design of the
network with the same fault-tolerance level in the whole network (see 4.3). It means
that three independent communication paths exist for every data-flow and the logical
topology should optimize the sum of the all delays of every logical path while any
delay must not exceed the maximal permitted delay.

One can assume that the size of every data-flow is known before the logical topol-
ogy design. Moreover, the data-amount of every node is not changed during the net-
work operation and therefore the logical topology is not changed as well. The size of
data-flows is possible to get from the knowledge of the control algorithm and data that
are needed in every nodes for its correct functionality. For the purpose of the verifi-
cation of the time demands of the logical topology design, it was assumed that every
node in the network generates 10kb/second of the data and receives 10kb/second of
data approximately, link capacity was 1000kb. The size of data-flows was generated
randomly in order to fulfill sent/received data-amount and nodes not necessarily must
communicate with every other node (as in the real situation where not every node
communicates with every other one).

4.6 Numerical results 71

N NofLink Size[kB] NofF low T [sec.] Tf low[msec.]

10 15 750 75 2.28 30.4
12 18 1464 122 4.16 34.1
14 21 2506 179 6.98 38.9
16 24 3728 233 9.77 41.93
18 27 5076 282 12.98 46.03
20 30 6620 331 16.55 50

Table 4.5: Time consumption - logical topology design

It is possible to see the time consumption of the algorithm for the logical topol-
ogy design in the Tab. 4.5. N is the number of nodes NofLink is the number of
communication links in the network (In this case the whole network is the network
core since node pairs should have the same number of the independent communica-
tion paths in the network); NofF lows is the number of data-flows in the network.
Size is the length of one chromosome that represents a network logical topology
(Size = NofLink ∗NofF low). Size is in kB since the algorithm was written in the
C# and the smallest space with which C# is able to work is one byte. T is the time
necessary for the logical topology design. Tflow is the time necessary for the finding
of the communication path for one data-flow. Data in the Tab. 4.5 was gained from a
hundred runs of the algorithm for every number of nodes.

4.6.2 Simulation results

The end-to-end delay calculation applied during the logical topology design does not
describe the network behaviour very precisely since it is used for the worse-case de-
lay calculation. If the network meets the demands for the maximal permitted delay,
we just know that the data are delivered until the maximal permitted time but we do
not know the exact network behaviour. The delay calculation in the logical topology
design expects that all data at every links are sent as one data-burst at every commu-
nication link and all other data at that communication link are put before the data for
which we count the delay and this behaviour should be repeated at every communi-
cation link in the whole network. This behaviour is unlikely because it is not possible
so that all data-flows are put before the data-flow for which we count the end-to-end
delay at every communication link for every data-flow (see chapter 4.4.2). Moreover,
it is not very probable that the data are sent as one burst. The data are split to the
packets that are sent to their destination. Therefore, the end-to-end delay calculation
used in the logical topology design does not describe the network behaviour but it is
possible to use it as the upper boundary of the data-flow delay. Thus, it is useful to
know the behaviour of the data-flows and common delay of the data in the network
under demanded load as it is shown in the following paragraphs.

It is assumed that data are sent in packets of fixed size PackLen = 50bytes.

72 Chapter 4 Network topology design

Every node uses an exponential distribution with the mean outcome of 0.005 for the
packet generation (PackGEN = 200 packets per second). Packet routing is provided
according to the routing table that was gained during the logical topology design.
Data-flows routing is created for the data-flow delay calculation. It is possible to
estimate the end-to-end delay thanks to knowledge of the data-load at every link,
capacity of the link and characteristic attributes of the communication such as the
packet size and the average packet outcome from the nodes. These variables allow to
find all data-flows that effect the data-flow for which the end-to-end delay is estimated.

FinfL =

n∑
j=0

fLj −
n∑

k=0

fLk
(linkk − 1) (4.21)

Where the L is the path index;
n∑

j=0
fLj is the sum of all data-flows going through the

path L and j is the index of data-flow going through the path L.
n∑

k=0

fLk
(linkk − 1)

is a sum of all data-flows going through the communication path L and that does not
have any influence on the packet for which the end-to-end delay is counted. Linkk is
the number of links that are at the communication path for the data-flow k and data-
flow for which the end-to-end delay is counted. If the data-flow k causes a delay of
the data-flow for which we count the end-to-end delay at one communication link, it
cannot cause the other delay at another communication link. The delay caused at the
first link is long enough that data-flow k can leave other communication link before
the data-flow, for which we count the delay, enters to next link. This assumption is
valid if the communication is packet switching.

Then the average number of packet that can cause the delay at the communication
path L is:

PackL =
FinfL

PackLen
, (4.22)

where PackLen is the size of the packet.
It is assumed that the data in the network are sent in packets and communication

is losses free. It is not possible so that the number of packets grows steadily at every
link and incoming queue of nodes. The number of packets at the communication link
and input queue must be stable from the long-term point of view during the steady
communication. Therefore, it is possible to expect that if node generates the packet,
all other nodes generated by this node leaves the communication link and input queue
(it is not valid for packets that are retransmitted by this node). Then the average
number of packets that are able to delay packet for which we count the end-to-end
delay is:

PackD =
PackL

PackGEN
=
PackL

200
. (4.23)

4.6 Numerical results 73

Where PackGEN is the average packet outcome from the node per second (in this
case 200).

Then the average end-to-end delay of the packet including the delay caused by the
other load of the network is:

ETEL = (PackD + link)Tp. (4.24)

Where link is the number of communication links on the communication path L and
Tp is the time that needs a packet for passing through one communication link and
input queue. Tp is possible to count according to (4.10).

If there is any other load at the network, then end-to-end delay is:

ETEL = Tp link. (4.25)

The estimation of the end-to-end delay is necessary to verify. The OPNET soft-
ware is possible to use for this verification. The OPNET software is an environment
that allows fast developing and prototyping of the networks and communication pro-
tocols. OPNET contains the basic models of the communication links and the network
technologies from which it is possible to create own network. Moreover, it is possible
to modify the existing model or create own model. We use this attribute for creation of
our own model of the communication network (the frequency of packet generations,
link capacity, packet size is the same as for the designed network).

4.6.2.1 OPNET model

The OPNET model comprises the nodes and the communication links. Every node
cannot only receive and transmit data packets but it is also able to route the packets
from other nodes. Therefore, it is possible to split every node into two parts: the
data-processor parts and the switch.

Figure 4.28: OPNET node

The switch model routes the data-packets according to the routing table that was
created by the algorithm for the logical topology design. The routing table is static

74 Chapter 4 Network topology design

during the whole operational time of the network and it was transformed into the
OPNET environment as a header file.

Figure 4.29: OPNET - switch

It is possible to see the OPNET switch model in the Fig. 4.29. We can see that it
is possible to divide model into the “Node part” (left) and the “Network part” (right).
The “Node part” provides a connection of the switch and the actual node. The “Net-
work part” interconnects parts of the network. It is possible to connect three commu-
nication links into the switch. The switch works in full-duplex mode (it is possible
to transmit packets and receive them at the same time). At the incoming link there is
a FIFO queue that ensures that no packet is lost if there is some unreceived packet.
The FIFO queue produces the delay that affects the incoming packets but there is any
other delay between node and the switch (it means that packets between the node and
the switch at the “node part” are sent without any additional delay).

The model of the Node contains packet source src that generates packets of 50
bytes length at frequency PackGEN = 200 packets per second. These packets go to
the proc unit that fills the destination address into the packet according to the data
that were gained from the algorithm for the logical topology design. Then packets
continue to the switch that routes packets into the communication link according to
the routing table. The packet frequency and their direction correspond to the matrix
of data-flows that was used during the logical topology design. The incoming pack-
ets into the node are destroyed and their end-to-end delay is stored in the network
statistics.

The every part of the OPNET model works as the state automaton. Automaton
reacts at every state to external events (incoming/outgoing packet) or to internal events
(timers, stochastic event, ...).

The process model of the node is depicted in the Fig. 4.31. The process init is an
initialization of the state automaton. The process proc node handles with all events
that occur during operational time of the node. There are two events: SRC ARRV L
andRCV ARRV L. Both of them are connected with the packet arriving to the node.

The event SRC ARRV L occurs when a packet from the source src arrives to

4.6 Numerical results 75

Figure 4.30: OPNET - node

Figure 4.31: OPNET - node - process model

the nodes. The procedure xmt() that is launched by the event SRC ARRV L fills
the address of the destination node and the source node into the packet according to
the matrix of data-flows and then packet is sent to the switch.

Event RCV ARRV L occurs if the packet from the network arrives to the node.
The procedure rcv() is launched and the end-to-end delay of the arrived packet is
stored into the statistics. After then, the arrived packet is destroyed.

The model of the switch works in the similar manner but there is only one event
and procedure, since switch only retransmits packets from the arriving communication
link into the outgoing communication link according to the routing table.

OPNET modeller allows simultaneous run of the several models at the same time,
thanks to that it is possible to create the whole network from the nodes connected
together via communication links.

It is possible to see an example of the network created in the OPNET Modeller in
the Fig. 4.32. The network comprises 8 nodes and 15 node pair have three indepen-
dent communication paths and create the network core (in this case every node with
3 communication links belongs to the core). Other nodes have two independent com-
munication links. The algorithm for the logical topology design created the logical
topology and its parameters were transformed into the OPNET environment. There
are 52 data-flows in the network. Statistical behaviour of the network was collect
thanks to the OPNET.

It is possible to see the example of the statistic of the End-to-end delay in the
Fig. 4.33. One can compare the statistics gained by the OPNET software (light blue
line) and the estimation of the network behaviour gained by our algorithm (black,
blue, green and red colour).

The light-blue colour is a statistic gained by the OPNET software during simu-

76 Chapter 4 Network topology design

Figure 4.32: OPNET network

Figure 4.33: End-to-End delay OPNET

lations. The black line corresponds to the end-to-end delay estimated by model of
common behaviour for the situation where there is no other data-flow in the network.
The blue line with the square ends corresponds to the end-to-end delay estimated
model of common behaviour for situation if there are other data-flows in the network
according to the data-flow matrix. Under this line there should be 63% of the end-
to-end delays of the statistics gained by the OPNET software. Under the green line
with the circle ends, there should be 86% of the end-to-end delays of the statistics
gained by the OPNET software. Finally, under the red line with the diamond ends,

4.7 Time complexity 77

there should be 95% of the statistics gained by the OPNET software.

Model 63% 86% 95%

Opnet 93% 98% 99%

Table 4.6: Comparison of End-to-end delay of the OPNET and proposed model

Tab. 4.6 shows the comparison of the statistics of the end-to-end delay of data-
flows. The results were gained by the proposed model and OPNET. The number of
packets that should reach the destination sooner than estimated time are in the row
Model. The real numbers of packet that really reaches destination before estimated
time are in the row OPNET.

We can see that the estimation of the end-to-end delay is more pessimistic than
it is the real network end-to-end delay. Nevertheless, the estimation allows to predict
behaviour of the real network before the actual network is built since the estimation
can set the lower bound of the end-to-end delay and say the common end-to-end delay.
The end-to-end delay counted during the logical topology design is so pessimistic
that it gives the constrain for the worst-case scenario but this situation can happen
only at some communication link and not in the whole network. Thus, the estimation
described in this chapter says much more about the real network behaviour.

4.7 Time complexity

The genetic algorithm is used for the network topology design since there is no an-
alytical algorithm that is able to design medium sized network. The Ford-Fulkerson
algorithm allows verification and finding of the independent communication paths.
Then it is possible to describe the running time of the algorithm by the following
equations.

4.7.1 Time complexity - physical topology design

ΘP = Nch

(
N (N − 1)

2
(2 + |E|nmax)

)
+

+Nch

[
(2pc + pm)

(
|E|nmax

N (N − 1)

2
+ 2

)
+ 4

]
Np (4.26)

The first part belongs to the initialization of the genetic algorithm and the second
part of the equation belongs to the iterations of the genetic algorithm for the physical
topology design. Nch is the number of chromosomes used for the physical topology
design; N is the number of nodes in the network |E| is the number of communication
links in the network; nmax is the maximal number of the independent communication

78 Chapter 4 Network topology design

paths in the network for some node-pair; pc and pm are the crossover probability and
the mutation probability respectively; Np is the number of genetic algorithm itera-
tions.

The part that is not possible to omit it is the complexity of the Ford-Fulkerson al-
gorithm since it is necessary to use it for every node-pair that should have independent
communication paths. If the network meets certain conditions, than the complexity of
the Ford-Fulkerson algorithm is:

ΘFF = |E|n, (4.27)

where n is the maximal number of the independent paths for the node-pair in this
case. Ford-Fulkerson algorithm finds the maximal permissible flow in the network. It
is possible to transform the search of the maximal flow into the search of the number of
the independent paths if we set capacity of every communication link to 1. Then, the
maximal flow, which was found, is the number of the independent paths between the
source and the sink node as well. If the bread-first search algorithm is used for find-
ing of augmenting paths between the source and the receiver and the capacity of the
communication links is integer, then the running time of the algorithm is (4.27) [31].
These conditions are met automatically in this case (the bread-first search algorithm
is used and capacity of the communication link is 1). The time, which is necessary for
chromosome creation, corresponds to the length of the chromosome and it is in this
case N(N−1)

2 . The same complexity has the evaluation of the chromosome as well.
All these operations (the chromosome creation, the verification of the number of the
independent paths and the evaluation) must be done Nch times during the algorithm
initialization.

Fewer chromosomes are created during the iterations of the genetic algorithm than
during the creation of the initial population. The number of the new chromosomes is
(2pc +pm)Nch - there are two offspring after the crossover operations. It is necessary
to verify the number of independent paths for every node pair at the every newly
created chromosome. Off course, that it is necessary to create chromosome firstly and
then evaluate it as well (element 2 in the equation). During every algorithm iteration
is necessary to choose and copy chromosomes into the new population (element 4 in
the equation). It is necessary to repeat all these operations Np times (the number of
the iterations of the genetic algorithm).

The genetic algorithm is used for the design of the fault-tolerant network with the
different levels of the fault-tolerance. Therefore, it is possible to assume that there are
2 or more independent paths in the network for the most of the node pairs. Then the
maximal number of the independent paths is:

nmax ∈ 〈2, N − 1〉 . (4.28)

2 independent paths are for the ring topology andN−1 path are for the fully connected
network (every node is connected with all other nodes).

4.7 Time complexity 79

Then the complexity of the Ford-Fulkerson algorithm according to the number of
the communication links is:

ΘFF =

〈
2N,

N (N − 1)2

2

〉
. (4.29)

Then the verification of the number of independent paths in the whole network is:

ΘCh ∈

〈
N2 (N − 1) ,

N (N − 1)2

2

N (N − 1)

2

〉
. (4.30)

It is possible to approximate the time, that is necessary for the verification of the
number of the independent paths in the whole network, as:

ΘCh ∈
(
N3, N5

)
. (4.31)

Then the time necessary for the run of our algorithm is possible to approximate
as:

ΘP = Nch (N (N − 1) + ΘCh) +Nch [(2pc + pm) (ΘCh + 2) + 4]Np. (4.32)

Where the biggest elements always belongs to ΘP . Then the time complexity for
the run of the proposed algorithm is:

ΘP ∈
(
N3, N5

)
. (4.33)

4.7.2 Time complexity - logical topology design

The logical topology design is used for the verification of the size of the maximal
permitted delay. It is necessary to know the maximal delay of the data-flows in the
network since some control algorithm can be very sensitive for lack of the data or its
late delivery. The logical topology design needs certain time for the optimization of
the communication paths. Therefore, it is good to know the time complexity of the
logical topology design.

ΘL = (|E|nmaxNF +NLChNF 2 |E|NF) +

+ (NLCh [4 + ((2pLc + pLm) (1 + 2 |E|NF))]NL) . (4.34)

Where the first part of the equation belongs to the genetic algorithm initialization
and the second part belongs to the iterations of the genetic algorithm. NF is the
number of data-flows in the network; NLCh is the number of chromosome used by

80 Chapter 4 Network topology design

the genetic algorithm; pLc and pLm is the probability of the crossover and mutation
respectively and NL is the number of iterations of the genetic algorithm.

It is necessary to find all possible communication paths for all data-flows at
the start of the logical topology design; complexity of this task corresponds to:
|E|nmaxNF . After finding of all possible communication paths, the chromosomes
must be created and evaluated:

NLChNF 2 |E|NF . (4.35)

The initial population of the chromosomes is created and evaluated during these
tasks and it is possible to continue at iterations of the genetic algorithm.

The new chromosomes are created during the every iteration of the genetic al-
gorithm. The number of created chromosomes corresponds to the probability of the
crossover and mutation (2pLc + pLm). It is necessary to evaluate the newly created
chromosomes (2 |E|NF). After that all chromosomes at the new iteration were cre-
ated, it is necessary to choose the chromosome for the next generation and create the
new chromosome population (element 4 in the equation). All these operations must
be done during every iteration (NL) of the genetic algorithm.

If it is possible assume that every node communicates with all others nodes in the
network in the worst-case, then we can expect that:

NF ≈ N(N − 1) ≈ N2. (4.36)

Then,

ΘL = (|E|nmaxNF +NLChNF 2 |E|NF) +

+ (NLCh [4 + ((2pLc + pLm) (1 + 2 |E|NF))]NL) . (4.37)

The estimation (4.35) is for the worst-case but it is hardly possible to assume that
every data-flow goes through the all communication links in the network. This is
actually not possible since if the data-flow passes all the communication links and if
the network topology is fault-tolerant. The data-flow should pass through the node
which transmits it in order to pass all edges and it is not definitely very good logical
topology at all. In real scenario, there is an effort to design the logical topology
in way that the data-flows must pass as less communication links as possible and
number of the communication links that is used by the data-flow is very small. Then
the estimation of the time complexity corresponds to:

ΘL ≈ N4. (4.38)

Then the time complexity of the whole algorithm for the network topology design
is:

Θ = (ΘP + ΘL)NA. (4.39)

4.8 Algorithm extension 81

Where NA is the number of iterations of the whole algorithm (It occurs if the
verification of the maximal permitted delay of the data-flows was unsuccessful and it
is necessary to design the physical topology again with the knowledge that the already
designed network is impermissible).

One can approximate the time complexity of the network design as:

Θ ∈
(
N4, N5

)
. (4.40)

The time complexity is quite high but allows to find the network topology design
in the reasonable time (unfortunately the algorithm is not able to ensure so that the
solution will be the optimal one - it is general attribute of the genetic algorithm).

4.8 Algorithm extension

The described algorithm is able to design the fault-tolerant network with the differ-
ent levels of the fault-tolerance in the different parts of the network. This network
can have the exact demanded fault-tolerance and can be less expensive than the net-
work designed by the other algorithms [2],[6] but still may not meet the real life
demands since it does not consider the limitation of the real control systems such as
Programmable Logical Controller.

Every real communication node has a constrained number of the communication
ports and the algorithm for the network design can produce a such network topology
which needs more communication ports at some node than it is available at the part
of the control system. The common solution is the increase of the communication
ports of the nodes but at some situation, it is not possible. Therefore, it is necessary to
introduce this limitation into the algorithm. Fortunately, the genetic algorithm allows
easy implementation of several constraints thanks to the penalty function.

It is necessary to know the number of the communication ports of every node for
the application of the number of communication ports constrain. This information is
stored in the variableK. Then we just change the evaluative algorithm for the physical
topology design. We change the penalty function (4.6) in following way:

Pen =
(
kN2 + rN3

)
cmax. (4.41)

Where k is the number of nodes that should have bigger degree according to the
designed network than it is the real number of the communication ports. It is possible
to see that it is more important to meet demands for the fault-tolerance than the con-
ditions for the number of the communication ports. The application of the condition
has sense only if the demanded number of the independent communication paths is
smaller or equal to the number of communication ports at the transmitting/receiving
nodes. It can happen that there is not possible to design the topology network without
an exceeding of the number of the communication ports available at the node. Then,

82 Chapter 4 Network topology design

the network designer must decide whether it is possible to increase the number of the
communication ports at the node with small number of the communication ports or
change the requirements put on the network.

4.8.1 Different physical layers

There could be a limitation of the applied physical layer as well. Then, it is necessary
to change the algorithm for the design of the physical topology. The number of the
input parameters increases since it is necessary to add the matrix of the acquisition
costs for every kind of the physical layer. The evaluation is also necessary to change
since it must correspond to a possible application of more physical layers.

CP = (C1 ∨ C2 ∨ ... ∨ Cn) &P. (4.42)

The matrix CP is the cost matrix for the designed network. Matrices C1, ..., Cn are
matrices of the acquisition costs for the different physical layers. The matrix of the
acquisition costs for the cost calculation is chosen correspondingly to the physical
layer used at the communication link. The operator & works in the same way as in the
equation (4.3). The elements of the matrices C1, ..., Cn are chosen correspondingly
to the kind of the physical layer. The penalty function that is applied if the network
does not meet the requests for the fault-tolerance or violate the limitation of the node
degree is the same as (4.41).

It is necessary to change the used chromosome representation if there is possibility
to use more than only one physical layer. The chromosome representation is based
on the adjacency matrix. It is possible to use the adjacency matrix for the network
representation but it is necessary to change it since the adjacency matrix describes
the connection between nodes but not the kind of the connection. Therefore, if one
can assume that the elements of the “adjacency” matrix can be not only 0 and 1 but
also different numbers, then the “adjacency” matrix can describe the kind of nodes
interconnection as well. It is possible to see in the Fig. 4.34. It is possible to see that
there is no change in transformation of the “adjacency” matrix into the chromosome
describing the network configuration. The element 2 in the “adjacency” matrix means
that the fibre cable connects the node-pair; element 1 in the “adjacency” matrix means
that the metallic cable connects the node pair; element 0 means that there is no direct
connection of the node-pair.

The network, described by the chromosome in Fig. 4.34, is depicted in the
Fig. 4.35. The chromosome coding has a direct influence on the size of the mem-
ory that must be allocated for a chromosome. If the network uses only one physical
layer, it is possible to use only bits for the chromosome coding. Thanks to that, it
is possible to save the memory. If the network with the different physical layers is
designed, it is necessary to use the chromosome coding that must be able to describe
all possible physical layers in the network. A byte is used for one gene coding. It
allows to use 128 different physical layers and it is definitely more than one can need.

4.8 Algorithm extension 83

Figure 4.34: Chromosome representation - more physical layers

The memory amount necessary for one chromosome storing should be eight times
bigger than memory necessary for one chromosome of the network with the only one
physical layer. Nevertheless, in this case, it is not possible to use so straightforward
estimation because of the huge influence of the algorithm implementation. The algo-
rithm is implemented in C# and the .NET framework allocates a byte for every binary
variable. Then there is not possible to find any change in the size of the allocated
memory if the network with the different physical layers is designed in comparison
with the design of the network with only one physical layer.

V0

V3

V4 V1

V2

Fibre cable
Metallic cable

Figure 4.35: Network - more physical layer

If CF and CM are matrices of the acquisition costs for the physical layer from the
fibre cables or the metallic cable respectively. Then the fitness of the network depicted
in the Fig. 4.35 without penalty function looks like:

cost = cM0,1 + cM1,3 + cM2,3 + cM3,4 + cF1,2 + cF0,4. (4.43)

The fitness of the chromosome is the same as the acquisition costs of the network
that could be created according to the chromosome. If the chromosome representa-
tion is changed it is necessary to consider modification of the genetic operators as
well. The crossover operator uses two chromosomes for creation of their offspring. It
chooses parts of the original chromosomes and crosses them in order to create their
offspring. The crossover operator does not put into the offspring any element which
is not included in parent chromosomes. Therefore, common one point crossover can
deal with the different physical layers and it is not necessary to modified it. On the
other hand, “one bit mutation” only overlaps values of bit. Therefore, it is not possible
to use it if we design the network from more physical layers since the common “one
bit mutation” is not able to accommodate them. Therefore, it is necessary to modify
the mutation operator to accommodate more than only one physical layer. The muta-

84 Chapter 4 Network topology design

tion operator must still work on the basis of randomness and it works according to the
following algorithm:

1. Randomly choose the chromosome that is going to be mutated.

2. Randomly choose the gene that is going to be mutated.

3. Randomly change value of chosen gene to the element from the set that contains
all elements describing different physical layers and no connection.

4. Repeat steps No. 1..3 until you gain the demanded number of mutated chromo-
somes.

Described chromosome representation, fitness function and genetic operators al-
low to design the network that can contain different physical layers and thanks to that
more complex physical topology of the network.

4.8.2 Prohibited topologies

There can be special demands for the physical topology if the network is designed for
the application in the industry. There can be request that the network must not have
certain configuration of the node interconnections because of the limitation arose from
the limitation of the industrial environment e.g. some nodes cannot be connected
directly and so on. This limitation must be applied in the design of the physical
topology. It is possible to do it thanks to the structure of the proposed algorithm that
allows giving information about the unsuitable topologies directly to the algorithm for
the physical topology design (see Fig. 4.36).

Design of physical
topology

Design of logical
topology

Accumulator of
unsuitable solutions

Unsuitable physical
topology

Physical topology

_

+

Save data

Write output
parameters

Set input
parameters

Correct
structure?

Figure 4.36: Algorithm - network design

We can see the algorithm part that allows using information about the inappropri-
ate topologies during the network design. When the whole algorithm is initialized, not
only the matrices of data-flows and acquisition costs are loaded but also all unsuitable
topologies are stored into the accumulator of the unsuitable topologies. The algorithm

4.8 Algorithm extension 85

can use knowledge of the unwanted topologies thanks to the evaluative function and
its penalty part that is as follows:

Pen =
(
kN2 + (r + u)N3

)
cmax. (4.44)

Where k is the number of the nodes at which the designed degree is bigger than
the real node degree; r is the number of the node-pairs that do not have the demanded
number of independent communication paths and u is a variable that is set according
to the accumulator of the unsuitable topologies in the following manner: u = 1 if
the network described by the chromosome is already in the accumulator of the un-
suitable topologies; u = 0 if the chromosome is not in the accumulator of unsuitable
topologies.

The structure of the algorithm and penalty function (4.44) allows designing the
network exactly according to wishes of the application engineers. It allows them to
choose the characteristics of the network exactly according to the requirements of the
controlled technology. The application engineer can choose not only the level of the
fault-tolerance in the different parts of the network but also he can force the algorithm
to design the network according to the possibilities of the environment in which the
network will be used.

4.8.3 Network expansion and reduction

In the real world situation, there are often demands for a modification of the exist-
ing network rather than the demands for creating of the brand new networks. This
necessity can occur because of changes in the controlled technology or in the control
systems. The changes in the controlled technology can produce changes not only in
the amounts of the data-flows but also in the number of parts of the control system.
There have been published papers that deal with the problem of the computer network
enhancement [3],[23]. These papers assumed that the number of parts of the network
(PCs) is still the same and only the size of data-flows is changed. It means that these
algorithms should redesign the backbone of the computer network. The main task of
these algorithms was to design the new routing of the data-flows in the network. If the
network is not able to transfer the demanded amount of data-flows, these algorithms
are able to add communication links into the network in order to network capacity
increase. These algorithms deal only with the expansion of the network and they do
not consider that sometimes not only the network expansion is necessary but the re-
duction is needed as well. The necessity of the network reduction can occur since the
number of the parts of the network is reduced. It means that if it is possible to exclude
the part of the network systems, these algorithms design such network in which all
communication parts of the original network still participate in the data exchange in
the network. It means, that the communication part of the possibly excluded system
is not possible to use somewhere else and it brings additional costs to the owner of the
communication network. Moreover, these algorithms did not count the costs that are

86 Chapter 4 Network topology design

connected with a removal of a communication infrastructure. These algorithms do not
apply the limitation of the number of the communication ports at the devices and do
not allow the application of a priori information about unsuitable topologies that are
not possible to use for some reason. It is not possible to use the unsuitable physical
topologies mostly because of the physical limitation of the environment in which the
network will be applied.

The above mentioned characteristics of the already existing algorithms give the
reason to propose the algorithm for the network expansion/reduction that is able to
design the network with the requested changes in the number of nodes and data-flows.
Moreover, the algorithm ensures that the network has the demanded fault-tolerance for
every node-pair and allows to use a priori information about the unsuitable topologies
of the network that is not possible to create.

The algorithm for the design of the network with the different levels of the fault-
tolerance is used as a core of the algorithm for the network reduction/expansion. The
algorithm can be used in two possible situations. Firstly, it is the reduction of the
network and another possibility is the expansion of the network. Both operations use
different technique for the network design and they will be explained in the differ-
ent paragraphs. There is also possible that it is necessary to reduce and enlarge the
network at the same time. This task is a combination of the both mentioned above.

It is necessary to add some variables to the algorithm since it needs additional
information for the network reduction/expansion. One of variables is the matrix of
reduction costs CR. This matrix is necessary to use if the network is reduced as well
as if the network is expanded. If the network is expanded and there is no limitation
of the number of the communication ports at nodes, then the less expensive change
of the network is an addition of the communication links to the network. If there is a
limitation of the communication ports at the nodes, the removal of some communica-
tion links and the addition of the new communication links can be cheaper than only
an addition of other communication link. Another variable, which is necessary to add
to the algorithm, is a list of nodes that should be removed. The list Red contains all
nodes that should be removed.

The algorithm for the network expansion/reduction does not create the whole ini-
tial population at random since we have the information about the topology that should
be similar as the optimal topology of the expanded network. This similar topology is
an original topology that should be changed. Therefore, it is possible to use this
knowledge for the design of the 75% of the initial population and only 25% is created
at random.

4.8.3.1 Network expansion

The number of the nodes that are added to the network during the network expansion
is possible to find thanks to the increased size of the matrices of the fault-tolerances,
acquisition costs etc. The initial population of the genetic algorithm is created in the

4.8 Algorithm extension 87

following way:

1. Create chromosome that is able to code the whole network including the added
nodes and describes the original network.

2. For the chromosome part, that describes the original network: Randomly decide
if the gene will be changed. If yes, randomly choose if there will be a connec-
tion of the nodes and material of the connection or if the existing connection
will be removed. The connections can be added only until the limitation of the
communication ports is not reached.

3. For the chromosome part, that describes the new part of the network: Randomly
decide for every gene if there will be connection and type of the connection
that is described by the gene. It is possible to add connections only until the
limitation of the number of communication ports is not reached.

4. Repeat steps No. 1..3 until the 75% of the initial population is created.

The rest of the initial population is created at random without an influence of the
original network. The limitation of the number of the communication ports is the only
limitation used during the random generation of the rest of the initial population. It
means that it is not possible to add the communication link to the node that already
has no communication port available.

It is necessary to evaluate the initial population after its creation. A mask that cor-
responds to the chromosome describing the actual network without any added com-
munication link is created for this purpose. The chromosome is compared with the
mask and only differences between the mask and chromosomes are evaluated.

V0

V3

V4 V1

V2

Fibre cable
Metallic cable

V6

V5

Figure 4.37: Network expansion - original

It is possible to see the original topology of the network in the Fig. 4.37. Two
nodes V5 and V6 should be added into the network. The structure of the original
network and the “adjacency matrix” with added nodes is depicted in the Fig. 4.38.

The yellow boxes in the Fig. 4.38 shows the part that was added to the “adjacency”
matrix and the chromosome as well. The chromosome depicted in the Fig. 4.38 is also
the mask applied during the chromosome evaluation.

It is possible to see the original network topology and the topology that was cre-
ated during the chromosome creation of the initial population of the genetic algorithm

88 Chapter 4 Network topology design

Figure 4.38: Network expansion - original

V0

V3

V4 V1

V2

Fibre cable
Metallic cable

V6

V5
V0

V3

V4 V1

V2

V6

V5

Figure 4.39: Network enhancement-initial population

Figure 4.40: Network expansion - initial chromosome

in the Fig. 4.39. We can see that there have been added not only the new communi-
cation links but also the original topology has been changed as well. Moreover, the
physical layers used in the original network were changed in the new network as well.

We can see the chromosome describing the original matrix and the chromosome
that was created for the initial population of the genetic algorithm in the Fig. 4.40. The
original chromosome is in the upper part of the figure. The new chromosome is in the
bottom part of the figure. The original chromosome is the mask for the evaluation of
the new chromosome as well. Then the fitness and acquisition costs are:

cost = cM0,5 +cM1,6 +cM2,6 +cM5,6 +cF1,3 +(cRM0,1 +cRF1,2 +cRM1,3). (4.45)

Where elements cMi,j are the acquisition costs for a creation of the connection
between nodes i and j. This connection is from the metallic cable. cFi,j is the acqui-
sitions costs for a creation of the communication link between nodes i and j with the
help of the fibre cable. On the other hand, elements cRM and cRF are the costs that
are necessary to pay if we remove the fibre cable and metallic cable between nodes
i and j. The elements in the brackets correspond to the costs that are necessary to
pay for the removal of the communication links. If the communication cables are left
in the network, these elements are equal to zero. We can see that the fitness func-
tion evaluates only the changes in the network. Moreover, the same penalty function,
as for the design with the help of the knowledge of prohibited topology, is used (see
chapter 4.8.2). The application of this penalty function is necessary since it is possible

4.8 Algorithm extension 89

that the created chromosome describes the unsuitable topology that is not possible to
use for the network construction.

The genetic operators used for the network enhancement are the same as those for
the design of the physical topology with the different physical layers. Thanks to that,
it is possible to design the network enhancement with the application of the different
physical layers. The fitness function is the same as for the chromosomes created for
the initial population. It allows to design the network with the application of a priori
information. The network can be designed from the different physical layers and does
not violate the limitation of the number of the communications ports. The stop rule
of the genetic algorithm is the number of the algorithm iterations. The number of
iterations is 100.

The modification of the fitness function, genetic operators and creation of the
initial population allows to design the network enhancement not only for the same
number of the communication nodes but for bigger number of the nodes as well. This
and possibility of the application of a priori information are the main advantage in
comparison with the method described in [3], [23], [24]. This network expansion
allows to redesign the original network in order to meet demands of the new control
system that is necessary to use if the controlled system is changed.

4.8.3.2 Network reduction

The algorithm for the network reduction is used if it is necessary to remove parts
of the network. This can occurs when the control system is changed. The algorithm
should be able to use the knowledge of the inappropriate solutions that can be possible
to gain from the owner of the network. Moreover, the algorithm must incorporate the
limitations of the number of communication ports and the node-pairs should have the
demanded fault-tolerance. It is necessary to know the list of nodes Red that should
be removed from the network for the design of such network. If these nodes are
removed, then the communication paths that go via them are interrupted and therefore
it is necessary to redesign the network.

It is possible to use a priori information for the creation of the initial population.
75% of the initial population is created with the help of a priori information and 25%
is created at random. The chromosome has length that satisfies the description of the
original network. The chromosome that is created with the help of a priori information
uses following procedure for its initialization:

1. Create the chromosome that describes the original topology.

2. For every gene in chromosome: Verify whether gene corresponds to the connec-
tion to the node that should be removed. If yes, set the gene to 0 and continue
with other genes. If no, continue to step No. 3.

3. Randomly decide if the gene will be changed. If yes, randomly choose change

90 Chapter 4 Network topology design

of the gene (connection is possible to add only up to the number of communi-
cation ports of certain type available at the node).

4. Repeat steps 1..3 until 75% of initial population is created.

It is necessary to evaluate the chromosomes after their creation. The same fitness
function as for the network expansion is used - only the penalty function is modified
to:

Pen =
(
kN2 + (r + u+ er)N

3
)
cmax. (4.46)

Where k is the number of nodes at which the designed node degree is bigger than
the real node degree; r is the number the node-pairs that does not have demanded
number of independent communication paths and u is a variable that is set according
to the accumulator of the unsuitable topologies in the following manner. u = 1 if
the network described by the chromosome is already in the accumulator of the un-
suitable topologies; u = 0 if the chromosome is not in the accumulator of unsuitable
topologies. er is the variable that corresponds to the number of the communication
links connected to the nodes that should be removed and have not been removed. The
same fitness function with the penalty function is also used during the iterations of
the genetic algorithm. Therefore, there are elements that cannot be used during the
creation of the initial population such as k and er. The chromosome in the initial
population does not describe more connections to some nodes than it is the number of
the communication ports and there cannot be a connection to the nodes that should be
removed. Both attributes are checked during the chromosomes creation.

The genetic operators used for the network reduction are the same as those for the
design of the physical topology with the different physical layers. Thanks to that, it is
possible to design the network reduction with the application of the different physical
layers. The fitness function is the same as described above. It allows to design the
network with the application of a priori information. The network can be designed
from the different physical layers and does not violate the limitation of the number of
the communications ports. The stop rule of the genetic algorithm is the number of the
algorithm iterations. The number of the algorithm iterations is 100.

4.8.3.3 Network reduction and expansion

It is possible that it is necessary to reduce and expand the network at the same time.
The fitness function, genetic operators and stop rules are the same as for the network
reduction. The generation of the chromosome for the initial population is a combina-
tion of the algorithms for the network reduction and expansion. The algorithm is as
follows:

1. Create chromosome, which is able to represent the original network with the
added nodes. The chromosome describes the original topology.

4.8 Algorithm extension 91

2. For the chromosome part, that describes the original network, for every gene:

(a) If the gene describes the connection of the node that should be removed:
set the gene to 0 and continue with other gene.

(b) Randomly decide if the gene is going to be changed. If yes, randomly
choose whether there will be a connection of the nodes and material of the
connection or if the existing connection will be removed. The connections
can be added only until the limit of the number of the communication ports
is reached.

3. For the chromosome part, that describes the new part of the network for every
gene:

(a) If the gene describes the connection to the node that should be removed,
set the gene to 0.

(b) For other gene randomly decide whether there will be connection and type
of the connection that is described by the gene. It is possible to add con-
nections only until the limitation of the number of the communication
ports is reached.

4. Repeat steps 1..3 until the 75% of the initial population is created.

75% of the chromosomes is created according to the above described algorithm,
other 25% is created at random. The fitness function for the initial population is the
same as for the network reduction.

It is possible to redesign the whole network thanks to the algorithm described
above. It is possible to change not only the node interconnection but also it is possible
to add and remove nodes from the network at the same time. It allows to reduce
possible costs for the network redesign since the algorithm knows about all nodes that
should be removed and it does not connect any new link to them or does not exceed
the number of the connections at some node.

4.8.4 Numerical results - expansion

N T [sec.] Cost = 41 Cost = 51 Cost = 60 Cost = 70

10 14.8 97 0 3 0
12 24.7 81 0 19 0
14 48.6 87 2 11 0
16 58.7 69 13 15 3
18 85 56 28 9 7

Table 4.7: Network expansion - results

92 Chapter 4 Network topology design

It is possible to see the numerical results of the network expansion in the Tab. 4.7
(setting of the algorithm and input parameters are in the appendix 6.2.0.6). The first
column corresponds to the number of nodes of the original network. The second col-
umn corresponds to the time that is necessary for the network expansion. The third
column corresponds to the number of results which acquisition costs are 41 (opti-
mum). The fourth column corresponds to the number of results which acquisition
costs are 51. The fifth column corresponds to the number of results which acqui-
sition costs are 60 and the last column corresponds to the number of results which
acquisition costs are 70.

The algorithm should design the network expansion for two added node. The
original network as well as the expanded network should meet request of two-fault-
tolerance (network is possible to interrupt at two different places and the network
is still operational). It is possible to use two different physical layers for the physical
topology design: Metallic and fibre cables. Every node has three communication ports
of both physical layers and the original network is designed only with the application
of the metallic cables. The cost matrix looks as follows; every element of the cost
matrix for the metallic cables is equal to 1. Every element of the cost matrix for the
fibre cables is equal to 10 and elements of the cost matrix for removing of every kind
of cable is equal to 100.

The parameter settings described above means that there is no possibility to con-
nect a metallic cable to the nodes of the original network without removing of some
original communication link. It means that we are able to reach the smallest acqui-
sition costs only with the addition of the new links into the network. The minimal
number of the communication links that must be added for connection of the two new
nodes and keeping of the 2−fault−tolerance is 5 and only one communication link
can be from the metallic cable (other four communication links are connected to the
original network that has node with no metallic communication port available. Thus,
the metallic cable can connect only newly added nodes). Therefore, the minimal ac-
quisition costs of the expanded network are 41. The four links that are connected
directly to the nodes of the original network are from the fibre cable and one com-
munication link that interconnects the new nodes is from the metallic cable. This
configuration ensures that the new network is 2− fault− tolerant and its expansion
is as less expensive as possible.

The results in the table were gained for a hundred of launches for every number
of the nodes of the original network. Parameters of the genetic algorithm were set
as follows; the number of chromosomes is 100 as well as the number of iterations.
Probability of the mutation and crossover is pmut = 0.2 and pc = 0.3 respectively.
Cost matrices were described above.

We can see the influence of the number of chromosomes and number of nodes
of the network on the results quality. We can see that the rate of the best result
(cost = 41) is decreasing with the number of nodes of the network (the number
of chromosomes are the same) and rate of the worse solutions increases. Thus, it

4.8 Algorithm extension 93

is possible to assume that the number of chromosomes for the network of 20 nodes
should be bigger than only 100. We can see also that the time necessary for the so-
lution of the network expansion increases with the number of nodes. It is a natural
attribute of the algorithm since with the increasing of the number of nodes, the num-
ber of the node-pairs for which is necessary to verify the number of the independent
communications paths increases as well. We can see that the time that is necessary for
the network expansion corresponds to the time that is necessary for the design of the
network with the same number of nodes (Tab. 4.3). It was possible to expect this kind
of results since the core of the algorithm for the design of the fault-tolerant network
and for the network expansion is the same.

4.8.4.1 Numerical results - reduction

N T [sec.] Cost = 603 Cost = 622 Cost = 632 Cost = 641 Cost = 651

12 9.5 33 62 0 5 0
14 17.3 19 66 0 15 0
16 28 6 75 0 19 0
18 43.9 9 71 2 18 0
20 65.5 4 44 11 32 9

Table 4.8: Network reduction - results

It is possible to see the numerical results for the network reduction in the Tab. 4.8
(setting of the algorithm and input parameters are in the appendix 6.2.0.7). The first
column corresponds to the number of nodes of the original network. The second
column corresponds to the time that is necessary for the network reduction. The third
column corresponds to the number of results which acquisition costs are 603. The
fourth column corresponds to the number of results which acquisition costs are 622.
The fifth column corresponds to the number of results which acquisition costs are
632. The sixth column corresponds to the number of results which acquisition costs
are 641 and the last column corresponds to the number of results which acquisition
costs are 651.

The algorithm should reduce the network by two nodes. The original network as
well as the reduced network should meet requirements for the two-fault-tolerances.
The algorithm can use two different physical layers (metallic cable and fibre cable).
Every node has three communication ports of every kind of the physical layers. The
original network was designed only with the application of the metallic cables. The
cost matrix looks as follows; every element of the cost matrix for the metallic cables
is equal to 1. Every element of the cost matrix for the fibre cables is equal to 10 and
the cost matrix for removal of every kind of cable is equal to 100. All communication
links that are connected to the node, which should be removed, should be removed as
well.

94 Chapter 4 Network topology design

The setting described above means that minimally 6 communication links must
be removed and minimally 3 communication links must be added. Thus, the minimal
acquisition costs are 603.

The results in the table were gained for a hundred of launches for every number of
nodes of the original network. Parameters of the genetic algorithm were set as follows;
the number of chromosomes is 100 as well as the number of iterations. Probability of
the mutation and crossover is pmut = 0.2 and pc = 0.3 respectively. Cost matrices
were described above.

We can see that the rate of the best result (cost = 603) decreases with the number
of nodes of the network. The time corresponds with the time that is necessary for the
design of the network with the same number of nodes.

We can see that the proposed algorithm is able to not only design the brand new
network but also to design a reduction or an expansion of the existing network. The
algorithm is able to reduce or expand not only the number of the communication links
but also nodes of the network. Other algorithms [3],[23] are not able to do so. The
proposed algorithm can work with a priori information about unwanted topologies
and limitation of the number of communication ports at every node in contrary to
other algorithms.

4.9 Algorithm settings

The important attributes of the genetic algorithms are their settings. Several parame-
ters can be set. It is possible to set the probability of the mutation and the crossover.
Other parameter is the number of chromosomes and stop criterion. They have an influ-
ence on the number of the chromosomes that are created during the genetic algorithm
iteration. The stop rule is the number of iteration in this case. Therefore, the stop
rule has the direct influence on the number of the newly created chromosomes during
the whole run of the genetic algorithm. If the number of chromosomes increases and
other parameters are the same, the number of the newly created chromosomes during
the run of the algorithm increases as well. If the probability of the crossover and the
mutation increase and the number of chromosomes is the same as well as the stop
rule, then the number of the newly created chromosomes during the run of the whole
algorithm increases as well.

The number of chromosomes that are created for the purpose of the genetic algo-
rithm has an influence on the coverage of the search space. If the coverage is more
precise, it is likely to gain better results than for less precise coverage. Therefore, it is
important to find an influence of the number of chromosomes in the initial population
on the result quality for the big and medium sized networks.

The number of mutations, crossover operations or the number of chromosomes
also has the direct influence on the time that is necessary for the run of the genetic
algorithm. The more chromosomes of genetic operations the longer time for the run

4.9 Algorithm settings 95

of the genetic algorithm needs. This is not a big issue for the small network that have
15 nodes or less but for bigger network the design can be time demanding. Therefore,
it is necessary to find the way to speed up the genetic algorithm.

If we look at the time complexity of the genetic algorithm, we find that the evalua-
tion of the chromosome needs the biggest part of the time necessary for the algorithm
run. The evaluation itself is not so time demanding as the verification of the number
of the redundant communication paths. The Ford-Fulkerson algorithm is used for the
verification of the number of the independent paths.

A parallelization of the genetic algorithm allows to speed up the whole algorithm
and find suitable physical topology faster than without parallelization. Theoretically,
if 4 computers are used for parallelization, the time necessary for the run of the al-
gorithm will be quarter of the original time. If eight computers are used, the time
necessary for the run of the algorithm should be eighth of the original time. Unfortu-
nately, this is not possible because the Amdahl’s law is valid and the parallelization
needs time for the communication and management of the parallelization.

There are three basic possibilities of the genetic algorithm parallelization [32].
The first solution and the simplest: the task is divided into the same number of

parts as computers and the task runs independently and only the results are compared.
The implementation of this solution is the simplest one since it is not necessary to do
almost any change in the algorithm but there is also a disadvantage. The computers
do not share the results among them and therefore there is no possibility so that one
computer and its task have an influence on the tasks in other computers. Then we
lost one advantage of the parallelization, because every computer works only with the
chromosomes that are in its task and do not have any information about chromosomes
in other computers.

Other possibility is to divide the whole genetic algorithm among the computers
but the computers share part of the results. The genetic algorithm sends after every
iteration the best results to other computers and their tasks. Thanks to that, every task
can work with the best results from the previous iteration and can use it for a creation
of better descendants. A disadvantage of this solution is that the tasks in the different
computers must be synchronized and all tasks wait for the slowest one. The solution
time at every computer can vary even if the whole task is scheduled properly and tasks
at all computers need the same time for an iteration at the start of the algorithm run.
Other disadvantage is the same as for previous way of the parallelization. If we solve
a difficult problem or want to get results fast, we divide the population among many
tasks at separate computers. If we split the chromosome population among too many
tasks, in one task there will be as few chromosomes that the crossover operator can
lost abilities.

The last possible solution is to distribute only the most time demanding part of the
algorithm and do the rest operation only at one central station that also manages the
distribution to other tasks. The most time demanding part is the chromosome evalu-
ation. The division of the chromosome evaluation among computers allows to speed

96 Chapter 4 Network topology design

up the genetic algorithm and genetic operators can work with the whole population of
the chromosomes. This is an advantage of this solution since the whole chromosome
population has an influence on the offspring created by the genetic operators. The
disadvantage is that it is necessary to solve synchronization of computes at which the
genetic algorithm is launched. Other important task is a division of the load among
the computers. Even if computers are the same and they have the same performance,
it is necessary schedule the number of chromosomes that are sent from the “Master”
computer to the “Slave” computers. The computers performance is dependent not
only on the hardware but also on the software. It is not very probable, that at every
computer, which solves the network design, is the same installed software. Therefore,
the scheduling of the chromosome distribution must be solved.

The small task is launched at every computer at the start of the parallelized design
of the network. The task is to design the network with the different fault-tolerance in
the different parts of the network. Every computer that has the software for the dis-
tributed design sends the time that is necessary for the task solution. If there is a com-
puter that should be a “Master” computer (computer that does all genetic operations
and manages the chromosome sharing), it receives this time from every computer in
the network. The slave stations are locked only for the “Master’s” task and “Master”
computer calculates size of the chromosome portion for every computer. The time,
which needs every computer for the solution of the test task, is transformed into the
number of algorithm iterations per second. For the master computer, the number of
the iterations is divided by 2. Then, the number of chromosomes is split up among
the computers according to number of the iterations per second of every computer.
This chromosome proportion is stable during the whole design of the network and
does not vary. It means that if some computer starts solving some other task that takes
the performance from the task of the network design, the whole network design slows
down since the “Master” computer must wait for the slower computer.

The procedure of the parallelization of the genetic algorithm is depicted symboli-
cally in the Fig. 4.41. We can see that the only chromosome evaluation is distributed
among computers. The genetic operations are done only at the “Master” computer as
well as the verification whether the stop rule is satisfied. Even if only the evaluation
of the chromosomes is parallelized, it is possible to save the time necessary for the
solution of the network design problem. The setting of the algorithm is as follows:
The number of chromosomes is 100 as well as the number of the algorithm iterations.
The probability of the crossover and mutation is pc = 0.2 and pm = 0.05 The com-
puters at which ran the algorithm were the same: Intel Q87300, 2,49GHz, 2,96 GB;
WinXP-SP2. The algorithm was written in the C# .NET2.0.

We can see the part of results that were gained by the parallelization of the genetic
algorithm in the Tab. 4.9 and Fig. 4.42. It is possible to say that the performance of
the parallel algorithm grows with the number of computers working at this task. We
can also see that the increase of the performance, if the number of computers grows
from 1 computer to 2 computers, is bigger than two times for the network with 30,

4.9 Algorithm settings 97

Init
Population

Gen.
operations

Selection

Eval

Stop

Eval

Eval Eval

MASTER SLAVES

Results

-

+

Figure 4.41: Parallel algorithm

Computers 1 2 3 4

Nodes N Time[sec.]

20 76.7 39.8 33.5 34.4
30 310 120 80.4 67.2
40 873.8 317.4 190.7 146.4
50 1921 703 425.3 300

Table 4.9: Parallelization - time consumption

40 and 50 nodes. This should not be possible since all computers were the same and
therefore the performance increase should be close to two but it should not be bigger
than two. The results are not accidental since there have been 20 launches for every
configuration and results for the same configuration were almost the same. The 2
times increase of the performance is caused by the scheduler of the operation system.
If the task needs too much time, then the scheduler decreases the priority given to the
task and then the time for the algorithm solution increases. We can see that for the
network with 20 and 30 nodes, the increase of the performance corresponds to the
increase of the number of computers (time necessary for the solution with the usage
of 2 computers is approximately 2 times bigger than time necessary for the solution if
4 computers are used).

We can see detailed graph for the network with 20 and 30 nodes in the Fig. 4.43. It
is possible to see there other important attribute of the parallelization. It is the general
behaviour of the parallelization not only the behaviour of the parallelization of the
network topology design. The increase of the parallelized algorithm performance is
limited. The addition of the computers can actually decrease the performance of the
parallelized algorithm. The performance of the algorithm with 6 computers is worse

98 Chapter 4 Network topology design

Figure 4.42: Algorithm performance

than performance for the algorithm with only two computers for the network with 20
nodes. This performance decrease is caused by the increase of operations that must
be done for the communications among the computers. Master and slave computer
exchanges not only the chromosomes but also acknowledgment about chromosome
receiving during every iterations. The communication among the computers and its
management increases with the number of the computers so fast that it is able to slow
down the whole design of the network topology if the task for every computer is too
small. Therefore, it is always necessary to consider whether the increase of the num-
ber of computers can increase the algorithm performance. This is a general behaviour
of the parallel algorithm, increasing of the number of computers over certain limit
does not bring any performance increase since the management of these computers
needs more time than the additional performance can bring.

Characteristics described by the tables and graphs are valid for this specific case,
for other cases the limitation of the number of computers is different and it is neces-
sary to find it for every specific task and parallel algorithm.

It is possible to see dependency of the time, which is necessary for the network
design for the network with 40 nodes, on the number of computers and number of
chromosomes in the Tab. 4.10.

The first column is the number of chromosomes; the second is the time, which
is necessary for the solution of the network topology design. The third column is
the number of computers; the fourth column is the size of chromosomes that are
exchanged during an iteration of the algorithm. The results were gained with the same
settings of the algorithm and the same computers as previous results. The time is the
average time necessary for the solution of the task. The average time was counted
from a hundred launches of the algorithm. We can see that the parallel processing can
bring important time saving. It is possible to get results for 800 chromosomes in the

4.9 Algorithm settings 99

Figure 4.43: Algorithm performance - detailed view

NofChromos T ime[sec.] PCs kB

200 290 4 19
300 390 4 28
400 502 4 38
500 519 5 38
600 520 6 38
700 544 6 44
800 556 7 43
900 585 8 43

Table 4.10: Parallelization - time consumption

time longer only for a minute than result for 400 chromosomes. On the other hand,
it is necessary to use two times more computers. It is possible to expect that will be
possible to solve a design of the network with hundreds of nodes thanks to the parallel
processing of the algorithm and bigger performance of computers in future.

The number of chromosomes has an influence on the quality of the results and on
the speed of the algorithm as well. Unfortunately, for the finding of the good result is
necessary to launch algorithm for longer time with bigger number of chromosomes.
In general, it is possible to say the bigger time of the solution the better solution is
possible to find. It is necessary to find the suitable number of chromosomes for the
size of every task (search space). The number of chromosomes should allow to find
a good result in reasonable time. This number must be found since it is not known
any general procedure to find the setting of the genetic algorithm. Unfortunately, it
is not possible to do it analytically. Thus, the series of tests for the network with 10,
20, 30, 40 and 50 nodes were done. If we look at the Tab. 4.4, we can see that the

100 Chapter 4 Network topology design

setting of the algorithm was suitable since the most often found result corresponds to
the minimal acquisition costs. Thus, the Nch = 100 with the applied probabilities
of the crossover and mutation is the good setting for the network with N = 10 and
it is not necessary to search for better settings. On the other hand, for the network
with 20 nodes, the number of chromosomes allows to find solutions that are close to
the optimal one but any solution does not correspond to the minimal acquisition costs
that are 25. The number of chromosomes Nch = 100 allows to find the solutions
that are mostly better than the algorithms that are not able to find the network with
the different levels of the fault-tolerance and they must design the network with the
same level of the fault-tolerance in the whole network. The minimal acquisition costs
for these algorithms are cost = 30, which is more than the average value reached
by the algorithm that is able to design the network with the different levels of the
fault-tolerance in the different parts of the network. We understand as appropriate
number of chromosomes such number that allows to find better solutions than it is the
best solution of the algorithm that is not able to design the network with the different
levels of the fault-tolerance in the different parts of the network.

The algorithm solves the following task of the network design. The network
should have different levels of the fault-tolerance; the 1-fault-tolerance is required
in the bigger part of the network and the 2-fault-tolerance is required in smaller part.
It means that algorithm, which is not able to design the network with the different
levels of the fault-tolerance, must design the network that meets requirement of the
2-fault-tolerance in the whole network. It means that if the every communication link
costs 1 unit, then the minimal acquisition costs of the network designed by the algo-
rithm that is not able to design the network with different levels of the fault-tolerance
in the different parts of the network are:

cost = 1, 5N. (4.47)

The number of nodes must be even; the node pair in the network, which must
meet 2 − fault − tolerance, must have 3 independent communication paths. It
means that the minimal configuration of the network must be similar as the network
depicted in the Fig. 4.27. The number of pair-nodes that should have 3 independent
communication paths is as follows:

j =
(N − 10)

2
+ 4. (4.48)

Knowledge about the number of the communication links in the network allows to
count the minimal acquisition costs of the network designed by the algorithm. Then
the minimal acquisition costs are:

cost = Round (1, 25N) . (4.49)

It is possible to set boundaries of the acquisition costs of the ”good” designed net-
work thanks to the knowledge of the minimal acquisition costs of the network, which

4.9 Algorithm settings 101

meets demands for the fault-tolerance requirement, designed by our algorithm and al-
gorithm that ensures the same level of the fault-tolerance in the whole network. The
average acquisition costs should be between the values gained by the equation (4.47)
and (4.49).

The results must have statistical character since the genetic algorithm may find
the optimal solution at the first launch with very small number of chromosomes and
solutions of other launches could be much worse. Therefore, it is necessary to do
series of launches for every setting and after then it is possible to say that the algorithm
is able to find the result that is statistically better than solutions of other algorithm.
Importance of the finding of the appropriate number of chromosomes is possible to
see in the Tab. 4.11 where the size of the search space is.

N Space1PHL Space2PHL

10 3.5E + 13 2.95E + 21
15 4.05E + 31 1.25E + 50
20 1.56E + 57 4.49E + 90
30 8.87E + 130 3.52E + 207
40 6.35E + 234 1.4E + 372
50 5.7E + 368 2.9E + 584

Table 4.11: Size of search space

In the first column is the number of nodes of the network. In the second column is
the size of the search space for the network that can use only one physical layer for the
network construction. In the last column is the size of the search space for the network
that can use two different physical layers for the network construction. If we look at
the size of the search space, it is obvious that the basic number of chromosomes equal
to 100 cannot cover the search space of the network with 50 nodes.

In the Tab. 4.12 is possible to see the recommended number of chromosomes
for the design of the network with the different number of nodes and the average
acquisition cost that were reached for the network designed by the proposed algorithm
for the design of the network with the different levels of the fault-tolerance. The
dependencies for the different number of nodes and chromosomes are possible to see
in the graphs in the appendix.

N Nch

10 100
20 200
30 500
40 1500
50 5000

Table 4.12: Recommended number of chromosomes

102 Chapter 4 Network topology design

The data in the Tab. 4.12 were gained after numerous tests for the different sizes
of the network and number of chromosomes for the same settings of the algorithm,
where pc = 0.25, pm = 0.05 and number of iterations 100. Every node pair should
have minimally two independent communication paths and (N−10)

2 + 4 node pairs
should have minimally 3 independent communication paths. The optimal number of
chromosomes was assumed to be such number that allows to gain the average results:

cost = Round (1, 25N) + 0, 76(1, 5− 1, 25)N. (4.50)

The statistical results were gained minimally for a hundred of runs of the algo-
rithm. The setting described above ensures that algorithm for the design of the net-
work topology with the different levels of the fault-tolerance in the different parts of
the network gains statistically better results than the algorithms that use a node de-
gree as a fault-tolerance measure (for them every node pairs must have deg (v) = 3 if
2− fault− tolerance is needed in the part of the network).

The recommended number of chromosomes was gained for the task described
above but it is possible to assume that this setting allows solution of the different
tasks in which the different levels of the fault-tolerance is needed as well. The size
of the search space is the same for the every task with the same number of nodes of
the network independently on the number of communication paths. Therefore, the
probability of the optimum finding is the same. Thus, it is possible to expect that
the recommended number of chromosomes allows to reach the similarly successful
results for the different tasks as well.

4.10 Design of tree topology

The mostly applied topology in the control engineering is the tree topology that is
easier to design than the network with the different levels of the fault-tolerance in the
different parts of the network.

There have been published papers that focus on the design of light paths in the
optical networks [35],[36] or computer networks [37] or communication restoration
algorithms that use backup trees for communication recovery if some communication
link fails [38]. Other algorithms were focused on design tree based networks in paral-
lel computing [39] or on the reliable communication for data-collection systems [40].
Another application of the tree topology is possible to see at multicast tree for video
broadcasting [41].

It is simple to design the network with the tree topology if we want to design the
network with the smallest acquisition costs. There are many algorithms that are able
to find the minimum spanning tree (Prim’s, Kruskal’s, Dijkstra’s algorithm [14]) or
just spanning tree. It is easy to modify them if we want to use the different physical
layers and still want to find the network with the smallest acquisition costs as pos-
sible. The solution is not so straightforward if we want to use a priori information

4.10 Design of tree topology 103

about unsuitable topologies and constrain the depth of the designed topology. Algo-
rithm (Prim’s, Kruskal’s) finds the cheapest network. If we want to use them and the
tree should have constrained depth, it is necessary to use some transformation from
the depth of the graph to the acquisition costs. This transformation cannot ensure a
finding of a good result in every case since the result is dependent on the cost of ev-
ery communication link and the transformation function should be chosen for every
design.

The algorithm that finds the shortest tree is described in [42]. The algorithm uses
the linear programming for finding of the Steiner tree. Algorithm is not able to use a
limitation of the number of the communication ports and a priori information about
the unwanted topologies. Therefore, it is not convenient for the solving of the issue
of the design of the tree topology with attributes mentioned above and help of a priori
information.

The design of the tree topology is used in the VLSI circuit design. The method
is described in [43]. The method uses a heuristic algorithm that does not work with
a priori information about unwanted topologies or with the limitation of the depth of
the tree. On the other hand, the algorithm considers capacity assignment as well as
the node degree limitation.

The method described in [40] designs the tree topology for the sensors network.
There are precisely described abilities of the tree topologies with the different depths.
The algorithm is based on the modified Prim’s algorithm [14] that uses the transfor-
mation of the depth of the communication links into the cost function. This allows
to find the topology that incorporates the depth into the price of the network. Never-
theless, the algorithm does not work with the limitation of the node degree and does
not use a priori information about the unwanted topologies as well. Therefore, it is
not suitable for the application in the control engineering (every node has a limited
number of the communication ports that have limited possibility to be expanded).

The method described in [44] proposes an original encoding of the chromosome
for the genetic algorithm for the design of the tree topology of the LAN network. The
encoding allows to use the smallest possible size of the memory for the storing of
all chromosomes. However, the algorithm does not work with the limitation of the
number of communication ports or depth of the network. The algorithm does not use
a priori information of the unwanted topologies and therefore it is not suitable for the
design of the network in control engineering.

There were proposed two methods for the design of the tree topology in [45]. The
first of them is based on the simulated annealing method and another on the Integer
Linear Programming. Both methods work with the limitation of the node degree and
the maximal depth of the tree topology. Described methods are possible to use for the
finding of the tree topology if it is not necessary to use a priori knowledge to prevent
unwanted topology design.

Hence, the method for a design of the network with the tree topology is proposed
in this document. The network is designed with the help of the genetic algorithm

104 Chapter 4 Network topology design

that can easily incorporate the limitation of the depth of the network as well as the
limitation of the number of the communication ports. Moreover, the genetic algorithm
allows to use a priori knowledge of the unsuitable topologies that are not possible to
use from some reason (e.g. the limitation of the environment in which the network
will be used). It is necessary to use an appropriate representation of the network as
well as genetic operators and the fitness function for the application of the genetic
algorithm.

4.10.1 Chromosome representation - Tree topology

The representation of the network topology is the same as it is described in the chap-
ter 4.8.1 Different physical layers. This representation allows to design the network
topology with the application of the different physical layers. This representation is
able to describe every kind of the network topology and does not provide any ad-
vantage for the description of the tree topology. Therefore, it is necessary to verify
whether the chromosomes really represent the tree topology.

4.10.2 Genetic operators

4.10.2.1 Initial population

It is necessary to create the initial population of the chromosomes for the applica-
tion of the genetic operator. The quality of the initial population has an influence
on the speed of the convergence of the genetic algorithm [12]. Therefore, the initial
population is split into two parts: The first that corresponds to the 75% of the ini-
tial population describes the network with only the tree topology and the second part
(25%) contains chromosomes that represent the general topology.

In the beginning, the first part of the initial population is created at random and
then the repairing algorithm is used for the verification whether the randomly created
topology is tree. If not, the reparation procedure repairs chromosome to be the tree. It
is ensured that the number of communication links at any port in the designed network
topology is not bigger than the actual number of the communication ports at the node
during the random design of the chromosome. The reparation algorithm is a heuristic
algorithm that reconfigures the chromosome to describe a tree that meets demands for
the maximal depth of the tree. The reparation procedure works as follows:

1. Find unconnected nodes and connect them together via the physical layer that
is the cheapest.

2. Interrupt all cycles in the network (remove the communication link that closes
the cycle).

3. Create the list of the nodes that are start nodes of the parts that are not connected
to the parent node of the tree.

4.10 Design of tree topology 105

4. Connect the nodes from the list to the nodes that have available free communi-
cation port and they are as close as possible to the parent node.

V0

V3

V4

V1 V2

V5 V8

V12

V9V7

V11

V10

Figure 4.44: Tree topology - initialization

It is possible to see the result of the random chromosome initialization in the
Fig. 4.44. We can see that network contains cycle and unconnected nodes. Therefore,
it is necessary to use repairing algorithm described above. All nodes have 4 commu-
nication ports in total (for purpose of the explanation, the communication ports are the
same type as the physical layer is). The result of the repairing algorithm is possible to
see in the figure Fig. 4.45.

V0

V3

V4

V1 V2

V5 V8

V12

V9

V7

V11

V10

Figure 4.45: Tree topology - After repairing

It is possible to see in the Fig. 4.45 not only the result of the application of the
repairing algorithm to the network depicted in the Fig. 4.44 but also the advance of
the repairing algorithm. The first step of the repairing algorithm is depicted with the
blue colour, the second step with the red colour and the last step with the green colour.

During the first step, all unconnected nodes are connected together. Then every
node is connected to the other node minimally via one communication link. In the
second step, all cycles in the network are disconnected (the link between nodes V4 and

106 Chapter 4 Network topology design

V11 is removed). The bread-first search algorithm finds cycles in the network. Then
in the last step, all component that are not connected to the network are connected to
the network as close to the root node as possible. The node V7 is connected directly to
the root node since the root node has unused communication port available. The node
V9 is connected to the node V1 since there is any other node closer to the main node.
All chromosomes, which are passing through the repairing procedure, are repaired in
this way.

The reparation procedure ensures that the repaired chromosomes describe the tree
topology and do not violate the limitation of the communications port at some nodes.

The rest of the initial population is created at random; it means that the topology
can include cycles or unconnected parts of the network. This part of the initial pop-
ulation is created to provide the chromosome diversity that can help to reach better
results during the run of the genetic algorithm thanks to the genetic operators.

4.10.2.2 Mutation operator

The common one bit mutation [12] is used. The chromosome that is going to be
mutated is chosen at random as well as the place of mutation. Then the gene is mutated
in the same manner as it is described in the section 4.8.1 Different physical layers.
After the application of the mutation operator, it is necessary to verify whether the
chromosome describes the tree topology and repairs it if not. The reparation of the
chromosome is done via the repairing algorithm described above.

4.10.2.3 Crossover operator

The one point crossover operator [12] is used. The pair of chromosomes that is crossed
is chosen at random as well as the place of crossing. The crossover operator can
create offspring that do not describe the tree topology. Thus, it is necessary to use the
repairing algorithm described above. The reparation algorithm ensures that offspring
created by the crossover operation are tree topologies that do not violate the limitation
of the number of the communication ports.

4.10.2.4 Fitness function

The fitness function is crucial for the evaluation of the chromosome quality. The fit-
ness function must evaluate the chromosomes and ensures that any chromosome that
somehow violates some limitation does not have better evaluation than permissible
one. The fitness function must be able to evaluate acquisition costs of the network
described by the chromosome and also penalize the chromosome. The penalization
is necessary if the depth of the network is bigger than permitted or if there are bigger
demands for the communication ports than there is the available number of the com-
munication ports of the devices or if the chromosome describes the network that is

4.11 Reduction/expansion of the tree network topology 107

unsuitable. The fitness function is the sum of the acquisition costs of every communi-
cation link applied in the network and the penalty function is as follows:

Pen = k
(
N2 + 1

)
+ kdisN

2 + (u+ kcyc)N
4 +

+N3 (Depth−Depthmax)|Depth>Depthmax;∀v . (4.51)

Where kdis is the number of nodes that are disconnected from the main node. kcyc is
the number of cycles in the network. The last element (Depth−Depthmax) is used
for every node that is in bigger depth than it is the maximal permitted depth of the
tree. u is the element that is set to 1 if the network is the same as some of unwanted
topologies, in other cases the element is 0.

We can see that there are elements in the penalty function that seem to be useless
as kdis, kcyc and k. These elements are not applied for the chromosomes created by
the genetic operators or for chromosomes belonging to the 75% of the initial popu-
lation, all these chromosomes are repaired by the repairing procedure. On the other
hand, there is 25% of the chromosomes in the initial population that are created at
random and these chromosomes can contain description of the cycles, unconnected
nodes or may exceed the limitation of the maximal communication ports at some
nodes. Therefore, all characterization of above mentioned elements are in the penalty
function.

4.11 Reduction/expansion of the tree network topology

It is often necessary to change the topology of the existing network. Mostly it is be-
cause of the changes in the controlled technology. It is necessary to change topology if
the node is added or removed from the network. The genetic algorithm is used for the
design of the tree topology as a key stone of the algorithm for the reduction/expansion
of the network with the tree topology.

The algorithm for the network reduction/expansion must be able to redesign the
network in order to meet the same limitation as the brand new network. Therefore, the
algorithm must be able to design the network with the tree topology with the limited
depth. The number of connections of the node in the network must not exceed the
number of communication ports. Moreover, the algorithm should be able to use a
priori information about the unwanted topologies.

It is important to use knowledge of the original topology during the network re-
duction/expansion and not to design the network from scratch since the knowledge
of the original network can help to reach better results. Therefore, the topology of
the actual network is used during the creation of the initial population of the genetic
algorithm.

108 Chapter 4 Network topology design

4.11.1 Tree topology expansion

The expansion of the tree topology must be able to deal with the increase of the
number of nodes and the expansion should be as less expensive as possible. The
genetic algorithm is used for the network expansion. The algorithm recognizes that
the network should be expanded according to the size of the matrices of acquisition
costs and array that describes the number and the kind of the communication ports.
The knowledge of the original topology is used for the creation of the part of the
initial population. 25% of the initial population is created on the basis of the original
topology.

4.11.1.1 Creation of initial population

The 25% of the initial population is created according to the algorithm:

1. Create chromosome that is able to code the whole network including the added
nodes and describes the original network.

2. For the chromosome part that describes the original network: Randomly decide
if the gene is going to be changed. If yes, randomly choose if there will be
a connection of the nodes and a material of the connection or if the existing
connection is going to be removed. The connections can be added only until
the limitation of the communication ports is reached.

3. For the chromosome part, that describes the new part of the network: Randomly
decide for every gene if there will be a connection and type of the connection
that is described by the gene. It is possible to add connections only until the
limitation of the number of communication ports is reached.

4. Launch the repairing algorithm described above in order to repair the chromo-
some to describe the tree topology.

5. Repeat steps 1..3 until the 25% of the initial population is created.

Moreover, the greedy algorithm creates five chromosomes in order to find the
cheapest configuration of the node connections. This configuration must meet only
the condition for the maximal number of the communication links of every ports. The
number of connections must not be bigger than the number of available communica-
tion ports. The topology can have arbitrary depth.

The rest of the initial population is created at random in order to create bigger
variety of the population.

4.11 Reduction/expansion of the tree network topology 109

4.11.1.2 Genetic operators

Genetic operators work in the same manner as it is described in the section 4.10.2
Genetic operators for the design of the tree topology. The repairing algorithm is
launched for every result of the genetic operators.

4.11.1.3 Fitness function

The fitness function is an important part of the genetic algorithm and has an influence
on the result quality. The fitness function must be able to evaluate a quality of the
chromosome as well as a violation of the limitation of the network topology.

The fitness function contains two parts. The first part evaluates the differences
between the newly designed topology and the original topology. The second part
penalizes chromosome if the chromosome does not meet some requirements. The
first part works similarly as the fitness function used for the expansion of the network
with the different levels of the fault-tolerance in the different parts of the network.
The penalty function is the same as it is described for the design of the tree topology,
then:

cost =
∑

ce+ +
∑

ce− + Pen. (4.52)

Where ce+ is the cost of all edges that were added to the original topology and ce− is
the cost of all edges that were removed from the original topology. It is possible to find
the all removed or added edges thanks to the comparison of the created chromosome
with the mask created according to the original “adjacency” matrix. The creation of
the mask is described in the chapter 4.8.3.1 Network expansion.

4.11.2 Tree topology reduction

It is often necessary to reduce the network if the controlled technology is changed.
The reduction of the network should be as less expensive as possible and the network
should meet the requests as the depth of the tree and a maximal number of connections
of nodes. Moreover, the topology should not be the same as some of the unwanted
topologies since there can be limitation in the environment in which the network is
used. Therefore, the genetic algorithm is used since it allows to meet all demands at
the network topology.

4.11.2.1 Initial population

Knowledge of the original network is used for creation of the initial population. 25%
of the initial population is created with the help of this knowledge according to the
following algorithm.

1. Create the chromosome that describes the original topology.

110 Chapter 4 Network topology design

2. For every gene in chromosome: Verify, whether gene corresponds to the con-
nection to the node that should be removed. If yes set the gene to 0 and continue
with other genes. If no, continue to step No. 3.

3. Randomly decide if the gene will be changed. If yes, randomly choose change
of the gene (the connection is possible to add only up to the number of commu-
nication ports of certain type).

4. Launch the repairing algorithm for the tree network reduction.

The repairing algorithm ensures that every chromosome, which passes through it,
describes the tree topology and every node in the network does not exceed the maxi-
mal number of the connection. The repairing algorithm does not ensure the maximal
depth of the network.

The crossover operator is the same as for the network expansion. The mutation
operator is one bit mutation. The place of mutation is chosen at random; the place of
mutation can be every place in the chromosome excluding the place that corresponds
to the connection to the node that should be removed. Every resulting chromosome
must pass through the repairing algorithm that ensures that the chromosome describes
the tree topology. The fitness function is as follows:

cost =
∑

ce+ +
∑

ce− + Pen (4.53)

and the penalty function is:

Pen = k
(
N2 + 1

)
+ kdisN

2 + (u+ kcyc)N
4 +

+N3 (Depth−Depthmax)|Depth>Depthmax;∀v . (4.54)

The meaning of elements was described at previews equations. The element er
must be in the fitness function since the part of the initial population is created at
random and therefore the node, which should be excluded, can be connected via some
communication link.

It is possible to do the reduction and the expansion of the network at the same time
if we combine the above described algorithm similarly as the algorithm for the reduc-
tion and the expansion of the network with the different levels of the fault-tolerance
in the different parts of the network (see section 4.8.3.3).

4.11.3 Numerical result - tree topology

The results of the design of the tree network topology are described in this section.
The results of the network topology expansion and reduction are described as well.

4.11 Reduction/expansion of the tree network topology 111

N Min T [sec.] 0link 1link 2link 3link 4link 5link 6link

10 36 3.16 9 37 54 0 0 0 0
12 47 4.58 4 57 39 0 0 0 0
14 32 5.78 0 2 32 66 0 0 0
16 44 7.25 0 2 36 58 4 0 0
18 44 8.9 0 0 5 5 44 43 3
20 55 10.6 0 0 3 19 40 32 6

Table 4.13: Design tree topology

4.11.3.1 Design of tree topology

There are results gained by the proposed algorithm in the Tab. 4.13. The setting of the
algorithm is as follows: pc = 0.3, pm = 0.02. The number of chromosomes was 250
and the number of iterations was 100. It was possible to use two different physical
layers in the network and every communication node has four communication ports
of every kind available.

The first column is the number of nodes in the network. The second column is
the minimum possible acquisition costs that are possible to reach. The third column
is the time that is necessary for the design of the network with the tree topology
that contains the number of nodes from the first column. The fourth column means
how often the algorithm found the topology in which 0 links are different from the
optimal placing. The fifth column means how often the algorithm found the topology
in which is exactly one link different from the optimal placing. The sixth, seventh,
eight, ninth and tenth column describes how often the algorithm found the topology
that differs exactly in two, three, four, five and six link position from the optimal
topology respectively.

The physical topology should contain two different physical layers and price ma-
trices exactly describe how the network should look like. If there should be the link
from the metallic cable, the element of the cost matrix for the metallic cable is 1. If
there should be the communication link from the fibre cable, the corresponding ele-
ment in the cost matrix of the fibre cable is set to 10. All other elements are set to
1000. It means that there is always just the only one optimal solution and every other
has worse evaluation than the optimal one.

We can see from the Tab. 4.13 that the algorithm is not able to find the optimal
configuration for the network with the number of nodes higher than 12 and the setting
described above. It means that there should be used a bigger number of chromosomes
or different setting of the algorithm.

It is possible to see the optimal topology of the networks with the tree topologies
in the section 6.2.0.8.

The optimal topology from the tree network topology design is used as the original
topology that should be changed in the reduction/expansion procedure.

112 Chapter 4 Network topology design

4.11.3.2 Numerical results of tree topology reduction/expansion

The optimal configurations of nodes and communication links for the task described
above were used as an original topology that should be reduced or expanded. Settings
of the algorithm were the same as for the design of the tree topology. The cost matrix
for the physical layer created from the fibre cable had all elements equal to 100. The
cost of the removal of the communication link was 1000 for the both physical layers.
The cost matrix for the metallic cable did not have the same elements everywhere. All
elements were set to 10 excluding the elements corresponding to the node No.2. It
means that the metallic cable was preferred material for the communication links and
the node No.2 was preferred for the creation of the new connection. Every node had
four communication ports of the both physical layers that were available. Maximal
permitted depth of the tree was four.

N T [sec.]

10 2.38
12 3.24
14 3.78
16 4.46
18 5.06

Table 4.14: Tree topology expansion

The results of the network expansion are in the Tab. 4.14. In the first column is the
number of nodes of the original network; in the second column is the time necessary
for the network expansion. The costs of the expansions are not in the table since
the algorithm found the optimal configuration of the added link thanks to the greedy
procedure during the initialization of the population of the genetic algorithm. It means
that for every number of nodes were the costs necessary for the network expansion
equal to 2 excluding for the network with 16 nodes of the original network. For the
network with the 16 nodes of the original network, there were the acquisition costs
equal to 11 since it was possible to connect the only one new link to the node No.2.
The node No.2 already had three connections to other nodes via the metallic cable
and it was not possible to connect two new connections. Therefore, one new node
was connected to other node via the metallic cable. The results were gained for 100
runs of the algorithm for every number of nodes of the original network. If the greedy
procedure for the chromosome initialization is not present, gained results are not so
good since for bigger number of nodes, the number of chromosomes is not sufficient
and it would be necessary to increase the number of chromosomes.

The results of the tree topology reduction are possible to see in the Tab. 4.15. In
the first column is the number of nodes of the original network; in the second column
is the time necessary for the network reduction. The costs that are necessary to pay
for the network reduction are not presented since the algorithm found the optimum

4.11 Reduction/expansion of the tree network topology 113

N T [sec.]

12 2.15
14 2.78
16 3.62
18 4.11
20 4.88

Table 4.15: Tree topology reduction

in all launches of the algorithm. Every node has four communication ports of both
physical layers available. The maximal permitted depth was four.

The node No.2 should be removed from the network; all other nodes should re-
main in the network. The cost matrix for the fibre cable has all elements equal to
100. The cost matrix for the metallic cable has all elements equal to 10. If the greedy
algorithm is not used for the initialization of the part of the initial population, the
algorithm does not find the optimal network configuration. Therefore, it would be
necessary to increase the number of chromosomes. Results in the Tab. 4.15 were
gained for a hundred launches for every number of nodes in the network.

114 Chapter 4 Network topology design

Chapter 5

Conclusion

The topology of the network has the crucial importance for the attributes and the be-
haviour of the network. If the network topology does not allow a communication
between nodes there is no way how to transfer data between nodes without change of
the network topology. If the topology does not contain the independent communica-
tion paths, the network can be split into two parts that are not able to communicate
between each other. The impossible communication among nodes of the network is
definitely the situation that should be avoided since not only the communication is
interrupted but also function of the applied control system is influenced by the in-
terrupted communication. If the network is applied in the telecommunication, the
interrupted communication can disrupt calls or data transfer. If the network is used in
control engineering, the interrupted communication can cause the malfunction of the
controlled algorithm and consequently the malfunction of the controlled technology.
The malfunction of the controlled technology can cause not only the financial losses
but also casualties. Therefore, the topology should be designed in order to prevent
this situation. Moreover, the topology of the network should allow transferring data
in the demanded time. The easiest solution of this issue is to create a fully-connected
network in which every node is connected to all other nodes. The fully-connected
network has the biggest fault-tolerance that is possible to reach and it is able to trans-
fer the biggest load of the data. Every data-flow must pass only one communication
link in order to reach the destination node and therefore the communication is as fast
as possible. Unfortunately in many cases, it is not possible to design such a network
since the nodes do not have enough communication ports and even if it is possible to
extend the number of the communication ports, it is mostly not possible to create such
a network because of the limited budget.

The limited budget forces to design the network as less expensive as possible. It
means that the network topology should be as simple as possible. The construction
of as simple network as possible is in contrary to the maximal fault-tolerance. There-
fore, it is necessary to balance these requirements and design the network with the

115

116 Chapter 5 Conclusion

demanded fault-tolerance with as small acquisition costs as possible. The network is
mostly possible to divide into the parts that need different levels of the fault-tolerance
(the part with the critical part of the control algorithm needs bigger fault-tolerance
than the part that provides the interface to public guests that are not permitted to do
any change on the controlled technology). In this case, it is possible to design the
topology of the network with the level of the fault-tolerance according to the highest
requested fault-tolerance or it is possible to design the network that exactly meets the
requested levels of the fault-tolerance. Both possibilities are described in this thesis
and abilities of the designed network as well. It is possible to see from the result
that the network, which has the same level of the fault-tolerance, is possible to design
much faster than the network with the different levels of the fault-tolerance. On the
other hand, the network with the same level of the fault-tolerance is always more ex-
pensive than the network with the different levels of the fault-tolerance (provided that
is possible to split the network into the parts in which the different levels of the fault-
tolerance is needed). Thus, the network with the same level of the fault-tolerance is
worse than the network with the different levels of the fault-tolerance from the user
point of view even if the design is much faster than the design of the network with the
different levels of the fault-tolerance.

The algorithm for the design of the network topology should have also other abil-
ities than only to design the fault-tolerant network. The algorithm should be able to
design the network with an application of the nodes with the different numbers of
communication ports of the different types of the physical layer since it is not pos-
sible to connect more communication links than there are available communication
ports at the node. The algorithm for the design of the network topology should be
able to use a priori information of the unsuitable network topologies. The applica-
tion engineers often have information about the environment in which the network is
going to be used. This environment can often limit possible structure of the network
topology and application engineers have this information. Therefore, it is useful to
use this knowledge and incorporate it into the design of the network topology. More-
over, the network must be able to accommodate the demanded traffic load and transfer
this load in the requested time. The genetic algorithm that is able to design the net-
work with the different levels of the fault-tolerance with an application of the nodes
with the different number of communication ports and with a usage of prior informa-
tion was proposed in this thesis. Moreover, different physical layers can be used in
the designed network. The designed network allows transferring the expected load
in the demanded time and verification of this ability is inseparable part of the whole
algorithm.

The time that is needed for the design of the network with the bigger number of
nodes (20+) is quite high. Therefore, the parallelization of the algorithm was pro-
posed. The parallelization of the algorithm is able to decrease the time that is nec-
essary for the network design. The speeding up of the algorithm is limited by the
management of the instances of the algorithm in the network of computers. The in-

117

crease of the performance is smaller than the increase of the management of another
computer in the network at certain number of computers that solve the task and an ad-
dition of other computers actually decrease the performance of the whole network of
computers. However, the parallelization of the algorithm was used for the finding of
the recommended settings of the genetic algorithm for the network topology design.
The proposed algorithm with the recommended setting is able to find statistically bet-
ter results for the network that allows to use different levels of the fault-tolerance
than it is the best possible result of the algorithm that is able to design the network
with the same level of the fault-tolerance (The existing algorithms are able to find
the network topology only with the same level of the fault-tolerance, some of them
are able to work with the nodes with the limited number of communication ports and
none are working with a priori information. Some algorithms are not able to find the
fault-tolerant network even it seems to - see chapter 2 Reliability).

It is necessary to change the network topology very often if the controlled tech-
nology is changed. Existing algorithms are able to change the routing in the original
network or add/remove communication links in the network. Nevertheless, these mi-
nor changes are possible to use only if the number of the nodes in the network does not
change. If the number of nodes in the network is changed, the existing algorithm must
design the brand new network. It means that the whole infrastructure of the network
must be changed since these algorithms are not able to work with knowledge of the
existing network. Therefore, the change of the network topology is more expensive
than it could be. Thus, the genetic algorithm that does only necessary changes into the
existing network topology is proposed in the thesis. The algorithm is able to redesign
the existing network in order to accommodate new nodes. The number of changes in
the network is as small as possible and network meets all demands for the different
levels of the fault-tolerance. The network can contain the nodes with the different
numbers of communication ports and use different physical layers. Information about
unsuitable topologies can be used if it is available. Thus, the change of the network
topology is as less expensive as possible and the newly redesigned network topology
uses as a big part of the original network as possible.

The tree topology is often used in the industrial control systems. The big advan-
tage of this topology is that the network is as less expensive as possible. The big
disadvantage of this kind of the topology is that only one interrupted communication
link makes the communication among part of nodes impossible. Nevertheless, the tree
topology is used in the industry and therefore the algorithm that is able to design the
tree topology was proposed in the thesis. The number and kind of the communication
ports at every node is important for the design of the tree topology. Another important
parameter is a depth of the tree topology since it has a direct influence on the struc-
ture of the network. If the depth of the tree is not limited, the designed topology can
have structure of the bus. It is important to use knowledge about unsuitable topologies
that it is possible to gain with the help of the application engineers. This knowledge
can prevent an application of the network that seems to be well designed but after its

118 Chapter 5 Conclusion

application in the real environment there are many malfunctions due to interruptions
caused by the external events (somebody interrupts link, or enormous heat destroyed
the cable etc.). The proposed algorithm is able to use knowledge of the unsuitable
topologies, kind and number of communication ports and maximal permitted depth
for the design of the network with the tree topology. The network meets all demands
for the maximal depth, application of different physical layers.

The network with the tree topology can be changed due to the changes of the
controlled technology. Therefore, the algorithm that is able to redesign the existing
network is proposed in this thesis. The algorithm is able to redesign the network even
if the number of nodes in the network is changed. The redesigned network still meets
all demands that were requested at the original network. The newly designed network
uses as big parts of the original network as possible and thanks to that the expansion
or reduction of the network is as inexpensive as possible.

The algorithms proposed in this thesis were originally created in purpose to design
the network that meets all possible demands that can be requested by the application
engineers of the industrial communication networks. But it is possible to use these
algorithms for the design of the transportation network, pipelines or sewerage. The
algorithms offer general method to design a structure that can be described as a net-
work with the limited connections and the different numbers of the independent paths
or depth for the tree topology. The algorithms are able to work with the limited capac-
ity of the communication lines, pipes or ways. It is necessary to change the algorithm
of the verification of capacity limitation of the designed network or pipelines, etc. The
module that verifies the maximal time-delay of the traffic flow in the communication
network is possible to change with the different module that corresponds to applica-
tion of the network. This is possible thanks to the modular structure of the network.
Thus, the proposed algorithms are possible to understand as general algorithms for
the design of the network.

5.1 Contribution

Several algorithms were presented in this thesis. The objectives that have been set
at the start of the thesis were fulfilled. The basic algorithm (chapter 4.2) allows to
design less expensive network than existing algorithms if the different levels of the
fault-tolerance are requested (it is necessary to know the importance of the different
parts of the network in this case). This algorithm is used as a basic algorithm for the
described modification. These modifications allow to design:

• Network that uses nodes with the different numbers of communication ports of
the different physical layers. The application of the structure of the proposed
algorithm and accumulator of the unsuitable solutions allows avoiding a design
of the topologies that are unsuitable from some reasons (mostly because of the

5.1 Contribution 119

environment limitation). The application of the Ford-Fukerson algorithm al-
lows to design the network with the different levels of the fault-tolerance in the
different parts of the network and thanks to that meet requests for the network
fault-tolerance while the costs are as small as possible. The behaviour of the
network is verified during the logical topology design that allows to find the
end-to-end delay in the worst-case scenario. Moreover, there is proposed the
method for the estimation of the real behaviour. The method for the calculation
that is used for the end-to-end delay calculation allows verifying whether every
data-flow reach its destination until the maximal permitted time elapses. The
method is based on the Kleinrock’s interpolation that is commonly used in the
literature. Nevertheless, the structure of the algorithm allows a simple replace-
ment of the module for the end-to-end delay calculation and an acquisition of
more precise results or results that are more accurate for certain type of the
communication technology.

• Expansion or reduction of the network. The algorithm allows to design not
only the addition or the reduction of the communication links as is described
in the literature but also to increase or decrease the number of nodes. It means
that this algorithm is able to redesign existing network if some node must be
added or removed. Algorithm is able to ensure that the redesigned network
meets all requests for the fault-tolerance, application of nodes with the different
numbers of communication ports of the different physical layers and the usage
of a priory information about unsuitable topologies since the algorithm is based
on the modification of the basic algorithm mentioned above.

• The network with the tree topology with the limited depth. The network uses
nodes with the different numbers of the communication ports of the different
types of the physical layers. The algorithm is able to use a priori knowledge
about unsuitable topologies that allows to avoid such topologies that are unsuit-
able from some reasons (e.g. environment limitation).

• Expansion or reduction of the tree topology. The algorithm allows to add or re-
move the nodes to the network. The redesigned network meets all demands for
the maximal depth of the topology and the application of a priori information
about the unsuitable topologies. The network can use the nodes with the differ-
ent numbers of the communication ports of the different types of the physical
layers.

5.1.1 Goals

The goals set at the beginning of this thesis were fully fulfilled as detailed below.

1. To design an algorithm for the design of the network with the different fault-
tolerance in different parts of the network while the network allows in time data

120 Chapter 5 Conclusion

delivery.

The algorithm for the network topology design is described in 4.2, 4.4 and 4.5.
Results and comparisons with the existing algorithms are in the section 4.6.

2. To modify the basic algorithm for the limited number of communication ports
of nodes (different physical layers can be applied) and an application of a priori
information about unsuitable topologies

The modification of the basic algorithm is depicted in the sections 4.8, 4.8.1
and 4.8.2.

3. To design an algorithm for the mesh network expansion and reduction.

Methodology of the network expansion and reduction is described in the sec-
tion 4.8.3. Both expansion and reduction are described in this section with
examples of necessary modifications of the basic algorithm.

4. To design an algorithm for the network topology design. The tree network has
limited depth and use nodes with the limited number of communication ports
of the different type of physical layers.

The algorithm for the design of the network with the tree topology is depicted
in the section 4.10. The repairing algorithm as well as operators and network
representation are described in this section as well.

5. To design an algorithm for the tree topology expansion or reduction.

The algorithm for network expansion/reduction is described in the section 4.11.
as well as modifications that are necessary for this task. In the same section,
we also find numerical results of the network expansion/reduction and results
of the algorithm for the tree topology design.

5.2 Future research and development

Future research is possible to split into two parts: the first is connected to the design
of the physical topology and the second to the verification of the behaviour of the
network

• Implementation of the limitation of the maximal number of necessary hops into
the design of the network topology. Moreover, the algorithm must be able to
find the optimal position of switches if the nodes do not have the switch ability.
The algorithm should also prevent from designing the topology that contains
long communication links since the probability of the link interruption increases
with the increase of the length of the communication link.

5.2 Future research and development 121

• Improvement of the algorithm for verification of the network behaviour. More
precisely, development of the scheduling algorithm for the Profinet IRT if re-
dundancy of the communication paths is used.

• The algorithm implementation into the ”Profinet designer” that is under devel-
opment at the Department of the Control Engineering at FEE, CTU in Prague.

The algorithm has enough general structure that allows to modify the algorithm
not only for other communication technology but also for other parts of the industry.
If the module for the verification of the network behaviour is exchanged, the algorithm
will be able to design the structure of pipes or power grid.

122 Chapter 5 Conclusion

Chapter 6

Appendix

6.1 Ability of crossover operator [1]

As it is written in the chapter 2 Reliability, the algorithm described in [1] cannot
assure that the designed network is one-fault-tolerant. In fact, the crossover operator
can create non fault-tolerant network from two networks that are one-fault-tolerant.
The crossover operator and its function is the same as described in [1]. Algorithm for
the crossover operator is as follows [1]:

1. Randomly choose two mating solutions G(N,L1) and G(N,L2) to crossover.

2. Randomly choose two links li,j ∈ L1 and lk,m ∈ L2 such that: li,k /∈ L1 ∪ L2,
li,m /∈ L1 ∪ L2, lj,k /∈ L1 ∪ L2, lj,m /∈ L1 ∪ L2.

3. Let: L̂1 = L1 ∪ {lk,m} − li,j and L̂2 = L2 ∪ {li,j} − lk,m

If the L̂1 and L̂2 is not one-fault-tolerant according to deg (v) < 2 launch the follow-
ing repairing algorithm. Add necessary links from the following set. The links are
chosen according to the cost of the link.
{li,k, lk,j}:{li,m, lm,j}:{li,k, lj,m}:{li,m, lj,k}
The resultant network should be one fault-tolerant according to [1]. In the follow-

ing figure is possible to see that the crossover operator can create the network with the
non fault-tolerant topology.

It is possible to see the function of the crossover operator and repairing algorithm
in the Fig. 6.1 In the first step two networks are crossed. One of the results is in the
second row at the left part. The network is not one-fault-tolerant and therefore the
repairing algorithm was launched (links in the red colour).

The repaired network is again crossed with other network. One of the results is in
the last row. It is possible to see that the resultant network is not one-fault-tolerant.
If the link between nodes V5, V6 or V6, V7 is interrupted the network is divided into
two parts that are not able to communicate between each other. It means that the

123

124 Chapter 6 Appendix

network is not fault-tolerant and the algorithm described in [1] cannot ensure that the
resultant network is fault-tolerant since the crossover operator can create non fault-
tolerant network and the condition that should launch the repairing algorithm is not
fulfilled since all nodes has deg (v) ≥ 2.

V0

V3

V4

V1

V2

V5

V8

V9

V7

V6

V0

V3

V4

V1

V2

V5

V8

V9

V7

V6

V0

V3

V4

V1

V2

V5

V8

V9

V7

V6

V0

V3

V4

V1

V2

V5

V8

V9

V7

V6

V0

V3

V4

V1

V2

V5

V8

V9

V7

V6

j

I

k

m

I

j

k

m

X

X

Figure 6.1: Crossover operator [1] - Proceeding

6.2 Setting of algorithm 125

6.2 Setting of algorithm

These settings were used for examples described in this thesis.

6.2.0.1 Same fault-tolerance - literature

The setting of the algorithm for the same level of the fault-tolerance [2],[1], Tab. 4.1,
Tab. 4.2; pm = 0.05, pc = 0.25, Np = 100, Nch = 100, ci,j = 100 for ∀i, j ∈
{1, 2, .., N}, mi,j = kF , for ∀i, j; i 6= j ∧ i, j ∈ {1, 2, .., N}, kF ∈ {3, 4, 5}

6.2.0.2 Same fault-tolerance - proposed algortihm

The setting of the algorithm for the node degree used as the fault-tolerance measure
Tab. 4.3; pm = 0.05, pc = 0.25, Np = 100, Nch = 100, ci,j = 100 for ∀i, j ∈
{1, 2, .., N}, mi,j = kF , for ∀i, j; i 6= j ∧ i, j ∈ {1, 2, .., N}, kF ∈ {3}

6.2.0.3 Different fault-tolerance

The setting of the algorithm for the design of the physical topology with the different
levels of the fault-tolerance in different parts of the network Tab. 4.4; pm = 0.05,
pc = 0.25, Np = 100, Nch = 100, ci,j = 100 for ∀i, j ∈ {1, 2, .., N}, mr = 3, for
mr ∈

{
m1,2,m1,3, ..,m1,N/2

}
6.2.0.4 Logical topology design

The setting of the algorithm for the design of the logical topology Tab. 4.5. pm = 0.05,
pc = 0.02, NLch = 200, NL = 200, cap = 1000000bit/sec, Packlen = 50Bytes
The matrix of the flows contained the elements that describes the situation in which
every node receive and send approximately 10000bits/sec.. Matrix was created ran-
domly for every number of nodes (Matrix of the maximal permitted delay had ele-
ments equal to 1). The algorithm was launched in order to find the time complexity
of the algorithm.

6.2.0.5 Simulation results

The setting for the simulation results 4.6.2: Design of physical topology: pm = 0.05,
pc = 0.25, Np = 100, Nch = 200. Logical topology: pm = 0.05, pc = 0.25,
NLch = 200, NL = 200, cap = 100000bit/sec, Packlen = 50Bytes

126 Chapter 6 Appendix

F =



0 1000 1300 1200 4000 0 1000 1500
4000 0 500 1000 500 2500 500 1000
3000 0 0 200 3000 3000 400 400
3000 700 4000 0 300 500 500 1000
1000 1500 3000 1500 0 1000 1800 200
500 500 1000 3000 1000 0 3000 1000
500 3000 1000 500 4000 0 0 1000
4000 1000 500 0 3000 1000 500 0


Bytes

C =



0 1 10 10 10 10 10 1
1 0 1 10 10 1 10 10
10 1 0 1 10 10 1 10
10 10 1 0 1 10 10 1
1 10 10 1 0 1 10 10
10 1 10 10 1 0 1 10
10 10 1 10 10 1 0 1
1 10 10 10 10 10 1 0



M =



0 2 2 2 2 2 2 2
2 0 3 2 3 2 2 3
2 3 0 3 2 3 2 2
2 2 3 0 3 2 2 3
2 3 2 3 0 3 2 2
2 2 3 2 3 0 2 3
2 2 2 2 2 2 0 2
2 3 2 3 2 3 2 0



D =



0 0, 1 0, 55 0, 25 0, 4 0 0, 15 0, 55
0, 6 0 0, 55 0, 2 0, 5 0, 3 0, 2 0, 1
0, 6 0 0 0, 1 0, 3 0, 6 0, 6 0, 45
0, 25 0, 55 0, 3 0 0, 3 0, 3 0, 35 0, 3
0, 35 0, 2 0, 5 0, 1 0 0, 45 0, 3 0, 2
0, 4 0, 45 0, 35 0, 1 0, 5 0 0, 8 0, 25
0, 5 0, 2 0, 3 0, 2 0, 6 0 0 0, 75
0, 4 0, 3 0, 45 0 0, 4 0, 4 0, 15 0



DRes =



0 0, 08 0, 51 0, 25 0, 38 0 0, 14 0, 54
0, 59 0 0, 52 0, 16 0, 49 0, 26 0, 2 0, 08
0, 57 0 0 0, 08 0, 27 0, 58 0, 57 0, 43
0, 22 0, 53 0, 28 0 0, 25 0, 29 0, 32 0, 27
0, 31 0, 19 0, 48 0, 08 0 0, 41 0, 29 0, 15
0, 36 0, 44 0, 33 0, 07 0, 47 0 0, 76 0, 25
0, 48 0, 15 0, 26 0, 18 0, 59 0 0 0, 75
0, 38 0, 26 0, 44 0 0, 39 0, 37 0, 13 0



6.2 Setting of algorithm 127

The comparison of the estimated behaviour and the simulation results corre-
sponding to this example are in the directory: ..\sim.

6.2.0.6 Network expansion - 2-fault-tolerance

The setting for the network expansion - Tab. 4.7. The original network had a structure
corresponding to the Fig. 4.27; pm = 0.2, pc = 0.3, Np = 100, Nch = 100; cFi,j =
1, cMi,j = 10, cRMi,j = 100, cRFi,j = 100, mi,j = 3, kmi = 3, kfi = 3 for
∀i, j ∈ {1, 2, .., N} ∧ i 6= j, two nodes were added for every setting.

6.2.0.7 Network reduction - 2-fault-tolerance

The network reduction - Tab. 4.8. The original network had a structure correspond-
ing to the Fig. 4.27; pm = 0.2, pc = 0.3, Np = 100, Nch = 100; cFi,j = 1,
cMi,j = 10, cRMi,j = 100, cRFi,j = 100, mi,j = 3, kmi = 3, kfi = 3 for
∀i, j ∈ {1, 2, .., N} ∧ i 6= j, Red ∈ {N − 1, N}; two nodes: N − 1, N were re-
moved for every setting.

6.2.0.8 Tree topology

The setting of the design of the tree topology Tab. 4.13; pm = 0.02, pc = 0.3,
Np = 100, Nch = 250; kmi = 4, kfi = 4, Depthmax = 4 The cost matrices
exactly describe the optimal topology that should be designed. Elements of the cost
matrix for the metallic cable are 1000 excluding those elements that correspond to
communication links in the following Fig. 6.2, Fig. 6.3, Fig. 6.4, Fig. 6.5, Fig. 6.6,
Fig. 6.7. Elements that correspond to the communication links of Fig. 6.2, Fig. 6.3,
Fig. 6.4, Fig. 6.5, Fig. 6.6, Fig. 6.7 are 1 for the metallic cable and 10 for the fibre
cable.

V0

V3

V4

V1
V2

V5 V8 V9V7V6

Fibre cable
Metallic cable

Figure 6.2: Costs - Tree topology N = 10

6.2.0.9 Network expansion - tree topology

The setting for the network tree topology expansion - Tab. 4.14; pm = 0.02, pc = 0.3,
Np = 100, Nch = 250; kmi = 4, kfi = 4, Depthmax = 4, cFi,j = 100, cRFi,j =
100, cRMi,j = 100, ∀i, j ∈ {0, 1, 3, .., N − 1} ∧ i 6= j, cMi,j = 1; for j = 2,

128 Chapter 6 Appendix

V10

V0

V3 V4V1 V2

V5 V8 V9V7V6 V11

Fibre cable
Metallic cable

Figure 6.3: Costs - Tree topology N = 12

V10

V0

V3 V4V1 V2

V5 V8 V9V7V6 V11 V12

V13

Fibre cable
Metallic cable

Figure 6.4: Costs - Tree topology N = 14

V10

V0

V3 V4V1 V2

V5 V8 V9V7V6 V11 V12

V13 V14 V15

Fibre cable
Metallic cable

Figure 6.5: Costs - Tree topology N = 16

V10

V0

V3 V4V1 V2

V5 V8 V9V7V6 V11 V12 V13

V14 V15 V16 V17

Fibre cable
Metallic cable

Figure 6.6: Costs - Tree topology N = 18

cMi,j = 10 for ∀i, j ∈ {0, 1, 3, .., N − 1} ∧ i 6= j ∧ j 6= 2. The original network
topology was the optimal topology gained by the design of the tree topology Fig. 6.2,
Fig. 6.3, Fig. 6.4, Fig. 6.5, Fig. 6.6.

6.2.0.10 Network reduction - tree topology

The setting for the network tree topology reduction - Tab. 4.15; cFi,j = 100, cRFi,j =
100, cRMi,j = 100, ∀i, j ∈ {0, 1, 3, .., N − 1} ∧ i 6= j, cMi,j = 1 for j = 2,

6.3 Contents of enclosed CD 129

V10

V0

V3 V4V1 V2

V5 V8 V9V7V6 V11 V12

V13 V14 V15 V16 V17 V18 V19

Fibre cable
Metallic cable

Figure 6.7: Costs - Tree topology N = 20

cMi,j = 10 for ∀i, j ∈ {0, 1, 3, .., N − 1} ∧ i 6= j ∧ j 6= 2, Red ∈ {2}. The original
network topology was the optimal topology gained by the design of the design of the
tree topology Fig. 6.3, Fig. 6.4, Fig. 6.5, Fig. 6.6, Fig. 6.7.

6.2.0.11 Dependency of quality results on number of chromosomes

The designed network should have different levels of the fault-tolerance. The setting
is the same as described in 6.2.0.3. The number of chromosomes was changed cor-
respondingly to the figures. The probability of the finding of the optimal solution is
the same as the probability for any other configuration. Therefore, it is possible to
expect that there it is possible to get statistically the same quality of the results for the
other demanded structure of nodes. For every setting was done minimally a hundred
launches.

The curve ”min. same degree” is the best result that it is possible to reach when the
algorithm that is able to design the network with the same level of the fault-tolerance
in the whole network is used. The curve ”real-min” is the minimal cost of the net-
work that exactly meets the demands for the fault-tolerance. The curve ”Genetic alg.”
describes the results gained by the proposed algorithm that is able to design network
with different levels of the fault-tolerance.

6.3 Contents of enclosed CD

List of directories

• Thesis - directory contains this thesis in .pdf format

• Sim - directory contains figures with comparison of the estimated behaviour
and simulated behaviour of the network described in 6.2.0.5 and 4.6.2 . File
routes.csv contains the names of data-flows and their communication path in
the network depicted in the file net.jpg.

130 Chapter 6 Appendix

Figure 6.8: Costs - dependence on number of chromosomes N = 20

Figure 6.9: Costs - dependence on number of chromosomes N = 30

6.3 Contents of enclosed CD 131

Figure 6.10: Costs - dependence on number of chromosomes N = 40

Figure 6.11: Costs - dependence on number of chromosomes N = 50

132 Chapter 6 Appendix

Bibliography

[1] S.-T. Cheng, “Topological optimization of a reliable communication network,”
IEEE Transactions on Reliability, vol. 47, pp. 225 –233, sep 1998.

[2] E. Szlachcic, “Fault tolerant topological design for computer networks,” Inter-
national Conference on Dependability of Computer Systems, 2006. DepCos-
RELCOMEX ’06., pp. 150 –159, may 2006.

[3] C.-S. Wang and C.-T. Chang, “Integrated genetic algorithm and goal program-
ming for network topology design problem with multiple objectives and multiple
criteria,” IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp. 680 –690,
2008.

[4] D. Zili, Y. Nenghai, and L. Zheng, “Designing fault tolerant networks topologies
based on greedy algorithm,” Third International Conference on Dependability of
Computer Systems, 2008. DepCos-RELCOMEX ’08., pp. 227 –234, june 2008.

[5] N. Maxemchuk, I. Ouveysi, and M. Zukerman, “A quantitative measure for
telecommunications networks topology design,” IEEE/ACM Transactions on
Networking, vol. 13, no. 4, pp. 731 – 742, 2005.

[6] K.-T. Ko, K.-S. Tang, C.-Y. Chan, K.-F. Man, and S. Kwong, “Using genetic
algorithms to design mesh networks,” Computer, vol. 30, pp. 56 –61, aug 1997.

[7] R. Elbaum and M. Sidi, “Topological design of local-area networks using genetic
algorithms,” IEEE Transactions on Networking, vol. 4, no. 5, pp. 766 –778,
1996.

[8] B. Liu and K. Iwamura, “Topological optimization models for communication
network with multiple reliability goals,” Computers & Mathematics with Appli-
cations, vol. 39, no. 7-8, pp. 59 – 69, 2000.

[9] E. G. Carrano, L. A. E. Soares, R. H. C. Takahashi, R. R. Saldanha, and O. M.
Neto, “Electric distribution network multiobjective design using a problem-
specific genetic algorithm,” IEEE Transactions on Power Delivery, vol. 21,
pp. 995 –1006, April 2006.

133

134 BIBLIOGRAPHY

[10] G. Kumar, N. Narang, and C. Ravikumar, “Efficient algorithms for delay-
bounded minimum cost path problem in communication networks,” 5th Interna-
tional Conference on High Performance Computing, 1998. HIPC ’98., pp. 141
–146, dec 1998.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs.
Cambridge, MA,USA: Springer Verlag, 1996.

[12] M. Mitchel, An Introduction to Genetic Algorithms. Cambridge, MA,USA: MIT
Press Cambridge, 1999.

[13] J. H. Holland., Adaptation in Natural and Artificial Systems. Cambridge,
MA,USA: MIT Press Cambridge, 1992.

[14] R. Diestel, Graph Theory, electronic edition, third edition. New York, 2005:
Springer-Verlag Heidelberg, 2005.

[15] D. Reichelt, P. Gmilkowsky, and F. Rothlauf, “Designing reliable communica-
tion networks with a genetic algorithm using a repair heuristic,” Proceedings 4th
European Conference, EvoCOP 2004,, 2003.

[16] F. Altiparmak and B. Dengiz, “A cross entropy approach to design of reliable
networks,” European Journal of Operational Research, vol. 199, no. 2, pp. 542
– 552, 2009.

[17] R. Rubinstein, “The cross-entropy method for combinatorial and continuous op-
timization,” Methodology and Computing in Applied Probability, vol. 1, no. 2,
pp. 127–190, 1999.

[18] B. Rothfarb, H. Frank, D. M. Rosenbaum, K. Steiglitz, and D. J. Kleitman,
“Optimal design of offshore natural-gas pipeline systems,” Operations Research,
vol. 18, no. 6, pp. 992 – 1020, 1970.

[19] M. Gerla and L. Kleinrock, “On the topological design of distributed computer
networks,” IEEE Transactions on Communications, vol. 25, no. 1, pp. 48 – 60,
1977.

[20] A. Dutta and S. Mitra, “Integrating heuristic knowledge and optimization mod-
els for communication network design,” IEEE Transactions on Knowledge and
Data Engineering, vol. 5, pp. 999 –1017, dec 1993.

[21] B. Dengiz, F. Altiparmak, and A. Smith, “Local search genetic algorithm for
optimal design of reliable networks,” IEEE Transactions on Evolutionary Com-
putation, vol. 1, pp. 179 –188, sep 1997.

BIBLIOGRAPHY 135

[22] R.-H. Jan, F.-J. Hwang, and S.-T. Chen, “Topological optimization of a com-
munication network subject to a reliability constraint,” IEEE Transactions on
Reliability, vol. 42, pp. 63 –70, mar 1993.

[23] A. Kumar, R.-M. Pathak, and Y.-P. Gupta, “Genetic-algorithm-based reliability
optimization for computer network expansion,” IEEE Transactions on Reliabil-
ity, vol. 44, pp. 63 –72, mar 1995.

[24] Saha and Chakraborty, “An efficient link enhancement strategy for computer
networks using genetic algorithm,” Computer Communications 20 (1997) 798-
803, 1997.

[25] D. Thompson and G. Gilbro, “Comparison of two swap heuristics with a ge-
netic algorithm for the design of an atm network,” Proceedings. 7th Interna-
tional Conference on Computer Communications and Networks, 1998., pp. 833
–837, oct 1998.

[26] Y. Chen, J. Li, and J. Chen, “A new algorithm for network probabilistic con-
nectivity,” Military Communications Conference Proceedings, 1999. IEEE MIL-
COM 1999., vol. 2, pp. 920 –923 vol.2, 1999.

[27] E. Szlachcic. and J. Mlynek, “Efficiency analysis in communication networks
topology design,” Fourth International Conference on Dependability of Com-
puter Systems, 2009. DepCos-RELCOMEX ’09., pp. 184 –191, july 2009.

[28] J. Han, G. Malan, and F. Jahanian, “Fault-tolerant virtual private networks within
an autonomous system,” Proceedings of 21st IEEE Symposium on Reliable Dis-
tributed Systems, 2002., pp. 41 – 50, 2002.

[29] L. Berry, B. Murtagh, G. McMahon, S. Sugden, and L. Welling, “Genetic algo-
rithms in the design of complex distribution networks,” International Journal of
Physical Distribution and Logistics Management, vol. 28, 1998.

[30] T. Fencl, P. Burget, and J. Bilek, “Network topology design,” Preprints of the
17th IFAC World Congress, vol. 17, no. 1, 2008.

[31] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
second edition. New York, 2001: McGraw Hill New York, 2001.

[32] C. A. Coello, “An updated survey of ga-based multiobjective optimization tech-
niques,” ACM Comput. Surv., vol. 32, no. 2, pp. 109–143, 2000.

[33] L.-Y. Wang, J. Zhang, and H. Li, “An improved genetic algorithm for tsp,” In-
ternational Conference on Machine Learning and Cybernetics, 2007, vol. 2,
pp. 925 –928, aug 2007.

136 BIBLIOGRAPHY

[34] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt message scheduling,” Eu-
romicro Conference on Real-Time Systems, vol. 0, pp. 57–65, 2009.

[35] R. Ramaswami and K.-N. Sivarajan, “Design of logical topologies for
wavelength-routed optical networks,” IEEE Journal on Selected areas in com-
munication, vol. 14, pp. 840 – 852, June 1996.

[36] D.-N. Yang and W. Liao, “Design of light-tree based logical topologies for mul-
ticast streams in wavelength routed optical networks,” Infocom 2003, vol. 1,
pp. 32 – 41, June 2003.

[37] N. Tsujii, K. Baba, and S. Tsukiyama, “An interconnect topology optimization
by a tree transformation,” ASP-DAC 2000, vol. 1, pp. 93 – 98, June 2000.

[38] H.-A. Harutyunyan, C.-D. Morosan, and Y. Zhang, “Two tree-based algorithms
for network spare capacity design,” PCDAT 07, pp. 279–284, Dec 2007.

[39] S.-C. Ku, B.-F. Wang, and T.-K. Hung, “Constructing edge-disjoint spanning
trees in product networks,” IEEE transaction on Parallel and distributed sys-
tems, vol. 14, pp. 213 – 222, March 2003.

[40] D. England, B. Veeravalli, S. Member, and J.-B. Weissman, “A robust spanning
tree topology for data collection and dissemination in distributed environments,”
IEEE Transactions on Parallel and distributed systems, vol. 18, pp. 608 – 621,
may. 2007.

[41] X.-Y. Li, Y. Wang, and W.-Z. Song, “Applications of k-local mst for topology
control and broadcasting in wireless ad hoc networks,” IEEE transaction on Par-
allel and distributed systems, vol. 15, pp. 1057 – 1070, Dec. 2004.

[42] G. Xue and K. Thulasiraman, “Computing the shortest network under a fixed
topology,” IEEE Transactions on Computers, vol. 51, pp. 499 – 501, sept. 2002.

[43] M. Pan, C. Chu, and P. Patra, “A novel performance-driven topology design
algorithm,” ASP-DAC, Proceedings of the 2007 Asia and South Pacific Design
Automation, vol. 2, pp. 244 – 249, aug 2007.

[44] J.-R. Kim, M. Gen, and K. Ida, “Bicriteria network design using a spanning tree-
based genetic algorithm,” Artifical life and robotics, vol. 18, pp. 65 – 72, may.
1999.

[45] A. Juttner, A. Orban, and Z. Fiala, “Two new algorithms for umts access network
topology design,” European Journal of Operational Researche, vol. 164, pp. 456
– 474, sep. 2005.

List of Publications

[Fencl et al.(2010a)Fencl, Burget, and Bı́lek] T. Fencl, P. Burget, and J. Bı́lek. Net-
work topology design (co-authorship 85% - paper in review). Control Engi-
neering Practice, 5 2010a. ISSN 0967-0661.

[Fencl et al.(2010b)Fencl, Burget, and Bı́lek] T. Fencl, P. Burget, and J. Bı́lek. Fast
design of network topology (co-authorship 90%). In The Second IFAC Sym-
posium on Telematics Applications - Preprints, pages 1–6, Bv. Republicii nr. 9,
300159 Timisoara, 2010b. Editura Politehnica.

[Fencl et al.(2008)Fencl, Burget, and Bı́lek] T. Fencl, P. Burget, and J. Bı́lek. Net-
work topology design. In Preprints of the 17th IFAC World Congress(co-
authorship 85%), Seoul, 2008. IFAC. ISBN 978-3-902661-00-5.

[Fiala et al.(2008)Fiala, Burget, and Fencl] O. Fiala, P. Burget, and T. Fencl. Lablink
- prostředı́ pro vzdálené laboratoře (co-authorship 10%). 2008. URL
lablink.felk.cvut.cz.

[Burget et al.(2008)Burget, Fiala, Fencl, and Moc] P. Burget, O. Fiala, T. Fencl, and
L. Moc. Remote labs and resource sharing in control systems education (co-
authorship 15%). In Preprints of the 17th IFAC World Congress, Seoul, 2008.
IFAC. ISBN 978-3-902661-00-5.

[Fencl and Bı́lek(2007a)] T. Fencl and J. Bı́lek. Network optimization. In 7th WSEAS
International Conference on APPLIED INFORMATICS AND COMMUNICA-
TIONS (co-authorship 95%), pages 92–97, Athens, 2007a. WSEAS. ISBN
978-960-8457-96-6.

[Fencl and Bı́lek(2007b)] T. Fencl and J. Bı́lek. Network optimization. In Proceed-
ings of the international Web conference CEEPUS Summer School 2007(co-
authorship 95%), Maribor, 2007b. University of Maribor. ISBN 978-961-248-
054-7.

[Fencl(2006a)] T. Fencl. Design of physical and logical topology of communication
networks (authorship 100%). Technical report, CTU FEL DCE, Prague, 2006a.

137

lablink.felk.cvut.cz

138 LIST OF PUBLICATIONS

[Fencl(2006b)] T. Fencl. Communication in the building technology (authorship
100%). In Modern Trends in Control, pages 73–82, Košice, 2006b. Equilibria.
ISBN 80-969224-6-7.

[Fencl(2005)] T. Fencl. Modelling and control of heat exchanger station (authorship
100%). In Intelligent Control Systems, pages 22–28, Brno, 2005. University of
Technology. ISBN 80-214-2976-3.

Vita

Tomáš Fencl received a degree in Electrical Engineering from the Czech Technical
University (CTU) in Prague in 2005. Since 2005, he is a Ph.D. student at the same
university. He was involved in research project euSophos and cooperates in project
ALICE (Advanced Logic in Control Engineering). From 2006 to 2010, he worked as
a research fellow with the Department of the Control Engineering.

His teaching activities included a broad scope of courses. He taught course Con-
trol systems and Logical systems. He was a leading teacher on Design of the Auto-
mated Systems and was responsible for the content of the laboratory exercises. He
was also responsible for the content of the ALICE project where he was a leading
teacher as well. Tomáš Fencl supervised bachelor and diploma theses as well as stu-
dent projects under the CEPOT. He is an instructor in the Talnet project (teaching of
the gifted youth). Talnet project is led by the Faculty of Mathematics and Physics
of the Charles University and Department of Control Engineering cooperates at the
project.

His research interests include networked and embedded systems, communica-
tion protocols and communication systems, his results were presented at inter-
national conferences. Tomáš also chaired the session (Session on remote sen-
sor data acquisition) at the conference - IFAC TA2010. Currently, other paper
[Fencl et al.(2010a)Fencl, Burget, and Bı́lek] is under review of magazine: Control
Engineering Practice.

139

	Introduction
	Motivation
	Objectives and outlines
	Genetic algorithm

	Reliability
	Requested network
	Reliability
	Ring topology
	Node degree as an approximation
	Node degree as a reliability measure

	Related works
	Network topology design
	Problem formulation
	Topology with different levels of fault-tolerance
	Chromosome representation
	Genetic functions
	Genetic mutation
	Crossover operator
	Fitness function

	Topology with same level of fault-tolerance
	Node degree as fault-tolerance measure
	Algorithm for creation of initial population
	Genetic operators
	Mutation
	Crossover operator
	Fitness function

	Logical topology design
	Data-flow delay calculation
	Worst-case scenario
	Logical topology representation
	Generation of initial population for logical topology design
	Genetic operators for the logical topology design
	Mutation genetic operator
	Crossover operator
	Fitness function
	Selection and end condition

	Algorithm for network design
	Numerical results
	Logical topology design
	Simulation results
	OPNET model

	Time complexity
	Time complexity - physical topology design
	Time complexity - logical topology design

	Algorithm extension
	Different physical layers
	Prohibited topologies
	Network expansion and reduction
	Network expansion
	Network reduction
	Network reduction and expansion

	Numerical results - expansion
	Numerical results - reduction

	Algorithm settings
	Design of tree topology
	Chromosome representation - Tree topology
	Genetic operators
	Initial population
	Mutation operator
	Crossover operator
	Fitness function

	Reduction/expansion of the tree network topology
	Tree topology expansion
	Creation of initial population
	Genetic operators
	Fitness function

	Tree topology reduction
	Initial population

	Numerical result - tree topology
	Design of tree topology
	Numerical results of tree topology reduction/expansion

	Conclusion
	Contribution
	Goals

	Future research and development

	Appendix
	Ability of crossover operator Cheng98
	Setting of algorithm
	Same fault-tolerance - literature
	Same fault-tolerance - proposed algortihm
	Different fault-tolerance
	Logical topology design
	Simulation results
	Network expansion - 2-fault-tolerance
	Network reduction - 2-fault-tolerance
	Tree topology
	Network expansion - tree topology
	Network reduction - tree topology
	Dependency of quality results on number of chromosomes

	Contents of enclosed CD

	Bibliography
	List of Publications
	Vita

