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Abstract
The processing time of a job is arguably one of the most important parameters of
scheduling problems, but often it is also the one that is very difficult to obtain—
either it is not known, costly to measure, or it does not have a deterministic nature.
Classical deterministic scheduling methods that replace the missing information with,
e.g., single-point estimates may produce solutions that are fragile and susceptible to
unexpected realizations of the parameters. Therefore, the optimization approaches
that can deal with imprecise knowledge of the problem parameters must be used
in cases where protection against unfavorable realizations is vital. The important
essence in the design of such optimization algorithms is the choice of the uncertainty
model and the approach to mitigate its effects. Is the estimation of, e.g., the mean
and variance enough? Can we assume that, at most, a certain number of parameters
will deviate from their estimates? Do we need to have a risk-averse objective, and
what is the price for that? These are essential considerations since too simplistic
models can lead to conservative and inefficient solutions or may fail to protect from
uncertainty at all. Luckily, the advancements in collecting large datasets for many
aspects of industrial processes allow us to apply powerful data-driven approaches
to scheduling under uncertainty.

In this work, we study different means of integrating distributional knowledge
of processing times into scheduling problems. The part of the proposed methods
in this thesis takes inspiration from the machine learning field, as the techniques
used there are scalable and deal with uncertain parameters also. As an example, we
have used in-sample data to estimate the parameters of an ambiguity set to obtain
a distributionally robust solution via norm regularization techniques which greatly
reduces the run time of the algorithm. Another way of improving the scalability of
the scheduling algorithms lies in the choice of a suitable model of uncertainty. For
example, we have proposed a way to model jobs with uncertain processing times
with an abstraction called F-shape, which discretizes the cumulative distribution
function of processing times. The resulting problem formulation is essentially a
packing problem that can be solved efficiently in practice with the advantage that
the probabilistic guarantees of the resulting schedules can be verified within the
framework of Bayesian networks. Finally, we study a setting where the distribu-
tion of processing times can be approximated by a normal distribution. The full
distributional knowledge is utilized in a β-robust formulation that maximizes the
probability that all jobs are completed before a given common due date. For the
researched scheduling problems with uncertain processing times utilizing distribu-
tional knowledge, we have obtained their complexity characterizations, and we have
developed scalable algorithms that provide high-quality solutions for instances with
hundreds of jobs.

Keywords: processing time uncertainty, robust scheduling, mixed-criticality
scheduling, distributionally robust optimization
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Abstrakt
Doba zpracováńı úlohy je jedńım z nejd̊uležitěǰśıch parametr̊u rozvrhovaćıch problémů,
ovšem je také jedńım z těch, které je velmi obt́ıžné źıskat—obvykle neńı znám,
je drahý na měřeńı nebo nemá deterministickou povahu. Klasické metody deter-
ministického rozvrhováńı, které nahrazuj́ı chyběj́ıćı informaci např́ıklad bodovými
odhady, mohou produkovat výsledy které jsou nestabilńı a obecně náchylné na
nečekané realizace hodnot parametr̊u. Kv̊uli tomu je potřeba v prostřed́ı s nepřesnou
znalost́ı parametr̊u použ́ıt optimalizačńı př́ıstupy, které jsou schopny vypořádat se s
neurčitost́ı parametr̊u. Důžitá část v návrhu takových algoritmů je volba modelu
neurčitosti a př́ıstupu k potlačeńı jeho d̊usledk̊u. Je např́ıklad odhad středńı hodnoty
a rozptylu dostatečný? Můžeme předpokládat že pouze jistý počet parametr̊u se při
realizaci odklońı od své odhadované hodnoty? Potřebujeme optimalizovat kriteriálńı
funkci zohlednuj́ıćı riziko, a pokud ano, jaká je za to cena? Toto jsou zásadńı
otázky, protože př́ılǐs jednoduché modely vedou ke konzervativńım a neefektivńım
řešeńım nebo naopak dokonce mohou zcela selhat při ochraně proti neurčitosti.
Dı́ky pokrok̊um technologíı, umožnuj́ıćı sběr velikých soubor̊u dat r̊uzných aspekt̊u
pr̊umyslových proces̊u, můžeme zmı́něné výzvy adresovat daty-̌ŕızenými př́ıstupy k
rozvrhováńı za neurčitosti.

V této práci studujeme r̊uzné zp̊usoby včleněńı distribučńı znalosti čas̊u zpra-
cováńı do rozvrhovaćıch problémů. Metody navržené v této práci jsou z části
inspirovány technikami ze strojového učeńı, kde známe škáluj́ıćı algoritmy a přičemž
také čeĺıme neurčinosti parametr̊u. Např́ıklad jsme použili navzorkovaná data k
odhadu parametr̊u množiny nejednoznačnosti ke konstrukci distribučně-robustńıho
řešeńı metodami regularizace normami, což přineslo velké urychleńı běh̊u algo-
ritmů. Daľśı cesta ve vylepšováńı výkonu rozvrhovaćıch algoritmů se nacháźı ve
vhodné volbě modelu neurčitosti. Zde jsme navrhli metodu jak modelovat úlohy
s neurčitou dobou zpracováńı pomoćı abstrakce takzvaných F-tvarých úloh která
diskretizuje kumulativńı distribučńı funkci čas̊u zpracováńı. Výsledná formulace
problému je v podstatě baĺıćı problém, který je velmi dobře řešitelný v praxi s
výhodou, že pravděpodobnost́ı garance výsledných rozvrh̊u jsou verifikovatelné
pomoćı Bayesovských śıt́ı. Na závěr studujeme situaci kdy distribučńı funkce dob
zpracováńı lze nahradit normálńım rozděleńım. Úplná znalost distribučńı funkce je
využita v β-robustńı formulaci kdy se maximalizuje pravděpodobnost, že všechny
úlohy jsou dokončeny před společným termı́nem. Zmı́něné problémy jsme charak-
terizovali z hlediska výpočetńı složitosti a navrhli pro ně škáluj́ıćı algoritmy které
poskytuj́ı vysoce kvalitńı řešeńı pro instance se stovkami úloh.

Kĺıčová slova: neurčitost doby zpracováńı, robustńı rozvrhováńı, smı́̌seně-kritické
rozvrhováńı, distribučně robustńı optimalizace
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Goals and Objectives
This thesis focuses on scheduling problems and algorithms with uncertain processing
times utilizing the full distributional knowledge. The main goals of the work are:

1. Study the related scheduling literature in robust, stochastic, and distribution-
ally robust optimization fields. Identify new challenges, promising approaches,
and possible improvements to existing modeling methods, problem formula-
tions, and algorithms.

2. Develop formal descriptions of the deduced problems. Formulate the uncer-
tainty models, constraints, and objective functions considering the distribu-
tional knowledge.

3. Propose heuristic and exact algorithms that compute robust schedules with
respect to the processing time uncertainty.

4. Benchmark the developed algorithms by numerical experiments. Discuss
the obtained results from the perspective of quality and time complexity.
Demonstrate the scalability of the proposed approaches and discuss the
robustness of their solutions.
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1
Chapter

Introduction

The processing time of a job is arguably one of the most important parameters
of scheduling problems, but often it is also the one that is very difficult to obtain.
Either it is not known, is costly to measure, or it does not have a deterministic nature.
Scheduling problems where the uncertainty of parameters cannot be disregarded
belong to the robust optimization field. The goal is to construct schedules that
account for uncertainty in advance. This approach belongs to the so-called proactive
methods that absorb the effects of uncertainty by the design of the schedule. This
is different from reactive approaches that aim to repair the schedule during the
online execution. When we design algorithms that deal with uncertainty, we face
the following two related questions. Namely, how do we describe such uncertainty
and what does it mean to account for it in advance? The goal of the thesis is to
develop scalable optimization algorithms for scheduling problems with uncertain
processing times given by empirical distributions.

In our view, and in the view of others [134, 69], the fields of stochastic and
distributionally robust optimization are related to the machine learning discipline.
In statistical machine learning, one uses a collected empirical data sample (i.e.,
in-sample) to estimate the parameters of a model such that it would perform
well on out-of-sample data. This is essentially also a form of decision-making
under uncertainty. Of course, it appears that training a machine learning model
(typically a continuous problem) is an easier job than solving a scheduling problem,
which is discrete by its nature. However, many machine learning models have a
discrete structure as well, e.g., construction of decision trees or models with ‖ · ‖0
(sparsity) regularization [118]. Despite that, it is apparent that machine learning
algorithms are nowadays successful, massively scalable, and utilize the knowledge
of the distribution of the data. In our view, scheduling algorithms for stochastic
problems are still to catch up. On the other hand, machine learning algorithms
might benefit [100] from a more systematic treatment of robustness and incomplete
information that is nowadays well-established in stochastic optimization. Thus, it
seems to us that looking at related techniques and approaches might cross-fertilize
both fields.

The first group of methods proposed in this work is inspired by techniques used
in machine learning. For example, in Chapter 2, we study the effect of different
objective regularization techniques to obtain an efficiently solvable approximation
of the original distributional robust optimization model for the scheduling problem
with the total flow time minimization. As another example, in Chapter 4, we utilize
the framework of Bayesian networks to compute the execution probability of jobs
with uncertain processing time in a setting where we allow each job to be replicated,
i.e., scheduled more than once.

The other group of methods in this work is based on the idea that often, a
suitable problem formulation is already a part of its successful solution. For example,
in Chapter 3, we proposed how to discretize a cumulative distribution function
of processing times into a finite number of values depending on the criticality of

1



2 Related work

the job. This transformation reduces the problem with uncertain processing times
to a deterministic scheduling problem with alternatives. Finally, the formulation
resembles an interesting packing problem that is efficiently solvable in practice. A
similar idea is investigated in Chapter 5, where we deal with the problem where the
processing time can be approximated by a normal distribution. Again, the resulting
formulation resembles a kind of packing problem. Adapting solution concepts for
the Knapsack problem with stochastic items and the study of the two-machine case
of the problem allowed us to develop scalable scheduling algorithms that can solve
instances with hundreds of jobs.

1.1 Related work

The state-of-the-art optimization approaches differ in their strategies for tackling
uncertainty. In the following section, we discuss solution concepts and techniques
related to our work. We consider this as a high-level overview of the area; therefore,
the list of works should not be understated as complete by any means. Instead,
we aim to introduce arguably the most influential works and ideas. A more
detailed discussion of related work for each problem is presented in its respective
chapter. Nevertheless, arguably the most commonly used paradigms are known
as robust optimization (RO), stochastic programming (SP), and distributionally
robust optimization (DRO).

Robust optimization RO assumes that uncertain parameters belong to a given
uncertainty set, and the goal is to optimize for the possible worst-case realization or
to ensure that constraints hold for all realizations of parameters [166]. It is apparent
that such formalism may result in overly conservative and pessimistic solutions,
thus being costly. To counteract this, notable development in this area by Ben-Tal
and Nemirovski [24, 26, 25], Bertsimas, and many others led to the development
of an uncertainty set centered around an in-sample estimate of parameters with
controllable uncertainty budget [31]. These controllable parameters allow different
trade-offs between the robustness and quality of solutions. In recent years, we have
seen the development of methods for the design of uncertainty sets that go well
beyond budgeted sets toward more data-driven approaches [30]. Uncertainty sets
are often designed to have a polyhedral or conic representation, thus, leading to
models efficiently solvable in practice. For a more detailed treatment of the history,
theory, and applications of RO, we refer the reader to many excellent books and
surveys, e.g., [33, 22, 29, 167].

Stochastic programming Another popular theoretical framework is SP which
typically optimizes the expected value of the objective function with respect to a
known probabilistic distribution over parameters values. The additional information
about parameter distribution may allow obtaining solutions that are less conservative
than RO solutions. The SP formulations of the problem can also be extended to
incorporate so-called stages. The stages can be used to model the decision-making
process. Depending on how uncertainties are unfolded during the execution, the
decision-maker can react to them with different decisions. Depending on how
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the problem is formulated, this model leads to the notion of single, two-stage, or
multistage optimization [140]. For further interesting connections between SP and
sequential decision making, we refer the reader to [132, 131].

Depending on the uncertainty model and the form of the objective function,
solving the exact formulation of an SP formulation is almost always intractable [18].
However, when the distribution is supported on a finite set (i.e., scenarios) that is
not very large, the formulation can be solved by translating it into a finite-sized
mathematical program whose structure can be exploited by decompositions or
by cutting plane methods [149]. Alternatively, the problem needs to be solved
approximately with methods such as Sample Average Approximation (SAA) [154].
There, one collects a finite set of samples and creates a surrogate formulation of the
problem, where, e.g., the expectation of an objective function is replaced with the
sample mean of the objective with the individual realizations. Such a method can
be used to approximate solutions to problems with uncertain parameters in terms
of the expected utility while having probabilistic approximation guarantees for its
out-of-sample performance [156, 105, 18].

Despite SP being an attractive and natural tool for decision-making under
uncertainty, it is well-known that SP formulations have several limitations. The first
comes from the fact that the expectation is only a measure of centrality; thus, it
does not reflect, e.g., the solution variance. Therefore, even though the performance
fluctuations cancel each other out in the expectation, it does not protect against
sudden disturbances [137] that may not be desired, e.g., in safety-critical systems.
Naturally, this was well understood in the past, and several methods were developed
to counteract this. Perhaps one of the most intuitive solutions is to include standard
deviation of the objective as a safety margin [111, 156] or to replace expectation
with different quantities, such as conditional value-at-risk (CVaR) [138, 45], or the
introduction of chance constraints [47].

The other problematic scenario occurs when the out-of-sample distribution differs
from the in-sample one. These are the results of the distribution shift or simply
the cases of insufficient knowledge of the target distribution. In such scenarios, the
decision-making done by an SP model may lead to suboptimal results.

Interestingly, these raised issues and their solutions are, in fact, closely connected
and have motivated the development of minimax stochastic optimization [148], which
connects RO and SP. Nowadays, it is commonly referred to as distributionally robust
optimization (DRO).

Distributionally robust optimization DRO refers to problems where one
minimizes the worst-case expected objective over a set of possible distributions,
i.e., the so-called ambiguity set. An alternative view on distributionally robust
formulations is offered via the coherent risk measures [137]. In contrast to the
modeling of the ambiguity set in the inner expectation problem, one can examine
the properties of the risk measure (objective function) of the formulation. If it
satisfies a certain set of natural properties, then one can show that the optimal
solution to such a problem will be distributionally robust in a certain sense [134].

DRO solution concept has been around due to Scarf [148] already in 1958, by
Dupačová [62, 63] in 1966, and later revisited by many more people. Recently, a new
wave of interest in DRO was sparked, namely by advancements of mathematical
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programming solvers and by novel formulations of expressive ambiguity sets that can
incorporate a large amount of information. A DRO problem is typically reformulated
to a computationally tractable deterministic mathematical programming problem,
whose complexity depends on the used formulation of the ambiguity set and the
structure of the objective function. The ambiguity sets in the literature are often
categorized into two main groups: (i) moment-based and (ii) discrepancy-based
ambiguity sets [134].

The moment-based ambiguity sets aim to constrain moments of the distributions
(e.g., the expected value and the variance); the ambiguity set then contains all
distributions with the specific values of the moments. Despite its seeming simplicity,
for certain objective functions, it already leads to intractable formulations. For
example, in the case of a single-machine scheduling problem with the total tardiness,
just the inner worst-case expectation problem alone leads to an exponentially-sized
semidefinite program (SDP), even when just the exected value and covariance are
constrained [158]. Besides computability, another consideration is the expressive
power of the moment-based ambiguity sets. More specifically, what kind of families
of distributions can it model, but more importantly, what are the properties of
the extremal distributions that are attained in the inner worst-case expectation
problem? A known shortcoming of the moment-based ambiguity sets is that the
worst-case realization of distributions might have unrealistic form [180]. For example,
it is known that under mild assumptions on the objective function, its worst-case
expectation is attained at the distribution having support in at most m+ 1 points if
m moments are constrained [156, 23]. Therefore, it is possible that a decision-maker
might optimize against worst-case distribution that even contradicts the empirical
sample that was collected for the design of the ambiguity set in the first place. To
the increase expressivness of moment-based ambiguity sets, one can use generalized
moment functions [153] or construct nested confidence sets [181] to incorporate
more data-driven information into the robust formulation.

The discrepancy-based ambiguity sets use an estimate of a nominal distribution
and a discrepancy measure to model the set of all distributions with the prescribed
discrepancy radius centered around the nominal distribution [134]. Perhaps the most
notable discrepancy measures are φ-divergence [27, 17], Wasserstein distance [70, 68,
100], and likelihood measure [180]. Their advantage over moment-based ambiguity
sets lies in more realistic modeling of the ambiguous distribution, thus leading to
less conservative solutions.

Despite the growing popularity of discrepancy-based ambiguity sets in the con-
tinuous optimization problems, their adaptation in the scheduling domain remains
relatively limited, see, e.g., [49, 179, 153, 127] with a few notable exceptions, such
as [157]. Hence, there is a fairly obvious yet understandable gap between the
development of theoretical tools and their application in the scheduling domain.

1.2 Contributions

The methods proposed in this work have contributed to the scheduling literature
dealing with processing time uncertainty with the following. In the area of robust
scheduling, we have proposed to treat the discretization of the cumulative distri-
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bution function of the processing time as an F-shaped job. This abstraction is
inspired by the so-called Mixed-Criticality model [175, 40] that assigns different
processing times for different criticality levels of the execution. We have studied
problem properties and algorithms for problems connected to makespan minimiza-
tion [6, 7], periodic scheduling [123] and for the environments with release times
and deadlines [5]. Furthermore, we have introduced the job replication for reliability
problems, where the goal is to increase the execution probability of jobs in the
schedule, which extends the work of [151]. We have used the framework of Bayesian
networks to analyze the complexity of the problem and to reduce the computation
of the execution probability to the inference in the resulting networks. Our proposed
model was recognized [40, 43, 185], adopted, and extended by [88] who applied it
to message scheduling in industrial 5G NR networks and verified it on a real-life
hardware testbed.

In the area of stochastic scheduling, we have worked on a β-robust scheduling
problem on parallel machines with normally distributed processing times of jobs,
originally introduced by [135]. In our work [168, 8], we have designed an efficient
exact method for the problem with two machines which was utilized as an intensifi-
cation step in our heuristic for large problem instances. We have coined a question
about whether it is possible to obtain approximation guarantees for some of the
natural list scheduling rules. This question was picked up by [169], who ruled out the
existence of a polynomial-time algorithm with a constant approximation ratio under
P 6= NP assumption. To solve the problem, we have applied integer programming
techniques which improved the scalability of the algorithm for instances with a
larger number of machines. Additionally, as part of our industrial collaboration, we
have utilized our experience with data-driven stochastic problems to design an SAA
algorithm to optimize laboratory workflow in a medical laboratory of our industrial
partner.

In the area of distributionally robust optimization, we have asked whether,
with the given evaluation protocol of out-of-sample performance, is it necessary to
solve the original problem optimally, or can a comparable performance be achieved
by solving a related problem, perhaps at a much-reduced computation cost? In
our study [122] we have analyzed the computational complexity of distributionally
robust total flow time minimization problem on parallel machines originally proposed
by [44]. Inspired by the regularization techniques used in statistical machine learning,
we have reformulated the problem using vector norm regularizations. We have
characterized the complexity of the problem based on the used `p norm and proposed
new algorithms that also can handle problems with dependent jobs. Our main
finding is that the formulation with the `1 norm achieves nearly identical price-
robustness trade-offs as the original `2 formulation at a much lower computational
cost.

1.3 Outline

The rest of the thesis is structured as follows. In Chapter 2, we deal with a distribu-
tionally robust scheduling problem concerning the total flow time minimization. We
investigate the use of different vector norms as regularizations of solution variance
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in the context of solution price, robustness, and computational complexity. In
Chapter 3, we introduce the F-shape job model, which acts as a discretization of
the cumulative distribution function of processing times. We demonstrate its use
for the single machine problem with makespan minimization in a Mixed-Criticality
environment. In Chapter 4, we deal with, in some sense, oposite problem. The
goal is to maximize the execution probability of F-shaped jobs, which is done by
displacing them along the scheduling horizon. We introduce job replication as a
mechanism for increasing the execution probability, and we study how it affects
the computational complexity of the evaluation of the schedule’s objective. In
Chapter 5, we solve the problem of the maximization of the probability that all
jobs with normally distributed processing times are completed before a common
due date. Again like in the previous cases, the problem formulation and its solution
utilizes the knowledge of the whole distribution function of processing times. Finally,
Chapter 6 concludes the work, reviews the fulfillment of the thesis, and outlines the
future work.
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Chapter

Distributionally robust
scheduling algorithms for total
flow time minimization on
parallel machines using norm
regularizations

Antońın Novák, Andrzej Gnatowski, and Premysl Sucha. “Distributionally
robust scheduling algorithms for total flow time minimization on parallel
machines using norm regularizations”. In: European Journal of Operational
Research 302.2 (2022), pp. 438–455. issn: 0377-2217. doi: https://doi.

org/10.1016/j.ejor.2022.01.002

2.1 Introduction

Real-life processes often involve uncertainty, i.e., values of some parameters of the
system are not known beforehand. Provided a sufficient quantity of empirical data, it
is usually possible to build models describing how the uncertain parameters relate to
each other and what values they can attain. Then, the description of the uncertainty
can be utilized during the optimization, following various paradigms, for instance,
Robust Optimization (RO, optimizing for the worst-case realization), Stochastic
Programming (SP, optimizing the expected value), or DRO (distributionally robust
optimization, optimizing for the worst-case expectation) that we address in this
paper.

An example of such a process is unit testing, a crucial part of modern software
development [163]. Each time the unit tests are executed, they cover slightly
different parts of the source code, resulting in random pass/failure ratios and the
run times. Since the test batches are performed repeatedly, one can build empirical
distributions of the aforementioned parameters. Moreover, the tests are usually
not independent—a failure of one test might lead to an automatic failure of an
entire batch. Thus, it is beneficial to model the uncertainty, e.g., with multivariate
distributions. When the number of tests is large, they are scheduled and performed
in parallel, using a cluster of servers. When the computing nodes are identical, the
problem can be modeled as parallel identical machines scheduling with uncertain job
durations. The total flow time is usually chosen as the objective function [102], as
minimizing average user waiting time ensures the tests can be executed frequently.
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2.1.1 Problem statement

In this work, we focus on a distributionally robust scheduling introduced in [44]. The
problem considers n jobs J = {1, 2, . . . , n} that need to be scheduled on m identical
machines M = {1, 2, . . . ,m}. Each job is available at time 0 and can be processed
on any machine, while preemption is not allowed. Job j ∈ J is characterized by
uncertain processing time p̃j ∈ R+. The processing times can be expressed as
random vector p̃ ∈ Rn+ subject to an ambiguous probability distribution P ∈ D,
D ⊆ P0(Rn+), where P0(Rn+) is the set of all probability distributions on Rn+. Finally,
the objective is to minimize the worst-case expected total flow time f , i.e., a sum
of completion times of jobs (

∑
Cj or TFT).

A solution to this problem is a schedule that assigns the jobs to the machines
and sequences the assigned jobs on each of them. In [44], it was shown that the
representation of the solution can completely disregard the assignment of a job to a
specific machine. This property leads to a concise representation of the solution by
vector π = (π1, . . . , πn) ∈ Zn+ of n positive integers. In this representation, πj = l if
and only if job j is scheduled as the l-th job from the end of the schedule (e.g., l = 1
means the last position) on some machine. The number of available machines is
reflected by the property that any feasible assignment π contains at most m elements
of the same value. In addition, any optimal solution is of a specific structure. That
is, having an instance with n jobs and m machines, an optimal solution π? to the
studied problem has exactly m elements with the value of 1, exactly m elements
with the value of 2, and so on up to bn/mc. Finally, when n is not divisible by m,
we have additional n− bn/mc ·m positions, with the value of bn/mc+ 1. Actually,
since the assignment of a job to the specific machine is disregarded by π, then
whenever m > 1, a single π defines more solutions identical up to the permutations
of machines with the identical objective values (see Example 1 bellow). Nevertheless,
since the solutions are identical from the objective function point of view, we treat
π as a single solution.

Considering the structure of solutions explained above, we have that the set of
(potentially) optimal assignments π is given as

Π =

{
π ∈ {1, . . . , bn/mc+ 1}n

∣∣∣∣∣
cπ(bn/mc+ 1) = n− bn/mc ·m,
∀l ∈ {1, . . . , bn/mc} : cπ(l) = m

}
, (2.1.1)

where cπ(l) = |{j ∈ J : πj = l}| is the number of jobs assigned to l-th position
from the end. The positions of jobs are indexed in the reversed order, as it leads to
a simplified representation of the objective function. Subsequently, the objective
function f of the problem can be written as

f ≡ f(π, p̃) = πᵀp̃. (2.1.2)

When the probability distribution P of the processing times p̃ ∼ P is known
exactly, then one can utilize Stochastic Programming (SP) solution, which minimizes
the expectation of the objective function:

SP-PTFT ≡ min
π∈Π

EP
[
πᵀp̃

]
= min
π∈Π

πᵀEP
[
p̃
]
. (2.1.3)
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Example 1. Let us have a problem instance with m = 2 machines and n = 5 jobs
with uncertain processing times p̃ = (p̃1, . . . , p̃5). Suppose that we have a feasible
solution π = (1, 1, 2, 3, 2) to the problem (2.1.3). The solution π represents 23 = 8
different job orders. One of these orders is illustrated in Figure 2.1 (a), where job 4
is scheduled as the first job on the first machine, followed by job 3 and job 1 on the
same machine. The remaining jobs are allocated to the second machine, where job
5 is followed by job 2. Using the linearity of the expected value, the objective for
order (a) can be rewritten as

EP
[
πᵀp̃

]
= 3 · EP

[
p̃4

]
+ 2 · EP

[
p̃3

]
+ 1 · EP

[
p̃1

]
+ 2 · EP

[
p̃5

]
+ 1 · EP

[
p̃2

]
.

Note that the order in Figure 2.1 (b) leads to the same result, as the multipliers of
p̃ are identical.

4 3 1

5 2

(a)

machine 1:

machine 2:

4 5 2

3 1

(b)

machine 1:

machine 2:

Figure 2.1: Two (out of eight) different job orders on two machines represented by
π = (1, 1, 2, 3, 2).

2.1.2 Distributionally robust solution

Although tt can be seen that the SP solution is optimal in the sense of expected (or
long term) performance, it does not hedge against variances in solution quality, thus,
it may not be suitable for the risk-averse decision maker. Moreover, the probability
distribution P is often not precisely known, therefore, it is advantageous to protect
ourselves from sudden disturbances in solution quality caused by the changes in
the distribution parameters. This is the reason why it is often useful to assume
a broader concept, i.e., a set of probability distributions called an ambiguity set
D. Such a set can be in practice build with historical data, model assumptions,
or problem constraints, using specific rules. Therefore, the problem is seen as
distributionally robust optimization (DRO), which aims to find a solution that yields
the best expected value of the objective function f for the worst-case distribution
in D. Thus, the probability distribution acts as a decision variable and the goal is
to find solution π that minimizes its expected objective value with respect to the
worst-case realization of the probability distribution.

Using the introduced notation, the distributionally robust problem (denoted as
DR-PTFT ) becomes

DR-PTFT ≡ min
π∈Π

max
P∈D

EP
[
πᵀp̃

]
. (2.1.4)

There are numerous ways to define an ambiguity set. The ambiguity set used
in paper [44], as well as in this paper, constrains the first two moments of the
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distribution, and it is defined as

D =




P

∣∣∣∣∣∣∣∣

PP
[
p̃ ∈ Rn+

]
= 1

(
EP [p̃]− µ̂

)ᵀ
Σ̂−1

(
EP [p̃]− µ̂

)
≤ γ2

1

EP
[
(p̃− µ̂)(p̃− µ̂)ᵀ

]
� γ2

2Σ̂




, (2.1.5)

where µ̂ ≥ 0 is an estimate of the mean vector, and Σ̂ � 0 is an estimate of the
covariance matrix. The parameters γ1 and γ2 (γ1 ≥ 0, γ2 ≥ 1) define confidence
in the estimates. The set can be interpreted such that the mean vector EP [p̃] is
restricted in an ellipsoid of size γ1; centered at its estimate µ̂. The covariance
of the distribution P , in turn, lies in a positive semidefinite cone defined by µ̂
and Σ̂. The reason why it is convenient to model the ambiguity set with the
two first central moments follows from the difficulty of estimating higher-order
moments in case of a lack of data. Indeed, the statistical estimators of covariance
matrices (e.g., sample covariance) have higher variance than the estimators of the
expected value (e.g., sample mean). Thus, the higher moment one wants to estimate,
the more data for its reliable estimation is needed. Furthermore, in the case of
multivariate distributions (joint distributions), there are several different methods
how to measure and interpret skewness (i.e., the standardized third moment), even
for distribution from skewed-normal family [10]. Thus, different measures might
be suitable for different applications, which makes the estimation of higher-order
moments rather complicated for multivariate distributions.

Using the above notation, the problem studied in this paper can be denoted
with three-field notation as P|P[p̃] ∈ PDY |∑Cj , where PDY stands for Delange
and Ye’s ambiguity set [44, 134]. To keep the notation short, we refer to the studied
problem as to DR-PTFT. Note that one of the advantageous properties of ambiguity
set D is that when γ1 = 0, then the worst-case expectation problem of the DRO
formulation reduces exactly to the ordinary expectation of the objective function
which matches SP formulation (2.1.3). Thus, the DRO formulation (2.1.4) contains
an SP solution (2.1.3) as a special case.

2.1.3 Contributions and paper organization

In this paper, we revisit DR-PTFT problem from the perspective of the design
and analysis of the algorithms. We demonstrate that its solution for large problem
instances is computationally intractable in practice, especially with dependent jobs.
Thus, we aim to design algorithms with a (pseudo) polynomial complexity, and
simultaneously, to provide solutions with the same or almost the same desired
properties as the optimal solutions to formulation (2.1.4). We achieve this aim by
expressing the variance of a solution with a robust term, and by considering its
different forms. Namely, the main contributions of this paper are:

1. we reformulate DR-PTFT as a minimization of a linear function plus a robust
term in the sense of `2 norm (see Section 2.3.2);

2. we investigate the effect of the form of the robust term on the computational
complexity and, as a special case of our theorem, we improve the best-known
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upper bound of [44] on the complexity for the problem with independent jobs
(see Section 2.3.3);

3. we extend our methods to the case when processing times of jobs are dependent
and we show that the source of the hardness of the problem arises from the
presence of large negative correlations, not from the simple fact that jobs are
dependent (see Section 2.3.4 and Section 2.3.5);

4. we show that the robust term in the sense of `1 norm allows to solve the
problem in polynomial time, and we provide the explicit definition of the
corresponding ambiguity set (see Section 2.3.5);

5. we relate the proposed methods to multi-objective optimization setting in
terms of expected quality and the solution variance; we significantly improve
a method for uniform sampling of the solution Pareto set (see Section 2.4);

6. the experimental results show that our polynomial approximations have
nearly identical performance to the formerly known second-order cone integer
programming formulation from [44] while being much faster (see Section 2.5).

The rest of the paper is organized as follows. In Section 2.2, we survey the related
work. In Section 2.3, we study the computational complexity of the problem in
terms of `p norm with independent jobs. Then, we focus on a particular case of `1
norm, for which we propose a polynomial-time algorithm with the extension for the
case of dependent jobs. In Section 2.4, we point out the relation between the form
of the objective function of the problem and the multi-objective optimization in
terms of solution quality and its robustness and discuss some practical concerns
for solving the problem. Finally, in Section 2.5, we perform numerical experiments
with our algorithms, and we provide a comparison to the state-of-the-art methods.
Section 2.6 concludes the work.

2.1.3.0.1 Notation Generally we use calligraphic letters (A) to denote sets,
for vectors and matrices we use bold (a, A), tilde (ã) for random variables, and
for the estimates the hat (â). By 0 and 1 we denote, respectively, vectors of
zeros and ones of appropriate sizes. The diagonal matrix with vector λ on its
diagonal is denoted as diag(λ). The set of all probability distributions on Rn
is written as P0(Rn). Element-wise comparison of vectors a and b is defined as
a ◦ b ⇐⇒ ∀i : ai ◦ bi, where ◦ ∈ {>,≥, <,≤,=}. We define `p norm of a vector

x ∈ Rn as ‖x‖p = (
∑n
i=1 |xi|p)

1/p
. Furthermore, we denote the set of all symmetric

real positive semidefinite matrices of size n× n as Sn+, the set of non-negative reals
as R+, the set of non-negative integers as Z+, and positive integers as N.

2.2 Related work

Distributionally robust optimization (DRO) was introduced by Scarf [148] back in
1958. The aim of DRO is to minimize the worst-case expectation with respect to
the uncertainty of the underlying distribution of the parameters, i.e., the so-called
ambiguity set. The new wave of interest in DRO was sparked namely by recent
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advancements of mathematical programming solvers and tractable formulations of
ambiguity sets [30]. A DRO problem is typically reformulated to a deterministic
mathematical programming problem, whose complexity depends on the used for-
mulation of the ambiguity set. Often, such reformulation is more computationally
attractive than stochastic and robust optimization counterparts.

2.2.1 DRO in the scheduling literature

The majority of the existing works dealing with scheduling problems and DRO
have applied ambiguity sets defined by estimates of the first two moments. Wang
et al. [179] solve the assignment of surgery blocks to operating rooms, which leads
to the objective function containing a non-linear term

∑
i max{0,dᵀi x− T} (di is a

random vector of surgery durations, x are decision variables, and constant T is the
regular operating room opening hours). Processing times of surgeries di are subject
to a probability distribution contained in the ambiguity set defining bounds on
mean values and mean absolute deviations. The proposed reformulation of the DRO
problem formulation leads to a mixed-integer linear program (MILP) of exponential
size in the number of operating rooms. The approach is able to solve problems with
about 15 surgery blocks within an hour.

A DRO variant of a single machine total tardiness problem with uncertain
processing times was addressed in [121]. The authors used an ambiguity set
enforcing equality of the first two moments. The exact reformulation has high
complexity, with the inner problem being an exponential-sized SDP (semidefinite
programming) problem. Therefore, they solved a surrogate SOCP (second-order
cone programming) problem instead by a custom branch-and-bound algorithm.
They have been able to solve instances with 30 jobs within 40 seconds. Shang
et al. [153] use the generalized moment functions with a piece-wise linear form,
given by so-called truncation points, to define the ambiguity set. They can be
used to constrain the first-order deviation projected along the selected direction.
The authors also show a problem reformulation leading to a MILP. Furthermore,
they propose a data-driven procedure based on principal component analysis to
construct an ambiguity set from the historical data, and they apply the framework
to a process scheduling problem.

A problem with bimodal distributions was studied in [158] in the context of
outpatient colonoscopy scheduling. Colonoscopy duration is uncertain, and it is
conditioned by the bowel preparation quality, which is uncertain as well. Moreover,
uncertainty in the time when the patient will show up for the procedure is considered
as well. The goal is to sequence patients such that the worst-case expectation of the
weighted sum of patient and provider waiting with the overtimes is minimized. The
authors use an ambiguity set that enforces support (i.e., lower and upper bounds)
and the mean value for all uncertain parameters. The problem is translated into a
MILP and solved by CPLEX solver.

In this paper, we build on the work of [44]. They have proposed a distribu-
tionally robust variant of the parallel identical machine scheduling problem with
the minimization of the worst-case expected total flow time. The processing times
of jobs are subject to uncertainty belonging to the ambiguity set constraining the
first two moments. The problem is reduced to an integer SOCP, and the case
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with independent jobs is solved by an exact algorithm that explores all solutions
satisfying necessary optimality conditions. The proposed approach for independent
jobs was able to solve instances with 100 jobs and 5 machines within several seconds
whereas the integer SOCP formulation does not scale well. In our work, we address
this problem from the perspective of surrogate problems and their complexity. That
is, we classify related problems with respect to their complexity and we show when
it is possible to obtain identical quality and robustness of solutions at a much lower
computational cost. What is more, we extend the proposed methodology for the
case of dependent jobs which displays excellent scaling capabilities.

2.2.2 Ambiguity set expressivity and robustness evaluation

A known shortcoming of the moment-based ambiguity sets is that the worst-case
distribution might have an unrealistic form [180]. For example, it is known that
under mild assumptions on the objective function, its worst-case expectation is
attained at the distribution having support in at most m+ 1 points, if m moments
are constrained [156, 23]. If such distribution leads to overly conservative solutions
for the target application, then it is better to use, e.g., likelihood or phi-divergence
ambiguity sets [17].

The above points raise a question of whether it is appropriate to solve problems
with certain ambiguity sets optimally when neither the protection against the
(unrealistic) worst-case distribution is not required nor is in the interest of the
decision maker. Indeed, the majority of DRO applications in scheduling do not
evaluate solutions with respect to the worst-case distribution which was chosen by
their DRO algorithm. Instead, the authors assume various selected distributions or
they choose different evaluation protocols that are suited to the target application
[179, 153, 49]. Nevertheless, the way a DRO algorithm is tested may result
in a situation where, sometimes, even a heuristic solution can achieve a better
performance than the exact approach under some sensible evaluation protocol,
e.g., as in [179]. Therefore, this paper tries to answer a question, that is, given
an evaluation protocol of out-of-sample performance, is it necessary to solve the
original problem optimally, or can a comparable performance be achieved by solving
a related problem, perhaps at a much-reduced computation cost?

2.2.3 Total flow time scheduling and other problems

From the perspective of the scheduling problem solved in this work, several works
on total flow time scheduling are closely related. For example, in [99], the authors
study a deterministic parallel identical machines scheduling problem with weighted
completion time. With their enhanced arc-flow MILP formulation, they have been
able to solve instances having up to 400 jobs, whereas former approaches were
limited to around 100 jobs. A robust approach for parallel machines total flow time
problem is studied in [2]. The authors treat the problem with normally distributed
processing times as a β-robust optimization problem, where the objective is to
maximize the probability that the total flow time does not exceed the given level.
They developed a branch-and-bound algorithm that was able to solve instances
of up to 45 jobs and 5 machines. Another total flow time scheduling problem
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with sequence-dependent setups is addressed by [107]. The uncertain processing
times and setups are represented by interval data. The goal is to minimize the
worst-case absolute deviation of the total flow time from the optimal scenario. They
have formulated the problem as a resource-constrained shortest path and devised a
simulated annealing algorithm to solve it. They were able to solve instances with
200 jobs in about 20 seconds.

From the perspective of the used approaches, our methods share similarities
with linear optimization problems containing absolute values of variables. Problems
such as absolute value equations (AVE) [110] or linear complementarity problem
(LCP) [50] are known to be NP-hard even over real variables. We further consider
problems related to `p norm minimization [72, 182], which are typically studied in
the context of robust estimation and fitting. However, the current results are not
directly applicable to our problem as we optimize over a set of constraints having a
form of a totally unimodular matrix rather than an unconstrained case.

2.3 Solving methods for `p norm formulations

In Section 2.3.1, we outline the second-order cone program (SOCP) formulation of
problem (2.1.4) from [44]. In Section 2.3.2, we express the objective function as a
sum of a linear term and a robust term in the sense of some `p norm. Section 2.3.3
investigates the properties and complexity of the formulation with respect to the used
norm for independent jobs. Finally, Section 2.3.4 focuses on the reformulation with
dependent jobs, while Section 2.3.5 on `1 norm specifically. Our analysis shows that
the problem with dependent jobs is hard only when the large negative correlations
are present. Furthermore, we give a polynomial algorithm for a tractable subclass of
the problem, and we investigate its robustness, given by the corresponding ambiguity
set.

2.3.1 Deterministic reformulation of the stochastic problem

In [44], it was shown that when parameters γ1 ≥ 0 and γ2 ≥ 1, defining the
ambiguity set (2.1.5), satisfy γ2 ≥ γ1, then the stochastic problem in the form of
(2.1.4) is equivalent to the following deterministic integer second-order cone program

min
π∈Π

πᵀµ̂+ γ1 ·
√
πᵀΣ̂π. (2.3.1)

Interestingly, the resulting formulation does not depend on the particular value of
γ2, as long as γ2 ≥ γ1. For more details, we refer the reader to [44]. Furthermore,
note that when γ1 = 0, then (2.3.1) matches SP solution (2.1.3).

In [44], authors have dealt with the special case of the problem with independent
random variables, i.e., Σ̂ = diag(σ̂2

1 , σ̂
2
2 , . . . , σ̂

2
n) where σ̂j , j ∈ J is a standard

deviation of p̃j . We note that when Σ̂ = 0 (i.e., when the processing times are
deterministic), then the formulation (2.3.1) reduces to the classical, deterministic
parallel identical machines total flow time problem (P ||∑Cj), with processing
times given by µ̂. The deterministic problem is solvable in O(n log n) time by
sorting the jobs according to µ̂ values in non-increasing order. The optimal π is
obtained by setting πj = 1 to the first m sorted jobs, πj = 2 to the next m jobs
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until all the elements in π are assigned (see, e.g., [39, p. 133–134] for a similar
algorithm applicable to a more general Q||∑Cj problem).

Finally, note that since µ̂ (i.e., sample mean) is unbiased estimator of E
[
p̃
]
, we

can build a direct connection between the Stochastic Programming formulation
SP-PTFT and the considered DRO formulation. That is, the solution of (2.3.1)
with γ1 = 0 is equivalent to SP-PTFT formulation.

2.3.2 Robustness as a norm of solution variance

In this section, we express formulation (2.3.1) using a vector norm of the solution
variance, which provides new insights to the problem. Let us assume that the
estimate of covariance matrix Σ̂ is a positive semidefinite (PSD) matrix. Indeed,
this is without a loss of generality as the covariance matrix of any distribution is a
PSD matrix (if it exists). From the practical standpoint, the covariance matrix is
typically estimated from data using the sample covariance, which provably always
results in a PSD matrix. Thus, Σ̂ admits factorization into Σ̂ = V DV −1, where
V is an orthogonal matrix and D is a diagonal matrix with eigenvalues λj ≥ 0 of

Σ̂. Let us define a square root of Σ̂ as

Σ̂1/2 ≡ V D1/2V −1, (2.3.2)

where D1/2 is a diagonal matrix computed as element-wise square root of D.

Lemma 1. Problem (2.3.1) can be equivalently expressed as

DR-PTFT(`2) ≡ min
π∈Π

πᵀµ̂+ γ1 ·
∥∥Σ̂1/2π

∥∥
2
, (2.3.3)

where ‖ · ‖2 is `2 (euclidean) norm.

Proof. Observe that ‖x‖2 =
√
xᵀx and Σ̂1/2 is a PSD matrix and is symmetric.

Then, since V −1 = V ᵀ, it follows that

∥∥Σ̂1/2π
∥∥

2
=
√(

Σ̂1/2π
)ᵀ

Σ̂1/2π =
√
πᵀV D1/2V −1V D1/2V −1π =

√
πᵀΣ̂π.

(2.3.4)

By substituting (2.3.4) into (2.3.3), we obtain (2.3.1).

While the reformulation (2.3.3) itself does not bring anything novel, it provides
an interesting insight into the connections of (2.1.4) with the related problems.
Namely, we see certain similarities with robust regression methods used in machine
learning (ML). There, typically one does not have a precise knowledge of the
underlying distribution of the data. Instead, one has access to a finite sample set
that can be used to estimate the ambiguity. The training of a prediction model
is treated as an optimization problem, minimizing a function defined as a mean
error on input samples plus a complexity measure of the model, which typically
refers to the number of degrees of freedom used in the learned model. The end
goal is to find a model that achieves a small error on unseen data. The resulting
model (by analogy, here—a solution to the scheduling problem) is chosen such that
it does not overfit the training data (sampled processing times) by having some
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level of generalization to unseen data (robustness with respect to the processing
times uncertainty). Viewing the researched problem from the perspective of ML
analogy, µ̂ and Σ̂1/2 are derived from the training set, π represents the model, µ̂ᵀπ
is its error on input samples (performance), while an estimate of model complexity
(variance) is expressed as ‖Σ̂1/2π‖2 and acts as a regularization term. The level
of protection against overfitting is typically controlled by a weight term for the
regularization term, in our case, corresponding to γ1. There are several common
methods in ML how to penalize the model complexity, e.g.,: ridge regression, support
vector machines (SVM) (squared `2 norm), lasso regression (`1 norm), or smoothing
regularization (‖Dπ‖p for some suitably chosen matrix D) [118]. Frequently, an `p
norm of the model parameters is used. Different choices of penalty terms lead to
different models and training (optimization) algorithms [69]. Similar connections
between DRO and regularization approaches were observed by other authors as
well, see, e.g., [134].

Therefore, the above reformulation stimulates several interesting questions.
Namely, we ask whether the `2 norm used in DR-PTFT(`2) formulation (2.3.3) is
essential to preserving the quality of solutions, or maybe rather, can it be replaced
with a different penalty (e.g., `1 norm)? What are then the performance guarantees
of such a model and how does the change of regularization affects the complexity of
the problem? In the following sections, we provide answers to these questions.

2.3.3 Complexity of `p formulation with independent jobs

In the paper [44], the computational complexity problem of (2.3.1) was not studied.
Regarding the complexity of their algorithm for independent jobs (called npsa) was
shown that terminates within the finite number of iterations, but no specific time
bound was given. In this section, we provide a complexity characterization for the
problem formulation with independent jobs in sense of any `p norm:

DR-PTFT(`p) ≡ min
π∈Π

µ̂ᵀπ + γ1 ·
∥∥Σ̂1/2π

∥∥
p
. (2.3.5)

We show that the particular case p = 2 of the following proposition reduces to
problem (2.3.1) with independent jobs which, in turn, establish a new complexity
result and provides a new algorithm for problem (2.3.1) with independent jobs
studied in [44].

In this subsection, we study the case when the processing times of jobs are
independent, i.e., Σ̂ = diag(σ̂2

1 , σ̂
2
2 , . . . , σ̂

2
n). Provided that the processing times

are non-negative, without a loss of generality we assume that all elements of µ̂
and Σ̂ are non-negative integers. Finally, the following proposition provides a
characterization of the computational complexity and the solution algorithm for
DR-PTFT(`p) with independent jobs.

Proposition 1. For any fixed integer p ≥ 1 and a diagonal covariance matrix
Σ̂ = diag(σ̂2

1 , . . . , σ̂
2
n), problem DR-PTFT(`p) admits a pseudopolynomial algorithm

in maxj∈J {µ̂j · λ, (σ̂j · λ)p}, where λ = min
{
µ̂ᵀ1,1ᵀΣ̂1

}
.

Proof. We prove the statement by reducing DR-PTFT(`p) problem to a non-linear
perfect matching problem in a bipartite graph [28] with a suitably defined non-linear
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objective function. Such problem is given as the maximization of d-dimensional
convex function q(z1, . . . , zd) : Rd+ 7→ R over a set of all perfect matchings g ∈
{0, 1}n2

in complete bipartite graph Kn,n. The arguments of the function q are
given as mere linear combinations of the characteristic vector g of the matching and
weights zi = wᵀ

i g, wi ∈ Zn2

+ where i ∈ {1, . . . , d}. In other words, each matching g
is scored by d different non-negative integer weights, which are aggregated into a
single convex scoring function to be maximized. When the number of arguments
d of the function to be maximized is fixed to a constant, then such problem can
be solved in a pseudopolynomial time in the maximal weight, as shown in [28].
The reduction given below preserves the pseudopolynomial time complexity with
respect to the sum of means and variances, and, thus, the algorithm scheme of [28]
is applicable to solve the problem.

Let us define complete bipartite graph Kn,n = (J ,L, E), where J is a set of all
jobs and L is a multiset of all eligible positions (i.e., including their multiplicity, see
the definition of Π in (2.1.1)) for any job given as

L = { 1, . . . , 1︸ ︷︷ ︸
m elements

, 2, . . . , 2︸ ︷︷ ︸
m elements

, . . . , bn/mc, . . . , bn/mc︸ ︷︷ ︸
m elements

, bn/mc+ 1, . . . , bn/mc+ 1︸ ︷︷ ︸
(n−bn/mc·m) elements

}.

The first part of the graph represents jobs, and the other part represents all possible
job positions, including their multiplicity given by the number of machines. We
associate each edge (j, l) ∈ E , j ∈ J , l ∈ L with two weights (µ̂j · l, |σ̂j |p · lp) and

we collect all first and second weights into vectors a, b ∈ Zn2

+ .
Next, let us denote a perfect matching in Kn,n as M ⊆ E . Such matching M

can be represented by the characteristic vector g ∈ {0, 1}n2

with i-th entry being
one if and only if the corresponding edge is contained in M , and zero otherwise.
Finally, let us define function q : R2

+ 7→ R given as

q(z1, z2) = −z1 − γ1 · z2
1/p.

Note that, as γ1 ≥ 0, we have that q is convex on R2
+ for any p ∈ N. Then, for any

perfect matching g, we have that

q(aᵀg, bᵀg) = −aᵀg − γ1 · (bᵀg)1/p = −πᵀµ̂− γ1 ·




n∑

j=1

|σ̂j |p · πpj




1/p

(2.3.6)

= −πᵀµ̂− γ1 ·
∥∥Σ̂1/2π

∥∥
p
,

where πj = l if and only if edge (j, l) ∈ M . The first equality follows from the
definition of q while the second one follows from the definition of a and b and
the fact that g is a perfect matching in a bipartite graph. Thus, for each j ∈ J ,
exactly one edge to some l ∈ L is selected. Finally, any perfect matching g? maxi-
mizing q(aᵀg?, bᵀg?) corresponds to minimizing (2.3.3) which solves DR-PTFT(`p)
problem.

Example 2 (cont.). We continue with the example introduced in Section 2.1.1.
Let µ̂ = (5, 3, 3, 1, 2) be a vector of estimated means and let Σ̂ = diag(1, 2, 1, 4, 3)
be a diagonal covariance matrix (i.e., the jobs processing times are independent).
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1

1

2

1

3

2

4

2

5

3

J

L

µ̂1 · 1, σ̂2
1 · 12 µ̂2 ·1, σ̂2

2 ·12 µ̂3 · 2, σ̂2
3 · 22

µ̂4 · 3, σ̂2
4 · 32

µ̂5 · 2, σ̂2
5 · 22

Figure 2.2: Graph Kn,n for instance with n = 5, m = 2, and optimal solution π? =
(1, 1, 2, 3, 2).

Finally, let γ1 = 1 and p = 2. The graph Kn,n for this problem instance is depicted
in Figure 2.2. The edges in bold correspond to the optimal solution π?.

The remaining question is, how to find such g? in the required time. We see
that our function q and weights a and b satisfy assumptions of Theorem 1.2 of [28]
for the case with d = 2. Their algorithm runs in a polynomial time in n and
maxi{ai, bi} provided that q is polynomially computable. In our setting, function q
can be evaluated in a polynomial time in n and the constants involved can be upper
bounded as maxi

{
ai, bi} ≤ maxj{µ̂j ·n, (σ̂j ·n)p

}
with n ≤ min

{
µ̂ᵀ1,1ᵀΣ̂1

}
since

the parameters are non-negative integers. Thus, applying the algorithm described
in [28] with the above-mentioned setting concludes the proof.

Remark 1. We note that when the robust term is p-th power of an `p norm (e.g., `2
norm squared), then the problem (2.3.5) with independent jobs becomes an ordinary
min-cost perfect bipartite matching problem with a linear objective function. It
can be seen from the equation (2.3.6), when the term bᵀg is raised to the p-th
power, then the function q becomes separable. Therefore, only a single coefficient
cj,l = µ̂j · l+ γ1 · |σ̂j |p · lp for an edge (j, l) suffices to resemble the problem with p-th
power of an `p norm. Such problem can be solved as the ordinary min-cost perfect
bipartite matching problem in polynomial time by, e.g., hungarian algorithm in
O(n3) [89].

The difficulty of extending the above proposition to the case of dependent jobs
lies in the necessity of having the number of arguments of function q fixed to some
constant d. The reason is that an underlying step of the algorithm from [28], which
solves the non-linear bipartite matching problem constructs a d-dimensional integer
lattice to examine, thus having an exponential complexity in d. When Σ̂ is a full
covariance matrix, then we would need to have d = 1 + n to exploit the same
approach as described above. A possible way to go around it would be to compress
the information contained in Σ̂ to a smaller matrix while preserving norms of
vectors transformed by the corresponding linear mappings, which is the idea we
will explore in the following section.

2.3.4 Approximate solution for `p norm with dependent jobs

The purpose of this section is to analyze to which extent the ideas developed in the
previous section can be applied to the problem with dependent jobs. In the context
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of `1 norm, we show that the difficulty of the problem with dependent jobs lies in
the presence of large negative correlations between jobs, not just in the plain fact
that jobs are dependent.

To overcome the exponential grow of complexity in n, the trick is to compress

the information about the norm of Σ̂1/2π vector using a different vector Σ̂
1/2
k π of

a fixed length k independent from n. However, the same algorithm as in the case
with independent jobs cannot be applied. The difficulty is that for dependent jobs,
the objective function used in non-linear bipartite perfect matching now loses its
convexity. Thus, we will employ a weaker version of the algorithm for non-linear
bipartite perfect matching which maximizes an arbitrary function q : Rk+1 7→ R over
a set of perfect matchings in the complete bipartite graph. In [28], such algorithm
is given which runs also in a pseudopolynomial time with the caveat that it is a
randomized algorithm — i.e., an algorithm with access to the random bit generator
which for any input returns an optimal solution with the probability of at least 1/2.

The rationale behind the approach with a compressed covariance matrix is
that performing computations over a matrix that is similar in some sense to the
original one should yield similar results as performing the computation over the
original matrix, but with a significantly reduced computational cost. Indeed, this
scheme is frequently exploited in numerical linear algebra, e.g., to approximate
solutions to problems such as multiplication of large matrices, matrix decompositions,
approximate regression problems, and finds many other applications [164].

The general idea of the reduction is similar to the one used in Proposition 1
except for some minor differences, which we describe below. Then, we formulate the
task of finding an approximation (compression) of the original matrix and present
some solutions to this problem.

The underlying bipartite graph has the same structure as in Proposition 1. We
associate each edge (j, l) with k + 1 values:

(µ̂j · l, s1,j · l + v, . . . , sk,j · l + v) ,

where si,j is (i, j)-th element of Σ̂
1/2
k matrix and v = n ·maxi,j |si,j |. We collect all

k + 1 weights along all edges into vectors w0, . . . ,wk ∈ Rn2

. Next, we denote the
characteristic vector of matching M ⊆ E in Kn,n = (J ,L, E) as g ∈ {0, 1}n2

with
i-th entry being one if and only if the corresponding edge is contained in matching
M . Next, we define function q : Rk+1 7→ R,

q(z0, z1, . . . , zk) = −z0 − γ1 · ‖(z1 − nv, . . . , zk − nv)‖p (2.3.7)

to be maximized over a set of all perfect matchings g with zi = wᵀ
i g.

In contrast to the case when Σ̂1/2 was a diagonal matrix, some entries of

Σ̂
1/2
k might be negative, but the underlying algorithm for non-linear bipartite

matching [28] requires weights which are non-negative integers. This is why we add
a positive constant v to the last k values of each edge and subtract them back in
(2.3.7). Furthermore, if some si,j is not an integer, then we need to multiply all
weights by a sufficiently large constant. Then, we can use randomized version of the
algorithm for non-linear bipartite perfect matching, which performs maximization
of an arbitrary function q(wᵀ

0g, . . . ,w
ᵀ
kg) given by a polynomial-time comparison
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oracle. Such a method follows from Theorem 1.3 of [28] with d = k + 1 running in
a pseudopolynomial time, hence, avoiding an exponential complexity in n.

The question that remains is how to find a suitable approximation of Σ̂1/2.

Given parameter k ∈ N, the goal is to find matrix Σ̂
1/2
k ∈ Rk×n which does not

yield to a large error for vectors π ∈ Π in the sense of some `p norm. That is, one
wishes to find

min
Σ̂

1/2
k ∈Rk×n

max
π∈Π

∣∣∣‖Σ̂1/2π‖p − ‖Σ̂1/2
k π‖p

∣∣∣ . (2.3.8)

We call Σ̂
1/2
k ∈ Rk×n matrix as rank -k approximation of Σ̂1/2 and its distortion is

defined as the maximum absolute difference of the norms of the two vectors over Π
in the sense of `p.

An obvious question to ask is how to look for good approximations of Σ̂1/2 with
small ranks and how large distortions are incurred. The answer depends on the
used norm. This problem is, in fact, very closely related to the subspace embedding
problem [178], which has many applications, namely in numerical linear algebra.
Since the solution of (2.3.8) in its generality goes well beyond the scope of this
paper, we rather briefly describe some particular results related to our application.
We provide below some examples of good approximations for some matrices under `1
norm. The following lemma addresses the case when jobs are positively correlated.

Lemma 2. For any Σ̂1/2 ∈ Rn×n+ , there exists a rank-1 approximation Σ̂
1/2
1 with

zero distortion in sense of `1 norm.

Proof. Set Σ̂
1/2
1 = 1ᵀΣ̂1/2, i.e., a matrix with column sums. Then, for k = 1, we

have

‖Σ̂1/2
k π‖1 = ‖1ᵀΣ̂1/2π‖1 =

∣∣∣∣∣∣

n∑

i=1

n∑

j=1

Σ̂
1/2
ij πj

∣∣∣∣∣∣
=

n∑

i=1

∣∣∣∣∣∣

n∑

j=1

Σ̂
1/2
ij πj

∣∣∣∣∣∣
= ‖Σ̂1/2π‖1,

where the third equality follows from the fact that Σ̂1/2 ∈ Rn×n+ .

The above lemma also suggests how to obtain good approximations for covariance
matrices with a small number of negative entries:

Corollary. For any Σ̂1/2 with at most k rows with a negative entry, there exists

rank-(k + 1) approximation Σ̂
1/2
k+1 with zero distortion in sense of `1 norm.

The construction is straightforward — keep all k rows with a negative element
and, for the rest, apply Lemma 2, yielding a rank-(k + 1) approximation. The above
approximations suggest that the complexity of the problem with correlated jobs in
the sense of `1 norm is closely connected to the presence of negative correlations
in the covariance matrix. In fact, based on the above construction it can shown
that the distortion for a rank-1 approximation is proportional to n, nne(Σ̂1/2) and

maxj Σ̂
1/2
jj , where nne(Σ̂1/2) is the number of negative elements of Σ̂1/2. Obviously,

one can again trade-off the rank of the approximation for its precision by keeping
some of the rows intact, yielding distortion dependant on nne(·) of the remaining
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matrix. For other related results on `1 subspace embedding, we refer the reader to,
e.g., [84, 46, 164].

In the following section, we turn our attention to the formulation utilizing `1
norm from the perspective of robustness and its computational complexity.

2.3.5 `1 norm formulation for dependent jobs

In this section, we will focus specifically on the problem with `1 norm and dependent
jobs. As we show below, this particular case leads to favorable computational
complexity as well as both theoretical guarantees of the robustness and its empirical
performance. These favorable properties make this case the most practical one.

Let us consider the following problem

DR-PTFT(`1) ≡ min
π∈Π

µ̂ᵀπ + γ1 ·
∥∥Σ̂1/2π

∥∥
1
, (2.3.9)

where the robust term is expressed in the sense of `1 norm. As it will be shown
below, the benefit of such formulation is that problem (2.3.9) can be solved in
strongly polynomial time when Σ̂ fulfills so-called copositivy condition, which is
related to the relative magnitude of negative elements in Σ̂1/2 matrix. At the same
time, as it is shown later in Section 2.5.3, the quality of solutions to problem (2.3.9)
is comparable to the solutions of a more complex `2 formulation.

Speaking about general PSD covariance matrices, the complexity of prob-
lem (2.3.9) arises from the presence of the absolute value inside `1 norm. It
is known that equations with absolute values are hard to solve even over the domain
of real numbers [110], suggesting that solving (2.3.9) in its generality might be hard
as well. Therefore, we will focus on the cases where each element of the vector
Σ̂1/2π is non-negative, which is more general than simply requiring Σ̂1/2 ∈ Rn×n+ .
We show that such cases of the problem can be solved in polynomial time. For
that, we introduce a subclass of matrices which acts as a generalization of strictly
positive covariances:

Definition (Copositivity with respect to Π). Let us define a set of matrices

CΠ
+ =

{
A ∈ Sn+

∣∣∀π ∈ Π ⊂ Zn+ : Aπ ≥ 0
}
,

which is the set of PSD matrices that maps Π into Rn+.

Intuitively, the set of matrices CΠ
+ relates to the notion of diagonally-dominant

matrices. Obviously, it follows that any covariance matrix of independent jobs
(or strictly positively correlated) is contained in CΠ

+ . Next, when Σ̂1/2 matrix has
diagonal elements that are about a factor O((n/m)2) larger than the absolute value
of the largest negative off-diagonal element, then it is likely to be contained in CΠ

+ .
Such covariance matrices appear, e.g., in distributions of so-called weakly correlated
random variables [109]. As an example, we list some particular matrices below.

Example 3. Consider the following example covariance matrices:

A1 =




3 1 0 2
1 3 0 1
0 0 2 1
2 1 1 4


, A2 =




3 −1 0 2
−1 3 1 1
0 1 2 −1
2 1 −1 4


, A3 =




4 −2 0 2
−2 3 0 1
0 0 2 1
2 1 1 4


.
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All matrices are PSD. Next, it can be verified, e.g., by enumeration of all π ∈ Π, that
A1,A2 ∈ CΠ

+ but A3 6∈ CΠ
+ for Π corresponding to set of assignments for a single

machine. As it was discussed in Section 2.3.4, Lemma 2 would suggest approximating
A1 with a rank-1 matrix, A2 with a rank-4, and A3 with a rank-3 matrix. Thus,
the notions of rank-k approximation and CΠ

+ are generally incomparable. Finally,
note that when Π′ corresponds to the set of assignments for two machines, then
A3 ∈ CΠ′

+ .

Another useful property of CΠ
+ is that it forms a convex cone, meaning that

whether A,B ∈ CΠ
+ , then αA + βB ∈ CΠ

+ for any α, β ≥ 0. This property will
be utilized later. First, we ask the question of whether it is possible to test the
membership in CΠ

+ for a matrix A efficiently. Since Π is a finite set for any n and m
(although a large one), one could enumerate all its elements and test the inequality
for each element of Π. However, a more efficient way exists. The test whether a
given matrix A ∈ Sn+ is contained in CΠ

+ can be performed in O(n2 log n) time. The
idea is the following. If the copositivity condition holds, there must not exist a pair
of π ∈ Π and i ∈ J , such that eᵀiAπ < 0, where ei = (0, . . . , 0, 1, 0, . . . , 0) is an
i-th basis vector. Essentially, it selects i-th row of matrix A and multiplies it with
a π, which as to be a non-negative number. If one wants to know if this holds for
the given i for any π ∈ Π, then it is enough to examine the worst-case π vector.
That is, the test checks for each i ∈ J , whether minπ∈Π e

ᵀ
iAπ ≥ 0. The minimum

can be evaluated by sorting eᵀiA and π; — assigning the lowest values of eᵀiA with
the highest of π. This step takes O(n log n) time, and thus the overall complexity
is O(n2 log n).

In the rest of this section, we will analyze the properties of problem DR-PTFT(`1)
with copositive covariance matrices. We will show that solutions of the problem
(2.3.9) have similar robust properties as in `2 case. When Σ̂1/2 ∈ CΠ

+ , the solution
of (2.3.9) corresponds exactly to a distributionally robust solution over a specific
ambiguity set.

Proposition 2. Assuming Σ̂1/2 ∈ CΠ
+ , the problem DR-PTFT(`1) is a distribu-

tionally robust formulation for P ||∑Cj with an ambiguity set given by

D`1 =

{
P ∈ P0(Rn)

∣∣∣∣∣
PP [p̃ ≥ 0] = 1

EP [p̃] ≤ µ̂+ γ1 · Σ̂1/21

}
.

Proof. We will start with a high-level sketch of the proof. We substitute the
definition of an ambiguity set D`1 into the stochastic formulation of the DRO
problem considered (2.1.4). We focus on the inner expectation problem of finding
the worst-case probability distribution. First, we reformulate the inner problem
using the definition of the expected value. Then, we derive the dual problem and
observe that strong duality holds (both problems have the same optimal solutions).
Finally, we transform the dual problem and substitute it back into the outer problem
(finding optimal π), obtaining the DR-PTFT(`1) problem.

Starting with the definition of the problem in (2.1.4)

min
π∈Π

max
P∈D

EP
[
f(π, p̃)

]
= min
π∈Π

max
P∈D

πᵀEP
[
p̃
]
. (2.3.10)
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Let us focus on the inner maximum, i.e., finding the worst-case probability distri-
bution P from the ambiguity set D. By letting D ≡ D`1 , the maximum can be
calculated from the definition of the expected value

max
P∈D`1

∫

Rn+
fP (p)πᵀp dp (2.3.11)

s.t.

∫

Rn+
fP (p) dp = 1 (2.3.12)

∫

Rn+
fP (p)p dp ≤ µ̂+ γ1 · Σ̂1/21 = h, (2.3.13)

where fP is a probability density function of probability distribution P and p is a
value in the support (i.e., the set of possible realizations) of p̃, i.e., Rn+. Now, we
will derive a dual problem for (2.3.11)–(2.3.13). Essentially, we put constraints into
the objective multiplied with newly introduced multipliers. The Lagrangian of the
problem is given by the equation

L(P, α,β) =

∫

Rn+
fP (p)

(
πᵀp− α− βᵀp

)
dp+ α+ βᵀh, (2.3.14)

where α ∈ R and β ∈ Rn+ are the introduced Lagrange multipliers. The dual
Lagrangian function is obtained with taking maximum over the original variables.
Thus, the dual for the Lagrangian above is

g(α,β) = max
P∈D`1

L(P, α,β) (2.3.15)

= max
P∈D`1

(∫

Rn+
fP (p)

(
πᵀp− α− βᵀp

)
dp+ α+ βᵀh

)
(2.3.16)

= α+ βᵀh+ max
P∈D`1

∫

Rn+
fP (p)

(
πᵀp− α− βᵀp

)
dp. (2.3.17)

If there exists p ∈ Rn+, such that πᵀp− α− βᵀp ≥ 0, then g is unbounded:

g(α,β) =

{
α+ βᵀh if πᵀp− α− βᵀp ≤ 0,

+∞ otherwise.
(2.3.18)

Finally, disregarding the unbounded case, the dual problem for (2.3.11) is

min
α,β

α+ βᵀh (2.3.19)

s.t. β ≥ 0 (2.3.20)

α+ βᵀp ≥ πᵀp ∀p ∈ Rn+. (2.3.21)

The problem satisfies conic duality [155], thus strong duality holds. Therefore, an
optimal solution to the dual is also optimal w.r.t. (2.3.11). By transforming the
problem further, we obtain

min
α,β

α+ βᵀh (2.3.22)

s.t. β ≥ 0 (2.3.23)

(πᵀ − βᵀ)p ≤ α ∀p ∈ Rn+. (2.3.24)
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Next, the value of the left hand side expression in (2.3.24) must be investigated.
With respect to variable α, there are two possible cases to consider:

1. ∃j ∈ J : βj < πj . Then, because for pj → +∞, left hand side of (2.3.24)
goes to infinity, and also α→ +∞. Therefore, in this case, (2.3.22)–(2.3.24)
becomes infeasible.

2. π ≤ β. Then α = 0 and then (2.3.22)–(2.3.24) can be written as

min
β
βᵀh (2.3.25)

s.t. β ≥ 0 (2.3.26)

π ≤ β, (2.3.27)

and thus β = π.

This investigation shows that the optimal value for the multipliers are: α = 0 and
β = π, and the solution to the dual problem is 0 + πᵀh = πᵀ(µ̂ + γ1 · Σ̂1/21).
Substituting the result into the outer minimization problem from (2.3.10), we have

min
π∈Π

πᵀ(µ̂+ γ1 · Σ̂1/21) = πᵀµ̂+ γ1 · 1ᵀΣ̂1/2π = πᵀµ̂+ γ1 ·
∥∥Σ̂1/2π

∥∥
1
, (2.3.28)

where the last equality follows from the fact that Σ̂1/2 ∈ CΠ
+ .

Ambiguity set D`1 from Proposition 2 is relatively simple as it imposes the upper
limit on the first moment of the random variables only. Utilizing ambiguity sets
based only on the first moment is not uncommon, see for example, [158]. The main
reason why they are being used is to improve the computational tractability of the
resulting problem. On the other hand, our ambiguity set does not disregard the
second moment. As it was explained in Section 2.3.2, the second moment is reflected
in the same way as ML algorithms treat model complexity via regularization.
This was shown in Proposition 2, which explains the link between DR-PTFT(`1)
and ambiguity set D`1 where parameter γ1 is used to control the robustness of the
solution. The principal advantage of ambiguity set D`1 is its favorable computational
properties, as reflected by the following complexity characterization:

Proposition 3. Problem DR-PTFT(`1) is solvable in O(n log n) time when Σ̂1/2

is a diagonal matrix; and in O(n2) when Σ̂1/2 ∈ CΠ
+ .

Proof. Using the fact that diag(µ̂) ∈ CΠ
+ , Σ̂1/2 ∈ CΠ

+ , γ1 ≥ 0 and CΠ
+ is a convex

cone, problem DR-PTFT(`1) can be reformulated as

min
π∈Π

µ̂ᵀπ + γ1 · ‖Σ̂1/2π‖1 = min
π∈Π

∥∥∥
(

diag(µ̂) + γ1 · Σ̂1/2
)
π
∥∥∥

1

= min
π∈Π

1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)
π. (2.3.29)

Next, let us denote h = 1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)
∈ Rn. We can see that the

problem (2.3.29) is tantamount to deterministic P ||∑Cj with job durations given
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by h. There are known, efficient polynomial exact algorithms for the problem, based
on sorting (for more details, refer to, e.g., [39, p. 133–134]). For the convenience of
the reader, we present the full procedure in Algorithm 2.1. Vector h can be computed
in O(n2) (line 1), and as a result, the overall complexity is O(n2 +n log n) = O(n2).
When Σ̂1/2 is diagonal, the complexity is just O(n log n). Note that when Σ̂1/2 is
not part of the input, then it needs to be computed from covariance matrix Σ̂ first,
which can be done in O(n3) time.

The algorithm given by Proposition 3 is formulated in Algorithm 2.1. At line 2,
the jobs are sorted in non-increasing order, by the weight defined in h, which takes
O(n log n) time. Then, in the loop at lines 3–5, they are sequentially inserted into
the solution. Each time a job is assigned to a machine with the least jobs assigned
so far. In π representation, we only store the number of jobs preceding the job J
on the machine, so the exact machine number is not computed. Each operation
in the loop takes O(1) time, thus the entire loop takes O(n) time. In conclusion,
line 1 determines the overall time complexity, depending on the form and values of
the covariance matrix. We refer to this algorithm as Sort Optimizer with Ravishing
Technique (i.e., sort(`1)).

Algorithm 2.1: Sort Optimizer with Ravishing Technique (sort(`1))

input : estimates of the parameters: µ̂, Σ̂1/2, trade-off parameter γ1.
output : optimal solution π.

1 h← 1ᵀ
(

diag(µ̂) + γ1 · Σ̂1/2
)

2 jobs ← sort jobs in non-increasing order, job j ∈ J has weight hj
3 for j = 1, 2, . . . , n do
4 J← jobs(j ) // take the next job

5 πJ ← d jme
6 return π

Obviously, when Σ̂1/2 6∈ CΠ
+ , then Proposition 3 does not apply, and it is an open

question whether a polynomial algorithm for this case exists as well. In any case,
DR-PTFT(`1) can be still expressed as a mixed-integer linear program (2.3.29) and
solved by a general-purpose solver. As it will be shown in experiments in Section 2.5,
even this method is very efficient, while allowing to tackle any covariance matrix.

2.4 Multi-objective optimization perspective

The purpose of this section is to point out a relation between the form of the
objective function of the problem and the multi-objective optimization. In contrast
to the previous sections, the aim here is to discuss some practical concerns related
to the solution of the problem (2.3.5). One of them the obvious questions that the
decision maker faces is, how to set the value of γ1 parameter. Although there are
some methods of how to set γ1, e.g., to which extent we want to cover the target
distribution [55], these will not provide the price to be paid for such a solution
beforehand. Thus, we will argue that obtaining a single solution for some γ1 is not
likely to be very useful in practice. Instead, we will provide a method for uniform
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sampling of solutions in the Pareto front, which exhibits different optimal trade-offs
between the mean and variance.

Finally, we reveal that the objective function of problem (2.3.3) directly optimizes
the metrics used to assess its out-of-sample performance. We identify this as a
striking difference from many other scheduling problems and their evaluation in
DRO scheduling literature, where this correspondence is often not present.

2.4.1 Relation to multi-objective optimization

First, let us introduce the two solution quality metrics of a robust solution used
in [44] — robust price (RP) and robust benefit (RB). They are defined with respect
to some testing probability distribution P ∈ P0(Rn) of processing times p̃ ∼ P :

RP
(
πR
)

=
(
EP
[
f(πR, p̃)

]
− EP

[
f(πD, p̃)

])
/EP

[
f(πR, p̃)

]
, (2.4.1)

RB
(
πR
)

=
(

VarP
[
f(πD, p̃)

]1/2 −VarP
[
f(πR, p̃)

]1/2)
/VarP

[
f(πR, p̃)

]1/2
.

(2.4.2)

The solution of the robust formulation (2.3.5) is denoted as πR, while πD is an
optimal solution of the problem with deterministic processing times, i.e., (2.3.5)
with γ1 = 0, with the processing times set as their true (or estimated) means. Thus,
RP(πR) measures the relative difference between the expected quality of the robust
and deterministic solutions πR and πD, respectively. Similarly, RB(πR) is the
relative difference of standard deviations of solutions under the distribution P . Note
that the testing distribution P may or may not be known; nevertheless, we assume
that one has access to a finite sample set from P .

Example 4. Assume that for an instance with 4 jobs and a single machine,
the parameters of the jobs are estimated as µ̂ = (1.96, 1.39, 1.39, 1.39) and
Σ̂ = diag (0, 0, 0.072, 0.209). For this instance, consider two solutions: the de-
terministic (or SP, they are equivalent) one πD = (1, 2, 3, 4) and the robust one
πR = (4, 3, 2, 1) (not necessarily optimal). As an example to demonstrate the above-
defined quantities, let us pick a testing distribution P = N (µ̂, Σ̂) to display the
empirical densities of the objective values of the aforementioned solutions (shown
in Figure 2.3). Under this test distribution, πD is an optimal solution for SP
formulation. However, we see that for a price measured in terms of RP(πR), robust
solution πR achieves a smaller variance and also a smaller worst-case objective
value, thus being a more stable solution for a risk-aware decision maker.

Obviously, one would like to have RP the smallest possible and RB the largest.
Different robust solutions πR can perform differently under these two, generally
conflicting criteria. Thus, such a problem can be formulated from the perspective
of the multi-objective optimization with the two criteria g(π) ∈ R2:

πR = arg min
π∈Π

g(π) = arg min
π∈Π

(
RP(π),−RB(π)

)
. (2.4.3)

What will be shown next is that formulation (2.3.3), in fact, solves this multi-
objective optimization problem with the scalarization approach [66]. To show that,
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Figure 2.3: Illustration of robust price and robust benefit for different solutions π◦,
◦ ∈ {R,D}.

let us analyze the two criteria separately. For the RP, we have that

π?RP = arg min
πR∈Π

RP(πR) = arg min
πR∈Π

{
1− EP

[
f(πD, p̃)

]

EP
[
f(πR, p̃)

]
}

= arg min
πR∈Π

EP
[
f(πR, p̃)

]

= arg min
πR∈Π

µᵀπR ≈ arg min
πR∈Π

µ̂ᵀπR,

where µ is (potentially unknown) mean value of p̃ and µ̂ is the sample mean
obtained from P . The second equality follows from the fact that EP [f(πD, p̃)] is a
constant as long as P is fixed. Analogously for RB, we obtain

π?RB = arg max
πR∈Π

RB(πR) = arg max
πR∈Π

{
VarP [f(πD, p̃)]1/2

VarP [f(πR, p̃)]1/2
− 1

}

= arg min
πR∈Π

VarP [f(πR, p̃)]1/2

= arg min
πR∈Π

‖Σ1/2πR‖2 ≈ arg min
πR∈Π

‖Σ̂1/2πR‖2,

where Σ is (potentially unknown) covariance and Σ̂ is the sample covariance of
p̃. Similarly, term VarP [f(πD, p̃)]1/2 acts as a constant. Thus, it can be seen that
π?RP ∈ Π minimizing µ̂ᵀπ also minimizes RP(·). Similarly, π?RB ∈ Π minimizing

‖Σ̂1/2π‖2 minimizes −RB(·). Thus, it implies that (2.3.3) can be viewed as a
scalarization method for the multi-objective optimization applied to (2.4.3). What
else can be concluded is that formulation (2.4.3) suggests that a solution in the
sense of `1 norm obtained from (2.3.9) is also likely to work well as a solution for
multi-objective problem since ‖x‖1 ≥ ‖x‖2 for any x ∈ Rn. Thus, its robust term

acts as an upper bound on VarP [f(p̃,π)]
1/2

, which in turn leads to optimization of
RB as well. Note that when one measures the out-of-sample performance in terms
of RB and RP, then the optimization criterion matches the performance metric.
This is not necessarily always the case with DRO scheduling problems described in
the literature since they often just draw several samples from a mix of distribution
(whose does not necessarily correspond to the worst-case distribution). After that,
some quantities of the objective function are reported, such as the expected value,
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maximum value or different quantiles. This leads us again back to the discussion
in Section 2.2.2, where we have outlined some challenges when evaluating a DRO
solution. Thus, we believe that this aspect of our problem worths pointing out.

In the following section, we describe an improved RP/RB trade-off parametriza-
tion, which provides a more uniform sampling of the Pareto front.

2.4.2 Pareto front sampling

As it was shown in the above section, parameter γ1 in (2.3.1) can be used by the
decision maker to control the trade-off between RP and RB of the resulting solution.
However, an obvious disadvantage of such parametrization is that the actual value of
γ1 needed to achieve certain RB depends on the numerical scale of sample covariance
matrix Σ̂. Concerning the practical use of such parametrization, it is difficult to
guess desired values for γ1. For a decision maker, an ideal parametrization would
allow to choose any point on the RP/RB trade-off curve and obtain the desired
balance between robustness and average performance of the system without having
to re-run the solving procedure multiple times.

Unfortunately, a computationally efficient exact approach to this task might
be hard to find. Instead, we propose a simple—yet useful—heuristic. The idea is
to normalize the effect of parameter γ1 ≥ 0 with respect to the sample mean µ̂
and covariance Σ̂. We introduce a single parameter r ∈ [0, 1], that controls the
emphasis between RP and RB. The problem with r becomes

DR-PTFT(`p, r) ≡ min
π∈Π

1− r
0.5n · µ̂ᵀ1

· µ̂ᵀπ +
r∥∥0.5n · Σ̂1/21

∥∥a
p

·
∥∥Σ̂1/2π

∥∥a
p
, (2.4.4)

where a ∈ N is used when the `p norm is raised to the a-th power (e.g., `2 norm
squared, see Remark 1). The denominators play the role of normalization constants,
by the values the both terms might likely attain. Technically, these values also
depend on the number of machines m; however, we have observed that for small
values of m it does not affect it heavily. Equation (2.4.4) is designed such that
for π = n

2 · 1 (note that such π is infeasible, yet it may represent an “averaged”
solution for a small m), both terms are normalized and the overall value is invariant
in respect to r ∈ [0, 1], i.e.,

1− r
0.5n · µ̂ᵀ1

· µ̂ᵀ · 0.5n · 1 +
r∥∥0.5n · Σ̂1/21

∥∥a
p

·
∥∥Σ̂1/2 · 0.5n · 1

∥∥a
p

= 1 ∀r ∈ [0, 1] .

Note that DR-PTFT(`p, r = 0) is equivalent to DR-PTFT(`p, γ1 = 0), thus the
solution of (2.4.4) with r = 0 resembles a Stochastic Programming solution as well.

To assess the benefits of the new parametrization, we have performed the
following experiment. We generated 100 random instances, for each combination
of n ∈ {10, 15, 20, 30, 50, 100, 150} and m ∈ {3, 4, 5}. Each instance was solved
both with `1 and `2 norms and with parametrizations using γ1 and r. For each
solution, RP and RB were calculated according to (2.4.1)–(2.4.2) and averaged
over all instances. See the results in Figure 2.4. On the left-hand side, we can
see RP/RB trade-off curves with the default parametrization using 10 values of
γ1 ∈ {0, 1, 2, . . . , 9}, applied to both problems with `1 and `2 norm. We can see that
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Figure 2.4: Distribution of solutions on RP/RB trade-off curves for different parametriza-
tions.

in the case of `1 and `2 norm, the points on the Pareto front tend to get dense with
the increasing value of γ1 (i.e., the greater γ1, the greater RB). On the right-hand
side, we see the results for parametrization using r ∈ { 0

9 ,
1
9 ,

2
9 , . . . ,

9
9} (i.e., also 10

different values). We can observe that for `1 norm, this parametrization leads to
solutions distributed evenly along the Pareto front. Similarly, for `2 norm, the
parametrization using r also leads to a more even distribution of the solutions, than
in the case of γ1. Hence, in subsequent experiments, the parametrization with r
will be utilized instead of γ1.

2.5 Numerical experiments

In this section, we perform the experimental evaluation of the proposed methods.
Specifically, for problem DR-PTFT(`1) we benchmark the sort-based method from
Proposition 3 (denoted as sort(`1)), and the MILP model given by Equation (2.3.28)
(i.e., milp(`1)). For problem DR-PTFT(`2), we evaluate the SOCP given by
Equation (2.3.1) (i.e., socp(`2)), and the NOC-points Search Algorithm (denoted
as npsa(`2) introduced by Chang et al. [44]. Algorithm npsa(`2) inspects a finite
number of so-called NOC-points (necessary optimality condition points) that are
suspected of being extreme. For more details, we refer the reader to [44].

In the case of problem DR-PTFT(`22), we assume the min-cost bipartite perfect
matching with Hungarian algorithm [89] mentioned in Remark 1 (i.e., hungar-
ian(`22)). We study the quality, robustness of the solutions, and computation times
of the algorithms, for problems with respect to different norms, both for independent
and dependent jobs.

2.5.1 Experimental setup

For experimental evaluation, we have used a workstation equipped with AMD Ryzen
Threadripper 3990X @2.90GHz (during computations boosted to about 4.00 GHz),
64 GB RAM, running Windows 10 Pro. Due to the operating system shortcomings
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(limited support for more than 64 cores per CPU), Simultaneous Multi-Threading
(SMT) was disabled. All algorithms have been implemented in Python 3. As a
solver, we have used Gurobi 9.0 with default parameter configuration. The source
codes and test instances can be found at our Github page. When measuring time,
a single run of an algorithm utilizes a single CPU core. Otherwise, all 64 physical
cores are available for Gurobi solver (in case of solving milp(`1) and socp(`2));
however, it rarely utilizes more than 12 and never more than 32.

2.5.2 Evaluation protocol

To test the robustness and quality of solutions, we adopted the evaluation protocol
proposed in [44]. The protocol focuses on independent jobs and compares robust
and deterministic solutions from the perspective of average quality and stability. It
proceeds as follows:

1. Generate 1,000 random µ and σ, representing the true moments of distribu-
tions. The mean duration for each job µj is generated as µj ∼ U(10, 60) and
its standard deviation is distributed σj ∼ U(0.1µj , 0.9µj).

2. For each µ and σ, the protocol generates 10,000 random samples (i.e., one
sample is a single realization of p̃) from the mix of distributions: Gamma,
uniform, normal and Laplace, with the given fixed mean and variance. From
each distribution, 2,500 samples are taken. Then, the samples are shuffled
randomly to simplify the next step.

3. From each set of 10,000 random samples, the protocol creates several sets
of subsamples by selecting the given samples. When n ≤ 20 it creates 100
subsample sets and when n > 20 it is only 20 of them. The size of the
subsample set is determined by a sample rate (referred to as S-rate in [44]). If
it is not specified otherwise, we assume 10 subsamples in each subsample set.
Each subsample set is used to define the ambiguity set by estimates µ̂ and σ̂
of the given true moments µ and σ. Solution of (2.3.5) and its deterministic
counterpart result in πR and πD respectively.

4. For each π◦, ◦ ∈ {R,D}, their expectations EP [f(π◦, p̃)] and standard
deviations VarP [f(π◦, p̃)]1/2 are estimated from 500, 000 samples from the
mix of distributions with the given fixed true moments µ and σ. The samples
are generated in the same way as in the third step.

5. Estimate RP and RB for each distribution given by its true moments µ and
σ via sample mean along the subsamples.

Note that since [44] dealt with independent jobs only, it did not provide a protocol
for dependent jobs’ durations. Hence, in this paper, we propose the following
modification for dependent jobs. True expected values of job durations were taken
from the uniform distribution U(10, 50), but we replace the generation of the true σ,
with a full true covariance matrix Σ. In order to cover a wide range of distributions,
we consider covariance matrices to be samples from the Wishart distribution.
Wishart distribution is a distribution over symmetric positive definite matrices,
possibly with some negative off-diagonal elements. It appears as a distribution



DRO for total flow time minimization using norm regularizations 31

over sample covariance matrices produced by samples from a multivariate normal
distribution. In our experiments, the distribution of covariances is given as Σ̂ ∼
Wn(ν, λ · I) + diagd where d ∼ N (µ′, 1). Hence, they are samples from Wishart
distribution Wn( · , · ) with ν degrees of freedom and a scale matrix given as λ · I of
n× n real symmetric PSD matrices. Furthermore, we add a normally distributed
vector d to the diagonal to control the likelihood that Σ̂ is copositive with respect
to Π. We have chosen µ′ = 5 · 1, λ = 1 and ν = n+ 40. After a true covariance
matrix Σ is generated, an algorithm has then access to a limited number of samples
from a mix of multivariate normal and multivariate uniform distributions with
covariance Σ. The reason behind using just these two, and not all four types as
in the independent case, is that for many distributions, there is no single, well-
established multivariate extension. It follows from the fact, that the covariance has
a good meaning as a measure of variability for symmetric, elliptically contoured
distributions. That is, it is not straightforward to define a natural extension of
these distributions, and—as a result—multiple possible generalizations exist, often
emerge from different applications (see, e.g., [94]). Therefore, in our experiments
addressing dependent jobs’ durations, we have limited ourselves to multivariate
uniform and multivariate Gaussian distributions. The details regarding generating
covariance matrices are covered in Sections 2.5.4 and 2.5.5.

In the following sections, we utilize RP and RB obtained via the above evaluation
protocol as the primary performance metrics based on the out-of-sample evaluation.

2.5.3 Independent jobs: quality, stability and performance

In this section, we compare the quality of solutions obtained by assuming different
objective functions, for the case of independent jobs. In addition, we present
computational times of different algorithms. All the variants of the problem are
solved exactly with respect to their objective functions, i.e., `1 norm is solved with
our sort(`1) method, `2 norm with socp(`2) and `22 norm with hungarian(`22).
In the evaluation of the computational times, we also present the state-of-the-art
method npsa(`2) proposed in [44].

Effect of the used `p norm The first experiment studies the trade-off between
RP and RB when different norms are used. The instances are generated and
evaluated according to the protocol described in Section 2.5.2. The results for
instances with n ∈ {10, 15, 20, 30, 50, 100, 150} and m ∈ {3, 4, 5} are displayed in
Figure 2.5 altogether, as we have observed that the general shape of trade-off
curves do not depend heavily on the particular values of m and n. A more detailed
comparison of the differences between the individual curves with particular values
of m and n for `1 norm is displayed in Figure 2.6.

The coordinates of each point on the curve in Figure 2.5 correspond to RP
and RB of the solution averaged over 100× 7× 3 = 2100 instances. Each point is
obtained with a different value of r parameter, i.e., the position of a point on the
curve is completely parameterized by r. We have taken 100 values of r distributed
uniformly on [0, 1] for each method. In Figure 2.5, it can be seen that all the
methods achieve comparable trade-off curves in terms of `1, `2 and `22 (although
technically speaking `22 is not a norm), yet each norm gets more advantage in



32 Numerical experiments

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)
`1 norm

`2 norm [44]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [44]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [44]

`22 norm

0 0.02 0.04 0.06 0.08

0

0.1

0.2

Stochastic
Programming
solution

Robust Price (RP)

R
o
b

u
st

B
en

efi
t

(R
B

)

`1 norm

`2 norm [44]

`22 norm

Figure 2.5: Trade off between RP and RB for `1, `2 and `22 formulations with independent
jobs.

different parts of the curve. Thus, they are incomparable but essentially identical.
What is particularly interesting, is that all methods allow obtaining solutions with
a positive RB while having a negative RP. Thus, in this setting, a free lunch is
possible and one can get a more stable and cheaper solution than the deterministic
one. It is likely due to the fact that the deterministic solution completely lacks
the information about variances, which robust solutions can take advantage of. An
interesting question to ask is, how the choice of the particular norm affects the
decision maker. As we have seen in Figure 2.5, `1 norm achieves similar trade-offs
between RP and RB as `2 norm. On one hand, the advantage of `2 norm may be
seen by the fact that it exactly resembles the standard deviation of the solution
objective, thus the weight of the norm term can be directly interpreted. On the
other hand, `1 norm does not offer this, but its advantage for the decision maker
lies in its practical computational tractability. In other words, with `1 norm it is
affordable to compute the whole RP/RB curve and pick any solution that suits the
requirements of the decision maker.

Computational times In this experiment, we provide a measuring of time needed
to solve the problem depending on the used norm and algorithm. In Figure 2.7
and Table 2.1, we display comparison of computational times socp(`2), sort(`1),
milp(`1), and npsa(`2). The x axis in Figure 2.7 represents instances with different
values of n and m. Axis y depicts the computational time in seconds. Note the
logarithmic scale of the y axis. Each data point is given by an average of over 100
instances. One can see that socp(`2) is computationally the most expensive, while
milp(`1) and sort(`1) are far less demanding. Indeed, milp(`1) is 10 times faster
than socp(`2) while sort(`1) is even more than three orders of magnitude faster
than socp(`2) for the largest instances. In addition, all the methods solving DR-
PTFT(`1) have consistent running times — the error bars (±1 sigma) are virtually
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Figure 2.6: Relation between RP/RB curve and instance parameters for `1 formulation.

non-existent. While it is not surprising for sort(`1), in the case of milp(`1) this
phenomenon is explained by the observation that the solver has solved every problem
instance in the root node, yielding to consistent times. For more detailed results
see Table 2.1. There, we can see that for a larger number of machines m, the
problem becomes simpler. For the largest instances with n = 150 jobs, socp(`2) has
lower average number of visited nodes than for n = 100. This is due to occasional
timeouts that have occurred on the largest instances, especially for larger values of r
which put more emphasis on the robust term. Nevertheless, the average optimality
gaps reported by the solver were in these cases very small.

Next, we have compared our algorithms to the state-of-the-art method npsa(`2)
proposed in [44]. It is an exact algorithm solving the same problem as socp(`2), but
with independent jobs only. For the sake of comparison, we have scaled their runtimes
by the relative single-core performance of their and our CPU (approximately 1.5
times). It can be observed that even though npsa(`2) outperforms socp(`2), it is
still much slower than sort(`1). The error bars are not displayed, as they were not
reported in their paper.

To summarize, the results show that (i) one can obtain comparable RP/RB
trade-offs for the problem with `1 norm as for `2 norm, and (ii) the computational
time for the problem with `1 is much shorter than with `2 norm. Moreover, `1
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Figure 2.7: Comparison of averaged computational times for different methods and instance
sizes for problem with independent jobs and γ1 = 4.

formulation enjoys polynomial-time exact algorithm, while for `2 there is no such
guarantee on the time required for calculations. The likely non-existence of this
polynomial time bound is reflected in a higher spread of computation times observed
for socp(`2), with some instances taking over 1000 times longer to be solved than
the average. Although it may not be that dramatic for instances benchmarked
in Figure 2.7, this difference even increases with the size of the instance, turning
the solution to instances with more than hundreds of jobs nearly intractable with
socp(`2). Such large instances occur, e.g., when scheduling unit test batches (as
described in the introduction), with tens of thousands of jobs possible.

2.5.4 Dependent jobs: quality, stability and performance

In this section, we study the computational properties of the problem with dependent
jobs. Specifically, we investigate: (i) what are the benefits of using information
about the correlations between jobs to quality/stability of the schedule, and (ii)
what amount of data is needed to reliably estimate covariance matrix such that it
brings a meaningful benefit over just a diagonal covariance. Furthermore, we report
computational times needed to solve such a problem, depending on the properties
of the covariance matrix and the used norm.

Effect of the used `p norm In the first experiment, we compare RP/RB trade-off
curves obtainable with `1 and `2 norms. The experiment assumes perfect information
about the covariance, i.e., algorithms have access to the true covariance matrix.
Since the solution of a single instance with n = 10 jobs with full covariance takes
more than one hour to compute with socp(`2) model, we have limited ourselves
to instances only with n = 10 and m = 3 in this experiment. As the solution of `1
formulation is much faster, we took 100 values of r uniformly distributed on [0, 1]
while for `2 formulation, we have used 25 values of r. The results can be seen in
the left part of Figure 2.8.

Similarly, as for the independent case, the trade-off curves are very similar to
each other, but here the solution with `2 achieves slightly better RB values. We
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sort(`1) npsa(`2) [44] milp(`1) socp(`2) [44]

n m time [s] time [s] time [s] nodes [−] time [s] nodes [−] gap [%]

10 3 0.0003 0.0036 0.010 0.0 0.03 2.76 0.001
4 0.0003 0.0027 0.010 0.0 0.04 2.36 0.000
5 0.0003 0.0018 0.010 0.0 0.03 1.94 0.000

15 3 0.0004 0.0072 0.021 0.0 0.07 5.64 0.001
4 0.0004 0.0060 0.021 0.0 0.05 5.93 0.001
5 0.0004 0.0052 0.021 0.0 0.04 4.97 0.001

20 3 0.0007 0.0156 0.036 0.0 0.13 21.62 0.002
4 0.0007 0.0121 0.036 0.0 0.12 11.34 0.002
5 0.0007 0.0105 0.036 0.0 0.08 9.88 0.001

30 3 0.0014 0.0426 0.079 0.0 0.31 399.74 0.003
4 0.0014 0.0383 0.079 0.0 0.29 139.16 0.003
5 0.0014 0.0307 0.079 0.0 0.27 47.28 0.002

50 3 0.0036 0.2477 0.212 0.0 2.50 2377.50 0.003
4 0.0035 0.2006 0.210 0.0 3.91 1885.92 0.007
5 0.0035 0.1784 0.210 0.0 2.16 449.87 0.004

100 3 0.0190 3.0238 0.892 0.0 3.86 36029.88 0.015
4 0.0189 2.7509 0.888 0.0 2.48 24225.20 0.010
5 0.0189 2.4252 0.885 0.0 5.21 20566.85 0.012

150 3 0.0226 13.6820 1.964 0.0 16.07 12858.49 0.033
4 0.0227 10.3278 1.953 0.0 10.84 13555.14 0.020
5 0.0226 9.4144 1.942 0.0 25.95 15514.36 0.024

Table 2.1: Detailed comparison of performance indicators for independent jobs.

believe that the reason for it is related to the fact that PSD matrices are closely
connected to `2 norm, which also takes a unique role among the different `p norms.
That is, `2 is the only norm among `p norms which is induced by a scalar product,
and by Riesz representation theorem, its dual norm is also `2. Actually, every
scalar product on Rn corresponds to exactly one positive-definite n× n matrix. We
believe the `2 norm is, therefore, more intuitive to work with when working with
PSD matrices, and hence, leads to slightly better results. These differences did not
play a significant influence for the case of independent jobs, but it seems to have a
bigger impact for the dependent case. However, what will be shown in a subsequent
experiment, when one does not have the perfect knowledge of covariance (i.e., it
has to be estimated from a finite sample set), then the differences between `1 and
`2 norms become negligible again. Thus, even with dependent jobs, both norms
allow obtaining solutions of comparable quality/stability, especially considering the
fact that the solution with `1 norm is much faster. Again, we see this as a benefit
for the decision maker which can afford to compute the whole RP/RB trade-off
curve and choose the desired balance between these two.

Full and diagonal covariances with perfect information The second experi-
ment assesses the effect of using the full covariance matrix, assuming the perfect
knowledge of it. Hence, in this setting, the algorithm has access to the true covari-
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Figure 2.8: Trade-off between RP and RB with `1 and `2 formulations for dependent jobs
with perfect covariance knowledge and its diagonal part.

ance matrix and we measure which values of RP/RB are achievable compared to
the case when one uses just its diagonal part. The results are displayed in the right
part of Figure 2.8. There, we have generated 100 instances with n = 10 jobs and
m = 3 machines. Each curve is obtained with 100 values of r parameter controlling
the trade-off between RP and RB. The solid curve is obtained using full covariance
with the perfect information; hence, it represents an upper bound on the RP/RB
curve. The dashed curve represents the performance of a solution when just the
diagonal part of the covariance matrix is used, i.e., when (potential) dependency
between jobs is ignored (but being tested against distributions with non-diagonal
covariance). It can be seen that using the information from the full covariance
matrix allows obtaining about two times larger RB for the same RP than using just
its diagonal part.

Full covariance with imperfect information In practice, one might not have
access to the true covariance, but rather the covariance needs to be estimated
from empirical data. Hence, in the following experiment, we study how many data
samples are needed to obtain an estimate of the covariance matrix, which actually
produces an additional benefit over the ignorance of mutual correlations.

Instance milp-diag(`1) milp(`1) socp(`2) [44]

n×m time [s] std [s] time [s] std [s] time [s] std [s]

8× 3 6.44× 10−3 1.7× 10−5 7.29× 10−3 1.8× 10−4 0.14 0.08
9× 3 7.83× 10−3 1.1× 10−5 8.66× 10−3 8.1× 10−5 0.30 0.22

10× 3 9.41× 10−3 5.6× 10−5 1.04× 10−2 1.1× 10−4 3.09 3.88
11× 3 1.10× 10−2 2.4× 10−5 1.22× 10−2 1.3× 10−4 100.13 787.20
12× 3 1.29× 10−2 3.9× 10−5 1.46× 10−2 9.9× 10−4 488.95 1087.30

Table 2.2: Computational times of different solving methods and instance sizes for depen-
dent jobs.

The setup is the following. We generate 100 instances with n = 10 and m = 3.
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Figure 2.9: Effect of S-rate to RP/RB curve with dependent jobs.

Then, we follow the evaluation protocol described in Section 2.5.2, with the exception
that S-rate is now a parameter whose effect is investigated. The tested values of
S-rate are 0.001, 0.002, 0.005, 0.01 and 0.1, which corresponds to 10, 20, 50, 100 and
1000 samples used for the estimation of mean µ̂ and covariance Σ̂.

The results are shown in Figure 2.9, where the results on the left side ignore the
mutual correlations and the results on the right assume the full covariance.

Curves for `1 norm were obtained using 100 values of r parameter wheres
the curves for `2 with 25 values (since its solution is much more computationally
demanding). The top curve, denoted as∞ samples, corresponds to results when the
algorithm has the perfect knowledge of the covariance. When the number of samples
is decreasing, the achievable RB for a fixed RP is decreasing as well. However, it
can be seen that when the number of samples drops below a certain level, then
we may obtain a solution that performs even worse than the solution ignoring
mutual correlations, i.e., assuming independence. This effect can be observed in
Figure 2.9 for the full covariance estimated with just 10 samples, where for some
RP values the solution has worse RB than when just the diagonal is estimated.
Again, the trade-off curves are comparable for both `1 and `2 norms. Moreover,
the computational results displayed in Table 2.2 show that both the solution in
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Instance sort(`1) milp(`1) socp(`2) [44]

n×m time [s] std [s] time [s] std [s] time [s] std [s]

8× 3 2.21× 10−4 1.03× 10−6 6.0× 10−3 7.02× 10−5 0.13 0.08
9× 3 2.45× 10−4 1.04× 10−6 7.3× 10−3 3.18× 10−5 0.29 0.40

10× 3 2.72× 10−4 1.54× 10−6 9.0× 10−3 5.44× 10−5 1.29 1.78
11× 3 3.07× 10−4 1.97× 10−6 1.1× 10−2 2.53× 10−5 7.07 13.79
12× 3 3.39× 10−4 1.97× 10−6 1.2× 10−2 3.44× 10−5 25.88 59.59

Table 2.3: Computational times of different solving methods and instance sizes for depen-
dent jobs with copositive covariance matrices.

terms of `1 norm with full covariance (i.e., milp(`1)) and just its diagonal part
(denoted as milp-diag(`1)) are much faster than socp(`2). As a result, the above
experiment suggests that when enough data is available, then it is advantageous for
the decision maker to solve the problem with full covariance rather than assuming
the independence between jobs as it provides more protection against solution
variance.

Scaling with respect to the sample quantity Evidently, the amount of data
that is needed to achieve the required RB depends on the size of the problem instance,
i.e., the number of jobs n. Therefore, we have performed an experiment, where we
fixed S-rate to 0.01 and 0.1, and we change the number of jobs n ∈ {5, 10, 20, 50, 100}
while we keep the number of machines m = 3. The results are displayed in
Figure 2.10, where the RP/RB curves are obtained by milp(`1) with a varying
number of jobs n, but with a fixed S-rate (0.01 on the left side, 0.1 on the right side).
For each n, two curves are reported — the dashed curve is the one with perfect
information, whereas the solid curve corresponds to the case when the limited
number of samples (given by S-rate) is available. Therefore, the absolute values
of RB are not that important (as it changes with the number of jobs n), but the
difference between the two curves matters. We can see that, e.g., for n = 50 jobs, the
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S-rate equal to 0.1 (i.e., 1000 samples) is essentially enough to obtain a theoretically
optimal trade-off curve (see the right plot in Figure 2.10). On the other hand, with
S-rate equal to 0.01 (i.e., 100 samples), a similar level of discrepancy between the
two curves is achieved for just n = 10 jobs (see the left plot in Figure 2.10). These
values for S-rate correspond to the number of free parameters of a PSD matrix that
need to be estimated, which is roughly quadratic in n.

2.5.5 Copositive covariance matrices

In this section, we focus on copositive covariance matrices, which is a special class of
covariance matrices allowing us to solve the problem in polynomial time, as shown
in Section 2.3.5. There are several natural questions connected with this class of
covariance matrices. For example, do they bring any additional benefits in terms
of RP/RB curve in comparison to using just their diagonal part? How often these
matrices appear among the ones generated by the evaluation protocol, and is the
solution of the problem in terms of `1 norm still comparable to `2 norm?
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Figure 2.11: Effect of S-rate to RP/RB curve with copositive covariance matrices for
instances with n = 10 and m = 3.
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The setup is similar to the experiments in Section 2.5.4. Due to the limited
performance of socp(`2) with dependent jobs, we have restricted the comparison
to the instances with m = 3 machines and the maximum of n = 12 jobs. The
true covariances are drawn from a distribution over PSD matrices described in
Section 2.5.4, with the same parameters, i.e., ν = n+40, λ = 1 and µ′ = 5 ·1. With
the given parameters, we have observed that the sampled matrices are copositive
with respect to the used values of m and n in about 30% of cases and these were
used in the following experiments.

Effect of the used `p norm First, we discuss achievable trade-off curves. The
results are displayed in Figure 2.11. There, we can see several essential differences
from the results for general covariance matrices presented in Figure 2.9. First, we
see that differences between `1 and `2 are much smaller for copositive covariance
matrices in comparison to general ones (displayed in the left plot of Figure 2.8).
Next, it can be seen that the achievable RB for a fixed RP is about 0.02 (for
n = 10 jobs) smaller than in the case of general covariance matrices. Both these
observations are explained by the fact that the copositive matrices tend to be more
diagonally dominant, which is in line with the results observed in experiments with
independent jobs. Furthermore, the results also show that using a full covariance
matrix brings significantly more robustness than using just a diagonal part of the
matrix. Thus, dealing with copositive covariance matrices is indeed meaningful.

Computational times The last experiment measures the computational times of
different methods. Interestingly, when we compare computational times of socp(`2)
method for general covariance matrices in Table 2.2 and the computational times for
copositive covariance matrices in Table 2.3, we see that the runtimes are significantly
smaller for the later ones. This again points to a relation between copositive and
diagonally dominant matrices, for which socp(`2) scales better than in the general
case. On the other hand, for milp(`1) method, the computational times are
comparable regardless of the type of covariance matrix. Finally, it can be seen that
sort(`1) method is superior, being about 100 times faster than milp(`1), which
indicates a good scaling to even larger instances (given by polynomial computational
complexity).

2.6 Conclusion

In this paper, we study a distributionally robust scheduling problem with the total
flow time criterion. The distribution of uncertain processing times is subject to
ambiguity belonging to a set of distributions with constrained first two central mo-
ments. A prior work [44] has established that such a problem can be translated into
a second-order conic programming problem. We have noticed that this optimization
problem can be viewed as a minimization of a linear function plus a regularization
term expressed in terms of `2 norm. A natural question immediately arises — is the
use of a particular norm essential, or can it be replaced with some other `p norm,
perhaps with more favorable computational properties while providing a similar
level of robustness?
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We answer this question affirmatively. We have provided a characterization
of complexity for the problem with independent jobs in the sense of any `p norm.
As a special case of our theorem, we have improved the upper bound on the
complexity for the case of `2 formulation proposed in [44]. For the `1 norm, we
obtained even stronger results, leading to a polynomial-time algorithm. For the
case of dependent jobs, we identified a class of covariance matrices admitting an
efficient, polynomial-time solution algorithm, when `1 regularization term is used.
Interestingly, carefully conducted experiments have shown that solutions with `1
regularization term provide almost identical trade-offs between the quality and
robustness to the more complex `2 regularization. This result comes as a surprise,
considering that the best-known solution for dependent jobs in the sense of `2
regularization is able to solve only problems with 10 jobs and 3 machines within an
hour, wheres our algorithm for `1 can successfully solve instances with hundreds of
jobs, and for a class of generalized positive covariance matrices, is of polynomial
time complexity.

The results also demonstrate the importance of utilizing the information about
potential correlations between jobs, even when one does not have the perfect
knowledge of covariance. This realistic case also shows that it is not crucial to
use the formulation with `2 norm, but it can be replaced with `1 norm with
essentially identical quality and stability — at a much reduced computational
cost. This stimulates to study further the relation between tractable solutions
for (conservative) ambiguity sets and approximate solutions for more expressive
(but intractable) DRO formulations in environments with limited data availability.
It is subject to a further study to which extent are the ideas developed in this
paper applicable for more complex objective functions such as, e.g., total tardiness.
Furthermore, the complexity of `1 formulation for general covariance matrices
remains as an open question as well structural differences between the solutions
obtained with different regularization norms.
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3.1 Introduction

This paper addresses scheduling in mixed-criticality systems where tasks have
different degrees of importance (criticalities) and share a common resource. The
key requirement of these systems is to isolate tasks such that a lower-criticality
task does not influence any higher-criticality task. When the processing time of
tasks is uncertain, the unexpected prolongation of a task may affect the execution
of another task with higher criticality, which is extremely dangerous for safety-
critical systems. A naive solution assuming the worst-case processing times leads to
inefficient utilization of the resource. This is problematic, especially for embedded
systems having limited computational and hardware resources.

To overcome the processing time uncertainty, we utilize the so-called F-shaped
tasks, where each task has an integer criticality and a set of alternative processing
times. The schedules with F-shaped tasks are proactive and contain exponentially
many alternative schedules, with the alternative being selected based on the realized
processing time of a task that occurs during the runtime execution of the schedule.
The structure of the schedule guarantees that in any of these alternatives, all highly
critical tasks are performed, rejecting low-criticality tasks only if a more critical one
is prolonged. At the same time, the resource is efficiently utilized since when critical
tasks are not prolonged, low-criticality tasks may use the resource. Therefore, the
proactive schedules with F-shaped tasks achieve a trade-off between the required
safety margins and an efficient resource usage. An important advantage of this
approach is that despite such flexibility, the schedules only take polynomial-sized
space. In addition, even though the corresponding optimization problem isNP-hard,
our exact algorithms are computationally efficient in practice.

In the following text, we formally define a single resource scheduling problem
with non-preemptive F-shaped tasks to minimize the maximum completion time.
The relation between real-world applications and this scheduling problem is provided
in Section 3.2.
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3.1.1 Problem statement

We assume a set of F-shaped tasks IMC = {T1, . . . , Tn} to be scheduled on a single
resource. We define an F-shaped task (or F-shape for short) and its criticality as
follows:

Definition (F-shaped task). The F-shaped task Ti is a pair (Xi,Pi) where Xi ∈
{1, . . . ,L} is the task criticality and Pi ∈ NXi , Pi =

(
p

(1)
i , p

(2)
i , . . . , p

(Xi)
i

)
is a

vector of processing times such that p
(1)
i < p

(2)
i < . . . < p

(Xi)
i .

Furthermore, we refer to p
(`)
i as the processing time of Ti at level `. Let us

denote L as the highest criticality in IMC, i.e., L = maxTk∈IMC Xk. Having a set
IMC of F-shaped tasks, we define a feasible schedule of IMC as follows:

Definition (Feasible Schedule). By the schedule for a set of F-shaped tasks IMC =
{T1, T2, . . . , Tn}, we refer to the assignment of start times s = (s1, s2, . . . , sn) ∈ Nn0 .
We say that schedule (s1, s2, . . . , sn) for IMC is feasible if and only if ∀i, j ∈
{1, . . . , n}, i 6= j :

(
si + p

(min{Xi,Xj})
i ≤ sj

)
∨
(
sj + p

(min{Xi,Xj})
j ≤ si

)
. (3.1.1)

The sufficient and necessary conditions for the feasibility of a schedule with
F-shaped tasks state that tasks are non-preemptive and do not overlap on any
criticality level. For example, in Figure 3.1a where T5 follows T4, F-shaped task

T5 cannot start earlier than that at s4 + p
(2)
4 , since min{X4,X5} = 2, which is the

highest common criticality level of T4 and T5.

Given the schedule s, we say that the completion time of a task is given by its
start time in s plus the processing time at the highest criticality level:

Definition (Makespan of a Schedule). Given a feasible schedule s = (s1, s2, . . . , sn),

the completion time of task Tj is given as Cj = sj + p
(Xj)
j . The maximal

makespan of the schedule s is the latest completion time, i.e., Cmax = maxj Cj =

maxj

{
sj + p

(Xj)
j

}
.

Further in the text, we will use the term makespan instead of the maximal
makespan for simplicity. The problem we deal with in this paper is to find a feasible
schedule for the given set of F-shaped tasks with criticality at most L, which has
the minimal makespan:

Definition (MC–L Problem Statement). Given the set IMC of F-shaped tasks with
maximum criticality L, find a feasible schedule minimizing the makespan, i.e.,

min
s
Cmax

subject to

feasibility conditions (3.1.1)

s ∈ Nn0 .
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In the three-field Graham-Blazewicz scheduling notation [75], the problem is
denoted as 1|mc = L|Cmax, where 1 denotes the scheduling on a single resource,
mc = L stands for the mixed-criticality aspect of tasks of maximal criticality L, and
Cmax stands for the minimization of the maximum completion time. This problem
is known to be NP-hard in the strong sense even for the special case mc = 2 (two
criticality levels), as shown by the reduction from 3-Partition problem in [81].

3.1.2 Related work

The study of mixed-criticality systems originates from real-time scheduling commu-
nity due to its practical applications. In the seminal paper [175], Vestal proposed a
model of mixed-criticality that understands each task as a set of different processing
times for discrete levels of assurance. This understanding of mixed-criticality was
later adopted by many others in the following works, e.g., Baruah [12, 15], Burns [40,
41] and Davis [54]. This line of research mostly deals with response time analysis of
different scheduling policies considering preemptive tasks in so-called event-triggered
systems [93].

Often cited disadvantage of complex event-triggered systems is their inability to
be certified for safety-critical applications [87, 3]. Therefore, researches have turned
their attention toward static scheduling in mixed-criticality systems [93, 170, 20]
that solves the problem with certification and predictability. The problem with
preemptive tasks with two criticality levels was studied in [20]. They proposed a
heuristic algorithm that constructs a static schedule for multiple resources while
considering precedence constraints. Hanzalek et al. [81] were the first to state the
mixed-criticality as a static non-preemptive scheduling problem, for which they
proposed the relative-order MIP model to solve the problem with release times ri
and deadlines d̃i, i.e., 1|ri, d̃i,mc = L|Cmax and they proved that minimizing the
makespan is strongly NP-hard for two criticality levels.

The follow-up works aimed to study different problems arising from the schedul-
ing of F-shaped tasks. The idea of approximating cumulative distribution functions
with F-shapes has appeared in [6]. Dürr et al. [64] studied the case, where each task
is given by a single number pi ∈ N defining pi criticality levels with unit processing
time prolongation; hence they appear as equilateral triangles in Gantt charts. They
refer to this special case of the scheduling with F-shaped tasks as the triangle
scheduling problem. Their main results are the proof that the makespan minimiza-
tion with triangular tasks is at least weakly NP-hard and a quasipolynomial-time
approximation scheme for the problem. Seddik [151] noted that makespan mini-
mization with F-shaped tasks decreases the probability of tasks execution. Hence,
instead of making compact schedules, they proposed a non-regular criterion that
maximizes the execution probability of the tasks — spreading them as much as
possible under deadline constraints. They presented the proof that finding optimal
start times remains NP-hard under the fixed permutation and they proposed (i)
dynamic programming for the case of two criticality levels and (ii) MIP model for
the general problem.

Makespan minimization with tasks up to two criticality levels (i.e., MC-2) is
closely related to classical parallel machine scheduling problems [129] such as uni-
formly related machines with makespan minimization (i.e., Q||Cmax [97]). The
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machines represent critical tasks while the speeds of the machines are set propor-

tionally to the difference of processing times p
(2)
i −p

(1)
i at their both levels. However,

the makespan minimization in parallel uniform machines environments leads to
suboptimal solutions for MC-2 since makespan minimization disregards makespans
on machines with smaller load than Cmax.

A closer problem is the scheduling on identical parallel machines with the total
tardiness criterion, i.e., P ||∑Tj [159]. The total tardiness criterion minimizes
the total sum of processing processing times of jobs that exceed their due date,
which relates to makespan minimization criterion in MC-2. This relation is further
discussed at the end of Section 3.3.2. However, for the general problem MC-2, the
transformation cannot be used.

Moreover, the problem with positive time lags 1|lij > 0|Cmax with chain prece-
dence [117] can be used to solve MC-2. Even thought it is possible to reduce to
more complex problems to obtain a solution, in practice, it is computationally
inefficient method, as the structure of the original problem that can be exploited is
not exposed to the algorithm.

Another related problem is the bin packing [71], which considers an unlimited
number of bins (optionally of different sizes) and a set of items to pack. The goal is
to pack the items using the minimum number of bins while their capacity is not
exceeded. Further connections can be seen also with 1D cutting stock problem [57],
where one cuts items of different size from material rolls of the given length such
that the residual waste is minimized. The main difference from those two problems
is that the size of the bin (material roll) cannot be exceeded (contrary to MC-2).

Solving problems with more criticality levels brings yet another level of com-
plexity, yielding looser relation to the above mentioned problems. The makespan
scheduling with more criticality levels can be then related to more general packing
problems, such as polyominoes [73].

Taking a broader perspective, the problem in this study is related to stochastic
optimization [144] due to the uncertainty of processing times [79]. Moreover,
it contains aspects of task disruption [133] and rejection [152] due to flexible
execution of schedules, and robust scheduling [29] due to the robustness with respect
to processing time prolongation. To the best of our knowledge, none of these
approaches alone can be applied to our problem, as we need a combination of
uncertainty, robustness and task rejection at once. The problem of static non-
preemptive mixed-criticality scheduling has been addressed by [81, 6] only; however
they lack computationally efficient exact solution method, which is presented in
this paper.

3.1.3 Contribution and paper outline

This paper focuses on the fundamental properties of F-shaped tasks that arise
from scheduling problems in mixed-critical environments. We study the problem
of the makespan minimization with F-shaped tasks (i.e., 1|mc = 2|Cmax and
1|mc = 3|Cmax) and develop fast exact algorithms for solving the problems. The
main contributions of this paper are as follows:

– an approximation algorithm for the problem with two criticality levels (see
Section 3.3.1),
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– an exact efficient block MIP model that optimizes over non-isomorphic per-
mutations (see Section 3.3.2),

– a branch-and-price algorithm with a pseudopolynomially solvable pricing
problem (see Section 3.3.3),

– a structural result on optimal permutations and a generalization of the branch-
and-price for more criticality levels (see Section 3.4.1 and Section 3.4.2), and

– the experimental evaluation of the proposed algorithms (see Section 3.5).

The rest of this paper is organized as follows. In Section 3.2, we describe
our model for processing time uncertainty, explain the online execution of the
schedule, and show real-life applications of the model. In Section 3.3, we derive
a factor-two approximation algorithm for the problem with two criticality levels,
unveil the structure of optimal schedules, and propose an efficient MIP formulation
that optimizes over non-isomorphic permutations. In Section 3.4, we generalize
the method for more criticality levels. The numerical experiments are described
in Section 3.5, where we demonstrate the efficiency of our algorithms and bounds
distinguishing easy instances from the difficult ones. The conclusions are drawn in
Section 3.6.

3.2 Uncertainty and execution model

In this section, we explain how uncertain processing time of a task, given by a
probability distribution, can be modeled by an F-shaped task. Next, we will show
how F-shapes form static schedules, that encapsulate different alternative runtime
scenarios. Finally, we describe some real-life applications suitable for the proposed
model.
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Figure 3.1: Schedule with F-shaped tasks and the executed alternative.
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3.2.1 Approximation of a distribution function

The processing time uncertainty may be expressed by a probability density function
(PDF). Figure 3.2a shows a real-life PDF of computational times of an algorithm
used in autonomous driving. This algorithm, described in [113] consists of matrix
multiplications, fast Fourier transform, inverse transform, and a binary search.
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(a) PDF of computational times. (b) F-shape as an approximation of CDF.

Figure 3.2: Approximation of computational times represented as an F-shaped task.

Real-life distributions of computational times often have a long tail, i.e., the
actual computational times can be significantly larger than the expected value, but
with a decreasing probability. Therefore, it is convenient to display cumulative
distribution functions (CDFs) with a logarithmic scale on the y-axis (see Figure 3.2b).
Each task has criticality prescribed by the application requirements (e.g., the
pedestrian tracking has higher criticality than adaptive light shaping). Processing

time p
(`)
i at each criticality level ` is given by the CDF and the corresponding

probability threshold.
The choice of probability thresholds is dependent on the target application and

its safety requirements. For example, often the automotive safety integrity levels
(ASIL) standard [87] states that the system must guarantee that all high-criticality
activities will be successfully completed with the probability of at least 0.999,
medium-criticality with at least 0.99, and low-criticality with 0.9. Then, it can
be analytically computed by examining the worst-case coverage, that the choice
of thresholds 0.999 for the high level,

√
0.99 ≈ 0.995 for the medium level and√

0.9√
0.99
≈ 0.952 for the low critical level guarantees that in any feasible schedule,

all tasks will be successfully completed at least with the required probability. See
Figure 3.2b for the resulting F-shape.

3.2.2 Runtime execution scenarios

A schedule with F-shaped tasks is the same as any other static schedule, i.e., it
is a static assignment of tasks to start times. However, it can be executed under
different scenarios that emerge from the processing time uncertainty. Hence, we
distinguish two concepts — a schedule and an execution scenario. The schedule
is a static assignment of F-shapes to start times, and is computed from the given
set of F-shaped tasks; thus, it is known before the runtime execution. On the
other hand, the execution scenario is a function of the schedule and the observed
processing time prolongations; therefore, it is not known in advance. The criticality
of an F-shaped task plays a role in the runtime execution — a more critical task
is allowed to consume the resource time of a less critical task to compensate for
its prolongation if needed. This can happen in cases where a more critical F-shape
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covers a less critical one (e.g., T5 covers T6 in Figure 3.1a).
An example of a static schedule of F-shaped tasks can be seen in Figure 3.1a.

Since the exact processing time of tasks is not known in advance, the schedule
needs to account for the observed processing time prolongations, i.e., provide an
alternative for each possible scenario. The realized scenario is described in terms of
the execution level et of the static schedule at each time instance t. Denoting L as
the maximum criticality among all tasks, the execution level et : t→ {0, 1, . . . ,L} is
a piecewise constant function. In Figure 3.1a, one of the possible execution scenarios
is depicted by the black line. Its value corresponds to the current system criticality
level with value 0 used in cases where the resource is idle.

Example We will describe the execution policy through a specific example de-
picted in Figure 3.1a. In this case, the execution has begun at time t = 0 at the
first level, i.e., e0 = 1. The task T1 is executed until time t = 5. Here, it is observed
that T1 is not finished by that time. Therefore, its processing time is prolonged;
i.e., the realized processing time is greater than 5. The execution level is raised
to the second level, i.e., e5 = 2, and the execution of T1 continues. At time t = 9,
T1 is completed. However, tasks T2 and T3 are rejected during this scenario since
the more critical task T1 is prolonged and the execution of T2 and T3 would collide
with it. Hence, if a prolongation occurs, it is compensated by rejecting some of the
low-criticality tasks.

When a task is completed, the execution matches-up [19] with the base level
(i.e., et = 0). In our example, e9 = 0 denotes that the resource was available at
time t = 9 during the considered scenario. The next task executed is T4, since at its
start time s4 = 11, the resource was available; i.e., e11 = 0 and its execution starts
at the first level. This sequence of observed events and reactions of the execution
policy results in the executed alternative depicted in Figure 3.1b.

3.2.3 Real-world applications

As it was described in the previous subsection, static schedules with F-shaped
tasks contain exponentially many alternatives, and it might be the case that for
a schedule, there are scenarios that reject some or even all low-criticality tasks in
the schedule. Nevertheless, it is still reasonable to schedule all tasks and not to
exclude them from scheduling in advance because this behavior has support in the
applications.

First, most of real-life embedded systems perform a periodic workload [40,
170, 175], i.e., the same tasks (given in advance) are repeated over time (e.g.,
periodical measurement of oil temperature). In these cases, the rejected task
might be executed again in few milliseconds in the next period (see, e.g., [64] for
application to retransmission of communication messages in safety-critical embedded
systems). In non-periodic environments, such as production scheduling or scheduling
of surgeries in an operating theater [151], the low-criticality tasks rejected in the
current scheduling horizon are transferred to the following one where they will be
scheduled again. Secondly, the rejection of a task occurs rarely, and it is reasonable
to assume that in practical applications, we talk about exceptions.

Furthermore, many of today’s real-time applications, such as advanced driver
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assistance systems, demand both high computing power and safety guarantees.
A real-life example of such systems is NVIDIA DRIVE™ PX2, which contains a
powerful graphics processing unit that runs deep neural networks for computer
vision that secure autonomous driving capabilities. A common property of such
algorithms is that their computational time is not deterministic since it frequently
depends on the content of the input image. For example, the computational load
in the problem of visual object tracking increases with the number of objects in
the camera image. Furthermore, the additional uncertainty comes from low-level
mechanisms such as the shared access to the main memory, the processor caches
and interconnects.

3.3 Problem with two criticality levels

In this section, we deal with the problem restricted to two criticality levels, i.e.,
MC-2. This problem models an environment that distinguishes between critical
and non-critical activities. The critical activities are those that cannot be rejected
under any circumstance, whereas non-critical are the ones that can be if a critical
one is prolonged. Concerning practical applications, the number of criticality levels
L might be relatively low, i.e., usually L � n, where n is the number of tasks in
IMC . Indeed, without loss of generality, we can assume that L is bounded above by
n, as proposed by Lemma 3:

Lemma 3. For any instance IMC of the problem MC-L, there exists an instance
I ′MC of the problem MC-L′, L′ ≤ L, such that L′ ≤ n and that any feasible schedule
for I ′MC is a feasible schedule of IMC with the same makespan.

Proof. Suppose we have a feasible schedule s for IMC . If there is no task Ti ∈ IMC
with criticality ` = Xi, then there is no Tj such that ` = min{Xj ,Xi}. Therefore,
removing level ` from all tasks Ti ∈ IMC, Xi > ` while keeping the start times
s fixed will not violate the feasibility conditions in Definition . Moreover, the

makespan Cmax = maxk

{
sk + p

(Xk)
k

}
is preserved since Xk 6= `.

By removing the level `, we effectively reduce the maximum criticality in the
instance IMC , since ` ≤ maxk Xk = L. Therefore, we obtain an instance I ′MC of the
problem MC-L′ such that L′ < L. This transformation can be chained until there
is such unused level `. Furthermore, since L′ ≤ |{Xi | ∀Ti ∈ I ′MC}| = |{Xi | ∀Ti ∈
IMC}| ≤ n, the claim follows.

The corollary of Lemma 3 is that if IMC is an instance of the problem MC-L,
then without loss of generality, ∀` ∈ {1, . . . ,L} ∃Ti ∈ IMC : Xi = `, i.e., we can
assume that for each criticality level ` ∈ {1, . . . ,L}, a task with the same criticality
exists. The schedules are defined in terms of start times of tasks. However, it is
easy to see that the search for schedules can be reduced to an optimization problem
over a set of permutations of tasks:

Definition (Left-shifted Schedule). Let π = (π(1), π(2), . . . , π(n)) be a permutation
of a set of tasks IMC. Then, the left-shifted schedule of permutation π is a schedule
s, where the task π(1) starts at time 0 and all other tasks start at their earliest
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start times such that they do not overlap on any level with any preceding task in the
order given by π, i.e.,

sπ(1) = 0

sπ(i) = max
j<i

{
sπ(j) + p

(min{Xπ(i),Xπ(j)})
π(j)

}
∀i ∈ {2, . . . , n}

We say that a schedule s of a permutation π is dominant for π, if it has the
minimum makespan among the set of all possible schedules of the permutation π.

Lemma 4. For any instance of MC-L, the left-shifted schedule is dominant for any
permutation π.

Proof. By contradiction. Suppose we have a left-shifted schedule s of a permutation
π and a feasible schedule s′ of the same permutation π that is not left-shifted,
such that Cmax (s′) < Cmax (s). Since s′ is not left-shifted, then either s′π(1) > 0

or s′π(i) > maxj<i

{
s′π(j) + p

(min{Xπ(i),Xπ(j)})
π(j)

}
for some i ∈ {2, . . . , n}. Therefore,

it holds that s′j > sj for some task Tj ∈ IMC. However, since Cmax (s) =

maxk

{
sk + p

(Xk)
k

}
is a non-decreasing function of start times, then it follows that

Cmax (s′) ≥ Cmax (s), which leads to the contradiction.

That is, given the permutation of tasks, the optimal makespan is achieved by
shifting all tasks to the left while maintaining feasibility, i.e., overlapping conditions
from Definition . Moreover, it can be shown that for the case of ` criticality levels,
the makespan of such schedule will always be at most `-times larger than the optimal
one.

Proposition 4. Any algorithm for the problem MC-L producing the left-shifted
schedule is L-approximation algorithm.

Proof. Let us denote the makespan of an optimal solution of IMC instance as
OPT(IMC) and the makespan of any left-shifted solution as LS(IMC). Since

max`≤L
{∑

Tj∈IMC :Xj≤` p
(`)
j

}
is a lower bound on OPT(IMC), we can write

max
`≤L





∑

Tj∈IMC :Xj≤`
p

(`)
j



 ≤ OPT(IMC) ≤ LS(IMC) ≤

L∑

`=1

∑

Tj∈IMC :Xj=`
p

(`)
j ≤

≤ L ·max
`≤L





∑

Tj∈IMC :Xj≤`
p

(`)
j



 ≤ L ·OPT(IMC),

where the third inequality follows from the fact that the longest possible left-shifted
schedule has tasks sorted in a non-decreasing order of criticalities.

In the next section, we will propose an approximation algorithm for problem
MC-2, that achieve on average better results than its the worst-case guarantees.
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3.3.1 Approximation algorithm

We propose the following approximation algorithm. The main concept of the
algorithm is to build the schedule using basic units, which we call blocks. Let us
partition the input instance IMC into two disjoint subsets L and H, IMC = L ∪ H,
L ∩ H = ∅. Let L be the set of tasks with low criticality L = {Tj | ∀Tj ∈ IMC :
Xj = 1}, |L| = nL and H be the set of tasks with high criticality H = {Ti | ∀Ti ∈
IMC : Xi = 2}, |H| = nH . Note that by Lemma 3, we can assume that L,H 6= ∅.
The algorithm constructively partitions tasks into the so-called coverage sets.

Definition (Coverage set). Let Ti ∈ IMC be an F-shaped task. Then,

cov(Ti) ⊆ {Tj | ∀Tj ∈ IMC : Xj = Xi − 1}

is a subset of tasks with criticality Xi − 1.

The coverage set cov(Ti) can be viewed as a set of less critical tasks, which
immediately follows Ti in a schedule. If Tj ∈ cov(Ti), then Tj is covered by Ti. The
tasks {Ti} ∪ cov(Ti) form a block (see Figure 3.3a with three different blocks). The
algorithm constructs blocks that are used later to derive the whole schedule. In
each iteration, the algorithm takes an unassigned task Tj ∈ L with the longest

processing time p
(1)
j and a task Ti ∈ H, which currently has the largest available

gap, defined as Wi = p
(2)
i − p

(1)
i −

∑
Tk∈cov(Ti)

p
(1)
k . Note that the gap Wi can be

even negative if the sum of processing times of tasks in cov(Ti) is larger than p
(2)
i .

After Tj ∈ L and Ti ∈ H are selected, Tj is assigned to the coverage set of Ti,
i.e., Tj ∈ cov(Ti). When the task Tj is assigned, the gap Wi is decreased by the

processing time p
(1)
j . This procedure is repeated until all tasks in L are assigned.

In fact, the algorithm works similarly as the LPT (longest processing time first)
rule for Q||Cmax problem [97].

task Xi Pi

T1 2 (3, 9)
T2 2 (4, 8)
T3 2 (2, 9)
T4 1 (8,−)
T5 1 (4,−)
T6 1 (3,−)
T7 1 (3,−)

(a) Input instance

iteration

#1 cov(T3)← {T4}, W3 ← 7− 8 = −1
#2 cov(T1)← {T5}, W1 ← 6− 4 = 2
#3 cov(T2)← {T6}, W2 ← 4− 3 = 1
#4 cov(T1)← {T5, T7}, W1 ← 2− 3 = −1

permutation π = (T1, T5, T7, T2, T6, T3, T4)
schedule s = (0, 10, 18, 20, 3, 14, 7)

(b) Iterations of the algorithm and the solution

Table 3.1: Illustrative example of (APX-MC-2) algorithm.

The output of the algorithm is a permutation π of all tasks in IMC. The
permutation is formed by all tasks in H sorted in a non-decreasing order of Wi,
each of them interleaved by assigned tasks Tj ∈ cov(Ti). The resulting schedule
is given by the left-shifted schedule of the permutation π. Table 3.1 shows an
illustrative example of how the algorithm proceeds. The pseudocode can be seen in
the (APX-MC-2) algorithm.
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Algorithm 3.1: 2-Approximation algorithm for MC-2 (APX-MC-2).

input : an instance IMC of MC-2
output : a vector of start times s1, . . . sn

1 let p
(1)
1 ≥ p(1)

2 ≥ . . . ≥ p(1)
j ≥ . . . ≥ p

(1)
nL

2 Wi ← p
(2)
i − p

(1)
i ∀Ti ∈ H

3 for j = 1 to nL do
4 k ← arg maxiWi

5 Wk ←Wk − p(1)
j

6 cov(Tk)← cov(Tk) ∪ {Tj}
7 π ← ()
8 for i = 1 to nH do
9 π ← (π, Ti)

10 for Tj ∈ cov(Ti) do
11 π ← (π, Tj)

12 return Left-Shifted(π)

The algorithm runs in O(nL(log nH + log nL) + nH). The dominant operations
are sorting (line 1) and preservation of the max-heap of Wi’s (line 5). The (APX-MC-
2) algorithm ensures that the makespan of any produced schedule is at most twice
worse than the optimal one, which can be seen directly from Proposition 4. The
difficulty of improving the upper bound on the approximation factor is introduced
by the presence of ”long” tasks in L together with uneven length of differences

p
(2)
i − p

(1)
i of tasks in Ti ∈ H. However, for some specific classes of instances we

can obtain tighter factor: (i) when all tasks in H have the same constant difference

∆ > 0 between the second and the first level, i.e., ∀Ti ∈ H : p
(2)
i −p

(1)
i = ∆, then the

method of [67] gives us a PTAS (polynomial-time approximation scheme), (ii) when

maxTj∈L p
(1)
j ≤ minTi∈H p

(2)
i − p

(1)
i , then (APX-MC-2) has factor at most 3/2, as

will be shown below. We note that the case (ii) is the most practical one, since such
instances arise from problems where the original processing time distributions have
long tails.

For the problem with two criticality levels, i.e., MC-2, where it holds that the
longest task in L is not longer than the difference between the second and the first
level of any task in H, i.e.,

max
Tj∈L

p
(1)
j ≤ min

Ti∈H

(
p

(2)
i − p

(1)
i

)
, (SLT)

we can obtain factor 3/2 for (APX-MC-2) algorithm. Such instances arise from the
practical problems where the original distribution functions describing processing
time uncertainty have long tails, which is the realistic case. Note that such condition
does not rule out solutions where a task in L overlaps the second criticality level of
some task in H.

Proposition 5. (APX-MC-2) is a 3/2-approximation algorithm for the problem
MC-2 satisfying condition (SLT).



54 Problem with two criticality levels

Proof. Let lb =
∑
Tri∈H p

(1)
i + max

{∑
Ti∈H

(
p

(2)
i − p

(1)
i

)
,
∑
Tj∈L p

(1)
j

}
be a lower

bound on the optimal makespan. Furthermore, let us denote the makespan of the
schedule produced by (APX-MC-2) for instance IMC as APX(IMC). Without loss
of generality, we may assume that nL > nH ; otherwise, the algorithm returns an
optimal schedule due to assumption (SLT). We say that a task Tj ∈ L is assigned
if inserting it into coverage set cov(Ti) of the chosen Ti ∈ H does not decrease
the available gap below zero (i.e., Wi < 0). Otherwise, we say Tj overlaps. We
denote by L the set of all tasks that overlap and the processing time of the longest

overlapping task by p = maxTj∈L p
(1)
j .

First, we note that (APX-MC-2) assigns at least nH largest tasks in L. Indeed,
let Tj ∈ L be the first task of L that overlaps at the k-th step of the algorithm.
Suppose that k ≤ nH . Since Tj overlaps a task with the largest available gap
Ti? = arg maxTi∈HWi, then Tj overlaps any other task Ti ∈ H during k-th iteration.
However, since k ≤ nH , then there is either (i) a task Ti′ ∈ H with the currently

available gap Wi′ = p
(2)
i′ − p

(1)
i′ , i.e., with no assigned tasks so far or (ii) every

task Ti ∈ H has exactly one task in its coverage set. In the case (i), by the

assumption (SLT) we have that Wi′ ≥ p
(1)
j , which contradicts the choice of Ti? .

In the case (ii), Ti? violates assumption (SLT) since p
(2)
i? − p

(1)
i? < p

(1)
j . Therefore,

k > nH . We proceed by splitting the proof into two cases.

Case 1:
∑
Ti∈H

(
p

(2)
i − p

(1)
i

)
≤∑Tj∈L p

(1)
j . We start by bounding the cardinality

of L. To do so, suppose that |L| ≥ nH . Since all tasks in L have the property that
their assignment into any task Ti ∈ H would lead to Wi < 0, we could put at least
one task in L to the coverage set of every task in H. Hence, it would hold that
∀Ti ∈ H : Wi < 0, which implies an optimal solution. Therefore, suppose that
|L| ≤ nH − 1, i.e., we have at most nH − 1 overlapping tasks. Then we can write

APX(IMC)
OPT(IMC)

≤
∑
Ti∈H p

(2)
i +

∑
Tj∈L p

(1)
j

lb
=

∑
Ti∈H p

(2)
i +

∑
Tj∈L p

(1)
j

∑
Ti∈H p

(1)
i +

∑
Tj∈L p

(1)
j

≤ 1 +

∑
Tj∈L p

(1)
j

∑
Tj∈L p

(1)
j

≤ 1 +

∑
Tj∈L p

(1)
j

nH · p+
∑
Tj∈L p

(1)
j

≤ 1 +

∑
Tj∈L p

(1)
j

2 ·∑Tj∈L p
(1)
j

≤ 3

2
,

where the first inequality follows from the fact that the expression in the numerator
is an upper bound on the APX(IMC), the equality from the definition of lb, the
second inequality follows from Case 1 assumption, the third from the fact that at
least nH tasks in L of length at least p are assigned and the fourth inequality from

the fact that nH · p ≥ (nH − 1) · p ≥∑Tj∈L p
(1)
j .

Case 2:
∑
Ti∈H

(
p

(2)
i − p

(1)
i

)
>
∑
Tj∈L p

(1)
j . Similarly, as in Case 1, we may

assume that at most nH − 1 tasks from L are overlapping, i.e., |L| ≤ nH − 1. If
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this would not be the case, we would have at least nH tasks from L with the
property that assigning any of them to arbitrary Ti ∈ H would lead to Wi < 0,
which contradicts Case 2 assumption. Then, similarly as in Case

APX(IMC)
OPT(IMC)

≤
∑
Ti∈H p

(2)
i +

∑
Tj∈L p

(1)
j

∑
Ti∈H p

(2)
i

≤ 1 +

∑
Tj∈L p

(1)
j

∑
Ti∈H p

(2)
i

≤ 1 +

∑
Tj∈L p

(1)
j

∑
Tj∈L p

(1)
j

≤ 3

2
.

where the third inequality follows from Case 2 assumption and the fourth inequality
from the same arguments as in Case 1.

Note that (APX-MC-2) works well in practice even for the general problem,
hence we use it as the initial heuristic for branch-and-price algorithm proposed in
Section 3.3.3. In the next section, we derive the block MIP formulation that utilizes
the structure of optimal permutations.

3.3.2 Block MIP formulation

The proposed MIP model is based on a similar concept as the approximation
algorithm described in the previous subsection. The model exploits three symmetries
in the problem. The first symmetry comes from the fact that tasks in L with the
same processing time are indistinguishable. Therefore, the constraint to schedule
all tasks can be given by the requirement to schedule a given number of tasks with
a specific processing time, instead of scheduling unique tasks’ occurrences. The
second symmetry occurs in the ordering of tasks in cov(Ti). The last symmetry
comes from the ordering of sets of tasks that are covered since the Cmax criterion
is invariant with respect to the ordering of blocks. This property becomes apparent
from Figure 3.3, and is proven below.

Let P =
{
p

(1)
j

∣∣∣∀Tj ∈ L
}

be the set of unique processing times of tasks in L

(i.e., it is not a superset) and let np =
∣∣∣
{
Tj | ∀Tj ∈ L : p

(1)
j = p

}∣∣∣, i.e., the number

of tasks in L with processing time equal to p ∈ P .

The decision variable xi,p states the number of tasks in L with processing time

equal to p ∈ P that are covered by Ti ∈ H, i.e., xi,p = |{Tj | ∀Tj ∈ cov(Ti) : p
(1)
j =

p}|. The continuous variable Bi corresponds to the length of {Ti} ∪ cov(Ti) block,
e.g., see B3 in Figure 3.3a. The first symmetry is broken by constraint (3.3.3), while
the second symmetry is broken by constraint (3.3.2). Finally, the third symmetry
is broken by the objective function.

tt

T1T1 T2T2

s1s1 s2s2 s3s3

cov(T1)cov(T1) cov(T3)cov(T3)

T3T3

B3B3

T4T4 T6T6 T5T5 T7T7

(a) Left-shifted schedule of the canonical per-
mutation.

tt

T2T2T1T1 T3T3

s1s1 s3s3 s2s2

T4T4 T6T6 T7T7 T5T5

B3B3

(b) Equivalent schedule with the same coverage
sets represented by a non-canonical permuta-
tion.

Figure 3.3: Schedule with two criticality levels.
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min
∑

Ti∈H
Bi (MIP-MC-2)

subject to

Bi ≥ p(2)
i ∀Ti ∈ H (3.3.1)

Bi ≥ p(1)
i +

∑

p∈P
p · xi,p ∀Ti ∈ H (3.3.2)

∑

Ti∈H
xi,p = np ∀p ∈ P (3.3.3)

where

Bi ≥ 0 ∀Ti ∈ H (3.3.4)

xi,p ∈ Z+
0 ∀(Ti, p) ∈ H × P (3.3.5)

The model contains Θ(nH |P |) ⊆ O(nHnL) integer variables xi,p, which define
for each Ti ∈ H, how many tasks in L with the given processing time follow
immediately after Ti in a permutation. The final schedule s is given by the left-
shifted permutation of tasks Ti ∈ H interleaved by Tj ∈ cov(Ti). In fact, for each
solution of MIP formulation (MIP-MC-2), there are nH ! different but equivalent
solutions. Figure 3.3b shows one particular solution equivalent to the one in
Figure 3.3a. Hence, to obtain a representative solution for this equivalence class,
we define canonical permutation, which we use to reconstruct the schedule s from a
solution of (MIP-MC-2).

The permutation π is the canonical permutation if ∀Ti, Tj ∈ H : i < j =⇒
π(i) < π(j) and ∀Ti ∈ H,∀Tk, Tl ∈ cov(Ti) : k < l =⇒ π(i) < π(k) < π(l).
Therefore, in a canonical left-shifted schedule, T1 ∈ H is scheduled at time s1 = 0.
The start time of task Tq ∈ H, q > 1 is given by the following recurrent formula:

sq = sq−1 + max



p

(2)
q−1, p

(1)
q−1 +

∑

Tk∈cov(Tq−1)

p
(1)
k



 ∀q : 1 < q ≤ nH . (3.3.6)

The start times of the tasks Tk ∈ cov(Tq), ∀Tq ∈ H are given as

sk = sq + p(1)
q +

∑

Tk′∈cov(Tq):k′<k

p
(1)
k′ ∀Tk ∈ cov(Tq). (3.3.7)

The makespan Cmax of the schedule s = (s1, s2, . . . , sn) is then

Cmax = snH + max



p

(2)
nH , p

(1)
nH +

∑

Tk∈cov(TnH )

p
(1)
k



 . (3.3.8)

Now, we show that MIP formulation (MIP-MC-2) is correct.

Proposition 6. Given the optimal solution of (MIP-MC-2), the schedule s is
feasible and optimal.
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Proof. First, we will show that such schedule s is feasible, and later, that it is
optimal. To ensure feasibility, for all tasks in IMC, the conditions specified in
Definition need to be satisfied. For all Ti, Tj ∈ H, i < j, the start times are set
such that

sj ≥ . . . ≥ si+1 = si + max



p

(2)
i , p

(1)
i +

∑

Tk∈cov(Ti)

p
(1)
k



 ≥ si + p

(2)
i ,

where the equality follows from (3.3.6). Since Xi = Xj = 2, the maximal common

criticality level of Ti and Tj is 2; thus, sj ≥ si + p
(min{Xi,Xj})
i follows. For all

Ti, Tj ∈ L, it holds that Ti ∈ cov(Tk), Tj ∈ cov(Tq) for some Tk, Tq ∈ H. If
Tk 6= Tq, then without loss of generality, let us assume that k < q, and thus,
sk ≤ sq. Therefore in this case, it follows from the definition of the schedule s

that sk + p
(1)
k ≤ si + p

(1)
i ≤ sq ≤ sj . If Tk = Tq and i < j, then si + p

(1)
i ≤ sj by

(3.3.7). For all Ti ∈ H, Tj ∈ L, there are essentially two cases. If Tj ∈ cov(Ti),

then immediately sj ≥ si + p
(1)
i . If Tj 6∈ cov(Ti), then there exists some Tk such

that Tj ∈ cov(Tk). For k > i, we have si + p
(2)
i ≤ sk ≤ sj , and for k < i, we have

sk ≤ sj + p
(1)
j ≤ si.

Now, we show that s has the optimal makespan. Applying recursively (3.3.6) to
makespan (3.3.8) leads to

Cmax =

nH∑

q=1

max



p

(2)
q , p(1)

q +
∑

Tk∈cov(Tq)

p
(1)
k



 .

Since the objective of (MIP-MC-2) is a sum of Bis and each Bi is by con-
straints (3.3.1) and (3.3.2) equal to the maximum of terms in the above expression,
(MIP-MC-2) minimizes Cmax.

The formulation (MIP-MC-2) provides additional insights into MC-2 problem.
Its structure is related to the scheduling problem of parallel machines with the
total tardiness criterion P ||∑Tj [159]. It is possible to polynomially reduce a
special case of MC-2 when all tasks in Ti ∈ H have the same constant difference

p
(2)
i − p

(1)
i = ∆ between the second and the first level to problem P |dj = ∆|∑Tj .

The transformation generates nH machines and nL tasks with a common due date
∆. Then, it can be shown that for every optimal solution of such instance of
P |dj = ∆|∑Tj holds that (i) the completion time of the last task on each machine
is greater than or equal to ∆ or (ii) all start times are smaller than ∆. Under the
considered transformation, in case (i) the solution produced by P |dj = ∆|∑Tj

is optimal for MC-2 since its Cmax matches a lower bound
∑
Tk∈IMC p

(1)
k . In case

(ii), the total tardiness of this instance of P |dj = ∆|∑Tj is equal to the sum of
processing times that exceed the common due date ∆, since at most nH tasks have
non-zero tardiness in an optimal solution. We note that the reduction of the general
case of MC-2 to Q||∑Tj , where the speeds of machines are set proportionally to

the differences p
(2)
i − p

(1)
i in order to capture the fact that tasks in H are unequal is

not exact since in case (ii) the contribution of each machine to the total tardiness
is skewed by the machine speed.
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3.3.3 Branch-and-price decomposition

In this section, we propose a branch-and-price decomposition algorithm [11] to solve
the problem. In general, the problem is decomposed into several pricing problems
and a single master problem that couples them. We view tasks in H as individual
subproblems that resolve the question which tasks in L should be covered by which
task Ti ∈ H. These subproblems are coupled by the criterion that minimizes the

sum of amounts by which the second levels p
(2)
i of tasks in H are exceeded. See, for

example, the schedule in Figure 3.3b. Here, the second level of task T3 is exceeded

by the amount of p
(1)
5 . This is an equivalent way of expressing Cmax criterion. To

find out how to improve the current solution, we solve a pricing problem, which
suggests new coverage sets cov(Ti) that can improve the objective with the current
solution of the master problem.

The master problem contains cover constraints requiring that all tasks in L
are scheduled. Individual pricing problems communicate with the master problem
through shadow prices of cover constraints. Shadow prices express the need to
schedule the particular tasks in L. The problem (BNP-MC-2) represents the master
problem, which is a linear programming (LP) problem with an exponential number
of variables (i.e., all possible coverage sets). Such problems can be solved efficiently
through column generation (CG) [59], which utilizes the fact that only a polynomial-
sized subset of variables has a non-zero value in an optimal solution of the problem.
Each variable is associated with a column of coefficients in the constraint matrix and
the objective coefficient. CG starts with a few columns and progressively puts new
variables into the model. New columns are generated by a dedicated algorithm that
takes the current dual LP solution of (BNP-MC-2) and produces a new column that
can improve the objective value, or the algorithm proves that the current solution
of LP is optimal. Using CG, we can prove the optimality of the full model (with an
exponential number of variables) even without enumerating all variables. Therefore,
by solving the model, only a small subset of all variables is typically generated.

3.3.3.1 Master problem

The master problem resolves the question, how to split a set of tasks L into
coverage sets such that L =

⋃
Ti∈H cov(Ti) while the makespan is minimal. It uses

an indicator variable x
(s)
i , stating whether the particular configuration s ∈ Si is

covered by Ti ∈ H. A configuration s ∈ Si encodes the number of tasks with the

given processing time occurring in cov(Ti) into the vector a
(s)
i . Hence, the entry

a
(s)
i,p denotes the number of tasks in L with processing time equal to p, which is

covered by Ti in configuration s. Si is the set of all configurations available for
task Ti. See an example in Figure 3.3a. Here, T4, T5, T6, and T7 have different
processing times. Hence, the schedule displays the following three configurations:

a
(s1)
1 = (1, 0, 1, 0)

>
, s1 ∈ S1 a

(s2)
2 = (0, 0, 0, 0)

>
, s2 ∈ S2, and a

(s3)
3 = (0, 1, 0, 1)

>
,

s3 ∈ S3.

The master problem can be stated with the following LP:

min
x

∑

Ti∈H

∑

s∈Si
O

(s)
i x

(s)
i (BNP-MC-2)
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subject to
∑

Ti∈H

∑

s∈Si
a

(s)
i,px

(s)
i ≥ np ∀p ∈ P (3.3.9)

∑

s∈Si
x

(s)
i ≤ 1 ∀Ti ∈ H (3.3.10)

where

x
(s)
i ≥ 0 ∀s ∈ Si,∀Ti ∈ H (3.3.11)

The objective coefficient is given as O
(s)
i = max

{
p

(1)
i +

∑
p∈P p · a

(s)
i,p − p

(2)
i , 0

}
,

∀Ti ∈ H,∀s ∈ Si, where a
(s)
i ∈ Z|P |0 . The constraint (3.3.9) ensures that each

task in L is scheduled, while the constraint (3.3.10) states that each task Ti ∈ H
covers at most one configuration s ∈ Si. In the beginning, the master problem is
solved with restricted configuration sets Si containing only the minimal number
of configurations, ensuring the feasibility of the model (BNP-MC-2) and with an
empty configuration s0 ∈ Si,∀Ti ∈ H. The empty configuration s0 denotes the
empty covering set, i.e., cov(Ti) = ∅. During the solution of (BNP-MC-2), more
configurations are being added. To efficiently determinate which configuration to
add at each step, we need to consider the dual form of the LP problem, which is
stated as follows:

max
y,γ

∑

p∈P
npyp +

∑

Ti∈H
γi (BNP-DMC2)

subject to
∑

p∈P
a

(s)
i,pyp + γi ≤ O(s)

i ∀Ti ∈ H,∀s ∈ Si (3.3.12)

where

yp ≥ 0 ∀p ∈ P (3.3.13)

γi ≤ 0 ∀Ti ∈ H (3.3.14)

The values of dual variables y and γ are used to decide which configuration to
generate to improve the current solution of (BNP-MC-2). This is achieved using
the pricing problem, which generates a constraint of type (3.3.12) that is violated
by the current values of y and γ. In the next section, we will derive the pricing
problem.

3.3.3.2 Pricing problem

The pricing problem determines whether there exists a constraint that violates
the current dual solution or whether the primary solution is optimal and no such
constraint can be found. Due to LP duality, each constraint (3.3.12) corresponds

to the x
(s)
i variable in the primary model (BNP-MC-2), and hence, to the whole

column. To determine which column can enter the basis, one needs to find a
violated constraint in the dual form (BNP-DMC2). Therefore, at each iteration of
the branch-and-price algorithm, we ask whether there exists a configuration s ∈ Si
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(a column a
(s)
i and objective coefficient O

(s)
i ) that violates one of the constraints

(3.3.12) with the current dual solution ŷ, γ̂ of the master problem. This involves
deciding whether the following expression

0 > max{p(1)
i +

∑

p∈P
p · a(s)

i,p − p
(2)
i , 0} − γ̂i −

∑

p∈P
a

(s)
i,p ŷp = µi (3.3.15)

holds for the given fixed values of γ̂i and ŷ. If one is interested in a column with
the lowest reduced cost µi, it is equivalent to the problem

min
a

max{p(1)
i +

∑

p∈P
p · a(s)

i,p − p
(2)
i , 0} −

∑

p∈P
a

(s)
i,p ŷp (BNP-MC-2-PP)

a
(s)
i,p ∈ Z+

0 ∀p ∈ P (3.3.16)

Writing it down as an MIP leads to

max
a,z

∑

p∈P
a

(s)
i,p ŷp − z (3.3.17)

subject to
∑

p∈P
p · a(s)

i,p ≤ p
(2)
i − p

(1)
i + z (3.3.18)

where

z ≥ 0 (3.3.19)

a
(s)
i,p ∈ Z0 ∀p ∈ P (3.3.20)

which can be seen as a variant of Knapsack Problem [112] with items whose
values are given by the current shadow prices of assignment constraints (3.3.9)
and weights are given by processing times of tasks that need to be fitted into the

knapsack of size given by the size of the gap of p
(2)
i − p

(1)
i . However, the difference

is that there is a possibility to enlarge the size of the knapsack by some amount
while incurring the identical loss in the objective function. The structure of the
pricing problem shows a connection to 1D cutting stock problem [57], where the
pricing problem is the classical Knapsack Problem, since the length of any material
roll in the cutting stock cannot be exceeded.

An example of the pricing problem with nL = 5 tasks for the particular Ti ∈ H
is displayed in Table 3.2 and the corresponding optimal solution in Figure 3.4.
In this solution, T1, T3, and T5 are selected to form configuration s ∈ Si with

a
(s)
i = (1, 0, 1, 0, 1)> and O

(s)
i = 1.

Therefore, for z = 0, the pricing problem is an ordinary Knapsack Problem.
Since the processing times are integers, the variable z will also be always an
integer in an optimal solution. Having a pseudopolynomial upper bound on z,
we can solve different knapsack problems for all possible values of z separately.
However, the pricing problem can be solved even faster. Next, we will show that
the pricing problem is solvable in a pseudopolynomial time, and propose a dynamic
programming algorithm to solve it.
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j 1 2 3 4 5

p
(1)
j 2 10 3 7 5

ŷj 6.0 0.5 5.5 1.0 4.5

Table 3.2: Example instance of the pric-
ing problem for Ti ∈ H, Pi = (4, 13).

T1T1 T3T3 T5T5

zz

p
(2)
i � p

(1)
i = 9p

(2)
i � p

(1)
i = 9

TiTi

Figure 3.4: Optimal solution to the pricing
problem instance from Table 3.2.

The constraints (3.3.9) in a master problem enforce the required number of tasks
in L with the given processing time to be scheduled. For convenience, let us work
in the pricing problem with the specific occurrences of tasks in L instead. Hence,
for each specific task size p ∈ P , we choose to work with np number of tasks with
values ŷj = ŷp. In this way, the pricing problem respects the available number of
tasks in L with the given processing time.

Proposition 7. The pricing problem can be solved in a pseudopolynomial time in
the maximal length of a task.

Proof. For any fixed z ∈ N0, the pricing problem corresponding to task Ti ∈ H with

W = p
(2)
i −p

(1)
i becomes the knapsack problem with maximum capacity W+z, which

can be solved in O(nL(W + z)) by dynamic programming. Since in any solution

of the pricing problem, we pack items with total size of at most K =
∑
Tj∈L p

(1)
j ,

we can set an upper bound on z as K ≤ nL maxTj∈L p
(1)
j . Therefore, the pricing

problem can be solved as K independent knapsack problems while picking the best
solution among them in total O(nLK(W +K)) time.

However, we can do better. The pricing problem can be solved by the following
dynamic programming recurrence relation. Let U(k, j) be an optimal solution to the

pricing problem with capacity k and tasks {T1, . . . , Tj} ⊆ L. Let W = p
(2)
i − p

(1)
i .

For any k, j ≤ 0, we set U(k, j) = 0. Then, the recurrent relation is given for k ≤W
as follows:

U(k, j)←
{

max{U(k, j − 1), ŷj + U(k − p(1)
j , j − 1)} if p

(1)
j ≤ k

U(k, j − 1) otherwise
(3.3.21)

and for k > W , as

U(k, j)←
{

max{U(k, j − 1), ŷj + U(k − p(1)
j , j − 1)− (k −W )} if k − p(1)

j ≤W
max{U(k, j − 1), ŷj + U(k − p(1)

j , j − 1)− p(1)
j } if k − p(1)

j > W

(3.3.22)

The optimal solution of the pricing problem is then given as k̂ =
arg maxk∈[W+K] U(k, nL) with the objective value U(k̂, nL). If −U(k̂, nL)− γi < 0,
then the set of tasks in the solution corresponds to the new column that can enter

the basis (i.e., it has the so-called negative reduced cost). The new column a
(s)
i

has the objective coefficient O
(s)
i = max{k̂ −W, 0} and its entries are given by the

number of tasks with the given size contained in the solution of U(k̂, nL).
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The worst-case total running time of the algorithm is O(nL(W +K)). However,
in some cases, the pricing problem can be further simplified by fixing the set of
tasks that are necessarily included in an optimal solution.

Lemma 5. Every task Tj ∈ L with ŷj/p
(1)
j ≥ 1 is included in an optimal solution

of the pricing problem.

Lemma 5 is due to the influence of z ∈ R+
0 variable in MIP (3.3.17) to its criterion.

If for a task, Tj ∈ L holds ŷj ≥ p
(1)
j , then taking it into the solution cannot hurt

the objective, since an improvement ŷj − p(1)
j ≥ 0 is achieved by enlarging z by the

amount of p
(1)
j . In the example in Table 3.2, this rule suggests us to include tasks

T1 and T3. Lemma 5 is used in the algorithm for solving the pricing problem in the

following way. The set Q ⊆ L of tasks satisfying ∀Tj ∈ Q : ŷj/p
(1)
j ≥ 1 is taken out

of the pricing problem instance and the capacity W is decreased by
∑
Tj∈Q p

(1)
j .

Then, the pricing problem is solved only for the remaining tasks.

3.3.3.3 Initial solution and branching

The branch-and-price algorithm starts with an initial set of columns that leads
to a feasible solution of the model (BNP-MC-2). In our case, the initial solution
comes from the (APX-MC-2) approximation algorithm, where set cov(Ti) forms

the corresponding column a
(s)
i . After the master problem (BNP-MC-2) is solved

with the given set of columns, a subproblem corresponding to some task Ti ∈ H is
selected. In our case, we solve the subproblems in the non-increasing order of γ̂i
until there are no more columns with a negative reduced cost.

The optimal solution to the master problem (BNP-MC-2) can be fractional
in general. Therefore, to ensure an integer solution, a branching is employed
inside the branch-and-price algorithm. Hence, every master problem acts as a
node in the branch-and-bound tree. The tree is searched in the depth-first fashion.
We introduce a branching strategy on the original variables, i.e., based on xi,p
variables from (MIP-MC-2). It branches on the decision of how many tasks in
L with processing time p are present in cov(Ti). Therefore, given a fractional
value of the corresponding original variable x∗i,p obtained from the solution of the
master problem, two branches with constraints bx∗i,pc ≤ xi,p and dx∗i,pe ≥ xi,p are
created. In the first case, the constraint is reflected in the pricing problem by
reducing the capacity W by p · bx∗i,pc and taking those tasks into the solution. In
the latter case, the constraint is enforced by setting shadow prices ŷj to −∞ for

tasks Tj ∈ L′ ⊆
{
Tj

∣∣∣∀Tj ∈ L : p
(1)
j = p

}
, |L′| = np − dx∗i,pe. Note that in the

dx∗i,pe ≥ xi,p branch, Lemma 5 may suggest to take some tasks that are forbidden
in this branch. In this case, Lemma 5 does not apply. The choice of the variable to
branch on is performed by selecting the corresponding original variable with the
most fractional value, i.e., the one maximizing

∣∣bx∗i,p + 0.5c − x∗i,p
∣∣ function.
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3.4 Problem with three criticality levels

In this section, we generalize the results developed in Section 3.3 for working with
more criticality levels. We show that optimal schedules for problems with an
arbitrary number of criticality levels can be represented by trees. Based on this
finding, we give a computationally efficient scheduling algorithm for the problem
with three criticality levels.

3.4.1 Tree schedule structure

For simplicity, let us assume the problem with three criticality levels and its solution
depicted in Figure 3.5a. Note that the makespan of the solution is given by the sum
of lengths of blocks D1 and D2 formed by tasks with criticality level of three. This
is due to the analogous reason as in the case with two criticality levels described in
Section 3.3.2 since any permutation of blocks achieves the same makespan.

The length of the block D1 is given by the maximum between p
(3)
1 and the sum

of lengths of blocks B1, B3, and B4 formed by tasks with the criticality of two.
Applying the above reasoning recursively, an arbitrary order of blocks B1, B3, and
B4 achieves the same total length. To define the block B1, let us introduce the
so-called restricted task :

Definition. Let Ti ∈ IMC, Xi > 1 be an F-shaped task. Then, T ′i is called the
restriction of Ti and is given as

X ′i = Xi − 1, P ′i =
(
p

(1)
i , . . . , p

(Xi−1)
i

)
,

i.e., it is an F-shape that remains after removing the highest criticality level Xi from
Ti.

In Figure 3.5a, the permutation defining the order of tasks in this complete solu-
tion is given by a nested system of sets {cov(T1), cov(T2)}, cov(T1) = {T ′1, T3, T4},
cov(T ′1) = {T6} and cov(T2) = {T ′2, T5}, cov(T3) = {T7, T8}, cov(T4) = {T9},
cov(T ′2) = ∅, cov(T5) = {T10}.

Such a system of sets can be conveniently represented by a tree describing
coverage relations. Therefore, we establish the relation between the schedules and
trees:

Lemma 6. An optimal schedule of the problem MC-L is representable by a tree.

For the problem with L criticality levels, the solution is given by a rooted tree
with L + 1 layers, where the root (0-th level) is a dummy vertex and vertices in
`-th layer, ` ≥ 1, are given by all tasks Ti ∈ IMC with criticality Xi = L − ` + 1.
Furthermore, the immediate successors of a vertex Ti are tasks in cov(Ti) (including
its restriction T ′i ). Examples of a tree and the corresponding solution are depicted
in Figure 3.5b and Figure 3.5a, respectively. Note that swapping subtrees rooted
at T3 and T4 in Figure 3.5b leads to an isomorphic graph. This transformation
can be viewed as permuting B3 and B4 blocks inside the schedule in Figure 3.5a,
which leads to different but an equivalent schedule. Therefore, isomorphic trees
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D1D1 D2D2

B1B1 B3B3 B4B4 B2B2 B5B5
tt

T1T1

T3T3
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T5T5T4T4

T6T6 T7T7 T8T8 T9T9 T10T10

(a) Example of a schedule with three criticality levels.

T1T1 T2T2

T3T3 T4T4 T5T5
T 0

2T 0
2

T 0
1T 0
1

T6T6 T7T7 T8T8 T9T9 T10T10

(b) Tree representation.

T7T7 T8T8 T9T9T6T6

T2T2
T1T1

T3T3 T4T4

T10T10

T5T5

T 0
2T 0
2

T 0
1T 0
1

(c) Critical subtree.

Figure 3.5: Schedule with three criticality levels and representation of its permutation as
a tree.

represent equivalent schedules; hence, we optimize over non-isomorphic ones to
mitigate symmetries.

The actual schedule corresponding to a tree is obtained by traversing the tree
in the preorder fashion; every time a vertex of the tree corresponding to a non-
restricted task is visited, the corresponding task is scheduled at the earliest possible
start time. The makespan of the schedule is given by the so-called critical subtree,
which is a subgraph of the tree of the solution.

Definition (Critical Subtree). Given a tree of solution K, a critical subtree C ⊆ K
is a minimal subgraph of K that achieves the same makespan as K.

Figure 3.5c shows an example that highlights a critical subtree of the schedule
in Figure 3.5a. Basically, this is the minimal set of tasks that causes the achieved
makespan of the solution. Furthermore, we show that optimal trees consist of
optimal subtrees, as stated by the following proposition:

Proposition 8. There is an optimal tree of the solution of the problem MC-L, such
that every subtree rooted at a vertex corresponding to task Ti ∈ IMC, Xi > 1 is an
optimal tree of all its child vertices with respect to the problem MC-(Xi − 1).

Proof. By contradiction. Let us denote the subtree rooted under Ti as tree(Ti).
Suppose a unique optimal solution represented by a tree K that contains a subtree
tree(Ti) that is not an optimal tree. For such a solution, there are two cases. Either
for every critical subtree C ⊆ K, there exists a task Tj ∈ tree(Ti) ∩ C or not. If
yes, then by rearranging tree(Ti) into an optimal one would decrease the makespan
of tree K, which is by the assumption optimal. In the other case, by rearranging
tree(Ti) into the optimal one would not increase its makespan, and thus, no task
contained in tree(Ti) would enter a critical subtree C. Therefore, the makespan of
C, and thus, K would not increase.
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Proposition 8 states that for any problem instance, there is an optimal solution
with this property. However, in general, the optimal solution tree cannot be
constructed in the bottom-up fashion, i.e., constructing optimal subtrees of tasks
(and their restrictions) with criticality one and two and those joining with tasks of
criticality three and so on. In fact, it can be shown that this procedure would yield
suboptimal solutions. Hence, one has to first reason about which tasks fall into which
subtree, and given that such subtree is an optimal tree. However, Proposition 8 still
provides a useful insight into the structure of optimal solutions. We employ it in
the branch-and-price decomposition algorithm for the problem with three criticality
levels in the following section. The concept of the decomposition is similar to the
one proposed in Section 3.3.3 – to form blocks of tasks of the highest criticality
by exploring possible options of how to cover the remaining tasks by them. As a
consequence of Proposition 8, given the set of tasks to be covered by another task,
we know that they need to be scheduled there optimally according to the Cmax

criterion of the problem with one criticality level less. The master problem is used
to efficiently explore the options of which task should be covered by which tasks,
while the pricing problem, given the coverages, schedules them optimally.

3.4.2 Branch-and-price decomposition for MC-3

3.4.2.1 Master problem

For clarity, let us denote the set of all tasks with criticality three as D = {Tk | ∀Tk ∈
IMC : Xk = 3}, while the meaning of sets H, L, and P remains the same as in
Section 3.3.2. The general idea here is similar to that in Section 3.3.3 for two
criticality levels. Therefore, the master problem assigns tasks in H ∪ L to coverage
sets associated with tasks in D. This can be stated as follows:

min
x

∑

Tk∈D

∑

s∈Sk
O

(s)
k x

(s)
k (BNP-MC-3)

subject to
∑

Tk∈D

∑

s∈Sk
a

(s)
k,px

(s)
k ≥ np ∀p ∈ P (3.4.1)

∑

Tk∈D

∑

s∈Sk
b
(s)
k,ix

(s)
k ≥ 1 ∀Ti ∈ H (3.4.2)

∑

s∈Sk
x

(s)
k ≤ 1 ∀Tk ∈ D (3.4.3)

where

x
(s)
k ≥ 0 ∀s ∈ Sk,∀Tk ∈ D (3.4.4)

The column coefficient is given as O
(s)
k = max

{∑
Ti∈cov(Tk)Bi − p

(3)
k , 0

}
, where the

term cov(Tk) is a function of configuration s. The constant Bi denotes the length of
the block given by Ti ∈ cov(Tk), defined in the same way as in (MIP-MC-2). The

variable x
(s)
k states whether Tk ∈ D covers the set of trees s ∈ Sk, where s is given

by two vectors a
(s)
k and b

(s)
k . The coefficient a

(s)
k,p states how many tasks in L with
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processing time equal to p are rooted under the subtree of Tk ∈ D. The vector b
(s)
k

is the characteristic vector (i.e., a vector with binary entries denoting the presence
of an element) of tasks in H rooted under the subtree of Tk ∈ D.

The constraints (3.4.1) and (3.4.2) ensure that all tasks in H ∪ L are scheduled,
while the constraint (3.4.3) states that at most one configuration is selected per task
Tk ∈ D. The problem of how to generate a new configuration s that can improve
the current solution and the computation of the column coefficient is solved by the
pricing problem.

3.4.2.2 Pricing problem

Since now the pricing problem embeds the MC-2 problem, which is strongly NP-
hard, there is no pseudopolynomial algorithm solving the problem unless P = NP .
Hence, we formulate it as an MIP model. The complete description of the pricing
problem corresponding to a task Tk ∈ D can be stated as follows:

max
∑

Ti∈H
ŷixi +

∑

p∈P
ŷp

∑

Ti∈H∪{T ′k}
qi,p − z (BNP-MC-3-PP)

subject to
∑

Ti∈H∪{T ′k}
Bi − p(2)

i (1− xi) ≤ p(3)
k + z (3.4.5)

Bi ≥ p(2)
i ∀Ti ∈ H ∪ {T ′k} (3.4.6)

Bi ≥ p(1)
i +

∑

p∈P
p · qi,p ∀Ti ∈ H ∪ {T ′k} (3.4.7)

∑

Ti∈H∪{T ′k}
qi,p ≤ np ∀p ∈ P (3.4.8)

∑

p∈P
qi,p ≤ nLxi ∀Ti ∈ H ∪ {T ′k} (3.4.9)

xk = 1 (3.4.10)

where

z ≥ 0 (3.4.11)

Bi ≥ 0 Ti ∈ H ∪ {T ′k} (3.4.12)

xi ∈ {0, 1} ∀Ti ∈ H ∪ {T ′k} (3.4.13)

qi,p ∈ Z+
0 ∀Ti ∈ H ∪ {T ′k},∀p ∈ P (3.4.14)

The coefficients ŷp are shadow prices for constraints (3.4.1) and coefficients ŷi
correspond to shadow prices for constraints (3.4.2). The model assigns the given
number of tasks in L with processing time equal to p using qi,p variable to the
selected tasks from H that are selected using xi variables. Moreover, for the given
subproblem corresponding to the task Tk ∈ D, we work inside the model with its
restriction T ′k, which is always included in every solution by constraint (3.4.10).
Finally, if the optimal objective value is greater than −γ̂k, which is the shadow price
for the constraint (3.4.3) associated with the current subproblem Tk, then a column
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that can improve the current solution of the master problem exists. The column

coefficient O
(s)
k is then given as the value of z variable in an optimal solution.

The advantage of (BNP-MC-3-PP) MIP model is that it does not contain a
big-M constant. Furthermore, the sufficient condition for selecting a task in L into
an optimal solution suggested by Lemma 5 also applies here. Moreover, a similar

statement about tasks in H is also valid; if ŷi/p
(2)
i ≥ 1 for any Ti ∈ H, then Ti can

be taken into an optimal solution too.

3.4.2.3 Initial solution and branching

As an initial solution, we use a greedy algorithm that works in two steps. First, a
new instance I ′MC of the MC-2 problem is created by taking I ′MC = L ∪H ∪D′,
where D′ = {T ′k | ∀Tk ∈ D}, i.e., the set of restrictions of tasks in D. A solution
to this problem instance defines coverages corresponding to two bottom layers
of the solution tree (Figure 3.5b). The coverages in the top level of the tree
are determined by the solution of yet another MC-2 problem instance following
from the solution of I ′MC, consisting of tasks Tk? , Xk? = 2 with processing times

p
(1)
k? = max

{
p

(2)
k , p

(1)
k +

∑
Tj∈cov(T ′k) p

(1)
j

}
and p

(2)
k? = max

{
p

(3)
k , p

(1)
k?

}
for all Tk ∈

D. Tasks with criticality one are given by the original tasks in H, with their coverage
sets obtained from the solution of I ′MC ; e.g., T3 and cov(T3) from Figure 3.5a are

treated as a single task with processing time p
(1)
3 = B3.

The branching is realized for each Tk ∈ D both on the number of assigned tasks
in L with the given p ∈ P in the same way as in Section 3.3.3.3. For tasks in H, 0/1
branching is performed. We use the most fractional value strategy for selecting the
variable to branch on. The conditions imposed by the branching are taken into the
account by putting equivalent conditions into pricing problem (BNP-MC-3-PP).

3.5 Computational experiments

In this section, we provide experimental results obtained using the above-described
methods. The testing environment consists of a computer with Intel Xeon E5-2620
v2 @ 2.10 GHz equipped with 64 GB RAM running Gentoo Linux. The algorithms
are implemented in Python 3.5 and Java 8. As external solvers, Gurobi Optimizer
7.0.2 and IBM CPLEX 12.7.1 are used.

3.5.1 Results of the approximation algorithm

First, we estimate the phase transition [162] of the problem MC-2. This is a set of
threshold values on numerical parameters of instances of the problem that separates
easy instances from the hard ones. From our computational experience, we have
determined two main parameters that influence the difficulty of an instance the
most. The first parameter is the ratio between the number of tasks of different
criticalities, written as nH/nL. The second parameter is the ratio between the

mean value of the gap Wi = p
(2)
i − p

(1)
i of tasks in Ti ∈ H and that of processing

time p
(1)
j of tasks in Tj ∈ L. We denote this ratio of processing times as E[W ]/E[p],
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where E states for the expected value. The choice of these parameters naturally
arises from the way the makespan of a solution is given.
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Figure 3.6: Results of (APX-MC-2) approximation algorithm in the instance space of
MC-2.

We say that an instance is easy if the objective of the solution provided by the
(APX-MC-2) approximation algorithm equals to a lower bound. Recall that a lower
bound on the makespan in problem MC-2 is given as

lb = max

{∑

Ti∈H
p

(2)
i ,

∑

Tk∈IMC
p

(1)
k

}
.

Having an instance with relatively low (or high) ratios nH/nL and E[W ]/E[p]
makes (APX-MC-2) approximation algorithm likely to result into a solution whose
makespan matches the lower bound lb, and thus, solving the instance optimally.
Therefore, to assess where the hard instances are located in the space of instances,
we evaluate the solutions produced by the (APX-MC-2) approximation algorithm
using the grid search on a large set of parameter values. Data in Figure 3.6 are
obtained for the problem with n = 50 tasks, with each data point averaged over
75 independent samples. Figure 3.6a shows the fraction of instances where the
makespan of solutions does not match the lower bound lb. Therefore, blank areas are
filled with instances for which the (APX-MC-2) approximation algorithm produces
solutions with the objective matching the lower bound lb.

In general, even when the solution objective value is not equal to a lower bound,
the solution still might be optimal. Therefore, we compare the results obtained by
the (APX-MC-2) approximation algorithm with those obtained by the optimal ones.
In Figure 3.6b, the ratio of sub-optimally solved instances by (APX-MC-2) is shown.
Here, even though solutions of instances with E[W ]/E[p] ≤ 1 do not match a lower
bound, they are mostly solved optimally. Furthermore, it empirically shows all
instances where nH ≥ nL are solved optimally by the (APX-MC-2) approximation
algorithm.

We observe that the position of points in Figure 3.6 is invariant to the different
values of n. The cluster of points in Figure 3.6b displays where the difficult instances
of the MC-2 problem are located in the instance space.
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3.5.2 Computational time for MC-2 problem

In this section, we evaluate algorithms proposed in Section 3.3.2 and 3.3.3. We
have used three different sets of instances; each set consists of multiple batches
that differ in the total number of tasks n. Each of these batches contains 40
instances. Table 3.3 summarizes the results for instances that are generated from
the distribution corresponding to the cluster of points depicted in Figure 3.6b, which
correspond to difficult instances. We denote this dataset as MC-2-LOP. Table 3.4
shows the results for instances that are located at the same position in the instance
plane but have more than three times larger standard deviation of processing times
of tasks in L, thus resulting in a larger set P . We denote this dataset as MC-2-HIP.
In practical problems related to message scheduling [64], tasks usually have length
given as a power of two [65]. This follows from the implementation aspects of
real-life computer systems (i.e., lengths of packets). Thus, we also generate a set of
instances where processing times of tasks and their prolongations are given as a 2k,
k ∈ N0, denoted as MC-2-2K. We perform experiments with range k ∈ [0, 7], and
display the results in Table 3.5.

In all tables, the column gap is the mean optimality gap proven by the solver
within the time limit tmax = 300 s, and is given as 100 · ub−lbub , where ub is the
objective value of the best solution found, while lb is the best proven lower bound.
The column t denotes the mean computational time required to prove the optimality
of an integer solution (measured in seconds) for the instances computed within the
time limit. Columns gap and t report two values separated by the slash symbol
according to whether multithreading with 12 CPU cores for a single run (MT) is
allowed or just a single thread (ST) is used. In case of (BNP-MC-2) algorithm,
only the ST performance is reported, owing to its implementation. For all methods,
the lower bound computed in the root node is reported as a single value as it does
not depend on the computing power available.

The dash symbol denotes that for no instance in the batch, the optimality of
an integer solution is proven within the time limit (although a feasible solution is
found for each instance in any experiment). Finally, the column denoted as gen
states the mean number of columns generated during the whole run of (BNP-MC-2)
algorithm (measured in kilocolumns, i.e., thousands of columns) across all visited
nodes. We compare our methods with the currently best-known exact method [81].
The results of their MIP model are given in the column entitled Relative-Order
MIP.

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [81]

n tasks gap [%] MT/ST t [s] MT/ST gap [%] ST gen [kcols] t [s] ST gap [%] MT/ST t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / 0.2 (±0.2)
15 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 0.9 (±1.7) / 7.5 (±28.7)
20 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.1) 14.46 (±8.61) / 20.83 (±11.51) 38.6 (±43.0) / 198.1 (±63.0)
40 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / 0.1 (±0.1) 0.00 (±0.00) 0.1 (±0.0) 0.6 (±0.5) 69.66 (±5.34) / 73.87 (±3.36) —
50 0.00 (±0.00) / 0.00 (±0.00) 0.1 (±0.4) / 0.1 (±0.5) 0.00 (±0.00) 0.1 (±0.0) 0.6 (±0.4) 79.54 (±3.09) / 80.29 (±1.80) —
100 0.00 (±0.00) / 0.00 (±0.00) 0.1 (±0.1) / 0.2 (±0.1) 0.00 (±0.00) 0.2 (±0.0) 1.8 (±0.7) 93.09 (±0.75) / 93.59 (±0.93) —
200 0.21 (±0.00) / 0.21 (±0.00) 0.3 (±0.2) / 0.5 (±0.5) 0.00 (±0.00) 0.4 (±0.1) 13.0 (±5.0) 97.79 (±0.32) / 98.13 (±0.12) —
400 0.00 (±0.00) / 0.00 (±0.00) 0.5 (±0.2) / 0.8 (±0.3) 0.00 (±0.00) 0.8 (±0.1) 167.4 (±64.3) 99.10 (±0.04) / 99.10 (±0.04) —
800 0.00 (±0.00) / 0.00 (±0.00) 1.7 (±1.2) / 2.6 (±0.8) 2.90 (±0.60) 1.1 (±0.0) — 99.54 (±0.02) / 99.54 (±0.02) —
1000 0.00 (±0.00) / 0.00 (±0.00) 1.9 (±0.9) / 4.7 (±6.5) 2.68 (±0.55) 1.2 (±0.0) — 99.63 (±0.01) / 99.63 (±0.01) —

Table 3.3: Computational results for MC-2 problem on MC-2-LOP dataset.

We can see that the smaller the size of P is, the faster the instances are solved.
This pattern is also spotted in results for both MC-2-LOP and MC-2-2K datasets,
where the instances of the same size n are solved by (MIP-MC-2) about 10 times
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(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [81]

n tasks gap [%] MT/ST t [s] MT/ST gap [%] ST gen [kcols] t [s] ST gap [%] MT/ST t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 0.1 (±0.1) / 0.4 (±0.4)
15 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / 0.1 (±0.2) 0.00 (±0.00) < 0.1 0.2 (±0.0) 23.38 (±7.49) / 28.44 (±10.31) 16.5 (±41.4) / 18.6 (±47.6)
20 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / 0.1 (±0.1) 0.00 (±0.00) < 0.1 0.2 (±0.0) 29.84 (±17.31) / 26.45 (±20.64) 46.4 (±23.0) / 220.1 (±42.6)
40 0.00 (±0.00) / 0.00 (±0.00) 0.3 (±0.9) / 0.5 (±1.2) 0.00 (±0.00) 0.1 (±0.0) 0.3 (±0.1) 65.08 (±7.83) / 68.92 (±5.14) —
50 0.00 (±0.00) / 0.00 (±0.00) 0.6 (±1.1) / 1.3 (±2.2) 0.00 (±0.00) 0.1 (±0.2) 0.8 (±1.0) 74.89 (±4.58) / 76.27 (±3.81) —
100 0.08 (±0.00) / 0.08 (±0.00) 2.0 (±3.9) / 6.4 (±12.5) 0.00 (±0.00) 0.5 (±0.9) 24.4 (±84.4) 90.75 (±1.51) / 91.39 (±1.31) —
200 0.04 (±0.01) / 0.04 (±0.01) 15.2 (±41.2) / 16.2 (±34.7) 0.26 (±0.36) 0.8 (±0.8) 51.4 (±70.5) 96.60 (±0.77) / 97.24 (±0.21) —
400 0.04 (±0.05) / 0.02 (±0.01) 13.4 (±20.1) / 11.8 (±14.6) 2.10 (±0.98) 1.0 (±0.3) 139.5 (±95.9) 98.79 (±0.11) / 98.79 (±0.11) —
800 0.01 (±0.01) / 0.01 (±0.01) 30.7 (±43.0) / 31.3 (±35.4) 2.05 (±0.96) 1.0 (±0.1) 116.5 (±26.1) 99.37 (±0.04) / 99.37 (±0.04) —
1000 0.05 (±0.07) / 0.03 (±0.03) 35.8 (±41.2) / 49.2 (±59.1) 1.90 (±0.96) 1.1 (±0.0) — 99.49 (±0.04) / 99.49 (±0.04) —

Table 3.4: Computational results for MC-2 problem on MC-2-HIP dataset.

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP [81]

n tasks gap [%] MT/ST t [s] MT/ST gap [%] ST gen [kcols] t [s] ST gap [%] MT/ST t [s] MT/ST

10 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.0) 0.00 (±0.00) / 0.00 (±0.00) 0.3 (±0.4) / 1.0 (±1.4)
15 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.0) 12.44 (±5.88) / 12.20 (±6.83) 22.7 (±56.1) / 15.5 (±28.3)
20 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.2 (±0.1) 23.06 (±8.44) / 22.49 (±11.01) 65.1 (±58.1) / 199.2 (±66.5)
40 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) < 0.1 0.3 (±0.1) 46.40 (±11.87) / 48.95 (±10.70) —
50 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) 0.1 (±0.0) 0.4 (±0.1) 56.00 (±7.38) / 59.24 (±7.27) —
100 0.00 (±0.00) / 0.00 (±0.00) < 0.1 / < 0.1 0.00 (±0.00) 0.1 (±0.0) 0.7 (±0.2) 83.23 (±3.15) / 84.23 (±3.02) —
200 0.00 (±0.00) / 0.00 (±0.00) 0.1 (±0.0) / 0.1 (±0.1) 0.00 (±0.00) 0.2 (±0.0) 2.2 (±0.6) 93.77 (±0.54) / 95.93 (±0.56) —
400 0.00 (±0.00) / 0.00 (±0.00) 0.2 (±0.1) / 0.3 (±0.2) 0.00 (±0.00) 0.4 (±0.0) 12.4 (±2.1) 98.01 (±0.13) / 98.01 (±0.13) —
800 0.00 (±0.00) / 0.00 (±0.00) 0.7 (±0.3) / 0.9 (±1.0) 0.00 (±0.00) 0.7 (±0.0) 107.2 (±14.8) 99.02 (±0.05) / 99.02 (±0.05) —
1000 0.00 (±0.00) / 0.00 (±0.00) 0.9 (±0.8) / 1.3 (±1.0) 0.00 (±0.00) 0.9 (±0.0) 204.2 (±31.4) 99.20 (±0.02) / 99.20 (±0.02) —

Table 3.5: Computational results for MC-2 problem on MC-2-2K dataset.

faster in comparison to the results for the MC-2-HIP dataset. Interestingly, e.g., for
n = 400 tasks, even though the total number of instances unsolved to the optimality
is larger in the ST mode than in the MT mode, the average gap for the former is
smaller.

The relative-order MIP proposed in [81] particularly struggles with the MC-2-2K
dataset, solving all instances only with n = 10 tasks, despite having a relatively
small P . In comparison to [81], relative-order MIP can solve the instances with up to
n ≈ 15 tasks, whereas our proposed methods scale up to n = 1000 tasks. Moreover,
relative-order MIP [81] does not gain any significant advantage for instances where
|P | < nL. Furthermore, lower bounds in the root node obtained by the relative-order
method of [81] are weaker than those in cases of (MIP-MC-2) and (BNP-MC-2).

The median of the total number of columns generated by (BNP-MC-2) needed to
prove the optimality of an integer solution for an instance is depicted in Figure 3.7.
The figure shows that the number of generated columns needed to prove optimality
is roughly linear in the number of tasks. The smallest number of columns generated
is required in MC-2-2K dataset. The second smallest number of generated columns
is observed in MC-2-LOP dataset, producing, on average, approximately twice as
many columns. The most difficult dataset to solve is found to be MC-2-HIP in
terms of both the number of columns generated and computational time. One can
notice a spike in Figure 3.7 for the batch n = 100, where one instance took more
than 7 kilocolumns to solve. We see that the cardinality of P influences the mean
and variance of the number of columns generated.

For a better assessment, where the hotspots of our implementation of
(BNP-MC-2) are, we measure the time spent in solving the master problem and
pricing problem separately. We find out that over 95% of the total computational
time is spent on the pricing problem. Hence, the algorithm can be accelerated if an
efficient vectorized implementation of the algorithm for the pricing problem is used.
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Figure 3.7: Median of the total number of columns generated for instances of MC-2.

3.5.3 Computational time for the MC-3 problem

We work with two datasets for MC-3 problem, denoted as MC-3-HIP and MC-3-2K.
Each of them contains batches of instances with a different number of tasks n. For
each size n, the batch has 40 instances. In both datasets, the ratio between the
number of tasks with different criticalities is nD/nH = nH/nL ≈ 0.75 for each
instance. The datasets differ in the distribution of processing times. For MC-3-HIP
dataset, the processing times are given such that for every two consecutive criticality
levels, the ratios of the means of their prolongation is approximately 1.5 (i.e., the
region of hardness displayed in Figure 3.6b). In dataset MC-3-2K, the processing
times and their prolongations on each level are given as 2k, k ∈ [0, 7] to mimic the
problems of practical interests inspired by packet scheduling, similarly to MC-2-2K.

(BNP-MC-3) Relative-Order MIP [81]

n tasks gap [%] MT gen [kcols] t [s] MT gap [%] MT t [s] MT

10 0.00 (±0.00) < 0.1 0.2 (±0.0) 0.00 (±0.00) < 0.1
15 0.00 (±0.00) < 0.1 0.3 (±0.1) 0.00 (±0.00) 0.6 (±0.2)
20 0.00 (±0.00) < 0.1 0.3 (±0.2) 0.00 (±0.00) 8.1 (±22.7)
40 0.00 (±0.00) 0.1 (±0.0) 1.8 (±1.4) 44.40 (±8.98) —
50 0.06 (±0.00) 0.2 (±0.7) 3.4 (±2.7) 61.11 (±9.22) —
100 0.02 (±0.00) 0.2 (±0.3) 18.9 (±15.3) 88.39 (±1.20) —
200 0.17 (±0.22) 0.3 (±0.3) 110.4 (±77.6) 96.20 (±0.66) —
400 0.63 (±0.53) 0.8 (±0.7) 273.0 (±185.2) 98.72 (±0.07) —
800 0.81 (±0.55) 1.0 (±0.1) — 99.34 (±0.03) —
1000 0.82 (±0.52) 1.1 (±0.1) — 99.47 (±0.02) —

Table 3.6: Computational results for MC-3 problem on MC-3-HIP dataset.

(BNP-MC-3) Relative-Order MIP [81]

n tasks gap [%] MT gen [kcols] t [s] MT gap [%] MT t [s] MT

10 0.00 (±0.00) < 0.1 0.2 (±0.1) 0.00 (±0.00) 0.4 (±1.3)
15 0.00 (±0.00) < 0.1 0.6 (±1.0) 8.44 (±0.00) 9.7 (±21.8)
20 0.50 (±0.00) 0.1 (±0.8) 0.5 (±1.0) 19.89 (±9.26) 50.1 (±70.1)
40 5.20 (±5.12) 0.2 (±0.6) 3.3 (±8.9) 38.99 (±11.16) —
50 9.36 (±0.00) 0.4 (±2.2) 4.6 (±16.1) 50.87 (±9.95) —
100 0.00 (±0.00) < 0.1 0.3 (±0.1) 81.79 (±2.92) —
200 0.00 (±0.00) 0.1 (±0.0) 0.9 (±0.5) 92.68 (±0.71) —
400 0.00 (±0.00) 0.1 (±0.0) 4.3 (±1.7) 98.11 (±0.12) —
800 3.33 (±0.75) 0.3 (±0.4) 29.1 (±21.6) 99.03 (±0.05) —
1000 3.60 (±0.52) 0.6 (±0.5) 81.4 (±12.5) 99.23 (±0.04) —

Table 3.7: Computational results for MC-3 problem on MC-3-2K dataset.

In dataset MC-3-HIP, the algorithm (BNP-MC-3) can optimally solve nearly
all instances up to the size n = 100 within the time limit. It runs out of time
only in a single case for sizes n = 50 and n = 100. However, for the instances
where the optimality is not proven, the optimality gap, on average, is only 0.42%.
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Furthermore, the number of generated columns is about the same as that observed
in the dataset MC-2-HIP, showing that the scalability is also preserved for problems
with more criticality levels. Tables 3.6 and 3.7 show that scaling capabilities of
[81] approach are the same regardless of the number of criticality levels, thus being
able to solve instances about n ≈ 15− 20 tasks. Similar to that in Section 3.5.2,
(BNP-MC-3) can solve instances with almost twice the number of tasks than those
in [81].

3.5.4 Discussion

For problem MC-2, both methods (MIP-MC-2) and (BNP-MC-2) proposed in this
paper outperform Relative-Order MIP [81]. Under the used testing settings, the
(MIP-MC-2) average computation time is faster than (BNP-MC-2) computation
time, except for a few cases in batch n = 100 of the MC-2-HIP dataset and n = 200
in the MC-2-LOP dataset, where (BNP-MC-2) has closed all instances. It would
be possible to further improve the performance of (BNP-MC-2), e.g., by solving
pricing problems in parallel since they are independent. However, this is beyond
the scope of this paper.

For some use-cases, using model (MIP-MC-2) might pose two disadvantages.
One of them is that its performance depends on a commercial solver, which is
not an affordable option for some applications. On the other hand, (BNP-MC-2)
needs only an LP solver for solving the master problem, which is the task where
non-commercial solvers perform better than those in MIP. Moreover, only a small
part of the computational time is spent on the master problem. Most of the time is
spent on the pricing problem, which is solved by a dynamic programming algorithm
without any third-party software package.

Moreover, (BNP-MC-2) gains advantages in some special cases of the problem
due to its pseudopolynomially solvable pricing problem. For example, if the values
of processing times are restricted, then the pricing problem becomes solvable in
polynomial time. Another disadvantage of (MIP-MC-2) is its memory complexity.
It uses O(nLnH) variables, and therefore, Ω(n2

LnH) memory space (i.e., the size of
the constraint matrix), whereas (BNP-MC-2) is observed in Figure 3.7 to use O(nL)
variables, which can be further reduced (e.g., by removing old columns from the
simplex tableau). Finally, (BNP-MC-2) is further generalized for more criticality
levels.

For MC-3 problem, (BNP-MC-3) outperforms Relative-Order MIP [81]. The
dataset MC-3-2K turns out to be easier than MC-3-HIP, in terms of the number
of columns generated, computational time, and the number of instances solved.
However, (BNP-MC-3) struggles to prove the optimality for a single instance in a
batch with n = 50, causing a noticeable spike in the number of columns generated.
On the other hand, it solves all instances in batches n ∈ {100, 200, 400}. Note that
(BNP-MC-3) achieves smaller computational times than (BNP-MC-2) for the solved
instances in batch n = 1000 on average. This is because while pricing problems in the
case of (BNP-MC-3) are being solved as an MIP, (BNP-MC-2) implementation uses
a dynamical programming algorithm that has pseudopolynomial time complexity in
the total sum of all processing times of tasks. Hence, even though the pricing problem
in (BNP-MC-2) is in some sense easier to solve (solvable in pseudopolynomial time)
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than the pricing problem in (BNP-MC-3) (strongly NP-hard), the average case
computational time for the former tends to be lower with the tested lengths of
processing of tasks.

It would be possible to improve (BNP-MC-2) and (BNP-MC-3) algorithms with
other techniques, such as generating more columns at once, Lagrangian relaxation,
primal heuristics, stabilization, and suppression of the tailing-off effect [108]. Hence,
they still provide room for a performance improvement, but these are beyond the
scope of this paper.

3.6 Conclusion

In this paper, we have studied the problem of scheduling F-shaped tasks to minimize
the makespan of the schedule. This problem has applications such as those in
real-life mixed-criticality systems, where high-criticality activities coexist with less-
criticality ones on a shared resource. The processing time for such activities is
uncertain. To overcome the uncertainty, an F-shape modeling the activity contains
a set of alternative processing times. The schedules contain exponentially many
alternative schedules, where the performed alternative is selected based on the
observed execution scenario. The schedule remains static and its behavior is
predictable. However, the synthesis of such flexible schedules is computationally
expensive; hence, we proposed efficient exact algorithms to solve the problem.

We showed that optimal schedules are equivalent to trees consisting of optimal
subtrees, and established the relation between problems with ` and `+ 1 criticality
levels. We suggested an approximation algorithm, a block MIP model, and a
branch-and-price decomposition algorithm with a pseudopolynomially solvable
pricing problem for a problem with two criticality levels, for which we proposed
a dynamic programming algorithm. Furthermore, we generalized the proposed
decomposition to obtain the exact algorithm for a problem with three criticality
levels. The experimental results showed an excellent scaling ability of our approach
on hard problem instances. We found that it takes only a few hundreds of generated
columns, on average, in our decomposition algorithms to solve instances with up to
1000 tasks to the optimality.

A possible extension of the proposed model and algorithms might consider
including a penalty for each covered task in the schedule or optimization of a
bi-criteria objective function that would find a trade-off between the schedule
length and the number of covered tasks in such a schedule. Both extensions can be
developed as a generalization of the proposed methods, as they decide which tasks
shall be covered by others during the solution.
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Chapter

Computing the execution
probability of jobs with
replication in mixed-criticality
schedules

Antońın Novák and Zdenek Hanzalek. “Computing the execution proba-
bility of jobs with replication in mixed-criticality schedules”. In: Annals of
Operations Research (2022). doi: 10.1007/s10479-021-04445-x

4.1 Introduction

This paper addresses the problem of computing the execution probability of jobs in
mixed-criticality schedules. Mixed-criticality systems [175, 40, 41, 7] share resources
among jobs with a given degree of importance, i.e., a criticality represented by a
positive integer number. Although this paradigm reduces the costs of the system, it
introduces new challenges, such as undesired interactions (causing delays or deadline
misses) between jobs with uncertain processing times.

The traditional systems typically consider the allocation of critical jobs to a
dependable resource (e.g., a dedicated communication line for critical messages) to
achieve isolation of critical jobs, and thus, higher reliability of the system; however,
the efficiency of such systems becomes an issue. Hence, the key challenge of mixed-
criticality systems is to isolate jobs such that low-critical jobs (e.g., J2,1, J3,1 and
J3,2 in Figure 4.1a) do not influence any high-critical job (e.g., J4,1 in Figure 4.1a)
without the use of additional resources. Typically, the isolation of critical jobs
with uncertain duration is achieved with the two aspects: (i) static scheduling
of jobs [170, 20, 7] and (ii) online rejection of low-critical jobs to compensate for
processing delays of more critical ones [40, 151, 13]. Although the static scheduling
increases the predictability of the system (i.e., its behavior is given by a static
schedule which can be analyzed offline), flawless execution of critical jobs may
require occasionally to reject less critical jobs during online execution (e.g., J2,1

and J3,1 in Figure 4.1b). Thus, careful scheduling of jobs should be used [20, 151]
to mitigate the degradation of the execution probability of non-critical jobs without
affecting the requirements of critical jobs. To optimize the execution probability
of jobs in a schedule, a scheduling algorithm needs to assess the quality (i.e., the
objective function) of the current schedule in order to drive the search towards a
good solution [80]. Hence, the computation of the objective function of a schedule
is the central component of any algorithm that produces high-quality schedules.

In this paper, we introduce the concept of job replication to mixed-criticality
schedules. The job replication is a mechanism that utilizes unused time slots in
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a static schedule for additional jobs’ execution attempts if the previous attempts
have failed. This elegant mechanism increases the execution probability of jobs
and does not require additional system resources. In fact, job replication acts as
a natural generalization of the mixed-criticality model used, e.g., by Vestal [175]
or Seddik et al. [151], but it introduces additional complexity to the computation
of the objective function of a schedule. Currently known methods (such as [151])
that are used for the computation of the execution probability in mixed-criticality
schedules do no longer work when the replication is introduced. Therefore, in this
paper, we study the complexity of computing the execution probability of jobs in
mixed-criticality schedules with replication (i.e., an objective function of a schedule
related to reliability of the system), and we propose an algorithm to compute it
that utilizes the theoretical framework of Bayesian networks.
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(a) Mixed-criticality schedule with replication with five jobs where J3 has two
replicas.
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(b) An execution scenario.

Figure 4.1: Mixed-criticality schedule with three criticality levels with one of the possible
execution scenarios.

4.1.1 Contribution and outline

In this paper, we study the job replication, which is a mechanism for increasing the
execution probability of jobs in mixed-criticality schedules. Specifically, the main
contributions are:

– We introduce the concept of replication to mixed-criticality schedules as a
mechanism for increasing the execution probability of jobs.

– We show that the general problem of computing execution probability for a
job in a mixed-criticality schedule with replication is #P-hard, in contrast to
the known polynomial-time algorithm for the case without replication. The
proof shows that the problem remains hard even if one of the numbers of
criticality levels or the maximum number of replicas is equal to a certain
constant while the other is bounded by a polynomial in the number of jobs.

– We solve the problem by a reduction to the probabilistic inference in a suitably
defined Bayesian network.
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– Finally, we show that the cases of reasonable interests can be solved in
polynomial time in the number of jobs, which enables practical usage of the
job replication.

The rest of the paper is structured as follows. In the subsequent section, we first
describe the functionality and an application example of mixed-criticality systems
with replicated jobs. Then, we demonstrate the effect of job replication on the
execution probability, and we rigorously define the problem statement and survey
the related work in this area.

In Section 4.2, we study the complexity of the general problem. Section 4.3
deals with the actual algorithm for the computation of execution probability. In
Section 4.3.1, we show the reduction to the probabilistic inference in Bayesian
networks, and in Section 4.3.2, it is shown that a practical case of the problem
admits an efficient computation algorithm. Finally, conclusions are drawn in
Section 4.4.

4.1.2 Mixed-criticality systems with job replication

In this section, we describe an application example to illustrate the main concepts
of mixed-criticality systems with job replication. Then, we show how the execution
probability can be computed in the case without replication and how the job
replication increases it.

Application example Consider a message scheduling problem on a shared com-
munication bus in modern cars. Safety-related standards such as ASIL (Automotive
Safety Integrity Levels) [21] introduce the existence of messages with several levels
of criticality:

– messages of high criticality (criticality 3) are used for safety-related function-
alities (their failure may result in death or severe injury to people), such as
steering;

– messages of medium criticality (criticality 2) are used for mission-related
functionalities (their failure may prevent activity from being successfully
completed), such as parking assist;

– messages of low criticality (criticality 1) are typically used for infotainment
functionalities, such as automotive navigation system.

The messages are transmitted via the bus at the moments defined by the static
time-triggered schedule [93] which improves determinism and predictability. The
goal is to compute objective function reflecting statistical properties of a given
static schedule that accounts for disruption of the communication according to
the message criticality. In real-life environments, the execution of jobs is affected
by various sources of uncertainty, causing, e.g., transmission delays. In the above
example, the criticality expresses the commitment to the transmission when the
original transmission is prolonged. Therefore, several transmission attempts are
awarded to messages with a high criticality, whereas for low-criticality messages, it
might be just a single one.
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(b) Schedule with three replicas of job J2.

Figure 4.2: Effect of job replication to the execution probability.

Vestal’s [175] widely adopted model of mixed-criticality considers jobs with
the criticality given by an integer number and set of different processing times
associated with criticality levels. Let us demonstrate the main concepts with an
example before providing a formal definition in Section 4.1.3. Figure 4.1a shows an
example of a mixed-criticality static schedule with six job replicas. Each job has a
given integer criticality as it is seen on the vertical axis. For example, job J4,1 has
criticality of three, job J1,1 has criticality of two while J2,1 has criticality of one.
Notice that J3,1 and J3,2 are two replicas of the same job, hence, they have the
same parameters but different start times. Job J1,1 has the considered processing
time 2 time units with probability 0.8, and 5 time units with probability 0.2. The
considered values of processing times are derived from the (empirical) cumulative
distribution function with respect to the selected probability thresholds [175, 7].

Mixed-criticality schedules contain several alternative execution scenarios, with
the one being selected based upon the realized processing times of jobs that occur
during the runtime execution. To compensate for unexpected prolongations of
critical jobs observed at the runtime, some of the less critical ones might not be
executed under the specific realization of processing times. This can be seen in
Figure 4.1b, where jobs J2,1 and J3,1 are rejected if realized processing time of J1,1

is equal to 5, happening with probability 0.2. However, the second replica J3,2 was
executed later on. Finally, we note that, e.g., J1,1 is never rejected since it does not
share its execution time with any other job with higher criticality.

The formal definition of the policy that guides the execution of the schedule will
be given in Section 4.1.3. Next, let us illustrate how the execution probability can
be computed and optimized in the case without replication and we show how does
the job replication improve it.

Execution probability and job replication The first method for the opti-
mization of the execution probability in mixed-criticality schedules was proposed
by [151]. Given a schedule with jobs subject to deadlines, the start times of mixed-
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criticality jobs are shifted in the schedule, such that low-critical jobs do not share
execution time with high-critical ones as long as the deadlines are not violated.
We illustrate the shifting of start time with the following example. Consider the
schedule in Figure 4.2a. There, job J3 has execution probability equal to 0.2 since
with probability 0.3 + 0.5 = 0.8 job J1 will take longer than 2 time units to process
which would reject J3. If we would shift the start time of J3 to time 5, then its
execution probability would be increased to 0.2 + 0.3 = 0.5. For more details, we
refer the reader to [151].

The disadvantage of this approach, i.e., the shifting the start times, is that
the resulting schedule might be too sparse, which results in low utilization of the
resource (e.g., CPU in an embedded system). This is an undesired property when
the resource is statically scheduled and no jobs are arriving dynamically (since
it leads to more empty CPU cycles). Compare the utilization of schedules in
Figure 4.2a (i.e., a lower) and Figure 4.2b (i.e., a higher).

The main idea in this paper is to utilize unused time slots in the schedule by
replicating some of the scheduled jobs which increases their execution probability.
First, let us introduce the formal definition of mixed-criticality jobs used thorough
the paper. We use a standard mixed-criticality model [175, 151]:

Definition (Mixed-criticality job). Let Ji = (πi,µi,Xi) be a mixed-criticality

job, where Xi ∈ N is a positive integer criticality, πi =
(
π

(1)
i , . . . , π

(Xi)
i

)
∈ NXi

is a vector of processing times of job Ji such that π
(1)
i < . . . < π

(Xi)
i and µi =(

µ
(1)
i , . . . , µ

(Xi)
i

)
∈ [0, 1]

Xi is a conditional probability distribution over πi given

that Ji is executed.

See the example in Figure 4.2a. There, we can see, e.g., job J1 has π1 = (2, 5, 8),
µ1 = (0.2, 0.3, 0.5) and X1 = 3. Let us denote q-th replica of job Ji as Ji,q, i.e., all
replicas of the same job Ji have the same parameters Xi, πi, and µi, but different
start times.

Next, we demonstrate how the replication leads to an increased execution
probability over the schedules without replication. For example, consider Figure 4.2b,
where job replica J2,2 can be executed at time 7 if J2,1 is not executed at time
2. When the execution at time 7 fails as well, J2,3 can be still executed at time
13. More generally, the replication of jobs allows us to achieve higher execution
probabilities, since the replication may be seen as a form of relaxation, where we
relax on the scheduling constraint ”each job is scheduled exactly once” to ”each job
is scheduled at least once”.

In this paper, we deal with the problem of computing execution probabilities of
jobs with replication for the given fixed schedule. It is assumed that the schedule is
a solution to the scheduling problem denoted in three-field scheduling notation [75]
as 1|mc = L, rep = R|∑Pi. The first field stands for a single resource, mc = L
stands for mixed-criticality jobs with an unspecified number of criticality levels,
[81] and rep = R for the replication considering an unspecified number of replicas
per job. The last field

∑
Pi indicates that the objective function is the sum of

execution probabilities [151]. Note that without loss of generality, we can restrict
ourselves to schedules with a single resource only. Indeed, as the schedule is fixed,
then each resource can be treated separately.
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In the following section, we define the problem statement of computing objective
function

∑
Pi for the given schedule of problem 1|mc = L, rep = R|∑Pi, and

potentially other constraints. Therefore, we assume that the start times of the jobs
are provided, and the goal is to compute the execution probabilities of jobs.

4.1.3 Problem statement

First, we define an instance of the problem given by a set of mixed-criticality jobs
and their schedule.

Definition (Mixed-criticality instance). Let IMC = {J1, . . . , Jn} be a set of inde-
pendent mixed-critical jobs. Let us denote the maximal criticality as L = maxi Xi.
Let R > 1 be the maximal number of replicas of any job in a feasible schedule for
IMC.

Further in the text, we will refer to the original job Ji in the instance IMC
as a ”job”, whereas their individual occurrences Ji,q in the schedule as ”(job)
replicas”. Therefore, each job has at least one replica in the schedule, and each
replica corresponds to exactly one job. We assume that we are provided with a
feasible schedule containing up to R replicas per job with criticality up to L:

Definition (Schedule with replication). Let us denote the schedule for a set of
jobs IMC as s = (s1,1, . . . , s1,n1 , s2,1, . . . , s2,n2 , . . . , sn,1, . . . , sn,nn), where nk ≤ R
is the number of replicas of the job Jk in schedule s. Let si,q ∈ N0 be the start
time of replica Ji,q. Furthermore, we say that schedule s is feasible if and only if
∀Ji, Jj ∈ IMC ,∀q ≤ ni, r ≤ nj:

(
si,q + π

(min{Xi,Xj})
i ≤ sj,r

)
∨
(
sj,r + π

(min{Xi,Xj})
j ≤ si,q

)
,

i.e., replicas do not overlap on any criticality level.

Furthermore, we will assume without loss of generality that the start times
of the first replicas are ordered s1,1 ≤ s2,1 ≤ . . . ≤ sn,1 and replicas of each job
Ji ∈ IMC are ordered as si,1 ≤ si,2 ≤ . . . ≤ si,ni .
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Figure 4.3: Example of an infeasible schedule. All realizations are not feasible.

The above definition of a feasible schedule comes from the strict requirement
that the processing of a job cannot be affected by delays of jobs with less or equal
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criticality. The motivation for it comes from the modular system design principles,
where it is desired to achieve so-called error containment [124] which is the property
of the system that guarantees that the malfunction of a single component of the
system does not arbitrarily propagate through the system. This in turn facilitates
modular certification [124], which is yet another desirable design principle. To
demonstrate the meaning of the definition of the feasibility, consider the example in
Figure 4.3, where we see a schedule with two jobs with two criticality levels and one
of the possible execution scenarios of the schedule. If job replica J1,1 is executed at
the second level, it may correspond to an abnormal state and can be seen as an
error. If any two jobs would overlap at the second criticality level (as it is shown
in the figure), then this error would disrupt job replica J2,1 with equal criticality,
which is not desirable, especially if this job implements functionality that has been
certified in the isolation. Thus, its certification would not be longer valid when
deployed together with the functionality implemented by J1,1. Therefore, for the
above reasons, it is useful to require that in all execution scenarios, a job cannot be
affected by delays of less or equally critical jobs.

On the other hand, the definition allows that more critical jobs can affect the
execution of less critical jobs. Indeed, each schedule contains so-called coverage sets
which specify which replicas might be rejected during the execution of the schedule.

Definition (Coverage set). We say that replica Ji,q is covered by replica Jj,r at
level `, Xj ≥ ` > 1 in schedule s, denoted by Ji,q ∈ cov` (Jj,r), if and only if

sj,r + π
(`−1)
j,r ≤ si,q < sj,r + π

(`)
j,r .

For example, in Figure 4.4a we have J2,2 ∈ cov3 (J1,1). For simplicity, we use
the notation Ji,q ∈ cov(Jj,r) to denote that there exists a level ` ∈ {2, . . . ,Xk} such
that Ji,q ∈ cov` (Jj,r). Note that the notation omits the dependence on schedule s
as well, as it is clear from the context.

Since the processing times of jobs are uncertain, each job replica can have a
different realized processing time, which is revealed during the execution of the
schedule.

Definition (Execution level of a replica). We say that the execution level of replica
Ji,q is `, denoted as Ji,q ∼ `, if and only if its realized processing time πi,q is equal

to the processing time of the job Ji at `-th level, i.e., πi,q = π
(`)
i if and only if

Ji,q ∼ `.
See the example in Figure 4.4. In the scenario depicted in Figure 4.4a, the

realized processing time of replica J1,1 was π1,1 = π
(1)
1 , hence J1,1 ∼ 1. On the

other hand, in the scenario in Figure 4.4b, we have that J1,1 ∼ 2, thus π1,1 = π
(2)
1 .

Next, we describe how the mixed-criticality schedules with replicated jobs are
executed. To execute replicas in a schedule with respect to their criticalities, the
runtime execution of the schedule s is guided by the policy given in Algorithm 4.1.
The design of the execution policy is driven by the implementation aspects of
real-life embedded systems. It uses the following rules:

– the replica is started at its start time if no other replica is executed at the
moment (line 3: h(t) = 0),
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(a) The first replica of J2 is executed, hence, the others are rejected.
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(b) The second replica of J2 is executed, hence, the last is rejected.

Figure 4.4: Schedule of mixed-criticality jobs with replication under different scenarios.

– when a replica is started, then it is completed on one of its criticality levels
(lines 6–9, e← e ∪ {Ji,q ∼ `}),

– when a replica is completed, then all of the following replicas of the job are
rejected (line 3: 6 ∃q′, ` : (Ji,q′ ∼ `) ∈ e).

The role of function h(t) is to keep track of the current execution level of the
schedule. See an example of the h(t) function in Figure 4.4 where it is depicted
on the y-axis with solid and dashed lines. The value h(t) = 0 denotes that the
resource is available, and a replica can be executed at its start time. During the
replica’s execution, its realized processing time is observed, and the execution level
of the schedule h(t) is appropriately updated while the execution Ji,q ∼ ` of the job
replica is stored to the list of observed realizations e. When the replica is completed,
the execution matches up with the base value (i.e., h(t) = 0), signaling that the
next job replica in the order can be executed.

Note that the execution policy in Algorithm 4.1 distinguishes only two states
of h(t) function, i.e., h(t) = 0 and h(t) > 0. Indeed, for the decision, which jobs
to execute given the observed realizations of processing times, it is sufficient to
observe whether the resource is available (h(t) = 0) at the time t if t equals to the
start time of a job replica. Within the scope of this paper, we use h(t) execution
function only inside the execution policy in Algorithm 4.1 and to define an execution
scenario. Essentially, any admissible execution of the schedule, i.e., the evolution of
h(t) function, forms an execution scenario. We define an execution scenario as a
sequence of outcomes (i.e., the list of observations e) that is admissible under the
execution policy in Algorithm 4.1.
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Algorithm 4.1: Execution policy of mixed-criticality schedules.

input : a schedule s and online observations of realized processing times
output : the sequence of decisions which replicas to execute and to reject

1 t← 0, h(0)← 0, e← ∅
2 while t < max s do
3 if h(t) = 0 and ∃si,q ∈ s : si,q = t and 6 ∃q′, ` : (Ji,q′ ∼ `) ∈ e then
4 πi,q ← execute Ji,q at time si,q // observe realized processing time

5 e← e ∪ {Ji,q ∼ `} // exec. level of q-th replica of job Ji is `

6 for k ← 1 to ` do // update exec. level of schedule h(t)

7 h(t+ t′)← k ∀t′ ∈
[
0, π

(k)
i

]

8 t← t+ π
(k)
i

9 else
10 t← t+ 1

11 h(t)← 0 // the execution matches-up with the base value

We note that additional functionalities of the system such as recovery policies
(e.g., graceful degradation) may require fine-grained access to the specific execution
level of the schedule h(t) rather than whether the resource is busy at time t or
not. These are beyond the scope of this paper but motivates us to introduce h(t)
function in its more general form.

Definition (Execution scenario). The execution scenario e is a sequence of replicas’
execution levels Ji,q ∼ `, i.e., specific realization of processing times, which can be
realized under the execution policy given by Algorithm 4.1. We denote the set of all
possible execution scenarios in schedule s by Es.

For example, the scenario corresponding to Figure 4.4b is ē = (J1,1 ∼ 2, J2,2 ∼
1, J4,1 ∼ 1). Furthermore, notice that the execution policy ensures that at most
one replica of each job is executed under any scenario. Consider an example in
Figure 4.4, where the schedule is executed under two different scenarios. There,
the solid line displays the current execution level of the schedule h(t) while being
dashed when it is 0. In the scenario in Figure 4.4b, J1,1 is executed at its second
level, which leads to rejection of replicas J2,1 and J3,1. Then, the second replica J2,2

was executed; thus, the last replica J2,3 is rejected. A different scenario is depicted
in Figure 4.4a, where the first replica J2,1 is executed; thus, the second (i.e., J2,2)
and the third (i.e., J2,3) replicas are rejected.

Finally, we define the execution probability of a job as follows:

Definition (Execution probability of a job). The execution probability Pi of job Ji
in schedule s is given as

Pi =
∑

∀e∈{e′∈Es: ∃q,`:(Ji,q∼`)∈e′}

∏

∀(Jk,r∼`)∈e
µ

(`)
k . (4.1.1)

In other terms, the execution probability of a job is the sum of probabilities of
scenarios where a replica of that job was executed. See the example in Figure 4.5.
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(a) Schedule of mixed-criticality jobs with replication.
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(b) All possible execution scenarios and their probabilities.

Figure 4.5: Example schedule and all of its possible execution scenarios.

There, all six possible scenarios and their probabilities, are depicted. Note that the
lowest critical job replicas (i.e., J2,1, J2,2, J2,3, and J3,1 in Figure 4.5a) have the
probability 1.0 of being completed at the first level given that they are started (see
Definition ). For example, the execution probability of replica J3,1 in this schedule
is P3 = 0.12 + 0.08 = 0.2. This can be seen as well as from the fact that J3,1

has probability 0.3 + 0.5 = 0.8 of being rejected by J1,1. Similarly, the execution
probability of J2 is P2 = (0.12 + 0.08) + (0.18 + 0.12) + (0.3) = 0.8.

The aim of this paper is to compute the sum of execution probabilities for all
jobs in the schedule.

Definition (Problem statement). The problem is to compute
∑
Pi of the given

schedule s with replication, where Pi is the execution probability of job Ji ∈ IMC.

We assume that the provided schedule is not trivial in the sense that at least
one replica is covered; otherwise, every job would be executed with a probability
of one. Indeed, it is realistic to assume that the jobs in the provided feasible
schedule are constrained by deadlines and other constraints, which likely leds to
non-empty coverage sets. Finally, as a remark, let us note that the definition of a
mixed-criticality job assumes that µi is a probability distribution, i.e., it sums to
one. This assumption might not hold in cases where, e.g., the worst-case execution
time cannot be bounded. On the other hand, one can always select finite values
of processing times πi such that the selected approximation is arbitrary close to
the reality [1]. Therefore, this assumption is not crucial, but it simplifies the
presentation of the main ideas.

Remark 2. Note that in this paper, we deal with the computation of the objective
function for a given schedule, but we do not touch the question of how to decide
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replication complexity result algorithm

Seddik et al. [151] no
finding start times of jobs with a fixed order to DP for mc = 2,
maximize

∑
wiPi is weakly NP-hard MIP for mc = L

This work yes
computing

∑
Pi is #P-hard, inference in

fixed-parameter tractable with respect to max{L,R} Bayesian networks

Table 4.1: Contributions of this paper.

which jobs to replicate and which start times to assign them. There are many
possibilities to do that, e.g., in a greedy fashion, by a metaheuristic algorithm [184,
77] or by some exact method, but these require a method providing objective value
for the current solution. However, the above question goes well beyond the scope of
this paper.

One source of difficulty of computing the execution probability from Defini-
tion comes from the fact that the set Es of all scenarios in schedule s may contain
an exponential number of scenarios, i.e., |Es| ∈ O

(
LnR

)
, where n = |IMC |. Indeed,

we will show that the job replication fundamentally changes (as opposed to the
case without replication) the computational complexity of the problem and requires
a new algorithm for the computation. Even though we will show that the exact
computation of the execution probability is hard in general, we propose an efficient
method for a tractable class of schedules.

4.1.4 Related work

The study of mixed-criticality systems originates from the real-time scheduling
community due to its practical applications. The most widely adopted mixed-
criticality scheduling model was proposed by Vestal in his seminal paper [175].
There, he proposes a model of mixed-criticality jobs that assumes that each job has
an integer criticality with each criticality level associated with processing time for
that level of assurance. This understanding of mixed-criticality was later adopted by
the majority of follow-up works, e.g., Baruah [16], Burns [41], and Davis [54]. This
line of research mostly deals with response time analysis of various scheduling policies
considering preemptive jobs [86] in so-called event-triggered environment [93]. For a
comprehensive review of mixed-criticality scheduling literature, we refer the reader
to [40].

A known challenge for complex event-triggered systems is the difficulty of
certification for safety-critical applications [13, 61]. Therefore, a new stream has
emerged and turned the attention toward static scheduling in mixed-criticality
systems [7, 170, 14] that simplifies the certification. A problem with preemptive
jobs with two criticality levels was addressed in [20]. The authors proposed a
heuristic algorithm that constructs a static schedule for multiple resources while
considering precedence constraints. Novak et al. [7] dealt with non-preemptive
mixed-criticality jobs up to three criticality levels to minimize the length of the
schedule, i.e., the makespan. They proposed an approximation algorithm and a
branch-and-price decomposition to solve the problem. Seddik [151] noted that
makespan minimization with mixed-criticality jobs decreases the probability of the
execution. Thus, instead of minimizing the length of the schedule, they proposed
a non-regular scheduling criterion that maximizes the execution probability of
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jobs — spreading them as much as possible under the deadline constraints. They
derived a closed-form formula for the computation of the execution probability
of jobs, given that the start times are fixed. Furthermore, they gave proof that
finding optimal start times with the fixed permutation remains NP-hard, and they
proposed (i) a dynamic programming (DP) for the case of two criticality levels
and (ii) a mixed-integer linear programming (MIP) model for the general problem.
To find an optimal permutation, they developed a branch-and-bound algorithm.
However, the used criterion may lead to schedules with low utilization of resources,
as they did not consider the job replication.

The problem in this paper is related to stochastic scheduling due to the uncer-
tainty of processing times [83]. There are a plethora of works focusing on processing
time uncertainty, often assuming a uniform distribution, normal distribution, an
uncertainty set [78, 135], or they are distributionally robust [44]. Many of these
problems can be formulated as β-robust problems [53] with the goal of, e.g., maxi-
mizing the probability that all jobs are completed before the given due date. To
the best of our knowledge, the existing approaches in the literature addressing
stochastic and robust scheduling cannot be used to solve this problem.

The concept of job replication in scheduling is studied in works concerning
parallel algorithms and communication delays [35, 125]. The idea is that replication
of a job to another processor avoids extra communication and reduces system
overhead. Hence, they observe that job replication can decrease the makespan of a
schedule when multiple processing units are considered [85]. This is similar to our
case, where we allow to consume resource time (that would not be utilized in any
way) to improve the objective value by scheduling the same job more than once.

Best to our knowledge, the effect of job replication in static mixed-criticality
systems has not been studied before, although it arises as a natural generalization
of former mixed-criticality models, such as [175, 151]. We summarize the main
contributions of this paper with respect to the most similar work [151] highlighted
in Table 4.1.

In the following section, we prove the main complexity result of this paper
concerning the computation of the execution probability in a mixed-criticality
schedule with replication.

4.2 Time complexity of the problem

We show that the general problem where either the maximum number of criticality
levels L or the maximum number of replicas per job R is bounded by a polynomial
in the number of jobs and the other is equal to some chosen constant, remains #P-
hard. We remind that #P is a class of counting problems, i.e., a set of problems that
count the number of accepting paths in a polynomial-time non-deterministic Turing
machine [172]. An example of a problem contained in #P is the following: What
is the number of spanning trees in the given connected simple graph? A problem
is said to be #P-hard, if for every problem in #P, there exists a polynomial-time
counting reduction to it [51].

First, we show that to decide whether a job has a non-zero probability of being
executed is as hard as determining whether a CNF (conjunctive normal form)
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formula is satisfiable.

Proposition 9. There exists a finite number of maximum replicas per job R such
that deciding whether Pi > 0 for some job Ji is NP-complete.

Proof. First of all, it can be seen that the problem is contained in NP. Indeed,
having an execution scenario, we verify in polynomial time in the length of the input
(number of all replicas and criticality levels) whether the given job Ji is executed
(e.g., similarly as in Algorithm 4.1).

Next, we will show a polynomial reduction from 3-sat to our problem. Consider
a 3-CNF propositional formula T =

∧m
k=1 ck =

∧m
k=1

(
uk1 ∨ uk2 ∨ uk3

)
with m clauses

and n variables uj , j ∈ {1, . . . , n}, where ukq denotes q-th literal of k-th clause.
For such a formula, we construct the schedule in the following way. We use five
sets of jobs. We have a set U = {U1, . . . , Un} that denotes jobs corresponding
to variables u1, . . . , un and a set C = {C1, . . . , Cm} that corresponds to clauses
c1, . . . , cm. Next, we have jobs denoted as A = {A1, . . . , An} that serve as an
apriori setting of the execution of jobs U , i.e., they generate execution scenarios
corresponding to all possible variable assignments of the formula T . Furthermore,
we have a set of jobs D = {D1, . . . , Dn} where Dj is present if the variable uj acts
as a positive literal in some clause. Finally, we have a single job Y , whose execution
probability is used to decide whether T is satisfiable or not. Hence, we have that
IMC = U ∪C ∪A ∪D ∪ {Y }. Job Y takes the role of job Ji, i.e., the job for which
we investigate whether it will be executed with a non-zero probability.
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Figure 4.6: Basic gadgets used in the reduction utilizing a constant number R of maximum
replicas count.

Now, we will describe the parameters of the jobs. The jobs Ck have criticality
XCk = m + 2 − k, jobs Uj have criticality XUj = m + 3, Aj have criticality
XAj = m + 4, jobs Dj have criticality XDj = m + 2 and job Y has criticality
XY = 1. All jobs from sets U , D, and C have a Dirac distribution of probability
over processing times — the probability of the execution at their top level is 1,
i.e., µ = (0, . . . , 0, 1). Jobs Aj have probability distribution µj = (0, . . . , 0, 0.5, 0.5).
Furthermore, we have that jobs in A, U , D, and job Y have a single replica while
jobs in C have exactly four replicas; see Figure 4.7 where all gadgets are shown in
one schedule.

The schedule consists of n copies of the gadget shown in Figure 4.6a. For each
variable uj we have one gadget containing a replica of all jobs Ck,{1,2,3} ∈ cov(Uj,1)
for clauses ck where uj is a negative literal and Ck,{1,2,3} ∈ cov(Dj,1) for clauses
where uj is a positive literal. The indices {1, . . . , 3} of replicas Ck,{1,2,3} are given
according to appearance of variables uj , j ∈ {1, . . . , n} in clauses ck, k ∈ {1, . . . ,m}.
The purpose of jobs Aj,1 is to ensure that for each variable uj , job replica Uj,1 will
be executed with probability 0.5. If Uj,1 is rejected, then replicas Ck, where that
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uj acts as a negative literal in clause ck will be executed. If Uj,1 is executed, then
Dj,1 is rejected; thus, all Ck in its coverage are executed since those correspond to
clauses where uj acts as a positive literal. Please note that it is crucial that jobs
both in cov(Uj,1) and cov(Dj,1) do not overlap in each. The schedule is concluded
with the gadget shown in Figure 4.6b, which implements and gate, ensuring that
job Y is executed if only if for each k ∈ {1, . . . ,m} a replica Ck,{1,2,3} was executed
in the schedule before and gate.

Consider an example formula T = c1 ∧ c2 ∧ c3 = (u1 ∨ u2 ∨ u3) ∧ (¬u1 ∨ ¬u2 ∨
u3) ∧ (u2 ∨ ¬u3 ∨ u4). The resulting schedule derived from the reduction can be
seen in Figure 4.7. The resulting schedule has O(n+m) replicas with at most O(m)
criticality levels and the maximum replica count per job R = 4.

u1u1 u2u2 u3u3 andandu4u4

c1c1c2c2 c3c3c1c1c2c2 c3c3 c1c1 c3c3c2c2

Figure 4.7: Example schedule of the reduction from T = c1 ∧ c2 ∧ c3 = (u1 ∨ u2 ∨ u3) ∧
(¬u1 ∨ ¬u2 ∨ u3) ∧ (u2 ∨ ¬u3 ∨ u4).

Next, we need to show that in such a schedule PY > 0 if and only if T is
satisfiable.

sat =⇒ PY > 0. Let φ be an assignment of formula T that is true. We
will show that the probability of the execution of job Y is greater than zero, i.e.,
there is an execution scenario e with a non-zero probability that includes Y . Let us
define the execution scenario e such that Uj,1 is executed if and only if φ(uj) = >.
This scenario occurs with probability 2−n, which follows from the choice of the
probability distribution of jobs A. We will show that under scenario e, the job Y is
executed.

If φ is a true assignment of T , then ∀ck ∈ T there exists a literal uj that makes
clause ck satisfied. Let uj be such literal for clause ck:

– If uj acts as a positive literal in ck, then φ(uj) = >. Thus, Uj,1 is executed,
therefore Dj,1 is rejected, since from the schedule construction follows that
Ck ∈ cov(Dj,1). Hence, a replica Ck,{1,2,3} is executed.

– If uj acts as a negative literal in ck, then φ(uj) = ⊥. From the definition
of scenario e follows that Uj,1 is rejected; thus, a Ck,{1,2,3} is executed since
Ck ∈ cov(Uj,1), which follows from the construction of the schedule.

Since for all jobs Ck, one replica is executed before and gate, then the last replica
of each Ck is rejected; therefore, Y is executed. Hence, job Y is executed in at least
one scenario, thus PY > 0.

PY > 0 =⇒ sat. If job Y has a non-zero probability of execution, then there
is an execution scenario e such that for every Ck, one replica is executed before
and gate, otherwise Y would be rejected. We will show, that this scenario defines
an assignment of formula T that is true.

Let us define the assignment φ such that φ(uj) = > if and only if Uj,1 is executed
under scenario e. We will show that φ is a model of T . Let Ck,{1,2,3} be a job replica
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that is executed in scenario e in the schedule gadget corresponding to variable uj .
Then,

– If Ck ∈ cov(Dj,1), then job replica Uj,1 was executed, therefore φ(uj) = >.
From the construction of the schedule, uj acts as the positive literal in ck;
therefore, clause ck is satisfied.

– If Ck ∈ cov(Uj,1), then Uj,1 was rejected, therefore φ(uj) = ⊥. From the
construction of the schedule it holds that uj acts as the negative literal in ck;
therefore, clause ck is satisfied.

Since φ is true in all clauses, it is a model of T , and, thus T is satisfiable. To
illustrate how assignments of the formula are mapped to execution scenarios, consider
the following two examples. Let us have an assignment φ, such that φ(u1) = >,
φ(u2) = ⊥, φ(u3) = ⊥ and φ(u4) = >. The execution scenario corresponding
to assignment φ is given as e = (A1,1 ∼ 6, U1,1 ∼ 6, C1,1 ∼ 4, A2,1 ∼ 7, C2,2 ∼
3, D2,1 ∼ 5, A3,1 ∼ 7, C3,2 ∼ 2, D3,1 ∼ 5, A4,1 ∼ 6, U4,1 ∼ 6, Y ∼ 1). An another
assignment φ′ for which φ′(u1) = >, φ′(u2) = >, φ′(u3) = ⊥ and φ′(u4) = ⊥
translates into the scenario e′ = (A1,1 ∼ 6, U1,1 ∼ 6, C1,1 ∼ 4, A2,1 ∼ 6, U2,1 ∼
6, C3,1 ∼ 2, A3,1 ∼ 7, D3,1 ∼ 5, A4,1 ∼ 7, D4,1 ∼ 5, C2,4 ∼ 3).

The reduction suggests that the problem remains hard even for a constant
number of the maximum job replicas, i.e., R = 4. Moreover, we will show that a
non-constant number of criticality levels is not the only source of hardness. Indeed,
the problem remains hard, assuming a constant number of criticality levels when
the maximum number of replicas is not fixed to a constant.

Proposition 10. There exists a finite number of criticality levels L such that
determining whether Pi > 0 for some job Ji is NP-complete.

Proof. The reduction uses a similar idea as the one described in Proposition 9, where
the main difference lies in the construction of and gate. The resulting schedule
again consists of two parts. The first part represents variables u1, . . . , un and uses
L = 8 criticality levels. A replica of job Ck (representing clause ck) is executed when
clause ck contains a literal ukq that makes the clause satisfied. The difference from
the structure shown in Figure 4.6a is that here all Ck’s have criticality XCk = 5,
and thus XDj = 6, XUj = 7, and XAj = 8. See the example gadget corresponding
to variable u1 from formula T in Figure 4.8a.

The other difference lies in the second part of the schedule, i.e., and gate, which
has to be redesigned to have a constant number of criticality levels. This can be
done using R ∈ O(m) maximum replicas per job in a way shown in Figure 4.8b.
The structure of the new and gate introduces three additional job types: K, N
and Y . Job K has m + 1 replicas in the schedule, and the job Y a single one.
Furthermore, jobs N = {N1, N2, . . . , Nm} have a single replica in the schedule for
each of them. Jobs in N , K, and Y have Dirac distribution of processing times
with the probability of one at their top level. The purpose of jobs Nk is to ensure
that at least one of the first m replicas of job K is executed if no replica of each
Ck, k ∈ {1, . . . ,m} is executed before and gate. If this happens, then we need to
reject Y , which is done by executing the last replica K1,m+1. The job replica Y
ensures that Y is executed if and only if K1,m+1 is executed.
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Next, we show that job replica Y is executed if and only if a replica for every
job Ck was executed in the schedule before and gate.

C2,1C2,1 C1,1C1,1

D1,1D1,1

A1,1A1,1
U1,1U1,1

1.01.0

1.01.0

1.01.0

1.01.0

0.50.5

0.50.5

(a) Gadget for variable u1 that uses L = 8 criticality levels.

N2,1N2,1
C1,4C1,4 C3,4C3,4

YY

N3,1N3,1
K1,4K1,4

YY

N1,1N1,1
C2,4C2,4

K1,3K1,3K1,2K1,2K1,1K1,1

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0

1.01.0 1.01.0

1.01.0

(b) Gadget for and gate that uses L = 5 criticality levels.

Figure 4.8: Basic gadgets used in the reduction utilizing a constant number of criticality
levels L.

– Let us assume that for every scenario e ∈ Es there is a job Ck with no replica
executed before and gate. Therefore, the last replica Ck,4 is executed in
and gate. Then Nk,1 is rejected and, hence, the replica K1,k is executed.
Therefore, in the last section of and gate, the last replica K1,m+1 is rejected;
thus, Y is executed, which leads to rejection of Y . Furthermore, if for all
scenarios e ∈ Es hold that there is a Ck with no replica executed before and
gate, then PY = 0.

– Next, let us assume that there is a scenario such that all Ck’s are executed
before and gate. Hence, Ck,4, k ∈ {1, . . . ,m} are rejected, and the corre-
sponding Nk,1 are executed. Therefore, all replicas of job K are rejected
except the last one (i.e., K1,m+1). Thus Y is rejected, and then, finally, Y is
executed; therefore, PY > 0 follows.

Remark 3. Notice that jobs in sets U , C, D, N , and K in the reductions above have
assumed a Dirac distribution, hence their processing times are, in fact, deterministic,
which might feel a bit unnatural. However, it implies several interesting consequences.
Namely, if there would be a polynomial-time algorithm that would decide whether
a job can be executed, then such an algorithm either has to exploit the fact that
distributions of processing times are not Dirac or it would not be sound under
P 6= NP assumption. Nevertheless, the usage of Dirac distribution for some of the
jobs is not the crucial idea in the reduction. One could use a distribution that is
almost Dirac except for some small positive ε. The value of ε would be set such that
for an unsatisfiable formula the probability of execution of job Y would be non-zero,
but arbitrarily small (e.g., � 2−O(poly(nm))) while a satisfiable formula would admit
the execution of Y with probability at least 2−n − f(ε) where f(ε) is an arbitrarily
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small non-negative value that incorporates the sum of probabilities of false-negative
scenarios (i.e., scenarios corresponding to true valuations of the formula but do not
execute Y ).

Finally, it can be seen that an algorithm computing the exact value of PY could
be used to solve #3-sat problem [126] (i.e., the number of satisfiable assignments
for the given 3-sat formula) as it preserves the number of yes certificates in each
problem. Indeed, under the considered reduction, each true assignment of the
formula T with n variables increases the execution probability of job Y by 2−n

while a false assignment does not increase it and vice versa. Since it is known that
#3-sat is #P-complete, we have the following corollary:

Corollary. Computing Pi remains #P-hard when L or R is bounded by a polyno-
mial in the number of jobs while the other is equal to a sufficiently large constant.

Remark 4. Note that it is known that #2-sat is #P-complete as well [173],
although the decision problem of 2-sat is polynomially solvable. This suggests that
the exact computation of execution probability is hard already for R = 3 maximum
replicas, which follows from the reduction introduced in the proof of Proposition 9.
On the other hand, for the case R = 1, a polynomial-time solution is known [151].
Hence, the complexity of the case R = 2 stays as an open problem. For the number
of criticality levels L we know that L = 8 already leads to intractability if R is not
a constant.

In the next section, we show that the general problem (with arbitrary L and R)
of computing the execution probability can be reduced to probabilistic inference in
Bayesian networks, which gives us an algorithm for the computation. The inference
in the resulting network has complexity parametrized by the number of criticality
levels L and by the number of maximum replicas R. Furthermore, we show that
the problem becomes tractable, when both L and R are bounded by a constant,
which is often a realistic case for real-life applications.

4.3 Algorithm for computation of the execution
probability

In this section, we show how the statistical properties of mixed-criticality schedules
with replication can be described with Bayesian networks. A Bayesian network
G = (V,A) is a probabilistic directed acyclic graphical model that represents the
joint distribution over the set V of random variables using conditional dependencies
defined by edges A. Since the processing time of jobs is uncertain, we can view the
job replicas as random variables. Then, the execution policy (i.e., Algorithm 4.1)
defines a joint probability distribution Pr {J1,1, . . . , Jn,ni} over the given schedule
that assigns a probability to each execution scenario. However, the representation
of the full joint distribution is costly as it has O(LnR) parameters. To overcome
this, we use Bayesian networks (BN) [139], which can be seen as an efficient way of
representing joint distributions.

We show that any schedule for scheduling problem 1|mc = L, rep = R|∑Pi
defines a Bayesian network. We use this network for the computation of the execution
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probability of jobs using the existing inference algorithms for BNs. Moreover, we
utilize the theoretical framework of Bayesian networks to analyze which case of the
problem admits an efficient algorithm for probability computation.

4.3.1 Reduction to Bayesian networks

Under the considered mixed-criticality model, replica Ji,q with Xi criticality levels
can be either: (i) executed at one of its levels (i.e., Xi outcomes), (ii) rejected
by some other job replica, or (iii) rejected due to successfully completed previous
replica of the same job. The probabilities of its outcomes are given by the start
times of other replicas in the schedule. If the replica is executed, then its outcomes
have probabilities given by the job specification, i.e., µi distribution. When the
replica is rejected, then all these outcomes have a probability of zero. However, the
probability of being executed or rejected depends on the preceding jobs replicas in
the schedule and their coverage.

J1,1J1,1

J6,1J6,1

J2,1J2,1

J3,1J3,1

J4,1J4,1

J5,1J5,1
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J5,2J5,2 J3,2J3,2 J3,3J3,3

J7,1J7,1
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(a) Example schedule s.

J1,1J1,1

J2,1J2,1 J2,2J2,2

J3,1J3,1 J3,2J3,2 J3,3J3,3

J4,1J4,1

J5,2J5,2 J6,1J6,1J5,1J5,1

J7,1J7,1

(b) Corresponding Bayesian network G(s).

Figure 4.9: Representation of a schedule by a Bayesian network.

4.3.1.0.1 Network structure The structure of Bayesian network G(s) =
(Vs, As) corresponding to a schedule s is defined in the following way. We assume
that each job replica in the schedule corresponds to a single discrete random variable.
Hence, the set of vertices Vs is equal to the set of job replicas in schedule s. A
random variable (i.e., a vertex) corresponding to job replica Ji,q has outcome space
given as {†, ?, 1, . . . ,Xi} with the total ordering defined as † ≺ ? ≺ 1 ≺ . . . ≺ Xi.
The outcomes ` � 1 coincide with the execution levels of the job. That is, Ji,q has
the outcome `, i.e., Ji,q ∼ ` for Xi � ` � 1 if and only if its execution level is `.
The outcome ` = ? denotes that the job replica was rejected by a preceding replica
of a different job with higher criticality (i.e., it was covered by it). Finally, the
outcome ` = † denotes that a preceding replica of the same job was completed in
the schedule before. Note that we use two different outcomes for the rejection of a
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job replica, i.e., ? and †. This distinction is necessary to model the fact that the
execution policy of mixed-criticality schedules executes at most one replica of each
job (see Algorithm 4.1). Next, as an example, let us demonstrate how the outcomes
of random variables relate to possible execution scenarios in the schedule. Consider
the execution scenario e3 displayed in Figure 4.5b. The sequence of outcomes
corresponding to this scenario e3 is (2, ?, ?, 1, 1, †).

Next, we describe how vertices in the network are connected. Vertex Jk,r is
connected to Ji,q (i.e., Jk,r → Ji,q ∈ As) if and only if

Ji,q ∈ cov(Jk,r) or (i = k ∧ q = r + 1) . (4.3.1)

In other words, for each vertex, its parent is a vertex covering it in the schedule
or its immediate preceding replica. The intuition behind connections defined like
that is that a job replica needs to be connected to all other job replicas that influence
its execution. See an example schedule in Figure 4.9a and the corresponding BN
displayed in Figure 4.9b. Let us note that we may assume that the network G(s) is
connected; otherwise, one could deal with each component separately.

Conditional distributions The other parameters of BNs are conditional prob-
ability tables (CPTs). For each random variable, CPT defines a distribution of
outcomes conditioned by the outcomes of all its parents (i.e., the evidence). In our
case, CPTs are defined as follows. If vertex Ji,q has no parent, then its CPT is
simply the distribution over its criticality levels {1, . . . ,Xi} with the outcomes ?
and † having zero probability. If Ji,q is the first replica of a job (i.e., q = 1), then
for the outcomes of its parents that reject Ji,q, its CPT assigns the probability of
1 for ? outcome. For the outcomes of its parents that permit its execution, the
probabilities of outcomes {1, . . . ,Xi} are given by µi distribution.

Consider the schedule in Figure 4.9a with the parameters of distributions for job
J1 and J4 are µ1 = µ4 = (0.5, 0.3, 0.2), for job J2 and J7 are µ2 = µ7 = (0.6, 0.4),
and for J3, J5 and J6 are µ3 = µ5 = µ6 = (1.0). If J1,1 is executed at criticality
level 3, then J2,1 will be rejected, and, given that J1,1 ∼ 3, the probability of J2,1

being rejected is 1. On the other hand, when J1,1 ≺ 3, then the probability of J2,1

being rejected is zero. More precisely, the conditional probabilities for replica Ji,q
are given as

Pr




Ji,q ∼ `

∣∣∣∣∣∣∣∣

∧

(j,r,k):
Ji,q∈covk(Jj,r)

(Jj,r ≺ k) ∧ (Ji,q−1 ∼ ?)





= µ
(`)
i ,

Pr




Ji,q ∼ ?

∣∣∣∣∣∣∣∣




∨

(j,r,k):
Ji,q∈covk(Jj,r)

(Jj,r � k)


 ∧ (Ji,q−1 ∼ ?)





= 1,

Pr {Ji,q ∼ † | Ji,q−1 � ? ∨ Ji,q−1 ∼ †} = 1,

where without loss of generality, we assume that Ji,0 ∼ ?.
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Example CPTs for some of the replicas for the schedule in Figure 4.9a can be seen
in Table 4.2. The replicas J1,1, J4,1, and J7,1 do not have any evidences (i.e., the
outcomes of all its parents) since their sets of parents are empty. Similarly, the blank
evidence, e.g., the first row for J2,2 in Table 4.2f, is used to denote that an arbitrary
outcome (i.e., †, ?, 1, . . .) of its parents applies. Note that we have used a compact
representation of conditional probabilities instead of full CPTs, which can be in fact
exponential in L. Therefore, BNs admit also different representations of conditional
distributions (e.g., decision trees) that lead to more concise representation in some
cases.

outcome evidence
† ? 1 2 3

0.0 0.0 0.5 0.3 0.2 ∅
(a) Replicas J1,1 and J4,1.

outcome evidence
† ? 1 2

0.0 0.0 0.6 0.4 ∅
(b) Replica J7,1.

outcome evidence
† ? 1 2 J1,1

0.0 0.0 0.6 0.4 † ∨ ? ∨ 1 ∨ 2
0.0 1.0 0.0 0.0 3

(c) Replica J2,1.

outcome evidence
† ? 1 2 J2,1

1.0 0.0 0.0 0.0 † ∨ 1 ∨ 2
0.0 0.0 0.6 0.4 ?

(d) Replica J2,2.

outcome evidence
† ? 1 J2,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2

(e) Replica J3,1.

outcome evidence
† ? 1 J3,1 J2,2

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? † ∨ ? ∨ 1
0.0 1.0 0.0 ? 2

(f) Replica J3,2.

outcome evidence
† ? 1 J3,2 J7,1

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? ? ∨ 1
0.0 1.0 0.0 ? 2

(g) Replica J3,3.

outcome evidence
† ? 1 J4,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2 ∨ 3

(h) Replica J5,1.

outcome evidence
† ? 1 J5,1 J2,2

1.0 0.0 0.0 † ∨ 1
0.0 0.0 1.0 ? † ∨ ? ∨ 1
0.0 1.0 0.0 ? 2

(i) Replica J5,2.

outcome evidence
† ? 1 J4,1

0.0 0.0 1.0 † ∨ ? ∨ 1
0.0 1.0 0.0 2 ∨ 3

(j) Replica J6,1.

Table 4.2: CPTs for the example schedule s.

Marginalization To compute the probability of execution of jobs, one needs to
perform marginal inference in the constructed network. There are known algorithms
that can perform such inference and their implementations are widely available.
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J1,1 J2,1 J2,2 J3,1 J3,2 J3,3 J4,1 J5,1 J5,2 J6,1 J7,1

Pr {Ji,q � 1} 1.0 0.8 0.2 0.68 0.32 0.0 1.0 0.5 0.46 0.5 1.0

Table 4.3: Execution probabilities of individual replicas in schedule s.

For the exact inference in BNs, multiple algorithms exist [76], such as variable
elimination or junctions trees. One can also trade the precision for the computational
time and use approximate inference methods [119], such as Markov Chain Monte
Carlo or Gibbs sampling. To compute the execution probability of replica Ji,q, we
utilize the property of Bayesian networks [104, 139] that states

Pr {Ji,q} =
∑

∀sj,r∈s\{si,q}

n∏

i′=1

ni′∏

q′=1

Pr {Ji′,q′ | parents(Ji′,q′)} , (4.3.2)

where parents(Ji′,q′) denotes the set of all immediate predecessors of Ji′,q′ in BN
G(s). The equation (4.3.2) suggests that the probability distribution Pr {Ji,q}
can be computed with the marginalization over all variables except Ji,q of the
joint distribution Pr {J1,1, . . . , Jn,nn}. The joint distribution is factorized using
the conditional independence relations defined by the network. The complexity of
the computation is hidden in the marginalization step where we need to perform
the summation over all combinations of replicas’ outcomes and multiply their
probabilities altogether. However, one can notice that vertices that are not ancestors
of Ji,q in G(s) do not influence the distribution Pr {Ji,q} as they are marginalized
out during the computation of (4.3.2). Hence, for each job in the schedule, we can
define a smaller Bayesian network containing only its ancestor vertices. In fact, this
is a concept related to the question of relevant nodes in Bayesian inference for a
query with the given set of evidence nodes.

Definition (Bayesian network with respect to a job replica). Bayesian network
with respect to job replica Ji,q, denoted by G′i,q, is a subgraph of G(s) induced by
the set of vertices reachable from Ji,q with the reversed orientation of edges in G(s).

For example, in Figure 4.9b, the Bayesian network with respect to J3,2 has
vertices V (G′3,2) = {J1,1, J2,1, J2,2, J3,1, J3,2} and edges incident with V (G′3,2). The
inference is then performed in the network G′i,q for all replicas Ji,q independently.
Note that in specific cases, the Bayesian network with respect to some job replica
might be as large as the original network G(s). Indeed, for the schedule used in
hardness reduction in Figure 4.7, the network with respect to job Y is identical to
the whole network, i.e., G′Y,1 = G(s). However, in the next section, we show that
under realistic assumptions, the restricted networks are much smaller.

The complete algorithm that computes
∑
Pi is given in Algorithm 4.2.
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Algorithm 4.2: Computation of
∑
Pi in schedule s.

input : a schedule s
output : the sum of execution probabilities of jobs

∑
Pi

1 for Ji ∈ IMC do
2 for q = 1 to ni do
3 G′i,q ← BN with respect to Ji,q in s

4 Pi,q ← Pr {Ji,q � 1} in G′i,q // inference in G′i,q

5 Pi ←
∑
q Pi,q

6 return
∑
Pi

The computed execution probabilities for the example in Figure 4.9a can be
seen in Table 4.3.

Remark 5. Note that there are three aspects that affect the particular values of
the computed probabilities. Namely, it is the probability distribution of processing
times of the jobs involved, the maximum number of replicas R, and their actual
schedule. For example, with R = 2, it would be possible to achieve exactly the same
execution probabilities as presented in Table 4.3 since the presence of J3,3 replica
does not increase the execution probability of job J3 any further. However, with
the identical set of jobs but with a different schedule, the result might be different.
Therefore, it is a complex question with what value of R the schedules should be
constructed. Another related question is whether with the increasing value of R,
the marginal improvements in the execution probability are non-increasing and if
yes, how quickly the marginal improvements become negligible to the point where it
is effectively meaningless to increase it further. However, in practice, the number
of maximum replicas is often treated as a design parameter, not a variable to be
optimized. Thus, the cases of the practical interest contain problems where R is
fixed to a particular constant.

4.3.2 Tractable case

In this section, we show that when both L and R are bounded by a constant
independent from the input length, the computation becomes tractable. We note
that this case is arguably the most practical one concerning real-world applications.
Additionally, this case is also tight in the sense that when one of the L or R is not
fixed, then the problem becomes intractable, as shown by Propositions 9 and 10.

The main idea is to realize that computationally the most intensive step in
Algorithm 4.2 is the inference in BN G′i,q. However, it can be shown that the size
of the restricted network is limited by parameters L and R. When both L and R
are bounded by a constant, then the number of vertices V (G′i,q) is independent of
the number of all replicas in the schedule (i.e., does not depend on n = |IMC |, but
only on R and L).

Proposition 11. Let G′i,q be a Bayesian network with respect to arbitrary Ji,q.
Then it holds that ∣∣V (G′i,q)

∣∣ ∈ O
(
(RL)L

)
.
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Proof. The general idea is to follow the definition of how the networks are built in
order to construct the largest possible network with the given fixed values of R and
L. Then, we bound the number of vertices in the resulting graph.

Let us consider a BN with respect to some job Ji,q for the problem with L
criticality levels, and R maximum replicas. Without loss of generality, let us assume
that Xi = 1. Let us organize G′i,q into levels, where level L` ⊆ V (G′i,q) contains all

job replicas Jk,r with criticality Xk = `, such that V (G′i,q) =
⋃L
`=1 L`. Assuming we

have at most R replicas per job, we have that |L1| ≤ R. By (4.3.1), we have that
every vertex has in-degree at most (L− 1) + 1 = L. Hence, the upper bound on the
number of vertices in the second level is |L2| ≤ R2 × L. For level `, we have that
|L`| ≤ R` × L`−1. Since we have L criticality levels, graph G′i,q contains at most
∣∣V (G′i,q)

∣∣ ≤∑L`=1 |L`| = R+R2 × L+ . . .+RL × LL−1 = R× (RL)L−1
RL−1 vertices.

Therefore, the cardinality of the vertex set is a function of R and L only.

Remark 6. Note that the upper bound suggested by Proposition 11 is overly
pessimistic since we have assumed that each job replica Ji,q is covered by L − 1
different job replicas of criticality Xi + 1, which cannot occur. Hence, with more
detailed analysis, the upper bound could be reduced.

Next, we discuss what is the size of CPTs in G′i,q. Since in-degree of each vertex

is at most L by (4.3.1), then its CPT has size at most O((L+ 2)L), even under a
trivial encoding given by a full CPT. Hence, the total size of the representation
of BN G′i,q is independent of the number of jobs n. The total time complexity
of Algorithm 4.2 is O(n · R · f(L,R)), where f(L,R) is complexity of the used
inference algorithm in BN G′i,q.

Finally, let us discuss inference complexity term f(L,R) in BN G′i,q. The
efficiency of exact inference algorithms is limited by the properties of conditional
distributions as well as by the structure of networks. It is known that networks
satisfying local variance bound (LVB), i.e., a requirement that forbids extreme
conditional distributions, admit a subexponential deterministic inference algorithm
[52]. Unfortunately, in our case, conditional distributions do not satisfy LVB due
to the execution policy (a replica is rejected with the probability of one when the
previous replica is executed). Concerning the structural properties of the network,
it is known that they are mostly related to the treewidth of a graph. Informally,
the treewidth of a graph is a quantity related to its connectivity. For example, the
treewidth of the least possible connected graph (i.e., a tree) is equal to 1 whereas
the complete graph with n vertices has treewidth equal to n − 1. The result of
[101] suggests that under reasonable assumptions, no polynomial algorithm exists
for networks with unbounded treewidth. A similar idea to avoid intractability was
applied in [147], where they focus on tree networks. In our case, the networks have
bounded treewidth by a function of L and R which avoids the dependence on the
total number of jobs n. Thus, its complexity does not depend on the number of
jobs n. What is more, the practical experience suggests that, in an average case of
mixed-criticality schedules, the treewidth of our networks achieves much smaller
values.

Finally, we note that the current implementations of Bayesian network solvers
easily handle computations in networks with hundreds to thousands of vertices
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(i.e., replicas) within seconds [146]. Hence, we see the proposed method as a
computationally efficient way of solving the problem.

4.4 Conclusion

In this work, we have introduced the replication of jobs as a mechanism for increasing
the execution probability in mixed-criticality schedules. We have studied the
complexity of the computation of execution probability in the given static schedule.
Our main result shows that there are two primary parameters that influence the
complexity — the maximum number of replicas per job R and the number of
criticality levels L. We have shown that although the replication significantly
improves the execution probability in mixed-criticality schedules, it introduces
additional complexity to the problem and the exact computation becomes #P-hard.
In fact, the problem remains hard if either the maximum number of replicas R ≥ 3
or the number of criticality levels L ≥ 8 is fixed while the other quantity is bounded
by a polynomial in the number of jobs.

To solve the problem, we have proposed a reduction to probabilistic inference
in Bayesian networks, showing an interesting connection between schedules with
uncertain execution and probabilistic graphical models. The analysis of the resulting
networks shows that for the practical case when both R and L are bounded by
a constant, the computation becomes tractable. Considering available implemen-
tations of exact and approximate inference algorithms for Bayesian networks, the
problem can be efficiently solved in practice as well, offering a viable choice for
improving the efficiency of static schedules for mixed-criticality systems.
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5.1 Introduction

This work focuses on the problem of parallel machine scheduling, where the process-
ing time of each job is an uncertain parameter and is given by a normal probability
distribution. The optimal solution is a schedule that maximizes the probability that
all jobs are finished before the common due date.

A practical example of such a scheduling model is the scheduling in a production
stage operated by human workers. The workers are supposed to put various parts
together to create a piece of product using the tools available at each workbench.
A single assembly may take up to a few dozens of minutes but the precise time
cannot be set in advance as the human aspect introduces uncertainty related to
the complexity of the given piece. The presence of a common due date is typically
related to the ”end-of-the-day” targets, such as fulfilling a certain assembly quota
or preparing boxes of the finished products to be dispatched. The above scheduling
model finds also other applications, e.g., in scheduling of operations in operation
theaters [179] or the allocation of control algorithms to computational units for
unmanned aerial vehicles [9].

5.1.1 Problem statement

Consider a set of m identical parallel machines M = {M1, . . . ,Mm} and a set of n
jobs J = {J1, . . . , Jn}. Let us denote j-th job as Jj with a processing time πj which
is an uncertain parameter and is described by a normal probability distribution. In
other words, we associate processing time πj of each job with a normal distribution,
which is given by its mean µj and variance σ2

j :

πj ∼ N (µj , σ
2
j ), µj , σ

2
j ∈ N. (5.1.1)

Let us denote the vector of all means as µ = (µ1, . . . , µn) ∈ Nn and vector of
variances σ2 = (σ2

1 , . . . , σ
2
n) ∈ Nn. Finally, we are given a common due date δ ∈ N0,

before which all the jobs should be completed. The objective is to find an assignment
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of jobs to machines that maximizes the probability that we process all jobs before due
date δ. Note that without loss of generality, the assumption on integer parameters
of the given distributions may be lifted to rational numbers, since all parameters
may be multiplied by the least common multiplier of their denominators.

µM1 0.021M1

µM2
0.061M2

0 20 40 60 δ = 84 100

µM3 0.041

completion time Ci of the last job

M3

Figure 5.1: Example solution of a problem instance with three machines.

A solution to this problem is an assignment of jobs to machines. Let us consider
a set of jobs Si ⊆ J to be scheduled on machine Mi represented by characteristic
vector si = (si,1, . . . , si,n) with si,j being the j-th element of si. Characteristic
vector si for set Si means that Jj ∈ Si if and only if si,j = 1, otherwise si,j = 0.
When the jobs are independent, it can be shown that the completion time Ci of the
last job on machine Mi is a normally distributed random variable

Ci =
∑

Jj∈Si
πj ∼ N (µMi

, σ2
Mi

), µMi
= µᵀsi, σ

2
Mi

= σ2ᵀsi

where µMi
and σ2

Mi
are the total mean and total variance of jobs assigned to Mi,

respectively. The probability that machine Mi completes the assigned jobs before
the due date δ (i.e., Pr[Ci ≤ δ]) can be expressed by the cumulative normalized
normal distribution function Φ as

Pr[Mi finishes before δ] = Φ


δ − µMi√

σ2
Mi


 . (5.1.2)

Note that Φ does not have an analytical form and needs to be approximated in
practice. An example illustrating a problem instance with three machines is shown
in Figure 5.1. The green area represents the probability that machine Mi finishes
the assigned jobs Si before δ. Under the assumption that processing times of jobs
are independent, the probability that all machines finish processing before the due
date δ is

Pr[all jobs in J are finished before δ] =

m∏

i=1

Pr[Mi finishes before δ], (5.1.3)

which can be rewritten as
m∏

i=1

Φ


δ − µMi√

σ2
Mi


 . (5.1.4)
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The problem defined above is known as a (β-robust) stochastic parallel machine
scheduling problem [135]. With Graham’s three-field scheduling notation [75] the
problem can be classified as P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ], and can be shown to

be NP-hard by the reduction from 3-Partition problem. Let us note that for the
case where n ≤ m, i.e., the number of machines is larger or equal to the number of
jobs to schedule, the solution is trivial since we can schedule one job per machine,
potentially leaving some machine empty. Hence, without loss of generality from
now on, we will assume that n > m > 1; therefore, each machine schedules at least
one job.

Example An example of a problem instance considering 10 jobs is summarized
in Table 5.1. Let δ = 84 and the number of machines m = 3. Then, the optimal

Jj J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

µj 32 12 2 20 19 35 23 21 26 41
σ2
j 2 2 1 9 2 4 13 3 8 7

Table 5.1: Jobs parameters for an example problem instance.

solution is

S1 = {J1, J5, J9}, S2 = {J2, J4, J7, J8}, S3 = {J3, J6, J10}

with the objective value being

Φ

(
84− (32 + 19 + 26)√

2 + 2 + 8

)
× Φ

(
84− (12 + 20 + 23 + 21)√

2 + 9 + 13 + 3

)

× Φ

(
84− (2 + 35 + 41)√

1 + 4 + 7

)
= 0.8796.

A visualization of the solution shown in Figure5.1 illustrates the probability density
function of completion times on each machine. Red areas represent the probability
that the last job on the specific machine exceeds the common due date δ.

5.1.2 Non-linear model

The problem defined above can be described by a mixed-integer non-linear program
(MINLP) [135] as follows. The model uses a binary assignment variables si,j with
the meaning

si,j =

{
1 if job Jj is scheduled on machine Mi,

0 otherwise.
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Subsequently, the whole model can be stated as

max

m∏

i=1

Φ


δ − µMi√

σ2
Mi


 (5.1.5)

subject to:

n∑

j=1

si,j · µj = µMi ∀i ∈ {1, . . . ,m}, (5.1.6)

n∑

j=1

si,j · σ2
j = σ2

Mi
∀i ∈ {1, . . . ,m}, (5.1.7)

m∑

i=1

si,j = 1 ∀j ∈ {1, . . . , n}, (5.1.8)

where: si,j ∈ {0, 1} ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , n} (5.1.9)

µMi , σ
2
Mi
≥ 0 ∀i ∈ {1, . . . ,m}. (5.1.10)

Constraints (5.1.6) and (5.1.7) compute the corresponding means and variances
on each machine, while (5.1.8) represents the constraint that forces the scheduling
of each job exactly once. An obstacle lies in expressing the objective (5.1.5) since
the cumulative normal distribution Φ does not have an analytical form. Hence, it
is necessary to approximate it by one of the known approximations [174]. Then,
the problem can be solved by a non-linear mixed-integer programming solver with
the model (5.1.5)–(5.1.10). However, as it will be shown later, even with some
improvements to the above MINLP, it scales only about up to four machines and 15
jobs. Hence, further in the paper, we will develop much more efficient algorithms.

5.1.3 Related work

The methodology of solving problems on parallel machines with uncertain pa-
rameters most typically falls into one of the four main categories: (i) reactive
scheduling, (ii) robust optimization (RO), (iii) stochastic programming (SP), and
(iv) distributionally robust optimization (DRO).

Reactive scheduling assumes an online scheduling policy that reacts to the
observed values of parameters during the execution (or breakdown) of the sched-
ule [161, 142]. Simulation optimization [91] is an alternative approach that also does
not assume any specific analytical form of uncertainty in advance. For example,
in [145], discrete-event simulation is used inside a heuristic optimization routine
to estimate uncertain inventory function at specific points of interest. Although
these methods have obvious advantages for uncertainties that are hard to describe
analytically, it is challenging to ensure their provably safe behavior or their ability
to account for the worst-case scenarios.

RO paradigm assumes that unknown parameters belong to a given uncertainty
set with the aim to optimize the worst-case utility function or ensure that constraints
hold for all possible realization of parameters within uncertainty set [22]. Uncertainty
sets often have a polyhedral [79] or conic representation [32] and, thus, are efficiently
solvable in practice. A notable related study was done by [96] who devise a
branch-and-bound method to solve the two-machine flow shop robust scheduling
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problem with uncertain processing times. They assume that processing times of all
jobs are drawn from an uncertainty set containing scenarios either with discrete
processing time or continuous intervals. Another related problem, but with a
different criterion and the form of uncertainty, was studied in [165]. The authors
study a robust scheduling problem, minimizing the number of identical machines
required to completing all the given jobs before a deadline. They solved the problem
using a branch-and-price approach. The processing time uncertainty was defined
using intervals and the stability radius, i.e., the number of jobs that can deviate
from their nominal processing times is defined as a parameter. A notion of multiple
levels of robustness was introduced by authors of [7], where they consider finite
discrete processing time uncertainty set and construct schedules that comply with
requirements of jobs, which may vary according to their criticality. An often-cited
disadvantage of RO is that the solution does not utilize the full information about
the distribution of parameters that might be obtained, e.g., from empirical data.
Thus the price for robustness might be too costly, and in some settings, it is
advantageous to optimize the problem in terms of expected outcomes rather than
the worst-case scenarios.

SP treats problems by optimizing the expected utility function of the systems
with respect to a known probabilistic distribution of parameters. In general, SP
problems can also be treated as a single, two-stage [114] or multi-stage optimization
problems [34] depending on how the uncertainty is unfolded. The problem is often
solved by a translation into a tractable finite-sized mathematical program. For
example, Skutella and Uetz [160] studied parallel machine scheduling problem with
precedences and release times with the minimization of the expected weighted
completion time. They provided several approximation results based on LP relax-
ations for various variants of the problems, but their applicability to our problem
is not clear as they consider expectation criterion rather than the probability of
completion.

Although the solutions obtained with SP show a good performance in the
long term, they can suffer from sudden performance fluctuations. To combat
this, the β-robust approach was coined by [53]. The goal is to create a schedule
that optimizes a utility function with respect to target level β, e.g., maximize
the probability that a certain threshold is met. In the case of parallel machine
scheduling problems, the research focuses almost exclusively on the total flow time,
as the β-robust objective. Single-machine variants were studied by, e.g., [53] and
[107], who introduced sequence-dependent setup times to the problem. Alimoradi et
al. [2] solve β-robust scheduling problem with parallel machines and the total flow
time criterion. They described several problem properties and proposed a branch-
and-bound method to solve the problem. As their criterion is simpler than ours,
they were able to solve instances with up to 45 jobs and 5 machines in less than
20 minutes. A similar problem was addressed by [130]. The authors maximize the
probability that the sum of job completion times will be lower than a given bound.
The paper proposes a mixed-integer non-linear programming model, which is solved
by a surrogate mixed-integer programming model; however, it does not guarantee
to find the optimal solution to the problem.

Finally, the same problem as in this paper was studied in [135]. They solve
problem P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ] which requires maximization of the joint
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probability that the completion time of all machines is less than δ. The problem is
more complex than previously studied total-flow time expectation models since the
objective function does require the product operator and an additional non-linearity
introduced by the cumulative normal distribution function. The authors devised two
branch-and-bound algorithms that differ in their branching schemes and are capable
of solving instances with about 20 jobs. The main limitation of this approach is the
symmetries induced by the branching scheme. The authors mitigate this issue by a
suitable solution encoding and by a dominance rule; however, the results indicate
that the CPU time sharply grows with an increasing number of machines. We note
that this problem is also related to the concept of chance constraints [42] when
one requires that a single constraint is satisfied within some defined probability.
However, as we consider multiple machines, we would require that constraints are
not satisfied separately, but rather in a joint probabilistic sense. As it is incredibly
complex to account for joint chance constraints, conservative over approximations
such as Bonferroni bounds [183] are typically used to guarantee the satisfaction
of constraints, but for the price of reducing solution space leading to sub-optimal
results. Moreover, these approaches are designed for continuous problems and are
used to handle feasibility rather than optimization. An another closely related
problem is Extensible Bin Packing (EBP) [56, 103]. This variant of bin packing
problem considers a fixed number of bins with a given capacity, which might be
enlarged for a certain cost. The goal is to pack all items into the bins such that
the total cost of packing is minimized. In stochastic setting of EBP problem,
the sizes of items are can be subject to uncertainty or the capacity itself can be
revealed after the choice of packing is commissioned [120]. Recently, Sagnol and
Schmidt [143] have considered Stochastic EBP, where the objective to minimize
the expected value of the sum of costs subject to uncertain item sizes. The family
considered distributions is not particularly limited. They studied approximation
algorithms and derived guarantees for LEPT (longest expected processing time)
rule with tight ratio 1 + e−1 ≈ 1.368 and even stronger results for distributions that
have bounded coefficient of variation. A branch-and-price approach for a similar
problem was proposed in [186]. They considered a chance-constrained Stochastic
EBP with the goal of minimizing the expected cost of the extension. The proposed
branch-and-price approach was able to solve instances with three bins and about
28 items in about thousand seconds. Finally, we note that all above problems are
also closely related to the scheduling with the total tardiness and common due
dates [95].

Distributionally robust optimization was introduced by Scarf [148] back in 1958,
but it started to receive attention recently. DRO aims to minimize the worst-case
expectation with respect to the uncertainty of the underlying distribution of the
parameters, i.e., the so-called ambiguity set. This new wave of interest in DRO
was sparked by recent advancements of mathematical programming solvers and
tractable formulations of ambiguity sets [30]. The problem is typically solved
by a reformulation to a computationally tractable mathematical programming
problem [158], whose complexity depends on the used formulation of the ambiguity
set. In [179], the authors solve surgery blocks to operating rooms (ORs). Processing
times of surgeries are subject to a probability contained in ambiguity sets defining
bounds on mean values and mean absolute deviations. The reformulation leads
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to a mixed-integer linear program of exponential size in the number of ORs. The
approach was able to solve problems with about 15 surgery blocks within an hour.
In [44], a distributionally robust variant of the identical parallel machine problem
with the minimization of the worst-case expected total flow time is investigated.
The processing times of jobs are subject to uncertainty belonging to the ambiguity
set defined by the moment uncertainty. The problem is reduced to a second-order
cone integer program and later solved by an exact algorithm which explores all
solutions satisfying optimality conditions. The proposed approach was able to solve
instances with 100 jobs and 5 machines within several seconds.

5.1.4 Contribution and outline

In this paper, we build on the work of Ranjbar et al. [135]. We apply integer pro-
gramming methodology to solve problem P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ] treating

it as a β-robust scheduling problem maximizing the probability that all jobs are
completed within due date δ. We solve the problem with a branch-and-price ap-
proach, and we propose efficient heuristic algorithms. The efficiency of our method
is based on the proof of so-called aggregated machines upper bound on the objective
that can be used, e.g., for the computation of the minimum and the maximum
number of jobs that each machine can schedule. The used solution methodology also
reveals connections to static stochastic Knapsack problem [116, 115]. Furthermore,
we use a constraint branching mechanism to mitigate symmetries in solution space,
and we exploit the concavity result for the case of a problem with two machines to
solve instances with up to 500 jobs.

The main contributions of this work are:

(i) a list scheduling and a genetic algorithm, which provide better lower bounds
than the heuristics described in [135],

(ii) a new upper bound on the objective based on the concept of aggregated
machines,

(iii) a branch-and-price decomposition of the problem with a branching mechanism
which mitigates symmetries and pricing problem admitting a fast solution
algorithm,

(iv) complexity proof of the pricing problem,

(v) an exact algorithm for the special case of two machines based on the concavity
of the relaxed problem,

(vi) experimental results which show significant improvements over the algorithms
published in [135].

This paper extends our previous conference paper [168] by describing a new initial
heuristics, the proposition and proof of aggregated machines upper bound on the
objective, and an algorithm for the case of the two machines utilizing the concavity
of the relaxed problem. The paper also provides a detailed evaluation and analysis
of the proposed approaches.
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The outline of the paper is the following. In Section 5.2, we propose an upper
bound on the objective function, and we describe a computational method for
obtaining bounds for the number of jobs scheduled on each machine. Next, we
present two heuristics to solve the problem. In Section 5.3, we introduce the
branch-and-price algorithm. We show the complexity of the pricing problem, and
we derive an efficient solution method for it. In Section 5.4, we solve a special case
of the problem with two machines. Finally, we provide computational experiments,
including results for an MINLP model in Section 5.5, and the paper is concluded
by Section 5.6.

5.2 Problem bounds

The purpose of this section is to establish problem properties and bounds used
thorough the rest of the paper. The outline of this section is the following. First,
we propose two new heuristic algorithms that provide a feasible solution that acts
as a lower bound. Next, we propose an upper bound on the objective, which is
based on the notion of aggregated machines – a relaxation of the problem in terms
of the number of machines and machine-specific due dates. Finally, based on the
proposed upper bound, we derive bounds on the number of jobs that each machine
has to schedule.

5.2.1 Lower bound heuristics

In work [135], the authors mention that their initial heuristic has a large optimality
gap, and they argued towards the development of new and more efficient algorithms.
Hence, in this section, we propose two heuristic scheduling algorithm.

The first algorithm we propose is a list scheduling algorithm analogical to the
LPT rule (longest processing time first) for P ||Cmax problem. It sorts jobs in
non-increasing order of sums of means and variances µj + σ2

j with ties broken by
larger µj . In each step, a job is taken and assigned to the machine i ∈ {1, . . . ,m}
with the currently largest probability of completion before δ, denoted as c(i). We
denote the objective value of a feasible solution with m machines with the common
due date δ as LB((δ)i=1,...,m) and it defines the lower bound to the studied problem.
The corresponding solution is defined in terms of job-machine assignment vectors
si = (si,1, . . . , si,j , . . . , si,n). We call this list scheduling algorithm as Large Sum
Allocated First (LSAF) and is shown in Algorithm 5.1. The experiments on our test
instances revealed that LSAF gives better results than the lower bound heuristics
introduced in [135] and [168]. We have tried several other ways how to sort the list
of jobs, e.g., product of means and variances or the coefficient of variation [160].
However, all of them have performed worse than LSAF. A similar algorithm for
Stochastic Extensible Bin Packing (SEBP) problem was proposed in [143]. Their
LEPT (longest expected processing time) first rule essentially resembles LSAF.
Although LEPT was shown to be 1 + e−1 ≈ 1.368 approximation algorithm for
SEBP, the question whether LSAF can have similar guarantees for our problem as
well remains open.

A second algorithm is a genetic meta-heuristic implemented using Never-
grad [136] library. We denote it as DF-DOPO. The solution is represented with
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Algorithm 5.1: LSAF list scheduling.

1 let µ1 + σ2
1 ≥ µ2 + σ2

2 ≥ . . . ≥ µn + σ2
n

2 c(i) ← 1, si ← 0 ∀i ∈ {1, . . . ,m}
3 for j ← 1 to n do
4 i? ← arg maxi∈{1,...,m} c(i)

5 si?,j ← 1

6 c(i) ← Φ

(
δ−µᵀsi?√
σ2ᵀ

si?

)

7 return LB((δ)i=1,...,m)

a real vector of dimension n. Each entry corresponds to a job and its assignment
on a machine, which is encoded using ordered discrete representations, i.e., as a
real number on the interval [0, 1], which is equidistantly divided into m segments.
Each segment then corresponds to a specific machine. The algorithm is Discrete
One Plus One genetic optimizer [150] with the heavy-tailed mutation operator [60]
(i.e., double fast genetic algorithm – DF-DOPO). We observed that this variant
performed the best among the other choices of representations and optimizers.

After DF-DOPO finishes, we further improve its solution by applying an ad-
ditional local search which reoptimizes jobs assigned along all pair of machines.
Essentially, every pair of machines and the set of jobs that is allocated to them
resembles an instance of the problem with m = 2 machines. As it will be shown
in Section 5.4, the problem with two machines can be solved up to the optimality
very efficiently in practice. Thus, the intensification local search procedure reopti-
mizes all pairs of machines optimally. We denote the variant of DF-DOPO where
we apply the two-machine intensification procedure twice as DF-DOPO+TM. A
comparison of LSAF, DF-DOPO+TM, and the heuristic from [135] can be found in
Section 5.5.2.

5.2.2 Upper bound on objective with aggregated machines

In this section, we propose a relaxation of the problem in terms of the number of
machines and their due dates. We use the concept of so-called aggregated machines.
The main idea is to replace the problem with m machines by a problem with
k + 1 machines for some m > k > 0. In the resulting problem, k machines are
preserved, and the last machine aggregates all remaining machines by increasing
its machine-specified due date. For example, it will be shown that the optimal
objective value for a problem with 3 machines with a common due date δ can be
upper bounded by an optimal solution for two machines, with one machine having
the due date set to 2δ. We show that the optimal solution of such a problem acts
as an upper bound on the objective. The upper bound is stated by Proposition 13;
however, first, we develop several useful inequalities before we prove the result.

Proposition 12. Let a, b ∈ R and c, d ∈ R>0. Then

Φ

(
a√
c

)
× Φ

(
b√
d

)
≤ Φ

(
a+ b√
c+ d

)
.
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Proof. Pick a, b ∈ R and c, d > 0 and denote a√
c

= u, b√
d

= v and α =
√
c√
c+d

,

β =
√
d√
c+d

. As a+b√
c+d

= αu+ βv, it suffices to prove that

Φ(u)× Φ(v) ≤ Φ(αu+ βv).

Let X,Y be independent random variables with X ∼ N (0, 1) and Y ∼ N (0, 1). We
have that

Φ(u)× Φ(v) = Pr [X ≤ u]× Pr [Y ≤ v] =

∫ u

−∞

∫ v

−∞
fX,Y (x, y) dxdy,

where fX,Y is the joint probability density function of (X,Y ). Note that α2 +β2 = 1,
which means ‖(α, β)‖ = 1 and therefore (αu+βv)·(α, β) is the orthogonal projection
of the vector (u, v) on to the linear subspace generated by (α, β). Indeed, we have

(u, v)ᵀ(α, β) · (α, β)

‖(α, β)‖ = (αu+ βv) · (α, β).

Apart from that, note that (−∞, u]×(−∞, v] ⊆ {(x, y)| x, y ∈ R, αx+βy ≤ αu+βv}
(see Figure 5.2 for an illustration). From that and from the non-negativity of fX,Y

upper bound is stated by Proposition 2; however, first, we develop several useful inequalities before
we prove the result.

Proposition 1. Let a, b 2 R and c, d 2 R>0. Then

�

✓
ap
c

◆
⇥ �

✓
bp
d

◆
 �

✓
a + bp
c + d

◆
.

Proof. Pick a, b 2 R and c, d > 0 and denote ap
c

= u, bp
d

= v and ↵ =
p

cp
c+d

, � =
p

dp
c+d

. As
a+bp
c+d

= ↵u + �v, it su�ces to prove that

�(u)⇥ �(v)  �(↵u + �v).

Let X,Y be independent random variables with X ⇠ N (0, 1) and Y ⇠ N (0, 1). We have that

�(u)⇥ �(v) = Pr [X  u]⇥ Pr [Y  v] =

Z u

�1

Z v

�1
fX,Y (x, y) dxdy,

where fX,Y is the joint probability density function of (X, Y ). Note that ↵2 + �2 = 1, which means
k(↵,�)k = 1 and therefore (↵u + �v) · (↵,�) is the orthogonal projection of the vector (u, v) on to
the linear subspace generated by (↵,�). Indeed, we have

(u, v)|(↵,�) · (↵,�)

k(↵,�)k = (↵u + �v) · (↵,�).

Apart from that, note that (�1, u]⇥ (�1, v] ✓ {(x, y)| x, y 2 R, ↵x+�y  ↵u+�v} (see Figure 2
for an illustration). From that and from the non-negativity of fX,Y follows

fX,Y

(↵u + �v) · (↵,�)

(↵,�)

(u, v)

x

y

Figure 2: Geometric illustration of the integration bounds, the projection of (u, v) and contours of fX,Y .

Z u

�1

Z v

�1
fX,Y (x, y) dxdy 

ZZ

(x,y)2R2

↵x+�y↵u+�v

fX,Y (x, y) dxdy.

9

Figure 5.2: Geometric illustration of the integration bounds, the projection of (u, v) and
contours of fX,Y .

follows
∫ u

−∞

∫ v

−∞
fX,Y (x, y) dxdy ≤

∫∫

(x,y)∈R2

αx+βy≤αu+βv

fX,Y (x, y) dxdy.

The bounds of the last integral can be simplified by rotation of the coordinate system
around the origin by the angle between vectors (1, 0) and (α, β). The corresponding
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substitution of variables is x = αt− βk and y = βt+ αk, applying which we get

∫∫

(x,y)∈R2

αx+βu≤αu+βv

fX,Y (x, y) dxdy =

∫ +∞

−∞

∫ αu+βv

−∞
fX,Y (αt− βk, βt+ αk) det

[
α −β
β α

]
dtdk.

As the value of fX,Y is invariant to rotation around the origin, the last integral
equals

∫ αu+βv

−∞

∫ +∞

−∞
fX,Y (t, k) dkdt = Φ(αu+ βv),

which completes the proof.

The following lemma shows that Proposition 12 can be generalized to the case
with the product of m terms:

Lemma 7. Let m ≥ 1, δ ∈ N0, µ,σ2 ∈ Nn and ∀i ∈ {1, . . . ,m} : si ∈ {0, 1}n,
si 6= 0 then

Φ

(
δm− µᵀ(s1 + . . .+ sm)√

σ2ᵀ(s1 + . . .+ sm)

)
≥

m∏

i=1

Φ

(
δ − µᵀsi√
σ2ᵀsi

)
. (5.2.1)

Proof. By induction over m. The base case m = 1 can be verified by routine
calculations. Let us denote the statement (5.2.1) as V (m), i.e., induction hypothesis
(I.H.). Now we prove that ∀m ≥ 1 : V (m) =⇒ V (m+ 1). By expanding the right
hand side of V (m+ 1) we have that

m+1∏

i=1

Φ

(
δ − µᵀsi√
σ2ᵀsi

)
=

m∏

i=1

Φ

(
δ − µᵀsi√
σ2ᵀsi

)
× Φ

(
δ − µᵀsm+1√
σ2ᵀsm+1

)
I.H.
≤

≤ Φ

(
δm− µᵀ(s1 + . . .+ sm)√

σ2ᵀ(s1 + . . .+ sm)

)
× Φ

(
δ − µᵀsm+1√
σ2ᵀsm+1

)
Prop. 12

≤

≤ Φ

(
δ(m+ 1)− µᵀ(s1 + . . .+ sm+1)√

σ2ᵀ(s1 + . . .+ sm+1)

)
.

Now, we will state an upper bound on the objective for the problem with m
machines in terms of the optimal solution of a problem with k + 1 < m machines.
Let us denote an optimal objective value of the problem with m machines and
machine-specified due dates δ1, δ2, . . . , δm as OPT(δ1, δ2, . . . , δm). Then, we have
the following bound:

Proposition 13. Let m > 1 be the number of machines and k ∈ N, m > k > 0.
Then,

OPT ((δ)i=1,...,k, δ · (m− k)) ≥ OPT ((δ)i=1,...,m) .
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Proof. Let us denote characteristic vectors of optimal job-machine assignments for
the problem with m machines as s?1, . . . , s

?
m. We have that

OPT((δ)i=1,...,m) = Φ

(
δ − µᵀs?1√
σ2ᵀs?1

)
× · · · × Φ

(
δ − µᵀs?m√
σ2ᵀs?m

)
Lemma 7
≤

≤
k∏

i=1

Φ

(
δ − µᵀs?i√
σ2ᵀs?i

)
× Φ


δ(m− k)− µᵀ(s?k+1 + . . .+ s?m)√

σ2ᵀ(s?k+1 + . . .+ s?m)


 =

= LB((δ)i=1,...,k, δ · (m− k)) ≤ OPT((δ)i=1,...,k, δ · (m− k)).

The first inequality follows from Lemma 7; the equality from the fact that the term
represents the objective value of a feasible solution for k + 1 machines with due
dates δ1 = . . . = δk = δ and δk+1 = δ(m− k) defined by job-machine assignments
s?1, . . . , s

?
k and s?k+1 + . . .+ s?m. The last inequality follows from the fact that the

optimal solution for this problem is at least as good as any feasible one.

Please note that computing just OPT (δ, δ · (m− 1)) is already an NP-hard
problem for m = 2 by the reduction from 2-Partition problem. However, solving it
gives a non-trivial upper bound on the objective of the problem with m machines.
The practicality of the proposed bound follows from the fact that the problem with
two machines can be solved efficiently in practice even for a large number of jobs,
which will be demonstrated in Section 5.4.

In the next section, we propose an algorithm for computing the minimum and
the maximum number of jobs that any machine can schedule in an optimal solution.
The approach described below utilizes the upper bound OPT (δ, δ · (m− 1)), which
can be parameterized by requiring that the first machine schedules some given
number of jobs.

5.2.3 Bounds on the number of jobs on a machine

In work [135], the authors introduce a lower bound on the number of jobs that each
machine has to process, denoted as xmin, i.e., the number of jobs that has to be
scheduled on each machine. Here, we show a new approach for computing xmin.
Furthermore, we also introduce a new bound xmax on the maximal number of jobs
to be processed on any machine. Our approach presented here is based on the upper
bound on the objective function introduced in Section 5.2.2. The core idea is to
utilize the upper bound stated by Proposition 13 with the case k = 1. For this case,
the algorithm computing OPT(δ, δ · (m − 1)) can be implemented in such a way
that we can specify the number of jobs to be scheduled on the first (non-aggregated)
machine. The details of this implementation are given in Section 5.4.3.

Let us define OPTq(δ, δ · (m− 1)) as the optimal objective value for the problem
with δ1 = δ, δ2 = δ · (m− 1) with the first machine having exactly q jobs assigned.
It can be shown (likewise in Proposition 13) that OPTq(δ, δ · (m− 1)) acts as an
upper bound on OPTq(δ1, δ2, . . . , δm) with δ1 = δ2 = . . . = δm = δ. The idea is to
find a lower bound xmin and an upper bound xmax on value q such that the value
of the upper bound parametrized by q does not contradict a provably achievable
objective LB((δ)i=1,...,m). See the pseudocode in Algorithm 5.2.
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Algorithm 5.2: Computing xmin and xmax.

1 xmin ← 1, xmax ← n−m+ 1
2 compute LB((δ)i=1,...,m)
3 while LB((δ)i=1,...,m) > OPTxmin(δ, δ · (m− 1)) do // See Section 5.4.3.

4 xmin ← xmin + 1

5 while LB((δ)i=1,...,m) > OPTxmax(δ, δ · (m− 1)) do
6 xmax ← xmax − 1

7 return xmin, xmax

Example For the example instance in Table 5.1, assume that a heuristic algorithm
finds a lower bound LB(δ, δ, δ) = 0.8796. Then, it can be computed that xmin ≥ 2
and xmax ≤ 5 with the computation taking less than 250 ms on commodity hardware.

5.3 Branch-and-price algorithm

In this section, we propose a branch-and-price algorithm [11] to solve the problem.
In general, the branch-and-price algorithm consists of two support models: a
master problem and a pricing problem. The master problem is a reformulation
of the original problem where the job-machine assignment variables are replaced
by indicator variables whether some subset of jobs is scheduled on some machine.
We refer to such sets of jobs as to patterns. The model selects m patterns such
that they maximize the objective function given the constraint that each job is
scheduled. Since there is an exponential number of all possible patterns, the linear
relaxation of the formulation is solved lazily via column generation [58], and an
integer solution is ensured by a branching mechanism.

In the column generation procedure, the current values of dual variables of the
master problem are passed on to the pricing problem. The pricing problem acts
as a separation problem for the dual formulation. When its optimal solution has
a so-called negative reduced cost (i.e., the objective value), then a new pattern is
added to the master problem. The existing set of patterns is updated, and the
master problem is resolved, yielding new values of dual variables. The procedure is
repeated, while a pattern with a negative reduced cost can be found.

The master problem relaxes the pattern indicator variables and may not provide
an integer solution. In that case, we need to apply a branching scheme that creates
two copies of the original problem, one with the imposed constraint that some
two jobs must be scheduled together and the other with the constraint that some
two jobs cannot be scheduled together. When one of them does not yield an
integer solution, the branching is performed on that problem again, which creates a
branching tree. Once all the leaves of the branching tree are closed, we take the
best solution, which represents the optimal solution to the given instance.

The main advantages of the branch-and-price reformulation are the more efficient
mitigation of symmetries between identical machines compared to the branch-and-
bound from [135]. What is more, it was recently documented by [186] that extensible
bin packing type-of problems with stochastic items display structure which favours



112 Branch-and-price algorithm

to branch-and-price solution methods. Especially, the employed decomposition
allows us to displace the non-linearity presented in the objective to the pricing
problem that can be solved by a dedicated algorithm.

In the following sections, we describe each part of the algorithm in details.

5.3.1 Master problem

The master problem lifts up the original variable space and works with indicator
variables of all possible sets of jobs. The solution selects m of such sets so that the
objective function is maximized subject to the constraint that every job is scheduled.
We represent each set of jobs as a characteristic vector p(k) = {0, 1}n. We refer to

such a vector as a pattern. Let us define the value of p
(k)
j as

p
(k)
j =

{
1 if job Jj is contained in pattern p(k)

0 otherwise.
(5.3.1)

We apply the log transformation to the original objective function to transform the
product of probabilities into their sum. Hence, the cost of the k-th pattern, denoted
as log

(
c(k)
)
, is calculated as the logarithm of the probability that jobs scheduled in

the pattern are completed before δ.

5.3.1.0.1 Example Consider an instance with 4 jobs given by deadline δ = 35
and µ = (12, 18, 7, 13) and σ2 = (7, 2, 3, 5). One of the possible patterns is
p(0) = (1, 1, 0, 0), which indicates that jobs J1 and J2 are scheduled together on
some machine. The cost log

(
c(0)
)

of pattern p(0) is then

log
(
c(0)
)

= log Φ

(
δ − µᵀp(0)

√
σ2ᵀp(0)

)
= log Φ

(
35− 12− 18√

7 + 2

)
= log(0.95).

Let us denote the set of all patterns by P . The complete representation of P
would be costly as it contains 2n patterns. Hence, the column generation starts
with an initial subset of patterns P ′ ⊆ P and generates more patterns lazily as
needed. To prove the optimality of a solution, the algorithm often does not need to
generate the whole set P since only a small fraction of P is typically needed. The
master problem is given as

max

|P ′|∑

k=1

yk · log
(
c(k)
)

(5.3.2)

subject to:

|P ′|∑

k=1

yk · p(k)
j ≥ 1 ∀j ∈ {1, . . . , n}, (5.3.3)

|P ′|∑

k=1

yk ≤ m (5.3.4)

where: yk ∈ R+
0 ∀k ∈ {1, . . . , |P ′|} (5.3.5)



Scheduling jobs with normally distributed processing times 113

The yk is a decision variable that indicates if we choose the k-th pattern to be
selected or not. The constraint (5.3.4) limits the number of used resources. Note
that the master problem is the linear relaxation of its integer counterpart where
the complete set of patterns P was replaced by a subset P ′ ⊆ P . Since it is a linear
program, we can derive its dual formulation

min

n∑

j=1

ψj +m · γ (5.3.6)

subject to:

n∑

j=1

ψj · p(k)
j + γ ≥ log

(
c(k)
)
∀k ∈ {1, . . . , |P ′|}, (5.3.7)

where: γ ∈ R+
0 , (5.3.8)

ψj ∈ R−0 ∀j ∈ {1, . . . , n}. (5.3.9)

From the theory of strong duality, it can be shown that patterns that can improve
the current objective of the master problem are those violating the dual constraint
(5.3.7).

5.3.2 Pricing problem

In this section, we derive a pricing problem that suggests which pattern to generate.
We derive the objective function from the constraint (5.3.7) of the dual master
problem. We look for a pattern p(k) that violates constraint (5.3.7) as much as
possible. Let us introduce a decision variable xj ∈ {0, 1}, which indicates if job Jj
is scheduled in the new pattern. Note that in this case, we consider only a single
machine and the variables xj are represented with a single vector x, so the goal is

min
x∈{0,1}n

−ψᵀx+ γ − log Φ

(
δ − µᵀx√
σ2ᵀx

)
, (5.3.10)

where we substituted the definition of ck by its definition, replaced p
(k)
j coefficients

with the xj assignment variables and let ψ = (−ψ1,−ψ2, . . . ,−ψn) ∈ Rn≥0. The
dual prices ψ for constraints (5.3.3) express the need to include the given job in the
new pattern. Since the dual price γ for constraint (5.3.4) acts as a constant in the
pricing problem, we can omit γ from the objective and write the pricing problem as

x? = arg max
x∈{0,1}n

log Φ

(
δ − µᵀx√
σ2ᵀx

)
+ψᵀx. (5.3.11)

We note that without loss of generality, we may assume that σ2ᵀx ≥ 1 as in any
optimal solution at least one job is allocated on each machine, and variances are
non-negative integers. What is typical in branch-and-price algorithms is that the
space of feasible patterns x ∈ {0, 1}n will become progressively constrained as the
solution progresses. This is due to the fact that the sequence of pricing problems
solves only a mere continuous relaxation of the master problem rather than its
integer counterpart, which needs to be obtained by branching decisions. What
will be explained in Section 5.3.4, is the branching mechanism introduces so-called
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conflict pairs in form of xi + xj ≤ 1 between individual jobs Ji, Jj , forming edges
B≤ of the conflict graph.

Let us discuss what the pricing problem intuitively does. It can be seen that
the pricing problem balances the gain ψj ≥ 0 from taking job Jj ∈ J into the
new pattern and the loss (non-linearly) proportional to µj and σ2

j while admitting
imposed conflict pairs B≤. Hence, it acts as a kind of Knapsack Problem [90] with
a non-linear capacity (soft) constraint and conflict pairs [74, 128]. This connection
has inspired us to prove the complexity of the pricing problem by the reduction
from Knapsack Problem with a conflict graph:

Definition (Knapsack Problem with Conflict Graph). The instance of the
problem and the solution is given as follows:

Input: S = {1, . . . , n}, E ⊆ S × S, v = (v1, . . . , vn) ∈ Nn, w = (w1, . . . , wn) ∈
Nn and C, k ∈ N.

Output: Is there S′ ⊆ S such that
∑
i∈S′ vi ≥ k,

∑
i∈S′ wi ≤ C and ∀i, j ∈

S′ : (i, j) 6∈ E?

Proposition 14. Pricing problem is strongly NP-hard.

Proof. See [8].

5.3.3 Pricing algorithm

To find an exact solution to the pricing problem, we adopt a trick used for solving
stochastic knapsack problems [116]. For ease of exposition, let us assume that the
current set of conflict pairs B≤ = ∅. We observe that solving (5.3.11) is equivalent
to the following

max
v∈V

max
x∈{0,1}n

log Φ

(
δ − µᵀx√

v

)
+ψᵀx (5.3.12)

subject to

v = σ2ᵀx (5.3.13)

xmax ≥ xᵀ1 ≥ xmin (5.3.14)

where V = {v, v + 1, . . . , v − 1, v} such that v and v is a lower and upper bound
on σ2ᵀx, respectively. The advantage of this reformulation is that for any fixed
v, the expressions δ/

√
v and µ/

√
v become constants. Hence, for every v ∈ V , we

optimize

max
x∈Q(v)

log Φ

(
δ√
v
− 1√

v
µᵀx

)
+ψᵀx

where Q(v) = {x ∈ {0, 1}n |σ2ᵀx = v ∧ xᵀ1 ∈ [xmin, xmax] }. It can be formulated
as a MIP where log Φ(·) is given by a piece-wise linear function. The bounds v
and v can be set as v =

∑xmin
k=1 σ2

k and v =
∑n
k=n−xmax+1 σ

2
k, where σ2

k is the k-th
smallest element of σ2. The formulation can be solved by a specialized simplex
method for piece-wise linear functions implemented in Gurobi solver [gurobi].
When the set of conflict pairs B≤ is not empty, then Q(v) is simply intersected by
{x ∈ {0, 1}n | ∀{xi, xj} ∈ B≤ : xi + xj ≤ 1}.



Scheduling jobs with normally distributed processing times 115

The objective value (5.3.11) of an optimal solution x? is compared with γ.
When the objective value of (5.3.11) is greater than γ, the pattern is added to the
master problem, which is consequently resolved. When it is less or equal to γ, the
master problem is solved optimally. In practice, we solve the pricing problem as
follows. First, we solve the model (5.3.15)–(5.3.28), which is a MIP formulation of
the pricing problem based on a non-trivial linearization of the objective function.

For ease of exposition, let us assume that the set of conflict pairs B≤ = ∅. It
uses decision variables x to decide which jobs are considered in the new pattern.
The division of the two variables is eliminated with Charnes-Cooper transformation
[48] used in linear-fractional programming. It introduces a new continuous variable

t with the meaning t = 1/
√
σ2ᵀx. The boundary points of the domain of t are given

by the square root of the lower and upper bounds on the minimum and maximum
total variance on any machine, e.g., t−1

min =
√
v and t−1

max =
√
v.

tmin tmax
0

10

20

∆ = const.

t = 1/
√
σ2ᵀx

t−
1

=
σ

2
ᵀ
z

t−1
max

t−1
min

Figure 5.3: Approximation with L = 6.

The formulation uses an efficient special order set of type 2 constraint to model
the non-linear relation between σ2ᵀz and t. The relation is approximated with

a set of points
{
t(l), y(l)

}L
l=1

, such that y(l) = 1/t(l). We choose points such that

y(l) are equidistantly distributed on the interval
[
t−1
max, t

−1
min

]
. See a visualization

in Figure 5.3. The constraint ω ∈ SOS2 ensures that at most two consecutive
elements of ω have a non-zero value. Moreover, the actual implementation uses
indicator constraints rather than the big M presented in (5.3.17)–(5.3.18). Finally,
the term log Φ(·) in the objective is approximated using Gurobi’s piece-wise linear

functions on the interval
[
Φ−1(LB(δ, . . . , δ)),

δ−µ√
v?

]
equidistantly in the function

range by K points. The quantities involved in the expression are: Φ−1(·) is the
quantile function of the cumulative normalized normal distribution, µ is a lower
bound on the total mean for any machine, and v? equals to v if δ − µ ≥ 0 and v
otherwise. In the experiments, we have used values L = b45 + 30 ·max{ n14 − 1, 0}c
and K = b60 + 30 ·max{ n14 − 1, 0}c.

max log Φ (δ · t− µᵀz) +ψᵀx (5.3.15)

subject to:
δ − µ√
v?
≥ δ · t− µᵀz ≥ Φ−1(LB(δ, . . . , δ)) (5.3.16)

t · 1− (1− x) ·M ≤ z ≤ t · 1 + (1− x) ·M (5.3.17)

z ≤ x ·M (5.3.18)

zᵀ1 ≥ t (5.3.19)
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xmax ≥ xᵀ1 ≥ xmin (5.3.20)

t =

L∑

l=1

ωl · t(l) (5.3.21)

σ2ᵀz =

L∑

l=1

ωl · y(l) (5.3.22)

ωᵀ1 = 1 (5.3.23)

ω ∈ SOS2 (5.3.24)

where: t ∈ [tmin, tmax] , (5.3.25)

z ∈ [0, tmax]
n

(5.3.26)

ω ∈ RL≥0 (5.3.27)

x ∈ {0, 1}n (5.3.28)

The model is solved with Gurobi solver utilizing the solution pool, which is
the solver’s feature that allows to obtain several solutions from a single run of
optimization model with almost no additional cost. Moreover, we use model
(5.3.15)–(5.3.28) with the imposed time limit, as we do not need to spend time with
proving optimality. Hence, it serves mainly as a heuristics that provides several
(potentially suboptimal) patterns at once and occasionally might fail to find a
pattern with a negative reduced cost. Hence, in these cases, we additionally solve
the exact formulation (5.3.12)–(5.3.14) afterward to verify that there is indeed no
such pattern or insert it into the master problem, if there is one.

Remark 1 Let us describe an efficient method of how to significantly reduce the
cardinality of V using the aggregated machines upper bound on the objective. This
is especially important, as the running time of the pricing algorithm depedends
on the cardinality of V , since it solve one subproblem for each fixed v ∈ V . It
first computes values of OPT(δ, δ · (m− 1)) for all possible fixed values of the total
variance on the first machine. If the value of the upper bound with the fixed total
variance is smaller than a lower bound on the objective obtained by some heuristic
solution, then any pattern with such total variance cannot be included in an optimal
integer solution of the original problem; hence, it does not need to be considered
by the pricing algorithm. See Figure 5.4 for the numerical demonstration of the
variance set reduction related to the example from Table 5.1. There, you see the
values of the parametric upper bound for different values of variance on the first
machine together with a heuristic objective value. The values of the total variance
v below the heuristically computed lower bound LP(δ, δ, δ) will not be considered
by the pricing algorithm. For this example, set V can be reduced to just |V | = 23
with v = 7 and v = 31 wheres the choice of bounds described above in the definition
of Q(v) would lead to larger size |V | = 38 with v = 3 and v = 41.

Remark 2 Note that all information about the probability distribution related to
the selected jobs on some machine is contained solely in the pricing problem. Hence,
it can be directly extended to handle other distributions closed under convolution,
i.e., the distribution of their sum is of the same family as the individual independent
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Figure 5.4: Reduction of variance set V using the upper bound on the objective with
aggregated machines.

random variables. Some of these distributions include Cauchy(aj , γj), Gamma(αj ,
β) with a fixed rate β or Chi-squared distribution χ2(rj).

In the next section, we describe a branching procedure, its impact on the pricing
problem, and the rest of the branch-and-price algorithm.

5.3.4 Branching scheme

The branching occurs when the master problem is solved optimally, but its solution is
fractional. Hence, to find an integer solution, a branching needs to be applied. Here,
we use Ryan-Forster’s branching scheme [141] to eliminate symmetries between
identical machines. The branching creates a branching tree, where each node
represents a single master problem with constraints on patterns given by the path
from the root node to the current node. In each node, a new constraint is introduced
on a selected pair of jobs. It enforces decision that the two jobs i and j have to

be scheduled together on some machine (i.e., ∃k ∈ P ′ : p
(k)
i = p

(k)
j = 1) or that

two jobs cannot be scheduled together on any machine (i.e., ∀k ∈ P ′ : p
(k)
i 6= p

(k)
j ).

The constraints must be respected by the pricing problem when generating a new
pattern, but also the set P ′ assumed in a particular master problem cannot be in a
contradiction with them.

Let us denote B as a set of all pairs of jobs with some constraint imposed on
them in the given branching node. Let us denote all pairs of jobs that cannot be
scheduled together as B≤ ⊆ B and the jobs that are scheduled together as B= ⊆ B.
All constraints B have to be respected by the pricing problem when generating
a new pattern. We demonstrate the meaning of these sets in the example of a
branching tree in Figure 5.5. Constraints of type xi = xj indicates that the jobs
Ji and Jj have to be scheduled together on the same machine or none of them is
scheduled on this machine. Constraints xi + xj ≤ 1 state that they both cannot be
assigned to the same machine. The node labeled as ∅ indicates the root node where
no branching constraints are enforced. Thus, for the node labelled x5 = x6 it holds
that B= = {{J5, J6}} and B≤ = {{J1, J2}, {J3, J4}}.

The branching mechanism selects a pair of jobs to branch on as follows. Let R be
a subset of patterns P ′ with a non-zero value yk (i.e., the value of its corresponding
indicator variables) in the current master problem solution and let hamming(i, j)

be Hamming distance between vectors (p
(k)
i )k∈R and (p

(k)
j )k∈R. Then, the pair of



118 Branch-and-price algorithm

∅

x1 = x2x1 + x2 ≤ 1

x3 = x4x3 + x4 ≤ 1

x5 = x6x5 + x6 ≤ 1

Figure 5.5: Example branching tree with highlighted four open nodes.

jobs (i, j)? to branch on, is selected as

(i, j)? = arg min
(i,j)6∈B

∣∣∣∣hamming(i, j)− |R|
2

∣∣∣∣ . (5.3.29)

The rule (5.3.29) is chosen in order to create child nodes with similarly disrupted
sets of active patterns; however, this is our design choice. Any selection mechanism
that is able to select all possible pairs applies as well.

Note that the selection of an arbitrary pair of jobs may lead to two possible
issues: (i) we may try to impose a constraint that already exists, (ii) the introduced
constraint is in the contradiction with previous ones. The first issue can be checked
by examining B, and if it is the case, we replace the second job with the other one
in the order of given by the objective in (5.3.29). If the situation repeats, we again
take the next following job in the order. Eventually, we may try all pairs of jobs.

The second issue suggests that there might be conflicts in the generated
constraints. Indeed, consider an example where B= = {{J1, J2}, {J2, J3}} and
B≤ = {{J1, J3}}. Then the set of decision B = B= ∪B≤ is contradictory consider-
ing that at least one of the jobs J1, J2, and J3 has to be scheduled in some pattern.
To mitigate conflicts in B, we introduce a conflict graph. A job is represented as a
vertex, and each constraint of type B≤ represents an edge. Pairs of vertices in B=

are contracted to a single vertex. The selection of the pair of jobs to branch on is
done with jobs that are not in the same connected component of the conflict graph,
which serves as a heuristics to avoid possible contradictions. However, eventually,
it might become necessary to select jobs from the same component. The selection
procedure described above does not guarantee that one of the new branching deci-
sions will not cause a contradiction with the previous decisions. Nevertheless, such
situations are exceptional, and they are handled by the so-called recovery model
described in the next section.

After the branching, all existing patterns that violate the current branching
constraints B are removed from P ′. This, in turn, can cause infeasibility of the
master problem since it might end up with an insufficient set of patterns that cannot
satisfy the condition of scheduling each job at least once. Therefore, we need to
check the feasibility of the master problem and, eventually, we need to regenerate
additional patterns with respect to the given constraints B. The feasibility check of
the master problem and pattern regeneration is also done with the recovery model.

5.3.5 Recovery model

The purpose of the recovery model is to check consistency with the current set of
branching decisions B and potentially add new patterns to P ′ to guarantee the
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feasibility of the master model. If a conflict in the branching decisions is detected,
the recovery model turns infeasible, and we cut the node off in the branching tree.

Let λ
(k)
j be a binary assignment variable for k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

denoting whether job Jj is presented in pattern k. We formulate the objective
function of the recovery model as the minimization of the sum across all these
variables subject to branching decisions B = B= ∪ B≤ while introducing the
constraint stating that each pattern has to schedule between xmin and xmax jobs.
The recovery model can be described with the following MIP:

min

m∑

k=1

n∑

j=1

λ
(k)
j (5.3.30)

subject to:

m∑

k=1

λ
(k)
j = 1 ∀j ∈ {1, . . . , n}, (5.3.31)

xmin ≤
n∑

j=1

λ
(k)
j ≤ xmax ∀k ∈ {1, . . . ,m}, (5.3.32)

λ(k)
a = λ

(k)
b ∀k ∈ {1, . . . ,m},∀{a, b} ∈ B=, (5.3.33)

λ(k)
a + λ

(k)
b ≤ 1 ∀k ∈ {1, . . . ,m},∀{a, b} ∈ B≤, (5.3.34)

where: λ
(k)
j ∈ {0, 1} ∀k ∈ {1, . . . ,m},∀j ∈ {1, . . . , n}. (5.3.35)

Note that the recovery model does not consider the exact costs of generated
patterns; it just focuses on their feasibility. Nevertheless, the cost of regenerated
patterns can be improved by imposing the constraint (5.3.32) that each generated
pattern needs to contain between xmin and xmax jobs. However, for the consistency
check itself, this constraint can be dropped. It can be seen that the formulation
(5.3.30)–(5.3.35) is essentially tantamount to Graph Coloring problem. Indeed, the
feasibility problem can be reduced to a graph with at most n vertices and the set of
edges defined by B≤ with the question of whether it can be colored with exactly
m colors. Each vertex corresponds to a single job except the pairs of jobs in set
B= which are replaced by a single vertex for each pair. The constraint (5.3.31)
represents the fact that each vertex has to be colored with one of the m colors.
Although the graph coloring is NP-complete for m ≥ 3 colors (i.e., machines), its
solution time is negligible compared to the rest of the algorithm.

5.4 Problem with two machines

In this section, we introduce an algorithm for a special case of the problem with two
machines. Our motivation for the study of this special case is mainly two-fold. First
of all, we will show that the problem with two machines can be solved very efficiently
in practice. This enables the practical use of the aggregated machines upper bound
proposed in Proposition 13 with k = 1. For the second, efficient solutions of
two-machine cases of scheduling problems also find applications for solving the
general problems, where they act as subroutines which repeatably perform fast
optimizations over search neighborhood defined by selected two machines [106].
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In our case, we utilize it as an intensification step for DF-DOPO metaheuristic
described in Section 5.2.1.

We first reformulate the problem statement for this special case. Then, we
show that the continuous relaxation of this problem leads to the maximization of a
concave function over a single variable. Finally, we show that we can obtain the
optimal schedule from the solution of the relaxed problem by solving two simple
sub-problems.

5.4.1 Reformulation for two machines

Let xi = (xi,1, xi,2, . . . , xi,n) be the vector of job-machine assignment variables
xi,j ∈ {0, 1} for machine i ∈ {1, 2}. We derive the objective function for the case of
two machines. By applying the logarithm and expanding the sum, we write that

max
x1,x2

log Φ

(
δ − µᵀx1√
σ2ᵀx1

)
+ log Φ

(
δ − µᵀx2√
σ2ᵀx2

)
. (5.4.1)

Since the sum of the total means on both machines must add up to the sum of all
available means, we can write that

µᵀ1 = µᵀx1 + µᵀx2,

where 1 is the unit vector. The variances obey the identical relation:

σ2ᵀ1 = σ2ᵀx1 + σ2ᵀx2.

Let v =
∑xmin
k=1 σ2

k with σ2
k being the k-th smallest element of σ2, v = σ2ᵀ1,

V =
{
v, v + 1, . . . , d v2e

}
and for simplicity let x = x1. Then, we reformulate the

problem as

max
v∈V

max
x

log Φ

(
δ − µᵀx√

v

)
+ log Φ

(
δ − µᵀ1 + µᵀx√

v̄ − v

)
(5.4.2)

subject to: σ2ᵀx = v, (5.4.3)

where: x ∈ {0, 1}n. (5.4.4)

We solve the problem similarly as in Section 5.3.3. For each fixed v ∈ V , we solve
the problem only in terms of x variables. It is sufficient to test values of v up to
d v̄2e due to the symmetry of the two machines (i.e., the first machine is the machine
with smaller or equal of the total variance).

5.4.2 Solving the relaxation

In this section, we deal with the solution of the relaxed subproblem parametrized
by a value of v (i.e., the total variance of the jobs on the first machine), represented
by the inner maximization problem in (5.4.2). We will use the substitutions

a = δ − µᵀx,

c = −2 · δ + µᵀ1,
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and the identity Φ(z) = 1−Φ(−z), ∀z ∈ R. The relaxation is done by allowing a to
take any real value. Then, we write the relaxed subproblem for a fixed value of v as

max
a

gv(a) (5.4.5)

gv(a) = log Φ

(
a√
v

)
+ log

(
1− Φ

(
c+ a√
v̄ − v

))
, (5.4.6)

where: a ∈ R. (5.4.7)

It can be shown that such problem has a single extreme.

Proposition 15. For any fixed v ∈ [v, v − 1], gv(a) is concave on R.

Proof. The result can be shown with operations that preserve concavity. It is known
that the logarithm of the cumulative normal distribution is concave on R, see, e.g.,
[38, p. 104]. The same arguments apply for the second term of gv(a). Finally, since
the sum of concave functions is a concave function, we have that gv(a) is concave
on R.

The general approach to the analytic solution of (5.4.5)–(5.4.7) would be to find
a? where g′v(a

?) = 0. Using the definition of the normal cumulative distribution
function, we get that

gv(a) = log

(
1√
2π

∫ a√
v

−∞
e−

t2

2 dt

)
+ log

(
1− 1√

2π

∫ c+a√
v̄−v

−∞
e−

t2

2 dt

)
. (5.4.8)

Note that gv(a) is a function of variable a only, and it is present in the bound of
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Figure 5.6: Correction factor ξ with v = 100 and c = −100.

the two integrals. To find the derivative of gv(a) with respect to a, we use Leibniz
integral rule which leads to

dgv
da

= ξ ·
f
(
a√
v

)

√
v
−
f
(

c+a√
v̄−v

)

√
v̄ − v = 0, (5.4.9)

where f is the probability density function of N (0, 1) and

ξ =
1− Φ

(
c+a√
v̄−v

)

Φ
(
a√
v

)
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is a correction factor. We conjecture that (5.4.9) is analytically unsolvable due to
the presence of a both in the cumulative distribution function Φ and the probability
density function f . Hence, instead of solving (5.4.9), our approach is to find a
surrogate equation that we can solve analytically. The true global extreme of the
original function could be then recovered using the gradient descent procedure if
needed. The efficiency of this approach depends on the choice of the surrogate
equation. We have noticed that for optimal solutions often hold that ξ ≈ 1, which
suggests to set ξ = 1 and obtain the surrogate equation in the form of

1√
v
· f
(
a√
v

)
− 1√

v̄ − v · f
(

c+ a√
v̄ − v

)
= 0. (5.4.10)

We note that the surrogate equation (5.4.10) is remarkably similar to the original
one for almost all sensible values a and v, which can be demonstrated by the plot
of the correction factor ξ in Figure 5.6. Coincidentally, the equation (5.4.10) has a
closed-form solution, since it leads to a quadratic equation over a single variable.
The roots are given as

a∗∓ =

c
v̄−v ∓

√
c2

(v̄−v)·v −
(

1
v − 1

v̄−v

)
· log

(
v
v̄−v

)

1
v − 1

v̄−v
. (5.4.11)

The true global optimum of (5.4.5) up to the integer precision needs to be computed
when ξ is not exactly 1. This can be done by the gradient descent procedure on
the original function with a starting point given by the solution of the surrogate
equation. In the next section, we will explain how the relaxed solution of a
subproblem (5.4.5)–(5.4.7) is used to obtain the optimal solution of the original
problem.

5.4.3 Complete algorithm

The surrogate equation (5.4.10) gives us two real solutions. The root a∗− of (5.4.10)
is meaningful, while a∗+ is the result of the introduced approximation of ξ. We set
a∗− as the starting point of the gradient descent procedure since it is typically very
close to the true global optimum of (5.4.5).
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Figure 6: Example of the objective function with highlighted optimal relaxed solution a?.

original problem without modeling the objective function explicitly. This allows us to solve the
problem much more e�ciently.

The idea is the following. We construct two MIPs: the first one minimizes the value of a subject
to constraints: (i) value a is greater or equal to da?e, (ii) value a is attainable in the given problem
instance. The second MIP maximizes a subject to a is smaller or equal to ba?c and the attainability
condition. See the complete description of those MIPs below.

MIP+(a?, v) :

min a

subject to: a � da?e,
a = � � µ|x,

v = �2|x,

where: a 2 Z,

x 2 {0, 1}n.

MIP�(a?, v) :

max a

subject to: a  ba?c,
a = � � µ|x,

v = �2|x,

where: a 2 Z,

x 2 {0, 1}n.

The output of the two MIPs is two job-machines assignments x?
+, x?

�. We evaluate both x?
+, x?

�
in terms of the original objective (4.1) with x1 = x?

+ (x?
�) and x2 = 1�x1 and select the better one.

The whole algorithm is shown in Algorithm 3, and we refer to it as to TM (two-machines) algorithm.
Let us note that for the most challenging problem instances, the gradient descent performs just a
few iterations in a vast majority of cases. We want to point out a great advantage of TM algorithm,
which is a possibility of an easy parallelization. The idea is to allocate a pool of worker threads that
will process subproblems for each value of v 2 V independently. In Section 5.6, we demonstrate
speedups of TM algorithm achievable by this parallelism.

Finally, we describe modifications of TM algorithm needed to compute the value of OPTq(�, �(m�
1)), which is involved in the bounds xmin and xmax presented in Section 2. First, it is necessary to
set c = ��m + µ|1 and V = {0, . . . ,�2|1}. Next, we impose constraint x|1 = q to both models
MIP+(a?, v) and MIP�(a?, v). Finally, note that one has to check boundary conditions v = 0 and
v = �2|1 separately in Algorithm 3.

5. Experiments

5.1. Experimental setup

To compare our proposed algorithms, we implemented the better of the two branch-and-bound
algorithms proposed by [35] (named B&B1) as a reference. The branch-and-bound method was
implemented in C++ wheres the other methods were implemented in Python 3.7. We used Gurobi
9.1.1 solver to solve MIP models. The MINLP (1.5)–(1.10) was solved using SCIP 6.0.0 solver.

21

Figure 5.7: Example of the objective function with highlighted optimal relaxed solution
a?.
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To find the optimal solution of the original (discrete) problem, we utilize the
following observation. For the given value of v, the objective function (5.4.2) and its
domain is the same as the relaxed subproblem (5.4.5) except that (5.4.2) is defined
only for some integer values of a that are attainable in the given problem instance
(e.g., denoted by • in Figure 5.7). Since we know that the relaxed objective function
is concave and where the maximum of its relaxation is located, we can solve the
original problem without modeling the objective function explicitly. This allows us
to solve the problem much more efficiently.

The idea is the following. We construct two MIPs: the first one minimizes the
value of a subject to constraints: (i) value a is greater or equal to da?e, (ii) value a
is attainable in the given problem instance. The second MIP maximizes a subject
to a is smaller or equal to ba?c and the attainability condition. See the complete
description of those MIPs below.

MIP+(a?, v) :

min a

subject to: a ≥ da?e,
a = δ − µᵀx,

v = σ2ᵀx,

where: a ∈ Z,
x ∈ {0, 1}n.

MIP−(a?, v) :

max a

subject to: a ≤ ba?c,
a = δ − µᵀx,

v = σ2ᵀx,

where: a ∈ Z,
x ∈ {0, 1}n.

The output of the two MIPs is two job-machines assignments x?+,x
?
−. We

evaluate both x?+,x
?
− in terms of the original objective (5.4.1) with x1 = x?+ (x?−)

and x2 = 1 − x1 and select the better one. The whole algorithm is shown in
Algorithm 5.3, and we refer to it as to TM (two-machines) algorithm.

Let us note that for the most challenging problem instances, the gradient descent
performs just a few iterations in a vast majority of cases. We want to point out a
great advantage of TM algorithm, which is a possibility of an easy parallelization.
The idea is to allocate a pool of worker threads that will process subproblems for
each value of v ∈ V independently. In Section 5.5.6, we demonstrate speedups of
TM algorithm achievable by this parallelism.

Finally, we describe modifications of TM algorithm needed to compute the value
of OPTq(δ, δ(m − 1)), which is involved in the bounds xmin and xmax presented
in Section 5.2. First, it is necessary to set c = −δm+ µᵀ1 and V = {0, . . . ,σ2ᵀ1}.
Next, we impose constraint xᵀ1 = q to both models MIP+(a?, v) and MIP−(a?, v).
Finally, note that one has to check boundary conditions v = 0 and v = σ2ᵀ1
separately in Algorithm 5.3.

5.5 Experiments

5.5.1 Experimental setup

To compare our proposed algorithms, we implemented the better of the two branch-
and-bound algorithms proposed by [135] (named B&B1) as a reference. The
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Algorithm 5.3: TM algorithm.

1 gbest ← −∞, xbest ← ∅
2 for v ∈ V do

3 a∗− ←
(

c
v̄−v −

√
c2

(v̄−v)·v −
(

1
v − 1

v̄−v

)
· log

(
v
v̄−v

))
·
(

1
v − 1

v̄−v

)−1

4 while gv(a
?
−) < max

{
gv(a

?
− − 1), gv(a

?
− + 1)

}
do // discrete gradient

descent

5 if gv(a
?
−) < gv(a

?
− − 1) then

6 a?− ← a?− − 1
7 else
8 a?− ← a?− + 1

9 a? ← a?−
10 x?+ ← MIP+(a?, v), x?− ← MIP−(a?, v)

11 x? ← arg max
{
gv(δ − µᵀx?+), gv(δ − µᵀx?−)

}
// recovering an integer

optimum

12 if gv(δ − µᵀx?) > gbest then
13 gbest ← gv(δ − µᵀx?), xbest ← x?

14 return gbest,xbest

branch-and-bound method was implemented in C++ wheres the other methods
were implemented in Python 3.7. We used Gurobi 9.1.1 solver to solve MIP models.
The MINLP (5.1.5)–(5.1.10) was solved using SCIP 6.0.0 solver. Note that the
most computationally intensive parts of Python codes are in fact implemented
in C++ as well, since they are offloaded to external libraries, such as Numpy,
Nevergrad or a MIP solver. Thus, we would expect only negligible speed-ups of the
Python codes, if the their whole codebase would be migrated to C++ as well. All
experiments were run on a computer with two Intel Xeon E5-2620 v4 processors,
each having 28 threads, 252 GB RAM memory and a 64-bit operating system. For
branch-and-price experiments, at most 28 threads were allowed to use. MINLP and
branch-and-bound methods do not offer parallel execution; thus, they use a single
CPU core.

For each tested algorithm, we set the timeout of five hours (if not specified
otherwise), after which if the program did not finish its computation, it has been
stopped. Such instances, where an algorithm was not able to find an optimal
solution in the given time, were not included in the mean runtime and expanded
nodes calculation.

The experiments were carried out on several datasets where the means of jobs µ
are drawn from a normal distribution with mean equal to 20 and standard deviation
equal to 9. For a particular value of µj , the variance of a job σ2

j is generated from

[1, 0.1 · η · µ2
j ] uniformly. Parameter η influences the variance of the jobs [135]. In

this dataset it was set to either 0.25 or 0.75. The MINLP was tested using a set
of instances with 2, 3, and 4 machines and n ∈ {10, . . . , 15} jobs. Ten instances
were generated for each combination (m,n, η), with a total of 240 instances in the
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whole test set. The set of instances where m = 2 was used for the comparison of the
branch and bound and TM algorithm. This set was extended with instances having
16, 18, 20, 40, 80, 200 and 500 jobs, which were also solved by TM algorithm and
branch-and-bound to demonstrate their scalability.

A separated set of instances for branch-and-price experiments was created for
comparability with [135]. All instances were generated with the same parameters as
used in [135], i.e., the mean values of jobs are drawn from the normal distribution
with the mean equal to 20 and standard deviation equal to 3 while the distribution
of jobs’ variances is kept the same. Moreover, the η parameter was set to either
0.25, 0.50 and 0.75. With this setting, we have created instances with 3, 4, 5, 6
and 7 machines and 14, 16, 18, 20, 22 and 24 jobs. Ten instances for each (m,n, η)
tuple were generated.

The rest of this section is structured as follows. First, we compare heuristic
algorithms, and then we evaluate the performance of the MINLP model and branch-
and-price method. Finally, we benchmark TM algorithm for the special case with
two machines.

5.5.2 Heuristic solution quality

Figure 5.8 shows a histogram of objective values calculated using the heuristic
proposed in [135], values obtained using our LSAF list scheduling, and DF-DOPO
also proposed in this paper. The computation of DF-DOPO is not deterministic;
hence, we report median objective value across 21 runs for each instance. The
standard deviation of objective values among different runs is 0.01 on average. The
DF-DOPO utilizes budget equal to 1500 (i.e., the number of evaluations of the
fitness function). After DF-DOPO finishes, a local search intensification procedure
by TM algorithm is performed. We refer to such combination of the two algorithms
as DF-DODO+TM.
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Figure 5.8: Histogram of objective values produced by initial heuristics.

The comparison among list scheduling algorithms shows that the heuristic of
[135] has significantly better worst-case performance than LSAF. On the other
hand, LSAF performs better in the majority of cases – LSAF found a strictly better
solution in 59.6% of cases. The runtime of both methods is negligible. Hence,
considering low running times of both methods, we recommend running both and
taking the better solution of the two. As expected, DF-DOPO+TM is superior
both on average and the worst-case but at the expense of longer runtime which is
in orders of seconds on commodity hardware.
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5.5.3 MINLP performance

Table 5.2 shows a comparison of the MINLP model against the reference branch-
and-bound [135]. For a comparison, we have reimplemented the branch-and-bound
algorithm [135] as the authors did not test in instances with 10 and 11 jobs or
instances with m = 2 machines. The basic MINLP model was enhanced with a few
improvements. First of all, we have observed that the original model suffers from
the symmetry of the solution space. To mitigate this, we introduced a symmetry-
breaking constraint stating that the sum of mean values on the i-th machine has
to be greater or equal than the sum of means on the (i + 1)-th machine, i.e.,
µMi

≥ µMi+1
,∀i ∈ {1, . . . ,m − 1}. Furthermore, we have imposed bounds on the

objective and bounds on the minimum and the maximum variance each machine
can contain in order to improve the performance and the numerical stability of the
solver. The first two columns in Table 5.2 show the performance of the MINLP
model with and without the symmetry-breaking constraint, respectively. The last
column of Table 5.2 shows results for the our reimplementation of the reference
branch-and-bound algorithm. However, note that it should be meant for illustration
purposes only, as our reimplementation may not be as efficient as the original one.

For m ≥ 3 machines, the symmetry-breaking constraint has a noticeable effect
on the performance of the MINLP model. On the largest tested instances the speed
up was approximately five-fold. This is also reflected in a lower number of expanded
nodes for each instance. MINLP model with symmetry breaking is competitive
with our reimplementation of the branch-and-bound algorithm. It scales similarly,
but it is about 2–3 times slower. On the smallest instances (i.e., m = 2, n ≤ 12),
the reference algorithm was able to solve them in less than 100 milliseconds. On
the largest instances (m = 3, n = 15 and m = 4, n = 15), the reference algorithm
outperformed the MINLP model, although the number of expanded nodes is still
significantly higher.

MINLP MINLP (no symmetry break) branch-and-bound [135]
machines jobs runtime [s] nodes [–] runtime [s] nodes [–] runtime [s] nodes [–]

m = 2

n = 10 1.1 (±0.4) 76.0 (±44.1) 1.4 (±0.4) 232.8 (±191.6) 0.0 (±0.0) 503.8 (±64.2)
n = 11 1.0 (±0.4) 108.3 (±53.5) 1.8 (±0.6) 353.1 (±242.1) 0.0 (±0.0) 1.0K (±126.6)
n = 12 1.3 (±0.5) 160.2 (±97.1) 1.9 (±0.4) 393.6 (±199.0) 0.0 (±0.0) 1.9K (±246.9)
n = 13 1.3 (±0.7) 255.8 (±200.8) 2.9 (±1.0) 1.0K (±609.3) 0.1 (±0.0) 4.0K (±495.4)
n = 14 1.5 (±0.8) 294.6 (±268.1) 2.8 (±1.1) 1.1K (±1.2K) 0.2 (±0.0) 8.3K (±803.5)
n = 15 2.1 (±1.1) 746.4 (±735.3) 3.7 (±1.3) 1.3K (±610.8) 0.4 (±0.0) 16.4K (±1.2K)

m = 3

n = 10 3.8 (±1.4) 503.8 (±261.0) 6.6 (±2.2) 2.3K (±1.3K) 0.1 (±0.0) 2.5K (±613.5)
n = 11 5.1 (±1.4) 977.9 (±509.1) 13.0 (±8.6) 4.7K (±4.0K) 0.2 (±0.0) 8.5K (±1.6K)
n = 12 8.5 (±2.9) 2.1K (±863.2) 25.4 (±11.9) 9.5K (±4.9K) 0.6 (±0.1) 24.1K (±4.7K)
n = 13 14.9 (±5.3) 4.5K (±2.4K) 55.7 (±28.2) 21.9K (±12.8K) 1.8 (±0.4) 71.2K (±14.2K)
n = 14 35.5 (±28.9) 14.8K (±13.0K) 207.3 (±188.0) 66.7K (±50.9K) 6.0 (±1.3) 236.5K (±53.1K)
n = 15 70.4 (±41.3) 29.0K (±18.5K) 586.5 (±534.3) 139.5K (±101.5K) 18.5 (±3.8) 729.9K (±157.1K)

m = 4

n = 10 5.9 (±2.5) 1.1K (±649.0) 19.8 (±9.3) 6.5K (±3.2K) 0.1 (±0.0) 2.7K (±971.0)
n = 11 9.7 (±2.2) 2.6K (±1.1K) 58.9 (±36.8) 19.1K (±12.6K) 0.3 (±0.1) 9.4K (±2.5K)
n = 12 20.3 (±11.0) 6.9K (±5.0K) 129.6 (±107.9) 40.1K (±34.2K) 1.3 (±0.4) 42.1K (±13.1K)
n = 13 50.0 (±38.4) 16.9K (±12.5K) 390.8 (±319.6) 123.5K (±98.0K) 5.3 (±1.6) 172.1K (±56.0K)
n = 14 112.2 (±75.5) 37.7K (±24.0K) 750.9 (±552.2) 204.1K (±164.7K) 23.3 (±7.2) 766.5K (±237.8K)
n = 15 267.0 (±131.8) 79.0K (±40.2K) 1.3K (±979.3) 304.4K (±149.6K) 91.9 (±18.0) 3.0M (±589.1K)

Table 5.2: Comparison of MINLP and branch-and-bound.
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5.5.4 Branch-and-price performance

First, we perform experiments to assess the dependency of runtimes to the parame-
ters of the instance. Namely, we are interested in how the values of job processing
time variances affect the performance of the branch-and-price algorithm. To deter-
mine that, we have generated a dataset with the fixed values m = 3 and n = 18.
To obtain instances with different variances of the processing time, we assumed
five different values η ∈ {0.1, 0.3, 0.5, 0.7} and we generated 20 instances for each η.
The results are presented in Figure 5.9, where each box plot reports 0.1, 0.25, 0.5,
0.75 and 0.9 quantilies of running times.
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Figure 5.9: The effect of job variances to the performance of branch-and-price algorithm.

The results show that with the increasing value of η, both the median, variance
and the worst-case runtime are increasing as well. Since the complexity of the
pricing algorithm depends on the maximum value of σ2

j present in the input
instance, it is expected that its value affects the overall runtime as well. In fact, the
observation that the runtime decreases for smaller values of variances seems to be a
natural property of the branch-and-price algorithm. Note that the limiting case of
the studied problem, when variances approach zero, is the deterministic parallel
machines scheduling problem with a common due date. Nevertheless, this kind of
problem can be solved very efficiently in practice. Thus, it is expected that the
problem with decreasing η gets easier.

As a next experiment, we evaluate the performance of the branch and price
with varying m and n. The results for the branch-and-price algorithm and for the
reference branch and bound [135] are summarized in Table 5.3. The results for the
branch-and-price algorithm in each row show the aggregated values over different
values of η ∈ {0.25, 0.5, 0.75} with 10 instances for each η, i.e., 30 instances per row.
Table 5.3 provides the runtime, percentage of instances that were not solved in the
time limit of 8 hours, and the mean number of expanded nodes supplemented with
the standard deviation in parentheses. The instances that exceed the time limit
were excluded from these quantities. Note that, as we have seen in Figure 5.9, the
runtime of branch-and-price algorithm is sensitive to the value of η. Particularly
here, the median is lower than mean value which susceptible to outliers. Thus, we
report in the runtime column both median and mean value of runtime with its
standard deviation in parenthesis for more robust statistical estimate.

For sake of comparison, we present the results of the better of the two branch
and bound algorithms presented in [135]. The runtimes from [135] were rescaled
to reflect different processors used. The authors present results up to n ≤ 20 with
m ≤ 5 that shows showing that the runtime of their branch and bound increases
10–25 times for each two additional jobs in the instance. Thus, we projected the
runtimes and the number of expanded nodes up to n = 24 and we report them
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branch-and-price branch-and-bound [135]
machines jobs runtime [s] nodes [–] timeouts [%] runtime [s] nodes [–]

m = 3

n = 14 19.4 (20.4± 4.3) 1.8 (±2.9) 0 < 0.1 76K
n = 16 37.5 (49.7± 33.0) 5.3 (±11.1) 0 0.3 559K
n = 18 144.5 (158.0± 76.7) 4.4 (±7.7) 0 3.9 7767K
n = 20 334.4 (459.3± 290.2) 3.3 (±4.1) 0 40.6 78124K
n = 22 642.1 (1368.1± 1285.6) 9.0 (±12.4) 0 388.5 778M
n = 24 823.4 (2163.7± 2899.4) 12.2 (±24.0) 0 3739.8 7776M

m = 4

n = 14 17.5 (18.1± 3.8) 1.5 (±2.9) 0 0.1 120K
n = 16 25.1 (97.7± 156.0) 81.9 (±183.9) 0 0.8 1899K
n = 18 41.4 (197.1± 421.5) 81.0 (±229.7) 0 15.2 35730K
n = 20 1030.5 (2341.4± 2881.5) 395.8 (±685.4) 0 319.7 686100K
n = 22 3101.9 (4490.7± 4907.6) 206.7 (±307.0) 7 3636.4 9286M
n = 24 863.1 (3758.5± 5772.5) 40.5 (±80.9) 57 41679.3 126474M

m = 5

n = 14 17.9 (21.5± 14.9) 6.4 (±23.5) 0 < 0.1 53K
n = 16 21.1 (34.2± 37.8) 11.8 (±34.4) 0 0.7 1840K
n = 18 27.5 (67.3± 119.6) 22.3 (±62.3) 0 24.4 61228K
n = 20 94.4 (859.9± 1344.8) 261.7 (±482.0) 0 608.7 1400605K
n = 22 813.0 (2038.9± 3083.2) 272.9 (±697.2) 0 6666.1 20099M
n = 24 711.1 (4608.9± 6360.4) 178.8 (±383.9) 63 73493.0 290298M

m = 6

n = 14 19.8 (19.9± 0.6) 1.1 (±0.4) 0 – –
n = 16 22.1 (29.5± 28.4) 9.4 (±33.9) 0 – –
n = 18 24.9 (75.1± 123.9) 39.4 (±101.3) 0 – –
n = 20 33.3 (141.5± 236.7) 52.4 (±148.4) 0 – –
n = 22 132.0 (1469.0± 2145.0) 445.3 (±949.9) 0 – –
n = 24 4493.7 (7387.2± 7801.3) 940.0 (±1500.5) 27 – –

m = 7

n = 14 21.9 (22.1± 1.2) 1.7 (±3.6) 0 – –
n = 16 23.6 (23.7± 0.6) 1.0 (±0.0) 0 – –
n = 18 26.5 (50.4± 62.1) 19.9 (±55.4) 0 – –
n = 20 31.9 (246.7± 466.5) 175.9 (±427.7) 0 – –
n = 22 47.8 (891.1± 2164.3) 326.6 (±940.7) 0 – –
n = 24 113.7 (805.0± 1552.4) 83.9 (±231.5) 27 – –

Table 5.3: Comparison of branch-and-price and branch-and-bound algorithms.

printed in italics. Note that we did not projected entries for instances with different
number of machines as we did not have enough data to do so.

One can observe that with the increasing number of machines, the problem
becomes easier for the branch and price, but more complex for the branch and bound
[135]. There can be identified two causes for that. First, increasing the number
of machines can be seen for branch-and-price algorithm as a form of relaxation
(see equation (5.3.4)). Moreover, the similar behavior was observed for related
deterministic problems as well, e.g., [98]. The only exception for the branch and
price are instances with m = 3 which can be also solved efficiently, due to the
tighter aggregated machines upper bound proposed Section 5.2.2.

On contrary, the branch and bound has more difficulties as it has difficulties
to exploit problem symmetries in terms of identical machines. Regarding different
values of η, we have observed that instances with η = 0.75 are particularly challenging
for the branch and price — majority of time outs and large values of the running
times are observed for these instances.

To summarize, the results suggest that the branch and price is better for instances
with m ≥ 4, especially with the increasing number of jobs. On the other hand,
we recommend using the branch and bound [135] for small-sized instances and
instances containing jobs with large variance values. In the following section, we
propose a new scheme of generating instances and perform sensitivity with respect
to different correlation values between means and variances of the jobs.
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5.5.5 Correlated instances

In the experiments above, we have observed that the scheme of generating instances
as described in Section 5.5.4 and used in [135] has two limitations. First of all, it
only generates jobs with positively correlated mean and variance. Although it is a
reasonable property, we believe that it is useful to have also parameter ρ ∈ [−1, 1]
that controls the dependence between the mean and variance, so it would allow even
negative correlations between those two. Second, since the variances are generated
from a uniform distribution whose range depends quadratically on the job’s mean,
then the former scheme occasionally generates a large variance for a job such that
it effectively admits the realizations of negative processing times in a considerable
number of cases.

Thus, in this experiment, we have proposed a different scheme of generating
instances. Essentially, the parameters of jobs are generated as samples from a
multivariate normal distribution (µj , σ

2
j ) ∼ N (µ̂, Σ̂) with parameters µ̂ = (20, 2)

and Σ̂ =

[
10 2ρ
2ρ 1

]
. The particular values of the used constants were chosen such

that the ranges of generated parameters are comparable to those produced by scheme
of [135] and such that Σ̂ is a positive semidefinite matrix for a ρ ∈ [−1, 1]. We refer
to these instances as to correlated instances with ρ parameter. See Figure 5.10 for
samples from such a distribution of job parameters for different values of ρ.

Bellow we investigate the effect of ρ parameter on the computational time of
the branch-and-price algorithm. Hence, we have fixed the number of machines to
m = 3 and generated 10 instances for each combination of n ∈ {14, 16, . . . , 24} and
ρ ∈ {−1,−0.7, 0, 0.7, 1}. The timeout was to 5 hours. The results are displayed in
Table 5.4.
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Figure 5.10: Effect of parameter ρ on the distribution of jobs’ parameters.

Compared to the instances from Section 5.5.4, correlated instances appear to
be harder than the ones generated by the former scheme. Concerning the effect
of specific values of ρ, large positive correlations ρ generate hardest ones. This is
reflected especially in the larger variance of the computational times, suggesting
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branch-and-price
correlation jobs runtime [s] nodes [–] timeouts [%]

ρ = −1.0

n = 14 18.6 (20.6± 7.1) 3.0 (±5.4) 0
n = 16 45.7 (65.4± 37.2) 13.8 (±15.7) 0
n = 18 85.0 (210.4± 309.0) 56.2 (±151.1) 0
n = 20 206.7 (669.0± 624.2) 18.2 (±24.1) 0
n = 22 625.0 (1450.1± 2310.1) 19.0 (±38.6) 0
n = 24 513.6 (922.5± 878.5) 6.5 (±11.3) 20

ρ = −0.7

n = 14 18.6 (19.3± 2.6) 1.6 (±1.3) 0
n = 16 33.0 (41.3± 15.7) 4.4 (±5.7) 0
n = 18 86.8 (104.4± 64.3) 7.2 (±11.9) 0
n = 20 472.6 (938.1± 1004.4) 31.2 (±42.9) 0
n = 22 1750.1 (4184.6± 4984.1) 92.8 (±173.8) 20
n = 24 1557.8 (3515.0± 3131.2) 26.1 (±26.8) 10

ρ = 0.0

n = 14 17.8 (17.9± 1.4) 1.2 (±0.6) 0
n = 16 32.1 (41.1± 30.1) 5.0 (±11.3) 0
n = 18 61.2 (131.8± 139.4) 11.4 (±26.8) 0
n = 20 681.5 (1064.6± 1134.3) 39.4 (±51.4) 0
n = 22 1014.3 (3159.0± 5321.6) 52.6 (±107.7) 10
n = 24 4282.9 (5059.1± 4307.1) 53.9 (±54.0) 10

ρ = 0.7

n = 14 17.4 (18.0± 2.7) 1.0 (±0.0) 0
n = 16 32.0 (40.5± 27.1) 5.8 (±12.5) 0
n = 18 121.8 (106.8± 42.5) 5.6 (±3.9) 0
n = 20 168.0 (331.6± 329.2) 10.6 (±18.5) 0
n = 22 2293.3 (2899.5± 2739.0) 48.4 (±54.4) 0
n = 24 7455.8 (6891.6± 5549.6) 94.1 (±101.7) 30

ρ = 1.0

n = 14 16.6 (17.1± 1.6) 1.0 (±0.0) 0
n = 16 27.4 (32.1± 14.9) 3.4 (±6.6) 0
n = 18 94.3 (116.8± 76.6) 18.6 (±23.4) 0
n = 20 375.6 (1541.7± 2546.2) 301.0 (±795.9) 0
n = 22 2598.2 (3568.7± 3460.9) 63.0 (±73.6) 20
n = 24 6534.8 (5459.1± 3552.0) 55.3 (±44.9) 40

Table 5.4: Sensitivity with respect to ρ parameter for instances with m = 3.

that instances with larger ρ values contains more outliers in terms of runtime. This
observation is in line with sensitivity analysis in Figure 5.9, where large values of η
produce large variances of runtimes as well. Indeed, the instances with large values
of η can be seen as positively correlated instances with large value of ρ which were
proved to be the most difficult ones for the branch-and-price algorithm.
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5.5.6 TM algorithm performance

Table 5.5 shows the mean running time and its standard deviation of the TM
algorithm compared to the branch and price and our reimplementation of branch-
and-bound algorithm for instances with m = 2 machines. We can divide the
used instances into the two sets. The first set contains small instances with sizes
n ∈ {14, 16, 18, 20}. To benchmark the scalability of the methods, we introduce the
second set with n ∈ {40, 80, 200, 500}. We present results using a single CPU core
and four CPU cores to demonstrate the parallelism capabilities of TM algorithm.
The time limit for both methods was set to one hour.

For an illustrative comparison, we have used the reimplemented branch-and-
bound algorithm from [135], as the paper do not contain experiments for instances
with two machines. Although our reimplementation may not be as efficient as the
original one, it displays the same scaling trend. It can be clearly seen that TM
algorithm is comparable to the branch and bound on the instances with the smallest
number of jobs but is significantly better as the number of jobs increases.

TM algorithm (1 CPU) TM algorithm (4 CPUs) branch-and-bound [135]
machines jobs runtime [s] timeouts [%] runtime [s] speed up [-] runtime [s] timeouts [%]

m = 2

n = 14 1.1 (±0.8) 0 0.3 (±0.2) 3.6 (±0.4) 0.2 (±0.0) 0
n = 16 1.0 (±0.9) 0 0.3 (±0.3) 3.3 (±0.3) 0.7 (±0.1) 0
n = 18 1.3 (±1.2) 0 0.4 (±0.3) 3.2 (±0.4) 3.0 (±0.3) 0
n = 20 1.5 (±1.1) 0 0.4 (±0.3) 3.7 (±0.4) 12.3 (±0.9) 0
n = 40 2.5 (±1.9) 0 0.7 (±0.6) 3.6 (±0.3) – 100
n = 80 5.4 (±4.2) 0 1.5 (±1.2) 3.6 (±0.3) – 100
n = 200 14.6 (±8.9) 0 3.9 (±2.4) 3.7 (±0.4) – 100
n = 500 65.1 (±37.3) 0 16.9 (±9.7) 3.8 (±0.4) – 100

Table 5.5: Comparison of TM algorithm and branch-and-bound algorithm.

5.5.7 Summary

From the results, we can observe the following:

(i) DF-DOPO+TM outperforms both list scheduling algorithms in terms of
quality, but is more computationally demanding,

(ii) considering the simplicity of implementation, the MINLP with symmetry
breaking constrains is competitive for instances with up to 15 jobs (especially
with a low number of machines), but does not scale up well,

(iii) the case of two machines can be solved efficiently by the TM algorithm which
is very fast even for hundreds of jobs and achieves almost linear parallel
speedups,

(iv) for the general case, the proposed branch-and-price outperforms the branch-
and-bound algorithm [135] on instances with larger number of machines and
jobs, but is more sensitive to the presence of large values of job variances.
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5.6 Conclusion

In this paper, we have revisited a parallel machines scheduling problem where
the processing time of each job is given by a normal distribution from integer
programming perspective. The problem is formulated as a β-robust scheduling
problem where the objective is to maximize the probability the schedule is completed
before a given common due date.

We have proposed a new relaxation of the problem based on the concept of
aggregated machines. The upper bound on the objective is computed via the
solution of a problem with a smaller number of machines with one machine having
a modified due date. The practicality of the proposed bound follows from the
existence of a very fast and parallel algorithm for the two-machines case. For this
case, we have devised a specialized algorithm that utilizes the concavity of the
relaxed objective function and a fast recovery procedure that converts optimal
relaxed solution into an optimal integer one. We showed that our method is able to
solve instances with up to 500 jobs in several seconds while having almost linear
parallel speedups.

To solve the general problem, we have proposed a branch-and-price algorithm.
The resulting pricing problem reveals a connection to the stochastic knapsack
problem and can be efficiently solved in practice. Additionally, the efficiency of our
algorithm lies in the use of Ryan-Forster’s constraint branching, which mitigates
symmetries in the solution space and good quality of initial solutions provided by
the genetic algorithm with local search intensification. Furthermore, the branch and
price utilizes bounds on the number of jobs that can be assigned to each machine,
computed by the aggregated machines upper bound.

The experiments have demonstrated that the performance of our initial heuristic
provides better lower bounds and that the proposed algorithms scales better than
the branch-and-bound algorithms proposed in [135], especially with the increasing
number of machines and jobs. The main drawback of the proposed branch-and-price
remains in the weaker performance for the instances with the presence of very large
variance values.

As for the future work, we note some extensions that might be incorporated into
the proposed branch-and-price algorithm: (i) additional machine-related constraints
(e.g., jobs incompatibility) can be embedded into the pricing problem without sig-
nificant modifications of the rest of the algorithm, and (ii) the decomposition allows
extending the approach to distributions closed under the convolution or even into
the distributionally robust setting by employing existing results on distributionally
robust knapsack problems. Finally, we would like to note that there are several
interesting questions left open. Namely, does a specific list scheduling method have
approximation guarantees, or can it be arbitrarily bad or whether the instances
with agreeable jobs (e.g., smaller mean time implies smaller variance) could be
solved faster?
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Conclusion

In this work, we have studied different means of integrating full distributional knowl-
edge of processing times into scheduling problems. One group of methods proposed
in this work is inspired by techniques used in statistical machine learning. For
example, we have investigated how different vector norms affect the regularization
term in a distributionally robust scheduling problem and its effect on the price and
stability of solutions. The other core idea is that often, a suitable problem formula-
tion is already a part of its successful solution. For example, we have transformed
an inherently stochastic problem arising in message scheduling into a deterministic
scheduling problem with alternatives. This modeling allowed us to efficiently solve
the problem while avoiding the complexities of stochastic formulations.

In Chapter 2, we have used in-sample data to estimate the parameters of an
ambiguity set to obtain a distributionally robust solution via different regularization
techniques. In Chapter 3, we have proposed how to model jobs with uncertain pro-
cessing times with an abstraction called F-shape, which discretizes the distribution
function of processing times. This abstraction leads to schedules with alternatives,
which allows achieving trade-offs between efficiency and robustness of the schedule.
The resulting problem formulation is essentially a kind of packing problem that can
be solved efficiently in practice. In Chapter 4, we have extended this model by job
replication, which improves the execution probability of jobs in a schedule. Despite
that, in the general case, the problem of calculation of the execution probability
becomes hard while the cases of practical interest remain tractable. Finally, in
Chapter 5, we have studied the problem where the distribution of processing times
can be approximated by a normal distribution. The full distributional knowledge is
utilized in the risk-averse objective function that maximizes the probability that all
jobs are completed before a given common due date.

6.1 Fulfillment of the goals

Below we describe how the given goals were fulfilled.

1. Study the related scheduling literature in robust, stochastic, and distributionally
robust optimization fields. Identify new challenges, promising approaches, and
possible improvements to existing modeling methods, problem formulations,
and algorithms.

We surveyed the optimization paradigms for uncertain problems and their
properties from a high-level perspective in Section 1.1. Focusing on particular
challenges, in Section 2.2, we described some of the key properties of the
expressiveness of the commonly used ambiguity sets in distributionally robust
scheduling. These properties led us to a question of how crucial it is to
solve problems with certain types of ambiguity sets optimally when the
protection against the (unrealistic) worst-case distribution is not required.
In Section 3.1.2 and Section 4.1.4, we have identified the lack of models
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and scalable computational methods for non-preemptive static scheduling in
mixed-criticality environments. Furthermore, we noted that the robustness of
static mixed-criticality schedules should be further improved by considering
job replication, which we have proposed in [122]. Considering the stochastic
programming scheduling problems with normally distributed processing times,
in Section 5.1.3 we have followed the suggestion proposed by [135] in designing
more efficient heuristics for this problem. Moreover, it appeared to us that
this kind of non-linear problem might benefit from applying the integer
programming framework due to constantly improving solver technology.

2. Develop formal descriptions of the deduced problems. Formulate the uncer-
tainty models, constraints, and objective functions considering the distribu-
tional knowledge.

In Chapter 2, we dealt with the idea of solving distributionally robust problems
in terms of different solution variance regularizations. A new renormalization
technique for a fine-tuned control of the price and robustness trade-off was
proposed in Section 2.4.2. Next, we have proposed to model the processing time
uncertainty as a discretization of the distribution function in Chapter 3 where
we have demonstrated it for the solution of a makespan scheduling problem.
In [123], the above model was used to describe and solve a jitter minimization
problem in periodic environments. In Chapter 4, we have introduced job
replication as a mechanism for increasing the execution probability of jobs in
the schedule. We have observed that the problem of computing the execution
probability becomes closely connected to the probabilistic inference in suitably
constructed Bayesian networks. Finally, in Chapter 5, we studied a parallel
machine scheduling problem with a risk-averse objective function that involves
the product of normal cumulative distribution functions.

3. Propose heuristic and exact algorithms that compute robust schedules with
respect to the processing time uncertainty.

We have proposed a scalable algorithm for a distributionally robust problem
with independent jobs in Section 2.3.3, and we have extended it for dependent
jobs in Section 2.3.5. In the case mixed-criticality environments, we have
proposed an approximation algorithm in Section 3.3.1, an efficient mixed-
integer linear programming model for the problem with two criticality levels
in Section 3.3.2 and a branch-and-price decomposition for the problem with
three criticality levels in Section 3.4. A heuristic algorithm for periodic
mixed-criticality environments was proposed in [123]. For the computation
of the execution probability in the presence of the job replication, we have
proposed the reduction to the inference in Bayesian networks in Section 4.3.1.
For the problem with a normal distribution of processing times, we have
proposed a new list scheduling algorithm and a powerful genetic algorithm in
Section 5.2.1. The genetic algorithm uses an intensification step implemented
by an efficient algorithm for the special case of two machines, which is proposed
in Section 5.4. To solve the general problem, we have proposed a branch-and-
price decomposition in Section 5.3.

4. Benchmark the developed algorithms by numerical experiments. Discuss the
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obtained results from the perspective of quality and time complexity. Demon-
strate the scalability of the proposed approaches and discuss the robustness of
their solutions.

We have compared the price and robustness trade-offs for our distributionally
robust algorithms in Section 2.5.3. We have observed that the regulariza-
tion in terms of `1 achieves almost identical out-of-sample trade-offs as `2
formulation initially proposed by [44] while being much faster. Furthermore,
in Section 2.5.4, we have conducted the experiments to assess the benefits
of utilizing general covariance matrices in the case of dependent jobs in an
imperfect-knowledge setting. In Section 3.5.1, we have studied the average-
case instance complexity of a mixed-criticality problem, showing a narrow
phase transition where the difficult problem instances appear. In Section 3.5.2
and in Section 3.5.3 we benchmarked computational times of the proposed
algorithms showing to outperform the former mixed-integer linear program-
ming model proposed by [81]. For the problem with jobs with normally
distributed processing times, we showed in Section 5.5.2 that our heuristic
achieves better objective values if more computational resources are given.
In Section 5.5.3, we study the scaling performance of the non-linear integer
programming formulation. Furthermore, we tested the sensitivity with respect
to instance parameters and the scalability of our branch-and-price algorithm
for the general problem in Section 5.5.4 and Section 5.5.5. The results showed
that our method scales better than the former branch-and-bound [135], espe-
cially with the increasing number of machines. Finally, the performance of
the algorithm for two machines is measured in Section 5.5.6. We have shown
its scalability for instances up to hundreds of jobs and the ability to achieve
almost linear parallel speed-up.

6.2 Future work

It seems to us that applying objective regularization techniques similar to what we
showed in Chapter 2 might be viable for other scheduling problems as well. The
point being is that for many instances of the specific problem, the solution obtained
with different regularization terms might be almost as good as an optimal one for
the original problem statement derived from the chosen uncertainty model. What
is more, one could even sample more solutions from the surrogate problem and
evaluate them by means of the original formulation and choose the best one. This
idea is also connected with our observation that in the existing literature, we have
identified a gap between the study of tractable but conservative over-approximations
of ambiguity sets, e.g., [181, 30], and the design of heuristic algorithms of exact
intractable formulations of the ambiguity. It appears to us that the relation between
an exact solution of conservative over-approximations and approximate solutions of
exact formulations of ambiguity sets is still not well-researched. Hence we propose
a systematic study and benchmarking of heuristic approaches to (distributionally)
robust scheduling with expressive ambiguity sets. In that respect, an attractive
option seems to be Wasserstein ambiguity sets [70].
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[149] Rüdiger Schultz. “Stochastic programming with integer variables”. In: Math-
ematical Programming 97.1 (2003), pp. 285–309.

[150] M Schumer and Kenneth Steiglitz. “Adaptive step size random search”. In:
IEEE Transactions on Automatic Control 13.3 (1968), pp. 270–276.

[151] Yasmina Seddik and Zdenek Hanzalek. “Match-up scheduling of mixed-
criticality jobs: Maximizing the probability of jobs execution”. In: European
Journal of Operational Research 262.1 (2017), pp. 46–59. issn: 0377-2217.
doi: http://dx.doi.org/10.1016/j.ejor.2017.03.054.

[152] Dvir Shabtay, Nufar Gaspar, and Moshe Kaspi. “A survey on offline schedul-
ing with rejection”. In: Journal of Scheduling 16.1 (2013), pp. 3–28.

[153] Chao Shang and Fengqi You. “Distributionally robust optimization for
planning and scheduling under uncertainty”. In: Computers & Chemical
Engineering 110 (2018), pp. 53–68. issn: 0098-1354.

[154] Alexander Shapiro. “Monte Carlo sampling methods”. In: Handbooks in
operations research and management science 10 (2003), pp. 353–425.

https://doi.org/https://doi.org/10.1016/S0927-0507(03)10001-1
https://doi.org/https://doi.org/10.1016/S0927-0507(03)10001-1
https://doi.org/https://doi.org/10.1016/j.ejor.2015.10.056
https://doi.org/http://dx.doi.org/10.1016/j.ejor.2017.03.054


148 BIBLIOGRAPHY

[155] Alexander Shapiro. “On Duality Theory of Conic Linear Problems”. In:
Semi-Infinite Programming: Recent Advances. Ed. by Miguel Á. Goberna
and Marco A. López. Boston, MA: Springer US, 2001, pp. 135–165. isbn:
978-1-4757-3403-4.

[156] Alexander Shapiro and Arkadi Nemirovski. “On complexity of stochastic pro-
gramming problems”. In: Continuous optimization. Springer, 2005, pp. 111–
146.

[157] Karmel S Shehadeh. “Data-Driven Distributionally Robust Surgery Planning
in Flexible Operating Rooms Over a Wasserstein Ambiguity”. In: arXiv
preprint arXiv:2103.15221 (2021).

[158] Karmel S. Shehadeh, Amy E.M. Cohn, and Ruiwei Jiang. “A distributionally
robust optimization approach for outpatient colonoscopy scheduling”. In:
European Journal of Operational Research 283.2 (2020), pp. 549–561. issn:
0377-2217.

[159] Sang-Oh Shim and Yeong-Dae Kim. “Scheduling on parallel identical ma-
chines to minimize total tardiness”. In: European Journal of Operational
Research 177.1 (2007), pp. 135–146. issn: 0377-2217. doi: https://doi.
org/10.1016/j.ejor.2005.09.038.

[160] Martin Skutella and Marc Uetz. “Stochastic Machine Scheduling with Prece-
dence Constraints”. In: SIAM Journal on Computing 34.4 (2005), pp. 788–
802. doi: 10.1137/S0097539702415007.

[161] Stephen F Smith. “Reactive scheduling systems”. In: Intelligent scheduling
systems. Springer, 1995, pp. 155–192.

[162] Kate Smith-Miles and Leo Lopes. “Measuring instance difficulty for combi-
natorial optimization problems”. In: Computers & Operations Research 39.5
(2012), pp. 875–889. issn: 0305-0548. doi: http://dx.doi.org/10.1016/j.
cor.2011.07.006.

[163] Karuturi Sneha and Gowda M Malle. “Research on software testing tech-
niques and software automation testing tools”. In: 2017 International Con-
ference on Energy, Communication, Data Analytics and Soft Computing
(ICECDS). 2017, pp. 77–81.

[164] Christian Sohler and David P Woodruff. “Subspace embeddings for the
l1-norm with applications”. In: Proceedings of the forty-third annual ACM
symposium on Theory of computing. 2011, pp. 755–764.

[165] Guopeng Song, Daniel Kowalczyk, and Roel Leus. “The robust machine
availability problem–bin packing under uncertainty”. In: IISE Transactions
50.11 (2018), pp. 997–1012.

[166] Allen L Soyster. “Convex programming with set-inclusive constraints and
applications to inexact linear programming”. In: Operations research 21.5
(1973), pp. 1154–1157.
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This thesis studies scheduling problems with processing time uncer-
tainty described by their distributions. The aim is the design of new
modeling approaches, the study of their complexity, and the develop-
ment of scalable algorithms that utilize full distributional knowledge for
efficient and robust decision-making.

The main contributions are:

• We model a discretization of the cumulative distribution of the
processing time with an F-shaped job.

• We propose the job replication for Mixed-Criticality scheduling to
increase the execution probability of jobs.

• We characterize the complexity of distributionally robust scheduling
problem with total flow time minimization in terms of different
norm regularizations of the solution variance.

• We propose efficient exact and heuristic algorithms for the prob-
lems of Mixed-Criticality scheduling, scheduling with normally
distributed processing times, and distributionally robust total flow
time minimization with dependent jobs.
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