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Abstract

This habilitation thesis describes the methods used for system identification and control of
large-scale systems. These systems require special treatment with respect to their multiple-
input, multiple-output nature. In system identification, special attention is paid to subspace
identification methods. Subsequently, these models are used in Model-based Predictive
Control, which enables efficient control of the modeled systems. This approach is shown
in practice for tunnel ventilation control, as well as building heating control.

Anotace

Tato habilitace se zabyva metodami pouZivanymi pro identifikaci systémt a fizeni rozleh-
Iych systémi. Tyto systémy vyZzaduji zvlastni p¥istup s ohledem na jejich vice-vstupovou a
vice—vystupovou povahu. V oblasti identifikace systém se zaméfime pfedevsim na metody
subspace identifikace. Tyto modely jsou poté pouzity v prediktivnim fizeni MPC (Model-

based Predictive Control), které umoziiuje efektivni fizeni modelovanych systémii. Tento
piistup je ukdzan na piikladech fizeni ventilace tunel a fizeni vytapéni budov.
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Comments to the Published Works

1 Introduction

Recent trends in carbon dioxide emission reduction establish a socially challenging envi-
ronment for new ideas for energy consumption optimization, regardless of our individual
opinion about the global warming issue. Special attention is paid to various technology ad-
vances, such as low-emission engines, green energy generation, etc. Both economical and
environmental revenue of such innovations is sometimes subject to fierce discussions. On
the other hand, improvements of control system algorithms leading to economic savings
represent a solution, which is “green”, beyond dispute.

For example, buildings have been subject to energy savings for a long time. Indeed, ac-
cording to the U. S. Energy Information Administration, in 2005, buildings accounted for
39 % of total energy usage, 12 % of the total water consumption, 68 % of total electric-
ity consumption, and 38 % of the carbon dioxide emissions in the U. S. A. (E.L A., 2009).
However, recent efforts have focused mainly on the construction of the buildings, such as
better insulations, double facades, heat-reflecting glass, etc. But large buildings, such as
schools, hospitals, or office buildings, are usually equipped with control systems based on
general industrial systems and use industrial protocols, PLCs, dense sensor networks, etc.,
which enable the use of sophisticated modifications of state-of-the-art controllers (PID con-
trol, weather-compensated control, ...). The use of modern control strategies in buildings
has been very limited, with the exception of fuzzy control. More sophisticated methods,
such as LQG or MPC control, have been enduring their use in buildings mainly because of
the absence of convenient tools for obtaining a model of the building.

This habilitation thesis encloses the major publications of the applicant supported by
a short commentary. The work is focused mainly on finding proper models of systems,
which is crucial for model-based control. Section 2 presents the main contribution of this
thesis, which is system modeling and identification. The role of the models in a model-
based controller is shown in Section 3. Practical use of the model-based control is shown in
Section 4. Contribution of the work and further work are summarized in Section 5.

Respective publications are supplemented in the appendices.

The first part is about finding optimal control strategy for ventilation in large highway
tunnels, which is not necessarily predictive. We begin with the general concept of a static,
optimal, model-based controller (Appendix A, L. Ferkl and Meinsma (2007)), with the ap-
plication for tunnel ventilation (Appendix B, Pofizek, Zapaika, and L. Ferkl (2008)). As tun-
nels are systems with high demands for safety, the application of a controller in a real tunnel
must be supported by a proper risk analysis, as shown in Appendix C (Nyvlt, Privara, and
L. Ferkl, 2011).

The second part deals with identification issues with the focus of thermodynamic model
identification of buildings. The possibilities of the state-of-the-art identification techniques
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are discussed in Appendix D (L. Ferkl and Siroky, 2010). Particular challenges encountered
during identification of a large building are described in Appendix E (Vana, Kubecek, and
L. Ferkl, 2010). Including some prior information into the subspace identification methods
is described in Appendix F (Privara, Cigler, Vana, L. Ferkl, and Sebek, 2010).

As already stated, the modeling and control part form an indivisible complex in model-
based control. Integration of subspace identification models into model-based controllers is
described in Appendix K (Privara, Vana, Cigler, and L. Ferkl, 2011). The implementation of
the Model-based Predictive Control is shown in Appendix G (L. Ferkl, Siroky, and Privara,
2010), while Appendix H (L. Ferkl, Verhelst, Helsen, Ciller, and Komarkova, 2011) describes
a method of performance estimate of the model-based control. Practical experience with op-
eration of the Model-based Predictive Controller is described in Appendix I (Privara, Siroky,
L. Ferkl, and Cigler, 2011a), and Appendix J (Privara, Véana, Gyalistras, Cigler, Sagerschnig,
Morari, and L. Ferkl, 2011b) discusses the savings potential of the model-based control for
a large office building, showing also a generalized approach to model-based control of large
buildings.

2 Modelling and Identification

For a long time, linear system identification was a major field in system identification. In
statistical identification, the roots date back to 1801, when Franz Xaver von Zach used the
least-squares analysis proposed by Carl Friedrich Gauss (Gauss, 1809) to identify the orbit of
the asteroid Ceres. In 1960s, autoregressive models became popular in systems and control
theory, thanks to advances by K. J. Astrém (e.g. Astrém and Eykhoff (1971)) and his succes-
sors. The autoregressive models are suitable for single-input, single-output (SISO) systems
identification, and many modifications and improvements exist, e.g. enabling incorporation
of prior information based on maximum likelihood estimate or frequency domain identifi-
cation (Ljung, 1999).

Another approach, which is suitable also for multiple-input, multiple-output (MIMO)
systems, is represented by identification of linear, time-invariant state-space models by
means of subspace identification (4SID). Even though the principles of 4SID has been known
for decades — deterministic version was first described by Ho and Kalman (1966) and sto-
chastic by Akaike (1974) — the method gained significant attention in 1990s (Verhaegen and
Dewilde (1992), van Overschee and De Moor (1994)) and proved to be useful in many prac-
tical applications. Even though some interesting results have been published recently on
4SID, such as incorporation of prior information (Trnka and Havlena, 2009), number of pa-
pers being published on linear system identification has been declining since the beginning
of the turn of the third millennium. A very good overview on the system identification
topics, as of 2010, can be found in an excellent paper by Ljung (2010).

However, a new topic has been opened recently by the introduction of the concept of
models that are suitable for control, while classical approach is to aim for models with good
open-loop prediction capabilities. This concept is crucial for model-based controllers, such
as MPC (Model-based Predictive Control). Even though the idea is not new (one of the first
papers on this topic is the famous paper by Astrém and Wittenmark (1973)), the concept has
been thoroughly described in 1990s (van den Hof and Schrama (1995), Ljung (1999)) and
the problem has been specified for the class of models suitable for MPC (Gopaluni et al.,
2004; Shook et al., 1992). There has been some work done on closed-loop identification
(MacArthur and Zhan, 2007), but the identified models still have very high orders.

In the present work, subspace identification approach is the principal method for finding
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a suitable model for a model-based controller. The principles can be found in many of the
disclosed publications, e.g. Section II.A in Appendix G, Section 2 in Appendix D or Section I
in Appendix F. In principle, the classical methods find system matrices, then estimate the
system states, which often leads to high order models that have to be reduced afterwards.
For MIMO systems, this approach is extremely time consuming. On the other hand, sub-
space approach uses orthogonal and oblique projections to find Kalman state sequence, and
then obtain the system matrices using e.g. least squares method.

The problem of incorporating prior information, which is important for large scale mod-
els to be used in model-based controllers (as significant savings can be achieved from the
knowledge of DC gains of the controlled system), was partly solved by Trnka and Havlena
(2009) for MISO systems. The incorporation of DC gain knowledge for MIMO systems is
shown in Appendix F.

3 Model-Based Control

The origins of model-based control, or more specifically the Model-based Predictive Control
(MPCQ), traditionally date back to 1970’s, when complex control of chemical processes was
needed. Nowadays, it can be found in a wide variety of application areas including chemi-
cal industry, petroleum refineries, offshore platforms, food processing, metallurgy, pulp and
paper, automotive and aerospace applications (Qin and Badgwell, 2003). The MPC princi-
ple, or the receding horizon principle, was proposed by Propoi (1963) back in 1960’s and
later elaborated by Richalet et al. (1976). Unfortunately, the optimization algorithms based
on constrained linear and quadratic programming were a limiting factor in the sense of
computational speed.

Recent advances in computation and mathematical optimization techniques have, how-
ever, opened new ways of dealing with these problems. One of the simplest is the certainty
equivalent model predictive control (CE-MPC) (Bertsekas, 2005) that solves a deterministic
optimization problem with stochastic disturbances replaced by their estimates based upon
the information available at the time, and proceeds in a receding horizon fashion. Another
popular class of control strategies is the affine disturbance feedback policy which turns out
to be equivalent to the affine state-sequence feedback policy via a nonlinear transformation
similar to the classical Q-design or Youla-Kucera parameterisation (Skaf and Boyd, 2009).

However convenient the paradigm of affine disturbance feedback may be, its use is pro-
hibitive whenever unbounded stochastic disturbances enter the system in the presence of
hard control input bounds, since then the linear part necessarily vanishes, which, in effect,
renders the policy open-loop. One way to overcome this problem is to use a (saturated) non-
linear disturbance feedback (Skaf and Boyd, 2009), where this approach was developed for
the quadratic cost. The upside of this generalization is the fact that the convexity of the cost
function associated with the nonlinear disturbance feedback turns out to be independent of
the choice of the nonlinear function.

Another branch of approximation techniques bounds the disturbances a priori and solves
a robust MPC problem, while guaranteeing an open loop probabilistic bound on the perfor-
mance (Bertsimas and Brown, 2007). This approach, however, tends to be very conservative,
and thus the idea of bounding the disturbances a priori based on their distribution appears
more often in the context of chance constraints Oldewurtel et al. (2008).

It is the issue of recursive feasibility of (probabilistic) constraints that has predominantly
hampered bridging the gap between stochastic optimal control and constrained model pre-
dictive control. The crux of the matter lies in the fact that independent unbounded distur-
bances additively entering the system cannot give rise to a recursively feasible problem as
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long as the set of state constraints is compact and control authority bounded. Thus, one
has to either develop a backup recovery policy that is triggered when infeasibility occurs,
or assume compactly supported disturbances. The former was tackled for instance by Chat-
terjee et al. (2009), where an optimal solution (in some sense) was developed using dynamic
programming techniques, carrying over the inherent computational burden of dynamic pro-
gramming techniques. The latter was extensively studied in a series of papers (Cannon et al.,
2011), where the authors consider various types of constraints and process noise properties,
and present multiple techniques to tackle these problems. The common feature is the use of
a perturbed linear state feedback (or pre-stabilization), which necessarily limits the number
of degrees of freedom, and as a consequence the resulting performance.

While there has been no previous work on model-based control for ventilation in tunnels
until the publication of Appendix A (L. Ferkl and Meinsma, 2007), the situation in building
automation is different. A significant amount of works has been focused on individual as-
pects of the building automation problems. There are works that describe the MPC control
of boilers (Liao and Dexter, 2005), cooling systems (Coffey et al., 2010) etc. Significant effort
has been made in simulation and proving that MPC may improve the thermal comfort while
maintaining, or even reducing energy consumption of the system; however, these simula-
tions are usually fairly simplified (Huang and Wang, 2008; Moon and Kim, 2010). A more
complex view, even though idealized as well, is provided by the OptiControl project (Gyal-
istras et al., 2010a,b) which claims that use of MPC in buildings can save 10-40 % of energy,
while maintaining the thermal comfort. In fact, the first work publishing results of an op-
erational MPC controller of a complex building for an extended period of time (one heating
season) is girok}’/ et al. (2010).

4 Case Studies

4,1 Tunnel Ventilation

The first case study of a model-based control is a ventilation control in highway tunnels.
The overall concept is described in Appendix A, while the specific case study for the Blanka
tunnel is described in Appendix B.

Operational ventilation in tunnels (i.e. not the emergency, fire ventilation) is usually not
an issue during tunnel design phase, as usual highway tunnels take advantage of the piston
effect of the traffic, which causes air flow velocity for sufficient air exchange. However, in
city tunnels, the air has to be exchanged by means of ventilation, as the piston effect is not
sufficient enough to comply with all the necessary control constrains. For example, in the
Blanka tunnel, there are modes of operation to ensure air quality outside the tunnel that
require virtually no air flow out of the tunnel portals — all the air has to be extracted through
two major ventilation shafts. As the tunnel has a complex topology, MIMO controllers have
to be employed.

As the air flow dynamics are very fast, they have been neglected and a semi-dynamical
model was used to model the air flow; the traffic model and exhaust model remain dy-
namic. Referring to Appendix A and references therein, the air flow model is described by
Equations (2) and (3), the traffic model by Equation (1) and the exhaust model by Equa-
tions (4)-(6). Based on this model, static optimal control was designed (Sections 4 and 5 of
Appendix A).

Even though a brief example is given in Appendix A, a more detailed example is shown
in Appendix B.



4.2 Reliability Issues

Appendix C shows a reliability analysis of a tunnel ventilation system. In order to persuade
the industrial partners to incorporate the model-based control of tunnel ventilation into their
plans, it was necessary to show that the system is safe enough for the risky environment of
highway tunnels. As the commonly used methods of reliability analysis in tunnels fail to
describe certain probability issues of reliability, a method originally developed by NASA
was adopted and modified, and its behavior has been shown for the case of the Strahov
tunnel in Prague. Similar analysis for the Blanka tunnel has been under way by the time of
submission of this habilitation thesis.

4.3 Building Heating Control

The building heating control originally started by the Czech Ministry of Industry and Com-
merce grant no. 2A-1TP1/084, “Integration of building systems, research and application
of intelligent algorithms with influence on energy consumption of buildings and living
houses”. Within this grant, a Model-based Predictive Controller (MPC) of a building of
Czech Technical University in Prague-Dejvice was developed, followed by other projects:
“Control Systems for Optimization of Energy Consumption in Low-Energy and Passive
Houses” (Czech Ministry of Industry and Commerce, FR-T11/517), MPC control of a Hol-
landsch Huys building in Belgium within the scope of the GEOTABS project (EraSME grant)
and savings potential estimation for the Premier building in Munich (OptiPremier project
contracted by ICADE, GmBH).

In the first stage, it was necessary to get a reliable model of a building. A study compar-
ing the ARMAX and Subspace identification methods was published (Appendix D). Based
on the comparisons, Subspace identification methods were chosen and the process was ap-
plied to the CTU building in Prague-Dejvice (Appendix E). However, the state-of-the-art
methods were not suitable for the specific building data; prior information had to be incor-
porated into the methods in order to get them running correctly (Appendix F). At the end,
the subspace identification methods were improved and implemented in such a way that a
reliable building model could have been obtained (see e.g. Figure 9 in Appendix E, Figure 3
in Appendix F or Section IV in Appendix K).

The outline of the controller is given in Appendix G. The first results with experiments
on a real building are given, with estimated savings reaching 20 % compared to the state-
of-the-art controllers. It has soon appeared that an assessment tool is needed to estimated
savings potential of the model-based control of buildings. A candidate for such a method is
described in Appendix H; this method is based on a regular energy audit, as proposed e.g.
by the norm EN 12831 (2003). A thorough description of the first season with the Model-
based Predictive Control in the CTU building in Prague-Dejvice is described in Appendix L.
Last two appendices (Appendix J and Appendix K) describe the concept of implementa-
tion of model-based controllers in large modern buildings; this concept is a result of the
OptiPremier project with ETH Ziirich, an industrial project funded by the French major de-
veloper ICADE.

5 Conclusions

5.1 Contribution of the Habilitation Thesis

The main contribution of the research, hereby disclosed as the habilitation thesis, can be
summarized into three points:



e The identification methods, particularly the subspace identification methods, have
been modified in such a way that identification of LTI systems with prior informa-
tion of the DC gains is feasible.

e A concept of model-based predictive control for thermodynamical systems, particu-
larly for buildings, has been developed. This concept uses both data from a real sys-
tem and data from a physical (first principle) model to find an LTI model by means of
statistical identification. Such model is used in the model-based controller.

e The model-based controller was implemented on real systems, particularly for venti-
lation systems in tunnels (where work is still in progress) and for heating control of
buildings. The results show significant savings of the model-based control, compared
to the traditional controllers.

5.2 Further Work

Even though identification of linear systems is sometimes considered to be a closed issue,
recent works by respected scientists (e.g. Ljung (2010)) point out problems that are still open.
The application motivated research areas include further incorporation of prior information
into subspace identification methods, MPC relevant identification, closed-loop identification
or frequency-domain identification.

The general controller design for tunnel ventilation has received some attention, as it is
an elegant solution particularly for city tunnels. The opening of the Blanka tunnel (sched-
uled to spring 2014) and first practical results will show real properties of the model-based
controller, and may be an impuls for further implementations.

The savings potential of the HVAC systems in buildings makes the model-based con-
trol of such systems a challenging issue. There have been several other ongoing projects in
the time of submission of this habilitation thesis, mainly the OptiPremier project (with ETH
Ziirich) and the GEOTABS project (with KU Leuven, TU Eindhoven, and others). While
the concept of the model-based predictive control of buildings has been tuned in last few
years, the procedure of controller design is still time consuming and requires non-trivial
background of the staff involved in the design procedure. This fact limits the application
of the model-based control to a class of buildings with large energy consumption, wherein
the savings achieved by the new controller pay off the effort needed for its design and im-
plementation. It is therefore necessary to make the procedure simpler, faster (and hence
cheaper), in order to be applicable for a wider class of buildings.
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Abstract

A control scheme for highway tunnels is designed based on a static model of the highway tunnel. The controller is designed to keep the
exhaust levels inside the tunnel below given limits. The control is then simulated on a dynamical model of a highway tunnel.

© 2006 Elsevier Ltd. All rights reserved.
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1. Motivation

There are many large highway tunnels constructed all
around the world. The operation of such tunnels has to
meet several requirements, e.g. energy consumption opti-
mization or minimal influence on the surrounding environ-
ment. As the tunnel system is typically very complex (and
may consist of a number of fans, sensors, several ventila-
tion shafts, etc.), a controller designed according to mod-
ern control design methods could be very efficient.
Surprisingly, the control of the majority of these tunnels
is performed by heuristical approaches based on experience
of construction engineers.

However, for the tunnels Mrdzovka (opened August
2004) and Blanka (under construction, to be opened in
2011) in Prague, Czech Republic, a different strategy has
been chosen. In Ferkl et al. (2005), it was decided to use
modern control techniques to meet all the intensive
demands associated with highway tunnels in urban areas.

* Corresponding author.
E-mail addresses: ferkll@control.felk.cvut.cz (L. Ferkl), g.meinsma@
math.utwente.nl (G. Meinsma).
URLs: http://dce.felk.cvut.cz (L. Ferkl), http://wwwhome.math.
utwente.nl/~meinsmag/ (G. Meinsma).

0886-7798/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tust.2006.04.002

The control task can be stated as follows: the control
system should be designed to keep exhaust levels inside
the tunnel below limits (that are given), with minimal
energy consumption (see Table 1).

2. Tunnel simulation
2.1. System decomposition

A general tunnel system is very complex and no simple
model can be designed for it. There is a need for decompo-
sition of this system. To handle the system more easily,
both a functional and a spatial decomposition have been
performed.

The functional decomposition is very intuitive (Fig. 1).
The tunnel model comprises three main functional parts
(or subsystems) — ventilation, traffic and exhaust. The
inputs and outputs are well defined and the decomposition
is quite natural as the system is fully separable.

The separability of the tunnel system into three subsys-
tems can be seen from Fig. 1. It is obvious that ventilation
(i.e. jet fans, ventilation shafts) does not effect traffic.
Conversely, traffic does have an effect on ventilation
because vehicles inside the tunnel generate a piston effect
(air flow caused by the moving vehicles) which influences
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Table 1
Variables
Variables Description Unit
X Position of a car (inside tunnel) m
xt ith car position at time ¢ m
Umax Speed limit m/s
dear Car length m
Ucar Car speed m/s
t Time S
P Pressure Pa
Sirea Cross section area m>
c(x,t) Exhaust concentration 1
9 Diffusion coefficient m?/s
R Exhaust (percentage) produced 5!
by vehicles per second
¢ Traffic-vehicles density s
f Power input (in %) — jet fans,
vent. shafts, etc.
De Piston effect caused by vehicles m/s
a Pollution generated by m™!
vehicles inside the tunnel
Vyir Air flow velocities m/s
P Pollution levels m3
a, d Linearization coefficient 102 m/s
Uk Air flow velocity caused m/s
by other factors than fans
k Average exhaust production s
of one vehicle/s
N Number of vehicles passed 1
Sarca Tunnel cross section area m?
n Number of vehicles inside the tunnel 1
s Position of the pollution sensor m
0, 0* Air flux m’/s
M Number of control sections 1
Traffic density . .
Traffic composition Ventilator settings
No. of vehicles
Vehicles speed
Traffic » Ventilation

Air flow velocities

A

» Exhaust

Position of vehicles

Exhaust distribution i

Fig. 1. Functional decomposition of a general tunnel system.

the resulting air flow velocity and hence ventilation. In the
same manner, the exhaust generally do not influence nei-
ther traffic nor ventilation system.' But the traffic influ-

! The only influence is during some excessively high dust levels in the air,
when the drivers slow down because of a decreased visibility range. This
emergency situation is not in the scope of this paper.

ences the exhaust (through exhaust production of the
vehicles) and so does ventilation (the exhaust move with
the air flow).

Upon the analysis of a general tunnel structure, it has
been decided to perform a spatial decomposition as well,
in order to isolate various ventilation and traffic phenome-
non. The spatial decomposition will be described in the fol-
lowing subsections in more detail.

2.2. Traffic

To be able to simulate traffic in a dynamical manner, a
microscopic car-following model, which has been described
in Rothery (2002), has been used, which was simplified for
the purposes of exhaust generation. The effect of accelera-
tion and deceleration of the cars are neglected, because typ-
ically cars maintain a constant speed in a tunnel. Every car
always tries to keep up with the speed limit v,,,. Assume
that the simulation model discretization is 8¢ =1s and
dx = 1 m. Then the model computes the movement of the
cars in the following way:

t+1

xl

= xzt‘ + min(vmaxa 0~5(x§—1 - x;) - dcar) (1)

where x; is the ith car position at time ¢, v,y is speed limit,
and d,, is the car length.

The meaning of (1) is that a car always watches the pre-
ceding car and tries to be at least 2 s behind. If it has
enough room, it maintains the maximum speed — the actual
speed limit. It can also be seen from (1) that the movement
of the cars has to be computed from the end, i.e. from the
first car in the tunnel.

A general two-lane module has been made as a building
block for the traffic simulation. This way, the tunnel model
is modular, which brings all the advantages of a modular
approach, well known in the art. In a two-lane situation,
a car can overtake if there is not enough room in its lane.
A simple algorithm has been chosen for overtaking: if there
is not enough room for a car according to (1), a second try
is performed for the other lane. The car switches lane, if it
allows him to move faster.

The system takes as input the traffic density ¢, that is,
the number of cars per second that enter each of the tunnel
entrances, and computes actual distribution of the cars and
their speed v.,,. This model has been solved using MAT-
LAB.? It also has some more features, e.g. a car will not
overtake if another car is approaching in the other lane,
or overtaking can be restricted by introducing a random
factor.

2.3. Ventilation

The ventilation subsystem is spatially decomposed into
several ventilation sections. The desired output of this

2 MATLAB is a commercial language for mathematic and technical
computing, commonly used for applied mathematics, control engineering,
signal processing, etc.
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subsystem is the air flow velocity, which is computed by a
set of equations of continuity (2) and Bernoulli equations
(3). This approach can be used for fluid flows with low
velocities; inside road tunnels, this condition is satisfied.
More details on this approach are shown e.g. in Boman
et al. (1997) or Douglas et al. (2001).

The equation of continuity (2) is used to connect the
ventilation sections together

VairSarea = Constant 2)

where v,;; is the air flow velocity and S, is the tunnel
cross section area These may vary per section.

The Bernoulli equation (3) is an equation of energy,
however, after suitable manipulation, we get an equation
describing pressure changes inside a ventilation section

APtol = APloc + APfric + APpist + APfans + APatm <3>

where Py is the total pressure difference. Pressure drops:
Piq is the local losses, Py is friction, Ppg is vehicles piston
effect, Ppn is jet fans effect and P, is the atmospheric
conditions.

The set of Bernoulli equations and equations of continu-
ity is a set of non-linear equations. The description of the
respective components of (3) is beyond the scope of this
paper, more details may be found in Ferkl et al. (2005).
Because of the non-linearities, the set of equation has to
be solved numerically. We have used an affine scaling
trust-region approach described in Bellavia et al. (2003).

However, the Bernoulli equation and equation of conti-
nuity describe a steady state of a system. Assuming that the
tunnel dynamics is slow compared to that of the pressure
dynamics, i.e. the inputs to the tunnel (traffic density, jet
fans puissance, etc.) do not change suddenly compared to
pressure dynamics, which is a reasonable presumption,
we can take a consecutive series of steady states to form
long-term dynamics.

2.4. Exhaust

The exhaust levels are the primary output variables from
the model. They depend both on vehicles type and distribu-
tion and air flow velocity inside the tunnel. The mass of the
exhaust is being observed, because it does not depend on
the tunnel geometry.

There are three pollutants measured inside the tunnel —
nitrogen oxides (NO,), carbon monoxide (CO) and opacity
(OP), which is a formal representation of visibility range
and dust particles concentration. Nowadays, this set of
three pollutants is considered as standard, see e.g. PIARC
(2004).

A mass balance equation for a component with constant
density and constant diffusion coefficient is used for
exhaust distribution:

Oc(x, 1)
ot

dc(x,t) e(x,1)
+ Vair Ox = Ox? +R (4

~—

where c¢(x,f) is the exhaust concentration, v,; is the air
velocity (as considered earlier), & is the diffusion coefficient
and R is the exhaust produced by vehicles in the tunnel.

This partial differential equation can be discretized in
the following way:

t+1 t t t t t it
dt =l .. —c ., =2+
J J J+l1 J J+l1 J j-1
A . =g

ot ox ox?
where, as before, superscripts refer to discretized time and
subscripts to discretized position. From Eq. (4) to (5), a
forward approximation of derivatives has been used. This
is rather crude, but in this case, it is stable and provides
good results when compared to a real system (Kurka
et al., 2005). Assuming that 6 =1 s and 6x = 1 m, we get
an exhaust concentration equation which is suitable for di-
rect implementation into a computer code:

=+ (e, =2+ ) = van(cly, — ) (6)

+R (5)

3. Principles of static control in tunnels
3.1. Problem formulation

The task of the controller is to keep the exhaust limits
inside the tunnel below desired limits, with low energy con-
sumption. The measured variables that are available to our
controller are the air flow velocities v,;, measured at various
places throughout the tunnel, exhaust levels p also mea-
sured at various places and vehicles density ¢ measured
at the entrance to the tunnel. The control output is the fans
power inputs f which affects the air flow velocity and
thereby affects the pollution levels, which is our main
concern.

In addition, the control must not effect the lifetime of
the ventilation equipment dramatically.

Finding a linear, time invariant model of the ventilation
part of the tunnel system is almost impossible. Particularly,
during off-peak hours, when traffic is sparse, external atmo-
spheric conditions and various turbulences have major
influence on the behavior of the air mass inside the tunnel.
Estimating those factors is not an easy task, and, according
to Douglas et al. (2001), a real-time dynamical estimation
for complex tunnels is not possible at all.

The next step is to decide, whether to choose a static, or
a dynamic controller. Here, are some helpful facts about
the tunnel:

e To save lifetime of the fans inside the tunnel, the fans
should not be switched on or off more often than every
10 min.

e The air flow velocities v,;, react to any changes almost
immediately (within seconds), as the air mass inside a
tunnel is considered to be incompressible (for explana-
tion, see Bellasio, 1997).

e The traffic situation ¢ and speed of the cars v, (Which
have major influence on the exhaust levels) does not
notably change over 10 min.
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Because of the restriction on the fans switching, a static
control of the tunnel is the better option. The above indi-
cates that the dynamics of the air mass can be neglected
in this case. The dynamics of the exhaust are more impor-
tant. However, as the traffic situation changes fairly slowly,
the exhaust system is not subject to any fast transitions
over a period of 10 min, so the dynamics of the exhaust
can be neglected as well.

3.2. Steady-state model of the exhaust

Before turning to the control, a steady-state description
of the system is to be found. We want to stress that we use
the steady-state description only in order to derive the con-
trol scheme: once derived we apply it to the more realistic
situation. The original system is shown in Fig. 2a. Here, ¢,
Ucar fo Vair and p are as introduced earlier. In addition, ¢
denotes pollution generated by vehicles and p. denotes
the piston effect caused by vehicles.

This is not yet in a suitable form. Instead of trying to
model the piston effect p. as a function of traffic density
¢ and speed of the cars v.,,, we take a different route: since
the fans power f operates on a different time scale (faster)
than the piston effect and other effects do, we can separate
the effect of f on the measured v,;, from that of the piston
effect p.. Measurements confirm that the effect of f'on v,;, is
well approximated as an affine function. That is, we model
it as

Vair = af + Uzir (7)

The way this is handled is to estimate @, and then on the
basis of this estimate, v}, is taken equal to v,; — af. Given
the fact that v}, varies slowly compared to f (and the esti-
mate a, more on this later), it is a reasonable approach to
assume that v, is constant over, say, the next 10 min after
which v7; is updated for the next 10 min, etc.

Eq. (7) represents block P; of Fig. 2b. The linearization
coefficient a can be computed, but it can be also set by
adaptation, as will be discussed later.

The air flow velocity v,;, s not computed, it is taken as a
direct input. Besides this, the influence of the ventilation

equipment f'is computed separately.

f
‘ v_*
V p ar ﬁ V
car |\/|1 e MZ F)1 air
vair f Q
A A
o o
p
(a) (b)

Fig. 2. Original model (a) and a modified model (b) with air flow velocities
as direct inputs.

In a one-way highway tunnel, the steady state of the
exhaust with zero air flow v,;, = 0 can be described by the
following equation (corresponding to block P, in Fig. 2b):

(8)

where p is the pollution level introduced earlier, and £ is the
average exhaust production of one vehicle/s, Nis the number
of vehicles passed and S, is the tunnel cross section area.

In this situation, the exhaust accumulate inside the tun-
nel. As the air flow v,;; = 0, to compute the exhaust levels,
we have to take all the vehicles that have passed through
the tunnel, here denoted with capital V. Introducing a
non-zero air flow velocity v,;;, the steady-state exhaust level
at some point of the tunnel changes:

T ©)

area  Uair

where 7 is the number of vehicles inside the tunnel and s is
the position of the pollution sensor.

The first fraction in (9) represents the exhaust production
of the vehicles inside the tunnel, as in (8), the second fraction
(corresponding to block P; in Fig. 2b) adjusts the longitudi-
nal distribution of the exhaust levels. The longitudinal dis-
tribution has a general increasing shape, as can be seen in
Fig. 4, which is a plot of pollution levels simulation inside
the tunnel Mrdzovka in Prague, Czech Republic. As a result
of the non-zero air flow velocity v,;,, the exhaust levels p
depend on the position s of the pollution sensor (from the
entrance to the tunnel) and on the number of cars (denoted
by small n) inside the tunnel. This simulation has been
already verified, as we have previously shown in Kurka
et al. (2005), its output values conform with the real data.

3.3. Example of the static model

As an example for the static model, the Libouchec Tun-
nel will be used. This 450 m long tunnel is located in the
Czech Republic. It is a very simple tunnel with no branches
and constant cross section area. A one-day simulation of
the static model is shown in Fig. 3. The air flow velocities
in (9) were calculated according to (3) (see e.g. Boman
et al., 1997). Here, are some interesting features of the sta-
tic model that can be seen in the figure:

e The overall distribution of CO is linear (Fig. 3b). It has a
triangular shape inside the tunnel, see Fig. 4 as well.

e The exhaust (CO) distribution is inversely proportional
to the air flow velocity. If we compare Figs. 3a and 3b,
we can see that the difference in CO concentration at
the two sensors between 0 and 4 AM (where the traffic
is more or less constant).

e The CO levels are proportional to the traffic density
(Fig. 3b and 3c). However, the relation is not linear.
The vehicles cause a piston effect; the piston effect
increases the air flow velocity which decreases the CO
levels.
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Fig. 3. A static model example (Libouchec Tunnel).
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Fig. 4. Exhaust distribution inside the tunnel Mrdzovka. The uppermost
image is a schematic view of the tunnel with cars shown as grey vertical
lines. The next three images show distribution of respective exhaust. Darker
plots relate to the main tunnel tube, lighter plots relate to the branch. The
air flow direction is from right (tunnel entrance) to left (tunnel exit).

e The contribution of the jet fans to the overall air flow
velocity is close to linear, as can be seen from Fig. 3a
and 3d, especially between 6 and 8 PM.

4. Control of a simple tunnel

4.1. Air flow based control

Now the task to find an optimal control for a highway
tunnel becomes simple. Substituting (7) into (9) and isolat-

ing f, the optimal fans input power f, can be computed by
substituting p with the desired exhaust, for instance the
exhaust limit p:

1 /(k-n-s
fo—a(sarea.p_vair>

In addition, there are some operational requirements on
the fans. To assure a reasonably long lifetime of a fan in-
side a tunnel, the fan should not be turned on and off
very often. Ten minutes is a satisfactory time for this
purpose.

The control works in the following way:

(10)

e Collect the required average data (traffic density n, fans
input power f and air flow velocity v;;) over last 10 min.

e If the concentration is higher than the limit p:
— Determine the v}, from (7).

— Calculate the optimal fans input power f, from
(10).

4.2. Parameter adaptation

In real operation, problems may occur with the param-
eters k and a. These parameters are uncertain and may vary
a little. However, it is difficult to estimate them both at the
same time.

Parameter k expresses an average exhaust production of
a vehicle. As the technology advances, this parameter is
subjected to change, because the vehicles use better engines
with lower exhaust production. This parameter changes
very slowly (over years).

It is also difficult to estimate it in advance with high
accuracy. A way to estimate this parameter is to use the
night hours, when the traffic is sparse and there is no need
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to run the fans inside the tunnel. We can use Eq. (9) to
derive a way to estimate the parameter k:
vairSarea

k= . P (11)
Parameter a expresses the contribution of the jet fans inside
the tunnel to the overall air flow velocity. This parameter
should not change at all. If this parameter changes, there
is a possibility that some of the fans are not working prop-
erly. However, there is again a need to adjust this parame-
ter at least during the startup of the control.

The casiest way is to adjust the parameter a according to
the pollution levels. If the controller tries to keep some pol-
lution level, but this level is permanently higher (or lower),
the parameter a could be lowered (or increased) by a factor
of, e.g. 1.02.

5. Control of a complex tunnel
5.1. Air flux based control

The above approach is very useful for simple tunnels.
However, for some more complicated situations, it does
not allow for extensions.

First of all, it is not very useful to use air flow veloci-
tiesv,;r, as they vary according to the diameter of the tun-
nel. It is better to use the air flux

Q - UairS area

because they remain constant throughout the entire tunnel,
which is a result of the equation of continuity (2).

First of all, the tunnel can be (but does not need to be)
divided into several so-called control sections. Considering
a situation in some section i of the tunnel, Eq. (9) can be
rewritten as follows:

- k,‘l’liSi
o

where p; is the pollution level at the end of the control sec-
tion i, k; is exhaust production coefficient, n; is number of
cars present in the tunnel until the end of the control sec-
tion i and s; is the position of the end of the control section
i with respect to the entire tunnel.

Like for the air flow velocities in (7), the contribution of
the fans to the total air flux has to be known. The overall
air flux can be partitioned as:

Pi (12)

M
0=0+0=> afi+0 (13)
i=1

where ¢’ is the air flux caused by the fans, Q* is the air
flux caused by other factors, &; is linearization coefficient
for the fans in a control section i, f; is fans power input
in the control section i and M is the number of control
sections.

Now the pollution level in an arbitrary control section i
can be rewritten as follows:

k,-nl-sl-
p = (149
> aifi+ 0"

i=1

5.2. Optimal control through linear programming

Let us assume that there is some exhaust limit p;
imposed on the control section i. Given Q" and k;n;s; there
corresponds to each p; in (14) a unique sum of air flux val-
ues, that is, a mapping £ exists such that

Z&ifi:y(pi) (15)

So requiring p; to be in some interval [0, p,;] translates into
requiring 3" &f; to be in some appropriate interval [0, 0/].
The latter involves our control variables f; and hence the
following linear program, which aims to achieve
p; € 10,p,] with minimal power is a possible solution to
our problem

rr}mzl:w subject to £ € [0,100], Z&,-f,—e[Q_ﬂ@]
(16)

This controller is a feedback controller — the fans control
the air flow velocity that is the input to the controller
(through (12), (15) and (16)). In Fig. 6, it can be seen that
the control of the pollution levels is achieved by the map-
ping 2(p;) from (15), while the linear program (16)
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~ - - L d
" mmammm ™
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Fig. 5. Complex tunnel example.
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Fig. 6. Feedback controller.
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Fig. 7. Simulation results for an example tunnel model: (a) traffic density inside the tunnel (based on real data from tunnel Mrdzovka, Czech Republic); (b)
fans input power, may change every 10 min; (c) air flow velocities inside the tunnel; and (d) CO levels inside the tunnel, which should be maintained below

35 ppm.

optimizes the power of the fans. The greatest advantage of
feedback structure is that it works even under perturbed
conditions. In the case of the ventilation control in tunnels,
it means that the controller reacts “implicitly”’ to any dis-
turbances to the air flow, e.g. wind, pressure and tempera-
ture differences, etc. The control effort is always limited by
the power of the fans though.

5.3. Example of a complex tunnel

The linear programming allows us to use any linear
constraints that we find useful.’> As an example, a high-
way tunnel consisting of two interconnected tubes and
ventilation shaft will be given. The tunnel is shown in
Fig. 5.

Let us further assume that the tunnel is built in a densely
populated urban area. To minimize its impact on the sur-
rounding environment, the polluted air has to leave the
tunnel through the ventilation shaft only. This means that
the air flux of the sections 7-10 should be always directed
into the tunnel.

Some slight modifications have to be made for the sta-
tic control model. The sections 2 and 4 (air transfer
shafts) and 6 (ventilation shaft) are “dummy” tunnels,
they contain no traffic. The model virtually starts in the
middle of the southern tube, just after the ventilation
shaft outlet. As the ventilation shaft does not suck out
all the polluted air, the air re-cycles inside the tunnel sys-
tem. Besides this, not only one air flux Q is used in the

3 Linear programming is a special case of an optimization problem. The
designer of the linear program should choose the constrains carefully,
because the feasibility set of the optimization criterion may become empty.

tunnel. Eq. (14) for an ith section has to be modified in
the following way:

k,-n,-s,» i
bi = ~ - v T P
Zje%o‘jfj + Zke,ﬂiQk ' e
forie{l...6} (17)

0
P, = Ps 01+0¢
0 otherwise

The sets #; and .#; contain all the indices, that are relevant
for the section i. For example, for the section 2 the sets are
F,={1,2,7} and .4, = {1,7}. The variable p, represents
the offset of the pollution level inside the tunnel due to
the re-circulation of the air.* The only place, where the
air leaves the tunnel, is the ventilation shaft 6. Not all the
polluted air leaves the tunnel, some part re-enters the sec-
tion 1. Therefore, the pollution p, has to be taken into ac-
count when estimating the exhaust levels in sections 1-6.

The linear program can now be further modified. Let
4 =]1,...,10]. Now, if (17) is used to achieve the mapping
2 according to (15), the linear program for the present
example is

£€[0,100], ie.s
min} Al Sty € 10,01, ies (18)
0,<0, ke{7,...,10}

6. Simulation results and future work

As an example, a 1000 m long highway tunnel model
has been designed, with the fans input power of 2 MW.

4 The re-circulation of the air is a very complex issue; however, the
feedback structure of the controller, as described above, allows us to use
this simple approximation.
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For simulation purposes, a previously developed dynam-
ical model is used Ferkl et al., 2005. The simulation
results can be seen in Fig. 7. For simplicity, only CO
levels are being observed. The CO limit has been set to
3.5 ppm for the purpose of the simulation only. In a real
tunnel, this limit should be set to the maximum allowable
level that applies for the respective tunnel. This level is
usually given by law or legal regulation. The results are
quite satisfactory, the CO levels stay well around the
limit.

Comparing Fig. 7a and c, the air flow velocities strongly
depend on the traffic density. This fact could be used to
design a predictive controller, that would further minimize
the switching of the fans, thus further saving the lifetime of
the ventilation equipment.

The controller presented here is suitable for normal
operation. However, a completely different controller has
to be designed for emergency situations. This does not
mean fires or terrorist attacks, but situations, where
exhaust is generated rapidly, like sudden traffic jams during
car accidents. There is no demand for energy savings, as
human health is in danger. In today’s tunnels, the ventila-
tion equipment works with full power under emergencies.
With the help of the present simulation, it can be found
out, whether this really is the best option, and if not, what
can be done better.
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VENTILATION CONTROL OF THE BLANKA TUNNEL:
A MATHEMATICAL PROGRAMMING APPROACH
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ABSTRACT

The Blanka tunnel is a 5.7 km long highway tunnel under construction in Prague, Czech Re-
public. Because of its complicated topology and very strict environmental restrictions, the
synthesis of ventilation control for normal conditions turns out to be fairly challenging.

The air flow is restricted to leave the tunnel through traffic portals — it has to be aspirated by
ventilation centers and released by exhaust shafts and chimneys. To achieve this goal, control
strategy was designed based on the mathematical programming principles. The designed con-
troller, which is inspired by model-based predictive controllers (MPC) used in heavy industry,
is energy optimal by definition, adapts to changes in operational conditions and requires sig-
nificantly less design time than traditional approaches.

Keywords: ventilation control, city tunnels, model-based predictive control

1. INTRODUCTION

After its opening scheduled for 2011, the Blanka tunnel (see Figure 1) will form a part of the
inner ring of Prague. Because of its complicated topology, strict operational demands and
axial ventilation system, the ventilation control does not have a straightforward solution. After
several attempts to use conditional control (“if-then-else” type), we decided to turn to modern
control algorithms and to use model-based predictive control (MPC) to achieve the control
objectives.

= > L

Figure 1: The Blanka tunnel in Prague
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2. MPC CONTROL PRINCIPLES

The MPC control is an optimization strategy that minimizes an optimality criterion (cost func-
tion) over a finite time horizon. Its first use was in 1970’s in oil industry and is widely used
for optimal control of “slow” industrial processes today. The main advantages of the MPC
control are:

e It handles multivariable control very naturally
e |t can take actuator limitations into account
e It allows to define control constraints
e Itis very intuitive to tune
For tunnels, the structure of the MPC controller is illustrated on Figure 2.

Input: Output: ’
ventilation TUNNEL - air flow
control signal - pollution
system states

'S A= = [ T T T T 1

E MPC predicted E

- TUNNEL [output

: MODEL ;

E : required

v future OPTIMIZER 1 output

: inputs ;|\ !

fun cii(z)srf tconstraints

Figure 2: MPC controller block diagram

For the case of tunnel ventilation control, we use a linear model (which will be discussed fur-
ther), the cost function has a quadratic form

F =x"Qx +u"Ru (1)

wherein x denotes system states and u denotes system control signal. It is obvious that by
means of matrices Q and R, we may directly influence the cost of system states and control
signal.

The linear constraints have a form
Hx+Gu<0 )
so we can impose physical constraints that exist in the system.

We have to point out that the MPC controller is not a classical, linear controller in the usual
sense. It is rather an optimization procedure that optimizes the trajectory of the output signal,
while trying to minimize the energy consumption of the system (through the cost function)
and maintaining the physical or technological limitations of the system (through constraints).

3. TUNNEL CONTROL MODEL

The basic assumption for the control model is that the air flow has two major contributors —
the air flow generated by ventilation system Q' and the remaining air flow Q*

4™Mnternational Conference ‘Tunnel Safety and Ventilation’ 2008, Graz



Q=0 +¢ 3
Moreover, according to measurements from the Mrazovka tunnel (Potizek, 2007), the air flow
can be further expanded to

inaifi‘l'Q* 4)

wherein f; is the power input to the ventilation equipment in the i-th section of the tunnel and
a is a suitable linearization coefficient, obtained by simulation or measurement.

The derivation of the simulation model was already presented in (Ferkl, 2007), with the re-
sulting formula for the pollution level in a tunnel section being

kin;s;
ZjE]i ai_f]' + Q*

wherein k is the exhaust production coefficient for a single vehicle, n is the number of ve-
hicles and s is the length of the i-th tunnel section.

D; )

Referring to our previous results (Ferkl, 2007), the optimization process (which turns out to
be an MPC controller) that aims to achieve the exhaust inside the tunnel to lie within given
limits and the air flow to have the desired direction, is

! fl € <flow' fhigh)

, a;fi(t) _ f f

min ‘(fl(t -1)— fi(t)) L . ZmeFij @mfn € Citow Qi,high) ©
\ 0, <0,k€eK

The cost function weights the power input to respective ventilation fans (first line) and mini-
mizes the switching of the fans (second line) for enhancing the lifetime of the ventilation
equipment. It minimizes the sum of cost functions for all tunnel sections (£, norm) according
to a quadratic criterion (£, norm). Equation (6) is a representation of a mathematical program.

The constraints limit the power input f to the ventilation equipment (first line), imposes the
exhaust limits through minimum required air flow Q (second line) and, if needed, requires a
negative air flow for tunnel section in a set K (third line).

4. SIMULATIONS

To make the presentation of our results more comprehensive, we will only present the control
for the northern tube of the Blanka tunnel only; however, the southern tube is similar to the
northern one.

14/y/413 12 {\ 10 9 .
' ) ¥ V) AL
»>8 7 6 5 4 3 2 1e

Figure 3: Control sections of the Blanka tunnel, as referred to in the text.

The geometry of the northern tube is shown in Figure 3. The tunnel is divided into control
sections 1 to 14. Sections no. 13 and 14 represent a ventilation center. The figure also shows
the preferred air flow directions for a “closed” mode of operation, wherein the only passage
for the air to leave the tunnel is the ventilation center (i.e. section 13).
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Figure 4: Simulation of MPC control for the

Blanka tunnel.

In the following simulations, we
use normalized power output
equivalent to nominal power of
an “average” jet fan installed
inside the tunnel. Instead of us-
ing time characteristics, we show
the results on static characteris-
tics, wherein the power input to
the ventilation equipment is the
dependent variable and the value
of the residual air flow (Q* in
Equation (3), which represents
the measured air flow minus the
air flow contributed by the venti-
lation system).

Figure 4 shows the result for the
MPC controller without any pre-
ferences for the cost function (all
power inputs are weighted equal-
ly). Unlike for linear controllers
(such as PID controllers), the
plots are not smooth. This is the
result of the constraints — the
controller distributes the power
according to the capacities of the
respective fans, in order to main-
tain the overall energy consump-
tion minimal. This is something
that is very difficult to achieve
by purely linear controllers. Nu-
merical difficulties may appear
in some cases, as the air flow
model is poorly conditioned in
principle and the controller
sometimes  “hesitates”, which
ventilator to use. It may be seen
from the figure that by combin-
ing sections 1 and 2 together, we

could get a signal that is more “fancy” than the original two separate signals.

Figure 5 shows a comparison of three simulations with different cost functions. The perfor-
mance of the controller is illustrated by the end-section of the tunnel (sections 7, 8, 12, 14),
which is interesting for comparison — because the tunnel operates in a “closed” mode, the air
flow in section 8 has to be reversed. In said simulations, the following conditions were set

through the cost function:

1. Ventilation in all sections has the same cost.

2. Sections 9-12 (onramps) are penalized, i.e. their use has to be minimized.
3. Sections 9-12 are penalized, while the use of section 14 (the ventilation shaft) is pre-

ferred.
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Figure 5: Comparison of controller tuned according to various cost functions.

The results show again a non-smooth behaviour, as the controller tries to balance the energy
consumption. The first simulation is not quite desirable, as we can see that the controller
counteracts by sections 12 and 14. Indeed, this is the controller with a uniform cost function.
The second simulation is much better; we can see the effect of penalizing the onramp (sec-
tion 12). The third simulation gives the best results, it even has quite smooth signal. The rea-
son may be that preferring the ventilation shaft against other ventilators is natural, so it suits
the controller the best.

5. CONCLUSIONS

We have shown an approach to ventilation control, which is based on MPC controller. This
type of controller is widely used in industry, especially for large scale systems with multiple
inputs and multiple outputs. This makes it an ideal tool for tunnel ventilation control, espe-
cially for city tunnels, where special requirements have to be met.
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also includes a case study of the Strahov tunnel in Prague, Czech Republic.
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1. Introduction
1.1. Risk analyses in tunnels

Risk analysis is a tool developed initially in industries with
potentially dangerous applications (chemical plants, nuclear power
plants). According to Stamatelatos et al. (2002a) and Rausand and
Hayland (2004), the purpose of risk analysis is to establish a proac-
tive safety strategy by investigating potential risks. In last 15 years,
risk analysis methods were also adapted in tunnel safety. Risk anal-
ysis in tunnel enables comparison of safety measures in terms of
risk reduction as well as risk-based cost/effectiveness analysis,
which can evaluate the cost of risk reduction.

Even though quite a long time has passed since the first risk
analysis methods have been introduced in tunnels and a number
of serious tunnel accidents has occurred, there has been no com-
mon standard or method used in PIARC! member countries (PIARC,
2007; PIARC, 2008). In spite of basic framework of road safety intro-
duced by EU Directive 2004/54/EC (2004) on minimum safety
requirements for tunnels in the Trans-Europeans Road Network
and several recommendations issued by PIARC, most of the countries
use their own methods. Oftentimes, a quantitative approach is cho-
sen to calculate probabilities of respective events/scenarios/. .., fire
included, which is, according to the majority of available publica-
tions (Beard and Cope, 2007; PIARC, 2007; PIARC, 2008) the most
serious threat in tunnels. The lack of statistical data for fire occur-

* Corresponding author. Tel.: +420 777 855 363; fax: +420 224 916 648.
E-mail address: ferkll@control.felk.cvut.cz (L. Ferkl).
! PIARC is an acronym for Permanent International Association of Road Congresses.

0886-7798/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tust.2010.06.010

rence is an ultimate problem most methods are encountering. This
is in sharp contrast with the essential statistical requirement for data
validity. This paper proposes a method based upon probabilistic risk
assessment, yet independent of calculating of fire probability.

The methods introduced in this paper are not fully unknown to
tunneling. According to several presentations given at the World
Tunnel Congress 2009, the fault trees and event trees have recently
been introduced by some companies and institutions, but only for
the construction phase of the tunnel, especially for mining (Sander
et al., 2009; Yan and Ye, 2009). Sturk et al. (1996) aim to assess
risks during the construction phase of a tunnel and to support
the decision making process. The case study uses FMEA (Failure
Modes and Effects Analysis) and FTA (Fault Tree Analysis) as sepa-
rate risk analysis tools. On the other hand, Hong et al. (2009) use
ETA (Event Tree Analysis) for similar purposes. Eskesen et al.
(2004) present general guidelines for performing risk management
in tunnels; however, application of specific Risk Analysis methods
is not in the scope of their paper. Petelin et al. (2010) provide com-
parison of the most frequent risk analysis methods used in tunnels
- QRAM, TuRisMo and RWQRA; general concept of the risk man-
agement is provided, which is similar to our approach, but no de-
tailed information about the background of the specific methods is
given. The Austrian TuRisMo approach, described, e.g. by Kohl et al.
(2007), uses ETA and consequence analysis for accident scenarios,
but again as a stand-alone tool. Holicky (2006) presents an alterna-
tive probabilistic risk analysis based on Bayesian networks; how-
ever, this approach requires a lot of accurate data, which are
usually not available for tunnels.

Even though some of said papers (Eskesen et al., 2004; Hong
et al.,, 2009; Sander et al., 2009; Sturk et al., 1996; Yan and Ye,
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2009) and documents (EU Directive 2004/54/EC,; PIARC, 2007;
PIARC, 2008) use similar risk analysis methods as will be presented
in this paper, they do not exploit all possible outcomes they can
provide. We will therefore focus on these additional features of risk
analysis, in order to present more support for the decision making
process.

1.2. Relationship of the risk analysis and risk management

In the state of the art, Risk Analyses (RA) are not considered as
stand-alone tools, but are rather incorporated into a more complex
Risk Management system (RM), which forms a part of a decision
making process (Risk Management ..., 2002; Stamatelatos et al.,
2002a). RM provides means for quality management, risk mitiga-
tion, production and maintenance planning, safety and reliability
analysis, etc.

As illustrated in Fig. 1, the RM process has two major parts,
which correspond to the engineering and managing departments
of a company. The engineering departments perform the technical
analysis which must provide a clear interface for the decision mak-
ers in the company management in order to carry out sound
decisions.

Company

Decision
making

Risk Analysis :

Engineering

Management

Fig. 1. Risk analysis as a part of a risk management process providing means for
sound decision making.

In order to be efficient and to provide meaningful results, the
RM process has to be scheduled for the entire lifetime of a system,
as illustrated in Fig. 2. It is clear that each phase of the system life
stage requires different approaches with respect to corresponding
needs of decision making. Another factor is the input data available
for the respective RA methods. If properly scheduled, the RM of a
system is a continuous process that naturally follows the life cycle
of the system (Risk Management ..., 2002). This continuity not
only ensures appropriate results of the respective RA methods,
but also saves significant amount of effort and resources needed
for risk evaluation.

1.3. Risk optimization

One of the primary objectives of any RM process is to balance
the cost of safety with the cost of accidents. It is very difficult to
achieve as there is only a small evidence about the cost of acci-
dents, while the cost of safety is usually known quite well. The
problem is illustrated in Fig. 3.

The principle problem is to evaluate the total system risk. In any
RA method, there are two factors that act against each other:

Optimum

|

Cost —

safety

Safety —

Fig. 3. Risk management - balance of cost of safety and cost of accidents.
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Fig. 2. The role of risk analyses in the system life cycle (Stamatelatos et al., 2002a).
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Fig. 4. Safety margin - a “too safe” approach can decrease the overall system safety.

e A risk estimate has to be “on the safe side”, i.e. the calculated
risk has to be greater or equal to the actual risk.

e The higher the calculated risk is, the higher will be the cost of
appropriate mitigation measures.

This implies that complex methods that provide realistic risk
estimates result in lower safety costs, because the risks are miti-
gated in an efficient way. This is a very important point empha-
sized in all basic safety documents in aerospace industry (e.g.
FAA System Safety Handbook, 2000; Stamatelatos et al., 2002a)
and is closely related to conditional probabilities.

Another problem is that “being on the safe side” does not nec-
essarily mean “being on the safe side”. Incorporating too many
safety measures without any reflection of conditional probabilities
leads to actual decrease of the real safety, as illustrated in Fig. 4.
The method presented in this paper provides clear insight into
the trade-off between costs and safety.

The paper is organized as follows: In Section 1, the problem of
risk analysis in tunnels is formulated. Section 2 briefly introduces
Probabilistic Risk Assessment (PRA) and its adjustments for the
needs of this paper. In Section 3, adjusted PRA is performed for
Strahov tunnel. Basic idea of the interrelationship between risk
analysis and risk management process is introduced in Section 4.
Section 5 concludes the paper.

2. Probabilistic risk assessment

As was already stated, the current methods used in RA for road
tunnels have several serious problems, such as lack of statistical
data on fires, non-quantified results of the analysis and therefore
only “experience-based” mitigation of the risk decisions, no unified
and standardized approach to the RA, thus an existence of a num-
ber of ad hoc methods, etc. The effort of the paper is an introduc-
tion of comprehensible, widely applicable and acceptable, yet
clear approach to the estimation and assessment of risks in tun-
nels. The Probabilistic Risk Assessment (PRA) with Fault Tree Anal-
ysis (FTA) and Event Tree Analysis (ETA), widely used in aerospace,
nuclear, chemical and other industries (FAA System Safety Hand-
book, 2000; NUREG, 1975; MIL-STD-1629A, 1980; MIL-STD-756B,
1981; Fault Tree Handbook. .., 2002b) could be very conveniently
applied also for common tunnel analysis. The goal of the usage of
these methods is to get clear, comprehensible numerical results
for both the RA and costs, i.e. the results should provide an unam-
biguous decision tool for management. The results should include
current risk levels of investigated object, the contribution to the
overall risk of its individual components or the sets of components,
the numerical decrease/increase of the risk when a safety equip-
ment is added/removed, and above all, also an economic cost of

the risk mitigation. All of these afore mentioned criteria are fully
satisfiable by using the PRA. An original NASA PRA process ad-
justed for the paper needs can be characterized in steps as follows
(Stamatelatos et al., 2002a):

1. Definition of the objective. The objective of the risk assessment
must be properly defined and the undesirable consequences,
end states (ES;), are identified. The project success criteria are
necessary to define risk assessment end states in Eq. (1).

2. Familiarization with the system. All relevant information are
gathered to familiarize with the system.

3. Identification of IEs. Initial Events (IE) of the event sequences
(scenarios) are identified and analyzed by means of Master
Logic Diagrams (MLD) or FMEA/FMECA analyses.

4. Modeling of the scenarios. Each accident scenario is developed in
an inductive manner with probabilistic tool named Event Tree
(ET). An ET starts with IE and continues through the scenario
(pivotal events) until the end state is reached.

5. Modeling of the failures. Each failure of pivotal event in accident
scenario is modeled in deductive manner by means of Fault
Tree (FT). The top event of FT is given as a negation of the piv-
otal event defined in an accident scenario. Fig. 6 shows the rela-
tionship of the FT and ET.

6. Collection, analysis and development of the data. Variety of data
types is collected to quantify the accident scenarios and main
accident contributors.

7. Quantification and Integration. The frequency of occurrence of
each end state in the ET is the product of the IE frequency
and the (conditional!) probabilities of the pivotal events along
the scenario path linking the IE to the end state. Scenarios are
grouped according to the end state of the scenario defining
the consequences and thereafter end states are grouped and
their frequencies are summed up. The mathematically correct
way of calculation of the expression for the frequency of a spe-
cific scenario, A; is as follows:

Ajr = A(ESjr) = 4p(ES;lIE)), (M

where 4; stands for the frequency of the jth IE and p(ES;|IE;) de-
notes the conditional probability for the end state of the event
sequence ES; (without initiating event IE;), in the event tree ini-
tiated by IE; given that IE; has occurred.

8. Importance ranking. Ranking of risk scenarios provides insight
regarding the contribution of individual events to the total risk.
Scenario risk ranking shows the importance of group failures,
not the individual events. If the event with significant contribu-
tion to the risk is in the structure of many low frequency sce-
narios, it may be absent in the definition of the dominant risk
scenario and scenario risk ranking will not capture the risk
importance of this event. To address this issue quantitative
importance measures are calculated. When the importance
measures are calculated, the events are ranked according to
the relative value of the importance measure and treated fur-
ther with respect to their rank.

2.1. PRA specifications

2.1.1. Initial event

As already mentioned, the fire is considered as the most serious
and problematic threat to tunnel safety and therefore it was cho-
sen as an Initial Event (IE) (Fig. 5). Fire occurs in tunnel with some
probability (given by variety factors) and has different conse-
quences on tunnel users and tunnel itself depending on incredible
broad variety of causes such as tunnel equipment, tunnel users
behavior, tunnel operator reactions and the proper reaction and
subsequent actions of the rescue services. However, the probability
of the occurrence of fire is enormously low, and the statistical data
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are insufficient. Many studies have been provided, but neither one
had solved the issue of fire in the sufficient manner, e.g. according
to the statistical data of the Strahov tunnel, which is the object of
the case study of this paper, there was only one fire of insignificant
importance since the tunnel had been opened! There were no
casualties, nor injuries, and the driver was able to extinguish the
fire itself. Therefore, the proposed method uses Eq. (1) in an ad-
justed form as follows:

Ajy = A" (ESjx) = o - p(ESjilIE)), (2)

where o stands for unknown probability of fire (IE). Because « is the
same for all considered system structure configurations, it is omit-
ted in calculations. In fact, only “tunnel equipment?” of the tunnel is
taken into account. Therefore, the whole analysis is a comparison of
the variety of the safety measures and precautions.

2 Tunnel users, tunnel operators are also part of considered tunnel equipment.

2.1.2. Minimal cut sets

A Cut Set (CS) is a combination of basic events that can cause
the top event. A Minimal Cut Set (MCS) is the smallest such a com-
bination. Because the basic events are the bottom events, the MCSs
relate the top event directly to the basic event causes. The struc-
ture of MCSs can provide valuable information, e.g. MCS with sin-
gle event means, that the occurrence of this single event causes the
failure of the whole system. The upgrade and prevention actions
should be firstly focused on these single event MCSs. The MCSs
are very often sorted by probability thus they can provide useful
criterion of “severity” of the respective MCSs. Yet another example
of MCS usage are importance measures.

2.1.3. Importance measures

As was already said, one of the greatest advantages of the FTA is
its ability to express the contribution of an individual event to the
overall risk probability. At the time of decision making process, it is
useful to have the events sorted according to some criterion/crite-
ria. This is especially useful, e.g. in the case, when (as it is always)
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the budget is limited and one has to decide which safety measures
are crucial to implement and/or which critical elements in the sys-
tem have to be “neutralized”. This ranking is enabled by impor-
tance measures. Although Stamatelatos et al. (2002a) introduce
four basic types of importance measures, only Fussel-Vesely and
Risk Reduction Worth were used in our analysis.

o Fussel-Vesely importance. Alternative name for this measure is
the Top Contribution Importance and reflects the contribution
of individual MCS containing the basic event x; to the overall
risk. The F-V is calculated as follows:

o p(U]MCS;“'> B p(UJMCS}")
" op(ymcs)  PUB)

; 3)

where p(U]MCS}") is probability of the union of the MCSs con-
taining event x;, p({J;MCS;) is probability of the union of all MCSs
and p(TE) is the top event probability. The Fussel-Vesely Impor-
tance measure shows the conditional probability that at least
one MCS containing basic event x; will occur, given that the sys-
tem has failed. Alternative calculation of the Fussel-Vesely
Importance measures follows as:

v _p(TE) - p(TEX = 0)
=) @

e Risk Reduction Worth. Alternative name is Top Decrease Sensi-
tivity and implies the decrease of the probability of the top
event under assumption of non-occurrence of a given event.
For the basic events the Risk Reduction Worth shows the
amount by which the risk decreases assuming that respective
basic event, i.e. failure, will not occur. The Risk Reduction Worth
is calculated by re-quantifying the FT with the probability of the
given event set to 0.0 and mathematically as:

JRRW _ p(U]MCSj) _ p(TE) -
% " p(TE[xi=0) ~ p(TE[x; = 0)

Risk Reduction Worth and Fussel-Vesely Importance measures
are used to identify hardware elements, that are the biggest con-
tributors to the overall risk. One can see, that there is a relation-
ship between Fussel-Vesely Importance and Risk Reduction
Worth, that can be expressed as:

1
~ RRW - (6)
L

I =1

2.1.4. Outcomes

Probabilistic risk assessment provides both qualitative and
quantitative outcomes. System logic structure and minimal cut
sets are produced by the qualitative part of the method. The great
advantage of the procedure is its clarity even for non-professionals
and great flexibility to new ideas. The quantitative part of the
method provides trade-off matrix of ranked costs and safety as
well as importance measures results. This enables the most effec-
tive trade-off solution between costs and safety (more in Section
3).

3. Case study: the Strahov tunnel

Directives of the European Union (EU Directive 2004/54/EC,) re-
quire a new Technical Documentation for tunnels every ten years.
The present risk analysis is an integral part of the new technical
documentation for the Strahov tunnel. Nowadays, the Strahov tun-
nel has several safety problems with both aged and missing equip-

ment that is about to be replaced (or newly installed). Among
others, e.g. new video surveillance system for transportation of
dangerous goods (which is usually strictly prohibited in city tun-
nels, as it is in the Strahov tunnel), new longitudinal fans with suf-
ficient performance capable to cope with fire up to 30 MW, “soft
stop,” and other equipment which is supposed to eliminate the dan-
ger of the accident (fire especially), or when it occurs, to suppress it
in a sufficient manner, providing enough time for escape. The anal-
ysis provides not only the risk levels incurred by the current safety
measures, but also evaluates the contribution of new elements in
the tunnel. The analysis also enables prioritizing of the safety mea-
sures with respect to the risk reduction and the cost, which is a great
advantage considering the price of some tunnel equipment (millions
of Euros).

3.1. Basic characteristics of the Strahov tunnel

The Strahov tunnel is unidirectional, twin-tube tunnel opened
after long (12 years) and difficult process of building and applying
the control system. The actual capacity of a tunnel tube is 43,000
vehicles per day (transportation of dangerous goods is prohib-
ited). It is a part of the Prague City Ring which also includes tun-
nels Mrazovka and Blanka (under construction). Actual length of
the Strahov tunnel is 2 km; the length of the Western Tube
(WT) is 1997 m, the length of the Middle Tube (MT) is 1990 m
with two portals at Malovanka and Plzenska. The daily average
number of vehicles in WT is 32,000 and 25,200 in MT, 4% of hea-
vy vehicles included. The Strahov tunnel contains eight emer-
gency exits with fireproof doors (fire resistance 90 min,
overpressure 1 kPa), gas proof walls, and one special “open”
emergency exit (“the wall hole”), which causes serious ventilation
problems. The emergency exits in WT are 73-422 m away from
each other and 98-403 m in MT. Currently there is no longitudi-
nal ventilation system in the Strahov tunnel, but it is about to be
installed. There are 25 SOS boxes in the Strahov tunnel placed
54-226 m from each other. The tunnel is powered by 22 kV elec-
tricity distribution network, and an emergency power supply -
two pieces of 220V, 330 Ah batteries. The Strahov tunnel has
its own video surveillance system composed of two separate
parts. The first circle is connected to the automatic traffic conges-
tion recognition (63 recording devices). The second video circle is
independent on the first one and serves for the operators super-
vising the tunnel. The tunnel is outfitted with fire detection sig-
nalization device, Linear Heat Detection system, which serves
for the fire detection.

The Czech and international authorities are requesting the
proper quantitative analysis of the tunnel in order to classify the
tunnel into a specific risk class. Because the equipment in the tun-
nel is quite old, there is a great effort to outfit the tunnel with new
safety devices. In order to perform this efficiently from both risk
reducing and cost effective point of view, a proper analysis had
to be performed.

3.2. Safety precautions proposal

Based upon the risk analysis of the current state of the Strahov
tunnel, several safety precautions had been proposed. They arose
from discussions and brainstorming meetings with tunnel experts,
with the support of PIARC documents PIARC (2007, 2008), Euro-
pean Directive 2004/54/EC, 2004 and Czech technical recommen-
dation TP98 (Novak and Pribyl, 2006). The suggested precautions
were as follows (see also Tables 4-6):

3 By means of the soft stop it should be possible to stop drive-in to the tunnel in
case of accident.
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o Installation of smoke detection devices.

o Installation of longitudinal ventilation (about 8 axial fans per
tube).

e Faster fans in the central machinery room of the transversal
ventilation system.

e New dampers of the transversal ventilation.

e New dampers and fans in the emergency exits (cross-adits).

e Modification of the walls of the tunnel portals (Malovanka and
Plzenska).

e New implementation of the control system software.

e Construction of a division wall inside the tunnel.

Furthermore, two precautions were identified to be necessary a
priori, and were therefore not incorporated into the analysis:

e Control system hardware upgrade - the current system is not
designed to aggressive environment, such as tunnels.
e Operating center staff training.

It is obvious that the important issue was to acquire relevant
statistical data for each of the safety measures (both installed
and proposed). Here are several examples of how the data were
obtained:

e Smokedetection device. The device is currently not installed (for-
mally: the probability of failure is 1). The smoke detection is
inevitable to successfully identify and localize the initiating fire
and therefore the smoke detectors will be installed close to
dampers (next to the axial fans). The newly installed detectors
have probability of failure lower than 0.01 and the estimated
cost is 5 million Kc.*

Longitudinal ventilation. The longitudinal fans are currently not
installed, but they are key part of successful management of
the smoke and fire, thus enable the safe evacuation of people.
There will be four longitudinal fans installed at each end of a
tube (16 altogether). This precaution costs 10 million Kc and
the probability of failure is lower than 0.02.

Dampers. Current dampers are not an integral part of the control
system, i.e. they have their own logic of start-thermal fuse cut-
outs (75 °C). It has already been proved, that the current system
of start up is completely unreliable and unsuitable with proba-
bility of failure close to 1. Therefore there will be 48 new damp-
ers installed into the tunnel, with surface of 10 m? each. This,

4 Kc is an abbreviation of Czech Crown (Koruna Ceska), currency unit of the Czech
Republic, 1 EUR ~ 25 Kc (as of June 2010).

however, requires also some construction works and the tunnel

roof will not stay intact. The new system of dampers (probabil-

ity of failure less than 0.02) should be a part of the control sys-
tem. The new damper system is one of the most expensive
solutions for the tunnel with estimated cost of 50 million Kc.

Tunnel wall. There is an open space, a “hole” inside the tunnel

that enables free passage from one tube to another. It was built

with intention of traffic control for the case of existence of three
tubes, however, there is no useful usage of it nowadays. In con-
trary, it poses serious threat to the tunnel safety, because it
enables smoke penetration between the tubes, thus disables
effective evacuation in the case of an accident. Because of these
reasons, “the hole” should be walled-up, thus lowering the
probability of failure from current 0.09 to 0 (according to

unpublished CFD fire simulations performed by Satra, s.r.o.)

with an approximate cost of 10 million Kc.

o Staff. The tunnel operators are not trained on regular basis, they
do not have any simulator training or model situations training.
It is therefore inevitable to introduce training procedures on
regular basis. The estimation of staff reliability was based on a
method presented by Stamatelatos et al. (2002a).

3.3. Adjusted probabilistic risk assessment applied for Strahov tunnel

The goal of the analysis is to evaluate current level of safety of
the Strahov tunnel. Several options of safety solutions are proposed
based upon this analysis providing both quantitative (risk analysis)
and cost support. The final table is composed of the respective vari-
ants, its risk probabilities and cost of equipment, and serves as a
basic decision making and support tool in the process of retrofit-
ting of the Strahov tunnel. Due to the large result dispersion of
the variety of analyses devoted to human behavior, it was decided,
that only contribution of “technical part” of the tunnel would be
taken into an account and analyzed, and therefore the analysis of
evacuation and human behavior during the accident was omitted.

The risk analysis for the Strahov tunnel makes use of Event Tree
and Fault Tree Analyses (ETA and FTA, respectively). The whole
tunnel (analysis) was divided into three separate items:

o Fire and Smoke Detection (FSD).
e Fire and Smoke Control: tube Affected by fire (FSCA).
e Smoke Control: Escape Tube (SCET).

The Event Tree for the tunnel is depicted in Fig. 7.
Due to the problems, reasoned in Section 2, the whole analysis
will be performed without the initial event “fire”, i.e. the whole
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analysis will be a comparison of the variety of safety measures and
precautions.

The second event in the event sequence (Fig. 7) is Fire and
Smoke Detection (FSD). The corresponding FT (Figs. 8-10) was
developed for FSD contributing with its probability to the overall
probability in the event sequence. The similar logic holds for the
consequent events in the event sequence, FSCA and SCET,
respectively.

Event sequences can end up to five different states (Fig. 7)
depending on the combinations “en route”. The horizontal direc-
tion means, that the corresponding subsystem reacted “correctly”
(e.g. FSD detected and properly identified fire) whilst the vertical
directions means, that the subsystem failed to fulfill its task. The
“matrix” of various “yes” and “no” directions represents the op-
tions of the scenario development in the tunnel. For the purposes
of Strahov tunnel, only state “OK>” is of interest. All other states
mean, that the lives of people will be somehow endangered. The
meanings of the events in FSD, FSCA and SCET are explained in Ta-
bles 1-3, respectively.

The probabilities (or probability density functions) are propa-
gated through the fault trees up to the top event. The negations
of top event probabilities construct event sequence probabilities
as stated above. The numerical results for “OK” state (costs in-
cluded) are depicted in Tables 4 and 5, respectively. The first col-
umn shows an order of scenarios, second column provides the
“OK” state probability, then 10 columns with occurrence/non-
occurrence of respective equipment follow (each zero means, that
the safety measure was not applied, each one means, that the
safety item was taken into an account) and the cost of the respec-
tive solution is provided in the last column. The results show var-
ious possibilities of human and HW fault, because these two,
according to the performed analysis, contribute in a greatest man-
ner to the overall probability. In Table 4 one can see, that the over-
all probability is quite “good” if the new equipment (especially
new HW complying with the EU norms) was provided and the staff
trained properly. These results are in sharp contrast with Table 5.
This figure reflects the current situation, when according to the

5 State OK means, that fire was properly and in time detected, the control system
had correctly reacted in less than 10 min in the case of personal vehicle accident or in
less than 7 min in the case of heavy goods vehicle.

analysis, every bigger accident that occurs in the tunnel means a
major problem.

One of the main advantages of the performed style of risk anal-
ysis can be seen in Tables 4 and 5, respectively, when it enables the
cost comparison of the results, e.g. by inspection of Table 4, items
11-13 have almost identical or identical probability, but the cost of
the measures is completely different.

3.4. Fussel-Vesely importance measures

To help evaluating the significance of the proposed measures
for the Strahov tunnel, Fussel-Vesely importance measures were
calculated according to Eq. (3) (Table 6).

4. Consequences for the risk management process

It has to be stressed out that the risk analyses are nothing more
(and nothing less) than support tools for sound decision making. As
shown for the case of the Strahov tunnel, the PRA has been con-
structed based on some assumptions (see Section 3.3) that impose
inevitable simplifications on the tunnel system. It is therefore nec-
essary to combine several views of the problem (FTA, ETA, Fussel-
Vesely importance measures, economical aspects, personal experi-
ence, legislative recommendations, ...) to make a competent
decision.

For the case of the Strahov tunnel, the decision-making process,
after the risk analyses were carried out, took several steps as fol-
lows (referring to Table 4):

1. A “red line” has been drawn to select combinations of safety
measures with “fair” safety impact. The desired value has been
chosen as the failure probability of 0.5, which corresponds to
about 15% band of uncertainty in the input data.

2. Czech recommendation TP98 (Novak and Pribyl, 2006) was con-
sulted and based on said documents, the combinations includ-
ing the construction of the division wall and reconstruction of
dampers and fans in the emergency exits were selected.

3. The Fussel-Vesely importance measures (Table 6) were taken
into account and the selection has been further narrowed to
combinations including longitudinal fans.
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Fig. 9. Fire and Smoke Control: tube Affected by fire (FSCA) fault tree.

Fig. 10. Smoke Control: Escape Tube (SCET) fault tree.
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Table 1
Events of Fire and Smoke Detection (FSD) fault tree.

Code Name Description

FSD:GO1 Non-FSD Top event, FSD detected and identified the fire and propagation of smoke correctly and in time

FSD:G02 Operator Fault Personal fault of the operator - improper reaction or proper reaction not in time

FSD:GO03 Automatic Fault Fault of automatic detection equipment

FSD:G04 Detection Devices Fault Fault of “other” safety equipment

FSD:BO1 Personnel Failure Improper human reaction

FSD:B02 LHD Failure Linear heat detection sensor failure

FSD:B03 Smoke Detection Failure Smoke sensitive sensors failure

FSD:B04 CCTV Failure of the CCTV

FSD:B05 SOS SOS box is not working

FSD:B06 Mobile Signal Network Failure There is no network signal in the tunnel

FSD:BO7 Video Detection Video detection failure
Table 2

Events of Fire and Smoke Control: tube Affected by fire (FSCA) fault tree.

Code Name Description
FSCA:GO1 Non-FSCA Top event, the fire and smoke have not developed in affected tube thanks to safety measures
FSCA:G02 Technology Error Variety of technological equipment failed to control and suppress smoke propagation
FSCA:G03 Control System Fault Control system failed to launch fans properly
FSCA:G04 Mechanical Fault Mechanical fault of fans
FSCA:G05 Transversal Ventilation Fault Mechanical failure of transversal fans or/and dampers
FSCA:BO1 Critical Fire Fire with performance over 30 MW. This performance can not be treated with currently installed ventilation system
FSCA:B02 Human Error Operator failed to launch the fire sequence properly and in time
FSCA:BO03 SW Failure SW failure of control system
FSCA:B04 HW Failure HW failure of control system
FSCA:BO5 Longitudinal Fans Failure Mechanical failure of longitudinal fans
FSCA:B06 Axial Fans Failure Mechanical failure of axial fans
FSCA:B07 Dampers Failure Mechanical failure of dampers
Table 3

Events of Smoke Control: Escape Tube (SCET) fault tree.

Code Name Description
SCET:GO1 Non-SCET Top event, smoke did not reach escape tunnel due to proper operation of safety measures
SCET:G02 Escape tunnel Fault Smoke in the escape tunnel due to technical or tunnel construction failures
SCET:G0O3 Emergency Exit Fault ~ Smoke in the emergency exit due to failure of dampers or fans
SCET:G04 Technology Error Failure of technology or improper construction caused smoke in the escape tunnel
SCET:GO5 Construction Fault Improper construction at the portals or inside the tunnel (there is a huge passage “hole” between tubes that can cause smoke
propagation from affected tube into escape tube)
SCET:G06 Control System Fault  Control system failed to launch fans properly
SCET:GO7 Mechanical Fault Mechanical fault of fans
SCET:G09  Transversal Mechanical failure of transversal fans or/and dampers
Ventilation Fault
SCET:BO1 Damper Failure Damper is unusable in the emergency exit
SCET:B02  Fan Failure Emergency exit fan failed to operate properly
SCET:B03  Malovanka Failure See Construction Fault
SCET:B04  Plzenska Failure See Construction Fault
SCET:B05  SW Failure SW failure of control system
SCET:B06 HW Failure HW failure of control system
SCET:B07 Longitudinal Fans Mechanical failure of longitudinal fans
Failure
SCET:B08 Wall Failure See Construction Fault
SCET:B09  Axial Fan Failure Mechanical failure of axial fans
SCET:B10 Dampers Failure Mechanical failure of dampers

4. Based on the prices of the resulting selection of combinations,
the combination No. 13 (Table 4) was chosen as the final solu-
tion, including the following safety measures:

e Smoke detection system.

Longitudinal ventilation.

[ )
e New dampers and fans in emergency exits.
e Modification of both portal walls (Malovanka and Plzenska

portals).

New implementation of the control system software.
e Construction of the division wall inside the tunnel.

Later on, the modification of the Plzenska portal was left out, as
its construction appeared to be too complicated (compared to
its safety effect).

The main problem of the originally proposed improvements
was the complexity of the solution - all possible improvements
were considered and planned to be used, without their actual im-
pact on the tunnel safety. Our analysis clearly stated the impor-
tance of the respective improvements and showed the
combinations that were comparable in the sense of overall safety.



Table 4

Numerical results of PRA analysis including cost analysis with probability of human error 0.1 an probability of HW failure 0.1.

Results of PRA analysis for Strahov tunnel

Probabilities: human error = 0.1 and HW failure = 0.1

Smoke Longitudinal Fast fans Dampers Dampers- Fans-emergency Malovanka- Plzenska- SW Wall in Cost
detection ventilation emergency exits exits wall wall the tunnel
1 0.6089 1 1 1 1 1 1 1 1 1 1 99,000,000.00 Kc
2 0.6082 0 1 1 1 1 1 1 1 1 1 94,000,000.00 Kc
3 0.6059 1 1 0 1 1 1 1 1 1 1 94,000,000.00 Kc
4 0.6053 0 1 0 1 1 1 1 1 1 1 89,000,000.00 Kc
5 0.5843 1 1 1 1 1 1 1 0 1 1 99,000,000.00 Kc
6 0.5837 0 1 1 1 1 1 1 0 1 1 94,000,000.00 Kc
7 0.5814 1 1 0 1 1 1 1 0 1 1 94,000,000.00 Kc
8 0.5808 0 1 0 1 1 1 1 0 1 1 89,000,000.00 Kc
9 0.5541 1 1 1 1 1 1 1 1 1 0 89,000,000.00 Kc
10 0.5535 1 1 1 1 1 1 0 1 1 1 89,000,000.00 Kc
11 0.5535 0 1 1 1 1 1 1 1 1 0 84,000,000.00 Kc
12 0.5533 1 1 1 0 1 1 1 1 1 1 49,000,000.00 Kc
13 0.5533 1 1 0 0 1 1 1 1 1 1 44,000,000.00 Kc
14 0.553 0 1 1 1 1 1 0 1 1 1 84,000,000.00 Kc
15 0.5528 0 1 1 0 1 1 1 1 1 1 44,000,000.00 Kc
16 0.5528 0 1 0 0 1 1 1 1 1 1 39,000,000.00 Kc
17 0.5514 1 1 0 1 1 1 1 1 1 0 84,000,000.00 Kc
18 0.5508 1 1 0 1 1 1 0 1 1 1 84,000,000.00 Kc
19 0.5508 0 1 0 1 1 1 1 1 1 0 79,000,000.00 Kc
20 0.5502 0 1 0 1 1 1 0 1 1 1 79,000,000.00 Kc
21 0.5317 1 1 1 1 1 1 1 0 1 1] 89,000,000.00 Kc
22 0.5314 1 0 1 1 1 1 1 1 1 1 89,000,000.00 Kc
23 0.5312 1 1 1 1 1 1 0 0 1 1 89,000,000.00 Kc
24 0.5311 0 1 1 1 1 1 1 0 1 0 84,000,000.00 Kc
25 0.531 1 1 1 0 1 1 1 0 1 1 49,000,000.00 Kc
26 0.531 1 1 0 0 1 1 1 0 1 1 44,000,000.00 Kc
27 0.5309 0 0 1 1 1 1 1 1 1 1 84,000,000.00 Kc
28 0.5306 0 1 1 1 1 1 0 0 1 1 84,000,000.00 Kc
29 0.5304 0 1 1 0 1 1 1 0 1 1 44,000,000.00 Kc
30 0.5304 0 1 0 0 1 1 1 0 1 1 39,000,000.00 Kc
31 0.5291 1 1 0 1 1 1 1 0 1 0 84,000,000.00 Kc
32 0.5285 1 1 0 1 1 1 0 0 1 1 84,000,000.00 Kc
33 0.5285 0 1 0 1 1 1 1 0 1 0 79,000,000.00 Kc
34 0.528 0 1 0 1 1 1 1] 0 1 1 79,000,000.00 Kc
35 0.5099 1 0 1 1 1 1 1 0 1 1 89,000,000.00 Kc
36 0.5094 0 0 1 1 1 1 1 0 1 1 84,000,000.00 Kc
37 0.5037 1 1 1 1 1 1 0 1 1 0 79,000,000.00 Kc
38 0.5035 1 1 1 1] 1 1 1 1 1 0 39,000,000.00 Kc
39 0.5035 1 1 0 0 1 1 1 1 1 0 34,000,000.00 Kc
40 0.5032 0 1 1 1 1 1 0 1 1 0 74,000,000.00 Kc
41 0.503 1 1 1 0 1 1 0 1 1 1 39,000,000.00 Kc
42 0.503 1 1 0 0 1 1 1] 1 1 1 34,000,000.00 Kc
43 0.503 0 1 1 0 1 1 1 1 1 0 34,000,000.00 Kc
44 0.503 0 1 0 0 1 1 1 1 1 0 29,000,000.00 Kc
45 0.5025 0 1 1 0 1 1 0 1 1 1 34,000,000.00 Kc
46 0.5025 0 1 0 0 1 1 0 1 1 1 29,000,000.00 Kc
47 0.5012 1 1 0 1 1 1 0 1 1 0 74,000,000.00 Kc
48 0.5007 0 1 0 1 1 1 0 1 1 0 69,000,000.00 Kc
49 0.4836 0 1 1 1 1 1 0 79,000,000.00 Kc
50 0.4834 1 1 1 0 0 1 0 79,000,000.00 Kc
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Table 5

Numerical results of PRA analysis including cost analysis with probability of human error 0.7 an probability of HW failure 0.5

Results of PRA analysis for Strahov tunnel

Probabilities: human error = 0.7 and HW failure = 0.5

Smoke Longitudinal Fast fans Dampers Dampers- Fans-emergency Malovanka- Plzenska- SW Wall in Cost
detection ventilation emergency exits exits wall wall the tunnel
1 0.0626 1 1 1 1 1 1 1 1 1 1 99,000,000.00 Kc
2 0.0623 1 1 0 1 1 1 1 1 1 1 94,000,000.00 Kc
3 0.0622 0 1 1 1 1 1 1 1 1 1 94,000,000.00 Kc
4 0.0619 0 1 0 1 1 1 1 1 1 1 89,000,000.00 Kc
5 0.0601 1 1 1 1 1 1 1 0 1 1 99,000,000.00 Kc
6 0.0598 1 1 0 1 1 1 1 0 1 1 94,000,000.00 Kc
7 0.0597 0 1 1 1 1 1 1 0 1 1 94,000,000.00 Kc
8 0.0594 0 1 0 1 1 1 1 0 1 1 89,000,000.00 Kc
9 0.057 1 1 1 1 1 1 1 1 1 0 89,000,000.00 Kc
10 0.0569 1 1 1 1 1 1 0 1 1 1 89,000,000.00 Kc
11 0.0569 1 1 1 0 1 1 1 1 1 1 49,000,000.00 Kc
12 0.0569 1 1 0 0 1 1 1 1 1 1 44,000,000.00 Kc
13 0.0567 1 1 0 1 1 1 1 1 1 0 84,000,000.00 Kc
14 0.0567 1 1 0 1 1 1 0 1 1 1 84,000,000.00 Kc
15 0.0566 0 1 1 1 1 1 1 1 1 0 84,000,000.00 Kc
16 0.0565 0 1 1 1 1 1 0 1 1 1 84,000,000.00 Kc
17 0.0565 0 1 1 0 1 1 1 1 1 1 44,000,000.00 kc
18 0.0565 0 1 0 0 1 1 1 1 1 1 39,000,000.00 Kc
19 0.0563 0 1 0 1 1 1 1 1 1 0 79,000,000.00 Kc
20 0.0563 0 1 0 1 1 1 0 1 1 1 79,000,000.00 Kc
21 0.0547 1 1 1 1 1 1 1 0 1 0 89,000,000.00 Kc
22 0.0547 1 0 1 1 1 1 1 1 1 1 89,000,000.00 Kc
23 0.0546 1 1 1 1 1 1 0 0 1 1 89,000,000.00 Kc
24 0.0546 1 1 1 0 1 1 1 0 1 1 49,000,000.00 Kc
25 0.0546 1 1 0 0 1 1 1 0 1 1 44,000,000.00 Kc
26 0.0544 1 1 0 1 1 1 1 0 1 0 84,000,000.00 Kc
27 0.0544 1 1 0 1 1 1 0 0 1 1 84,000,000.00 Kc
28 0.0543 0 1 1 1 1 1 1 0 1 0 84,000,000.00 Kc
29 0.0543 0 0 1 1 1 1 1 1 1 1 84,000,000.00 Kc
30 0.0543 0 1 1 1 1 1 0 0 1 1 84,000,000.00 Kc
31 0.0542 0 1 1 1] 1 1 1 0 1 1 44,000,000.00 Kc
32 0.0542 0 1 0 0 1 1 1 0 1 1 39,000,000.00 Kc
33 0.0541 0 1 0 1 1 1 1 0 1 0 79,000,000.00 Kc
34 0.054 0 1 0 1 1 1 0 0 1 1 79,000,000.00 Kc
35 0.0525 1 0 1 1 1 1 1 0 1 1 89,000,000.00 Kc
36 0.0521 0 0 1 1 1 1 1 0 1 1 84,000,000.00 Kc
37 0.0518 1 1 1 1 1 1 0 1 1 1] 79,000,000.00 Kc
38 0.0518 1 1 1 0 1 1 1 1 1 0 39,000,000.00 Kc
39 0.0518 1 1 0 0 1 1 1 1 1 0 34,000,000.00 Kc
40 0.0517 1 1 1 0 1 1 0 1 1 1 39,000,000.00 Kc
41 0.0517 1 1 0 0 1 1 0 1 1 1 34,000,000.00 Kc
42 0.0516 1 1 0 1 1 1 0 1 1 0 74,000,000.00 Kc
43 0.0515 0 1 1 1 1 1 0 1 1 0 74,000,000.00 Kc
44 0.0514 0 1 1 0 1 1 1 1 1 0 34,000,000.00 Kc
45 0.0514 0 1 0 0 1 1 1 1 1 0 29,000,000.00 Kc
46 0.0514 0 1 1 0 1 1 0 1 1 1 34,000,000.00 Kc
47 0.0514 0 1 0 0 1 1 0 1 1 1 29,000,000.00 Kc
48 0.0512 0 1 0 1 1 1 0 1 1 0 69,000,000.00 Kc
49 0.0497 0 1 1 1 1 0 79,000,000.00 Kc
50 0.0497 1 1 1 0 0 0 79,000,000.00 Kc
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Table 6

Fussel-Vesely importance measures for the Strahov tunnel. The codes correspond to
labels in the respective fault trees. Safety measures typed in bold face are the
proposed new measures.

Safety measure F-V Code

Division wall 0.000 SCET:B08
Longitudinal fans 0.032 FSCA:B05, SCET:B07
CCTV 0.035 FSD:B04

SOS box 0.035 FSD:B05

GSM signal 0.035 FSD:B06

Critical fire 0.042 FSCA:BO1
Wall-Malovanka 0.051 SCET:B03
Wall-Plzenska 0.051 SCET:B04
Emergency exits fans 0.101 SCET:B08

Dampers 0.110 FSCA:BO7, SCET:B10
Software 0.408 FSCA:BO03, SCET:B05
Axial fans 0.442 FSCA:B06, SCET:B09
Hardware 0.711 FSCA:B04, SCET:B06
Personnel 1 0.969 FSD:BO1

Personnel 2 0.982 FSCA:B02, FSD:B01
LHD cable 1.000 FSD:B02

Smoke detection 1.000 FSD:B03

Video detection 1.000 FSD:B07

The savings achieved by our analysis reached about 67% of the
original price. It was difficult to convince the tunnel operating
company about the accuracy of our analysis; however, the PRA
method has been used for years in aerospace industry and besides
relevant mathematical algorithms, it also comprises means for
comprehensive presentation of results for the decision makers
(such as importance measures, financial tables, etc.) This turned
out to be the crucial point in convincing the tunnel operating com-
pany, as they became familiar with the results and our solution has
been finally accepted.

5. Conclusions

The paper introduces concept of adjusted Probabilistic Risk
Assessment into the framework of advanced risk analysis and en-
ables incorporation into risk management process. It provides sup-
port material for decision makers and risk managers to choose
sound and cost effective solution. In the case of Strahov tunnel,
the proposed analysis was able to cut almost 67% of originally cal-
culated costs.

The principal advantage of the proposed PRA method is its inde-
pendency on the object of the method, i.e. it is applicable to any
type of tunnel, with any equipment, mode of traffic, etc. Compared
to the state-of-the-art methods (TuRisMo, QRAM, ...), PRA uses
accurate mathematical background suitable for data with high le-
vel of uncertainty; the lack of relevant statistical data is taken into
account in the results by means of, e.g. specific importance mea-
sures. The drawback of the method is a “free” structure - it is more
a framework than a guideline and each application has to be trea-
ted very carefully.

The method used in this paper originates mainly from aero-
space industry, where many relevant data are available. Unfortu-
nately, this is not the case of tunnels. The method proposed in
this paper therefore requires further investigations towards quali-

tative results, which would bring comparative measures into the
decision making process.
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The building of the Faculty of Mechanical Engineering, Czech Technical University in Prague — Dejvice,
has been heated by a ceiling radiant heating system (“Crittall” system) since 1961. One building block has
been equipped by means which enable the use of the pipes of the radiant heating system for ceiling
radiant cooling. As optimization of this system is desired, the first step to be performed is the identifi-
cation. Because of a complicated physical description of the entire system, and a set of measured data
which is large enough to perform statistical identification, a decision was made to identify the system by
ARMAX model identification and subspace identification methods. The resulting identified model shows
a standard deviation of 0.2-0.3°C on the verification data. The model identified by the subspace
methods, enhanced by a Kalman filter, shows a standard deviation of 0.063 °C for output tracking. Such
a model is ready to be used in modern multidimensional controllers, such as model-based predictive

© 2009 Elsevier Ltd. All rights reserved.

1. Motivation

Rapidly growing costs of energy in recent years have shown us
the importance of optimization of the heating and cooling of
buildings. Besides technical improvements in building technologies
(such as thermal insulation), new methods of technology control
and regulation have been employed that use smart algorithms to
decrease the energy consumption of buildings, while maintaining
a comfortable environment inside the building [1]. Said modern
methods make use of computer models of the controlled systems —
of the buildings.

There are various approaches to computer modelling of build-
ings and their internal environment. For projecting and optimizing
the building systems, simulation tools based on a mathematical
description of the physical system are very popular [2,3]. The
simulation parameters are physical parameters of the system, and
the measured data can be used for model calibration. A good
overview of this class of modelling methods can be found e.g. in [4].

Abbreviations: 4SID, Subspace State Space IDentification; ARMAX, Auto-
Regressive Moving Average with eXogenous inputs; MIMO, multiple-input,
multiple-output system; SISO, single-input, single-output system; PEM, prediction
error method; CTU, Czech Technical University in Prague; HVAC, heating, venti-
lating and air conditioning; PID, proportional-integral-derivative controller.

* Corresponding author. Tel.: +420 777 855 363; fax: +420 224 916 648.

E-mail address: ferkll@control.felk.cvut.cz (L. Ferkl).

0360-1323/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
d0i:10.1016/j.buildenv.2009.06.004

This paper presents a different modelling approach. The simu-
lation model, which will be further used for control prediction and
energy optimization, is based on a general description of an
unknown (“black-box”) system. Identification of such a general
system may be achieved by statistical methods that find the
system dynamics and parameters from measured input and output
data.

The model of the building is intended for two purposes. The first
one is a pure prediction - the HVAC system operators may see the
effects of their control efforts; the model is a tool to assist their
personal experience with the system. The second purpose of the
model is that it can be incorporated into a Model Predictive
Controller (MPC), a mathematical control method based on
quadratic programming that optimizes the control efforts with
respect to the prediction of the system behaviour. Even though the
second option brings more comfort and optimal performance of the
system, it requires essential changes to the control system, which
may not be desirable.

In the first part of this paper, the presented methods of statistical
identification - ARMAX model identification and subspace
identification - are briefly introduced. In the second part, our
system of interest - the building of the Faculty of Mechanical
Engineering, Czech Technical University in Prague, Czech Republic -
is described. In the third part, practical results of the identification
experiments are shown. The fourth part of this paper summarizes
the results, and outlines further work.
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2. Overview of modelling methods
2.1. General notation and overview

2.1.1. Input-output model

For the identification of the ARMAX model, we have to define
the ARMAX model (Auto-Regressive Moving Average model with
eXogenous inputs), which is based on a general discrete-time
transfer function model

_ _ b(d)
y(k) = G(d)u(k) = mu(k) (1)
where k is the discrete time, y(k) is the model output, u(k) is the
model input, and

a(d) = 1+a;d+ - +apd™ (2)

b(d) = by + byd + -+ + bp,d™ (3)

are polynomials of degree n, and nj, respectively in d-space. The d-
operator can be seen as an inverse z-operator (d =z"!) in the 2
transform representing a unity delay. Technically, this is a simplifi-
cation, the difference between d and z~! can be found e.g. in [5].
We further need to introduce the noise signal e(t) to Equation
(1), which is achieved by
y(k)+ay(k— 1)+ -+ +an, = bou(k) + bju(k — 1)+ -
+ bp,u(k — np) + e(k)
+cre(k—1)+ -+ cpe(k—ne)

(4)

where

cd) =1+ crd+ -+ cpd™ (5)

is a polynomial of degree n. in d-space. Equation (4) can be written
in a compact way

a(d)y(k) = b(d)u(k) + c(d)e(k) (6)
or equivalently

b(d) c(d)

yk) = @u(k) +@e(k) (7)
or
y(k) = G(d)yu(k) + H(d)e(k) (8)

which is the input-output model of the ARMAX process. As will be
further described, the ARMAX model is usually derived for SISO
(single-input, single-output) cases only, as the MIMO (multiple-
input, multiple-output) case does not have any suitable canonical
form.

2.1.2. State space model

For the needs of subspace identification, we will consider
a lumped, discrete time, linear, time-invariant state space model in
the form

x(k+1) = Ax(k) + Bu(k) + w(k) 9)
y(k) = Cx(k) + Du(k) + v(k)

where u(k)e R™ is the m-dimensional input vector at time instant k,
y(k)eR! is the I-dimensional output vector, x(k)eR" is the n-
dimensional state vector. The vectors w(k)eR" and v(k)eR! are
process and measurement noise signals respectively. We assume

that these signals are zero mean, stationary, white noise signals. We
further assume that the expected value of the noise signals satisfies

B () (v )] = (§ R)om=0 (10)

where 0pq is Kronecker delta and Qe R™", Re Rx! SeR™! are
covariance matrices of the noise signals w(k) and v(k).

Let us further assume that the model (9) is observable and
controllable.

2.1.3. Relationship of input-output and state space models

It is clear that the auto-regressive model (7) and state space
model (9) should describe the same system. By applying Z trans-
form onto the deterministic part of model (9), we get the transfer
function

G(z) = CZl—A) 'B+D (11)

Note that the initial state xo cannot be represented by the
transfer function.

The output spectral density S,y of the stochastic part of model
9)is

Syy(2) = C(zIfA)*1Q<z*117A)7TCT+R - H(z)ZeHT(z*1>

(12)

where H(z) is an impulse response matrix and ) e is a covariance
matrix of the stochastic part of the model (9). Now the general
structure of the input-output linear, stochastic system is

y(k) = G(d)u(k) + H(d)e(k) (13)
where

G(d) = Gy + G1d + God? + --- (14)
H(d) = I + Hyd + Hyd? + - (15)

are impulse characteristic matrices of the deterministic transfer
function, and the noise shaping filter, respectively. For a SISO case,
Equation (13) is similar to Equation (8).

2.2. ARMAX model identification

The ARMAX model (7), first introduced by [6], is one of the most
widely used identification models. Its properties make it an ideal
tool for the identification of SISO systems. There are many ARMAX
model identification algorithms available: extended least squares,
recursive maximum likelihood, instrumental variable, prediction
error method, etc. (see e.g. [7] or [8]). In this paper, we will briefly
introduce the principle of the Prediction Error Method (PEM),
which we will further use for our building system identification.

The Prediction Error Method, applied to the ARMAX model (7),
estimates the parameters § of the model, which comprise the
parameters a, b and c of the polynomials (2), (3) and (5), by means
of the model prediction error e(k), as illustrated in Fig. 1. The
prediction error e(k) is assumed to be white noise with zero mean.

It can be shown that the predictor form of the ARMAX model (7)
can be rewritten as

~ _ b(d) a(d)

y(kit) = gt + (1= 53 vk (16)
The parameters of this model can be found by minimizing the

criterion
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v(k)
u(k) y(k)
> System
- +
b(d) a(d)
1/a(d)

Fig. 1. Error generation of the ARMAX model.

1N
Varwax = 33 (g — bau(i (17)

The minimum of this criterion can by found using the quasili-
nearization technique, as described e.g. by [7] or [8].

The advantages and disadvantages of the ARMAX model iden-
tification method are as follows:

e Advantages:

+ It can be applied to a wide
parameterizations.

+ It gives models with excellent asymptotic properties, due to
its relationship to maximum likelihood.

+ It can handle systems that operate in a closed loop (the input
is partly determined as output feedback, when the data is
collected) without any special techniques.

+ Recursive PEM algorithms are available for
identification.

e Disadvantages:

— Need a priori information on the model structure (model type
and orders of each term).

— The search for the parameters that gives the best output
prediction fit may be tedious, and involves search surfaces
that have many local minima.

— Structural inconsistency may lead to biased parameter
estimates.

— The PEM can be extended to MIMO identification; however,
lack of an appropriate canonical form for the MIMO ARMAX
model leads to an over-parameterized model structure. The
industrial practice for MIMO identification is to separate the
model into MISO (multi-input single-output) subsystems,
perform MISO identification independently, and combine the
results.

spectrum of model

on-line

2.3. Subspace identification

The main contribution of subspace methods (4SID - Subspace
State Space IDentification) is that the sequence of states x can be
determined without knowing the system matrices A, B, C, D from
the Equation (9). The advantage of this approach is that for iden-
tification of system states x, we can use robust methods of linear
algebra (such as QR or SVD decomposition), and the identification
of the system matrices A, B, C, D becomes a least squares problem -
we do not need any iterative algorithms (no convergence

problems), which makes the subspace identification methods
numerically fast and robust. It is therefore suitable for large data
sets and large scale systems (number of outputs m, system order n,
number of inputs [ are “large”).

We will now briefly introduce the principles of deterministic
subspace identification algorithms. Given a model (9), the mathe-
matical problem of subspace identification is — according to [9] - as
follows.

Given s consecutive input and output observations u(0),...,
u(s — 1), and y(0),..., ¥(s — 1), find an appropriate order n and the
system matrices A, B, C, D.

The subspace algorithms are basically performed in two steps:

1. Determine the model order n and estimate the state sequence
X(A),X([(+1),...,x(i +J).

2. From the estimated state sequence X, input data u and output
data y, determine the system matrices A, B, C, D.

First, we construct a block Hankel matrix from input and output
data:

u©0) u(1) u@j-1)
u(l) u@) - u@j)
el 1) u() o u(itj-2)
U@2i-1) = u(i) u(i+1) ui+j—1)
u(i+1) u(i+2) u(i+Jj)
u(2i:— 1) u(ii) u(2i +J -2)

Uji— 1) U
= (i) = (W) (18)

The number of block rows i is a user-defined index that is “large
enough” - it is one of the parameters for tuning the identification.
The number of columns is usually set automatically by the imple-
mented algorithm to s—2i+1, such that all s available data
samples are used.

The output block Hankel matrices Y(0|2i — 1), Y, Yy are defined
in a similar way.

It can be shown (see [9]) that the system order 1 can be obtained
by the equation

Up

_ Up Ur p
n= rank(yp> +rank<yf) —rank Uy (19)

Yr

It can also be shown that the state sequence may be obtained from
the intersection of past and future inputs and outputs. This can be
illustrated by the following scheme:

(U(0|2i— 1)

: — Here is the intersection — state x
Y(0]2i — 1)

The explanation of why this happens is very simple - if there
exists any linear relationship between the inputs and outputs (i.e.
the inputs and outputs were measured on the same linear system),
the intersection between them must be linearly dependent on each
other. The linear dependency reduces the row rank of the Hankel
matrix (}02-1) and the intersection (i.e. the linearly dependent
rows of the Hankel matrix) forms a basis which represents the state
sequence X. The intersection can be found using LQ or SVD

decomposition (see [10]).
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Fig. 2. Simplified diagram of the water circulation network for the ceiling radiant cooling system.

Knowing the inputs U, outputs Y and states X, it is now easy to
find the state space representation (9) of the system, e.g. by least
squares or total least squares methods, from the following equation:

(X(Yi(ﬁi; )> - (lé S) (5(((13)) (20)
known to be found known

where U(ili), Y(i|i) are block Hankel matrices with only one block
row of inputs and outputs respectively (i.e. U(i|i)= (u(i)
u(i+1)...u(i+j— 1)), Y(ili) is constructed in a similar way).

The subspace identification method described in this paper is
a deterministic subspace identification — we assume that the original
system is ideally linear and time invariant and subject to zero noise.
Various modifications of said basic method for less ideal systems
are described in relevant literature, such as [10] or [9].

According to [7,9,11], there are several advantages and disad-
vantages of the subspace identification methods:

o Advantages:

+ MIMO systems identification. The complexity of the identi-
fication for large MIMO (Multiple-Inputs Multiple-Outputs)
systems is the same as for SISO (Single-Input Single-Output)
systems. There is no need for an extensive MIMO structure
parametrization.

+ Numerical robustness. 4SID can be implemented with QR
and SVD factorizations, which have well known properties,
and very good numerical robustness.

+ Few user parameters. In fact, there is only one parameter,
and that is the number of block rows of Hankel matrices.
There is no need for complex parametrization even for MIMO
systems, because 4SID methods give a state space model.

+ Model order reduction. The algorithms of 4SID incorporate
implicit model order reduction. This is useful for real-world
data, where noises and disturbances play an important role,
and increase the order of the estimated model.

o Disadvantages:

— Need alarge set of input/output data. The statistical properties
of geometrical methods used in 4SID are the reason for the fact,
that they need a large amount of input/output data samples.

— Difficult recursification. The basic algorithms were devel-
oped to identify the system parameters from off-line data.
Extending this algorithm for on-line identification is not
straightforward.

— Prior knowledge cannot be easily incorporated into 4SID.
These methods have a black-box approach to the identified
system.

The solution to the last two disadvantages is known today, as
there have recently been some papers published on the problems of
recursification and incorporating prior knowledge, e.g. [12];
however, the solution is not straightforward.

One of the biggest advantages over other identification methods
is the small number of user-defined parameters, which makes this
method suitable even for users that need to identify some systems
only occasionally. In particular, the following parameters must be
entered by the user:

e Input and output data U, Y

e System order N (which may be estimated by the 4SID
algorithm)

e Number of block rows of the Hankel matrices

The identification process is in fact tuned only by the number of
block rows of the Hankel matrices, which depends on the charac-
teristics of the input and output data, but can be found on a trial-
and-error basis.

3. System overview
3.1. The building

The “Crittall” system, invented in 1927 by Crittall and Musgrave
[13], was a favorite heating system in the Czech Republic during 60s
for large buildings. The heating (or cooling) beams of this system
are embedded into the concrete ceiling. Even though the principle
of ceiling radiant cooling is quite old, it is still very popular and
subject to intensive research (e.g. [14-16]).

The building of the Faculty of Mechanical Engineering, CTU, was
built in 1961 (see Fig. 3). As the original construction included
aluminium window frames and glass panel facing with poor
thermal insulation characteristics, the building was recently
refurbished. In addition to new insulation, air conditioning and
ventilation systems were upgraded [17].

In said building, it is not possible to control room temperatures
individually. The control is therefore carried out for one entire
building block, i.e. the same control effort is applied to all rooms of
the building block.

There are several types of blocks in the building - lecture halls,
laboratories and office blocks. The laboratories do not have any
cooling systems, as they are built in a shadow of other buildings,
and the lecture halls have new air conditioning systems. The
cooling of the office blocks, which are of our interest, is achieved by
said Crittall system.
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Fig. 3. The building of the Czech Technical University in Prague.

It is difficult to control the radiant cooling (and heating) system,
because it has a huge accumulation mass, and hence a large thermal
capacity. Moreover, the control is limited by several factors - the
environment in the cooled rooms has to comply with specific
temperature demands, and the surface temperature of the ceiling is
limited by the dew point of the inner air, such that no condensation
of water on the ceiling occurs.

A simplified scheme of the ceiling radiant cooling system is
illustrated in Fig. 2. The source of cold is a compact cooling unit
(chiller), which supplies the cooling water to the water container. A
mixing occurs here, and the water temperature supplied to the
respective cooling circuits is higher than the water temperature
supplied by the chiller. An accurate temperature control of the
cooling water for respective building segments is achieved by
a three-port valve with a servo drive. The cooling water is then
supplied to the respective ceiling beams. There is one measurement
point in a reference room for every segment, wherein the ceiling
temperature is also measured. The setpoint of the control valve is
therefore the control variable for the ceiling radiant cooling system
in each segment.

3.2. The data

As an identification object, we have chosen the A2 block of the
CTU building in Prague, Czech Republic. The data is collected by the
RcWare Vision! system and stored in an SQL database with
a sampling period of 3 min. The following data is measured on the
system (see Fig. 2):

o Reference room ambient temperature

o Reference room ceiling temperature

e Temperature of the input water to the ceiling pipes

e Temperature of the output water from the ceiling pipes
e Temperature of the output water from the container

e Valve position of the three-port control valve

e Outside temperature

e Solar radiation intensity

All temperatures are measured by Sensit Ni1000 industrial

thermistors. The outside temperature is calculated as a mean value
from 11 temperature sensors, distributed throughout the area of

T http://www.rcware.eu.

Table 1

Frequency of sampling periods T; in the measured data.

T [min] 0-2 2-3 3-4 4-60 Over 60
Samples 116 21482 5370 151 23

the CTU building. The solar radiation intensity is calibrated by
precise measurement carried out by the Solar Laboratory?® at the
Faculty of Mechanical Engineering, CTU, which resides in the same
building.

For the identification, data measured between June 1 and
August 7, 2008, was available; there were enough days with an
outside temperature exceeding 30 °C in this data set, when the
ceiling radiant cooling was active. Unfortunately, the data con-
tained a large amount of drop-outs. The frequency of sampling
periods T is shown in Table 1 — we can see that the majority of data
was sampled with a period of around 3 min, but we have 23 drop-
outs that are longer than 1 h.

From the data, we have selected some consistent data sets with
the following features:

e There must not be a drop-out longer than 2 h in the data set
e The data set must contain at least 3000 samples (approxi-
mately one week)

Three data sets comply with the above criteria (6/13-6/19, 6/24-
7/1 and 7/4-7/14, 2008). There was cold weather in the first data
set, so the ceiling radiant cooling system was not active. So we
ended up with two data sets, one for identification and the other
one for verification, which is quite sufficient for our purposes.

The three-port valve is a standard device which can be
controlled by a classic controller (e.g. PID controller, see [18]); it
supplies any possible temperature of the cooling water with high
accuracy. For ceiling radiant cooling system identification, we will
use the following input and output variables:

e Input variables:
- Temperature of the input water to the ceiling pipes
- Outside temperatures
- Solar radiation intensity
e Output variables:
- Reference room ceiling temperature
- Reference room ambient temperature

The next step was to decide which data set to use for identifi-
cation, and which one for its verification. A general requirement
for statistical identification says that the system must be excited in
as many modes (a mode is basic dynamical behavior entity of
a system, corresponding e.g. to a resonance frequency; for further
explanation, see e.g. [5]) as possible [10]. To be more specific, the
input vector U and output vector Y must yield a state sequence X
which is of full row rank. A rule of thumb translates said

Table 2
Mean values and standard deviations of the sampling period T, in the data sets used
for identification and verification.

Data set Mean value Stand. dev.
Identification 3.00 0.02
Verification 3.01 0.19

All numbers are in minutes.

2 http://solab.fs.cvut.cz.
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Fig. 4. Data set for the system identification.

requirements that the data must be “varied” enough, which is
typically satisfied in practical experiments. From this point of view,
the second data set (6/24-7/1, 2008 see Fig. 4) seems to be better, it
also has a better sampling period deviation (see Table 2). The third
data set will be used for verification.

4. Identification experiments
4.1. ARMAX model identification

ARMAX model identification is a very convenient method for
simple systems which are subject to noise, as all the system and
noise parameters can be identified by setting up the appropriate
polynomial degrees in Equation (7). However, for more complex
systems, finding the “appropriate” orders is tedious work, as the
identification algorithms are very sensitive to any changes in
the ARMAX model parameters. Another disadvantage is that the
transfer function of the ARMAX model is a MISO model (multiple-
input, single-output); for our system with three inputs and two
outputs, we actually have to identify 2 individual ARMAX models,
one for each output.

Each ARMAX model comprises 8 parameters in total (refer to
Equation (7)):

e 1 x the degree of the denominator a(d)

e 3 x the degree of the numerator b(d) (the model part of the
ARMAX model)

e 1 x the degree of the numerator c(d) (the noise filter part of the
ARMAX model)

e 3 x the traffic delay ny for inputs (for the PEM identification
method)

For example, if we try to identify the ARMAX model by nested for
cycles, assuming that the model order is less than ten, 18, 080, 425
cycles would be needed (assuming that deg(a(d))> deg(b(d)),

Table 3
ARMAKX identification parameters.

Table 4

4SID identification parameters.

Parameter Ceiling temp.  Room amb. temp.  Both

Model order N 10 4 8

Block rows D 70 40 65

Error std. dev. 0.206 0.281 0.212 (ceil.) 0.481 (room)

deg(a(d)) > deg(c(d)) and deg(a(d)) > ny). As stated in Table 6, about
1s is needed for one identification cycle - the identification in
anested for cycle would take about 209 days for one ARMAX model.
This illustrates the necessity of an “engineering” approach, and
experience of the ARMAX model identification process.

In our example, the best ARMAX parameters found are listed in
Table 3.

4.2. Subspace identification

As already mentioned, one of the advantages of the subspace
identification methods is the small number of tuning parameters.
We only need to know the number of block rows D in Hankel
matrices (18), and, if desired, the system order N. The actual
computation is very fast, enabling an automated trial-and-error
estimation process, which is implemented in many commercial
implementations of the 4SID identification.

For our identification problem, we used a low-level imple-
mentation that enabled us to tune both parameters, i.e. D and N. We
carried out three identification experiments:

1. All inputs, ceiling temperature as an output
2. All inputs, room ambient temperature as an output
3. All inputs, both temperatures as outputs

For an identification by nested for cycles, 2 cycles would be
needed that search the parameters e.g. from 1 to 10 (for N) and from
20 to 100 (for D). The D can be changed with a step of 5, as the 4SID
algorithms are not sensitive to minor parameter changes. This
would result in 160 for cycles which need, according to Table 6,
a period of 40s (compared to 209 days for ARMAX model
identification).

The best parameters found are listed in Table 4. It can be seen
here that the cascade model consisting of the separate ceiling and
room model yield better results than the full MIMO model. The
reason might be that the ceiling and ambient room temperatures
are subject to cross-correlated noises, so one of the stochastic 4SID
method conditions is not fulfilled (the theoretical background of

Parameter Ceiling temp. Room amb. temp.
deg(a(d)) 8 8

deg(b(d)) [7,7,2] [3,4.4]

deg(b(d)) 5 5

ng [3,3,3] [3,3,3]

Error std. deviation 0.247 0.214
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Fig. 5. The effect of simultaneous use of the model and Kalman filter, as identified by

the 4SID methods.
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Fig. 6. Comparison of the real data, ARMAX and 4SID identification models. The 4SID & Kalman data are not shown, as their estimation error is negligible in the scale of the figure.

Table 5

Standard deviations of the models.

Output ARMAX 4SID 4SID & Kalman
Ceiling temp. 0.247 0.206 0.052

Room ambient temp. 0214 0.281 0.063

stochastic identifications is not in the scope of this article, more
information can be found e.g. in [10]). However, if the system is
decomposed into two subsystem, we get one output noise only, and
the cross-correlation is no longer a problem.

5. Improvement of subspace identification
results by Kalman filtering

A significant improvement of the behaviour of a mathematical
model can be achieved by employing a Kalman filter (first pub-
lished by [19]). The Kalman filter is a very important case of an
optimal state observer. The theory behind the Kalman filter is not in
the scope of this paper, an excellent source on this topic is [20]. The
basic idea of the Kalman filter is that the model output u(k) is
compared with the real system output u(k) and the model error
(also called prediction error) is supplied to a gain matrix K (the
Kalman gain matrix) and further to the model state x(k). The state is
thus updated by the real measurement, and the model keeps track
of the behavior of the system.

The Kalman filter is calculated in two steps - “predict” and
“correct”. Referring to the state space model (9), the model state is
predicted in the “predict” phase:

X (k) = Ax(k— 1)+ Bu(k — 1) (21)

The system state is then updated from measurement in the

“correct” phase:
x(k) = (k) +1<(u(k) - a(k)) (22)
The Kalman gain K can be continuously updated; however, for
industrial systems, wherein the noise characteristics are assumed
to be time invariant, it is advantageous to use a constant Kalman
gain which does not change over time.

The Kalman filter is tuned by the noise covariance matrices Q,R, S
(Equation (10)). The measurement of the noise parameters is quite
difficult, and for complex systems, such as HVAC systems, they only
provide a rough estimate. It is therefore necessary to tune the Q, R
and S matrices manually, which may be tedious work.

Table 6
Time requirements for ARMAX and 4SID methods. Tested on Intel Mobile Core2 Duo
T5600, 1.83 GHz, 2048 kB of L2-cache, 1024 MB RAM.

Method Tuning time (approx.) Computational time For cycle ident.
ARMAX 10h 955 ms 209 days
4SID 0.5h 234 ms 40s

One of the advantages of the subspace identification methods,
as described by [21], is that there are algorithms that can actually
estimate the Q, R, S matrices from the measurement history data,
and calculate the time-invariant Kalman gain K.

An example of the use of the Kalman filter is illustrated in Fig. 5.
The Kalman filter keeps tracking the real system with almost zero
estimation error. If a prediction of the real system behavior is
needed, the Kalman filter is disabled from the model, and the
output prediction (here the ceiling temperature, based on weather
prediction and cooling water temperature schedule) is carried out.
Once enabled, the Kalman filter can correct the system state within
the discrete time (i.e. number of steps) equal to the model order.

6. Comparison of results

The results of the ARMAX and 4SID identification can be seen in
Fig. 6, the standard deviation of the models are listed in Table 5
(along with the combination of 4SID & Kalman filter). First of all, we
have to say that the results are very good for both identification
methods - the standard deviations are less than 0.3 °C. The ceiling
temperature is subject to lower noise - the concrete structure acts as
a very effective filter - and the 4SID method yields better results
here. On the other hand, the room ambient temperature is subject to
very high noise and disturbances (doors and windows open and
closed, people moving around,...) and the ARMAX method can make
full use of its noise filter terms (the c(d) polynomial in Equation (7)).

Another aspect is the complexity of the identification process
with respect to time required to tune and to actually calculate the
models, shown in Table 6. Here the 4SID approach is clearly more
convenient than the ARMAX identification. As already mentioned,
the reason is that for 4SID, we only need to find 2 parameters,
whereas the ARMAX identification needs 8 parameters in total,
which is time consuming. Moreover, the ARMAX model is much
more sensitive to the respective parameter changes than the 4SID
methods. The “tuning time” in Table 6 represents the subjective
time needed for the model tuning (excluding the work on
importing the measurement data) experienced by the authors.
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7. Conclusions

The two statistical approaches to model identifications pre-
sented in this paper - ARMAX model identification and subspace
identification - present two main streams in model identification.
The example of the university building shows the advantages and
disadvantages of said models — while the subspace identification is
faster, easier to implement, and more accurate for systems with
white noise input/output signals, an ARMAX model can still achieve
better results for systems, wherein the parameters of the respective
noise signals are far from ideal.
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Notes on Finding Black-Box Model of a Large Building

Zdenék Vana, Jakub Kubecek, Lukas Ferkl

Abstract— Finding a suitable dynamic, linear, time-invariant
model is a major obstacle for the use of model-predictive
control of buildings. While finding models based on physical
properties of the system is time consuming, statistical models
need the system to be excited, which is not always possible.
This paper presents possibilities for finding a suitable model
based on subspace identification methods for unexcited data and
data containing a specially designed identification experiment,
and presents practical experiences gained while finding suitable
models for a large building. Finally, some other possibilities
of finding a model by incorporating prior information to the
identification process are discussed, and the performance of the
models is evaluated with respect to their use as a part of an
MPC controller.

I. INTRODUCTION

Recent trends in carbon dioxide emission reduction es-
tablish a socially challenging environment for new ideas
for energy consumption optimization, regardless of our in-
dividual opinion about the global warming issue. Special
attention is paid to various technology advances, such as
low-emission engines, green energy generation, etc. Both
economical and environmental revenue of such innovations
is sometimes subject to fierce discussions. On the other
hand, improvements of control system algorithms leading to
economical savings represent a solution, which is “green”,
beyond dispute.

Buildings have been subject to energy savings for a long
time. Indeed, according to the U. S. Energy Information Ad-
ministration, in 2005, buildings accounted for 39 % of total
energy usage, 12 % of the total water consumption, 68 % of
total electricity consumption, and 38 % of the carbon dioxide
emissions in the U. S. A. [1]. However, recent efforts have
focused mainly on the construction of the buildings, such
as better insulations, double facades, heat-reflecting glass,
etc. But large buildings, such as schools, hospitals, or office
buildings, are usually equipped by control systems based
on general industrial systems and use industrial protocols,
PLCs, dense sensor networks, etc., which enable the use
of sophisticated modifications of state-of-the-art controllers
(PID control, weather-compensated control, ...).

The use of modern control strategies has been very limited,
with the exception of fuzzy control. More analytic methods,
such as LQG or MPC control, have been enduring their use
in buildings mainly because of the absence of convenient
tools for obtaining a model of the building. Basically, there
are three approaches to find a dynamic, linear, time-invariant
model of a system:
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¢ white-box

o grey-box

« black-box

For buildings, finding a white-box model, i.e. a model
based on physical properties of the building, is feasible, but
time consuming and it is definitely not useful for commercial
application. Statistical identification procedures, often called
black-box models, represented by e.g. ARMAX models or
subspace identification, need “sufficient” excitation of all
modes of the system. This is seldom possible for real
systems, as most identification experiments are costly and
bring thermal uncomfort to the persons inside the building. A
compromise between those two approaches is to incorporate
some prior information, such as static gain or predefined
structure, into the model, which is further identified by means
of statistical identification. This approach is well known
for single-input, single-output (SISO) systems, but only few
attempts have been made for the case of multiple-inputs,
multiple-outputs (MIMO) systems. A procedure is known
that introduces prior information to models identified by
subspace identification, but works only on MISO systems.

In this paper, we will present practical experience gained
while finding a model for a large building — the building of
Faculty of Electrical Engineering and Faculty of Mechanical
Engineering, Czech Technical University in Prague (see
Figure 1).

II. MODEL IDENTIFICATION

One of the crucial contributors to the quality of the control
is a well identified model which will be later on used for
control in MPC algorithm. There are several completely
different approaches to system identification including phys-
ical modeling, CFD modeling or statistical identification. As
traditional methods are rather time consuming for buildings,

Fig. 1.
used for model identification experiments and Model Predictive Control.

The building of the Czech Technical University in Prague that was
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Fig. 2. Comparison of classical and subspace identification methods

we have turned towards statistical identification methods,
and, more specifically, towards subspace methods [2], [3],
[4].

The objective of the subspace algorithm is to find a linear,
time invariant, discrete time model in an innovative form

z(k+1) = Ax(k)+ Bu(k) + Ke(k)
y(k) = Cux(k)+ Du(k) + e(k), 1
where A, B, C, and D are system matrices, K is Kalman
gain — derived from the Algebraic Riccati Equation (ARE)

[5], and e is a white noise sequence. This model is equivalent
to the well-known stochastic model

x(k+1) = Ax(k)+ Bu(k)+ w(k)
y(k) = Cux(k)+ Du(k)+ v(k), 2)
with
cov(w,v) = E ([ 1;})55)) } [ w"(q9) v"(q) ]) =
= { 5€2T }S; ] dpg = 0, (3)

wherein matrices @), S and R are covariance matrices of pro-
cess and measurement noise sequences, respectively. Loosely
speaking, the objective of the algorithm is to determine the
system order n and to find the matrices A, B, C, D and K.

The main difference between classical and subspace iden-
tification is, given the sequence of input data «(k) and output
data y(k), as follows:

« Classical approach. Find system matrices, then esti-
mate the system states, which often leads to high order
models that have to be reduced thereafter.

« Subspace approach. Use orthogonal and oblique pro-
jections to find Kalman state sequence (see [5]), then
obtain the system matrices using least squares method.

The differences in the approaches can be seen in Fig. 2[6].
The entry point to the algorithm are input-output equations
as follows:

Y, = DIXJ+HU,+Y}
Yy = DX+ HUp+Y7
X{ = AX]+ AU, 4)

where Y, and Y are the Hankel matrices of past and future
outputs, U, and Uy are the Hankel matrices of past and
future inputs, Xg and X}l are the deterministic Kalman state
sequences, Yps and Y}?‘ are the stochastic Hankel matrices
of past and future outputs, H is the lower block triangular
Toeplitz matrix for the deterministic subsystem (which con-
tains all matrices A, B, C' and D), T'; is the extended system
observability matrix (which contains the system matrices
A and C) and A¢ is the deterministic reversed extended
controllability matrix (which contains system matrices A and
B). More details about constructing said matrices can be
found in [2], [6], [7]. Using combined algorithm described
in [7], we get

Xi-}-l A B Xz Pw

= 5
{ Yy ] {C Doy | e ] ®
with X; = X:i;?o.po’ where )/(\'0 is oblique projection defined

by [7] as: R
Xo=X}/u,Up, (6)

where P, is state covariance matrix, and we can determine
noise sequence covariance matrices ), S and R from the
residuals, which are defined by Eq. (3). Solving Eq. (5) using
least squares methods, we get the state space system descrip-
tion of the system, namely the system in the innovation form
(Eq. (1)) with matrices A, B, C, D and K.

III. DESCRIPTION OF THE BUILDING

The building of the Czech Technical University in Prague
uses a Crittall [8] type ceiling radiant heating and cooling
system. The Crittall system, invented in 1927 by R. G.
Crittall and J. L. Musgrave, was a favorite heating system
in the Czech Republic during 1960s for large buildings. In
this system, the heating (or cooling) beams are embedded
into the concrete ceiling. The control of individual rooms
is very complicated due to the technical state of the control
elements in all rooms. The control is therefore carried out
for one entire building block, i.e. the same control effort is
applied to all rooms of the building block. There are three
building blocks with the same construction and orientation.
Therefore, this situation is ideal for comparison of different
control strategies, as depicted in Fig. ??.

A simplified scheme of the ceiling radiant heating system
is illustrated in Fig. 4. The source of heat is a vapor-liquid
heat exchanger, which supplies the heating water to the water
container. A mixing occurs here, and the water is supplied
to the respective heating circuits. An accurate temperature
control of the heating water for respective circuits is achieved
by a three-port valve with a servo drive. The heating water
is then supplied to the respective ceiling beams. There is one
measurement point in a reference room for every circuit. The
setpoint of the control valve is therefore the control variable
for the ceiling radiant heating system in each circuit.

IV. DESCRIPTION OF THE MODEL

The ceiling radiant heating system was simplified into a
linear, time invariant mathematical model. Outside temper-
ature prediction and heating water temperature were used
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Fig. 3. The Czech Technical University building with the building blocks
B1 and B2. Because of their very similar characteristics, they were chosen
as ideal objects for comparison of the behavior of the Model-Predictive
Controller, wherein the models described in this paper were used.
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Fig. 4. Simplified scheme of the ceiling radiant heating system.

as the model inputs. Prediction of the outside temperature
is composed of two values, T},4, and 7,,;,, defining a
confidence interval. The only output of the model was
the inside temperature. This can be formalized according
to Eq. (2) as

Tmin
Tmaac
Thw
Tmin
Tras | (N
Thw

where Tp,, is the temperature of the heating water and
T;, denotes the inner temperature. The state x has no
physical interpretation, when identified by means of the
subspace identification. System order is determined by the
identification algorithm.

V. WINTER 2008/09: THE FIRST ATTEMPT

For the implementation of the identification algorithms,
Scilab has been chosen, which is a free software for numer-
ical calculations created by the French scientific institutions
INRIA and ENPC. Its license allows for free use, but
does not meet the conditions of the Open Source Initiative
or Free Software Foundation. Therefore, it can be used
in commercial applications free of charge. Another option
was to use the more popular Matlab, but it was rejected
after a discussion with the industrial partner of the project,
because it is expensive, slower than Scilab and Subspace

z(k+1)=Az+ B

Ty, =Czx+D

——— mmodel - prediction
—— measured room temp.
model - control

temperature [C]

t t t
20.2.2009 00:01 26.2.2009 00:01 4.3.2009 00:01

time

17 + t
8.2.2009 00:01 14.2.2009 00:01

Fig. 5. Subspace model verified by real data, the first attempts. The green
line represents the reference room temperature as predicted by the model
later used in the MPC controller.

Identification fails to provide good support and variability
to computations (in other words, you do not need much
knowledge to use Matlab, but if you have such a knowledge,
Scilab allows you to play around with the identification
procedure). In the beginning, the Scilab’s standard System
Identification toolbox was used.

After the data from the building became available, se-
quences suitable for identification had to be found. Un-
fortunately, the data showed frequent minor failures and
incomplete records. It was therefore necessary to select the
data sections which did not contain too long drop-outs. The
data, originally sampled in the period of 3 minutes, were
resampled to 10 minutes, which is enough for the control
and no important information is lost, given the estimate of
the dynamics of the building.

As a first step, a rough selection of about 20 models
obtained by subspace identification with the smallest relative
error was made. At this moment, a rather surprising discovery
was made; the models identified by the identification data
set showed pretty performance on the verification data set,
however, it turned out that the inputs and outputs had been
switched. In fact, a known phenomenon was proven that
the subspace identification represent a good approximator,
regardless on the value of the estimated data. It was not
surprising that the plots obtained by correct inputs and
outputs did not look as pretty as the wrong ones.

Later on, it turned out that model selection according to the
conformity of its response to the real data is not applicable,
because majority of the models that have been selected in
such way were not suitable in conjunction with the MPC.
It was therefore necessary to choose the model according
its behavior directly in conjunction with the MPC, which
represented a process with considerable time consumption.

From many models, which had to be managed individually,
a model with subspace parameters N = 6, S = 25 was
chosen. Response of this model can be seen in Figure 5.

MPC controller, which was described e.g. by [9], was
tuned and tested on data obtained from February 22nd to
March 2nd, 2009. The schedule of the MPC implementation,
which required sufficient computer tests before its use on the
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Fig. 7. The outputs from the model used for the MPC.

real building, was as follows:

1) The model was tested by computer simulations only.

2) The model was implemented into the control system, in
a stand-by mode, wherein the conformity of the model
and the real system was being observed.

3) The MPC controller was implemented and calculated
values of the regulator were checked. The control was
still done by the old system.

4) After acceptable results were obtained from the MPC
controller, it was fully involved into the control.

It turned out that the model identified by the subspace
identification, used in the MPC controller, provides accept-
able performance, and was set operational. The behavior of
this control can be seen in Fig. 6 (the inputs of the model)
and Fig. 7 (the outputs).

VI. WINTER 2009/10: THE FIRST SUCCESS

The first experiments with the MPC control were success-
ful and the comparison of the MPC and the original control
showed that the savings achieved by the MPC reach 10 %,
which finally lead to an extensive collaboration between our
team and the company responsible for the heating system
of the Czech Technical University. However, it was clear
that the results of the first MPC were not as brilliant as
originally expected. Detailed analysis of the model showed
that it is only suitable for outside temperatures well above
0 °C, which was the case of March 2009, and high savings
achieved by the MPC could be a mere coincidence.

The rather misleading behavior of the first model resulting
from the detailed analysis was caused by not quite correct
use of subspace identification methods and by practical
limitations that do not satisfy the theoretical assumptions.
These assumptions are:

¢ I/O data length goes to infinity (which is obviously not
true)

o White noises are considered in subspace algorithms
(which cannot be verified)

o The system must be “sufficiently” excited by I/O data
(which will be discussed further)

There could be some other problems with the I/O data
as well, such as their mutual dependency (which can be
detected in the covariance matrix). The effect of such data
is that outputs are influenced by some inputs only and
some inputs have no influence to any output. Obviously, this
is undesirable. According to the theory, there is one way
to improve the model — to excite the system sufficiently.
Moreover, it has to be done in such a way that main inputs
excite the system itself; then the dynamics reflecting these
inputs appear.

As already mentioned, it is not very practical to perform
identification experiments on real buildings. It was very for-
tunate that the building for this experiment was a university
building, which is almost empty during any vacations. The
identification experiment had been proposed and was realized
during the Christmas vacation period (Fig. 8). New I/O data
were obtained and new models were identified. After the
first tests, the problems discussed above seemed to disappear,
but the deviations in the process were increased. It could
mean the system is not time invariant and its identification
is more complicated. We can discuss two extreme ways of
identification in this case:

o Short-time data identification: Short-time data means
that we can consider the data were measured on a linear
system. The identified model is accurate on said data,
but in the real process, the deviations are increased
significantly.

Hras experiment
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Fig. 8. The data acquired from the Christmas identification experiment.



e Long-time data identification: This is the opposite case.
The identified model does not match the data accurately,
but the deviations are practically uniform — they depend
on the length of the data.

Both ways are extreme; in practice, we have to use an
engineering sense for a proper choice, which lies somewhere
in between. Unfortunately, no choice leads to the best model,
because each model has its pros and cons.

Now let us have a look at some methods which can be
useful for proper control:

e Model updating: Regularly identified model (i.e. each
month), always from last data of length N (because of
computational rate).

o Recursive subspace identification: Up-dating model ma-
trices by force of new incoming I/O data. Unlike the
previous method, the entire identification process is not
started, only model matrices are up-dated via special
algorithm.

o Incorporated prior information: With any basic knowl-
edge of system this information could be incorporate
into the identification algorithm. A prior information
can be expressed in several ways, i.e. the covariance
matrices, the static gain, the ratio of gains of outputs, the
order of the system, the main dynamics or the structure
of the system. Special kind of a prior information is
usage of artificial data including a prior information.

The results from the Christmas identification experiment
can be seen in Fig. 9. Even though the results are not
as pretty as of the model from the previous season, the
models are based more solid assumptions and achieve better
performance with the MPC controller. Grey-box model based
on analogy with RC-circuits was finally used in the MPC
controller, as it had slightly better performance and was less
demanding on the level of excitation of the system. However,
the subspace identification algorithm has been modified and
subspace model is in operation in the time of submission of
this paper. The results from the MPC control can be seen
in Fig. 10 — the savings achieved by the MPC control were
about 20 % compared to the original weather-compensated
control.

VII. CONCLUSIONS

In the example of the application of subspace identification
methods, it can be seen that underestimation of theoretical
assumptions can result in fairly misleading results. We can
also conclude that subspace identification can be suitable for
models included in MPC control of (at least some) buildings.
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Subspace Identification of Poorly Excited Industrial Systems

Samuel Privara, Jifi Cigler, Zdenék Vana, Lukas Ferkl and Michael Sebek

Abstract— Most of the industrial applications are multiple-
input multiple-output (MIMO) systems, that can be be identi-
fied using knowledge of the system’s physics or from measured
data employing statistical methods. Currently, there is the only
class of statistical identification methods capable of handling
the issue of vast MIMO systems — subspace identification
methods. These methods, however, as all statistical methods,
need data of certain quality, i.e. excitation of corresponding
order, no data corruption, etc. Nevertheless, the combination
of statistical methods and physical knowledge of the system
could significantly improve system identification. This paper
presents a new algorithm which provides remedy to insufficient
data quality of certain kind through incorporating of prior
information, e.g. known static gain or input-output feedthrough.
The presented algorithm naturally extends classical subspace
identification algorithms, that is, it adds extra equations into
the computation of system matrices. The performance of the
algorithm is shown on a case study and compared to current
methods, where the model is used for an MPC control of a
large building heating system.

Index Terms— Subspace methods; Identification for control

1. MOTIVATION

With 39 %, buildings contribute significantly to total
energy usage in 2005, as stated by the U. S. Energy In-
formation Administration [1]. This poses strong motivation
for creation of advanced and energy saving HVAC (Heating,
Ventilating, and Air Conditioning) systems [2]. Significant
amount of energy can be saved using predictive control
strategies (see project OptiControl') compared to the con-
ventional strategies. Widely used control strategy, weather-
compensated control, can lead to poor energy management
or reduced thermal comfort even if properly set up, because
it utilizes current outside temperatures only. In case of sharp
change of weather, there is an improper control action due
to the energy accumulation in large buildings, resulting in
over- or underheating of the building. Even though HVAC
control systems have been improved significantly during
recent years, predictive controller described in [3] introduces
a different approach to the heating system control design.
There is, however, a crucial condition for the successful
control, that is, properly identified model of the system.
Model identification can be performed by variety of methods,
physical modeling or statistical approach among others.

This paper presents incorporation of prior information into
subspace identification methods. These methods originally
emerged as a conjunction of linear algebra, geometry and

S. Privara, J. Cigler, Z. Vana, L. Ferkl and M. Sebek are with De-
partment of Control Engineering, Faculty of Electrical Engineering of
Czech Technical University in Prague, Karlovo ndmésti 13, Czech Republic
samuel.privara@fel.cvut.cz
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system theory and compared to the classical identification
methods [4], they provide user with several advantages such
as numerical robustness, natural extension to MIMO systems,
etc. There are, however, also some drawbacks, e.g. lack
of satisfactory number of data samples, proper order of
excitation or strong noise contamination can lead to poor
identification results [4], [5]. Some problems coupled to
these methods such as identification of stable, positive real
models, etc. using regularization can be found in [6], [7]
or formulated as constrained optimization in [8]. Black-box
identification, such as subspace identification methods, rely
only on experimental data, that is, they may result in biased
models [9], or fail in giving a proper model (this problem is
addressed in [10], [11]).

Prior information can significantly improve identification
results, however, current algorithms are not able to provide
satisfactory results for MIMO systems. Previous works such
as [12] count with single-input single-output (SISO) system
only. Even [9] using Bayesian framework approach did
not present method which would treat MIMO system in a
satisfactory manner. This paper, in contrary, presents a new
algorithm of incorporation prior information, which is built-
in directly into system matrices B and D and does not make
use of the covariance matrix. Proposed algorithm enables
treating MIMO systems in a natural way using state-space
approach.

The paper is organized as follows: Section II provides
an insight into the building-up of the matrices used in
subspace algorithms and formulates the general identifica-
tion algorithm. Section III describes incorporation of prior
information (PI) in subspace identification framework and
shows two special cases of PI, knowledge of static gain and
input-output feedthrough. Section IV presents identification
results of previously described algorithms. The objective of
the identification was creation of proper model (in sense
of fit and controllability) of a real, eight-floor building.
Future development is outlined in Section V and the paper
is concluded with Section VI.

II. SUBSPACE IDENTIFICATION

A. Problem Statement

The objective of the subspace algorithm is to find a linear,
time invariant, discrete time model in an innovative form

z(k+1) =
y(k) =

based on given measurements of the input u(k) € R™ and
the output y(k) € R’ generated by an unknown stochastic

Az (k) + Bu(k) + Ke(k)
Cz(k) + Du(k) + e(k), (1)



system of order n, which is equivalent to the well-known
stochastic model as defined in e.g. [13], [14]. Loosely
speaking, the objective of the algorithm is to determine the
system order n and to find the matrices A, B, C, D and K.

B. Matrices Used in Subspace Algorithm

Notation and building-up of the matrices as follows further
on were adopted as in [15]. Upper index d and s denotes
deterministic and stochastic subsystems, respectively.

1) Data Matrices: Input block Hankel matrix is built-up
from input data as follows:

Ug uy U Uj—1
Ui—1 Uj Ui+1 Ujtj—2
Uoj2i—1 = : : - @
Uy Ui4-1 Uj4-2 Uj4j5-1
U2;—1 W25 U441 U2i45—-2

Input and output Hankel matrices can be grouped as follows:

U Uf
p Yp p Yp+

where U0|i—1 = Up and Ui|2i—1 = Uf with Up and
Uy denoting the past and future inputs, respectively. The
same logic holds for outputs y(k) and noise e(k). Change
of indices results in Up; = U; and Ujt1ppi-1 = Uy,
respectively.

2) System Related Matrices: Extended (i > n) observabil-
ity (I';) and reversed extended controllability (A;) matrices
for deterministic and stochastic subsystems, respectively are
defined as follows:

L=(C7 (@A LeaAT)T)T @
Al =( A~'B A2B AB B) (5)
Ay =( AT'K AT2K AK K ) (6

The lower block triangular Toeplitz matrix for determin-
istic and stochastic subsystem, respectively are defined as

D 0 .. 0
CB D .. 0

Hl = . . .
CA*= 2B (CA*3B ... D
I 0 .. 0
CK I .. 0

Hf = . . ], ®
CA? K CA3K ... I

and Kalman state sequence as a sequence generated by a
bank of non-steady state Kalman filters [16], working in
parallel on each other of the columns of the matrix W),

C. General Algorithm

The entry point to the algorithm are input-output equations
as follows:

Y, = I.X,+HU,+ H;E,
Yy = T;X;+H{U;+ HE;
X; = A'X,+ AU, + ASE,. )

Oblique projection as described in [17], [15] is the main tool
used in subspace methods. It is defined as follows:

O, =Y /W, (10)
U

or, equivalently,

w.wT w.UT T I
R X ”fT T "' p P Ixl W,
Or=¥; (Wo U7) (UprT UfU;}> ( 0 > "
(11)

where [ is a number of outputs and (QT is Moore-Penrose
pseudoinverse. It holds, that O; = I'; X; [15], where X is
Kalman filter state sequence. The order of the system can be
determined from analysis of singular values obtained using
singular value decomposition (SVD) of W7 O; W5, where W;
are weighting matrices of appropriate size and determine
resulting state space basis as well as importance of particular
element of ;. This decomposition also yields extended
observability matrix I'; and Kalman filter states X;.

Algorithm continues from either I'; or X; in a slightly
different manner depending on particular subspace identifi-
cation algorithm, however, both ways lead to a computation
of system matrices A and C' using least squares method.

Computation of system matrices B and D is the next
step, such that matrices A and C acquired in previous
step. Different approaches for matrices determination are
addressed in detail in [15]. This step is crucial for the
incorporation of the prior information and will be discussed
in detail in the following section.

The algorithm concludes with computation of Kalman gain
matrix K. The essential condition for optimal filter running
is the knowledge of the noise covariance matrices () and
R (state and measurement noise covariance matrices). These
two matrices are used for calculation of Kalman gain K.
In early 70s’ Mehra’s publications on covariance matrices
estimation were published [18]. Then, for a large period,
the estimation of covariance matrices was largely overlooked
and only in 2006 Odelson’s article [19] was published that
offered a new method for ) and R estimation called ALS
[19]. A few more modifications of this method can be found
in [20], [21]. Kalman gain matrix K is the computed in a
standard way using the state and noise covariance matrices
computed using ALS as described in [19].

III. INCORPORATION OF PRIOR INFORMATION

Prior information (PI) is a good tool for improvement of
identification results. Its incorporation can be considered as a
bridge between classical identification approaches based on
time response of unknown system on e.g. step or impulse
response, and statistical based identification methods [4].



System properties such as steady state gain, settling time,
asymptotic stability, dominant time constants, smoothness
of step response etc. can be used in classical approach to
determine the unknown system. The question is, how to
involve at least some of these properties into statistical based
identification, and in particular, into 4SID methods.

Several methods dealing with above problem have been
proposed. They can be generally classified into four groups.

1) Bayesian framework: This method can be character-
ized as a natural way for incorporation of PI because it allows
inference of prior estimate of unknowns system parameters
with information retrieved from measured data. Resulting
posterior conditional probability function can be obtained
using Bayesian rule p(f|y) o 1(6]y)p(0) [22], where p(0) is
prior probability density function of parameters and [(0|y)
the likelihood function for measured data.

Although many satisfactory results were proposed for in-
corporation of PI into ARX or ARMAX model identification
[22], similar strategies do not work well for the class of
4SID methods. This problem is treated in [9], but favorable
results are given only for multiple input single output (MISO)
systems, because presented algorithm is based on structured
weighted lower rank approximation (SWLRA)[23] which
provides optimal solution only for MISO systems. However,
at least suboptimal algorithm is presented in [9], but the level
of optimality is not guaranteed.

2) Direct incorporation of system properties into 4SID
algorithms: The following section tries to sketch out iden-
tification algorithm in simplified way. The incorporation of
all conceivable kinds of PI is shown.

« Computation of extended observability matrix and state
vector sequence W, O;,W, = T';X;. Different 4SID
algorithms make use of different rules for computation
of these matrices (see e.g. [15]).

« Computation of system matrices A and C' based on T;
using least squares method.

o Determination of matrices B and D and possible incor-
poration of prior information in this step. Solution will
be addressed in Section III-A.

« Kalman gain computation.

3) Artificial data: Generation of data with desired proper-
ties is yet another approach how to deal with the weak point
of 4SID, its black-box character (and associated statistical
problems). Such data can contain trends that represent system
in a decoupled form (connection of particular input to
particular output etc.). As the ratio between artificial and
measured data is unknown, the only way how to address
this problem is trial and error method.

4) Frequency domain identification methods: Yet another
approach for system identification is use of frequency domain
methods. It was shown that this approach leads to maximum
likelihood formulation of the frequency domain estimation
problem [24]. Even though there were some proposals (e.g.
[25]) how to incorporate prior information into identification
algorithm, it is still an open problem and a topic of ongoing
research.

In the following incorporation of prior information will be

addressed:

A. Knowledge of Static Gain

Subspace identification process consists of several parts.
Each of them corresponds to a particular property of resulting
system. Matrix A contains dynamics of states, while matrix
C transfers dynamics to the outputs. Therefore, the system
input/output structure is influenced mainly by determination
of matrices B and D, with A and C fixed. Hence, the key
idea is to involve prior information about steady state gain
into latter matrices.

Let matrices A and C' have already been computed by
some 4SID algorithm (e.g. [15]). Knowledge of these matri-
ces can be exploited to compute such matrices B and D, that
lead to desired steady state behavior. This is possible thanks
to the fact, that the sum of elements of impulse response is
equal to the steady state:

D+ CB+CAB+CA’B+...=G,
o D
(a2, CAY) ( B) _q,

where G is a matrix of steady state gains (g;; is a steady
state gain from the j-th input to ¢-th output)

12)

(13)

g11 912 9im
G = : : (14)
git gi2 Jim

In case of asymptotically stable matrix A, the following holds
(Neumann series convergency theorem [26]):

(Inxn — A)7H =) AR, (15)
k=0

Finally, we get resulting formula, which represents the addi-
tional set of constraints that have to be fulfilled:

R v

FS

(16)

Consider any 4SID algorithm that computes matrices B and
D after A and C being already computed. The computation
is performed using least squares method as follows:

B,Dzargmin{HM—L(D> },
B,D B P

where || e || denotes Frobenius norm, and M and L are
appropriate size matrices defined in [15]. It must be said in
this place, that these matrices are defined differently for each
4SID algorithm.

Incorporating constraints (16) can be done in two possible
ways:

a7

o Solve least squares problem with equality constraints

. D D
sy { |y (5)]], m (5) - ¢}
(18)




o Solve weighted least squares problem

. M L D
no e () - (£) (D)),
- (19)

where W is user-defined weighting matrix that guaran-
tees the desired steady state behavior. In case that only
a submatrix G, of the gain matrix G is known, the
constraints (16) can be modified by two square diagonal
matrices S,., S. of appropriate size as

D
SrFs (B) Sc = Gsub~ (20)

Matrices S, S. are “selectors” of relevant rows (S,)
and columns (S.), and contain only ones and zeros for
retaining and disposal of the known gain, respectively.

Computation of matrices B and D in some 4SID algo-
rithms is based on vectorization and Kronecker product, that

is:
vec M — L vec (D) } 1)
B/llr

Using vectorization and Kronecker product, the set of equal-
ity constraints (16) can be expressed in following manner:

B,D = argmin{
B,D

(Lmxm ® T's)vec (g) =vecqG, (22)
which can be readily included in either (18) or (19). Each
input-output channel gain is in one row and therefore, in case
of partial knowledge of G, it is easy to omit respective rows
for unknown gains.

B. Knowledge of input-output feedthrough

Oftentimes in industrial applications, the input-output
feedthrough of the system to be identified is known in
advance. In fact, it is not a rare phenomenon, that there is no
input-output feedthrough present in the system, that is, the
system matrix D is equal to zero. This will be treated in the
following:

Consider again (17), the computation of matrices B and D,
that is, the very last step of subspace identification algorithm
as proposed in [15]. Matrix D can be forced to be zero by a
computation of (17) or (21) using modified matrix L by the
elimination of the columns corresponding to matrix D. The
set of omitted columns differs for two distinct algorithms:

1) Without Kronecker product: Solution to this problem is
given by omitting first [ columns of matrix L in (17), where
[ corresponds to the number of outputs.

2) With Kronecker product: This situation is more com-
plicated than in the first case due to vectorization and
Kronecker product, nevertheless the selection of columns of
L is determined by indices k = 1,2, ...m in set I, given as:

I={k(l+n)—n+1,k(l+n)—n+2,...k(l+n)}.
(23)
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|

Room 2

Heating t Return
water 2 9 water 2

Simplified scheme of model identification setup.

Room 1

(T i}
Heating t Return
water 1 9 water 1

Fig. 1.

IV. IDENTIFICATION RESULTS

Proposed algorithms were implemented and then applied
to data gathered from HVAC system of the building of
the Czech Technical University in Prague. The simplified
scheme of one building block consisting of three inputs
(outside temperature, heating water 1, heating water 2) and
four outputs (room temperature 1, return water 1, room
temperature 2, return water 2) is depicted in Fig. 1.

Data from such an industrial environment do not always
have sufficient quality, they suffer from strong noise con-
tamination, occurrence of outliers, low excitation, etc. In
our case, there is a strong multi-collinearity present in the
data, that is, the conventional control strategies, which have
been used for maintenance of desired temperature levels,
drive both courses (north and south course, as well) of
heating water, so that return waters and room temperatures
had similar behavior and were strongly correlated. Black-
box identification approach was not able to carry out this
problem. Prior information about system structure i.e. steady
state gain or/and no presence of input-output feedthrough had
to be incorporated to get desired results. This can be seen
in Fig. 2, where the step responses of models identified by
different 4SID approaches are shown. Prior knowledge about
steady state gain was in this case selected as follows:

0.5 0.75 0.15

0 09 0
G= 0.5 015 0.75

0 0 0.9

These 4SID methods come, in general, from robust com-
bined deterministic and stochastic algorithm as introduced
in [15]. Moreover two methods from [9] are mentioned for
comparison: i) 4SID — version without changes, ii) 4SID+PI
— Steady state gain was included using (22). Matrix D is
not set to zero, iii) 4SID-D — Matrix D is set to zero but
steady state gain is not included, iv) 4SID-D+PI — Both
types of PI information, i.e. zero D and steady state gain
are incorporated, v) Kung and SWLRA — PI incorporated as
in [9], Kung’s respectively SWLRA realization algorithms
are used to get system matrices. The models retrieved from
the proposed algorithm were verified against validation data
by open-loop simulation, see Fig. 3. SWLRA and Kung’s
algorithms produce poor results therefore the open-loop
responses are not mentioned.

Both figures prove the superiority of the identification
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Fig. 2. Comparison of step responses of systems identified using different algorithms. There is significant improvement in identification results using

prior information about steady state gain.

algorithm with PI included. Identification results can be
summed-up as follows:

e Zero D matrix. There is almost no difference in results
between robust combined algorithm (full matrix D) and
algorithm with zero D matrix. This is useful especially i
in cases, when nonzero matrix D has no physical
meaning in many industrial applications.

e Prior information in matrices B and D. The incor-
poration of known static gain into identification al-
gorithm has different consequences for deterministic
and stochastic (in sense of system with noise) algo-
rithms. In case of deterministic algorithm, the prior
information is able to substitute the lack of information

prior information is not major, however, the incorpora-
tion of prior information enables creation of the model
which has properties equivalent to real physical system
and is valid for control.

Sensitivity of true value of PI. The price for the better
identification performance in case of PI incorporation
must be paid by greater sensitivity to the changes in
parameters, that is, even the slight change in parameters
aggravates identification results (in sense of fit). The im-
portance of prior information in respective parameters
can be decided by weighting matrix in (19).

V. FUTURE DEVELOPMENT

caused by noise (no presence of Kalman filter) and As mentioned in Section III and shown in Section IV
significantly improves identification results. In many there is no SWLRA algorithm for MIMO systems working
cases, it is even not possible to identify system with  properly. This is still a topic of ongoing research. In case
noise using deterministic algorithm without knowledge  of successful solving of this problem, the prior information
of prior information due to the insufficient information  could be incorporated by means of Bayesian network as pro-
and noise contamination and this can be rectified using  posed by [9] even to MIMO systems. Yet another approach
prior information. In case of stochastic algorithm, the = was presented in this article via direct incorporation PI into
differences in fit between algorithm with and without system matrices B and D. There is, however, PI of certain
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type (e.g. dynamics) which could be incorporated directly
into matrices A or C, however, this approach is still unknown
and topic of possible research as well.

VI. CONCLUSIONS

The proposed algorithm presents incorporation of PI into
the subspace identification methods. The incorporation is
performed directly into system matrices B and D, thus
enables certain type of prior information, e.g. static gain. The
incorporated PI is able to significantly improve identification
results and substitute the lack of information in input-output
data. Moreover, it notably improves model for control pur-
poses by approaching to physical system structure. However,
the quality of identification is sensitive to the accuracy of
prior estimate of parameters. The constructed model has
been used for temperature control in real operation of the 8-
floor building of the Czech Technical University in Prague.
The predictive control with model identified using algorithm
proposed in this paper proved to save 23% of energy required
by the weather-compensated controller.
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Model Predictive Control of Buildings:
The Efficient Way of Heating

Lukas Ferkl, Jan §ir0k}’/, Samuel Privara

Abstract— The implicit model predictive control based on
models identified by subspace identification methods was im-
plemented and tested on a large university building. The control
was improved by incorporating the weather prediction into the
model. The performance of said controller was estimated in
an experiment, wherein two almost identical building blocks
were compared — one controlled by the model predictive
control, and the other one by the existing weather-compensated
heating controller. The model predictive control achieved energy
consumption lower by approximately 10 %. Based on the
positive results, an implementation was developed, which is
suitable for commercial applications.

I. INTRODUCTION

According to the U. S. Energy Information Administration,
in 2005, buildings accounted for 39 % of total energy usage,
12 % of the total water consumption, 68 % of total electricity
consumption, and 38 % of the carbon dioxide emissions in
the U. S. A. [1]. Although the energy efficiency of systems
and components for heating, ventilating, and air conditioning
(HVAC) has improved considerably over recent years, there
is still potential for substantial improvements. This article
deals with an advanced control technique, that can provide
significant energy savings in comparison with conventional,
non-predictive techniques.

Widely used control strategy of water heating systems is
the weather-compensated control. This feedforward control
can lead to poor energy management or reduced thermal
comfort even if properly set up, because it utilizes current
outside temperatures only. Weather conditions, however, can
change dramatically in few hours; and due to the heat
accumulation in large buildings, it can lead to underheating
or overheating of the building easily.

During recent years, significant advances have been done
for the HVAC control systems. For instance, continuous
adaptation of control parameters, optimal start-stop algo-
rithms, or inclusion of free heat gains in the control algo-
rithm are particular improvements of the building heating
system. The model predictive controller presented in this
article introduces a different approach to the heating system
control design. As the outside temperature is one of the most
influential quantity for the building heating system, weather
forecast is employed in the predictive controller. It enables
to predict inside temperature trends according to the selected
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control strategy. The aims of the control can be expressed in
natural form as thermal comfort and economy trade off.

II. MODEL PREDICTIVE CONTROL

Model (Based) Predictive Control (MPC) is a method of
advanced control originated in late seventies and early eight-
ies in the process industries (oil refineries, chemical plants,
...) ([21, [3], [4], [5]). The MPC is not a single strategy,
but a vast class of control methods with the model of the
process explicitly expressed trying to obtain control signal by
minimizing objective function subject to (in general) some
constraints.

The minimization is performed in an iterative manner on
some finite optimization horizon to acquire N step ahead-
prediction of a control signal that leads to the minimum value
of the criterion, subject to all constraints. This, however,
carries lots of drawbacks such as no feedback, no robustness,
no stability guarantee, etc. Many of these drawbacks can
be overcome by applying so-called receding horizon, i.e.
at each iteration only the first step of the control strategy
is implemented and the control signal is calculated again,
thus, in fact, the prediction horizon keeps being shifted
forward. Stability of the constrained receding horizon has
been discussed in [6], [7], or yet another approach using
robust control design approach in [8].

There were several attempts made to utilize predictive
control concept in HVAC in the last decade [9], [10], [11].
Complex view into area of optimal building control gives the
project OptiControl!. Besides its own results, it also provides
a wide range of references to the related articles. Another
project worth to mention is the Predictive Networked Build-
ing Control that deals with predictive control of the thermal
energy storage on the campus of the UC-Berkeley?. Most of
the articles devoted to the HVAC predictive control conclude
results just by numerical simulations. On the contrary, this
article describes MPC being tested on the real eight-floor
building (see Fig. II).

A. Model identification

One of the crucial contributors to the quality of the control
is a well identified model which will be later on used for
control in MPC algorithm. There are several completely
different approaches to system identification including phys-
ical modeling, CFD modeling or statistical identification. As
traditional methods are rather time consuming for buildings,

"http://www.opticontrol.ethz.ch
’http://sites.google.com/site/mpclaboratory/
research/predictive-networked-building-control-1



Fig. 1.
used for MPC application

The building of the Czech Technical University in Prague that was

we have turned towards statistical identification methods,
and, more specifically, towards subspace methods [12], [13],
[14].

The objective of the subspace algorithm is to find a linear,
time invariant, discrete time model in an innovative form

z(k+1) = Az(k)+ Bu(k) + Ke(k)
y(k) = Cuxz(k)+ Du(k) + e(k), 1)
where A, B, C, and D are system matrices, K is Kalman
gain — derived from the Algebraic Riccati Equation (ARE)

[15], and e is a white noise sequence. This model is equiv-
alent to the well-known stochastic model

x(k+1) = Ax(k)+ Bu(k)+ w(k)
y(k) = Cux(k)+ Du(k) + v(k), 2)
with
_ w(p) T T _
coviw.) = £(| 40| [ W@ ) ]) -
= { SQCT ; ] dpg > 0, 3)

wherein matrices @), S and R are covariance matrices of pro-
cess and measurement noise sequences, respectively. Loosely
speaking, the objective of the algorithm is to determine the
system order n and to find the matrices A, B, C, D and K.

The main difference between classical and subspace iden-
tification is, given the sequence of input data «(k) and output
data y(k), as follows:

o Classical approach. Find system matrices, then esti-
mate the system states, which often leads to high order
models that have to be reduced thereafter.

o Subspace approach. Use orthogonal and oblique pro-
jections to find Kalman state sequence (see [15]), then
obtain the system matrices using least squares method.

The differences in the approaches can be seen in Fig. 2[16].
The entry point to the algorithm are input-output equations
as follows:

Y, = DIXJ+HU,+Y}
Yy = D X§+HUf+ Y}
X{ = A'X]+ AU, )

10 sequences

Subspace Classic

State sequence A,B,C,D

+ Least squares + Kalman filter

A,B,C,D,K Kalman states

Fig. 2. Comparison of classical and subspace identification methods

where Y}, and Y are the Hankel matrices of past and future
outputs, U, and Uy are the Hankel matrices of past and
future inputs, XZ and XJ‘? are the deterministic Kalman state
sequences, Y;f and Y]f are the stochastic Hankel matrices
of past and future outputs, H is the lower block triangular
Toeplitz matrix for the deterministic subsystem (which con-
tains all matrices A, B, C' and D), T'; is the extended system
observability matrix (which contains the system matrices
A and C) and A¢ is the deterministic reversed extended
controllability matrix (which contains system matrices A
and B). More details about constructing said matrices can
be found in [12], [16], [17]. Using combined algorithm
described in [17], we get

)?i+1 A B Xi Pw

= 5
[ Y ] [ ¢ D Uil * O )
with X; = )Afi)?o .. » Where )/(\'0 is oblique projection defined
by [17] as: ’

Xo=X4/u,Up, (6)

where P, is state covariance matrix, and we can determine
noise sequence covariance matrices (), S and R from the
residuals, which are defined by Eq. (3). Solving Eq. (5) using
least squares methods, we get the state space system descrip-
tion of the system, namely the system in the innovation form
(Eq. (1)) with matrices A, B, C', D and K.

B. Predictive controller

MPC strategy. The MPC strategy comprises two basic
steps:

o The future outputs are predicted in an open-loop man-
ner using the model provided information about past
inputs, outputs and future signals, which are about to be
calculated. The future control signals are calculated by
optimizing the objective function, i.e. chosen criterion,
which is usually in the form of quadratic function. The
criterion constituents can be as follows:

— errors between the predicted signal and the refer-
ence trajectory (k)

— control effort

— rate of change in control signals



o The first component of the control sequence u(k) is
sent to the system, whilst the rest of the sequence is
disposed. At the next time instant, new output y(k + 1)
is measured and the control sequence is recalculated,
first component u(k+1) is applied to the system and the
rest is disposed. This principle is repeated continuously
(receding horizon).

The reference trajectory r(k), temperature in the room in
our case, is known in advance as a schedule. The major
advantage of MPC is the ability of computing the outputs
y(k) and corresponding input signals u(k) in advance, that
is, it is possible to avoid sudden changes in control signal
and avoid the undesired effect of delay in system response.

MPC problem formulation. For given linear, time invari-
ant, discrete model

z(k+1) = Az(k) + Bu(k)
y(k) = Ca(k) + Du(k) M

find the optimal control sequence on the horizon of prediction
(length T') by minimizing the objective function

T—-1
T = q(t) (y(k) — r)* + r(k)u(k)?, ®)
k=0
subject to
Umin < (2 < Umaz
(y - 7')min, < (y - T) < (y - T)maac
Aminf S Af S Amawg (9)

where constraints Umin, (Y —7)mins Amin and Umaz, (Y —
) mazs Amae are minimum and maximum values of the
control signal, error of the output signal from reference and
a rate of change of control signal or error of the output signal
from reference, respectively. J is the value of the objective
function, r is the reference trajectory, y and w are output
and control signal (denoted without specification of a time
instant k). The criterion (Eq. (8)) can be rewritten into a
matrix form

J=(y—-r)"Qy—r) +u"Ru, (10)

where Q and R are weighting matrices of output error and
control effort, respectively. The trajectory of the output is
given as:

y(0) C
y(1) CA
: - : Lo +
y(T—1) CAT-1
D u(0)
CB D u(1)
+| ’ | an
CAT-2B cB D || wr-1

i.e.
(12)

where I' is observability matrix and H is matrix of impulse
responses. Using Eq. (12), we can rewrite Eq. (10) as follows:

J = Txo+ Hu—r)'Q(Txo + Hu — 1) +u” Ru. (13)

If the constraints (Eq. (9)) are not taken into account,
model of the system is linear, and the criterion is quadratic,
minimization problem Eq. (8) can be solved analytically —
using methods such as completing the square or Lagrange
multipliers, etc., leading to the optimal control sequence in
the form of

u=—(H'QH + R)"'H"Q(Tzo + Hu—r), (14)

otherwise iterative methods have to be used. In the case of
quadratic criterion and constrained optimization problem, a
quadratic programming is one of the most popular solu-
tions built in the most of the modern optimization pack-
ages. Alongside to the many commercial software, such as
APC Library (Siemens), Pavilion8 (Pavilion Technologies),
ADMC & DMCXI1 (Cutlertech), RMP(Honeywell), etc.,
there is also a free software, e.g. Scilab? and its optimization
routines.

III. CASE STUDY

The methods described in the previous section were tested
in spring 2009 at the building of the Czech Technical
University in Prague. All algorithms were implemented in
Scilab.

A. Description of the Building

The building of the Czech Technical University in Prague
uses a Crittall [18] type ceiling radiant heating and cooling
system. The Crittall system, invented in 1927 by R. G.
Crittall and J. L. Musgrave, was a favorite heating system
in the Czech Republic during 1960s for large buildings. In
this system, the heating (or cooling) beams are embedded
into the concrete ceiling. The control of individual rooms
is very complicated due to the technical state of the control
elements in all rooms. The control is therefore carried out
for one entire building block, i.e. the same control effort is
applied to all rooms of the building block. There are three
building blocks with the same construction and orientation.
Therefore, this situation is ideal for comparison of different
control strategies, as depicted in Fig. 4.

A simplified scheme of the ceiling radiant heating system
is illustrated in Fig. 3. The source of heat is a vapor-liquid
heat exchanger, which supplies the heating water to the water
container. A mixing occurs here, and the water is supplied
to the respective heating circuits. An accurate temperature
control of the heating water for respective circuits is achieved
by a three-port valve with a servo drive. The heating water
is then supplied to the respective ceiling beams. There is one
measurement point in a reference room for every circuit. The
setpoint of the control valve is therefore the control variable
for the ceiling radiant heating system in each circuit.

30pen source scientific software package for numerical computations
(http://www.scilab.org/)
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B. Description of the model

The ceiling radiant heating system was simplified into a
linear, time invariant mathematical model. Outside temper-
ature prediction and heating water temperature were used
as the model inputs. Prediction of the outside temperature
is composed of two values, T},., and T},;,, defining a
confidence interval. The only output of the model was
the inside temperature. This can be formalized according
to Eq. (7) as

Tmin
z(k+1)=Ax+ B | Thax
Thw
Tmin

Tmax 9

Th w

Tip =Cx+ D (15)

where Tp,, is the temperature of the heating water and
T;, denotes the inside temperature. The state x has no
physical interpretation, when identified by means of the
subspace identification. System order is determined by the
identification algorithm.

Modeling of the heating system of the CTU building is
discussed in detail in [19].

C. Results

Two nearly identical blocks of the CTU building were used
for testing. The first block was controlled by the weather-
compensated controller, while the second one by predictive
controller. The current weather compensated control is well
tuned up thanks to long term experience with the building.
Testing was performed from March 24 to March 30, 2009,
which was the end of the heating season in the Czech
republic. That highlights the advantages of the predictive
control, because there are days when there is no need of
heating at all. The model predictive controller was able to
identify those gaps where no control was needed, thus save
energy. This can be seen in Fig. 4.

The efficiency of the predictive control was superior to the
weather-compensated controller by about 10 %.

IV. REMARKS TO FUTURE DEVELOPMENT

As already stated, subspace identification represents one
of the black-box approaches to system modeling. This,
alongside with its advantages, carries also some drawbacks:

o The system might not be excited enough [12], i.e. the
input of the system does not excite the system on
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Fig. 4. Measured trends of the heating water temperature controlled by
the weather compensated control and the predictive controller

satisfactory number of frequencies, thus identification
algorithms lack considerable amount of information.

e User may have knowledge of some key feature or
characteristics of the physical essence of the system,
which is “lost” in the number of data.

o Natural characteristics of the data might pose consider-
able statistical problem.

Future development of the identification algorithm will try
to remedy the above-mentioned problems. One way which is
still not full discovered* is incorporating of prior information.
This approach make use of Bayesian approach [20] to the
system identification and changes nature of the subspace
identification method towards grey-box identification.

Another aspect of the identification is the persistency of
the excitation or the excitation itself. Data gathered from the
measurement lack some important physical characteristics
of the building. One of the possible approaches how to
deal with this weak point is to generate artificial data that
already contain the desired properties. There is also another
possibility, more expensive though — a specially proposed
experiment on real building, which is about to be done in
the beginning of 2010.
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VI. CONCLUSION

It is obvious, that predictive control has a great potential
in the area of building heating control. Especially in case
of buildings with great heat accumulation capabilities. The
results from one week testing in spring 2009 are very
encouraging. Testing confirmed our empirical experiences
and the efficiency of the predictive controller was superior
to the present well tuned weather compensated controller.
However, it is a complicated technique and launching of

4Some methods (SWLRA) algorithms are capable of handling incorpora-
tion of prior information to SISO system, but algorithm for MIMO system
is still missing



the predictive controller requires deep knowledge of iden-
tification methods and predictive control. It is questionable,
whether this drawback can be overcome in the future and
the tuning of the predictive controller would be feasible for
wide range of practitioners.
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Energy Savings Potential of a Model-Based Controller for Heating:
A Feasibility Study

Lukas Ferkl, Clara Verhelst, Lieve Helsen, Alexandr Ciller, Dana Komarkova

Abstract—1In order to provide decision-making mechanism
for application of model-based control of heating systems in
buildings, a method has been proposed that assumes the energy
balance calculation as the performance bound for the model-
based controller. If the performance bound is significantly lower
than the actual energy consumption, a more accurate estimate
is made by means of dynamic model identification and model-
based controller simulation. Said method has been tested as a
case study on a health care center located in Prague, Czech
Republic.

I. MOTIVATION

Previous research has already shown a great potential of
savings achieved by model-based controllers, both in theory
and practice. While theoretical results of the OptiControl
project at ETH Ziirich predict savings of 16-41 % [1] [2],
practical results are very promising as well (27 % for TABS
heating in Prague [3] and 24.5 % for cooling in Berkeley [4].
In order to promote more applications on building HVAC
systems, it has to be noted that not all buildings are suitable
for model-based control. The main criterion is the savings
potential — if it is not high enough, the investment into the
model-based control implementation does not return back
in a reasonably short time (e.g. 5 years, which considered
reasonable in construction, with respect to other investments)
and the landlord is going to be rather disappointed. We have
therefore proposed the following guideline, which should
help to evaluate the savings potential for a specific building
and provide a reasonable output, such that a sound decision
can be made on whether to upgrade the building control
system by a model-based controller or not.

The guideline is as follows:

1) Calculate the energy balance of the building using
some standard means of calculation (such as energy
audit or energy label [5]).

2) Compare the energy balance (i.e. static building energy
losses) with the actual energy consumption.

3) If savings potential is reasonable (e.g. 15 % or more),
identify a dynamic model of the building.

4) Design a model-based controller.
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D. Komarkova is with Technofiber, Lazaretni 1/7, 615 00 Brno
dkomar@fi.muni.cz

5) Compare the savings achieved by the model-based con-
troller with the energy balance. If the results comply
to each other, the building is suitable for model-based
controller implementation.

II. NECESSARY SIMPLIFICATIONS

In order to make the feasibility analysis simple enough
and straightforward, several assumptions had to be made.

o Continuously working heat pumps. Even though heat
pumps usually work in an on-off regime, we assume
that they operate continuously. In practice, this would
be achieved by a PWM modulation of the control signal.

o No weather prediction. The model-based controller will
operate one a one-step ahead control horizon, as we
assume that historical weather-prediction data are not
available. Even though outside temperatures are usu-
ally stored within building energy management systems
(BMS, EMS), the weather forecast is not. Moreover,
the weather data are very costly in the Czech Republic
(about 800 EUR/year for a single location), we will be
on the safe side of the analysis even without the weather
data.

o A single simulation & control model. We will use the
identified model for both simulation and control. Even
though this breaks one of the basic rules of controller
design, we in fact have no other option, as i) two models
have to be constructed with different methods, which is
costly for the purposes of a feasibility study, and ii)
we want to calculate a performance bound, therefore
assuming we have a good model, the single-model
simulation would approach the performance of a two-
model simulation.

o Coefficient of Performance (COP) of the heat pumps.
Coefficient of Performance is an efficiency measure for
heat pumps defined as

Qw

hp

cor = ey
wherein th is the heat delivered by the heat pump and
By is the heat pump compressor power.

The international standard for COP calculation [6] is
not specific enough and as has been shown by [7],
manufacturers of the heat pumps often overestimate
their coefficients of performance. Unfortunately, we did
not have data available that would allow us to calculate
the real COP; therefore, we rely on the heat pump
manufacturer’s data.



III. THE BIOREGENA BUILDING

BIOREGENA is a private health care center, located in
Prague, Czech Republic. Due to the climatic environment,
cooling is not a concern, as temperatures in the Czech
Republic seldom require massive cooling of buildings. The
building was built in 1970’s and is made of concrete shell.
In 2006, a general refurbishment took place — new windows
and facade insulation have been installed, as well as new gas
boilers and heat pumps (air-to-water) along with a digital
control system. The building is heated by radiators, the
heating system has three branches that go into three separate
parts of the building. This study will only focus on one block
of the building, as the other blocks are similar from the
construction point of view. The building is shown in Fig. 1.

IV. PERFORMANCE BOUND

In order to calculate the performance bound for the heating
system, we will estimate the energy losses based on energy
balance of the building using the “envelope method”. This
method is a basis e.g. for energy label, as described in [5].
The result of the calculation is yearly energy losses in GJ, the
equations are based on physical properties of the construction
elements, such as:

« geographical location and orientation of the building

« material, thickness of the walls and windows

o thermal bridges

e occupancy

« window ventilation

e cfc.

Basically, there are tens of algebraic equations needed to
estimate the yearly energy losses; the entire set of equations
is described in [5]. Unlike the ISO norm, we also considered
uncertainties in the estimates of physical parameters based
on the expertise of the construction engineers involved in the
project. We considered several values of uncertainties:

e 0 % — wall thickness, window areas, etc.

e 10 % — e.g. wall and roof heat conductivity

e 15 % — e.g. losses through ground

e 20 % — e.g. air exchange ratio
For the BIOREGENA building, the energy losses were
calculated as 807 & 286 Gl/year. This corresponds to total

Fig. 1.

Bioregena, the building of our concern
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Fig. 2. Energy label of the BIOREGENA building

heat losses of 4513 + 750 W/K, or equivalently to a heat
transfer coefficient of 0.85 + 0.14 W/(m?K), which means
that the building complies with the requirements for the C-
class building — see Fig. 2, which is very common for pre-
1990, re-insulated buildings in the Czech Republic.

V. DYNAMIC MODEL ESTIMATION

There are several ways to estimate the dynamic model
of the building. The first option is to use measured data to
obtain an LTI model using some statistical methods, such
as ARX model estimation or subspace identification [8][9].
An example comparing both approaches can be found e.g.
in [10].

For the case of BIOREGENA building, we have decided
to identify a physical (or first-principle) model, in an off-
line identification process. The main reason was that we had
measured data available and the system is small-scale (it only
contains one heating branch), so first-principle model should
yield fair results with less effort than statistical identification,
which was the experience gained in our previous work,
described e.g. in [3].

We chose the description of the system according to [11]
in the following way:

ExdE

{ Trewn(t)

Tzone(t) :|+ (2)




where

Tietarn  rEturn water temperature

Tyone zone temperature

Tout outside temperature

Quor total heating power input

Kuw= heat transfer coefficient between the water
and the zone

Pw water density

Cw water specific heat capacity

Vi water volume in the heating system

kp transfer coefficient between the zone and
the ambient air

Th principal time constant of the building

In the sense of model-based control, the total heating
power input Qo is our manipulated variable (MV, system
control input), outside temperature Tg, is a disturbance
variable (DV), zone temperature T,y is a controlled variable
(CV, system control output) and return water temperature
Tleturn 1S @ measured system state.

However, we do not need to identify every single parame-
ter of the building model. If we look at Equation (2) carefully,
we can see that there are in fact only four structural parame-
ters and the equation can be simplified in the following way
by substitution:

[ Tretumn (t) }

Tzone (t)
— |: —a a :| |: T'retum(t) :|+ (3)
¢ —(c+4d) Toone(t)

ool d]

d 0 || Qut

In the yearly data, 5 representative data samples were
chosen, such that the entire temperature range was covered.
As an identification tool, we used the ACADO Toolkit [12],
which was used for control calculation as well.

The numerical results from the system identification can
be seen in Tab. I. We can see that the respective models show
differences, which are significant for some of the parameters.
Parameters a and b do not vary a lot, which means that the
identification of the model corresponding to the return water
temperature Tieq, 1S quite accurate. However, variation of
parameters ¢ and d is significant; on the other hand, the
overall fit for one-step ahead prediction of the models was
satisfactory for control purposes.

The graphical results can be seen in Fig. 3 and Fig. 4.
Figure 3 shows the identification procedure on the data set
covering the outside temperature Ty, around 0 °C; we can
see that for an identification over one-day data, the match
for the next day is reasonable. We have also observed that
the best identification result is achieved if identification stops
close the first heating impulse in the morning, which might
contain high-order dynamics not present in the model (2)
and hence mislead the identification algorithm. However, this
effect does not occur when identifying the model with a
sampling period of 60 minutes (Fig. 4).

TABLE I
COMPARISON OF DIFFERENT DATA SAMPLES AND
THE IDENTIFICATION RESULTS.

Data Sampling No. of a b c d
set  [min] samples [—] [x10~1x107tx1072x10~3
1. 10 101 5.836 3.808 1.300 6.306
2. 10 156 4702 2.624 3.705 8.300
3. 10 174 4329 2.904 0.456 0.804
4, 10 107 4.875 3.292 1.310 5.091
5. 10 121 4.825 3.437 0.163 0.815
6. 60 67 8.000 5.383 10.45 0.345

We can see that for the model identified with the 60 min-
utes sampling period shows a good prediction over about 5
days. But after some discussions with the facility manager
of the building, we decided to not use it as the controller
model, as the control action has to be changed more often
due to operational characteristics of the building. Moreover,
the weather prediction is not good enough for the Prague
region (see e.g. [10]) for the period of 5 days ahead, and in
reality, this would be a significantly limiting factor.

VI. CONTROLLER DESIGN

As already stated, the model-based controller will be
used for comparison with the static losses computation, as
introduced in the previous sections. We have mentioned that
the method introduced in this paper is meant to be used
as a feasibility study for implementation of advanced con-
trollers. As historical weather prediction data are usually not
commonly available, we have decided to use a model-based
controller with a one-step ahead control horizon (i.e. MPC
with one-step prediction). It is obvious that this controller is
on the save side — the savings achieved by longer prediction
horizons will be even larger.

First of all, we have to determine the coefficient of
performance COP of the heat pumps:

COP = f(Ti'etuma Tout) (4)

Based on technical sheet data, there were six C'OPs
known for two return water temperatures Tienm (35 and 50
°C) and three outside temperatures Ty (-15, 0 and 7 °C).
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These data were interpolated by a quadratic function, which
was further limited by two constraints:

1) COP>1

2) COP does not rise anymore with outside temperatures

Tout > 15 °C.

In order that the controller gives us smooth control action,
we have two possibilities. One is to incorporate this require-
ment into the optimization solver (most of the solvers enable
this option), the other one is to define a new dummy state x3,
which will reflect the change in the control action Qtot(t):

i3(t) = 73 - (Qu(t) — 3(1)) (5)

where 73 is an arbitrary time constant which may be used to
tune the “smoothness” of the control input Qlot(t); T3 was
tuned to 1 in our case, as further smoothing of the control
input was not necessary.

Now we can introduce the control cost function. We will
minimize the criterion

{Ji +J2+ J3} (6)

. in
th(t)7ans(t)
wherein Jq, Jo and J3 are defined as follows.
The first criterion term minimizes the price of the heat (in
terms of money):

J={1-K)-...
S (6)-electricity o .
. (th< ) gechl(?)ty PTIC® 1 gas priC6~ans(t)>} @)

where K is used for tuning, electricity and gas price are
calculated in such a way that electricity price+gas price = 1,
th(t) is the electrical power in [kW] and ans(t) is the gas
heat power in [kW], assuming that burning of 1 [m?] of
natural gas yields 10.6 [kWh] of heat. The prices were taken
as fixed, according to the current state in the BIOREGENA
building (5 CZK/kWh! for electricity and 15 CZK/m3 for
gas); however, use of variable prices (e.g. day and night) is
straightforward. Now we get that

Qtot(t) = th(t) + ans(t)'

'T EUR = 24.5 CZK (Czech Crown), as of February 2011.
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Fig. 5. Control, outside temperature 7oy well below 0 °C.

The next criterion term has to minimize the difference
between the required and actual zone temperature 7one:

o= {L- K (Tanelt) = Tonerex(®)* ) ®)

where L is yet another tuning parameter used to set pro-
portion between criteria (8) and (9). The last requirement
we have is the smoothness of the control action, which is
achieved (with reference to Eq. 5) by the following criterion
term:

Js = { K (L= 1)(Quilt) - w3())} ©)

According to the above equations, the controller will be
defined as

Qm[(t):arg ~ min
th(t):ans(t)

{J1+J2+J3}} (10)

The results of the controller simulation are shown in Fig. 6
for temperatures around 0 °C and in Fig. 5 for temperatures
well below 0 °C. It is around 0-5 °C where the heat
pumps take over the heating of the building, while they
remain inactive below O °C. This is due to currently low
price of natural gas and expensive electricity. The usage of
heat pumps would be even narrower if proper COP were
available — as already noted, heat pumps manufacturers tend
to overestimate the COP due to imprecise requirements of
the respective standard [6].

I has to be noted again that the same model was used
for both simulation and control, as we have explained in
Section II.



—T . [°C]

; : ; —— Heat pump power [KW.10™]
— Boiler power [kW.lO’l]
20F — Treturn ['C1
—T.__[rq
zone

COP [-]

15

10

R S S S,
e -

Fri-00 Fri-12

Sat-00 Sat-12 Sun-00

time [day-hour]

Sun-12

Fig. 6. Control, outside temperature 7oy around 0 °C.

VII. COMPARISON OF THE STATIC AND DYNAMIC
PERFORMANCE

Now we have to compare the results from the static and
dynamic performance analysis. For evaluation, the yearly
data were divided into 5 groups corresponding to the iden-
tified models and yearly energy consumption of the model-
based controller was calculated. No cooling is installed on
the building. The model-based controller predicts average
savings of 36.25 % per year; the simulation also shows
that maximum savings (close to 50 %) can be achieved for
outside temperatures around 75, = 7 °C. This corresponds to
the experience with model-based predictive controller, which
was implemented in 2010 on an office building and has been
in full operation for more than one year now (see [3]); also
in this real case, the MPC has the largest savings potential
around 5-10 °C. The reason of this is subject to ongoing
research and the problem is still open, there are two major
hypotheses at the moment:

1) State-of-the-art controllers (PID, heating curve) tend to
perform frequent switching and get “confused” easily;
comfort range tracking is also troublesome for said
controllers, which might be additional clue to the
problem.

2) The building insulation is never perfect and dew point
becomes an issue for said temperatures; this is not
reflected by the state-of-the-art controllers, but the in-
formation is somehow incorporated in the statistically
identified models. This could also explain variations of
the ¢ and d parameters in Tab. L.

As a result, the model-based controller showed energy
consumption 811 Gl/year, while the static losses were calcu-
lated to 807 GJ/year (Fig. 7). Even though the match looks
perfect, it has not to be overestimated, due to the uncertainty
region of the static losses and simplifications mentioned in
Section II.

The figures also show that the model-based controller does
not use the heat pumps, when outside temperature is below
ca. 5 °C, due to the ratio of the electricity and gas price
(gas is much cheaper than electricity). One could find the
ratio of the electricity and gas price, which would make the

1286 GJ/year

Fig. 7.

Achieved savings

investment into a heat pump economical, but this was not
the purpose of this paper.

VIII. CONCLUSIONS AND NEXT STEPS

Our aim was to validate a method to estimate the energy
savings achievable by modern controllers, such as MPC,
compared to state-of-the-art controllers. The method com-
prises of two steps: First, the energy consumption compared
to the static losses based on the widely used EN 12831
standard [5]. If the savings potential is significant, the second
step is to identify a dynamic model of the building and
to perform a simulation with a model-based controller, as
proposed in this paper. If the results correspond to each other
and the savings are significant, the building would be suitable
for application of a modern controller, such as MPC.

The results for the case of the BIOREGENA building show
that the estimated static heat losses indeed correspond to
the simulation results for the dynamic building model with
an ideal, optimal controller. However promising this result
is, it has to be evaluated on more buildings for general
conclusions. One should also keep in mind the simplifica-
tions of Section II, which make the savings potential rather
optimistic.

The next step would be implementation of the controller,
with all the neglected factors mentioned in Section II taken
into account. Unfortunately, there are technical problems
with hydraulic separation of the heating circuits for the
BIOREGENA building which hindered implementation of
MPC during the 2010/11 heating season (all the heating
system has to be drained to fix the problem, which is
impossible during winter). We hope that application in the
next season, along with more feasibility studies, will provide
more confidence in the method described in this paper and
help to spread implementations of advanced controllers in
building automation.
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This paper presents model predictive controller (MPC) applied to the temperature control of real build-
ing. Conventional control strategies of a building heating system such as weather-compensated control
cannot make use of the energy supplied to a building (e.g. solar gain in case of sunny day). Moreover
dropout of outside temperature can lead to underheating of a building. Presented predictive controller
uses both weather forecast and thermal model of a building to inside temperature control. By this, it can
utilize thermal capacity of a building and minimize energy consumption. It can also maintain inside tem-
perature at desired level independent of outside weather conditions. Nevertheless, proper identification
of the building model is crucial. The models of multiple input multiple output systems (MIMO) can be
identified by means of subspace methods. Oftentimes, the measured data used for identification are not
satisfactory and need special treatment. During the 2009/2010 heating season, the controller was tested
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on a large university building and achieved savings of 17-24% compared to the present controller.
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1. Introduction

According to the U.S. Energy Information Administration, in
2005, buildings accounted for 39% of total energy usage, 12% of the
total water consumption, 68% of total electricity consumption, and
38% of the carbon dioxide emissions in the U.S.A. [1]. Although the
energy efficiency of systems and components for heating, ventilat-
ing, and air conditioning (HVAC) has improved considerably over
recent years, there is still potential for substantial improvements.
This article deals with an advanced control technique, that can pro-
vide significant energy savings in comparison with conventional,
non-predictive techniques.

Widely used control strategy of water heating systems is the
weather-compensated control. This feedforward control can lead
to poor energy management or reduced thermal comfort even if
properly set up, because it utilizes current outside temperatures
only. Weather conditions, however, can change dramatically in few
hours; and due to the heat accumulation in large buildings, it can
lead to underheating or overheating of the building easily.

During recent years, significant advances have been done for the
HVAC control systems [2-6]. For instance, continuous adaptation
of control parameters, optimal start-stop algorithms, optimiza-
tion of energy loads shifting [7], or inclusion of free heat gains in
the control algorithm are particular improvements of the build-

* Corresponding author. Tel.: +420 776 697 672.
E-mail addresses: samuel.privara@fel.cvut.cz (S. Privara), jan.siroky@rcware.eu
(J. Siroky), lukas.ferkl@fel.cvut.cz (L. Ferkl), jiri.cigler@fel.cvut.cz (J. Cigler).

0378-7788/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.enbuild.2010.10.022

ing heating system [8]. Some new concepts have been verified by
simulations [9,10], nevertheless they are still waiting for real oper-
ations. The model predictive control, [11-15] (MPC) presented in
this article introduces a different approach to the heating system
control design. As the outside temperature is one of the most influ-
ential quantity for the building heating system, weather forecast is
employed in the predictive controller. It enables to predict inside
temperature trends according to the selected control strategy. The
aims of the control can be expressed in natural form as thermal
comfort and economy trade off. Unfortunately, this concept has
some drawbacks, such as extensive computational requirements or
necessity of a mathematical model of the physical system (building
in this case).

All these issues are discussed in detail in following sections,
which are organized as follows. Section 2 compares the current con-
trol techniques with MPC. Section 3 introduces model predictive
control concept more in detail and explains the mathematical back-
ground of this technique. This section also addresses new modified
zone model predictive controller. Problem of the model identifi-
cation is discussed as well. Application results are summarized in
Section 4. Remarks to future development are outlined in Section
5. The last section concludes the work.

List of abbreviations used throughout the article is mentioned
in Table 1.

2. Current heating control strategies

Let us briefly compare the major state-of-the-art heating
control techniques - on-off room temperature control, weather-
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Table 1

Notation.
Abbrev. Meaning
ARX Auto-regressive model with external inputs
ARMAX Auto-regressive, moving average model with external inputs
CTU Czech Technical University in Prague
HVAC Heating, ventilation and air-conditioning systems
MIMO Multiple-input, multiple-output systems
MPC Model predictive control
OE Output error model
PID Proportional - integrative — derivative controller
SISO Single-input, single-output systems
WC Weather-compensated control

compensated control, and PID [8] control — with the proposed
application of MPC.

The on-off room temperature control is the simplest type of
control; the heating devices in a room are switched on and
off (device state S) according to some room temperature error
(et =trequired — troom) threshold, usually implemented as a suitable
hysteresis curve fo,_qff:

S = fon-ott(er) (1)

This is a very simple feedback control, which does not contain any
information about the dynamics of the building. The main advan-
tage is its simplicity.

On the contrary, the weather-compensated control is a feedfor-
ward control, which also does not contain any information about
the building dynamics. The temperature of the heating medium,
such as water (twater), is set according to the outside temperature
toutside DY means of predetermined heating curves fi-c, that is

twater =fw—C(toutside) (2)

In spite of the lack of dynamics in the control, this is a long used and
proven control strategy; its advantage is its robustness and simple
tuning.

PID control is one of the most favorite strategies of control engi-
neers [16,17]. It is a feedback control with some information about
the system dynamics, thatis, the heating water temperature tyater iS
determined according to the room temperature error e; and “some”
history:

twater = fpip(er,history) (3)

PID controllers are robust and allow accurate tuning, but they can-
not reflect the outside temperature effects. This is the reason why
PIDs in HVAC control are not as common as in other control appli-
cations.

Even though all the above controllers are easy to tune for single-
input, single-output (SISO) systems, their tuning for multiple-input
multiple-output (MIMO, sometimes called multidimensional) sys-
tems becomes very difficult or even impossible in practice. The PID
control can be applied to MIMO systems only in very rare occasions,
in case of specially structured (input-output decoupled) systems.

We would therefore appreciate some control strategy, which
would have a feedback (i.e. the room temperature error e; is used),
use as much information as possible (the outside temperature
toutside» the weather forecast tpredicted, and others x) and include
some system dynamics (“history”) as well. This can be formalized
- in the spirit of the above Egs. (1)-(3) - as

twater = fmpc(€t; toutsides Cpredicted> x,history) (4)

These requirements are satisfied by a so-called model (based) pre-
dictive controller (MPC), which is specially suitable for systems
with multiple inputs and multiple outputs, which is very typi-
cal for heating systems. Its main drawbacks are high demands

Fig. 1. The building of the Czech Technical University in Prague that was used for
MPC application.

for computational resources and non-trivial mathematical back-
ground, especially in the “Model” part of the controller.

3. Model predictive control
3.1. State of the art

Model (based) predictive control (MPC) is a method of advanced
control originated in late seventies and early eighties in the process
industries (oil refineries, chemical plants, etc.) [11]. The MPC is not
asingle strategy, but a vast class of control methods with the model
of the process explicitly expressed trying to obtain control signal
by minimizing objective function subject to (in general) some con-
straints [18]. The minimization is performed in an iterative manner
on some finite optimization horizon to acquire N step ahead pre-
diction of control signal that leads to minimum criterion subject to
all constraints. This, however, carries lots of drawbacks such as no
feedback, no robustness, and no stability guarantee. Many of these
drawbacks can be overcome by applying so-called receding hori-
zon, i.e. at each iteration only the first step of the control strategy is
implemented and the control signal is calculated again, thus, in fact,
the prediction horizon keeps being shifted forward. Stability of the
constrained receding horizon has been discussed in Refs. [13,14],
or yet another approach using robust control design approach [15].

There were several attempts made to utilize predictive control
concept in HVAC in the last decade [19,9,20,21,10]. Complex view
into area of optimal building control gives the project OptiControl.!
Besides its own results, it also provides a wide range of references to
the related articles. Another project worth to mention is the predic-
tive networked building control that deals with predictive control
of the thermal energy storage on the campus of the UC-Berkeley.2
Most of the articles devoted to the HVAC predictive control con-
clude results just by numerical simulations. On the contrary, this
article describes MPC being tested on the real eight-floor building
(see Fig. 1).

3.2. Principles

We will now briefly describe the basic ideas lying behind the
MPC. To be more illustrative, we will take the course of the MPC
implementation in our own project; even though the experienced
practitioners in heating control are rather conservative in their
field, they can accept new method, such as MPC, if performed in
small, consecutive steps, which helps them to get acquainted with
its principles.

1 http://www.opticontrol.ethz.ch.
2 http://sites.google.com/site/mpclaboratory/research/predictive-networked-
building-control-1.
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Having a well working control, such as weather-compensated
control of a building, it is often unwise to change it to something
novel, but unproven. However, it can be very advantageous to pro-
vide a “tool” that would enhance the possibilities of the existing
system. A mathematical model can be such a “tool”, allowing the
system operators to predict the behavior of the building. If the
model is accurate enough (e.g. as a one-day predictor), another fea-
ture can be added—the operator can experiment with the model
and try some “what if” scenarios. The next step is obviously imple-
mentation of an algorithm that proposes the best scenarios; it is
still a “tool”, the model and algorithm are not involved in the con-
trol loop. That would be the last step - after the operator begins to
trust the algorithm, he begins to ask for the closer of the control
loop incorporating what we call model predictive control.

To be more precise, the first step is to find a dynamic model P

y="P(u,t) (5)

where y is the output, u is the input (both can be vectors) and t
is time. Inputs u may be entered by the operator in the beginning,
such that he can see the expected behavior of the system, as seen
on outputs y. The next step is finding the optimal inputs u automat-
ically. This can be achieved by introducing an optimality criterion
J(y,u, t), wherein the control demands are described in the language
of mathematics. Substituting from (5), the optimal control inputs
can be found by computing

Uoptimal = rnuinj(P(u, t),u,t) (6)

subject to “some” constraints. This very basic idea will now be
discussed more in detail.

3.3. Model identification

One of the crucial contributors to the quality of the control is
a well identified model which will be later on used for control in
MPC algorithm. There are several completely different approaches
to system identification (see e.g. [22,23]). Some of them use knowl-
edge of system physics, while others exploit statistical data, such as
grey-box [24,25] (some prior information such as system structure
is known in advance) or black-box identification. Grey box methods
using models such as ARX, ARMAX, OE and others are well estab-
lished among the practitioners as well as theoreticians. There is,
however, a significant problem, when multiple input multiple out-
put (MIMO) systems are considered. The standard input-output
identification methods are not capable of dealing with such a
model, thus one has to either reformulate the problem to several
single-output cases, or to use state-space identification methods,
such as subspace methods. The first approach, including computer
modeling of the building, as well as comparison of ARMAX model
and subspace methods, was briefly described in [26].

The main difference between classical and subspace identifica-
tion can be seen in Fig. 2 (see Ref. [27]). Given the sequence of input
and output data, u(k) and y(k), respectively, do:

e Classical approach. Find system matrices, then estimate the sys-
tem states, which often leads to high order models that have to
be reduced thereafter.

e Subspace approach. Use orthogonal and oblique projections
to find Kalman state sequence, then obtain the system matri-
ces using least squares method. Here we introduce the
latter—subspace identification methods.

The objective of the subspace algorithm is to find a linear, time
invariant, discrete time model in an innovative form:

X(k + 1) = Ax(k) + Bu(k) + Ke(k)

(7)
y(k) = Cx(k) + Du(k) + e(k),
based on given measurements of the input u(k) e R™ and the output
y(k)eR! generated by an unknown stochastic system of order n,
which is equivalent to the well-known stochastic model:

x(k + 1) = Ax(k) + Bu(k) + w(k)

(8)
y(k) = Cx(k) + Du(k) + v(k),
with covariance matrices Q, S and R of process and measurement
noise sequences as follows:

w(p) Q S
cov(w, v) =E ([v(p) ] [wl(q) vT(q)]> = [ST R] 8pg =0, (9)

and with A, B, C, and D denoting system matrices and K and e in (7)
is Kalman gain - derived from the Algebraic Riccati Equation (ARE)
[28], and white noise sequence, respectively. Loosely speaking, the
objective of the algorithm is to determine the system order n and
to find the matrices A, B, C, D and K.

3.3.1. Data matrices for subspace algorithm

The following matrices are necessary to form for subspace
algorithm. Notation was adapted as in Ref. [27]. Upper index d
denotes deterministic subsystem, while the upper index s denotes
stochastic subsystem. Two kinds of matrices are used for subspace
algorithm, data and system related matrices.

e Data matrices. Input and output block Hankel matrix are formed
from input and output data as follows:

uo ul uz “ee uj71 yo yl y2 oo y]71
uj up us3 uj Vi V2 3 yj
Uj—1 Ui Uir Ujtj-2 Yi—1 Yi Yi+1 Yitj-2
Uojpi-1 = Yopi—1 = ;
Ui Uir1  Uip2 Ujtj—1 Vi Yit1  Viv2 o Vitj-1
Uir1  Uiy2 U3 Uit Yi+1  Viv2 Vi3 o Yitj
Uzi—1  U2i Uit U2jtj—2 Y2i—1 Y2i  W2i+1 V2it+j-2

(10)
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Fig. 2. Comparison between classical and subspace identification methods.

Kalman filter

which can be written in shorten form as follows:
Uoici \ _ (Up
Uipi—1 Uy
Yoii \ _ (Y
Yij2i1 .

where matrices U, and Uy represent past and future inputs,
respectively. Outputs y(k) and noise e(k) related matrices can be
formed in similar manner. Grouped data matrix consisting of past
input and past output data is formed as follows:

Ugji-1
Wy = Wyi1 = .
P o=t <Y0|i1
System related matrices. Extended (i > n) observability (I";) and

reversed extended controllability (A;) matrices for deterministic
and stochastic subsystems, respectively are defined as follows:

(11)

C
CA
;= (12)
CAi-1
Af = (A-1B A2B ...AB B) (13)
Af = (A-TK AZ2K ...AK K) (14)

Algorithm also uses lower block triangular Toeplitz matrix for
deterministic and stochastic subsystem, respectively:

D 0 0 ... 0
CB D 0 ... 0
d CAB CB D ... 0
HY =
CA—2B CA3B CA™4B ... D
I 0 0 0
CK I 0 0
HE = CAK CK I 0 (15)
CAI2K CA-3K CA4K ... |

3.3.2. Subspace algorithm
The entry point to the algorithm are input-output equations as
follows:

Yp = ['iXp + HiU, + HSE,p
Yy = ['iX; + HiU; + HEE; (16)
Xp = AiXp + AlUp + ASEp.

Oblique projection as described in Refs. [29,27] is the main tool
used in subspace methods is defined as follows:

Or =Y | Wp. (17)
Ur

The order of the system can be determined from analysis of sin-
gular values obtained using singular value decomposition (SVD) of
W10;W,, where W; are weighting matrices of particular size and
determine resulting state space basis. It has been shown [27], that
0; = I'iX;, where X; is Kalman filter state sequence. This factoriza-
tion also yields extended observability matrix I'; and Kalman filter
states X;.

Algorithm continues from either I'; or X; in a slightly different
manner depending on particular subspace identification algorithm,
however, both ways lead to a computation of system matrices A and
C using least squares method.

Computation of system matrices B and D follows subject to
matrices A and C computed in previous step. Different approaches
for matrices determination are addressed in detail in Ref. [27].

The algorithm concludes with computation of Kalman gain
matrix K in a standard way using state and output noise covariance
matrices (9) which are computed from residuals of the previous
computations.

The model structure used in MPC is the state-space model (7)
identified by subspace identification (described in Section 3.3) from
measured data. The application of the model will become apparent
later in this section.

3.4. Predictive controller

3.4.1. MPC strategy
The MPC strategy comprises two basic steps:

¢ The future outputs are predicted in an open-loop manner using
the model provided information about past inputs, outputs and
future signals, which are to be calculated. The future control
signals are calculated by optimizing the objective function, i.e.
chosen criterion, which is usually in the form of quadratic func-
tion. The criterion constituents can be as follows:
- errors between the predicted signal and the reference trajectory

yi(k);

- control effort;
- rate of change in control signals.

¢ The first component of the optimal control sequence u(k) is sent
to the system, whilst the rest of the sequence is disposed. At the
next time instant, new output y(k + 1) is measured and the control
sequence is recalculated, first component u(k+1) is applied to
the system and the rest is disposed. This principle is repeated ad
infinitum (receding horizon).

The reference trajectory yr(k), room temperature in our case,
is known prior, as a schedule. The major advantage of MPC is
the ability of computing the outputs y(k) and corresponding input
signals u(k) in advance, that is, it is possible to avoid sudden
changes in control signal and undesired effects of delays in system

response.
Standard formulation of criterion for MPC is as follows:
N-1
J = a0k) = (k) + r(ku(k)’, (18)
k=0

where q(k) is weight for difference between system output y(k) and
reference y,(k) at time instant k, while r(k) is the weight of the dis-
placement of control signal u(k). If the future desired output value
is known in advance, then this criterion leads to such an optimal
system input, which minimizes weighted square of y(k) — y;(k). By
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Fig. 3. Comparison between classical and zone predictive strategy. Weighting of
entirely negative errors makes predictive controller to follow accurately the upper
part of reference trajectory. When step down of desired value occurs, the system
output drops to the reference value with a minimum control effort.

this, the area delimited by the system output below desired value
is same as the area above it. This is depicted in Fig. 3 by line marked
with circles. Such a behavior is satisfactory for most of the common
control problems but not for temperature control of a building. The
aim of the control is to adhere the upper desired value from its
beginning to its end. Resulting behavior of the output is delineated
in Fig. 3 by line with crosses.
This unusual problem can be solved by several approaches:

e The intuitive method is to use dynamic weights q(k) and r(k)
at time, i.e. to make them time-dependant. These weights then
depend on the shape of the reference trajectory - if there is a
step-up/down on a prediction horizon, then weight q(k) is set to
be greater than (k) for k when the reference trajectory is on upper
level, whilst g(k) < r(k) for the rest of k on prediction horizon. This
simple procedure ends if there exists more reference trajectory
levels than two (but in this case is the best way how to solve such
a problem).

The second approach is as follows: In the minimization of the
criterion (18) the reference trajectory y, can be substituted with
“artificial” reference w, which can be some approximation from
the actual output y to real reference y,. This can be done using
following convex combination [30]:

w(k) = y(k)

(19)
wk+i)=aw(k+i-1)+ (1 —-a)yr(k+1i),
wherei=1...Nand « € (0;1) is a parameter, that determines the
smoothness (and speed) of the approaching of the real output to
the real reference. (19) can be also restated as follows:

w(k) = y(k)

. (20)
w(k +1) = ar(k + i) — o' (y(k) — yr(k)).
Making use of artificial reference may be very helpful in the case
of number of “steps” in reference trajectory with need of its pre-
cise tracking by the actual output.
Completely different way is to reformulate the part of criterion
(18), which refer to the desired value error. If y(k)<y;(k) then
weight the square of this difference using q(k), otherwise the error
is not weighted. This can be treaded by using the concept of zone
control (also called funnel MPC) [18] where the reference error
is not weighted in a specified interval while the weighting out is
made in a common way. The lower bound of the interval is in our
case desired value, whilst the upper bound is not specified due to
the fact, that the building naturally tends to underheat providing
the weighted output. Such a method can be used for tracking of
reference trajectory with arbitrary number of levels.

The last approach will be discussed in detail.

3.4.2. MPC problem formulation

For a given linear, time invariant, discrete-time deterministic
model
x(k + 1) = Ax(k) + Bu(k)

(21)
y(k) = Cx(k) + Du(k)

find the optimal control sequence on the horizon of prediction
(length N) by minimizing the objective function

N-1
J =) atwk) - 2(k)) + r(ku(ky, (22)
k=0
subject to
Umin < u(k) < Umax
yr(k) = (k) (23)
Amax = |u(k) —u(k — 1)

where constraints u,;,, Umax are the minimum and maximum val-
ues of the control signal, yr(k) is desired value, thus lower bound
for z(k) and A max is a maximum rate of change of the control signal.

The objective function J (in (22)) can be rewritten into a matrix
form (denoted without specification of a time instant)

J=0-2"Qy -2z)+u'Ru,

where Q and R are weighting matrices of output error and control
effort, respectively. The trajectory of the output is given as:

(24)

¥(0) C
y(1) CA
. = . x(0)
y(N.—l) caN-1
D u(0)
CB D u(1)
+ : - : ’ (25)
CA-2B ... B D u(N‘—l)
i.e.
y =I'x(0) + Hu, (26)

where ' is extended observability matrix and H is a matrix of
impulse responses. Let y = I'x(0), then using (26), we can rewrite
(24) as follows:

J =@ +Hu-2)'Q(J +Hu—2z)+u"Ru. (27)

Minimization of such an objective function is a nonlinear pro-
gramming problem, which can be readily rewritten into quadratic
programming problem

HTQH+R -H™Q| |u
N

+2[5TQH —57Q] M +77Qy (28)
This yields the optimization problem min ,,J, which can be effec-
tively solved using some of the computer algebra systems. The
resulting problem has (m+p) - Tvariables which is a greater dimen-
sion compared to the classical one (described by criterion (18)) with
m - T variables, where m and p are number of inputs and outputs
respectively.



S. Privara et al. / Energy and Buildings 43 (2011) 564-572 569

outside temperature of the input
temperature water to the ceiling pipes ceiling
‘ radiant reference
° room
heating 00
temperature of the *‘
ouput water from \
container -t t
inside temperature
<
. temperature of the
- [
T]eat contat — output water from the
exchanger ner ceiling pipes

Fig. 4. Simplified scheme of the ceiling radiant heating system.

4. Application

The methods described in the previous sections were tested
through December 2009 and January 2010 and the the real run
of control application using proposed control strategy started in
February 2010 at the building of the Czech Technical University in
Prague. As of February 2010 the whole building consisting of 7 con-
trol blocks is controlled by presented MPC algorithm. All algorithms
were implemented in Scilab.3

4.1. Description of the building

The building of the Czech Technical University in Prague uses a
“Crittall” type ceiling radiant heating and cooling system. The “Crit-
tall” system, invented in 1927 by R.G. Crittall and ].L. Musgrave [31],
was a favorite heating system in the Czech Republic during 1960s
for large buildings. In this system, the heating (or cooling) beams
are embedded into the concrete ceiling. The control of individual
rooms is very complicated due to the technical state of the con-
trol elements in all rooms. The control is therefore carried out for
one entire building block, i.e. the same control effort is applied to
all rooms of the building block. There are two (out of seven control
blocks) building blocks with the same construction and orientation.
Therefore, this situation is ideal for comparison of different control
strategies, as depicted in Fig. 5.

Asimplified scheme of the ceiling radiant heating systemisillus-
trated in Fig. 4. The source of heat is a vapor-liquid heat exchanger,
which supplies the heating water to the water container. A mix-
ing occurs here, and the water is supplied to the respective heating
circuits. An accurate temperature control of the heating water for
respective circuits is achieved by a three-port valve with a servo
drive. The heating water is then supplied to the respective ceil-
ing beams. There is one measurement point in a reference room
for every circuit. The setpoint of the control valve is therefore
the control variable for the ceiling radiant heating system in each
circuit.

4.2. Description of the model

The ceiling radiant heating system was modeled by a discrete-
time linear time invariant stochastic model. We can consider this
model as a Kalman filter giving an estimate of X(k) and §(k). Outside
temperature prediction and heating water temperature were used
as the model inputs. Prediction of outside temperature is composed
of two values Trax and Ty, defining a confidence interval. The out-
puts of the model are estimates of inside temperature T;, and of

3 Open source scientific software package for numerical computations
(http://www.scilab.org/).

return water? T, This can be formalized according to (21) as

Tmin(k)
R(k +1) = AX(k) + B | Tmax(k) | + K(y(k) — Cx(k))
Thw(k) (29)
A Tmin(k)
Tin(k) .
[ R ] = CR(k)+D | Tmax(k) | ,
) T ()

where Tp,, is temperature of the heating water and T;;, denotes the
inside temperature. System matrices A, B, C and D are to be identi-
fied using subspace methods as was described in Section 3.3.2. The
state X(k) has no physical interpretation, when identified by means
of the subspace identification. System order is determined by the
identification algorithm. Modeling of the heating system of the CTU
building is discussed in detail in Ref. [32].

4.3. Results

We have employed two methods of estimating the savings
achieved on the building, based on comparison with a finely tuned
weather-compensated controller (which also took weather fore-
cast into account).

The first one was a cross-comparison of energy consumption
in particular building blocks based on the difference between the
heating and return water temperatures (this is directly propor-
tional to the heat consumption provided that the pumps have a
constant flow). In the period from mid-February to the end of the
heating season (end of March), the overall savings reached 17-24%,
depending on the particular building block.

The second method was based on comparison of calorime-
ter measurements for the entire building for MPC and said
weather-compensated control. The measurements were normal-
ized by outside temperatures and ambient temperature set-points
to achieve reliable results. For said period of measurement, MPC
achieved 29% savings according to this method.

It should be noted that the heating and return water tempera-
ture is being measured by standard industrial thermometers, which
suffer from measurement errors, such as noise or offset. This intro-
duces some uncertainty into the results. On the other hand, the
calorimeters are installed by the heat provider, so we expect them
to be well calibrated (or, at least, they do not measure less than the
actual heat); heat payments are also based on the calorimeters. So
in the terms of finances, the money savings of were also 29% (there
is a flat rate on heat for the building).

Measurement of thermal comfort is always difficult and highly
individual. As there are some 1500 employees and 8000 students
in the building and there are always some people who complain
about the ambient temperature, we decided to take the number of
complains as the thermal comfort measure. To achieve objective
results, the building occupants were not told about the new heat-
ing strategy. Under such conditions, the change in the number of
complains was insignificant during the test period.

The results are depicted in Fig. 5. The upper part shows out-
side temperature, whilst the lower compares reference tracking
for weather-compensated and predictive controllers. It can be seen,
that the predictive controller heats in advance in order to perform
optimal reference tracking, that is, inside comfort, and minimum
energy consumption. Two last subfigures compare the efficiency

4 It is crucial to model return water as an output because it gives a significant

information about energy accumulated in the building, moreover it represents the
interconnection between heating water and room temperature. Omitting the return
water would lead to significant lost of information.
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Fig. 5. Different control strategies: comparison of weather-compensated (WC) and predictive control (MPC) of heating water temperature and the room temperature

controlled by MPC.

of control measured by energy consumption. The efficiency of the
predictive control was superior to the weather-compensated con-
troller, even if the active heating was necessary.

As mentioned before, the building has up to 12 hour heating
delay. During weekends, the building cools down and classical heat-
ing has to be launched approximately one day before Monday 8 am,
depending on the outside temperature.

5. Remarks to future development

Subspace identification methods represent black-box approach
to the system modeling. This, alongside with its advantages carries
also some drawbacks:

¢ The system might not be excited enough [22], i.e. the input of
the system does not excite the system on satisfactory number
of frequencies, thus identification algorithms lack considerable
amount of information.

e User may have knowledge of some key feature or characteris-
tics of the physical essence of the system, which is “lost” in the
number of data.

e Natural character of the data might pose considerable statistical
problem.

One of the most important aspects of the identification is
the persistency of the excitation or the excitation itself. Data
gathered from the measurement lack some important physical
characteristics of the building. One of the possible approaches
how to deal with this weak point is generation of artificial
data that already contains desired properties. There is also
another possibility, more expensive though—specially proposed
experiment. It was decided to perform an experiment on real
building in through late December 2009 and early January 2010.
The comparison of model identification results is depicted in
Fig. 6.

It is obvious, that experimental data significantly improved the
identification fit. Yet another approach (and much cheaper) how to
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Fig. 6. Validation of model identified from data before and after experiment.

deal with lack of data quality is prior information and its incorpo-
ration to the subspace algorithm. Current methods [33] proposed
algorithm how to incorporate PI into the algorithm using Bayesian
framework. This algorithm makes use of Structured Weighted
Lower Rank Approximation (SWLRA) [34] to decompose the projec-
tion matrix in order to save special structure, thus keep PI. However,
this approach is able to deal with single input single output (SISO)
and single input multiple output (MISO) systems only.

Future development of the identification algorithm will try to
remedy the above-mentioned problems. Speaking generally, there
several approaches to this problem:

® Bayesian framework. This approach requires extension to SWLRA
algorithm to effectively solve MIMO systems.

e [ncorporation of Pl into subspace algorithm. This approach requires
such an computation in subspace identification procedure which
enables direct incorporation of PI into system matrices. This
approach is the topic of ongoing research.

e Spectral identification methods. In robust control, analysis in fre-
quency domain is very popular. The prior information could be
incorporated by means of user-defined “filters”. This methodol-
ogy is also topic of current research.

e Artificial data. Generation of data with desired properties is yet
another approach. The user incorporates required properties and
the knowledge of the physical essence into artificial data which
are then used for regular identification. This approach, however,
does not explicitly say, how to choose the ratio between artifi-
cial and measured data and, therefore, it is only of experimental
nature.

In this paper, we treated only predictions of outside temperature
because it has dominant influence out of all disturbances affecting
the inside temperature. There are, however, other energy sources
(like sun intensity, occupancy of the building, etc.). Taking them
into account would provide better MPC performance as well as
further savings.

6. Conclusion

Predictive control proved to have a great potential in the area of
building heating control. The results from real operation on a large
university building are very promissing and proved the supremacy
of predictive controller over a well tuned weather-compensated
control, with the savings of 17-24%. The MPC implementation dis-
cussed in the present paper is able to track the desired temperature
very accurately, thus maintaining the heating comfort of the build-
ing.

However, the MPC strategy requires some extra effort. The
crucial part of the controller is the mathematical model of the
building. This is not possible by traditional system identification
techniques based on statistical identification, as the building data
usually do not have the desired statistical properties. On the other
hand, finding first principle models is time consuming and not suit-
able for commercial application. We have shown that a proper
identification experiment can provide data suitable for statistical

identification, with the help of certain modifications of the standard
identification algorithms. Numerical issues of the identification
process must be treated very carefully, especially for large-scale
systems.

Fortunately, once an appropriate model is found, the MPC tun-
ing is very intuitive and desired properties of the control system
can be achieved in a short term. The energy peaks are reduced and
the controller does not make fast changes to the control input of the
system, which also saves the lifetime of the equipment and reduces
the peak energy demands. If desired, it also enables to take differ-
ent energy prices into account by introducing time-variable tuning
parameters into the optimization criterion.

Finally, the decision whether to implement the MPC or not
depends largely on the return time of the investments. Even though
this largely depends on air temperatures and sunshine during the
heating season, the return time for our building is estimated to 2
years. As the identification effort does not really depend on the
size of the building, this time will be shorter for large buildings
with expensive heating and longer for small buildings with cheap
heating.
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Modeling and Identification of a Large Multi-Zone Office Building

Samuel Privara, Zdenék Vana, Dimitrios Gyalistras, Jifi Cigler, Carina Sagerschnig,
Manfred Morari, Lukas Ferkl

Abstract— Predictive control in buildings has undergone an
intensive research in the past years. Model identification plays
a central role in a predictive control approach. This paper
presents a comprehensive study of modeling of a large multi-
zone office building. Many of the common methods used for
modeling of the buildings, such as a detailed modeling of
the physical properties, RC modeling, etc., appeared to be
unfeasible because of the complexity of the problem. Moreover,
most of the research papers dealing with this topic presents
identification (and control) of either a single-zone building,
or a single building sub-system. On contrary, we proposed a
novel approach combining a detailed modeling by a building-
design software with a black-box subspace identification. The
uniqueness of the presented approach is not only in the size
of the problem, but also in the way of getting the model and
interconnecting several computational and simulation tools.

I. INTRODUCTION

Climate changes, diminishing world supplies of the “tra-
ditional” fuels, ecological as well as economical aspects are
only some of the many factors of a huge effort of today to
save energy. Besides significant focus on renewable energy
sources broaden, the goals can be reached only if the energy
consumption is optimized. As the buildings account for about
40% of total final energy consumption (and its amount has
been increasing at a rate 0.5-5 % per annum in developed
countries [1]), the efficient building climate control can sig-
nificantly contribute to reduction of the power consumption
as well as the greenhouse gas emissions. Energy savings with
minimal additional cost can be achieved by improvement
of building automation system (BAS), which can nowadays
control both heating, ventilation and air conditioning (HVAC)
systems and the blind positioning and lighting systems [2],
[3].

One of the control strategies suitable for building automa-
tion is the Model Predictive Control (MPC); unfortunately,
the modeling and identification is rather difficult and time-
consuming, not only in MPC. The special requirement for
MPC is that the model should be reasonably simple and have
good prediction properties on the control-relevant frequency
range (see e.g. [4], [5], [6], [7]). One approach is to use
the first-principle models (see [8], [9]), which are often used

S. Privara and J. Cigler are with Department of Control Engineer-
ing (DCE), Faculty of Electrical Engineering (FEE) of Czech Tech-
nical University (CTU) in Prague, Czech Republic and with Auto-
matic Control Laboratory (ACL), Department of Information Tech-
nology and Electrical Engineering (DITEE), ETH Zurich, Switzerland
samuel.privara@fel.cvut.cz

Zden€k Viana and Lukas Ferkl are with DCE, FEE CTU in Prague, Czech
Republic

Carina Sagerschnig is with Gruner AG, Gellertstrasse 55, CH-4020 Basel,
Switzerland

Dimitrios Gyalistras and Manfred Morari are with Automatic Control
Laboratory, DITEE, ETH Zurich, Switzerland

on systems such as TRNSYS, EnergyPlus (EP), ESP-r, etc.,
but these models are not explicit and cannot be used for
control directly. The alternative is to use statistically-based,
i.e. data-driven models [10]; in this approach, problems with
sufficient excitation of the system modes arise.

In this work, we combined the benefits of both above
mentioned approaches. A physical model in a building sim-
ulation software was created, such that it describes the real
building as close as possible. Then identification signals were
fed into the simulation software to obtain the high-quality
identification data, and consequently these were used for
obtaining a suitable control-oriented model.

The main contribution of this paper is twofold: Firstly, it
presents in a detail the unique two step modeling procedure
(real building — EnergyPlus model — linear-time invariant
model for control), secondly it handles set-up of a large
variety of tools used in different communities to deal with a
problem of extraordinary size.

This paper is structured as follows: In the following section
we will describe the problem and introduce the basic setup.
Section III deals with identification and modeling procedures,
describes the tools and algorithms used for obtaining the
model. Section IV provides the results of the presented
approach. Section V concludes the paper.

II. PROBLEM DESCRIPTION AND SETUP

A. Description of the building

The 20 000 m? office building has six floors above ground.
For this study, the entire third floor (as depicted in Figure 1),
which is representative for all office floors, was modeled.
Based on usage, facade orientation and HVAC supply, the
floor can be divided into 24 zones which are mutually
interconnected. Most zones are used as open-space offices;
for modeling reasons, single offices were always lumped to
a bigger zone.

The total floor area of the simulation model is approx.
2800 m?. The facade of the building has a window-to-wall
ratio of approx. 70 %. Facades to the atrium have a glazing
ratio of approx. 50 %. Roughly 50 % of the windows have
interior blinds, remaining blinds are in-between-glass blinds
of double windows.

There are the following actuators installed in the building:

o Convectors: individual convector control is possible.

o Radiant ceiling panels for cooling and heating: for
control purposes ceiling panels of the floor are grouped
into 24 zones that are controlled independently of each
other.



Fig. 1. 3D simulation model of the building: Investigated zones were on
the third floor, other floors are greyed out. The zone layout is shown on top
of the model for clarity. Zones of the same sub-system are colored alike.
The core zones enabling the decoupling are dark blue.

o Ventilation: There are two air handling units (AHU)s —
for the north, and the south. The temperature of supply
air can be set independently in both AHUs.

e Venetian blinds are available for all windows in all
zones. Controllable blinds of individual windows within
the same zone are grouped together as one control input.

Energy supply, i.e. hot and chilled water supply for the entire
building, is provided by a central heating and cooling plant,
which is located partly in the basement and partly on the
roof. District heating is used for the building’s heat supply.
Chilled water is provided locally by mechanical chillers.

B. Choice of a modeling strategy

As already stated, one of the objectives of this project
was to find a convenient MPC-oriented modeling strategy
suited for buildings, which would balance accuracy with the
design-time demand.

The first possible approach is based on detailed physical
modeling, represented by e.g. equivalent RC-network [11].
Unfortunately, fitting of parameters of differential equations
is infeasible for large-scale problems [12].

The second approach is based purely on measurements
collected during the building operation, which are used for
input-output statistical identification. Even though this pro-
cedure looks simple, the results are oftentimes far from good
— some important assumptions, such as persistent excitation
[13], are nearly always violated during building’s normal
operation. The identification procedure can be improved by
including some prior information [14] or by carrying out the
identification experiment on the building which would excite
all important system modes. Depending on the building size,
the experiment might be rather expensive, but can bring high
improvements to the resulting model [10].

When the building is brand new, real data are not available.
From the aforementioned discussion, the only possible ap-
proach might be modeling of the building using RC network,
which is quite challenging for multiple zone buildings.

Therefore a new approach had to be introduced, which
yields a model of a large multi-zone building. A very promis-
ing strategy might be a combination of a building simulation
software (to have an implicit model of the building) used
for identification experiments to get data for a standard sta-
tistical identification procedure. We used EP as the building
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Fig. 2.

simulation software and Building Controls Virtual Test Bed
(BCVTB) as the middleware between EP and a controller
written in Matlab (in terms of excitation signal generator).

C. Software tools

A widely used tool for building energy performance sim-
ulation is EnergyPlus by the Lawrence Berkeley National
Laboratory, which can be used for thermal load simulation
and energy analysis of buildings. Besides the simulation it-
self, EP has a built-in energy management system that allows
for integration of a rule-based control. Traditionally, EP is
a stand-alone simulation engine which processes text-based
input files. For developing and testing MPC models, co-
simulation was necessary to allow more flexible simulation
input. Co-simulation describes the integration of different
tools by run-time coupling. This allows for example to couple
building energy performance simulation tools to Matlab,
and thus provide new possibilities to building simulation.
Co-simulation fundamentals for building simulation such
as coupling strategies and data transfer are described in
[15]. Extensive capabilities for coupling simulation tools are
provided by the Building Controls Virtual Testbed (BCVTB)
[16]. It is a middleware tool that allows to couple different
simulation programs for distributed simulation. Programs to
be linked via the BCVTB are EP, Matlab, Modelica and
Radiance. Data exchange with BACnet building automation
systems is also featured. The BCVTB plays a master role
in the data exchange, as depicted in Figure 2. For the
entire simulation study, hourly weather data for Munich were
used. The statistical weather data used were provided by
the weather database of the US Department of Energy and
prepared by ASHRAE' based on International Weather for
Energy Calculations IWEC) data.

III. IDENTIFICATION AND MODELING

As was mentioned in previous sections, the identification
and modeling is one of the most demanding tasks. We will
describe the whole procedure of getting a building model
in the following steps. Firstly, we describe the choice of
suitable inputs and outputs for the identification, then we
present software tools needed for handling and keeping all
information about system consistent, and finally mathemati-
cal tools necessary for successful system identification (SID).

! American Society of Heating, Refrigerating and Air-Conditioning Engi-
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A. Choice of model inputs and outputs

The choice of model inputs and outputs plays an important
role for the particular identification procedure. According to
the physical relationship between chosen inputs and outputs,
one should opt for a suitable procedure which is able to
handle underlying physics. In other words: if the input-output
relation is non-linear, then linear identification methods may
fail. The size of the problem is also quite an important factor
— especially in the presented problem.

Based on the aforementioned observations, we decided to
choose heat fluxes affecting zone temperatures as system
inputs and temperatures as outputs. The key benefit is that
underlying physics is linear. Complete sets of inputs and
outputs are described in Table I. Note that the model inputs
are different from the inputs of the detailed EP model —
direct manipulation of some heat fluxes is not allowed,
and therefore we have to provide signals on a lower level
(see Table I). The input set was divided into two categories:
the first group represents the actuator heat fluxes, whilst
the second represents disturbances affecting the system.
The identification procedure does not distinguish between
disturbances and manipulated variables, however, is needed
for user orientation and consequent control as well.

B. Step-by-Step to get a model

Each of the following steps is actually a stand-alone
software package which enables a specific task as follows.

1) GenEl: The main task of GenEI is a generation of
sufficiently exciting input signals. Such signals are needed
to satisfy key theoretical assumptions on reliable statistical
identification — persistent exciting signals [17]. In real op-
eration, this request is almost infeasible due to technical,
physical or economical limitations. As the image of the
building modeled in EP is at hand, a proper identification
experiment can be designed. Obviously, when the objective
is to build-up of a model suitable for control, the generated
inputs do not need to cover the entire frequency domain, but
rather some control-relevant selection. The prior knowledge
of the time constants of the system is often known or at least
possible to estimate using some preliminary tests, thus the
input signal is generated according to this information. We
have proposed three different kinds of input signals, pseudo-
random binary signal (PRBS), sum of sinusoids (SINE) and
multilevel pseudo-random signal (MPRS). All of them have
similar settings as follows. Let 7,77 denote the slowest
and the fastest systems time constants, respectively. Then the
required frequency spectrum to be covered by the generated
signal is (w.,w™) and the following equation holds:

w*ziﬁwﬁgwﬂ (D
BTH L

where « defines the ratio of closed-and-open loop responses
and S specifies the settling time. Typical values are a@ = 2
and 3 = 3, which corresponds to 95 % of settling time [18].
Due to the Nyquist-Shannon-Kotelnikov theorem, frequency
range of the generated signal cannot be as in (1), but must be
larger, and the range (1) should bear majority of the power

Fig. 3.

Preparation of data for identification.

of the signal. Furthermore, the choice of switching time is
based on 7, < 278,

In case of MPRS, the input sequence is computed by
Galoise fields [18] with the number of shift registers n and
the length ¢, which defines the maximum possible multiple
of harmonics to be suppressed. In the opposite way, let
h be the maximum possible multiple of the harmonics to
be suppressed. Then ¢ has to be chosen such that ¢ >
2" — 1. Next, the length n can be computed according to
Wy > %. Further on, the length of a signal cycle is

eye = ¢" — 1, which, in time domain, represents a signal
of duration Ty, = N¢y. - Ts. The number m of the signals
to be generated has to be considered as well, but in practical
applications, it is sufficient to generate only 1 signal, and
shift it (m — 1) times afterwards. It is indeed a very
suitable solution as the signal generation is time consuming.
Moreover, this technique guarantees the sufficient lack of
cross-correlation between the respective signals [19].

2) GenSIO.: This block processes outputs produced by
GenEl (inputs to EP), outputs of EP and some variables
from schedules and databases, and produces the input and
output data sets used in SID. The respective inputs, outputs
and disturbances, as used in identification, are described
in Table I and the procedure of data generation and prepara-
tion for identification is schematically depicted in Figure 3
and Figure 4, respectively.

3) Splitter.: Even the powerful servers (64bit machines,
16 cores @ 2.6 GHz and 24 GB RAM) are not able to
compute the identification procedure because of the size
of the problem. However, due to the floor layout, facade
orientation and floor usage, the model of the third floor
can be looked at as four decoupled subsystems. The ring-
shaped layout of the floor houses also four cores (host-
ing infrastructural supply such as elevators, staircases, etc.)
which separate the office spaces from each other. Thermal
coupling of the investigated office zones via the cores is
very loose and can be neglected, as far as control issues are
concerned. The distributed heating, cooling and ventilation
supply of the zones also support the idea of the system
division said four subsystems. Consequently, each of the
subsystems contains its zone-relevant signals and a copy of
the signal, which was originally common for all subsystems.
In other words, when a satisfactory computational power is
at hand, the proposed procedure does not request special
knowledge of the building’s physics, etc. On the other hand,
it does not exclude the possibility of the system division due
to computational or other reasons.




TABLE I
NOTATION OF THE VARIABLES USED FOR SYSTEM IDENTIFICATION

ID Variable Category Type  Zone relevant EP equivalent

Qcony Convector heating rate Input Yes Same quantity, power can be arbitrarily set within limits

ZCPCR Zone ceiling panel cooling rate  Input Yes Supply water temperature and mass flow rate through plumbing can
be adjusted. Together with return water temperature, they stand for
heat flux of radiant ceiling

ZCPHR Zone ceiling panel heating rate Input Yes Same as ZCPCR

LG Lighting gains Input Yes Same quantity, power can be arbitrarily set within limits

NRF Net radiation flux Disturbance Yes Partly by means of blinds control

FP Fan power Input Yes Air flow rate (which is either 55 or 0 m3/h) and supply air temperature.
Together with return air temperature, they stand for heat flux of fans.

ODBT  Outdoor dry bulb temperature Disturbance No Same quantity

EG Equipment gains Disturbance Yes Same quantity

OG Occupancy gains Disturbance Yes Same quantity

T Zone temperature Output Yes Same quantity

71 Zone interior illuminance Output Yes Same quantity

4) SID.: The choice of the identification method was @

determined by the factors described in previous sections,
namely the size of the problem with a vast number of
inputs and outputs, implying the multiple input multiple
output (MIMO) system, and on the other hand, a huge set
of generated (and/or measured) data suggesting the use of
statistical identification procedures. Two different choices for
subspace identification algorithm were implemented

e N4SID function from System Identification toolbox for

Matlab, (see [20], [13]).

o Combined deterministic-stochastic algorithm [17], [21].

5) Joiner.: The four resulting subsystems are merged
together, when all the subsystems retain their zone-specific
signals, whilst the common signals are joined.

6) Verification and validation.: Each of the identified
system was verified using the verification data sets and
residual and correlation analyzes. The joined system was
repeatedly verified.

7) LTI2MPC.: For optimization requirements, there are
several variables added to the model, e.g. total Energy
Power Demand (totEPD?) or total Heat Power Demand
(totHPD?). For this reason, the model provided by Joiner
must be transformed according to control requirements. This
transformation is actually determined by the MPC variant,
e.g. optimization objective. Furthermore, for purposes of
predictive optimization (cost function and particular bounds),
the B and D matrices must be split for the deterministic (ma-
nipulated variables) and stochastic (disturbance variables)
counterparts, as the SID identified all the inputs (no matter
the deterministic and stochastic parts) together.

IV. IDENTIFICATION RESULTS

Because of the size of the system matrices, we will omit
them here and show only the resulting model validations,
which were carried out using comparison of k-step ahead
predictions, as well as by the analysis of the system structure.
The first identification attempts, which seem to be straight-
forward, were to excite the system by generated SINE signals
with 77, = 60 and 75 = 240 minutes, which is sufficient in

2totEPD is a sum of lighting and equipment gains and ceiling cooling
3totHPD is a sum of convectors’ heating rate and a ceiling heating
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Fig. 4. System identification procedure
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sense of building dynamics. Since EP needs different input
signals than our identified model (Table I), not all model
inputs are able to excite the system in an arbitrary way
(see Figure 5 and Figure 6). Anyway, these data are still
excited enough to describe the system behavior well. This
statement can be deduced from the response of the identified
model to the verification data set. The part of output data
corresponding to the time axes of Figure 5 and Figure 6 is
depicted in Figure 7. The model, or to be more specific “1
of the 4 submodels”, has an order around 20. This value
depends on the type of input excitation, identification data
length, time period of the year for which the identification
is computed, focus on either simulation or prediction, and
on the users choice (since the data is disturbed by noises).
Even after joining partial submodels into one big model, the
verification response stays great not only for 1-step ahead
prediction (Kalman filtering), but for longer predictions as
well — see comparison for all zones in Figure 8.
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However the system response to verification data is nice,
a significant (and surprising) drawback of the statistical
identification has come out. The step responses did not
satisfy our expectations in both DC gains and signs. To
ensure not only good verification response, but step response
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Fig. 7. Part of model outputs.

as well, it was necessary to reshape the experiment inputs.
So far, all inputs have been excited in parallel, and therefore
partial zones in one subsystem could affect each other. Thus
for the new identification, the experiment inputs for one
subsystem have been torn in time in such a way, that at
any time instant, only one input category in only one zone
is excited; all other inputs are set to a constant “stand-by”
value. “Stand-by” values have been selected to ensure no
active heating nor cooling into the building, but only natural
behavior. Improvement of the resulting system structure was
significant, and the resulting model is now valid also from
physical point of view, which can be illustrated by step re-
sponses from subset of system inputs to zone temperatures in
Figure 9. All the zones have correct step response dynamics
as well as sign. The step responses from a specific energy
source or outdoor temperature do not have the same impact
for all zones (each zone has different size, orientation and
equipment), but should be similar:

o Ceiling heating rates (see Figure 9(a)) present correct
structure with an appropriate impact of energy sources
— the larger the zone is, the smaller the temperature
impact of 1 W of input signal.

e Ceiling cooling (see Figure 9(b)) has, in all cases,
correct sign of the step response (positive power demand
should affect the zone negatively).

« From Figure 9(c), we can see quite a high impact of the
outdoor temperature on the zone temperatures. It has of
course, slower dynamics than ceiling panels shown in
Figure 9(b) and Figure 9(a), respectively.



V. CONCLUSIONS AND AND FUTURE DEVELOPMENT

This paper has introduced a new methodology of intercon-
necting building simulation software and traditional identi-
fication methods in order to avoid the statistical problems
with data gathered from the real building. The building was
modeled using EnergyPlus, which was excited by specially
proposed signals to get data of a good quality. Then the
subspace identification approach (with some modifications)
was applied to acquire a model suitable for predictive con-
trol. To the authors’ best knowledge, there was no detailed
building modeling intended for predictive control of such a
size. The last step of preparation of the model for control are
adjustments of inputs and outputs, in order to obtain a model
corresponding to the variety of MPC problems (according to
the control criteria).
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Subspace Identification: A Path Towards Large-Scale Predictive
Controllers of Buildings

Samuel Privara, Zdenék Vana, Jifi Cigler, Lukas Ferkl

Abstract— Even though the advanced control has emerged
into numerous parts of our world, building automation is still
a field where the position of the classical control is almost
exclusive. The main reason is, that for the synthesis of an
advanced controller, a decent model, “model for control”, is
needed. In this paper, a building model identification procedure
is presented, wherein the building model is built-up as a first-
principle model using a simulation software, and then a state-
space model is identified by means of the subspace identification
methods. The main focus of the paper is a case study of a
large office building, and the entire process of its identification.
The paper will show, that the model needs not to be precise
at the whole frequency range, however, it is crucial to have
good properties at frequencies where the control is intended.
Moreover, the major difficulties encountered during the model
identification process are described and possible solutions are
outlined.

I. INTRODUCTION

In recent years, there has been a significant effort to revert
or at least diminish the effect of the climate changes or the
climate changes themselves. Moreover, there is a permanent
effort for energy savings in the most of the developed
countries. In addition, the European Union (EU) presented
targets concerning energy cuts defining goals until 2020 [1]:
i) Reduction in EU greenhouse gas emissions at least 20 %
below the 1990 levels ii) 20 % of EU energy consumption
to come from renewable resources iii) 20 % reduction in
primary energy use compared to projected levels, to be
achieved by improving energy efficiency. Even though there
are fierce debates about the real impact of the renewable
resources, because of e.g. the power grid issues, energy
savings achieved by smart control algorithms are free of
political controversy.

As the buildings account for about 40% of total final
energy consumption (and its amount has been increasing at
a rate 0.5-5 % per annum)[2], an efficient building climate
control can significantly contribute to reduction of the power
consumption as well as the greenhouse gas emissions. Energy
savings with minimal additional cost can be achieved by im-
provement of building automation system (BAS), which can
nowadays control heating, ventilation and air conditioning
(HVAC) systems, as well as the blind positioning and lighting
systems [3], [4].

One of the control strategies suitable for building automa-
tion is the Model Predictive Control (MPC); unfortunately,
the modeling and identification of buildings is rather difficult

S. Privara, Z. Vana, J. Cigler and L. Ferkl are with Department of
Control Engineering (DCE), Faculty of Electrical Engineering (FEE) of
Czech Technical University (CTU) in Prague, Technicka 2, 166 27 Praha
6, Czech Republic

and time-consuming. The special requirement for MPC is
that the model is reasonably simple and has good prediction
properties on the control-relevant frequency range (see e.g.
[51, [6], [7], [8]). One approach is to use the first-principles,
however, most of the papers devoted to the modeling from the
first principles provide only two-room example. We would
like to model a large office building with tens of rooms
(i.e. tens of inputs and outputs) which can be modeled in
building simulation software such as TRNSYS, EnergyPlus
(EP), ESP-r, etc. (see [9], [10], [11], [12]), but these models
are not explicit and cannot be used for predictive control.
Therefore we have decided to use statistically-based, i.e.
data-driven models [13], [14].

In this work, we combined the benefits of both above
mentioned approaches. A physical model in a building
simulation software (EP) was created, such that it describes
the real building as closely as possible. Then identification
signals were fed into the simulation software to obtain the
high-quality identification data, and consequently these were
used for obtaining a suitable control-oriented model. The
uniqueness of this approach is in the combination of real
building data, the first-principle model of the building and
the identification algorithms, which make use of both.

The next section provides the motivation and explains the
background of the problem to be solved. Section II describes
the setup of the building and formulates the problem. The
modeling and identification are dealt with in Section III.
Section IV describes the problems encountered during the
identification procedure and suggest some solutions. Sec-
tion V concludes the paper.

II. PROBLEM DESCRIPTION AND SETUP
A. Description of the building

The analyses to be described all deal with the third floor of
a large office building in Munich (20 000 m? and six above-
ground floors, see Fig. 2 and Fig. 1). Based on the usage,
fagade orientation and HVAC supply, the floor can be divided
into 24 mutually interconnected zones. The total floor area of
the simulation model is approx. 2 800 m2. The facade of the
building has a window-to-wall ratio of approx. 70 %. Facades
to the atrium have a glazing ratio of approx. 50 %. Roughly
50 % of the windows have interior blinds, remaining blinds
are in-between-glass blinds of double windows.

The building automation system contains several actuators,
namely individually controlled convectors, 24 independently
controlled radiant ceiling panels for cooling and heating, two
air handling units (AHU) for control of the ventilation, and
venetian blinds for all windows in all zones. Energy supply,
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Fig. 2. 3D simulation model: Investigated zones were on the third floor,
other floors are grayed out and used for shading purposes only. The zone
layout is shown on top of the model for clarity. Zones of the same sub-
system are colored alike. Core areas are grey.

i.e. hot and chilled water supply for the entire building, is
provided by a central heating and cooling plant, which is
located partly in the basement and partly on the roof. District
heating is used for the building’s heat supply. Chilled water
is provided locally by mechanical chillers.

B. Choice of modeling strategy and model inputs and outputs

The choice of model inputs and outputs is strongly de-
pendent on the choice of the identification method which
is determined by the application. As was briefly mentioned
before, the usage of the first-principle models (represented
by e.g. an equivalent RC-network [15]) for a problem of
such dimensions as one examined in this paper, is very
limited [16] (if possible at all), and the well-known sim-
ulation software packages do not provide model in an ex-
plicit form suitable for control. Therefore, we have decided
for statistical identification, namely subspace identification
methods (4SID). Even though this procedure looks simple,
the results are oftentimes far from good — some important
assumptions, such as persistent excitation [17], are nearly
always violated during building’s normal operation. The
identification procedure can be improved by including some
prior information [18] or by carrying out the identification
experiment on a building which would have all important
system modes excited. Depending on the building size, the
experiment might be rather expensive, but can bring high
improvements to the resulting model [14], [13]. Therefore a
new approach had to be introduced, which yields a model

of a large multi-zone building. A very promising strategy
might be a combination of a building simulation software (to
have an implicit model of the building) used for identification
experiments to get data for a standard statistical identification
procedure. We used EnergyPlus as the building simulation
software and Building Controls Virtual Test Bed (BCVTB) as
the middleware between EnergyPlus and a controller written
in Matlab (in terms of excitation signal generator). The
description of the interconnection of the various simulation
and computational tools is described more in detail in [19].

Based on the chosen identification method, 4SID, the
model inputs and outptus were selected as follows. The heat
fluxes affecting zone temperatures were selected as system
inputs and temperatures as outputs. The key benefit is that
the underlying physics is linear. The complete set of inputs
and outputs is described in Table I. Note that the model
inputs are different from the inputs on side of the detailed
EnergyPlus model — direct manipulation of some heat fluxes
is not allowed, and therefore, we have to provide signals on
lower level (description of these are given also in Table I).
Note also that the input set was divided into two categories:
the former group represents the actuator heat fluxes and
the latter disturbances affecting the system. Identification
procedure does not distinguish between disturbances and
manipulated variables, however, this categorizing is good for
user orientation as well as consequent control.

III. IDENTIFICATION AND MODELING
A. Problem statement

In the last two decades, the subspace algorithms (4SID)
have become an important tool for the system identification
(SID). The objective of the 4SID, as will be used further on,
is to find a linear, time invariant, discrete time state space
model in an innovative form

z(k+1) =

y(k) =

given the measurements of the input u(k) € R™ and the
output y(k) € R! with e being zero-mean white noise. In

other words, we want to determine the system order n and
to find the matrices A, B, C, D and K. The set of data

ZN = (u(t), y(t)1, , @)

is generated by an unknown stochastic system of order n,
which is equivalent to the well-known stochastic model as
defined in e.g. [20], [21].

Az (k) + Bu(k) + Ke(k)
Cxz(k) + Du(k) + e(k), (1)

B. General algorithm

The entry point to the algorithm are input-output equations

Y, = I.X,+ H{U,+ HE,
Y; = DX+ HU;+ HE;
X; = A'X,+ AU, + ALE, (3)

where all the corresponding symbols are explained in Ta-
ble II.



TABLE I
NOTATION OF THE VARIABLES USED FOR SYSTEM IDENTIFICATION

D Variable Category Type Zone relevant EP equivalent

Qcony Convector heating rate Input Yes Same quantity, power can be arbitrary set within limits

ZCPCR Zone ceiling panel cooling rate  Input Yes Supply water temperature and mass flow rate through pipes can be
adjusted. Together with return water temperature, they stand for heat
flux of radiant ceiling

ZCPHR Zone ceiling panel heating rate Input Yes Same as ZCPCR

LG Lighting gains Input Yes Same quantity, power can be arbitrary set within limits

DSRV  Direct solar radiation gains Input Yes By means of blind control (position and angle), we can adjust solar
gains influencing zone temperature.

DFSRV  Diffuse solar radiation gains Input Yes Same as DSRV

FP Fan power Input Yes Air flow rate (which is either 55 or 0 m3/h) and supply air temperature.
Together with return air temperature, they stand for heat flux of fans.

ODBT  Outdoor dry bulb temperature Disturbance No Same quantity

EG Equipment gains Disturbance Yes Same quantity

oG Occupancy gains Disturbance Yes Same quantity

T Zone temperature Output Yes Same quantity

Z1 Zone interior illuminance Output Yes Same quantity

TABLE I
SYMBOLS AND THEIR MEANING USED FOR SID ALGORITHM.

Symbol Meaning

Yy Hankel matrix of the past outputs

Yy Hankel matrix of the future outputs

Xy Hankel matrix of the future states

Up Hankel matrix of the past inputs

Uy Hankel matrix of the future inputs

r Extended observability matrix

He Markov parameter matrix (deterministic part (DP))
Hs Markov parameter matrix (stochastic part (SP))
Ad Reversed extended controllability matrix (DP)
AS Reversed extended controllability matrix (SP)
Ep Hankel matrix of the past noise

Ey Hankel matrix of the future noise

i Prediction horizon

N Number of data samples

The basic idea of the algorithm is to eliminate the input
and the noise matrices in Eq. (3) by finding the appropriate
projection and instruments matrices. The main tool of SID,
an oblique projection, is defined (see [22], [23]) as follows:

W, W7 WpUﬂT {IM

o= Wy U] [UprT UgUy ] L0 ]Wp’ @

where [ is the number of outputs and ()" is Moore-Penrose
pseudo-inverse. Eq. (4) is in literature often referred to as

O =Y} /W,. Then it can be shown (see e.g. [23], [24]),
Us
that O = I'X, where X is a Kalman filter state sequence,

i.e. the oblique projection is a tool how to get rid of the input
and noise matrices in Eq. (3). The order of the system can be
determined from analysis of the singular values o; obtained
using a singular value decomposition (SVD) of W;OW5,
where W, are the weighting matrices of an appropriate size
and determine the resulting state space basis as well as
importance of the particular element of O. A general formula
for order determination does not exist, however, one should
look for big changes in amplitude between two neighboring
singular values. We have proposed the following heuristic

formula for automatic selection of the order n:

f(oj)

n = argmin f(o;)
J

= gradlog [o1, 03, e

&)

Algorithm continues from either I or X in a slightly different
manner depending on the particular 4SID algorithm, how-
ever, both ways lead to a computation of the system matrices
A and C using a least squares method. In the following, we
will use an approach of [24] and using Matlab like notation
for the selection of the sub-matrix of a given matrix:

C=T1:1,), A=T1:(i—-1)-1,:)"'TU+1:i-1,)
o ©6)
Given the matrices A and C, the estimate of the system
matrices B and D (and initial state zy) is performed in a
number of different ways, see e.g. [23], [17], [25], [26], [27].
We will adopt the idea from [24]. The system output equation
can be written as
k—1
y(k) = CA*z(0) + > CA¥I7' Bu(j) + Du(k) + e(k),

j=0

(N
with e(k) being the noise contributions. Then Eq. (7) can be
readily rewritten using an operator of vectorization vec as
follows:

k-1
y(k) = CAF2(0) + Zu(j)T ® CAF=I=1 | vec (B)+
j=0
+ (uw(k)T @ I)vec (D) + e(k).
®)

The optimization problem can be then formulated using a
matrix form as

0* :argmginHy—ZTGH% )

where ) represents the vectors y(k) stacked onto

each other, Z = (p(1),...,0(N)), with T (k) =
k—1

CAkE N ()" @ CAFIT wk)T @ 1,

Jj=0

and 97 =



(:E(O)Tvec (B)Tvec (ﬁ)? Finally, given the estimates of
the system matrices A, B, C, D the Kalman gain matrix
K can be computed. If an estimate of a state sequence
X is known, the problem can be solved by computing the
Algebraic Riccati Equation (ARE) in which the covariance
matrices are determined from the residuals as follows:

w _ Xi+1 | A B X
V- ]-LE Bl e
where
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IV. IDENTIFICATION ALGORITHM PROPERTIES, ISSUES
AND PROPOSED SOLUTIONS

A. Input signals

Generation of sufficiently exciting input signals is one of
the key theoretical assumptions enabling reliable statistical
identification. Under real operation, this request is almost in-
feasible due to technical, physical or economical constraints
and limitations. As the image of the building modeled in
EP is at hand, the identification experiment was proposed as
follows.

Three different kinds of input signals have been con-
structed, namely pseudo-random binary signal (PRBS), sum
of sinusoids (SINE) and multilevel pseudo-random signal
(MPRS). Let 7, 71, denote the slowest and the fastest time
constants of the system, respectively. Then the frequency
spectrum to be covered is (w.,w*) with w, = B+H <w<
%w*, where o defines how fast will the closed-loop be
with respect to the open-loop response, and 3 specifies low
frequency information corresponding to the settling time. The
typical values are « = 2 and 8 = 3, which corresponds
to 95 % of the settling time [28]. In case of MPRS, the
input sequence is computed by Galoise fields [28] with the
number of shift registers n and the length ¢, which defines the
maximum possible multiple of harmonics to be suppressed.
In the opposite way, let h be the maximum possible multiple
of the harmonics to be suppressed. Then ¢ has to be chosen
such that ¢ > 2" — 1 holds and the length n is computed as

S 2T
T Ts(q™ — 1).

The length of a signal cycle is Ny, = ¢" —1, which (in time
domain) represents a signal of duration T;.;. = N,y.-Ts. The
number of the signals to be generated (m) does not need to
be considered, as it is sufficient to generate a single signal
and shift it (m — 1) times, which guarantees good statistical
properties of the generated signals [29].

w 12)

B. Analysis of model linearity

The fact that the underlying physics of the process is
linear (Section II-B) does not mean, that the EP model is
indeed linear. The linearity should be hence verified in the
first place. To cope with this issue, one can design special
input consisting of several multilevel steps, and afterwards
compare their particular effect on output. Fig. 3 depicts the

Comparison of particular EP step responses.
3 T T T

L
0 10 20 30 40 50
time [days]

Fig. 4. Linearity verification: comparison of particular steps.

design of the multilevel steps as input, as well as the output
from the EP. Next, Fig. 4 shows appropriately scaled and
shifted step responses. We can see, that the step responses
corresponding to the different operating points are the same,
thus the underlying system is indeed linear.

C. Analysis of size of Hankel matrices and step responses

The next step in identification is to decide, how to choose
the parameters that enter the algorithm, e.g. identification
algorithm, model order or size of the Hankel matrices, which
is given by the number 7 of the block rows in said matrices.
Due to the assumed (and verified) linearity of the EP model
and the physically-based assumption that the change of
temperature is the 15 order process, the whole subsystem
consisting of 6 zones is considered to be of the 6" order!.
[23] showed, that the number 7 of block rows of the Hankel
matrices must be larger than the maximum order of the
system to be identified. Essentially, the number ¢ means
how much into the past or future of the measured data are
we looking, therefore it may appear that the greater i is,
the better the result will be. However, a compromise has to
be done concerning the computation difficulties, especially
for the case of a large MIMO system identified (such as a
building) .

Several numbers ¢ had been selected and their effect on
the identification results were analyzed. Fig. 5 shows the
step responses of several inputs for ¢ = 6,9, 15 and 20. For
i up to, let say, 12 (two times the considered order), the step
responses possess good properties, such as reliable dynamics
and the sign of the effect, as well as its nominal value. On
the other hand, greater ¢ causes unexpected “nervous-like”
behavior at higher frequencies, wrong sign and different DC-
gains (even for different ¢) of the contribution to output.

D. Analysis of extended observability matrix singular values

Yet another question arises and should be examined: Is the
chosen algorithm suitable and powerful enough to identify
such a large system? The first step in this analysis was to
identify the model from a “simple” input dataset, and, if

IThis was also verified by subspace algorithm selecting order according
to Eq. (5)
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successful, a deeper analysis follows. The ‘“simple” input
dataset has been chosen such that all inputs are constant
inputs, except of one input, where a long step function was
introduced. This input dataset is assumed to lead the system
into a steady state, and the effect of the single-input-step
shows up in all outputs. The model identified from this
dataset identifies both the DC-gain, including the sign, and
the time constant (Fig. 6).

Matrix O (see Eq. (4)) is used to select the order of the
model — 4SID algorithms often rely on the mere distribution
of its singular values (see for instance the presented algo-
rithm which determines the order n according to Eq. (5)).

time [days]

time [days]

Step responses of several inputs in zone 1 for different 4s. Vertical axes are particular contributions to zone temperatures.

For deterministic systems, the singular values distribution has
a big step in magnitude, while for stochastic systems, it holds
that the bigger noise covariance is, the smaller is the step in
magnitude of singular values; for certain covariances, there
is no step and one can hardly identify the correct order.

The analysis of singular values is of special interest when
some of the 4SID algorithm assumptions do not hold (refer
to Section III-A). Unfortunately, this is a common situation
in real systems identification; the system may be e.g. subject
to a non-white noise, or, in other words, by an unknown
disturbance input.

We performed two different experiments to see the impact
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applied at convectors, output is contribution to zone temperature.

of possible unknown disturbance inputs. In the first example,
we created a simple two-zone model of a building (according
to [15]). The inputs to the system were convector heating
rates in both zones, common heating rate caused by occu-
pants, equipment or solar radiation, and the last system input
was the outside temperature. The system had six states, each
zone was characterized by three states (one state for air in the
zone with fast dynamics and two representing wall layers).
Only two states were measured — zone air temperatures. The
data were generated according to Section IV-A for three
different setups:

« Common heating rate was set to zero, as well as outside
temperature.

« Common heating rate was set to a constant value, as
well as outside temperature.

o Common heating rate was generated using MPRS,
whilst outside temperature was chosen according to
winter weather in Prague, Czech Republic i.e. sinus
character, —4 °C at night and 4 °C during the day.

The convector heating rates were generated using PRBS
in all setups. We had taken into account only a subset of
inputs, namely convector heating rates, and then performed
identification using generated input-output data. Analyzing
the singular values of extended observability matrix in Fig. 7,
we can see that the more exciting the unknown signal is, the
more states are included in the system matrix A in order to
track the trajectory of the output perfectly. Constant value on
unknown inputs adds one extra state located in 1.0; MPRS
and sine on unknown inputs adds even more states. The fit of
the resulting model is perfect on the identification dataset,
but in situation where unknown inputs change, the model
completely fails.

From the first example, one can see the importance of
knowledge of all inputs affecting the system. The second
example addresses analysis of singular values (see Fig. 8) for
data gathered using EP simulation environment and artificial
model with a similar structure (in terms of number of zones,
as well as level of detail). Note the different scaling of the

T T
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=—— Pulsing hidden inputs []

Magnitude [dB]

3 A& A
10751 v U OO

Fig. 7. Comparison of singular values of extended observability matrix for
different levels of unknown inputs.
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Fig. 8. Comparison of singular values of extended observability matrix
composed of EnergyPlus or Artificial system input output data.

both plots. I/O data generated by EP leads to singular values
distribution which is strongly affected by:

« Nonlinearity of EP computations (even though the I/O
behavior should be linear).

« The relation might be linear, however, there are some
internal EP controllers which cannot be switched off,
which can also cause the failure of the identification
procedure.

o There are some extra inputs affecting the system which
are not considered, even though Table I contains a
comprehensive selection of I/0 for 4SID.

o There is a pseudo-random noise additively superposed
to the system outputs.

Detailed analysis of all aforementioned points may lead
to the holy grail i.e. getting a linear time invariant model
suitable for control using a simplification of a detailed model
in some building simulation software.

V. CONSEQUENCES FOR CONTROL AND CONCLUSIONS

A. Concluding remarks

This paper has introduced a new methodology of intercon-
necting building simulation software and traditional identi-
fication methods, in order to avoid the statistical problems



with data gathered from the real building. The building was
modeled using EnergyPlus, which was excited by specially
proposed signals to get data of a good quality. Then sub-
space identification approach (with some modifications) was
applied to acquire a model suitable for predictive control.
The last step of preparation of the model for control are
adjustments of inputs and outputs for obtaining the model
corresponding to the variety of MPC problems (according
to the control criteria). We have investigated a number of
properties and parameters of the identification algorithm and
provided some hints for identification of the large MIMO
systems such as buildings. The predictive control of the large
building will follow-up in a separate paper.

VI. ACKNOWLEDGMENTS

The project has been supported by the Ministry of Indus-
try and Commerce of the Czech Republic, grant No. FR-
TI1/517, Control systems for energy consumption optimiza-
tion in low-energy and passive houses.

REFERENCES

[1] “Communication from the commission to the European Parliament,
the Council, the European Economic and Social Comittee and the
Comittee of the regions,” Brussels, p. 14, 2010.

[2] L. Perez-Lombard, J. Ortiz, and C. Pout, “A review on buildings
energy consumption information,” Energy and buildings, vol. 40, no. 3,
pp. 394-398, 2008.

[3] J. Wong, H. Li, and S. Wang, “Intelligent building research: a review,”
Automation in Construction, vol. 14, no. 1, pp. 143-159, jan 2005.

[4] H. Han, Y. Jeon, S. Lim, W. Kim, and K. Chen, “New developments
in illumination, heating and cooling technologies for energy-efficient
buildings,” Energy, 2009.

[5] H. Hjalmarsson, “System identification of complex and structured
systems,” European journal of control, vol. 15.

[6] R. Gopaluni, R. Patwardhan, and S. Shah, “MPC relevant
identification—tuning the noise model,” Journal of Process Control,
vol. 14, no. 6, pp. 699-714, 2004.

[7]1 D. Lauri, J. Salcedo, S. Garcia-Nieto, and M. Martinez, ‘“Model
predictive control relevant identification: multiple input multiple output
against multiple input single output,” Control Theory & Applications,
IET, vol. 4, no. 9, pp. 1756-1766, 2010.

[8] D. Shook, C. Mohtadi, and S. Shah, “A control-relevant identification
strategy for GPC,” IEEE Transactions on Automatic Control, vol. 37,
no. 7, pp. 975-980, 2002.

[9] H. Madsen and J. Holst, “Estimation of continuous-time models for

the heat dynamics of a building,” Energy and Buildings, vol. 22, no. 1,

pp. 67-79, 1995.

K. Andersen, H. Madsen, and L. Hansen, “Modelling the heat dynam-

ics of a building using stochastic differential equations,” Energy and

Buildings, vol. 31, no. 1, pp. 13-24, 2000.

M. Gwerder and J. Toedtli, “Predictive control for integrated room

automation,” in 8th REHVA World Congress Clima, 2005.

M. Trcka, J. Hensen, and M. Wetter, “Co-simulation of innovative inte-

grated HVAC systems in buildings,” Journal of Building Performance

Simulation, vol. 2, no. 3, pp. 209-230, Sep. 2009.

J. Cigler and S. Privara, “Subspace identification and model predictive

control for buildings,” in The 11th International Conference on Con-

trol, Automation, Robotics and Vision — ICARCV2010, pp. 750-755.

Z. Vaia, J. Kubecek, and L. Ferkl, “Notes on finding black-box

model of a large building,” in Control Applications (CCA), 2010 IEEE

International Conference on, 9 2010, pp. 1017-1022.

M. Gwerder, B. Lehmann, J. Todtli, V. Dorer, and F. Renggli, “Control

of thermally-activated building systems (TABS),” Applied energy,

vol. 85, no. 7, pp. 565-581, 2008.

T. Bohlin and S. Graebe, “Issues in nonlinear stochastic grey box

identification,” International Journal of Adaptive Control and Signal

Processing, vol. 9, no. 6, pp. 465-490, 2007.

L. Ljung, System Identification: Theory for user.

Upper Saddle River, New Jersey, USA, 1999.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17] Prentice-Hall, Inc.,

[18]

(19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Privara, J. Cigler, Z. Vana, L. Ferkl, and M. gebek, “Subspace
identification of poorly excited industrial systems,” in Proceedings of
the 49th IEEE Conference on Decision and Control, 2010, pp. 4405—
4410.

S. Privara, Z. Vana, D. Gyalistras, J. Cigler, C. Sagerschnig,
M. Morari, and L. Ferkl, “Modeling and identification of a large multi-
zone office building,” in 2011 IEEE Multi-Conference on Systems and
Control, Denver, CO, USA, 2011.

F. Lewis, Optimal estimation with an introduction to stochastic control
theory. Wiley New York et al., 1986.

R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of basic Engineering, vol. 82, no. 1, pp. 3545, 1960.
P. Trnka, “Subspace identification methods,” Ph.D. dissertation, Czech
Technical University in Prague, 2007.

P. Van Overschee and B. De Moor, Subspace Identification for Linear
Systems. Kluwer Academic Publishers, 101 Philip Drive, Assinippi
Pard, Nowell, Massachusetts: Kluwer Academic Publishers, 1999.

C. Lyzell, “Initialization methods for system identification,” Licentiate
Thesis no. 1426, Department of Electrical Engineering, Linkoping
University, SE-581 83 Link&ping, Sweden, Nov. 2009.

G. V. D. Veen, J.-w. V. Wingerden, and M. Verhaegen, “Closed-
loop MOESP subspace model identification with parametrisable distur-
bances,” in 49th IEEE Conference on Decision and Control, Atlanta,
2010, pp. 2813-2818.

M. Pouliquen, O. Gehan, and E. Pigeon, “An indirect closed loop
subspace identification method,” in 49th IEEE Conference on Decision
and Control, no. 3, Atlanta, 2010, pp. 4417-4422.

D. N. Miller and R. A. D. Callafon, “Subspace Identification Using
Dynamic Invariance in Shifted Time-Domain Data,” in 49th IEEE
Conference on Decision and Control, no. 0, Atlanta, 2010, pp. 2035—
2040.

M. Braun, D. Rivera, A. Stenman, W. Foslien, and C. Hrenya, “Multi-
level pseudo-random signal design and model-on-demand estimation
applied to nonlinear identification of a RTP wafer reactor,” in American
Control Conference, 1999. Proceedings of the 1999, vol. 3. 1EEE,
2002, pp. 1573-1577.

S. V. Gaikwad and D. E. Rivera, “Control-relevant input signal design
for multivariable system identification: Application to high-purity
distillation,” 1996.






(© Lukas Ferkl 2011
© Elsevier 2007, 2010, 2011
© TU Graz 2008
© IEEE 2009, 2010, 2011






